INSTITUT FUR INFORMATIK,
TECHNISCHE UNIVERSITAT MUNCHEN

Multigrid methods for matrices with
structure and applications in image
processing

Jochen Staudacher

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen
Universitat Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Rudolf Bayer, Ph.D.

Priifer der Dissertation:

1. Univ.-Prof. Dr. Thomas Huckle
2. Univ.-Prof. Dr. Heike Fa3bender

Die Dissertation wurde am 22.04.2002 bei der Technischen Universitat
Miinchen eingereicht und durch die Fakultat fiir Informatik am 03.07.2002
angenommen.

Abstract

Multigrid methods are among the fastest algorithms for the solution of linear
systems of equations Az = b. For many problems the computational efforts
for the multigrid solution of the linear system are of the same complexity
as the multiplication of a vector with the matrix A. This thesis deals with
multigrid algorithms for structured linear systems. Particular focus is put
on Toeplitz matrices, i.e. matrices with entries constant along diagonals. Via
the FFT a dense Toeplitz matrix A € R"*" can be multiplied with a vector
z € R" in O(nlogn) operations.

This work presents new efficient multigrid algorithms of complexity O(n logn)
for solving dense Toeplitz systems corresponding to nonnegative generating
functions with isolated zeros of finite order. For the first time natural coarse
grid operators are employed in the context of multigrid for Toeplitz systems.
That way Toeplitz structure can be preserved on the coarse grids.
Afterwards ideas for sparse Toeplitz matrices are carried over to general
banded linear systems. The so called "Matrix Multilevel Method” (MML)
uses matrix-dependent prolongation and restriction operators based on a
good upper bound for the maximum eigenvalue of the system matrix A. Un-
like most multigrid approaches, the MML is not restricted to M-matrices.
Plenty of numerical examples for elliptic problems with oscillatory or dis-
continuous coefficients are given for which standard multigrid deteriorates
whereas the MML leads to optimal computational performance.

Then I take a look at Fredholm integral equations of the first kind as they
arise e.g. from image deblurring. I extend an idea for a multigrid algorithm
by R. Chan, T. Chan and W. Wan who proposed to use preconditioned
conjugate gradients as a smoother. Again, an efficient O(nlogn) multigrid
algorithm for the dense structured linear systems from image deblurring can
only be obtained if we get the coarse grid operators via rediscretization.
Finally, a new preconditioner for sparse structured matrices arising from the
problem of high-resolution image reconstruction with multisensors is pro-
posed, analyzed and integrated into a powerful software package. The nu-
merical experiments show that the new method is efficient and leads to the
desired O(n) speed of convergence.

i

Zusammenfassung

Mehrgittermethoden gehoren zu den schnellsten Verfahren fiir die Losung
eines linearen Gleichungssystems Az = b. Fiir viele Probleme ist der Aufwand
fiir eine Mehrgitterlosung von der gleichen Komplexitat wie die Multiplika-
tion eines Vektors mit der Matrix A. Diese Arbeit handelt von Mehrgit-
teralgorithmen fiir struktierte Gleichungssysteme. Ein besonderer Schwer-
punkt liegt dabei auf Toeplitz-Matrizen, das sind Matrizen mit konstanten
Eintragen entlang allen Diagonalen. Via FF'T kann eine vollbesetzte Toeplitz-
Matrix A € R"*" mit einem Vektor z € R" in O(nlogn) Operationen mul-
tipliziert werden.

Diese Arbeit présentiert neue effiziente Mehrgitteralgorithmen mit Kom-
plexitat O(nlogn) fiir vollbesetzte Toeplitz-Systeme, die zu nichtnegativen
generierenden Funktionen mit isolierten Nullstellen endlicher Ordnung gehéren.
Dabei werden zum ersten Mal im Kontext von Multigrid fiir Toeplitz-Systeme
natiirliche Grobgitteroperatoren eingesetzt. Auf diese Weise bleibt die Toeplitz-
Struktur auf den Grobgittern erhalten.

Anschliefend werden Ideen fiir diinnbesetzte Toeplitz-Matrizen auf allge-
meine bandbeschrankte Systeme iibertragen. Die sogenannte 'Matrix Mul-
tilevel Methode’ (MML) verwendet matrix-abhéngige Prolongations- und
Restriktionsoperatoren basierend auf einer guten oberen Schranke fiir den
grofiten Eigenwert der Matrix A. Anders als die meisten Mehrgitteransétze
ist die MML nicht auf M-Matrizen beschrankt. Es wird eine Vielzahl nu-
merischer Beispiele fiir elliptische Probleme mit oszillierenden oder unsteti-
gen Koeffizienten prisentiert, fiir die Standard-Multigrid versagt, wahrend
die MML optimales Laufzeitverhalten zeigt.

Dann widme ich mich Fredholmschen Integralgleichungen 1.Art, wie sie etwa
bei der Bildentzerrung auftreten. Ich erweitere eine Idee fiir einen Mehrgit-
teralgorithmus von R. Chan, T. Chan und W. Wan, die vorschlugen, ein
vorkonditioniertes CG-Verfahren als Glatter zu verwenden. FErneut kann
ein effizienter O(nlogn) Multigridalgorithmus fiir die vollbesetzten struk-
turierten Systeme aus der Bildentzerrung nur erreicht werden, falls man die
Grobgitteroperatoren mittels Rediskretisierung bestimmt.

Schliefflich wird ein neuer Vorkonditionierer fiir diinnbesetzte strukturierte
Matrizen aus dem Problem der hochauflosenden Bildrekonstruktion mit Mul-
tisensoren vorgeschlagen, analysiert und in ein leistungsfahiges Softwarepaket
integriert. Die numerischen Resultate zeigen, dass das neue Verfahren ef-
fizient arbeitet und auf die gewiinschte O (n) Konvergenzgeschwindigkeit fiihrt.

il

v

Acknowledgements

Above all, I would like to express my deep gratitude to my advisor Prof. Thomas
Huckle for his supervision on this research project which started in February
1999. His insightful comments, thorough approach and patience helped make
the whole effort worthwhile. I shall never forget all his help and friendliness
over the last years — and [would like to emphasize how much I appreciated
his way of acting simultaneously as both a supervisor and a friend. Finally,

I would like to thank him for plenty of humourous conversations we had over
the last years.

I would also like to thank Prof. Huckle and his colleague Prof. Heike Fafiben-
der for having turned Technical University Munich into a lively place for
research in numerical linear algebra, e.g. through inviting other scientists in
our field to give talks in the Numerical Analysis seminar on Monday after-
noon. I am using this chance to thank Prof. Faflbender for the good contact
we had since she joined TU Munich in spring 2000 — and also for her will-
ingness to referee this Ph.D. thesis.

Finally, I am grateful to Prof. Folkmar Bornemann for having established
the Numerical Analysis seminar in autumn 1998.

Part of this work was written during a research visit to UCLA from Septem-
ber 2000 to February 2001: In particular, I would like to thank Prof. Tony
Chan for having invited me to join his research group for half a year. From
him I learned what hospitality is all about — and I wish to express my grat-
itude to him for plenty of fruitful discussions on both image processing and
multilevel methods and for having made my stay so profitable. With his
Ph.D. student Andy Yip I made a close friend together with whom I enjoyed
plenty of dinners on or near the UCLA campus. Andy helped me a lot to
familiarize with techniques in image processing and got me started working
on the problem of high-resolution image reconstruction with multisensors
by handing me a MATLAB software package. I would also like to thank
Prof. Bjorn Engquist for having introduced me to the theory of homogeniza-
tion and for his encouragement to test the ”Matrix Multilevel Method” for

problems with highly oscillatory coefficients. Clearly, the case study in sec-
tion 5.7 would not exist without his motivation. Finally, I thank the DAAD
for having made my stay in Los Angeles possible via their grant D/00/20283.

Over the last years I enjoyed plenty of discussions on my work with aca-
demic colleagues either at conferences or in connection with the Numerical
Analysis seminar mentioned previously. There are certainly far too many to
name all of them here. However, I would like to emphasize on the role of
Prof. Raymond Chan from the Chinese University of Hongkong whom I met
first during one of his visits to Germany in July 1999 and another time at
a conference in Rousse (Bulgaria) in June 2000. I very much appreciate in
how much detail he explained me his results and experience on multigrid for
image deblurring summarized in the paper [22]. Our conversations in Rousse
helped me to get started on the research which now forms Chapter 6 of this
thesis.

This is also the place to thank three former academic teachers who started my
fascination for the fields of numerical linear algebra and multilevel algorithms
when [was an M.Sc. student at Oxford University in the academic year
1997/1998, i.e. my former supervisor Dr. David Handscomb and Dr. Andy
Wathen and Prof. Nick Trefethen. I am very glad still to be in close contact
will all of them. Finally, I also wish to mention Priv.-Doz. Dr. Eugen Schéfer
whose lectures at Munich University aroused my interest for the fields of
Numerical Analysis and Scientific Computing in the first place.

[have very much enjoyed my Ph.D. studies at Technical University Munich
and I wish to acknowledge the excellent environment in terms of computer
equipment and libraries. Furthermore, I am very grateful to Technical Uni-
versity Munich for having funded my research with a doctoral scholarship
from April 2001 onwards.

Finally, I would also like to thank all the colleagues of the ”Chair for Infor-
matics V” for the pleasant atmosphere over the last three years; in particular,
this refers to my former room-mate Stefan Achatz and to Michael ”Michi”
Riss with whom I am currently sharing an office. Last but not least, I would
like to thank Prof. Christoph Zenger for having invited me to join his group,
for plenty of interesting discussions on multigrid methods — and for providing
such a rewarding environment in which to study.

Munich, April 2002 Jochen Staudacher

vi

Contents

1 Outline of this thesis 1
2 The basic principles of multigrid algorithms 7
2.1 Model problems Lo 7
2.1.1 One-dimensional Laplacian 7
2.1.2 Two-dimensional Laplacian 9
2.2 The multigrididea 11
2.2.1 The smoothing principle 11
2.2.2 The coarse grid principle 13
2.3 Twogrid and multigrid cycles 13
2.3.1 From concepts to algorithms 13
2.3.2 A twogrid algorithmo 15
2.3.3 Multigrid algorithms: V-cycles and W-cycles 16
2.3.4 Flavour of multigrid 19

2.4 The Multigrid components: Smoothers, transfer operators,
coarse grid matriceso 19
24.1 Smoothers 19

2.5

2.6

2.4.2 Grid transfer operators — Prolongation and restriction . 22
2.4.3 Coarse grid representations — rediscretization or Galerkin

coarse grid operator 26
2.4.4 Some additonal remarks L. 28
Multigrid as a preconditioner 30
2.5.1 Preconditioned Conjugate Gradients 30
2.5.2 Additive and multiplicative multigrid preconditioners . 32
Some facts about multigrid convergence theory 34

vii

3 Toeplitz matrices: Properties, fast algorithms and their im-

plementation 38
3.1 Toeplitz matrices and generating functions 39
3.1.1 Introductiono 39
3.1.2 Distribution of eigenvalues 39
3.1.3 Banded preconditioners 41
3.2 Fast algorithms for Toeplitz systems 43
3.2.1 Circulant matrices and the FFT 43
3.2.2 Efficient implementation of Toeplitz times vector mul-
tiplications 44
3.2.3 Circulant preconditioners 46
3.3 Fast algorithms for BTTB matrices 47
3.3.1 Introductiono 47
3.3.2 BCCB matrices and the twodimensional FF'T 49
3.3.3 Efficient implementation of BT'TB times vector multi-
plicationso 50
3.3.4 BCCB preconditioners 52
4 Multigrid algorithms with natural coarse grid operators for
Toeplitz systems 54
4.1 Introduction 25
4.1.1 Our basic heuristics 25
4.1.2 Very important sparse cases o7
4.1.3 The position of the zero 57
4.1.4 Projections onto every m-th column — the first idea for
arTesort ... Lo 29
4.1.5 Diagonal scaling — the better resort 60
4.2 Existing results on multigrid for Toeplitz systems 61
4.2.1 Suitable smoothers 61
4.2.2 The work of R. Chan and collaborators 63
4.2.3 The work of Serra 65
4.3 Generating functions with a single zero in | — 7, 7] 66
4.3.1 Natural coarse grid operator 66
4.3.2 Numerical results for zeros of order at most two 68
4.3.3 Numerical results for zeros of higher order 71
4.3.4 Summary 73
4.4 Generating functions with equidistant zeros of finite order . . 73
4.4.1 Equidistant zeros L. 73

4.5

The
88
5.1

5.2

5.3

5.4

3.5

5.6

4.4.2 A block interpretation
4.4.3 Algorithmicissues
4.4.4 Numerical results,
4.4.5 Outlook, conclusions and further remarks
A short view on BTTB matrices
4.5.1 Positive definite problems
4.5.2 Indefinite Problems
4.5.3 Outlook and conclusions

Matrix Multilevel Method

Motivation: From sparse Toeplitz systems to general banded
matrices Lo
The additive twolevel method
5.2.1 A preconditioner derived via generating systems
5.2.2 Twospecial cases
5.2.3 A twolevel preconditioner
The Matrix Multilevel Method: Additive and multiplicative
variants L. L.
5.3.1 Going multilevel oL
5.3.2 Including a smoother
5.3.3 Improving the preconditioner
5.3.4 Towards multiplicative multilevel algorithms
Algorithmic issues and numerical tests
5.4.1 General setting and example problems
5.4.2 Comparing condition numbers
5.4.3 Estimating the largest eigenvalue
5.4.4 Numerical results for 1D problems.
Analysis of the MML — and a new variant
5.5.1 MML prolongations with abs(A) for M-matrices
5.5.2 Properties of the new MML transfer operators
5.5.3 A general MML algorithm for one-dimensional prob-
lems and numerical results
The two-dimensional case
5.6.1 Algorithms for separable problems.
5.6.2 Algorithms for general problems in more than one di-
MEeNSIONo
5.6.3 Numerical Experiments for separable problems

X

5.7

5.6.4 Numerical experiments for general two-dimensional prob-

lems 119
5.6.5 Brief analysis of the two-dimensional MML prolongations121
5.6.6 Summary, conclusions and outlook 122
Case study on elliptic equations with highly oscillatory coeffi-
cientso 123
5.7.1 The work by Engquist and Luvo 123
5.7.2 Numerical resultsin 1D 125
5.7.3 Numerical resultsin 2D 126

Image deblurring and the multigrid method of the second

kind 128
6.1 Introduction 129
6.1.1 The one-dimensional model 129
6.1.2 Inverse problems and Tikhonov regularization 129
6.1.3 The algorithm of R. Chan, T. Chan and W. Wan . . . 131
6.2 The multigrid method of the second kind enhanced by semi-
iterative smoothing oo 132
6.2.1 Appropriate transfer operators 132
6.2.2 The multigrid method of the second kind 133
6.2.3 Good smoothing via conjugate gradients 134
6.2.4 Numerical results for one-dimensional problems 135
6.3 The twodimensional case 138
6.3.1 The model and its discretization 138
6.3.2 Numerical results 140
6.4 Outlook and conclusions 142
A new optimal preconditioner for high-resolution image re-
construction 145
7.1 Introduction Lo 146
7.2 The mathematical model and its discretization 147
7.2.1 Making use of low resolution images. 147
7.2.2 Imposing boundary conditions 149
7.3 A new O(n) preconditioner, 151
7.3.1 Difficulties in a multigrid approach 151
7.3.2 An efficient idea simpler than multigrid 152
7.4 Numerical results 154
7.5 Conclusions e 157

Chapter 1

Outline of this thesis

This thesis is devoted to studying multigrid algorithms for different types of
structured matrices. Mainly, our notion of ”structured matrix” is twofold,
i.e. we will investigate on Toeplitz matrices as well as on sparse banded ma-
trices. These two concepts are also reflected in the structure of the thesis
itself: Chapter 4 presents new multigrid algorithms for dense Toeplitz ma-
trices. Chapter 5 discusses the "Matrix Multilevel Method” which can be
interpreted as a generalization of ideas from the previous chapter for sparse
Toeplitz matrices to general sparse banded linear systems. Chapter 6 deals
with multigrid methods for dense Toeplitz systems from image deblurring.
Finally, Chapter 7 presents a new optimal order method for sparse banded
linear systems from the problem of high-resolution image reconstruction with
multisensors — and these banded matrices can be interpreted as perturbed
Toeplitz systems. The major goal is to point out how different multigrid
components have to be adjusted for the different types of structured linear
systems in order to obtain a feasible multigrid algorithm.

In the following few pages we would like to give the reader an overview of
the contents and ideas of this Ph.D. thesis.

Chapters 2 and 3 introduce basic concepts concerning multigrid algorithms
and Toeplitz matrices:

In Chapter 2 we will first explain the celebrated V- and W-cycle algorithms
for the numerical solution of a linear system Az = b. The role of smoothers
and grid transfer operators (for prolongation and restriction) will be intro-

duced and the distinction between natural and Galerkin coarse grid opera-
tors will be discussed. It will be pointed out how multigrid cycles can also
be employed as preconditioners for Krylov subspace methods, like e.g. the
Conjugate Gradient algorithm. Furthermore, additive preconditioners like
BPX [9] and MDS [120] will be introduced very briefly. This is also the place
for a few words about multigrid convergence theory, although we would like
to emphasize that the focus of this thesis lies on the development of efficient
algorithms and on the presentation of numerical results showing their effec-
tivity — and not on the underlying mathematical theory. In that sense, our
way of discussing multigrid ideas is strongly influenced by the recent 600-
page monograph by Trottenberg, Oosterlee and Schiiller [108].

In Chapter 3 we then present some important facts about Toeplitz matrices,
i.e. matrices with entries constant along diagonals. The relation of these ma-
trices and their corresponding generating functions will be discussed as well
as equidistribution results concerning their spectrum. It will also be pointed
out how a dense Toeplitz matrix A € R"*™ can be multiplied with a vector
in O(nlogn) time using the idea of circulant embedding and the Fast Fourier
Transform (FFT). Hence we use the chance to say a little more about cir-
culant preconditioners, emphasizing on the optimal circulant preconditioner
[28] by T. Chan. Analogously, the previous ideas will be carried over to Block
Toeplitz matrices with Toeplitz blocks (BTTB matrices), i.e. the bivariate
counterpart of Toeplitz systems, and to Block Circulant preconditioners with
Circulant blocks (BCCB preconditioners).

Chapter 4 discusses multigrid algorithms for Toeplitz matrices belonging
to nonnegative generating functions. First, we repeat a few results from ex-
isting work by R. Chan and collaborators [104], [25] as well as by Serra and
Fiorentino [47], [48]. We then focus on multigrid algorithms for Toeplitz ma-
trices corresponding to nonnegative 2m-periodic generating functions with a
single zero zy €] — 7, 7] of finite order. In this case we can scale our Toeplitz
systems via diagonal matrices such that the zero is shifted to the origin. This
strategy provides two major advantages: Firstly, we can use the same opera-
tors for prolongation and restriction on every level. Secondly, we can employ
a natural coarse grid operator, i.e. our coarse grid representation A% ¢ is
nothing but a Toeplitz matrix of half size corresponding to the original gener-
ating function. Thus Toeplitz structure is preserved on the coarse levels. All
previous approaches on multigrid for Toeplitz systems have been employing

a Galerkin operator
AT = Rx Ax P

with P and R denoting the operators for prolongation and restriction, re-
spectively. In that case A€ is not in general guaranteed to be Toeplitz.
The numerical experiments show that our multigrid algorithms with natural
coarse grid operators work out very well and hence can be regarded as an
algorithmic improvement.

This approach carries over very easily to nonnegative 27-periodic generating
functions with a finite number of equidistant zeros of finite order in | — 7, 7].
Again, we first perform a diagonal scaling and then we may use a natural
coarse grid operator. It is remarkable to see how natural coarse grid opera-
tors can be constructed taking carefully into account the orders of the zeros
of the generating function — and how the resulting multigrid cycles lead to
an efficient computational performance.

Natural coarse grid operators can also be successfully employed within multi-
grid algorithms for Block Toeplitz matrices with Toeplitz Blocks (BTTB ma-
trices) belonging to a nonnegative 27-periodic generating function (in two
variables) with a single zero zy €] — 7, 7]%. In the context of BTTB matrices
the impact of using a natural coarse grid operator is still more eminent than
in the univariate case, because the perturbations of the Toeplitz structure in
Galerkin coarse grid operators are in general much more severe. Finally, we
also give a new phenomenological characterization of the well-known difficul-
ties encountered in multigrid approaches for indefinite BTTB matrices.

Chapter 5 introduces the ”Matrix Multilevel Method” (MML) which is
based on a purely matrix dependent description of multigrid methods. This
approach has been published by Huckle and the author in the paper [72].
However, we will in this chapter significantly extend the results from [72]
and discuss the properties of the MML in much more detail.

The ”Matrix Multilevel Method” is motivated by observations on the choice
of prolongation and restriction operators in multigrid algorithms for sparse
Toeplitz systems and tries to carry over these ideas to general sparse banded
problems: The formulation of multilevel methods as singular matrix exten-
sions via generating systems leads to the description of the method as a
preconditioned iterative scheme, and illuminates the importance of the used
prolongation and restriction operator for the related preconditioner. We de-
fine the matrix dependent black box restriction C' by shifting the original

matrix A in the form B = al — A and picking out every second column
to C' = B(:,2 : 2 : n). Here, « has to be chosen as a good upper bound
of the largest eigenvalue of A. By this mapping the related preconditioner
enlarges the small eigenvalues while the maximum eigenvalue remains nearly
unchanged. Although we derive our method in an additive setting, we can
most certainly also use the new prolongations/restrictions in multiplicative
algorithms. Furthermore, we observe that the MML usually works best if
we employ diagonally scaled coarse grid matrices. Our test results for one-
dimensional problems are very promising: We give various numerical ex-
amples where multigrid with standard prolongation/restriction deteriorates
whereas our method shows optimal behaviour. Finally, we explain why for
M-matrices using B = abs(A) instead of B = al — A within the MML we
obtain equally good results.

Then the MML algorithms are carried over to separable and to general prob-
lems in higher dimensions: We present examples of elliptic problems with
highly oscillatory or discontinuous coefficients for which the MML clearly out-
performs standard multigrid. We also point out why it might be favourable
to employ the MML without diagonal scalings for general elliptic problems.
The chapter ends with a case study for elliptic problems with highly oscil-
latory problems: We compare our methods to work by Engquist and Luo
[82], [45] who proposed to use a discretization of the corresponding homog-
enized equation to obtain the coarse grid representation. The basic result
of our experiments is that proper matrix-dependent transfer operators and
Galerkin coarsening gives better results than the homogenized coarse grid
operators. In other words: Variational coarsening gives good homogeniza-
tion. And, other than in the Toeplitz context, the variational coarse grid
operators come out to be the clear winners for this type of problems.

Chapter 6 studies integral equations of the first kind as they arise from im-
age deblurring. We start with a very little introduction to inverse problems
and Tikhonov regularization and first take a look at Toeplitz matrices from
one-dimensional deblurring. It is plain that the strategies from Chapter 4
can not be carried over, because we deal with a ”zero of infinite order”.

Instead, we extend an algorithm by R. Chan, T. Chan and J. Wan [22] who
proposed to use preconditioned conjugate gradients for smoothing. Again,
the algorithms can significantly be improved by introducing a natural coarse
grid operator, i.e. we recommend to get the coarse grid matrices by dis-
cretizing the original integral equation on a coarser mesh. We illustrate why

standard linear interpolation should be used for prolongation and why triv-
ial injection is the most evident choice for restriction. Our technique carries
over in a straightforward manner to BTTB matrices from multivariate inte-
gral equations and thus leads to a practical algorithm for deblurring images.
We test our solvers on images subject to atmospheric turbulence blur.

To us it is very important to establish our algorithms in the context of the so
called ”multigrid method of the second kind” proposed by Hackbusch [62],
ch. 16, in the eighties. The multigrid method of the second kind is a very
fast scheme for the solution of linear systems of the form

(M —K)x =10

arising from discrete Fredholm integral equations of the second kind and it
uses Richardson smoothing. In the above equation, K is a discretized inte-
gral operator, I denotes the identity and A € R is a positive parameter. We
point out how our deblurring algorithms can be seen as a generalization of
the multigrid method of the second kind for the case of small A by replacing
Richardson relaxation by a semi-iterative smoother.

Chapter 7 is devoted to the problem of high-resolution image reconstruc-
tion with multisensors [24]: There a high-resolution image is reconstructed
from four undersampled, shifted, degraded and noisy low-resolution images.
In a mathematical model the boundary conditions play a vital role: If we as-
sign Dirichlet boundary conditions, i.e. we assume a dark background around
our reconstructed image, we need to solve a (regularized) system of normal
equations AT A with a sparse BTTB matrix A. However, this leads to bound-
ary artifacts in the reconstructed image which can be overcome by using re-
flecting (i.e. Neumann) boundary conditions. Then A becomes a sparse Block
Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks. In practice,
there will always be calibration errors within our four multisensors which can
be measured by the camera manufacturer and lead to small perturbations in
the entries of A.

Previously R. Chan, T. Chan, M. Ng and collaborators had been proposing
very successful fast cosine transform based preconditioners for the problem
in question (see e.g. [24], [27]). On the other hand, no O(n) preconditioners
for these sparse problems had been developed. However, our multigrid al-
gorithms from Chapter 4 can again not be carried over: In the simple case
of Dirichlet boundary conditions and no calibration errors we would be con-
fronted with a BTTB system with an infinite number of zeros of order 2.

Anyway, we are able to present a simple and effective O(n) preconditioner
based on the structure of the linear systems: The idea is that the matrix
structure allows for a helpful ”analytic factorization”. Various numerical ex-
amples underline that our preconditioner leads to an efficient optimal order
performance.

Our observations on the choice of different multigrid components could be
summarized as follows:

From Chapter 5 we learn that for elliptic problems with discontinuous or
highly oscillatory coefficients matrix-dependent transfer operators and varia-
tional coarsening are the clear winners. However, for Toeplitz matrices natu-
ral coarse grid representations are a viable simpler alternative. As long as the
ill-conditioning is "moderate” —in the sense of second-order discretizations of
elliptic problems or Toeplitz systems corresponding to generating functions
with a finite number of zeros of finite order — then standard stationary itera-
tive methods (like e.g. Richardson, Jacobi or Gauss-Seidel) are the smoothers
of choice. In terms of Toeplitz matrices ill-posed problems can be viewed as
connected to a ”zero of infinite order” (first order integral equations from
image deblurring problems) or to an infinite number of zeros of finite order
(high-resolution image reconstruction). In both cases, the ”classical” multi-
grid methodology no longer works out and has to be adjusted. For the image
deblurring problem a non-stationary smoother, i.e. preconditioned conjugate
gradients, does the job; for the sparse linear systems from the problem of
high-resolution image reconstruction there is just a simpler way than multi-
grid to derive an O(n) preconditioner.

This thesis has lead to two publications which both summarize joint research
efforts of the author and his supervisor:

[P1] T. Huckle, J. Staudacher: Matrix Multilevel Methods and Precondition-
ing, preprint, 20 pages, to appear in BIT 42(4) in December 2002.

introduces the ”Matrix Multilevel Method” and forms the basis for our in-
vestigations in Chapter 5.

[P2] T. Huckle, J. Staudacher: Multigrid Preconditioning and Toeplitz matri-
ces, preprint, 23 pages, submitted to ETNA, February 2002. Recommended
for publication after slight modification by the referees.

summarizes the major results of Chapter 4 and Chapter 6.

Chapter 2

The basic principles of
multigrid algorithms

Multigrid methods have first been systematically analyzed in the seventies,
in particular through work by Brandt [10] and Hackbusch [61]. Since then
multigrid algorithms have become a popular tool for the fast iterative solu-
tion of large linear systems of equations Ax = b — and we may well regard
multigrid as the first computationally successful example of modern hierar-
chical methods in the field of Scientific Computing.

The following subsections give a brief introduction to multigrid in order to
equip the reader with some background information needed to understand
chapters 4, 5 and 6. Our overview is strongly influenced by the recent book
by Trottenberg, Oosterlee and Schiiller [108].

2.1 Model problems

Let us first introduce two simple model problems. They will not only guide
us through this introduction to multigrid, but also appear frequently in other
parts of this work.

2.1.1 One-dimensional Laplacian

An important model problem throughout this chapter will be the uniform fi-
nite difference discretization of Poisson’s equation with homogeneous Dirich-
let boundary conditions on the unit line.

Example 1 (Discrete 1D-Laplacian with Dirichlet boundary)
We want to solve the two-point boundary value problem

—Uge = f in Q=]0,1],
u(x) =0 on 0N

with f: Q — R given.
For the discretisation of the problem let us consider a uniform grid with mesh
size h = % and let

xj=7j-h, j=0,...n

Now let u; denote an approzimation to the solution u at the point P = (x;).
Then our unknowns are the interior grid points and they form a vector v
given by

v = (up, Ug, ... U, 1) € R

The finite difference approximation

u(xi,l) + U(xi+1) - QU(LL‘Z)
h?

18 second order accurate and leads to a linear system
A,1xv=yg

There the matriz A,_, € RO=Dx0=1 45 o tridiagonal matriz of the form

Ap1 = (2.1)

From now on we will abbreviate: A, | = tridiag(—1,2, —1).
The right hand side g is the vector

9=1(91,92,---,9n_1) € R™ Y with gj = h? - f(x))

It is well known that the matrix (2.1) has the convenient property that
there are closed expressions for its eigenvalues and eigenvectors (see Demmel
[33], p. 268):

Lemma 1 The eigenvalues of the matriz A,_, = tridiag(—1,2, —1) € Rr=Dx(x=1)
are given by

A = 2(1 — cos(~L)) (2.2)
n
forj=1,...,n—1. The corresponding eigenvectors are z; with components

2(k) = \/gsin(%) (2.3)

for j,k =1,...,n—1. z; has unit 2-norm. Let Z = [z,...,%,_1] be the
orthogonal matriz formed with the eigenvectors and A = diag(\y, ..., \,) the
diagonal matriz of eigenvalues, then we can write A,_; = ZAZT. In other
words: The matriz A,_1 can be diagonalized in O(nlogn) time via the fast
sine transform.

2.1.2 Two-dimensional Laplacian

Plenty of the reasoning in this subsection will be based on the above model
problem Example 1; due to its simple structure it quickly gives valuable
insight. However, tridiagonal matrices can well be solved with O(n) require-
ments for computing time and storage simply by direct methods like e.g. the
so-called ”Thomas algorithm” (cf. [83], pp. 23) and there is no need for
multigrid. In the context of PDEs multigrid is hence intrinsically seen as a
technique for higher dimensional problems. Here is the corresponding two-
dimensional model problem, i.e. a uniform finite difference discretization of
Poisson’s equation with Dirichlet boundary conditions on the unit square.

Example 2 (Discrete 2D-Laplacian with Dirichlet boundary)

The simplest example of a boundary value problem for a linear partial dif-
ferential equation might be Poisson’s equation with Dirichlet boundary con-
ditions on the unit square, i.e. we are looking at

—ODu(z,y) = flz,y) in Q={(z,y) eR*:0<z,y <1},
u(z,y) =0 on 0

The Laplace operator /\ denotes

*u 0%u

Ay=28 L 00
“ 8x2+8y2

and f: Q — R is given.
For the discretisation of the boundary value problem let us consider a uniform
grid with mesh size h = % and let

ZL‘Z:Zh, yJ:jh, z,j:(),n

Let now w;; denote an approzimation to the solution u at the interior
grid point P = (x;,y;),1 < i,j < n —1, and let us order the unknowns
lexicographically, i.e. row-wise. Then our unknowns form a vector v given
by

V= (Ug 1,y Un s Ut 2y e e Un s e e s Ul -y Unn) € RO

The finite difference approximation

w(xi—1,Y5) + w(@izr, y;) + ulz, yi—1) + w(@i, yj1) — 4ul(z;, yj)
hZ

18 second order accurate and leads to a linear system

Au(z;,y;) =

Apip xv =g
The matriz Ag,_1)2 is given by

anl _[nfl
—ipn—-1 anl _Infl
Ap-1)z = (2.4)
—in-1 Dn—l _In—l
—in-1 Dn—l

Here I,,_ € R"Dx(=1) denotes the identity and D,_, is given by

D, = (2.5)

In order words: A,—1y2 is a block tridiagonal sparse matriz. The right hand
side g 1s the vector

_1\2
g = (gl,la - 9n1591,25- -5 9n,25 - - -5 J1ny - - 7gn,n)T € R(n 2
with gz-,j = h2 . f(l’“ yj)

10

In order to connect the matrix (2.4) from Example 2 to the 1D Laplacian
(2.1) we would like to introduce Kronecker products (see e.g. [33], p. 274):

Definition 1 (Kronecker product of matrices)

Let A € R™" and B € RP*Y be two matrices.

Then A® B, the Kronecker product of A and B, is the (m-p)-by-(n-q) matriz
alyl-B alyn-B

A®B= :

am1-B ... apy-B

Lemma 2 (see [33], pp. 275) The matriz Ay,_1y> given by (2.4) is related to
the one-dimensional Laplacian A, 1 from (2.1) via

A(n—1)2 =11 ® Anfl + Anfl b2 [nfl

Using the diagonal matriz A = diag(\, ..., \n) of the eigenvalues \; given
by (2.2) and the matriz Z = [z, ..., z,] of the eigenvectors z; given by (2.3)
from Lemma 1 we see

I, ®An71 +An71 ®I,1 = (Z®Z) : (Infl ®A+A®Infl) : (Z®Z)T

Hence (2.4) can be diagonalized by the two-dimensional fast sine transform
and its (i, j)th eigenvalue is the (ix(n—1)+j)th entry of the diagonal matriz
In—l ® A =+ A ® [n—l; ze

Z®Z is an orthogonal matriz whose (i(n—1)4j)th column, the corresponding
eigenvector, s
Zij = Zi (59 Zje (27)

2.2 The multigrid idea

2.2.1 The smoothing principle

In order to understand the basic principles of the multigrid method let us
first take a look at simple stationary iterative methods for the solution
of Ax = b of the form

2mHD = M) Mok (A x 2™ — b) (2.8)

From (2.8) we recognize a number of well-known relaxation methods:

11

e Setting M equal to the identity leads to the Richardson iteration.

e Setting M equal to the inverse of the diagonal part of A leads to the
Jacobi iteration.

e Setting M equal to the lower triangular part of A we recognize the
Gauss-Seidel iteration.

Certainly, we can damp Richardson, Jacobi or Gauss-Seidel iterations by
multiplying M with a parameter w €]0, 1[— or even use a parameter w €]1, 2|
to produce an overrelaxation method like the celebrated SOR [111], [118].
Rewriting (2.8) in the form

gD = Gy g™ 4 Mb with G=T-MA (2.9)

we understand that the iterate z(™ is related to the initial guess z(®) via
m—1
2™ =Gmxa@ 4 Ny with N =Y "GP (2.10)
k=0

As the solution of Az = b is a fixed point of the iteration we learn from
(2.9) and (2.10) that the error e(™ = z — 2(™ after m iteration steps can be
written in terms of the initial error e(® = z — () as

em = GM x) (2.11)

i.e. the matrix G = I — M A governs the behaviour of the iteration (2.8) and
is therefore usually referred to as its iteration matrix.

Now imagine that our matrix A is a sparse matrix resulting from an elliptic
problem — let us say, it is the uniform discretization of the two-dimensional
Laplacian (2.4) from Example 2.

Then running a few steps of a standard stationary iterative method on the
linear system we observe that the oscillatory components of the error (i.e. the
error components with a wavelength of the same order as the mesh size) are
reduced very quickly. However, the method has severe problems in damping
the slowly varying error components and this causes an overall slow con-
vergence of the basic iterative method. In other words: The error becomes
smooth, although it need not necessarily become small. We visualize this
property of smoothing the error for the Gauss-Seidel method applied to the

12

two-dimensional Laplacian (2.4) from Example 2 in Figure 2.1.

For our model problem (2.4) we would like to recapitulate that in terms of
its basis of eigenvectors z; ; given by (2.7) the problematic error components
are associated with the smooth eigenvectors, i.e. both ¢ and j are small. We
can summarize our reasoning in form of the

Smoothing principle (see [108], sec. 1.4)

If standard stationary iterative methods (like Richardson, Jacobi or Gauss-
Seidel) are appropriately applied to discrete elliptic problems they have a
strong smoothing effect on the error of any approximation.

2.2.2 The coarse grid principle

The observations of the previous subsection about problematic smooth error
components lead to the idea of employing coarser grids: A slowly varying
error component certainly looks more oscillatory on a coarse grid — and thus
we can expect our basic iterative method to do a much better job on a coarser
grid. Furthermore, if we are able to approximate a smooth error component
well on a coarse grid — let us say with the double mesh size — then dealing
with it on the coarse grid will also be less expensive computationally. This
idea can also be formulated as the

Coarse grid principle (see [108], sec. 1.4)
A smooth error term can be well approximated on a coarse grid. As there are
substantially fewer grid points on the coarse grid it is plain that performing a
number of relaxation steps on a coarse grid is much cheaper computationally
than the corresponding fine grid procedure.

2.3 Twogrid and multigrid cycles

2.3.1 From concepts to algorithms

So far, we have introduced the two basic ideas of multigrid, i.e. the smoothing
principle and the coarse grid principle. However, the reader might still not be
happy with what we mean by "reducing the error on a coarse grid”. Hence
we first briefly outline the idea of a twogrid method hoping to guide the
reader to the following precise algorithms:

13

Initial error

Error after 2 Gauss—Seidel iterations

40

055
| 'v(/'/i » -
PO 'A\‘ M \ 4“,,";.
Lt ’A’I “. \\ v
-0.5. 'I"‘

30

Figure 2.1: Smoothing effects of Gauss-

14

Error after 1 Gauss—Seidel iteration

1-.-
. ‘ VA’,‘

° VATt
}N}/XA"‘” (')/\‘/\‘h\i/)

N v 'f ‘;“4, - “V\\‘“

40

10

Error after 4 Gauss—Seidel iterations

055

Seidel iterations on the error for the
discrete two-dimensional Laplace problem (2.4).

30

Let us think of our elliptic problem discretized on a sequence of grids
Qh—>92h—>Q4h—>"'

with growing mesh sizes h,2h,4h, ..., on which we can set up the linear
systems

Apup, = fh, Aopugp, = fzh,

Now we treat the highly oscillatory error components by a basic iterative
method — the so-called smoother — and reduce the slowly varying error
components by coarse grid correction. Employing only a coarse and a
fine grid we can formulate a twogrid step:

In order to solve the equation Aju, = fj, on the fine grid), we first employ
very few steps of our smoother to obtain an approximate solution ;. Still,
up, may differ from the exact solution uj by a large — but relatively smooth
— error ey 1= uy — Up,.

By coarse grid correction we approximate this smooth error e, on the coarse
grid §25;,: Thus we first compute the residual r, := f, — Apuy, and restrict
it to the coarse grid ry;, = Rrj, employing the restriction operator R. Then
we solve the error equation Asyvo, = 19, on the coarse grid and transfer the
solution vy, back to the fine grid v, = Puvyy, using the prolongation operator
P. Finally, we update our approximate solution u; := u; + v, and proceed
iterating with our two-grid method.

We get a multigrid cycle by solving the error equation Aspve, = 1y recur-
sively by the same procedure on a sequence of coarser grids.

2.3.2 A twogrid algorithm

It is now time for us to formulate precise numerical algorithms. Our algo-
rithms in this and the following subsection are mainly according to the book
by Trottenberg, Oosterlee and Schiiller [108], ch. 2, but the reader will also
find excellent descriptions of multigrid algorithms e.g. in the books by Briggs
[13],ch. 3, Greenbaum [54], ch. 12, or Hackbusch [62], ch. 3.

Let us begin with a detailed twogrid algorithm:

Algorithm 1 (Twogrid method)

Start with any initial guess (0 for the solution of the linear system Apx = b.
Then proceed with the following iteration until stopping criterion is satisfied:
(1) Presmoothing:

15

Smooth using vy steps of a stationary iterative method of the form (2.8), like
e.g. Jacobi or Gauss-Seidel, in order to get a new iterate T). We can write

this formally as . .
7V = SMOOTH" (9, Ay, b)

(2) Coarse grid correction:

(a) Compute the residual: 7, = Apz) — b

(b) Restrict the residual ry, i.e. use the restriction operator R to perform a
fine-to-coarse grid transfer: rop, = Rry,

(c) Solve the error equation on the coarse grid Qop, i.e. use a direct (or
iterative) method to find the solution of Agpesn = Top,

(d) Interpolate the correction es, i.e. use the prolongation operator P to
perform a coarse-to-fine grid transfer: é = Peyy,

(e) Compute the corrected approzimation.: 20+3) = z0) 4 ¢

(3) Postsmoothing (optional):
Smooth again using ve steps of a stationary iterative method of the form (2.8)
to obtain a new iterate zU+Y

2Ut) = SMOOTHY (292, Ay, b)

The following remark can be very helpful to understand and analyze the
twogrid operator:

Remark 1 The two-grid operator given by Algorithm 1 can be expressed in

matrix terms as
Mpq = GPKGY (2.12)

where GY with 1 = 1,2 stands for performing v steps of a stationary iterative
smoother (2.8) with iteration matriz G; = I — M; Ay, on the fine grid and

K =1— PA}RA, (2.13)

expresses the coarse grid correction.

2.3.3 Multigrid algorithms: V-cycles and W-cycles

The problem of solving the error equation Aspes, = 79 in step 2 (c) of
Algorithm 1 might still be expensive and involve a huge number of unknowns.
As we have already said, the key to get an efficient multigrid algorithm is to
employ the twogrid idea recursively.

16

In order to perform any multigrid idea we first need a a finite sequence of
coarser and coarser grids

Qs Qs i

Here we associate the coarsest grid employed with the mesh size ho (index 0)
and the index [with the mesh size we used to discretize our problem: h; = h.
Like in [108], sec. 2.4, we will, for simplicity, replace the index hy by k.

The following algorithm summarizes both the so-called V-cycle and the so-
called W-cycle algorithms:

Algorithm 2 (MULTIGRID — V-cycle and W-cycle algorithms)
Start with any initial guess (0 for the solution of the linear system Apz = b.
First set k =1, A, = Ap, by = b and 7 = 0. Then proceed with the following
multigrid cycle iteration

29 = MGOY C(k, v, 27, A, b0 11, 1) (2.14)

until stopping criterion is satisfied:

(1) Presmoothing:

Smooth using vy steps of a stationary iterative method of the form (2.8), like
e.g. Jacobi or Gauss-Seidel, in order to get a new iterate E,gj). We can write

this formally as ' ' .
2 = SMOOTHY (217, Ay, b))
(2) Coarse grid correction:
(a) Compute the residual:_r,(f) = Axg) - bg)
(b) Restrict the residual 7",(6]), i.€. use the restriction operator R’,z_l to perform
a fine-to-coarse grid transfer: r,(cj_)l = RZ’IT,(CJ)
(c) Compute an approximate solution to the error equation

Apae) =1 (2.15)
by
e If k = 1, then we are on the coarsest level: Now use a direct (or

iterative) solver for (2.15);

e Ifk > 1, then we have not yet reached the coarsest level: Solve (2.15)
approximately performing v "k-grid cycles” using the zero initial guess,
i.e.

eV = MGCYC(k—1,7,0, A1, 7| 11, 1)

17

VW %“
99 JRP]RF

4 8 Y

Figure 2.2: A V-cycle on the left and a W-cycle on the right.

o For v =1 this algorithm is called a V-cycle.

o [or v =2 we obtain a W-cycle.
(d) Interpolate the correction eg)l, i.e. use the prolongation operator PF | to
perform a coarse-to-fine grid transfer: e(7 = = PF 161(3)1
(e) Compute the corrected approximation: x,(c I+ _ x,(c) + ég)
(3) Postsmoothing (optional):
Smooth again usmg vy steps of the above stationary iterative method to obtain

+
a new iterate :v(]).

20D = SMOOTHY (27, Ay, b))

Although it is already very general, Algorithm 2 still leaves room for further
generalizations: First of all, we can certainly allow a different number of
pre- and postsmoothing steps on different levels k. (On the other hand, note
that Algorithm 2 already expresses that presmoother and postsmoother need
not be identical.) Secondly, variations to the multigrid structure itself are
possible: We are definitely not forced to program V-cycles and W-cycles —
however, these two variants of multigrid cycles are the most common ones
and we will not use other types of multigrid solvers in this thesis.

In Figure 2.2 we give a pictorial description of a V-cycle and a W-cycle for
the case of 3 different levels of resolution.

18

2.3.4 Flavour of multigrid

Having introduced multigrid algorithms formally, we would like to summa-
rize their underlying idea as the

Flavour of multigrid (see [108], sec. 1.5)

Assume we have an appropriate smoother for a given class of problems, i.e. we
have a stationary iterative method (2.8) which damps the highly oscillatory
error frequencies well. Furthermore, assume we have appropriate grid trans-
fer operators and coarse grid representations.

Then employing the smoother on different grid levels (i.e. different levels of
resolution) gives a fast reduction of the corresponding high frequency com-
ponents — and as this process covers all ranges of frequencies, we can obtain
a rapid reduction of the overall error.

2.4 The Multigrid components: Smoothers,
transfer operators, coarse grid matrices

So far we have formulated precise twogrid and multigrid algorithms. How-
ever, we have not yet told the reader how to choose proper prolongations
P and restrictions R. As for the coarse grid representations Ay, A4y, ... we
have simply assumed them to exist, but have not commented on how they
ought to be picked. Certainly, we also need to say how to distinguish between
good and bad smoothers. In this section the model problems from 2.1 will
come out to be very helpful.

2.4.1 Smoothers

By smoothing we understand the capability of an iterative method (2.8) to
reduce the highly oscillatory error components effectively.

Following [13], ch. 2, and [108], sec. 2.1, let us study the matrix (2.1) from
Example 1, i.e. the one-dimensional Laplacian with eigenvalues and eigenvec-
tors given by (2.2) and (2.3). We know that the subspace of high frequency
components is spanned by the eigenvectors corresponding to the large eigen-
values, i.e.

A =2(1—cos(ZL)) with g <j<(n-1).
n

19

Let us analyze the damped Jacobi method with damping parameter w applied
to problem (2.1). Its iteration matrix R,_;(w) is given by

w
Rn—l(w) = Ip—1 — §An—17

its eigenvectors coincide with the eigenvectors of A,, ; given by (2.3) and the
corresponding eigenvalues are

w . T
pi=l=-gA=1- 2&1(5111(%))2 (2.16)
for j =1,...,n—1. First of all, we see from (2.16) that for the low frequencies

we can not expect the damped Jacobi method to reduce the corresponding
slowly varying error components effectively: It is obvious that for large n the
reduction factor on the smoothest error components approaches 1 — and this
strongly underlines the statements made in 2.2.

The smoothing factor represents the worst factor by which the high fre-
quency error components are reduced per iteration step. Analyzing (2.16)
for § < j < (n— 1) shows that the smoothing factor is given in term of w as

s(w) = max{|1l — 2w|, |1 — w|}.

We see that the optimal choice for the damping parameter within Jacobi is
w = 2 and that it leads to a smoothing factor s(3) = 3. We would like to
stress that this means that every component in the subspace spanned by the
oscillatory eigenvectors is damped by at least by % in each relaxation step.
Finally, we would like to emphasize that this statement is completely inde-
pendent of the matrix size — and hence it already indicates why multigrid

gives an O(n) solver on that problem.

Although damped Jacobi does an excellent job for the above simple model
problem, it is well known that appropriate Gauss-Seidel type smoothers usu-
ally turn out to be highly superior to appropriate Jacobi type smoothers.
(Anyway, Jacobi is regarded to be a much better smoother still than Richard-
son.) However, smoothing relaxations are not restricted to Gauss-Seidel, Ja-
cobi and Richardson type iterations: For example, Wittum [115] picked the
matrix M in (2.8) to be an incomplete LU-factorziation and showed its excel-
lent smoothing properties for two-dimensional convection-diffusion problems
both analytically and numerically. Very recently, Grote and Broker pro-
posed to use sparse approximate inverses for CFD problems in [14] and [15]

20

as they give good smoothing regardless of the flow pattern. They obtain the
smoothers via the SPATI algorithm by Grote and Huckle [60], i.e. they solve
the minimization problem || — M A|| either for a prescribed sparsity pattern
of M or for a fixed tolerance ¢.

Within multigrid methods for image deblurring in Chapter 6 we will employ
a semi-iterative smoother, i.e. there is no longer a stationary iteration matrix
G =1— MA as in (2.9), but the matrix varies from iteration to iteration.

In general situations, smoothing factors are of course not as easy to analyze
as in our simple introductory example: One possibility is to perform so-called
local-mode analysis on the given problem which is based on freezing coef-
ficients locally. Local-mode analysis was first introduced in Brandt’s seminal
paper [10] in 1977. For details, we refer to [108], ch. 4, or to the Brandt’s
1994 paper [11].

Hackbusch has formulated abstract concepts for the smoothing property which
take into account the underlying differential operator (see [62], ch. 6). How-
ever, here we would only like to introduce an algebraic smoothing condi-
tion taken from the work by Ruge and Stiiben [92], p. 82:

Definition 2 (Algebraic smoothing condition)
Let A € R*™™ be a symmetric positive definite matriz and let ||-||4 and ||-||pa
be the norms associated with the inner products

<U, U>A = <AU7 'U>7 <U7 'U>DA = (dmg(A)*lAu, U>7
A stationary iterative method of the form (2.8) with iteration matriz
G=1—-MxA

s said to have the algebraic smoothing property, if there exists a > 0 such
that
1Gelly < llell% — allelba forall eeR (2.17)

The motivation of Definition 2 is that in an algebraic understanding of
multigrid an error component is called smooth if it is slow to converge,
i.e. ||Gella =~ ||e||a. However, this generalization is not to be understood
in a geometric sense, because in a general situation a problematic error com-
ponent need not necessarily be associated with a smooth eigenvector.

In order to obtain an efficient multigrid algorithm one should try to keep the

21

number of smoothing steps low. As kind of a rule of thumb, the total number
of pre- and postsmoothing steps should not be greater than 6 — and usually
less smoothing will come out to be sufficient.

Finally, the reader might wonder about the purpose of postsmoothing and
why the postsmoother might be different from the presmoother: The idea
is that the presmoother works in a fixed subspace of highly oscillatory er-
ror components and that the coarse grid correction completes the reduction
of the error on the complementary space of slowly varying error compo-
nents. The postsmoother is intended to deal with ”intermediate subspaces”
on which neither the presmoother nor the coarse grid correction are highly
contractive. Hence for postsmoothing frequently a larger damping parameter
w will be used than for presmoothing. More details and another notion of
this subspace interpretation will be given in 2.4.4.

2.4.2 Grid transfer operators — Prolongation and re-
striction

Following [13], ch. 3, let us start with the 1D Laplacian (2.1) with Dirichlet
boundary conditions in the form A = (1/h?) * tridiag(—1,2,—1). For the
rest of the subsection let us assume that h = 1/n with n = 2!, [integer, is
the fine grid mesh size and 2h is the coarse mesh size. The simplest way
to transfer a coarse grid vector vy, of length § — 1 to the fine grid is to use
linear interpolation, i.e.

vn(27) = van(J)

. 1 . . .
vp(25 +1) = §(U2h(])+v2h(]+1))a 0<y<

— 1.

|3

In matrix terms we can express the interpolation operator as a matrix P;p €
R(r—1)x(5-1)
0.5
1
0.5 0.5

Pip = (2.18)
0.5 0.5

0.5

22

The linear interpolation operator carries over to two-dimensional problems
(2.4) in a straightforward way: Given the coarse grid vector vg, of length
(% — 1)* we transfer it to the fine grid via bilinear interpolation, i.e. for
0<14,j <3 —1we compute

Uh(27’72]) = UZh(iaj)

. . 1 . . .
vp(20 4+ 1,25) = §(Ugh(2,])+v2h(l+1,]))
A 1 . .
vp(2i,2j + 1) = §(U2h(l,]) +wvon(i, j + 1))
1
on(2i+1,2j+1) = J(an(irg) +van(i +1,5) + van (i + 1) + v (i + 1,5 +1))

Note that the corresponding bilinear interpolation matrix P,p can be written
as Kronecker product
Pop = Pip® Pip (2.19)

of the linear interpolation operator P;p.

In order to restrict a fine grid vector vy, of length n — 1 to the coarse grid in
the one-dimensional case, we could use full weighting:

van(j) = i(vh(Zj S22 b2 +1), 1<i<E -1 (2.20)

Now we observe that the one-dimensional full weighting operator Rip €
R(z-Dx(=1) can be expressed as

Rip =cx* P}, (2.21)

with ¢ = 0.5. Equation (2.21) is often referred to as Galerkin condition or
variational condition and it plays an important role in the mathematical
understanding of multigrid algorithms.

Analogously to (2.19), the corresponding full weighting operator in two di-
mensions can be written as

Rop = Rip ® Rip (2.22)

and there holds
Rop = c* Py (2.23)

23

with ¢ = 0.25. Instead of writing restriction operators as matrices it comes
out to be much more convenient to describe the full-weighting operator (2.22)
as a stencil (cf. [62], p. 65)

1/16 1/8 1/16
Rop= | 1/8 1/4 1/8
1/16 1/8 1/16

In general the stencil

O_1,1 00,1 O1,1
R = 0-1,0 00,0 01,0 (224)
0-1,-1 0Oo,—-1 O1,-1

denotes the weighted restriction

(Ru)(z,y) = > Oapvn(z + ah,y+ Bh) (2.25)

C(,ﬂ:—l

This stencil notation will also prove to be helpful when we study matrix-
dependent prolongations and restrictions in Chapter 5.

We should not overlook that there is still a simpler way to define a restriction
operators: By

van(j) = walj) for 1< j< o1, (2.26)

we get the so-called trivial injection (which simply has the stencil R = [1]).
It is even cheaper than linear interpolation and may well be employed in cer-
tain situations (like e.g. in the context of multigrid for integral equations
in Chapter 6), but except for lacking any variational property it also bears
other disadvantages. We refer to [62], sec. 3.5, for a more detailed discussion.

Higher order interpolation and restriction methods, like e.g. cubic interpola-
tion may also be used, but (as we shall also see in this thesis in Chapter 4)
they rarely lead to a significant improvement of the algorithm. For a discus-
sion, we again refer to [62], sec. 3.4 and 3.5. Anyway, one definitely should
keep in mind that higher order interpolation will always be much more ex-
pensive computationally.

24

From now on we will refer to (bi)linear interpolation as standard prolon-
gation and to the full weighting operator as standard restriction. These
standard transfer operators are the most common choice within practical
geometric multigrid algorithms; the monograph by Trottenberg, Oosterlee
and Schiiller [108] uses almost entirely standard prolongations and restric-
tions. In Chapters 4 and 5 we will explain from two different viewpoints
why standard transfer operators are an optimal choice for discrete Poisson
problems. However, in Chapter 5 we will also deal with cases when stan-
dard transfer operators no longer work properly and have to be replaced by
matrix-dependent prolongations and restrictions.

With the material introduced about multigrid so far we can now understand
why multigrid without smoothing can not work in general (see [62], p. 23):

Remark 2 Using the coarse grid correction operator given by (2.13) to solve
the linear system Apx = b without any smoothing does not lead to a conver-
gent iteration.

Proof. The restriction operator R has a nontrivial kernel. Use a starting
vector (¥ = A7 (b + w) with 0 # w € ker(R). Then the residual will be
r= A, *2® —b=wand as R« r = 0 the iteration stagnates at z(*).

We would finally like to mention that in the seventies Schroder and Trotten-
berg proposed the so-called total reduction method [94], [95] to solve the
two-dimensional Laplace matrix (2.4) in O(n) time which works in a multi-
grid fashion but without smoothing. However, within the total reduction
algorithm the coarse grid equations are not set up using a fixed restriction
operator, but they are carefully constructed such that they are equivalent to
the fine grid equations for the respective unknowns. Thus no smoothing is
needed. However, the total reduction algorithm is tailored to the problem
(2.4): Tt is basically only applicable to one very special block tridiagonal
matrix — and thus has not succeeded. On the other hand, multigrid is not an
algorithm for one special matrix problem, but a very general technique with
a vast range of applicability — and, at the price of smoothing, the techniques
to set up the coarse grid equations are pretty simple.

25

2.4.3 Coarse grid representations — rediscretization or
Galerkin coarse grid operator

Looking at the matrices (2.1) and (2.4) from our model problems, there is
a straightforward way to derive the coarse grid representation. We simply
rediscretize the problem on a coarser mesh with mesh size 2h. In other words:
If our system matrix is

Ap, = (1/h?) % tridiag(—1,2, —1),
then our coarse grid matrix will simply be
Aoy = (1/2h)? tridiag(—1,2, —1).

In the case of a rediscretization we will refer to Ay, as a natural coarse
grid operator.

However, for the case h = 1/n with n = 2!, [integer, we can quickly check
that with P;p and R;p from (2.18) and (2.20), respectively, there holds

Aoy = Rip * Ay * Pip = (1/2h)* * tridiag(—1,2, —1),
i.e. we with the definition
Acoarse = R % Apine % P (2.27)

we obtain the identical coarse grid representation as with rediscretization for
the model problem A, = (1/h?) % tridiag(—1,2, —1).

Equation (2.27) is referred to as the Galerkin coarse grid operator or
variational coarse grid operator. It allows us to set up the coarse grid
matrices in algebraic terms. Note that in general natural and Galerkin coarse
grid operators do not coincide: Revisiting A, = (1/h?) x tridiag(—1,2,—1)
in the case that the matrix size is even we see that the Galerkin coarse grid
operator will usually differ from a rediscretization by a matrix of rank 2.

Certainly, the natural coarse grid operator looks much simpler and it is ob-
vious that the preprocessing phase for setting up the coarse grid matrices
will be much cheaper when we rediscretize instead of using (2.27). Still, the
natural coarse grid operator is the variant of choice among multigrid prac-
titioners: Almost the whole discussion in the recent book by Trottenberg,
Oosterlee and Schiiller [108] is based on algorithms employing natural coarse

26

grid operators. However, variational coarse grid operators (2.27) also have
significant advantages: First of all, equation (2.27) also works out as well
if the matrix Ay, stems from a discretization on an unstructured grid or
if we do not have any notion of a physical grid at all. Secondly, the defi-
nition (2.27) also brings various favourable mathematical properties: In the
case R = ¢ x PT we introduce a variational principle which helps to improve
multigrid algorithms significantly in certain cases and furthermore often fa-
cilitates the mathematical analysis a lot (or makes such an analysis possible
at all).

It is a major point of this Ph.D. thesis to contribute to the discussion when
natural coarse grid operators are helpful to simplify and accelerate algorithms
and when it is inappropriate to use them. In order to perform this investiga-
tion, we first need to clarify that using natural coarse grid makes a significant
difference within a multigrid algorithm (cf. also [108], sec. 2.7):

Remark 3 (Correct scaling of the restriction of defects)
When we would like to employ natural coarse grid operators in multigrid algo-
rithms, we need to note that for second order finite difference discretizations
the matrices Apine and Acoarse bear the different factors (1/h)? and (1/2h)?,
respectively. In practical implementations one usually prefers to multiply the
discrete equation by this factor h? — just as we did when we derived the dis-
crete Laplacians in Examples 1 and 2. In this case great care must be taken
to use the correct factor 4h? on the coarse grid. In other words: We
must not forget to multiply the result reoarse = R* 7 fine with a factor fac = 4,
i.e. we could well say that within Algorithm 2 equation (2.15) is then actually
to be read as . '

Ak_le,(i) = fac* 7"1(2 (2.28)

Note that for second order discretizations fac = 4 independently of the di-
mension of the problem. For fourth order discretizations we would need to
use fac = 16.

On the other hand, when using Galerkin coarse grid operators (2.27)
there is never a need to worry about such scaling factors. Furthermore, the
variational principle allows us simply to set R = PT and this will not affect
the performance of the multigrid algorithms — whereas when using natural
coarse grid operators we are forced to use standard prolongations and restric-
tions exactly in the forms (2.18),(2.20) or (2.19),(2.22), respectively. In other
words: When working with rediscretizations we have to respect the idea of

27

the underlying physical grid within prolongations, restrictions and coarse grid
matrices in our multigrid algorithms. On the other hand, Galerkin coarsen-
ing detracts us from the physical grid and allows us to understand multigrid
much more as an algebraic technique based on variational principles.

2.4.4 Some additonal remarks

In Section 2.2 we have motivated multigrid in terms of a subspace splitting:
We said that the smoother reduces the error in the subspace of highly os-
cillatory frequencies whereas the coarse grid correction handles the slowly
varying error components.

Now that we have introduced Galerkin coarse grid matrices (2.27), we can
use equations (2.12) and (2.13) to interpret a twogrid method in terms of
an algebraic subspace picture (see e.g. [53], [54], ch. 12, or [46], ch. 7).
However, we would only like to explain this idea very briefly: For details we
refer to the original article by Greenbaum [53] from 1984 where the reader
can find these issues treated with depth and rigour.

Following [53] the Galerkin coarse grid operator A.puse = PTAP can be
interpreted as the original matrix Ay, projected onto the subspace & =

span{pi, ..., pm} spanned by the column vectors of the prolongation matrix
P = [p1,...,pm)- On the other hand, the matrix A, = PA_L PT can be

interpreted as the inverse of the matrix A, on this subspace S. Further-
more, Greenbaum [54] points out that S* lies in the kernel of A_} and then
concludes that the coarse grid correction matrix (2.13), i.e. I — AJ) is the
identity on S* and the null matrix on S.

This allows us to see the picture of subspaces of different frequency com-
ponents in a new light: The closer the subspace & to the subspace of the
problematic slowly varying components and the more effective our smoother
on S+ the faster our multigrid algorithm. In order words: We should try to
pick the columns of our prolongation matrix P = [p1,...,py] such that it

mainly contains the slowly varying error components.

Thoughout our discussion we have so far all the time assumed that the fine
and coarse grid mesh sizes differ by a factor of 2 and we will stick with this
assumption during the whole work — except for a little section in Chapter 4
where we will point out that the standard choice, i.e. mesh sizes differing by
a factor of 2, is algorithmically superior to restrictions picking every third or
fourth column.

28

However, there are also other approaches, like e.g semi-coarsening where a
two-dimensional mesh is coarsened in either x- or y-direction only. Finally,
we would like to mention the celebrated algebraic multigrid (AMG) ap-
proach first proposed by Ruge and Stiiben in [92]: As the name of the method
says, AMG is based entirely on the system matrix A and needs no further
information about underlying grids. Coarse grids are not fixed, but dynam-
ically constructed on the basis of the entries of the system matrix.

Now that we know all about its components , we can estimate the computa-
tional costs of multigrid: Looking at Algorithm 2 we understand that the
computationally most expensive parts are the matrix-vector multiplications
on the fine grid needed in steps (1) and (3), i.e. in pre- and postsmoothing,
and in step (2a) when we compute the fine grid residual.

If our system matrix A is sparse, then smoothers, prolongation and restric-
tion are local operations computing weighted averages between grid points.
As each component does a constant amount of work per grid point, the total
amount of work on each grid is proportional to the number of unknowns on
the respective grid. Let us assume that the coarsest grid is sufficiently coarse
such that the solution of (2.15) is much cheaper than a relaxation step on
the finest grid. As the different mesh sizes differ by a factor of two, the total
amount of work for a V-cycle is approximately

Z(%)k (2.29)

k=0

times the computational work on the fine grid (with [denoting the number
of grids and d the denoting the dimension of the problem). As the geomet-
ric series (2.29) is finite, we understand that the costs for a V-cycle are of
complexity O(n) (with n denoting the number of unknowns on the fine grid)
— and, very similarly, we can draw the same conclusion for W-cycles. (See
[108], sec. 2.4.3, for a more detailed discussion of work estimates for different
types of multigrid cycles.)

Hence our goal will be to find a multigrid solution to a linear system Az = b
with the same computational complexity as the matrix-vector multiplication
Aw. In this case we speak of a computationally optimal solver.

29

2.5 Multigrid as a preconditioner

2.5.1 Preconditioned Conjugate Gradients

Among the most powerful and versatile iterative linear system solvers are
the family of algorithms known as Krylov subspace methods, of which
the most well known is the Conjugate Gradient Method. As the n-th step
of the iteration, n = 1,2, ..., these methods choose an approximation to the
solution of the linear system with the coefficient matrix A from the Krylov
space

Ko (29, A) = span{z® Az© Ar=150}

where (%) is an initial guess. If used as stand-alone solvers for elliptic prob-
lems these methods are far from optimal. However, we may try to turn them
into computationally optimal methods by preconditioning, i.e. instead of the
original linear system Az = b we solve the equivalent system PAx = Pb with
a preconditioner P that is ”easy to invert”.

As this thesis deals entirely with the symmetric positive definite matrices, the
only Krylov subspace method we will introduce is the Conjugate Gradient
(CG) method. It was first proposed by Hestenes and Stiefel [69] in 1952 and
is a technique for symmetric positive definite linear systems Az = b. A good
preconditioner for the CG method would be a symmetric positive matrix P
satisfying the two following conditions:

e PA is well conditioned or has few extreme eigenvalues

e Px = b is easy to solve numerically, i.e. we can obtain an approximate
solution efficiently and with requirements for computing time and stor-
age of the same complexity as a matrix-vector multiplication Awv.

The following algorithm describes the preconditioned CG method. The un-
preconditioned CG algorithm can simply be recovered from it by setting
P = I. For more information about the CG algorithm, we refer to the de-
tailed presentations in the books by Golub and Van Loan [51], pp. 520, and
Axelsson [2], pp. 459. There the reader can learn more about CG as an
optimization algorithm and get to understand how the preconditioned CG
algorithm can be derived from the original algorithm from 1952.

Algorithm 3 (Preconditioned Conjugate Gradients)
We want to solve the symmetric positive definite linear system Ax = b. Let

30

O be the initial guess, 7© = b— Az be the initial residual and the precon-
ditioner M be a symmetric positive definite matriz. Furthermore set 50 = 0.
In order to solve our linear system by the method of preconditioned conjugate
gradients we proceed with the following iteration k = 0,1, ... until a stopping
criterion 1s satisfied:

(1) Preconditioning step: Solve

P06 _ (0
(2) If k > 0 compute the “improvement this step”:

(k))y
- (k=10

3) Update the ”search direction”: If k = 0 then p® = 20 otherwise com-
(3) Up p ,
pute

p(k) = () 4 B(k)p(kfl)

(4) Perform the matriz-vector multipication:
¢* = Ap® (2.30)

(5) Update the "step length”:

(6) Update the approzimate solution:

(7) Update the residual:
P 0 00

It is important to note that Algorithm 3 requires only one multiplication
with the matrix A in step (4).

We would very briefly like to remind the reader of a result describing how
the speed of convergence of the conjugate gradient algorithm for the solution
of Az = b relates to the 2-norm condition number of the the system matrix
A (see e.g. Trefethen and Bau [107], p. 299):

31

Lemma 3 Let the method of conjugate gradients be applied to a s.p.d matrizc
problem Ax = b.Let k be the 2-norm condition number of A and the energy
norm || - ||4 be given by ||x]|3 = 2T Ax.

For the initial error e®) and the error e™ after n CG steps there holds:

le™]l
1e®1]a

VE—1
<2(—)". 2.31
<2 (2.31)
It is worth noting that the bound (2.31) may sometimes be rather pessimistic
and the CG algorithm may converge much faster, e.g. in the case that the
eigenvalues of A are very well clustered (Cf. [107], p.299).

Lemma 3 implies that in order to reduce the energy norm of the error by
a factor g €]0, 1] one needs at most

m > - /rllog(2) (2.32)

steps of the CG method.

2.5.2 Additive and multiplicative multigrid precondi-
tioners

For linear systems arising from a discretization of elliptic problems — or other
types of ill-conditioned matrices — we can precondition CG with a multigrid
cycle, i.e. we simply perform one iteration step of a V-cycle or a W-cycle with
zero initial guess in step (1) of Algorithm 3. (Note that it is important to
start with the zero initial guess for otherwise we would have different precon-
ditioners in subsequent steps of Algorithm 3). In the previous subsections we
have introduced multigrid as an iterative solver and we have outlined why
it gives a fast and efficient solver of optimal complexity. Hence the reader
might wonder why we also consider using multigrid as a preconditioner. We
continue with a quote on this issue taken from the book by Anne Greenbaum
[54], p. 197:

Some multigrid aficionados will argue that if one has used the proper restric-
tion, prolongation and relaxation operators, then the multigrid algorithm will
require so few cycles (...) that it is almost pointless to try to accelerate it
with CG-type methods. This may be true, but unfortunately such prolonga-
tion, restriction and relaxation operators are not always known.

32

We believe that this quote is certainly true for complicated problems in the
field of Scientific Computing, including non-symmetric problems, adaptive
discretizations on highly nonuniform (possibly unstructured) grids, and so
on. However, this work deals with structured linear systems which are also
symmetric positive definite. We will see that in the structured case it is
usually possible to identify appropriate smoothers, transfer operators and
coarse grid representations — and our numerical experiments will show that
our multigrid cycle solvers usually perform very efficiently such that no ac-
celeration with CG is needed.

In the case that a multigrid cycle is used for preconditioning we speak of mul-
tiplicative multigrid preconditioning. In contrast to the multiplicative
multigrid algorithms discussed there are also additive preconditioners like the
celebrated BPX-preconditioner [9] or the multilevel diagonal scaling method
[120]. These methods are designed to work as preconditioners only and al-
though they can rarely outperform their multiplicative counterparts on a
serial computer, they are highly interesting for their usually superior parallel
performance.

Additive preconditioners are distinct from multigrid solvers in the sense that
they do not execute any successive coarse grid corrections. Instead, they
simply set up coarse grid problems and the solutions on these coarse grid are
finally added. It is rather obvious that such a procedure can not lead to a
convergent solver, but it can be shown that additive preconditioners lead to
optimal preconditioners, e.g. for certain types of elliptic problems.

Let l
e |
k=j+1
denote the product of prolongations on the different levels (with [denot-
ing the finest level and 0 the coarsest). Then we can write Zhang’s [120]
multilevel diagonal scaling (MDS) preconditioner as (see also [102], p. 71)

-1
PO 4+ pOT W PO 4 pO! (2.33)

J=1

B = pOT A0

In (2.33) AY) denotes the matrices on the different levels of resolution and
DU) their diagonals. Note that in practice the exact solve A©™" on the finest
level in (2.33) may well be replaced with a simple diagonal solve, i.e. one

33

Jacobi step.
Similarly to (2.33), we can write the preconditioner by Bramble, Pasciak and
Xu [9] in the two-dimensional case in the form (see [102], p. 74)

B = PO A0 pO L 57 pi po) 4 | (2.34)

The BPX preconditoner was originally developed for finite volume discretiza-
tions of the 2D Laplacian and there the diagonals D) scale like the identity.
Historically, it was published before MDS, but it can be interpreted as a spe-
cial case of MDS which uses less information about the underlying matrix.
For more details on additive preconditioners and other variants of them we
refer to chapter 3 of the book by Smith, Bjorstad and Gropp [102].

2.6 Some facts about multigrid convergence
theory

We have said frequently that multigrid leads to O(n) solvers for large classes
of elliptic problems. This means that usually proofs concerning a multigrid
algorithm involve two issues: First of all, one needs to establish convergence;
secondly, one needs to show that multigrid gives a solver of optimal complex-
ity, i.e. iteration counts are independent of the number of unknowns.

In general, such proofs are rather involved and technical: Even for the simple
problem of a two-grid cycle for the one-dimensional Laplacian (2.1) with a
natural coarse grid operator such a proof would cover several pages. Hence
we decided not to give such a "model proof”, but refer to the book by Hack-
busch [62], p. 25-30. There Hackbusch establishes that the two-grid method
for this one-dimensional problem converges at a rate independent of the num-
ber of unknowns involved.

The purpose of this work is to develop efficient multigrid algorithms. Hence
our focus lies on the algorithms themselves and on numerical experiments
underlining their efficiency — and it is certainly not our goal to contribute
to multigrid theory. However, we would like to give a little overview about
multigrid convergence theory in order to show that our algorithms are based
on a solid theoretical base.

Studying multigrid convergence proofs one will make a number of observa-
tions:

34

e Usually the proofs first establish convergence for a twogrid cycle; then
the analysis is carried over to W-cycles via perturbation arguments (see
e.g. [62], ch. 7)

e Usually it is much simpler to establish convergence for W-cycles than
for V-cycles: The first proofs of V-cycle convergence with a fixed num-
ber of smoothing steps for the Poisson problem was only given in 1981
by Braess [8].

e Normally multigrid convergence results are based on Galerkin coars-
ening Acoarse = PT ApineP; if this variational property does not hold
proving theorems gets much more complicated. If natural coarse grid
operators are employed, then usually convergence results can only be
established if eigenvectors and eigenvalues of the system matrix are
known exactly.

The foundations of a general multigrid theory were laid in the eighties by
Hackbusch: In terms of the underlying differential operator he formulated
equations characterizing the ”approximation property” and the ”smoothing
property” (see [62], pp. 113). Based on these abstract properties Hackbusch
was able to develop a general convergence theory for elliptic problems sat-
isfying certain regularity conditions (i.e. excluding complications like e.g. L-
shaped domains). Hence this theory is often referred to as elliptic reqularity
theory. 1t is interesting to note that elliptic regularity theory is the only way
making it sometimes possible to prove convergence results for multigrid algo-
rithms with natural coarse grid operators without a complete knowledge of
eigenvalues and eigenvectors. However, elliptic regularity theory is basically
restricted to symmetric positive definite problems (see [62], pp. 150).

In order to establish sharp results for additive multilevel preconditioners more
abstract concepts were needed: The first proof of the optimality of BPX was
presented in 1991 by Oswald [87] based on Besov scales; a little later a sim-
pler proof by Bornemann and Yserentant [6] based on interpolation spaces
followed. Oswald summarized and generalized his so-called multigrid sub-
space correction theory in his 1994 book [88]. In chapter 4 of his book [88]
and in a joint article with Griebel [59] Oswald pointed out how additive and
multiplicative multigrid methods can be seen in a unified framework. We
will say more about these results when we make use of them in Chapter 5.

Multigrid subspace correction is a very abstract and powerful framework.

35

However, to the multigrid practitioner it also has certain drawbacks: In
particular, it gives entirely qualitative results. Although elliptic regularity
theory is more restricted in scope, it sometimes also allows for estimates on
the convergence speed which are no longer possible in the subspace correction
framework. Furthermore, subspace correction theory requires an underlying
differential or integral operator and it entirely allows the study of symmetric
positive definite problems. Finally, Galerkin coarsening A ,qrse = PTA fine’
is obligatory within the theory.

For more details on elliptic regularity and subspace correction theory we refer
to the excellent overview articles by Yserentant [119] and Xu [116].
Although multigrid theory is in good shape for symmetric positive definite
problems, hardly anything is known in the nonsymmetric or indefinite case —
see the article by Cai and Widlund [16] for a discussion of the problems of an
abstract framework. In particular, hardly any theoretical results are known
about convergence of multigrid algorithms for convection-diffusion problems.
Although such solvers are highly relevant in practice, proofs could so far
mainly be accomplished in the constant-coefficient case on rectangular do-
mains with periodic boundary conditions [90].

For the algebraic multigrid algorithm by Ruge and Stiiben [92] proofs could
only be established for the twogrid method, but not for V-cycles or W-cycles.
Their convergence proof for a twogrid method relies on the following theorem
taken from [92], p. 89, which we will also make use of in Chapter 4.

Theorem 1 (Criterion for twogrid convergence)

We would like to solve the linear system Ax = b with a twogrid iteration
employing only one presmoothing step and an exact solve on the coarse grid.
Let ny, and ng denote the number of unknowns on the fine and coarse grid,
respectively, let A € R"™*™ be a symmetric positive definite matriz, let the
prolongation matrix P € R"™ ™ have full rank, let the restriction R be
defined by R = PT and the coarse grid matriz by Acparse = PTAP.

Finally, let || - |a , || - [|p and || - ||[pa be the norms associated with the three
inner products

(u,v)4 = (Au,v), (2.35)
(u,v)p = (diag(A)u,v), (2.36)
(u,v)ps = (diag(A)~"Au,v), (2.37)

36

let our smoother be an iterative method of the form (2.8) with iteration matriz
G = I— M x A having the algebraic smoothing property (2.17), i.e. there ezists
a > 0 such that

IGe" (3 < lle"[3 — alle"[5a for all " € R™

and let the twogrid operator Mg and the coarse grid correction matriz K be
defined as in (2.12) and (2.13), respectively.
If we can prove that there exists 3 > 0 such that

min |le® — Pe™ |3 < Blle||% for all " € R™, (2.38)
el cR"H
then 8 > « and for the convergence factor of the twolevel method in the
energy norm || - ||a there holds

(07
[Mralla = [|GK|la <4 /1= 3 (2.39)

Certainly, the choice to go for only one presmoothing step in Theorem 1
means no restriction: The general convergence factor for a twogrid method
(2.12) is simply ||G2 KGT"]| .

We can summarize that multigrid theory for symmetric positive definite prob-
lem is very powerful: In particular, this holds if a variational coarse grid
operator is used and the problem results from the discretization of an elliptic
operator. However, very often multigrid theories provide abstract asymptotic
results — and these can only rarely tell the multigrid practitioner what is the
best prolongation, restriction or smoothing operator for a specific problem
at hand.

37

Chapter 3

Toeplitz matrices: Properties,
fast algorithms and their
implementation

This chapter presents some basic facts about Toeplitz systems, i.e. matrices
with constant entries along diagonals. In the first section we point out that
certain Toeplitz matrices can be connected to generating functions. This will
be helpful in Chapter 4 when we try to translate a multigrid cycle into terms
of functions. Generating functions also tell us a lot about the spectrum of
Toeplitz matrices and thus equip the set of the associated Toeplitz matrices
with a kind of " quasi-algebra” structure that can be used for preconditioning.
In particular, we will also introduce band Toeplitz preconditioners. Section
2.1 summarizes results of the book by Grenander and Szego [55], ch. 5, and
the overview article by Chan and Ng [19] and is also strongly influenced by
the thesis of Fiorentino [46], ch. 2.

We then present a fast algorithm for multiplying a Toeplitz matrix with a
vector: Introducing the algebra of circulant matrices we explain how this
operation can be performed efficiently at O(nlogn) speed via the FET and
circulant embedding. Analogous ideas can be applied for Block Toeplitz
matrices with Toeplitz Blocks (BTTB matrices), i.e. the bivariate counter-
parts of Toeplitz systems, employing the two-dimensional FFT. Furthermore,
circulant preconditioners and Block circulant preconditioners with circulant
blocks, respectively, come up along the way. Sections 2.2 and 2.3 are pre-
sented along the lines of the upcoming book by Vogel [112], ch. 5, and the
book by Van Loan, [110], ch. 4.

38

3.1 Toeplitz matrices and generating functions

3.1.1 Introduction

Let f(x) be a real-valued continuous function on the interval [—m, 7| and
periodically extended to the whole real axis. Given the Fourier coefficients

of f(z)
1 [7 .
ap = — / f(0)e*dp, for k integer,
2) _ .
we can define the sequence of Toeplitz matrices {A, = T,,(f)}, associated
with the generating function f(x). Its entries are given by (A,)im = Gi—m:
aO a—l e e a‘l—n

aq Qo a_q

a1 Qo a_q
a/nfl .- al ao

Note that the matrices A,, are Hermitian, since f(x) is real-valued. In case
f(z) is an even function, we are dealing with a sequence of real symmetric
Toeplitz matrices and can represent f(x) as a cosine series allowing us to
find the entries a; of A,, via

ap = %/OW f(z) cos(kx)dx, k=0,1,... (3.1)

We will now see that the generating function tells us a lot about the eigen-
values of the associated Toeplitz matrices.

3.1.2 Distribution of eigenvalues

The following definition is taken from [55], p. 62:

Definition 3 (Equal distribution)

For alln >0 let A, = {a,(,n) »_,and B, = {b,(,n) n_, be two sequences of real
numbers such that
af’| < K, p{| < K

39

with K > 0 independent of v and n.
We define A, and B, to be equally distributed on the interval [—K, K|
for n — oo if the condition

lim
n—00 n

is satisfied for any continuous function F : [—K, K| — R.

Definition 3 helps us to establish an important result concerning the spectrum
of a Toeplitz matrix that is associated with a continuous generating function
(see [55], pp. 64 and p. 72):

Theorem 2 (Eigenvalues of Toeplitz matrices):
Let the sequence of Toeplitz matrices {A, = T,(f)}n be generated by the
continuous real-valued function f(x) and let

my;= min f(x), My = max f(z)

z€[—m,7] z€[—m,m]

(i) If we order the eigenvalues A of A, in a nondecreasing way, i.e. Aﬁ”’ <

Aé”’ <...<)\7(1”), then they satisfy the relation

.1 - (n) 1 g
lim — F\Y) = — F d
Jim 3 RO = o [U@
for every continuous function F : [ms, Ms] — R.
In particular, the sets of values {)\,(,”) n_yand {f(Z5)}0_, are equally dis-

n+1/Jv=1
tributed as n — oo in the sense of Definition 3.

(ii) Furthermore, for all n the spectrum of A, is contained in the interval
[my, M| and there holds

my = inf M My = inf A (3.2)
ne

neN

Theorem 2 (i) tells us that the eigenvalues of A, are not clustered and (ii)
states that the extreme eigenvalues of A, tend to the extremal values of f(x).

Of particular interest will be the case of a generating function f(z) with
my = 0. From Theorem 2 we learn that the sequence of Hermitian Toeplitz
matrices {A,, = T,,(f)}, will be asymptotically ill-conditioned.

40

In the case of a generating function with an isolated zero x, of finite order,
it has furthermore been pointed out that the order of the zero x, governs
how quickly the smallest eigenvalue A&”’ goes to zero (see e.g. [76] or [18]
for details). Finally, we would like to assure the reader that in the case of a
nonnegative generating function f with a finite number of zeros of finite order
the Toeplitz matrices A,, = T,,(f) will always be positive definite, i.e. the case

A™ = 0 never occurs (see e.g. [18]).

However, as soon as the generating function changes signs, matters become
much less pleasant (see [114] or [46], p. 16):

Lemma 4 Let the sequence of Toeplitz matrices { A, = T,,(f)}. be generated
by a continuous function f : [—m, 1] — R with extremal values such that
Minge(—rq f(2) = my <0 < My = maxye[—rqa f(x). Then there holds:

(i) The 2-norm condition number k(Ay) tends to infinity as n tends to infinity
in a nonmonotone way.

(ii) The matriz A,, can be singular for some values of n.

From Lemma 4 (ii) we can conclude that if an indefinite Hermitian Toeplitz
matrix belonging to a nondefinite generating function f arises in a real-
world application we need to check very carefully whether the underlying
mathematical model is well-posed in the sense of Hadamard.

Let us finally study a simple example.

Example 1 (revisited): The well-known matrix tridiag(—0.5,1,—0.5) —
i.e. the 1D Laplacian — is related to the function f(z) = —0.5e7%+1-0.5¢* =
1 —cos(z). The eigenvalues of A,, = T,,(f) are contained in the interval |0, 2.
The small eigenvalues of A,, that lead to the large condition numbers are
caused by the zero xy = 0 of f, f(x9) = f(0) = 0, of multiplicity two.

3.1.3 Banded preconditioners

Obviously, the set of Toeplitz matrices does not form an algebra: Neither will
the product of two Toeplitz matrices in general be Toeplitz nor will the inverse
of a Toeplitz matrix share this structure — and it is almost superficial to say
that we can not simply find the inverse of a Toeplitz matrix A, = T,(f)
generated by the function f via computing Tn(%), because % might have
singularities and its Fourier coefficients might not exist at all.

However, it has been observed that for nonnegative continuous functions f

41

and g the spectra of the matrices M, = T,,(f) *T,,(g) and My = T,,(9) ' T,.(f)
can still be described in terms of the functions f * g and f/g, respectively
(see e.g. [38]). In other words: The generating functions equip the set of
Toeplitz matrices generated by nonnegative continuous functions with a kind
of ”quasi-algebra” structure.

For our purpose the case h = f/g is particularly interesting: We can think of
f representing the original (possibly ill-conditioned) matrix and of ¢ standing
for the preconditioner. In [98] Serra was able to prove

Theorem 3 Let f and g be two continuous nonnegative real-valued func-
tions. Let r be the essential infimum of f/g and R its essential supremum.
Then the eigenvalues of the matrix

Tn(g)_lTn(f)

lie in the interval |r, R] for all n and if we order them in a nondescreasing
way there holds

lim A =r, lim A\(» = R.

n— o0 n—oo
Theorem 3 is very interesting in the case of a dense Toeplitz matrix generated
by a nonnegative function with a finite number of zeros of finite order. What
could be simpler than using a sparse Toeplitz matrix generated by a function
with identical zeros of the respective orders for preconditioning? If such
a sparse matrix could be found, then we know that the spectrum of the
preconditioned linear system would be contained in an interval [a,b] with
0 < a <b< oo, and hence the preconditioned CG method would give a
computationally optimal solver.
This idea underlies the so-called band Toeplitz preconditioners [18], [21]:
First of all, remember from (3.1) that such a banded Toeplitz preconditioner
needs to have a representation as a finite cosine series. Thus this idea is
basically only applicable if there are exclusively zeros of even order. We can
summarize the idea of banded preconditioners in the following theorem (see
[18], sec. 4):

Theorem 4 (Band Toeplitz preconditioners)
Let f be a continuous real-valued function with the n isolated zeros

X0, L1y, Ty €] —m,w| of orders 2py,2p1, .-, 2pn.

42

Let T, (g) be the banded Toeplitz matriz generated by

n

g(z) = H[Q — 2cos(x — x;)]”

j=0

Then the condition number of the preconditioned system

Tn(g)_lTn(f)

15 bounded by a positive constant independent of the matrix size n.

3.2 Fast algorithms for Toeplitz systems

In this section we will point out in detail how a dense Toeplitz matrix can
be multiplied with a vector at O(nlogn) speed. This property is a major
motive for numerical analysts to study Toeplitz systems — and it is also the
reason why we worry about preserving Toeplitz structure in the coarse grid
representations within our multigrid algorithms presented in Chapter 4.

3.2.1 Circulant matrices and the FFT

Definition 4 (Circulant matrices)

A matriz C' € C*™ s called circulant if it is Toeplitz and if its rows are
circular right shifts of the elements of the preceding row, i.e. the entries of
the matriz "wrap-around”. We can identify the matrix

Co Cpn—1 .. Co (4]
&1 € Cp— Ca
C= '
Cpn—2 . C1 Co Cn—1
Ch—1 Cp—2 c. C1 Co

with its first column ¢ = C(:,1) = (co,c¢1,...,¢,1) € C* and write C' =
circulant(c).

It can be shown that the set of circulant matrices forms the algebra of ma-
trices that can be diagonalized by the Fast Fourier Transform ([112], p. 79):

43

Lemma 5 Let C' € C"*" be a circulant matriz and ¢ € C* be its first column.
Then
C = F*diag(¢)F, (3.3)
where [Fjx = w*/\/n with w = ™™™ is the discrete Fourier matriz , F*
denotes its conjugate transpose and
¢ = v/nFc = fft(c) (3.4)

In other words: The eigenvalues of the circulant matriz C' are given by the
components of ¢ and the corresponding eigenvectors are the columns of F*.

For a proof of Lemma 5 and more background material on the FFT we refer
to the book by Van Loan [110].

Lemma 5 also tells us how to compute circulant matrix-vector products and
inverses of nonsingular circulants efficiently (see [112], p. 79):

Algorithm 4 (Fast operations with circulants)
Let C' € C™™ be a circulant matriz, ¢ € C" its first column and b € C"
a column vector. The matriz-vector product v = Cb can be computed at
O(nlogn) costs on the basis of the two equations (3.3), (3.4) via the following
algorithm.:
(1) Compute ¢ = Fc = fft(c) and b= Fb = fft(b)
(2) Compute the componentwise vector product © = ¢. x b
(3) Compute v = F* = ifft(¥)
On the basis of the equation

C~!' = F*diag(1./¢)F

nonsingular circulant systems C'x = b can be solved via the same algorithm.

3.2.2 Efficient implementation of Toeplitz times vector
multiplications

Definition 5 (Identifier of a Toeplitz matrix)
For the Toeplitz matriz T' € C**™ given by

tO (] .- t2—n tl—n
131 to 11 to—n
T = ’
(2 P AT 1) B A |
tnfl tn72 tl tO

let us call t = (ty py-. st 1,t0,t1, .- tn1) € C" 1 its identifier and write
T = toeplitz(t).

Note that the identifier of the Toeplitz matrix 17" € C"*" is a vector with
2n — 1 components whereas a circulant matrix C' € C**" is identified with
its first column (which has only n components).

How can we use Lemma 5 and Algorithm 4 to multiply a Toeplitz matrix
T € C™™ with a vector at O(nlogn) costs? The answer is simply to embed
T into a circulant matrix C*** € C*"*?" with the first column

T(1:n,1)
Ct(:,1) = 0
T(l,n:=1:2)

written in MATLAB notation (and a.” meaning transposition of a without
conjugation).

Let us explain this idea a little more slowly and in more detail (see [112],
p. 79): First we define the Toeplitz matrix S € C"*" with the identifier

s = (tl,tg, C ,tn_l,O,tl_n, Ce ,t_g,t_l) S (CQn

Now we have embedded the Toeplitz matrix 7" € C**" into a 2n-by-2n cir-

culant matrix 5
ert __ T
cert = < g T (3.5)

and we call C*® ¢ CM*(n) the circulant extension of the Toeplitz matrix
T. Obviously, for b € C* there holds

e D) _ (T
0n><1 Sb
Reminding ourselves that C®*' = circulant(c®") with
Cemt = (t(), tl, Ca ,tnfl, 0, tlfn, Cey tfl) & (CZn (36)

everything is in place to formulate our Toeplitz times vector algorithm:

Algorithm 5 (Fast computation of Toeplitz times vector products)
Let T € C"" be a Toeplitz matriz and b € C* be a vector. We can compute

45

the matriz-vector product Tb = v with O(nlogn) costs by the following algo-
rithm:

(1) Set up the vector ¢ according to (3.6)

(2) Extend b, i.e. compute b = zeros(2*n, 1) and set b***(1:n) =b

(3) Compute ¢ = fFt(c®*t) and b*"" = fFt(b*t)

(4) Compute the componentwise vector product 9°" = ¢#*t. % peet

(5) Compute v°®t = ifft(V**)

(6) Extract the first n components of v°** to get v, i.e. v ="v°"*(1:n)

3.2.3 Circulant preconditioners

Circulant matrices possibly give the most powerful class of preconditioners
for Hermitian Toeplitz matrices generated by strictly positive functions.
Here we would mainly like to introduce the famous T. Chan preconditioner
[28]. For a detailed survey on circulant preconditioning we refer to the article
[19], ch. 2.

Lemma 6 (T. Chan circulant preconditioner)
Let T € C*™" be a Toeplitz matriz with the identifier

t= (tlfn, ce e ,t,l,tg,tl, e ,tnfl).

Then we call the circulant matriz C(T) = circulant(c) with the first column
c given by
(n —)t + jtjn

n Y
the T. Chan circulant preconditioner.
Furthermore, the matriz C(T') can be shown to give the best approximation
from the algebra of circulant matrices to T in the Frobenius norm, i.e.

J=0,1,...,n—-1 (3.7)

Cj:

C(T)=arg min IIC — T

C is circulant

Obviously, the setup (3.7) for the preconditioner costs only O(n) operations.
When we use the T. Chan preconditioner inside CG, we simply compute
C(T)~'z in O(nlogn) operations via Algorithm 4.

The T. Chan circulant preconditoner is a very general approach: It can also
be defined for an arbitrary matrix to yield the best circulant approximation
in the Frobenius norm (see [28], [20] or [19] for details).

46

Of course, there are also other ideas for efficient circulant preconditioners:
For example, Strang [103] proposed a preconditoner that simply copies the
central diagonals o, ?1,...,t,/2] of the Toeplitz matrix T' € C**" and re-
flects them around to obtain a circulant matrix. We refer to [17] for more
details and an analysis of Strang’s preconditioner.

Other ideas use the embedding (3.5) to derive a preconditioner: In the sim-
plest case, one could use ¢ = (1/¢<*"). % b*** in step (4) of Algorithm 5 for
preconditioning. For more ideas based on embedding see the article by Ku
and Kuo [79)].

Anyway, within our numerical experiments and comparisons in Chapters 4
and 6 our focus will lie on the preconditioner introduced in Lemma 6.

3.3 Fast algorithms for BTTB matrices

Toeplitz systems can usually only represent univariate models. We now come
to Block Toeplitz matrices with Toeplitz blocks, i.e. the bivariate counter-
parts of Toeplitz systems, which can also be employed within multidimen-
sional models.

3.3.1 Introduction

Definition 6 (BTTB matrices)
Let T € CMNXMN be the block Toeplitz matriz

TO T_1 e T2_M TI—M

Tl T() T_1 e TQ—M
Thi_a . T TO T_y
Ty T2 ... T Ty

with the N-by-N Toeplitz blocks

Lo li-1 oo tipen Tiien

b oo - o tipen
T; =

R A K

tin-1 tin-2 .. tin tho

47

forj=1—-M,2—M,...,0,1,...,M — 1. Then the matrizx T € CMN*MN
s called a Block Toeplitz Toeplitz Block matriz — and we shall from now on
abbreviate: T 1s a BTTB matrix.

Furthermore, we will write T = BTTB(t) with

t= (tl—M; tg_M, ce ,to, ey, tM—l) S (C(QN_I)X@M_I) (38)

such that
T; = toeplitz(t;),

ie. t € CEN=UXCM=1) s the matriz whose columns t; € C*N~1 are the
identifiers of the Toeplitz block Tj. Furthermore, t is called the identifier of
the BTTB matriz T.

In case the Hermitian BTTB matriz T is generated by a continuous function
f:[m w? = R, then we find its entries via the two-dimensional semi-discrete
Fourier transform, i.e.

1 T T it
Livgs = %/ / f(x,y)e (1 +]2y)dxdy

As for the relations between the spectra of BTTB matrices and their
generating functions virtually everything presented in Section 3.1 carries over
(see e.g. the work by Jin [74], [75] and Serra [97], [98]): In particular, the
spectrum still lies in the range of f and in the case of a nonnegative generating
function with an isolated zero (zo,yo), the order of the zero still governs the
ill-conditioning of the corresponding sequence of BT'TB matrices. Finally, the
statements from Lemma 4 are also valid in the bivariate case, i.e. matrices
generated by nondefinite functions might be singular for certain matrix sizes.

Let us look at a well-known example again.
Example 2 (revisited): The 2D-Laplacian given by (2.4) is related to the
function

f(@,y) =2—05x% (e +e ™ 4" +e¥) =2~ cos(z) — cos(y)

The eigenvalues of the corresponding sequence of block tridiagonal matrices
are contained in the interval |0,4][. The small eigenvalues that lead to the
large condition numbers are caused by the zero (z¢,yo) = (0,0) of of f at the
origin of multiplicity two.

48

3.3.2 BCCB matrices and the twodimensional FFT

We shall now introduce the two-dimensional analogue of circulant matrices
(see also [112], pp. 81):

Definition 7 (BCCB matrices)

A matriz C € CMNXMN s called block circulant with circulant blocks, abbre-
wiated BCCB, if it satisfies the following conditions:

(a) C is BTTB.

(b) Each block is an N-by-N circulant matriz.

(¢) The N x N block rows of C are circular right shifts of each other, i.e. the
block structure also "wraps around”.

We can identify the BCCB matriz

CU CM,1 e 02 01
OI Og CM,1 e 02
C =
Cy_o - C; Cy Cya
CMfl CM72 s Ol C10

with the first columns ¢; € CN of the circulant blocks C; = circulant(c;),
i.e. with ¢ = (co,c1,...,c—1) € CNVM - We write C = BCCB(c) and call
¢ the identifier of C. (Note that like in the 1D case the identifiers of BCCB
matrices are much smaller than the identifiers of BTTB matrices.)

Like in one dimension, it can be shown that BCCB systems of given block
sizes form an algebra of matrices that can be diagonalized by the appropriate
two-dimensional Fast Fourier Transform (see also [112], p. 82):

Lemma 7 Let C € CMNXMN e ¢ circulant matriz and ¢ € CN*M pe jts
first column. Then
C = (Fu ® Fy)"diag(¢)(Fu ® Fy), (3.9)

where [Fyljn = wie/NM with wy = €™ and [Fyle = wi/VN with
wy = e*>/N gre the discrete Fourier matrices of sizes M x M and N x N,
respectively, and

¢=VMN(Fy ® Fy)c (3.10)
with ¢ = reshape(c, MN,1). In other words: The eigenvalues of the BCCB

matrixz C are given by the components of ¢ and the corresponding eigenvectors
are the columns of (Fyr ® Fn)*.

49

For a proof of Lemma 7 and more background material on the two-dimensional
FFT we again refer to the book by Van Loan [110].

The algorithm for computing circulant matrix-vector products is thus com-
pletely analogous to 1D. We shall to try formulate it in "MATLAB-like”
notation: Note that fft2 operates on N-by-M matrices and gives N-by-M
matrices as the output in MATLAB.

Algorithm 6 (Fast operations with BCCB matrices)
Let C € CMNXMN be q BCOCB matriz, ¢ € CN*M its identifier and b €
CMN g column vector. The matriz-vector product v = Cb can be computed
at O(nlogn) costs on the basis of the two equations (3.9), (3.10) via the
following algorithm:
(1) Reshape b, i.e. b = reshape(b, N, M)
(2) Compute ¢ = fFt2(c) and b = fft2(b)
(8) Compute the componentwise matriz product 0 = ¢é. * b
(4) Compute v = ifft2(V)
(5) Reshape v, i.e. v = reshape(v, MN, 1)
If we change step (3) to
&= (1./é).%b

we can solve nonsingular BCCB systems C'x = b via the same algorithm.

3.3.3 Efficient implementation of BTTB times vector
multiplications

We can embed a BCCB matrix 7' = BTTB(t) € CMN*MN with identifier

liN1-m - tino --- N
t = tO,l—M . t()’() R tO,M—l
L Inc1i-m --- IN—1o oo EN—imo1

50

into a BCOB matrix C*** = BCCB(c®*t) € C*MN*4MN with identifier ¢*** €

C2N*2M given by
[too ... tom—1 O toi-m ... to—1 |
tn—10 --- tn—im—1 O tn—ig-m oo. EnN—1-1
=1 0 0 0 : : 0 (3.11)
tino - tiengv—1 0 tini-m .. fion—1
| t*l,O Ce t,LMfl 0 t*l,l*M Ce t*l,fl i

Note that the columns of ¢! simply represent the 1D circulant extensions
of the N x N Toeplitz blocks and the respective ordering of the rows of %t
guarantees that the block rows of C'®*! are circular right shifts of each other.
We call C*** the BCCB extension of the BTTB matrix 7.

To multiply 7' € CMN*MN with a vector b € CMY | we first need reshape it
to b = reshape(b, N, M) € CN*M_ Then we have to extend it with zeros via

bezt — (b 0N><M > (312)

0N><M 0N><M

Now bt can be treated by the following BTTB times vector algorithm.
Again we use a "MATLAB-like” notation:

Algorithm 7 (Fast computation of BTTB times vector products)
Let T € CMN*MN pe o BTTB matriz and b € CMN be a vector. We can
compute the matriz-vector product Tb = v with O(nlogn) costs by the fol-
lowing algorithm:

(1) Set up the ¢t € C*N**M qccording to (3.11)

(2) Extend b via (3.12), i.e. compute b*** = zeros(2 « N,2x M) and set

b"*(1: N,1: M) = reshape(b, N, M)

(3) Compute ¢t = fFt2(c®<t) and b = Ft2(b<)

(4) Compute the componentwise matriz product 9t = ¢, x pert
(5) Compute vt = ifft2(vext)

(6) Eztract the first N x M subblock

v=0v""1:N,1: M)
and, finally, set v =reshape(v,1, MN).

51

3.3.4 BCCB preconditioners

BCCB preconditioners are a very common choice for preconditioning BTTB
systems. Like in the 1D case, they are particularly successful if the BTTB
matrix belongs to a strictly positive function.

In 1994, T. Chan and J. Olkin [31] published the BCCB analogue of the
T. Chan circulant preconditioner [28]: It can again be defined for arbitrary
matrices and shown to be the best approximation from the algebra of BCCB
matrices with a given block size in the Frobenius norm.

In the following we will only describe algorithmically how the BCCB pre-
conditioner by T. Chan and J. Olkin can be set up efficiently for BT'TB
matrices:

Remark 4 (BCCB preconditioner by T. Chan and J. Olkin)

Let T = BTTB(t) € CMN*MN be q BTTB matriz with identifier t €
CEN-DxEM=1) " In q first step we replace all the Toeplitz blocks T; € CN*N;
We can perform this operation efficiently by applying (3.7) to all columns
of t, i.e. forl=1—M,...,0,1,...,M — 1 we compute the column vectors
¢, € CN with components

. N —)t +7ti—ny
CZ(J)Z()JN I,

j=0,1,...,N—1

Now we have obtained a "BTCB” matriz which can be represented by the
array ¢ = (61N, ..., 0, C1,. .., 0n_1) € CNXEM-1)

However, we still need to make the block rows of our preconditioners circular
right shifts of each other, i.e. we must apply a second level of circulant ap-
proximation and use (3.7) on the rows of ¢. Then for k=10,1,...N — 1 we
compute

(M — 1)y + ek
M)

With ¢ = (c;) € CV*M we have found the identifier our BCCB precondi-
tioner C = BCCB(c).

Ck,l = lZO,l,...,M—l

Although there are also other BCCB preconditioners for Toeplitz systems,
we will again put our major focus on the approach by T. Chan and J. Olkin
[31] described above.

However, when we study BTTB systems arising from image deblurring in

52

Chapter 6, we will also work with the following Block circulant extension
preconditioner which was proposed by Vogel in [112], p. 88, and goes back to
an idea by Hanke and Nagy [66]. The preconditioner is simply the inverse of
the BCCB extension matrix C*** given by its identifier (3.11). We also give
the algorithm for the Block circulant extension preconditioner, but remark
that — except for a pretty evident change in step (4) — it is actually identical
to Algorithm 7:

Algorithm 8 (Block circulant extension preconditioner)

Let T € CMNXMN be o BTTB matriz, r € CMN q vector and P € CMN*MN
be the block circulant extension preconditioner. We can compute P~ 'r = z
with O(nlogn) costs by the following algorithm:

(1) Set up the ¢t € C*N*2M qccording to (3.11)

(2) Extend r via (3.12), i.e. compute r°** = zeros(2 x N,2x M) and set

r*(1: N,1: M) = reshape(r, N, M)
(3) Compute ¢ = fit2(c®*) and 7" = fit2(r**)
(4) Compute the componentwise matriz product 2°** = (1./¢°*"). x pevt
(5) Compute 2" = ifft2(z°**)
(6) Extract the first N x M subblock
z=2Y1:N,1: M)

and, finally, set z = reshape(z,1, MN).

53

Chapter 4

Multigrid algorithms with
natural coarse grid operators
for Toeplitz systems

In this chapter we discuss multigrid algorithms for Toeplitz matrices gener-
ated by nonnegative functions with a finite number of zeros of finite order.
We start with a motivating heuristics pointing out how prolongation and
restriction operators can be interpreted as projected Toeplitz matrices and
present some introductory reasoning on how the positions of the zeros affect a
multigrid algorithm. Then we briefly summarize existing results on multigrid
algorithms for Toeplitz matrices by Serra [47], [48] and R.Chan and collabo-
rators [104], [25]. All previous approaches have been using a Galerkin coarse
grid operator and, in general, this will result in a loss of Toeplitz structure
on the coarse levels.

To overcome this problem we propose to employ natural coarse grid opera-
tors, i.e. our coarse grid representation is simply a Toeplitz matrix of half size
belonging to the original function. We first point out how this idea can be
applied in the case of a single zero xy €] — 7, 7]; then we carry over our new
approach to a finite number of equidistant zeros in | — 7, 7]. Our numerical
tests confirm that we have developed optimal order algorithms.

Natural coarse grid operators also work very well for BTTB systems with
a single zero zy €| — 7, 7]? in that case the advantages of using a natural
coarse grid operator are even more striking. The chapter ends with a new
phenomenological characterization of well-known difficulties encountered in
multigrid for indefinite BTTB matrices.

54

Numerical experiments showing the efficiency of our new algorithms play a
major role within our presentation: In the whole chapter we always employ
the following stopping criterion to obtain the iteration counts we list in our
tables:)

[

17O o0

Here 7U) denotes the residual after j iterations and r(® the original residual,
i.e. we stop iterating when the relative residual corresponding to the maxi-
mum norm is less or equal 1075,

Parts of this chapter have already been published in the article [73]. How-
ever, this is also the place to acknowledge that some of the results from [73]
are taken from an unpublished preprint (having the same title as as [73])
from March 1999 authored by T. Huckle alone. In particular, most of the
ideas presented in the introductory section 4.1 can already be found in that
preprint and subsection 4.5.2 on indefinite BTTB matrices has been taken
over from there virtually unchanged. In other words: Original contributions
of this chapter are the multigrid algorithms with natural coarse grid oper-
ators for Toeplitz and BTTB matrices generated by nonnegative functions,
i.e. sections 4.3 and 4.4 and subsection 4.5.1.

4.1 Introduction

4.1.1 Our basic heuristics

Let A, = T,(f) € C™™™ be a Toeplitz matrix generated by the function f.
How can we ”translate” a multigrid cycle into terms of functions?
Let us take a look at the restriction R and the prolongation P: If we use a
Galerkin approach (2.27) with R = PT to set up the coarse grid operator
then we can write the coarse grid matrix for a twogrid step as

Apjpp = IT,n/2 * BZ’ * Ap x By x Iy o = PnT x A, x P,

n

%)

with a Toeplitz matrix B, related to a function b(z), and the elementary
projection matrix

1
0 0
0 1 0
Ly = 0 0 =I(1:n,1:2:n)
0 1

in MATLAB-notation with the identity matrix I. Here we will mainly con-
sider only symmetric B,, with real-valued generating function b(z).

As a starting point for this chapter let us introduce the following heuristics:
With

f(z) =b(x) = f(x) = b(x)
the entries of the matrix
BT{’ x A, * B,

are ”asymptotically given” by the coefficients of f(z); therefore the coeffi-
cients of A/, can — up to a perturbation of low rank — be found by deleting
every second entry in f(x):

T T

fal@) = (1/2) (B(5)F(

Let us assume that f(x) has a unique zero z of finite order 2k in the interval
] = m,m]. Now the new matrix A,, should be closely related to the original
A,. Hence the related function f5(x) should have a zero with the same
multiplicity as f(x).

In view of f(x) > 0 this is only possible if b(xg + 7) = 0. Therefore, we
can easily motivate to use a prolongation operator of the form

)+b2(g+7r)f(;+7r)) (4.1)

b(z) = (cos(wg) + cos(z))" . (4.2)

Remark 5 Note that in general a suitable prolongation operator b(x) may
have an additional zero b(xy) = 0 without generating an additional zero in
fo(z) as long as b(xy +) f(xy + 7) # 0. More generally we could even use
prolongation operators of the form b(x) * h(x) with any nonnegative function
h; but in most cases we are strongly interested in retaining sparsity by setting

h(z) = 1.

56

4.1.2 Very important sparse cases

Let us study some immediate consequences of equation (4.2):

Remark 6 (Prolongations for the case f(z) =1 F cos(m x x))

Let A, = T,(f) be a Toeplitz generated by f(x) = 1 — cos(m x x) with m
integer. Then (4.2) tells us that b(z) = 1+ cos(m *) is an appropriate
prolongation operator. Vice versa, for the nonnegative matrices generated by
f(z) =1+ cos(m * x), a suitable prolongation in the sense of (4.2) is given
by b(x) =1 — cos(m = x). In both cases we obtain fo(x) =1 — cos(m x x).

Proof: Choose f(z) =1 — cos(m * x), apply (4.2) and then there holds

) +

* T m*xx

fo(z) = (1+ Cos(m))? * (1 — cos(

>|<ac+7r))>1<(1—(:os(m*x

+(1 + cos(+ 1)) =

* T m*x T

= (1+Cos(m))2*(1—cos(m - x))+(1—cos(m - x))2*(1+cos(

) =

*

=24 (1 — (cos(Z22))?) =1 — cos(m *) .

In the case f(x) =1+ cos(m * x) a completely analagous calculation shows
that again fo(z) =1 — cos(m * x).

Finally, let us emphasize on the consequences of Remark 6 in the case m = 1:
For f(z) = 1 — cos(x) this is nothing but the Toeplitz interpretation of
standard prolongation and restriction. In the case f(z) = 1 + cos(z) we
are dealing with an ill-conditioned matrix without negative entries: Usually
multigrid approaches tend to run into trouble in such cases — and even the
celebrated and very general AMG algorithm by Ruge and Stiiben [92] will fail,
because it can not find any ”"negative connections”. However, the Toeplitz
interpretation tells us how we can trace this problem back the 1D Laplacian
on the level with 5 unknowns by applying suitable transfer operators on the
finest level.

4.1.3 The position of the zero

In this and the following two subsections we will assume that our Toeplitz ma-
trix A,, is connected with a generating function f in the Wiener class having
a single zero xy € [0, 7] of finite order. Although we are actually interested

57

in dense Toeplitz matrices the following ideas are most easily explained by
considering sparse linear systems.

Example 3 Our standard example in the following subsections will be the
sparse matriz belonging to the generating function

f(z) = (cos(zg) — cos(x))? (4.3)
with xy € [—m, 7\{£5}. Thus f has the two zeros £ux.
The matrices from Example 3 are strongly related to the indefinite matrices
corresponding to f(x) = cos(xy) — cos(z) which can be seen as the result of
a uniform finite difference discretization of the 1D Helmholtz equation
Uge + Kiu = g
Note that the matrices from Example 3 will in general differ from the

Helmholtz normal equations by a perturbation of low rank.

Let us consider Toeplitz matrices A,, generated by (4.3): According to (4.2)

we use a function with zeros at +xy + m as prolongation operator, namely
(cos(xg) + cos(x))* . The corresponding prolongation matrices B, are:
tridiag(0.5, cos(zg),0.5),

pentadiag(0.25, cos(zg), cos(zg)? + 1/2, cos(zg), 0.25),

septadiag(s, 3 cos(wg), 3 cos(zo)?+32, cos(zo)*+3 cos(zo), 2 cos(zo)?+2, 2 cos(zo),),

and so on. The Galerkin coarse grid matrix matrix A, , of half size is — up
to a low rank term — related to the function

fa(x) = (1/2) ((Cos(xo) + Cos(g))zk(cos(xg) — Cos(g))2+
+ (cos(zg) — cos(g))%(cos(xo) + Cos(g))z) =
(cos(zg)? —COS(%)Q)Q* ((cos(xg) —i—cos(%))%_z—i- (cos(zp) —cos(g))zk_Q) /2=

(cos(2zg) — cos(z))? * ((cos(xo) + Cos(g))zk_2 + (cos(xg) — cos(;))%_Q) /8.

That way our heuristics points out that fs(z) has the zeros +2x4 with the
same multiplicity as f(x). The new function f>(z) can be seen as a slightly
changed version of the original f with the new zeros +2x,. We observe that
the case xy = 0 is exceptional because 2xy = x¢y = 0 and we can use the same
prolongation and restriction operators in every step.

58

Remark 7 In general, this change of the zeros +xy, +2x9, t4xy, and so
on, can lead to difficulties if in the course of the Multigrid method we reach
a zero near (25 + 1)w/2; then xq and xo + 7 are both zeros of f, and fy will
have 2xq as a zero of higher multiplicity than f(x); then our reasoning shows
that the above approach will lead to a deterioration of the condition number
of the related linear system.

We would now like to confirm Remark 7 in numerical experiments. Therefore
we employ a very simple BPX-type preconditioner: However, we do not invert
the matrix on the coarsest level like in (2.34), but employ only a Richardson
solve there instead, i.e. our preconditioner is

I+P(I+PI+ - (I+PPh--)PP (4.4)

with the matrices Py, ..., P, denoting the prolongation operators on the in-
dividual levels. The following tables compare iteration numbers for this pre-
conditioner employed inside the CG method.

| number of unknowns [e=0.2 [e=10.15 | e =0.1 [e =0.01 | ¢ = 0.001 |

256 60 88 133 159 166
512 83 111 200 246 265

Table 4.1. CG Iteration numbers for additive preconditioners:
f(z) = (cos(dp) — cos(z))?, b(z) = (cos(¢po) + cos(z))? and ¢y = 7/4 + €.

‘ number of unknowns H €e=0.2 ‘ e =0.15 ‘ e=0.1 ‘ e =0.01 ‘ e = 0.001

256 158 187 213 221 232
512 294 350 396 416 422

Table 4.2. CG Iteration number for additive preconditioners:
f(z) = (cos(dy) — cos(z))?, b(z) = (cos(pp) + cos(z))? with ¢g = 7/2 + €.

4.1.4 Projections onto every m-th column — the first
idea for a resort

In order to avoid the problem outlined in Remark 7 we could e.g. introduce
elementary projections onto every third, fourth, or general m-th column/row

99

of A,. Instead of reducing A, to half size we use A,,/,,,. To this aim we apply
elementary projections I, ,/,. Making use of our heuristics (4.1) once again
this is related to picking every m-th entry out of f(z) = b(x)?f(x). Then we
get

m—1

1 5 +2j7r 0, T+ 2ym x4+ 25T
m - b)
fon m;;f Z (=)

which is again a 27-periodic function. If f has a zero xy we have to generate
a zero with the same multiplicity in f,,. This can be achieved by defining

g 27\ ¥
(H cos(zg) — cos(x — —))
J=1 mn

Then the function f,,, will have a zero at mxy with the desired multiplicity.
Therefore, by choosing m in every step of the multigrid method we could at
least avoid the exceptional case xy & (25 + 1)7/2.

However, it has long been known that multigrid algorithms usually work best
if the restriction yields a reduction to every second column. This has been
confirmed in all our numerical experiments which have been leading us to the
conclusion that the new algorithmic idea outlined in this subsection is not
very recommendable for use in practice. In the following table we simply com-
pare iteration counts for additive preconditioners for A = tridiag(—1,2, —1).

| number of unknowns | 128 [256 | 512 | 1024 | 2048 [4096 |

reduction 1:2 per step; 5 levels used || 18 | 18 | 19 20 21 21
reduction 1:4 per step; 3 levels used || 37 | 40 | 41 41 41 41

Table 4.3. CG Iteration numbers for additive preconditioners of the form
(4.4): We clearly observe that a reduction to every second column is superior
to a reduction to every fourth column.

4.1.5 Diagonal scaling — the better resort
Regarding the fact that

(cos(zg) — cos(x))? = (1 — cos(z — x9)) * (1 — cos(z + x)) (4.5)

60

there is a much simpler strategy to solve the problems from Example 3.
The product form (4.5) allows us to devise a simple and effective precondi-
tioner: We solve the two matrix problems related to 1 — cos(z 4 xg) (e.g. by
multigrid) and use the result to precondition conjugate gradients. Note that
the matrices related to 1 — cos(z 4 xy) can be treated very efficiently by
multigrid, because they are nothing else than diagonally scaled versions of
tridiag(—0.5,1,—0.5) — i.e. the one-dimensional Laplacian from Example 1:
With the two (orthogonal) diagonal matrices

Q1 = diag(1,e™ ™), Qs = diag(1,e "™ e 2™) (4.6)
we can write
Q1 * tridiag(—0.5,1,—0.5) * Qy = tridiag(—0.5¢", 1, —0.5e¢7). (4.7)

It is plain that the diagonal scaling strategy (4.7) can be applied to any
Toeplitz matrix in order to shift the generating function along the z-axis.
Furthermore, in the case that we have only got a single zero zy €] — 7, 7],
we see that the whole multigrid algorithm is simplified by shifting z(to the
origin: Then we can use the same kind of transfer operators in every step —
i.e. standard prolongations and restrictions according to b(x) = (1+-cos(z))F.
This fact will be of major importance when we introduce our new multigrid
algorithms with natural coarse grid operators in section 4.3.

4.2 Existing results on multigrid for Toeplitz
systems

4.2.1 Suitable smoothers

Obviously, it would not make sense to employ Gauss-Seidel as a smoother in
a multigrid algorithm for Toeplitz systems unless the matrices were sparse.
Hence we will use this chance to study the smoothing property of the Jacobi
method in more detail. The following theorem proves that Jacobi with an
appropriate damping parameter satisfies the algebraic smoothing property
(2.17) introduced in subsection 2.4.1; our presentation is according to the
seminal paper by Ruge and Stiiben [92], pp. 84:

61

Theorem 5 (Algebraic smoothing property of damped Jacobi)
Let A € R™"™ be a symmetric positive definite matriz and

n = p(diag(A)~" A).

Let the norms || - ||a and || - ||pa be defined as in (2.35) and (2.37), respec-
tively, and G = I — wdiag(A)~"'A denote the iteration matriz of the damped
Jacobi method.

Then Jacobi relazation with damping parameter w €0, %[satisfies the alge-

braic smoothing property (2.17)
IGell% < llells — allellpa

with o < w(2 — wn) for all e € R™. Furthermore, the choice w* = 1/n gives
the optimal damping parameter (in the sense of leading to the smallest o).

Proof. First, let us abbreviate: D = diag(A). Now a simple calculation
shows that

2
1Gella = [lelli — (=D — A)wD™" Ae,wD™" Ae),
w
i.e. we only need to prove that
2
alle]|pa = a({D7 " Ae, Ae) < (=D — A)wD ™' Ae,wD ™" Ae),
w

which in turn can be written as

(Ae,e) < (2 —) (De, e) (4.8)

w w?
As it is well-known that for s.p.d. matrices B; and By there holds
(Bre,e) < c(Bae,e) & p(By'B;) <c
we can follow from (4.8) that

2 «
=p(D7'A) <= - —
n=p()< -

or expressed in terms of «

a<w(2—wn)

62

The right hand side is positive for 0 < w < 2/n and takes its minimum for
w = 1/n — and hence we have proved Theorem 5.

From Theorem 2 (ii) we know that the spectrum of a Toeplitz matrix A,
generated by a continuous function f lies in the range of f — and hence the
above Theorem 5 is very helpful in finding appropriate damping parameters
for the Jacobi method: Obviously,

Ao 2(10

wyp = and wy =
' maxge[—m,n] f(e) ? maxge[—n,n] f(e)

(4.9)

give sensible damping parameters for presmoothing and postsmooting, re-
spectively. (Note that ay stands for main diagonal entry of A,,.)

In all the following numerical experiments in this chapter we employ two
steps of the Jacobi method for pre- and postsmoothing in our multigrid cy-
cles. The smoothing parameters will be the values from (4.9), i.e. we use w;
for pre- and wy for postsmoothing.

Finally, note that for Toeplitz matrices there is no actual distinction be-
tween Jacobi and Richardson iterations. To be more precise: A damped
Jacobi method with damping parameter w applied to a Toeplitz system can
be interpreted as a damped Richardson iteration with parameter © = w/ay
for this system. This means that as long as our systems are Toeplitz, we can
also see the smoothers we use as damped Richardson methods with the pre-
and postsmoothing parameters w; = w;/ag and @y = wy/ayg, respectively.

4.2.2 The work of R. Chan and collaborators

R. Chan and his former Ph.D. students H. Sun and Q. Chang were among
the first researchers who studied multigrid methods for Toeplitz matrices in
[25] and [104]. Our research is based on their results and as our approach to
the subject is relatively close to theirs, we would very briefly like to summa-
rize the results of their paper [25]:

First, the paper deals with twogrid methods: They are investigating on con-
ditions under which Theorem 1 is satisfied — and hence their reasoning is

based entirely on Galerkin coarsening. They prove the following theorem
(see [25], Th. 4):

63

Theorem 6 (Twogrid for Toeplitz with Galerkin coarsening)
Let A € R"™™ be a Toeplitz matriz generated by an even function f that

satisfies
f(0)

eer[rilil,w] 1 + cos(10)
for some integer l. If a; < 0 we choose the prolongation operator according
to b(x) = 1+ cos(lx). If a; > 0 we use the prolongation operator according
to b(z) =1 — cos(lx), instead.
Then the condition (2.38) from Theorem 1 on twogrid convergence with Galerkin
coarse grid operators is satisfied, i.e. there exists § > 0 such that

>0 (4.10)

min |le" — Pe (|3 < Blle"%4 for all e" € R™,
el cR"H
If the smoother satisfies the algebraic smoothing condition (2.17), then the
convergence factor of the twogrid method is uniformly bounded below 1 inde-
pendent of the matriz size.

The proof of Theorem 6 in [25] consists of two separate steps: First, it is
established that (2.38) holds for weakly diagonally dominant Toeplitz ma-
trices. Then it is pointed out that (2.38) carries over to problems satisfying
(4.10) via arguments from Theorem 2 on the spectrum of Toeplitz matrices.
Note that Theorem 6 also proves formally that for Toeplitz problems gener-
ated by f(x) = 1+cos(mx*x) the transfer operators suggested in Remark 6 are
indeed appropriate and lead to a convergent twogrid algorithms. However,
this is certainly not surprising since we can interpret any matrix generated
by f(z) =1 — cos(m *) as a discretization of the 1D Laplacian.
Furthermore, under the conditions of Theorem 6 the paper [25] also proves
convergence for V-cycle solvers. However, in general this result is level-
dependent. In case the generating function f(z) satisfies

c2(1 +cos(lz)) > f(x) > ¢ (1 £ cos(lx))

for some integer [and positive constants ¢; and ¢y, then it can even be proved
that the convergence factor of the V-cycle solver is also uniformly bounded
below 1 independent of the matrix size. (Note that proofs for V-cycles always
imply that the results also hold for W-cycles.)

In their numerical experiments R. Chan, Q. Chang and H. Sun choose Ja-
cobi smoothing — and it was them who suggested the value of the damping
parameters for pre- and postsmoothing we introduced in (4.9).

64

Finally, we would like to emphasize that due to (4.10) this theory only in-
cludes nonnegative generating functions with zeros of orders less or equal
2.

4.2.3 The work of Serra

Multigrid methods for Toeplitz systems were first proposed by Fiorentino
and Serra in the two papers [47] and [48]. In [49] they try to extend their
work to indefinite symmetric Toeplitz systems via an additive algorithm. In
all their papers, the main focus lies on Toeplitz systems with a generating
function in the Wiener class having a single zero zy €| — 7, 7] of finite order.
Fiorentino and Serra use prolongations and restrictions corresponding to the
function (4.2) and they always employ Galerkin coarse grid operators and
Richardson smoothers in their algorithms.

Serra still remains a very active researcher in this field: Very recently, he
also gave a detailled proof of convergence for twogrid solvers based on the
sole assumption that the generating function f has a single zero x, of finite
order at the origin in [99]. To be more precise: He refines Theorem 6 for the
case [= 1 in the sense that the zero single zyp = 0 may have order higher
than 2 and that he allows higher order transfer operators (see [99], Lemma
5.2). Again, the proof is based on Theorem 1, i.e. Serra works on the basis
of Ruge’s and Stiiben’s results [92] and establishes convergence showing that
(2.38) is satisfied.

The work of Serra and Fiorentino is driven by pointing out close relations
between Toeplitz matrices and matrices from trigonometric algebras: In par-
ticular, they also give multigrid convergence proofs for 7-matrices, i.e. the
algebra of matrices that can be diagonalized by the fast sine transform. For
T-matrices Galerkin coarsening is rather convenient, because it can be shown
that under certain conditions the coarse grid representation will again be a
T-matrix (see [47], [48] for details). Very recently, Serra and Tablino also
presented multigrid approaches for circulant matrices in [100] and [101].

65

4.3 Generating functions with a single zero
in | — 7, 7

In this section we shall assume that our Toeplitz matrices are related to a
nonnegative generating function with a unique zero z, €] — 7, n]. (Note
that this does neither include the matrices from Example 3 nor the sparse
matrices from Remark 6 in the case m > 1.)

4.3.1 Natural coarse grid operator

In subsection 4.1.5 we have presented a number of arguments for scaling the
Toeplitz system A,, with the (orthogonal) diagonal matrices given by (4.6)
before treating it by multigrid, i.e. using

Q1 = diag(1, e, >,), Q2 = diag(1, e, %0)
we scale the original matrix A, such that
Alpeated) = Qy x A+ Q4 (4.11)

has a single isolated zero at the origin. In particular, we are then enabled
to use standard transfer operators corresponding to b(z) = (1 — cos(z))* in
every step.

However, we have not yet presented a way to handle the problem that our
Galerkin coarse grid operators lose their Toeplitz structure. R. Chan and
collaborators already pointed out in [25] that whenever standard linear in-
terpolation corresponding to b(x) = 1+ cos(x) is appropriate (i.e. in the case
[=1 in Theorem 6) then we can only be sure to preserve Toeplitz structure
on all the coarse levels if the size n of the matrix is of the form n =27 —1
with ¢ integer. Otherwise perturbations of low rank can be introduced. But
note that this loss of Toeplitz structure may cause severe difficulties when
we go down to lower levels.

There is a very simple resort: First scale the matrix according to (4.11)
— and then employ a natural coarse grid operator! Anyway, let us
start from scratch: Considering the one-dimensional Laplace problem from
Example 1 with the system matrices

A, = (1/n?) * tridiag(—1,2, —1)

66

we have already mentioned in 2.4.3 and 2.6 that natural coarse grid operators
work out perfectly and convergence proofs have been established since the
late seventies.
Now let us switch over to general Toeplitz matrices belonging to a generating
function f that satisfies (4.10) in Theorem 6 with [= 1 and has a single zero
at the origin, i.e.

min /()

———>0 4.12
ve[-m,x] 1 — cos(0) (4.12)

We have pointed out in the last section that the convergence proofs for
twogrid algorithms with Galerkin operators for Toeplitz systems are all based
on showing that condition (2.38) is satisfied, i.e. that

min |[|e” — Pe |2, < Ble"|A holds for all " € R™;
eH cR"H

and again this is done by tracing these matrices back to the sparse matrices
from Remark 6. However, the Galerkin operator itself is not needed in estab-
lishing (2.38), it only comes in via Theorem 1 taken from Ruge’s and Stiiben’s
theory [92]. Furthermore, we know from Theorem 2 that a Toeplitz matrix
generated by a function with a single zero of order 2, like e.g. f(z) = 22, will
have almost the same spectral properties as the 1D Laplacian (2.1).
These observations strongly motivate the idea simply to mimic a multigrid
algorithm with a natural coarse grid operator for general Toeplitz matrices
satisfying (4.12), i.e. just like we would do it for the Laplacian our coarse
level matrix is nothing but an appropriately scaled Toeplitz matrix of half
size n/2 corresponding to the same generating function f(x).
When we program such a multigrid algorithm with a natural coarse grid op-
erator, it is crucial to be aware of Remark 3 on the correct scaling of the
defects: Note that the scaling factor fac in equation (2.28), i.e.

Ak_le,(ﬁ = fac 7",(21,

needs to reflect the order [of the zero of the function f, i.e. fac = 2!. (In
particular, as there is no physical grid connected with a Toeplitz matrix
generated by a function like e.g. f(x) = 2%, we will most certainly prefer to
have that factor on the right hand side of our coarse grid equation.) In other
words: Our multigrid algorithms need to take into account very carefully the
orders of the zeros of the generating functions involved.

Finally, we wish to emphasize once again that our idea of using a natural

67

coarse grid operator crucially depends on the fact that our single zero xy €
| — m, 7] is indeed shifted to the origin for otherwise (4.12) could not be
satisfied. (Furthermore, it is plain from Remark 6 that a natural coarse grid
operator could never be appropriate in case of a single isolated zero of finite
order at zg = 7.)

4.3.2 Numerical results for zeros of order at most two

In order to show the computational feasibility of our approach to employ
natural coarse grid operators within multigrid algorithms for Toeplitz ma-
trices we shall present plenty of numerical experiments: We will deliberately
choose the matrix sizes in our numerical experiments to be of the forms
n =2%or n =27+ 1 in most cases; for these matrix sizes Toeplitz structure
would get lost on the coarse levels if Galerkin coarsening were used. We have
programmed W-cycle algorithms which we will use both as solvers and as
preconditoners, abbreviated by " MG-Solver” and ”MG-Prec.” in our tables.
As we already said in section 2.1, we always use two steps of damped Jacobi
for pre- and postsmoothing employing the damping parameters from (4.9).
We will only give numerical results for dense Toeplitz matrices as preserving
Toeplitz structure on coarser levels is only an issue in this case. Our W-cycle
algorithms will be compared to unpreconditioned CG, circulant precondi-
tioned CG using the T. Chan preconditioner [28] introduced in subsection
3.2.3 and — whenever there are only zeros of even order — to the banded pre-
conditioners introduced in Theorem 4. The abbreviations in our tables will
be 7CG”, ”CIRCULANT” and "BANDED?”, respectively.

Example 4 (Generating functions with zeros of order at most 2)
We will study dense Toeplitz matrices with a single zero of order at most two
at the origin generated by the following functions:

(a) fi(x) = x?* with the Fourier expansion

2 0 1\j
R =T+ S

J=1

(b) fa(x) = (x/4) * sin(x/2) with the Fourier expansion

cos(j * x)

1 2 & 1) % (4% 52 +1) .
Fle) 7*%*212*]—1 ETTESIE A

68

(c) f3(x) = |x| with the Fourier expansion

4

— — %

wm
:}
Mg

falw) 2*1_1 ~cos((2%j — 1))

(d) fi(x) = |sin(z/2)| with the Fourier expansion

4 o0
_*; 2% —1)= 2*j+1)cos(‘7*x)

:nw

fa(@)

>q

According to our theory the prolongation operator to be used for multigrid
treatment of all the matrices from Example 4 is standard linear interpolation
corresponding to b(x) = 1 + cos(x).

Let us first take a look at fi(z) = x2. Here we have a single zero of order 2;
hence like in the case of the Laplacian we have to use fac = 4 in (2.28) in
our multigrid algorithms with natural coarse grid representations:

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘ BANDED ‘

1024 12 1723 39 9
2048 12 > 2000 52 9
4096 12 > 2000 61 9
8192 12 > 2000 72 9
16384 12 > 2000 92 9
32768 12 > 2000 118 9

Table 4.4. Tteration numbers for generating function f,(z) = z°.

For fo(x) = (z/4) * sin(z/2) we have again a zero of order 2 and we can
expect pretty much the same behaviour as for fi(x).

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘ BANDED ‘

256 11 183 22 7
512 11 360 27 7
1024 12 773 37 7
2048 12 1406 49 7
4096 12 > 2000 99 7
8192 12 > 2000 68 7

Table 4.5. Iteration numbers for generating function f(x) = (x/4)*sin(z/2).
69

In the case f3(x) = || the zero is no longer of even order and hence the
banded preconditioners from [18] and [21] are no longer available. As f; has
a discontinuous derivative at the origin, we are thinking of it as a zero of
order 1 and use fac = 2 to scale the defects in (2.28):

‘ number of unknowns H MG-Solver ‘ MG-Prec. H CG ‘ CIRCULANT ‘

2049 5 3 162 10
4097 5 Y 227 11
8193 5 3 317 11
16385 Y 5 444 13
32769 Y 5 620 13
65537 Y 5 867 13

Table 4.6. Iteration numbers for generating function f3(z) = |z|.

For f,(x) = |sin(x/2)| the situation is the same as for f3(x):

‘ number of unknowns H MG-Solver ‘ MG-Prec. H CG ‘ CIRCULANT ‘

2049 5 7 131 10
4097 7 184 11
8193 Y 7 258 11
16385 Y 7 360 12
32769 Y 7 503 13

Table 4.7. Iteration numbers for generating function fy(x) = |sin(z/2)|.

Tables 4.4 to 4.7 show very clearly that our new multigrid algorithms lead
to fast convergence with iteration counts independent of the number of un-
knowns involved. Hence they give very efficient solvers of optimal compu-
tational complexity O(nlogn). Furthermore, our multigrid method has no
problem at all with the fact that f3(x) = |z| and f4(z) = |sin(x/2)| are not
differentiable at the origin: On the contrary, the fact that the order of the
zero is lower than 2 leads to even faster convergence. We also observe that
our W-cycle solvers perform so efficiently that there is no point in employing
the W-cycles as preconditioners for CG.

For the T. Chan circulant preconditioner [28] we observe that the iteration
numbers grow the faster the higher the order of the zero. Furthermore, the

70

rapidly rising iteration counts for unpreconditioned CG underline that the
matrices we studied are very ill-conditioned. Finally, it is not surprising that
the banded Toeplitz preconditioners from [18], [21] do an excellent job for
zeros of even order.

4.3.3 Numerical results for zeros of higher order

Example 5 (Generating functions with zeros of higher order)

We will study generating functions for dense Toeplitz matrices with a single
zero of order higher than 2 at the origin generated by the following functions:
(a) fs(x) = z* with the Fourier expansion

f5(x) :% + ;((2*;18_ G *E;W_ 1)2)cos((2*j—1)*x)+
+ 2(2—7;2 — %)COS(Q * J % T)

1

<.
Il

(b) fe(x) = |z|*> with the Fourier expansion

w3 Ry

fe) ==+ g*jz(@*f_ T e) s((2 e~) ¢

+ Z 2*]) cos(2 % j * x)

j=1

Now looking at (4.2) we expect to use a higher order prolongation operator
corresponding to b(x) = (1+ cos(z))? — this will be abbreviated by ”(P2)” in
the following tables. Anyway, it will most certainly be very interesting try
standard linear interpolation corresponding to b(z) = 1+4cos(z) (abbreviated
by ”(P1)” in our tables) as well:

Let us first take a look at f5(x) = z*. We are dealing with a zero of fourth
order and we need to use fac = 16 in (2.28) to scale the defects:

71

number of unknowns || MG-Solver | MG-Solver || CIRCULANT | BANDED
(P1) (P2)

511 29 33 108 15
1023 29 33 137 15
2047 29 33 240 15
4095 29 33 520 15
8191 29 33 905 15
16383 29 33 1632 15
32767 29 33 > 2000 15
65535 29 33 > 2000 15

Table 4.8. Tteration numbers for generating function f5(x)

= .1'4.

The third derivate of the function fg(x) = |z|* is discontinuous at the origin
— and hence we treat it as a zero of order 3 and use fac =8 in (2.28):

number of unknowns || MG-Solver | MG-Solver | MG-Prec. | MG-Prec.
(P1) (P2) (P1) (P2)
2047 14 19 13 11
4095 14 19 13 11
8191 14 19 13 11
16383 14 19 13 11
32767 14 19 13 11
65535 14 19 13 11

Table 4.9. Tteration numbers for generating function fs(z) = |z[>.

We observe that in practice it is sufficient to use standard linear interpolation

for prolongation and restriction.

Surprisingly, if we use our W-cycles as

stand-alone solvers then in both cases iteration counts are even smaller if we
use the transfer operators corresponding to b(x) = 1 + cos(z). Anyway, this
confirms the well known advice of multigrid practitioners that higher order
interpolations might frequently not pay off.

72

4.3.4 Summary

In this section we have been presenting a new efficient way to solve Toeplitz
systems corresponding to an underlying function having a single zero xy €
| —m, 7] of finite order: One first scales the matrix with the diagonal matrices
(4.6) according to (4.11) in order to shift the zero to the origin and then solves
the scaled system by a multigrid algorithm employing a natural coarse grid
operator.

4.4 Generating functions with equidistant ze-
ros of finite order

4.4.1 Equidistant zeros

The case when the generating function has more than one zero of finite order
is certainly much more complicated.

However, we have already addressed a fairly simple example in Remark 6: For
generating functions of the form f(x) = 1Fcos(mx*zx), m integer, appropriate
prolongation operators are given by b(z) = 1 4 cos(m * z).

As we learn from Theorem 6 the prolongation operators b(x) = 1+ cos(mx*x)
are applicable in case the generating function of our Toeplitz matrix has m
equidistant zeros of order at most 2 in the interval [0, 27] one of which needs
to be at the origin, i.e. the generating function has the zeros xy = 0,2, =
2 _ 2%x(m—1)xm

ey T 1 = —

Now we can again apply our reasoning from the previous section: In case
none of our m equidistant zeros of order at most 2 is at the origin, we
first scale the matrix according to (4.11). Then we observe that f(x) =
1—cos(m=x) can be again interpreted as a discretization of the 1D Laplacian
—and hence multigrid algorithms with natural coarse grid operators will work
very well. Like in the previous section we can try to mimic such multigrid
algorithms with natural coarse grid operators for Toeplitz matrices generated
by functions f which satisfy (4.10) and have a zero at the origin, i.e. there
needs to hold

i f(0)

oe[-m,x] 1 — cos(m * 0)

> 0 (4.13)

Thus we shall try to use multigrid algorithms with natural coarse grid op-
erators and the prolongations b(x) = 1 + cos(m * x) for functions satisfying

73

relation (4.13).

4.4.2 A block interpretation

At this place we would like to report an interesting observation: Let us
again take a look at the matrix connected with f(z) = 1—cos(m=x) and the
corresponding transfer operators b(z) = 14 cos(m#*x). Now we can interpret
this also in terms of matrix valued functions:

f(z) = I, — cos(Ip, x x) = L, * (1 — cos(x))
is treated by prolongations of the form
b(x) = Iy, + cos(Ly, *) = I, x (1 4 cos(z))

with I, denoting the m-by-m identity matrix. Thus we can view this case as
standard multigrid applied to Block Toeplitz matrices with m-by-m blocks.
By inserting block matrices different from the identity we can carry over this
idea to general Block Toeplitz matrices (i.e. also without Toeplitz blocks).
This will be subject to future research.

However, note that the strategy outlined in subsection 4.4.1 also applies to
cases like e.g. Toeplitz matrices belonging to f(x) = x x sin(x) which are not
covered by the above block interpretation (see Example 6 (c¢) in subsection
4.4.4 for the Fourier expansion). As f(x) = z « sin(z) has the two zeros
xo = 0 and z; = m we can interpret the appropriate prolongation

b() = (1 — cos(x —) * (1 — cos(x — 71)) = % (1= cos(24a)) (4.14)

analogously to (4.2) as the product of the two prolongations corresponding
to xyp and ;. This interpretation has previously been given by Serra in [99],
although he has not published any numerical experiments to confirm it.

4.4.3 Algorithmic issues

Before presenting any results of our multigrid algorithms we would like to
state clearly how the transfer operators connected to b(x) = 1 + cos(m * x)
need to be implemented. As first described by R. Chan, Q. Chang and H. Sun

74

in [25] the prolongation operator belonging to b(z) = 1+ cos(m x z) needs to
match our block interpretation and have the following structure

051,
y
050, 0.5,
P, — L (4.15)
051, 051,
y
0.51,,

Of course, the restriction is simply R,, = P’. Below, we are also giving a
sample MATLAB implementation of the prolongation operator P, applicable
in the case that the number of unknowns is of the form n = 2%:

%» n is the number of unknowns: It needs to be a multiple of 4
%» P is the prolongation operator

yA

vec = ones(n,1);

T = spdiags([0.5%vec O*vec vec O*xvec 0.5%vec], -2:2, n, n);

yA

for index=1:(n/4)

P(:,2*¥index-1)= T(:,4*index-1);

P(:,2*index)= T(:,4*index);

end;

h

4.4.4 Numerical results

In the following we will test our multigrid algorithms employing natural
coarse grid operators for problems with equidistant zeros in [0, 27].

Example 6 (Generating functions with zeros 0 and 7)

We will study generating functions for dense Toeplitz matrices with the two
zeros xg = 0 and x1 = 7 of orders at most 2 generated by the following
functions:

(a) f+(x) = 22 % (x — 7)? (- defined on [0,7]| and then evenly extended to

75

[—7, 0[] —) with the Fourier expansion

4 o0

6 .
fz(z) = 30 —;W*COS(Q*] *)
(b) fs(x) = |sin(x)| with the Fourier expansion

o > 1
Z TTENP (2]+1)*cos(% J % 1)

fe(z) =

=1|w
:}

J=1

(¢) fo(x) = x *sin(x) with the Fourier expansion

o0

1 1'
—1——Cos —2* *cos(] *xx
fo(@) Z]_l*]H) (j)

7j=2

fr(x) = 2%+ (x—m)? has two isolated zeros of order 2. Hence we expect to treat
it like f(z) =1 — cos(2 * z) and we use fac =4 in (2.28) for scaling the de-
fects. Furthermore, note that the matrices generated by f(z) = 1—cos(2xx)
are available as band Toeplitz preconditioners in this case:

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘ BANDED ‘

513 11 303 25 7
1025 12 624 31 7
2049 12 1238 41 7
4097 12 > 2000 41 7
8193 12 > 2000 %) 7
16385 12 > 2000 63 7

Table 4.10. Iteration numbers for generating function f;(z) = z? * (z —)%

76

fs(z) = |sin(z)| has discontinuous derivatives at both 2o = 0 and x; = 7.
Like for fy(x) from Example 4 we use fac =2 in (2.28):

‘ number of unknowns H MG-Solver ‘ MG-Prec. H CG ‘ CIRCULANT ‘

2049 Y 6 119 13
4097 Y 6 166 13
8193 Y 6 216 13
16385 5 6 264 14
32769 5 6 365 14
65537 5 6 509 16

Table 4.11. Tteration numbers for generating function fs(z) = |sin(z)|.

fo(z) = x *xsin(x) is certainly the most challenging example; the zero xy =0
has order 2 whereas z; = 7 has order 1. But how should we scale the defects
correctly in (2.28) in this case? The arithmetic means of the orders of the
two zeros is 1.5; hence we use fac = 25 = 2/2:

‘ number of unknowns H MG-Solver H MG-Prec. ‘ CG ‘ CIRCULANT ‘

1025 9 9 452 32
2049 9 9 794 43
4097 9 9 1476 28
8193 9 9 > 2000 68
16385 9 9 > 2000 83
32769 9 9 > 2000 104

Table 4.12. Iteration numbers for generating function fq(x) = x * sin(x).

Again, we observe optimal computational behaviour of our multigrid al-
gorithms for all problems from Example 6. Like in the case of a single
isolated zero studied in the previous section, our W-cycle solvers are so ef-
ficient that there is no point in using them as preconditioners. The natural
coarse grid operators take into account very carefully the orders of the zeros
of the generating function. Thus we can confirm numerically that the multi-
grid algorithms suggested in section 4.3 carry over to the case of generating
functions with m equidistant zeros in [0, 27

77

4.4.5 QOutlook, conclusions and further remarks

In this and the previous section we have introduced multigrid algorithms
with natural coarse grid operators for Toeplitz matrices generated by non-
negative functions with zeros of finite order. The idea is based on the fact
that multigrid methods with natural coarse grid operators are known to work
well for matrices generated by f(z) = 1 — cos(m * x); and we mimic these al-
gorithms for dense Toeplitz matrices with a very similar spectral behaviour.
Our numerical results point out strikingly that our algorithms lead to solvers
of optimal complexity O(nlogn) for dense Toeplitz systems. As our new
algorithms take into account very carefully the orders of the zeros of the
generating function, they also have no problems at all in dealing with zeros
of odd order. Even a case like fo(x) = x * sin(z) with two isolated zeros of
different orders can be handled without problems.

By employing natural coarse grid representations we will normally violate
the variational principle underlying Galerkin coarsening. Hence it might be
interesting to check whether we could get lower iteration counts by employing
Galerkin coarse grid operators. We have done such comparisons: However, as
soon as we build Galerkin operators Toeplitz structure will normally be lost
on the coarse grids — and hence, for simplicity, we implemented the coarse
grid representations as full matrices what limited the size of the problems
that could be approached significantly.

| number of unknowns | 257 | 513 [1025 [2049 | 4097 |
f3(z) = |x|, MG(Natural) 5 5 5
f3(x) = |z|, MG(Galerkin)
fs(x) = |sin(z)|, MG(Natural)
fs(x) = |sin(z)|, MG(Galerkin)
fo(z) = x = sin(z), MG(Natural)
fo(z) = x = sin(z), MG(Galerkin)

O| O | O] O O
O| O | O] O O

O O|| =] C1|| O
O O|| =] C1|| O
O O|| =] C1|| O

Table 4.13. Galerkin vs. natural coarse grid operators.

Table 4.13 shows clearly that we can hardly gain any improvement in terms
of iteration counts by using natural coarse grid operators. On the other hand,
the disadvantages of Galerkin coarsening are severe: Toeplitz structure on
the coarse levels is lost and the low rank perturbations introduced on every

78

level lead to a significantly more expensive setup phase.

Proving convergence of our multigrid algorithms with natural coarse grid
operators will be subject to future research, but we feel that it comes out to be
very difficult: As there is no longer any underlying variational principle, the
only resort we can think of is to establish that our coarse grid operators satisfy
the approzimation property in the sense of Hackbusch (see [62], pp. 114),
i.e. the aim would be to show that there exists a constant C'y such that

AP = P+ Al * R| < C4h? foralln >1

with A; and A; ; denoting the Toeplitz matrices on the fine and coarse
level, respectively, and a standing for a constant which is determined by
the smoother.

In order to prove such a statement we would need to think in terms of un-
derlying infinite-dimensional Toeplitz operators. However, it seems to be
very doubtful if we tried to pose a Dirichlet boundary value problems for the
Toeplitz operator generated by e.g. f(x) = x?. After all, we do not even have
a discretization or an underlying physical grid.

4.5 A short view on BTTB matrices

4.5.1 Positive definite problems

In the 2D-case we consider Hermitian BTTB matrices related to a function

of the form o
f($, y) — Z aj’kezjxezky

e.g. f(z,y) = 2 — cos(x) — cos(y) for the 2D Laplacian from Example 2. In
that case the bad condition numbers of the corresponding sequence of BTTB
matrices are again caused by the zero (xg,y0) = (0,0) of f(z,y).

We are in the simple case as long as the function f has only a unique isolated
zero (g, yo) €]—m, 7]?. Then we can try to proceed with multigrid algorithms
similar to Section 4.1. For simplicity, let us first take a look at the case of a
single isolated zero (zg, yo) of order 2. In a multigrid approach we can choose

b(z,y) = (cos(xg) + cos(x)) x (cos(yo) + cos(y)) (4.16)

for prolongation and restriction. Note that this is nothing else than the Kro-
necker product of the corresponding 1D matrices. According to our heuristics

79

(4.1) the function f, associated with the Galerkin coarse grid operator is the
reduction of f(x,y) = b(x,y)f(z,y)b(z,y) to every second coefficient relative
to x and y. For the matrix this is nothing else than the projection onto every
second row/column and row/column block, respectively. Therefore it results
1 - Yy ~ T y ~ T Y ~ X Y)
= s (FE D+ em Dy fE Y T 4.17

falay) = (G D+ G+m D+ G S+m+fG+m S+m) (417)
Hence, f, will have the isolated zero (2x¢, 2y9) — and the prolongation b(z, y)
needs to have the three zeros (zg + 7, yp), (zo,yo + 7) and (xy + 7, yo + 7).

In [105] Chang, Jin and Sun proved an analogous result to Theorem 6 for
twogrid algorithms with Galerkin coarsening for BT TB matrices with a single
isolated zero of order at most 2 at either (xq, yo) = (0,0) or (zg, yo) = (7, 7),
i.e. for the case of generating functions f(z,y) satisfying

: f(z,y)
min
(@y)€[-mx)? 2 — cos(z) — cos(y)

>0 (4.18)

or

f(z,y)
min
(@y)€[-m,7)? 2 + cos(z) + cos(y)

0, (4.19)

respectively. Again, the proof consists of establishing (2.38) such that The-
orem 1 is applicable.

Anyway, for BT'TB matrices it is even more important to use a natural coarse
grid operator instead of Galerkin coarsening. As pointed out in [105] when
using Galerkin coarsening and standard transfer operators we can only be
sure to preserve BTTB structure on every coarse grid if the matrix size is of
the form n = (27 — 1) % (27 — 1) with p and ¢ integer. More importantly, the
perturbations introduced via Galerkin operators are no longer of low rank
like in the Toeplitz case, but normally grow proportional to the matrix size.

However, as long as there is only a single isolated zero the resort is as simple
as in the Toeplitz case: For a single zero (g, yo) €] — 7, 7]* we can scale our
linear system first via the matrices

I ® diag(1, e*® et) and diag(1, e*™e 20)@ 1,

respectively, and thus shift the zero to the origin. Then it is guaranteed that
we can apply standard transfer operators corresponding to b(z) = 2+cos(x)+
cos(y) in every step. Analogously to 4.3.1 we recall the fact that multigrid

80

algorithms with natural coarse grid operators have been long been known to
converge for two-dimensional Laplace problems (2.4). Furthermore, we know
that the 2D Laplacian (2.4) and matrices generated by e.g. f(z,y) = z* + 3>
share very similar spectral properties (see e.g. [97], [98]). Hence like before we
carry over our reasoning to employ a natural coarse grid operator to functions
f(z,y) satisfying (4.18).

Note that (4.18) certainly includes non-separable generating functions, like
e.g. f(x,y) = 20—8xcos(x)—8xcos(y)—4*cos(x)xcos(y) which corresponds to
a 9-point discretization of the Laplacian on the unit square. However, we shall
give only numerical results for separable problems in the following tables.
There we list iteration counts for multigrid algorithms with natural coarse
grid operators for separable BTTB problems related to generating functions
from Example 4. For comparison we will also list the iteration counts for
unpreconditioned CG, for the optimal BCCB preconditioner by T. Chan and
J. Olkin [31] introduced in subsection 3.3.4 and — whenever the zero is of
even order — for the banded BTTB preconditioner. The abbreviations will
again be "CG”, ”CIRCULANT” and "BANDED?”, respectively.

f(x,y) = 2>+ y? has a zero of order 2: We need to set fac = 4 in (2.28) and
we can also use the 2D Laplacian (2.4) as a banded preconditioner:

| number of unknowns || MG-Solver || CG | CIRCULANT | BANDED |

256 14 31 17 9
1024 14 7 22 9
4096 14 153 31 9
16384 14 301 44 9
65536 14 289 69 9

Table 4.14. Iteration numbers for f(z,y) = 2? + 2.

81

For f(x,y) = x* + (y/4) * sin(y/2) we are again dealing with a zero of
order 2 and hence expect a similar behaviour to the previous example:

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘ BANDED ‘

256 23 20 20 15
1024 24 99 26 15
4096 24 192 39 15
16384 24 368 57 15
65536 24 708 92 15

Table 4.15. Iteration numbers for f(x,y) = 22 + (y/4) * sin(y/2).

For f(x,y) = |z| + |y| we regard the zero to be of order 1. Analogously to
the one-dimensional problem studied in table 4.6, we set fac = 2 in (2.28):

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘

256 7 23 9
1024 8 30 11
4096 8 40 13
16384 8 S7 15
65536 8 82 16

Table 4.16. Iteration numbers for f(z,y) = ||+ |y|.

For the problem f(z,y) = |z/7| + |sin(y/2)| we again regard the zero to be
of order 1 and expect similar results as for the preceding example:

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘

256 8 22 10
1024 9 31 12
4096 9 43 14
16384 10 61 16
65536 10 86 17

Table 4.17. Iteration numbers for f(z,y) = |x/7| + |sin(y/2)] .

Our final example will be f(z,y) = z* + |y|: We assign the order 1.5 to the
zero and the scale the defects in (2.28) with fac = 2> = 21/2.

82

‘ number of unknowns H MG-Solver H CG ‘ CIRCULANT ‘

256 15 41 14
1024 15 59 17
4096 15 90 20
16384 15 143 25
65536 15 234 32

Table 4.18. Tteration numbers for f(z,y) = 22 + |y|.

Again, our multigrid algorithms give efficient solvers of optimal computa-
tional complexity O(nlogn). The natural coarse grid operators take into
account very carefully the order of the zero — and thus the algorithms are
not affected at all in case the zero at the origin is of order less than 2. On
the contrary, they can even take advantage from the lesser degree of ill-
conditioning in that case. Not to our suprise, the iterations for the optimal
BCCB preconditioner tend to grow when applied to the ill-conditioned ma-
trices studied in tables 4.13 to 4.17.

However, our approach runs into trouble as soon as there is more than a
single zero of finite order: According to (4.16) and (4.14) we would need to
build prolongations b(x,y) incorporating all the zeros. However, this forces
us to build prolongations which are much too dense. For example, for BTTB
matrices belonging to the function f(x,y) = 2—cos(2z) — cos(2y) we would —
in view of (4.16) — need to work with prolongations involving 8 ”elementary”
factors corresponding to the 4 zeros (0,0), (0,7), (m,0), (m, 7). This does not
lead to computationally feasible algorithms.

4.5.2 Indefinite Problems

The situation also gets more complicated if the condition f(z,y) = 0 has a
whole curve (z(t),y(t)) as solution. Certainly, we can no longer “shift” the
curve of zeros to the origin by diagonal scaling. For the prolongation in view
of (4.2) we need a function with zeros at (x(t) +m,y(¢)), (z(t), y(t) +), and
(x(t) + 7, y(t) + m). We can build such a function by setting

b(w,y) = fla+my)* fla,y+7)« flx +my+7).

Again, the disadvantage of this approach is that the resulting matrices con-
nected to fo(z,y) are getting more and more dense — and we can not expect

83

to obtain a practical algorithm.
Let us take a look at shifted Laplacians with the underlying function of the
form

f(z,y) =2 — a— cos(z) — cos(y)
For small v the curve described by f(x(t),y(t)) = 0 is nearly the circle around
the origin with radius v/2a.

Asymptotically the eigenvalues of these BTTB matrices are given by (see
e.g. the paper by Serra [98])
rk 75 + k)

~ - -k‘:]_... .
n—i—l) (n+1)2 @) !t

)—cos(

T
f(xj,y5) = 2—a—cos(n 1

As we are dealing with shifted 2D-Laplacians our matrices can be diagonal-
ized by the 2D-Sine Transform matrix with Sy = /=25 (sin(mjk/(n+1))%_,,
52 = 51 X 51, and

Sy BT Sy = diag(\j + A\, — @)
where)\; are the eigenvalues of the 1D-Laplacian from (2.2). Hence, the
eigenvalues are exactly given by

mJ wk
flg) =2 — @ — cos(0) — cos(-"

), G k=1,..,n
and the eigenvectors related to the near-zero eigenvalues are of the form
sin(mjm/(n+ 1)1 _, @ sin(rkm/(n+ 1)) _,

with
P+ E ~aln+1)?/r. (4.20)

Hence we have to design a method that can deal with the error compo-
nents in these directions. For the same problem a very sophisticated and
highly promising algorithm that is related to this idea has been introduced
by Brandt and Livshits based on a totally different approach [12]. There
more than one coarse grid is employed in order to resolve the problematic
error components.

Finally, we wish to emphasize that the above indefinite model problem should
not be viewed as a Helmholtz problem: Helmholtz equations usually model
scattering phenomena on an exterior domain and the system matrices can

84

1.2

alpha=0.5, n=30

Figure 4.1: Curve f(z,y) = 0 and approximate circle

85

1.2

never be expected to have Toeplitz structure. Furthermore, absorbing bound-
ary conditions have to be introduced to guarantee a unique solution; they
turn the system complex-symmetric (see e.g. [50] for details). For a state of
the art algorithm for multigrid for Helmholtz problems that is also applicable
to the non-constant coefficient case we refer to recent work by Elman, Ernst
and O’Leary [39], [40].

In Figure 4.1 we display the (j, k)-grid (4.20) with the curve f(z,y) =0
and the approximating circle in the (z,y)-plane. Figure 4.2 shows the exact
eigenvalues of the matrix on the mesh in the positive (x, y)-quadrant and the
curve with f(z,y) = 0. The mesh also models the surface described by the
function f.

4.5.3 Outlook and conclusions

We have investigated multigrid methods for symmetric BT'TB matrices. If
the matrix is related to a nonnegative function with a single isolated zero
1o €] — m,7]? then the methods presented in this section are applicable.
In particular, the need to use a natural coarse grid operator is even more
prominent. However, if the function has a nontrivial curve of zeros then
more advanced algorithms, possibly employing more than one coarse grid,
need to be developed.

86

87

Chapter 5
The Matrix Multilevel Method

In this chapter we will carry over ideas from the previous chapter for sparse
Toeplitz matrices to general sparse banded problems. We will derive new
prolongation operators which can be used for general symmetric weakly di-
agonally dominant matrices. Our new multigrid approach will be called the
"Matrix Multilevel Method”, abbreviated ” MML”.

We will first motivate the MML via additive preconditioners for problems in
one dimension. Then we shall explain why the MML prolongations can also
be used in multiplicative multigrid algorithms and generalize the MML step
by step to separable and to general elliptic problems in higher dimensions.

In the last but one section we will come up with a very fast and efficient
MML algorithm for general weakly diagonally dominant symmetric linear
systems having the same sparsity pattern as a uniform 9-point discretization
of the two-dimensional Laplacian. Finally, we will go for a little case study on
elliptic problems with highly oscillatory coefficients and compare our MML
algorithms to an approach by Engquist and Luo [82], [44] who proposed to
employ homogenized coarse grid operators.

Part of the results from this chapter will be published in the paper [72] in
the journal BIT. However, our presentation goes beyond the scope of that
paper and plenty of results are generalized and extended. On the other hand,
our presentation wishes to reflect the chronological order in which we derived
certain results and hence we deliberately did very frequently not go for the
most straightforward way to motivate an algorithm or a theorem:

88

In particular, note that the idea of the MML was initially presented by
T. Huckle in 1998 in the technical report [71]. However, this first version
was still restricted to additive preconditioners for one-dimensional problems.
Nevertheless, sections 5.2 and 5.3 could basically be taken over from [71] and
the same also refers to most of section 5.4.

In other words: The main original contributions of this chapter are

e carrying over the idea of an additive preconditioner to a multiplicative
multigrid solver

e the analysis of the one-dimensional case presented in section 5.5

e carrying over the MML idea to higher dimensions — and analyzing and
testing it for various examples (section 5.6)

e the case study for elliptic equations with highly oscillatory coefficients
presented in section 5.7

However, the author also wishes to acknowledge that the efforts to extend
the MML to higher dimensions need to be regarded as joint work with his
supervisor — and to thank the latter for having handed him eigenvalue-based
MATLAB codes of Algorithms 14 and 15.

89

5.1 Motivation: From sparse Toeplitz systems
to general banded matrices

In Remark 6 we studied the matrices T} = tridiag(—1,2,—1), i.e. the 1D
Laplacian from Example 1, and Ty = tridiag(1,2, 1) in the last section in the
context of sparse Toeplitz matrices: We saw that in a twogrid algorithm the
appropriate prolongation operator for Ty was given by P, = T1(:,2:2:n) (-
in MATLAB-notation with n denoting the size of the linear system —) whereas
for T we could simply use the ”standard choice” P, = T5(:,2: 2 : n).

We have already mentioned that existing multigrid approaches tend to have
trouble with matrices having positive off-diagonal entries: Although the cele-
brated and very general AMG algorithm by Ruge and Stiiben [92] could still
handle so-called ”essentially positive type” matrices, i.e. matrices as they
arise from fourth-order discretizations of elliptic problems having relatively
small positive off-diagonal entries (see [92], p. 93), AMG might fail for a
matrix as simple as 7T5.

How can we get a robust algorithm for weakly diagonally dominant matrizes
— and not only for M-matrices? Our starting point will be the following
observation: From Theorem 2 (ii) we know that A = 4 will be a very good
upper estimate for the maximum eigenvalue of both 7} and 7,. Hence with
the scheme

Pio=0C15(:2:2:n) with Cip=A —Tiy

we can derive a suitable prolongation operator for both 77 and T, with one
and the same formula. In the following we shall point out that the above
concept is sensible and try to carry over this idea to general banded matrices.

5.2 The additive twolevel method

We consider a linear system of equations Ax = b with a sparse ill-conditioned
weakly diagonally dominant n x n matrix A. The aim is to design a purely
algebraic multilevel method that can be applied to any matrix in order to
reduce the condition number. Here we restrict ourselves to the symmetric
positive definite case. We start in an additive setting.

90

5.2.1 A preconditioner derived via generating systems

Let us first consider only the transfer operators without any smoothing. In
the symmetric case our method is based on a mapping C' for the restriction
and prolongation of the original linear system on a coarser problem. Then
we get CTAC, e.g. as an n/2 x n/2 matrix related to the original problem
formulated on a coarse grid. Following Griebel [57], [58] and the idea of un-
derstanding multigrid algorithms as iterative methods on generating systems
we can write the sequence of matrices on different levels also as a sequence
of matrix extensions of the form

A AC I
AD — 4 A<2>:<CTA cMc) — (CT)A(I). (5.1)

Let us first analyse the relation between the original equation Az = b and
the extended matrix A®). If (y7 27)7 is a solution of the extended system

[t ere) (1) = (2)

we have to set a = CTbh, and then = y + Cz gives us the solution of the
original problem Az = b. Furthermore, in view of (5.1), the kernel of A® is
spanned by the vectors that fulfill y = —C'z, and hence the kernel is given

_C> 2. Similarly with (5.1) the range of A is

by all vectors of the form (7

of the form Z.

I
CT

The convergence of an iterative method applied on the extended linear
system depends on the generalized condition number - the quotient of A4z
over the smallest nonzero eigenvalue. To describe the nonzero eigenvalues of

A®) we consider the Rayleigh Quotient relative to the space that is orthogonal
to the null space y = (C{T> x. With

i () a e ey (f)aa o)

yTy a I
zT (I C) <CT) x
(L + CCTYA(L +CCT)e (I + CCTY2A(L + CCT)V22
2T (I+CCT)x B 2Tz ’

91

we see that the nonzero part of the spectrum of A®) is given by the eigenvalues
of
(I+CCM)4, (5.2)

and furthermore the nonzero eigenvalues of A® are related to the eigenvalues
of A by M(A®)) = X\(A)(1 +¢€) with 0 < € < A\pae (CCT).

Now we can think of the prolongation C' as a preconditioner of the form
I +CCT applied to the original matrix A (see also [9], [70]). A good precon-
ditioner would be one that enlarges only the small eigenvalues of A without
changing Ajaz(A). Then the condition number of the preconditioned system
would be improved.
Hence the main task is to find a sparse matrix C' such that its range contains
the span of the eigenvectors associated with the small eigenvalues of the ma-
trix A. Similar problems are considered and solved in [41]; but to obtain the
exact solution would be too expensive and can not be used here.

5.2.2 Two special cases

Special case 1: (' is an nx1 matrix of rank 1. In this case the matrix C'is
reduced to one column vector. Then an optimal preconditioner should enlarge
A1 = Apmin without changing A\, = A, Based on the eigensystem for A of
the form A = QTAQ the problem can be written as follows: Find a vector
w such that the matrix A = (I w)" A(I w) has minimum condition
number (neglecting the zero eigenvalues.) In view of the interlace property
(see e.g. [89]) we get

0= <MH<AH<Ah, A<M\ <

>

n+1 »

and the new condition number is bounded by

Aat1 A
cond((I + ww™)A) = 224 > 20
)\2)\2

An optimal solution is therefore given by C' = pumin, where w,,;, is an
eigenvector related to the smallest eigenvalue \;. Then p has to be chosen
such that Ay < (14 p?)A\; < A,, and the condition number is improved by a
factor A1/ As.

In general we are interested in prolongations C' with larger rank. This is
also necessary to lead to a notable improvement of the condition number for

92

ill-conditioned matrices. Therefore we now write C' in the form
C = BP = B(;,J) (5.3)

with an n X n matrix B and an elementary projection P. Now multiplying
with P from the right yields a reduction to the columns given by the index
set J.

Special case 2: (C is an n x n matrix. To make things easier we first
describe the case that P = I and C' = B. Now we can choose B = f(al — A)
with @ = A\,az(A). This matrix has the desired property: A, becomes
large in (5.2) and A4, remains the same. For this special case we can fully
analyze the resulting preconditioned system in order to find an optimal value
for f.

Let u be any eigenvector of A with length 1 related to an eigenvalue A,
A1 < A < . Then (8 has to be chosen as large as possible with

uT(I+62(aI—A)(aI—A)T>Au -)\(1+62(a—)\)2> <a. (54)

Hence, 3% < ﬁ The function on the right hand side takes its minimum

value for A = «/2, which leads to the optimal value 5 = 2/«. The change of
the eigenvalues of A under the transformation (5.2) is described by

N fO) = A1+ %(a —).

In the interval [A;,] the function f has a relative maximum at A = /2 of
size f(a/2) = «, a relative minimum for A = 5a/6 with f(5a/6) = 50 /54, a
global maximum for A = o with f(«) = «, and a global minimum for A = \;
with f(A1) = Ai(1 + Z5(— A1)?) & 5\, Hence, by applying I + BB' as a
preconditioner the condition number is approximately improved by a factor
of 5. Note that not only the smallest eigenvalue is enlarged, but the whole
spectrum is compressed. For example, all eigenvalues of A in the interval
[a/8,] are mapped into the interval [65c/128, o] ~ [a/2,a], and in the
interval [a/3, o] into [25/27c, a.

5.2.3 A twolevel preconditioner

Now let us return to the twolevel approach with P and index set .J. Then
the above relation (5.4) translates into

ul (I+8*(al —A)PPT (al - A)") Au = A1+8*(a—N)?||PTul)?) < a. (5.5)

93

0.6 0.7 0.8 0.9 1

Figure 5.1: Function f(\) for a =1

Therefore P has to be chosen carefully in such a way that for every small
eigenvalue PTu does not become too small. If the eigenvectors are continuous
in the sense that they can be seen as values g(j/n) for a continuous function
g, then eg. P =1(:,2:2:n) gives ||[PTul|*> ~ 1/2 for all eigenvectors.
This leads to an optimal value of (3% = 8/a? and we can expect that the
smallest eigenvalue is approximately improved by a factor of 5; but now
the related mapping C' has only half the number of entries. Note that for
A = (1/4) xtridiag(—1,2, —1) this optimal factor 8 also appears by diagonal
(Jacobi) scaling of the extended system (5.1). In this case the spectrum of
AM is no longer contained in the interval [5Ain, @, but all eigenvalues of
As are again smaller than a.

Note that the eigenvalues of Ay = CTAC are closely related to the function
g(A) = B*(a — N)2), and therefore the spectrum of A, is contained in the
interval

[8%(c = Amin)*Amin (A), (Ber)*(4/27)a]

For P =1(:,2:2:n), an eigenvector u corresponding to a small eigenvalue
of A leads to a small value of the Rayleigh Quotient related to the matrix A,

94

and the vector PTu. Therefore we may expect that P7u is mainly contained
in a subspace spanned by eigenvectors of A, that belong to small eigenvalues.

We finally remark that we will not have the optimal factor 5 in any practical
algorithm. We shall see in the following section how this role will more or
less be taken over by diagonal scalings.

5.3 The Matrix Multilevel Method: Additive
and multiplicative variants

The analysis of the previous section describes an additive twolevel method
where the smoothing is reduced to a scaling factor. Now we have to generalize
the approach in order to make it work in a multilevel fashion.

5.3.1 Going multilevel
So far we have arrived at the representation A = A, = A A, = CTA,C,

A AC
A® = (CIT;M CIT;thH) =(I)" A1 Oy,

or in preconditioned form
(I + C1C1T)A1 .

Let us assume that the prolongation C' is chosen properly such that its range
contains the eigenvectors associated with the small eigenvalues of A. Then,
on the next level we can restrict ourselves to operators of the form C' = C;C5.
Now we can apply (5.2) a second time and arrive at a preconditioner

(I+C,C,CTCTY(I+C,CTY A, = (I+C,CT+C,0,CF CT+C T CT 00T) A,

To make the preconditioner symmetric positive definite we delete the last
nonsymmetric term and use only

I+ CCT 4+ CCCfCT = 1+ 0,1 +0,eHOT .

Then we have different formulas for the extended system:

A AC, AC,C, I
A® = | T4 CTAC, cTAc,c, | = ¢ |A(I © C.Cy)
cTcrA cofcrac, CIcTAC,C, cror

95

= (I C (I Cy))TA(I C (I Cy))=
(T 0 0\ [A AG I 0 0)
—\o I O CTA CTAC, 0 I Cy)

T
(I 0 O T I 0 0
_<0 I CQ> (I Gy Al CI)<0 1 C2>’

and in preconditioned form
(I +C,0 4+ C.C,CTCNA = (I + CL (I + C,0F)CH A (5.6)

or

I 0 A ACY A AC,
0 T+CCT)\CTA A,) = \(I+CCNCTA (I+C,CI)A,)~

This leads to different heuristics for choosing Cs. In view of the above
equation we can think of (5 as a second preconditioning step related to
Ay = CTAC, and therefore we can set

02 = 62(0[2[— AQ) P2 . (57)

We can also derive (5.7) based on another approach. The new prolongation
C5 defines the preconditioned system

(I + C1ClT + C1CgC§FCiF)A
and thus in the sense of (5.4) and (5.5) we get
ur C,0,CTCTu = B2u” (al — A)PCLCY PT (ol — A)Tu
= 5%(& -)‘min)z(uZninP)C2Cg(PTumin) =

= (@ = Anin)* (i Pr) Bo Pa Py Bo(PY tynin) -
Now By should be chosen in such a way that it gets large for the vectors
Pl'u related to small eigenvalues of A. In view of the previous remark at
the end of Section 1 we can expect that the vectors P u are related to small
eigenvalues of Ay which again suggests to define Cy via (5.7).
We could also formulate another way for choosing C'5. Note that the eigenval-

ues of Ay are closely related to the function g(\) = 3%(a — A\)?>\. This shows
that the large eigenvalues of A are also translated into very small eigenvalues

96

of Ay. If we define Cy with (5.7), then in this second step we try to enlarge
these originally large eigenvalues together with the small eigenvalues of A.
This suggests another way to define C5, namely again as a projection of the
first-level matrix ol — A. For example, if A is a Toeplitz matrix like in the
previous section then we can consider the Toeplitz matrix ol — A =T and
choose C; as a submatrix 7'(1:2!,2:2: 2!,

In order to obtain similar improvements on the condition number on every
level it is necessary that all the derived smaller systems have similar prop-
erties as the original matrix A. For example, if A5 is well conditioned then
obviously going to a coarser grid will lead to no improvement of the spec-
trum. Hence we have to choose C' and P in such a way that the matrix
A = PTBT ABP inherits important properties of A. In many cases the be-
haviour of A on the vector e, = (1,...,1)T is very important - this is related
to the property that the rowsum of entries is often zero. Hence we may ask
that 65/21216“/2 =e,(J)T BT ABe,(J) ~ el Ae, /2. We obtain this property by
choosing B such that Be,(J) = e,/2/V/2. For B = /2x*tridiag(1/4,1/2,1/4)
and J = (2,4,6,,n) (- the usual multigrid prolongation —) this is obviously
fulfilled. After diagonal scaling this is also nearly satisfied for the mapping
B = \axl — A in many cases.

5.3.2 Including a smoother

Now we have defined a multilevel method based only on the original matrix
A and the maximum eigenvalues of the resulting systems A;. It is necessary
to include also some kind of smoothing operation on every level in order
to get fast convergence. Here we will mainly consider the Jacobi method
for smoothing. In (5.1) or (5.6) the Jacobi smoothing is nothing else than
diagonal preconditioning. Note that in the same way one can use Gauss-
Seidel or any other levelwise method.

To include Jacobi smoothing on every level let us consider the enlarged
problem

A AC, AC,Cy - AC,..C,,
CTA CTAC, CTAC,C, --- CTAC,.C
cr.cra ... - Cr..CTAC,..C,
=(I ¢ CCy --- CL.O)"A(I C C.Cy --- C1.Cx) =

97

=(I Gl - (ICy)--))) AT Ci(I -+ (ICy)--+))) (58)

and in preconditioned form

(I+c.clh+c.c.0feT + - +0..C.0F.CTHA =
(I+C(I+Cy(I+ --- (I+CCh)--yehHehHhA=mMP A . (5.9)

In the form (5.8) we can comprise any preconditioner on the matrix A®*),
for example Jacobi, Gauss-Seidel or ILU preconditioners, and employ the
conjugate gradient method with zero starting vector. But usually we want to
compute only the small matrices A; and the prolongations C; on every level,
but neither the whole system A®) nor the - nearly dense - preconditioner
MW" Therefore, we will use only levelwise block-diagonal preconditioners
based on the level matrices A;.

From (5.8) we can translate preconditioners very easily to the form (5.9). In
the Jacobi case for example we have

D; = diag(4;) = diag(C] ---CTAC, --- C;)

and for every matrix A; we can use Dj_l/ ? as left and right preconditioner.
Then, with

. ~1/2 ~1/2

D:dlag(Dl / 7"'7Dk /)

Y

(5.8) translates into

A AC, ACCy, - ACL.C
CTA CTAC, CTAC,Cy --- CTAC.C,
D : : : D =
CT.CTA ... - CT..CTAC,..C,

(1 p*aip;' Dy*C,p;') DY AD (1 pPeipy).

Hence, we only have to replace 4 by A = Dfl/zADfl/2 , and each C}
by C~’j = DJI./ZC’ij_J:{z . This leads to the new preconditioned form

(I+Cy(IT+Co(IT+ ---(I+CCT)--)CTHCTYA | (5.10)

98

5.3.3 Improving the preconditioner

It turns out that we can improve the preconditioner (5.10) a lot by using
the diagonally scaled matrix fij on every level for constructing the next
prolongation /restriction: This means that if we have arrived at the matrix
A; we should use the (already Jacobi scaled) matrix Aj for the next step and
therefore define the next prolongation via B = A\ — A and apply it to the
diagonally scaled AY) like in (5.8).

It is possible to include the Jacobi scaling directly in equation (5.10) in the
form

(Dy' + Ci (D' + Co(D5" + -+ (Dt + CpCY) -)CT)CTHA (5.11)
The equation (5.11) leads to a first Matrix Multilevel Algorithm:

Algorithm 9 (Additive MML with eigenvalues in 1D)

We start with the scaled matriz 1211

- On every level compute B; = ol — flj and use C; = Bj(:,2 : 2 : n) for
prolongation and restriction.

- After computation of Aj41 = C’]TA]'C’j we step forward with the scaled matriz
Aji

- Based on the matrices C; and Djyy = diag(C’]TAjCj), j=0,..1, we can
recursively implement the multiplication of the matriz (5.11) with a given
vector and thus use the preconditioned CG method.

Similiarly to (5.10), we can apply any levelwise direct preconditioner M;
on the matrix A; and get

(M + Cy(My + Co(Ms + - - (Mg + CCf) - -)C5)CTHA.

Furthermore we can include, e.g. two smoothing steps on every level by re-
placing My by 2M; — M, A M, in order to imitate a two-fold application
of the preconditioner M,. If M, is not symmetric, we can use instead the
symmetrized matrix My, + MI — My Ay ML,

For the Jacobi or Gauss-Seidel iteration we often introduce damping factors.
The same is possible here if we replace the preconditioner in (5.10) by

(I + wlé’l(f + WQéQ([+)ég)éf) = (I + wlé’lé’lT + wgélégégéf +) .

In view of (5.1) and the analysis of Section 5.1 a factor w < 1 may be
necessary to reduce the maximum eigenvalue to be < a. A factor w > 1

99

can be helpful for faster convergence if it is possible to enlarge the small
eigenvalues without changing A4,

5.3.4 Towards multiplicative multilevel algorithms

So far, we have used generating systems in order to devise new prolongations
and restrictions and we have presented our approach in a purely additive set-
ting: Our algorithms are of the same type as BPX [9] or MDS [120]. From the
work by Griebel [57], [58] we know that the MDS-preconditioner is nothing
but the Block Jacobi method applied on the generating system and that mul-
tiplicative multigrid algorithms can simply be viewed as iterative methods of
Gauss-Seidel type on the generating system. Furthermore, in their abstract
convergence framework Griebel and Oswald [59] point out why optimal or-
der preconditioning via the additive multilevel algorithms implies optimal or-
der convergence of corresponding multiplicative multilevel algorithms. Their
theoretical reasoning justifies using the new prolongations/restrictions also
in multiplicative variants. In the following we very briefly describe how the
ideas of Algorithm 9 can be used in a multigrid V-cycle.

Algorithm 10 (Multiplicative MML with eigenvalues in 1D)

We start with the scaled matriz fll.

- On every level use B = ol — flj and C; = B;(:,2: 2 : n) for prolongation
and restriction.

- After computation of Aj ., = C’J-Tfle’j we step forward with the scaled matrix

Aji1 as the coarse grid matrix

- When going down we restrict the residuals using R; = D;:{ZC’J-T and when
going up we use R]T for prolongation.

Now we can either employ a multigrid V-cycle as a solver or as a precon-
ditioner within the CG method (by performing one V-cycle with the residual
r and initial guess zero). As we already remarked in Section 2.5, for complex
problems in Scientific Computing, we would in general recommend to use
V-cycles as preconditioners for CG guarantees convergence. Nevertheless we
shall in the following numerical tests mainly employ our V-cycles as solvers,
because that way it will become much more clearly visible if one has picked
prolongations/ restrictions suitable for the problem at hand — or not.

100

5.4 Algorithmic issues and numerical tests

We will now point how to use Algorithms 9 and 10 in practice and report
test results for several examples.

5.4.1 General setting and example problems

For practical implementations of the one-dimensional MML we will consider
different variations:

e We can use the Matrix Multilevel transfer operators in Algorithms 9
or 10 and compare them with the standard transfer operators.

e We can need to derive estimates for o = A4, (A4;) on every level as it is
not at all practical to compute the exact eigenvalue: Different choices
will be discussed in subsection 5.4.3.

e For the additive variants of the MML we apply the conjugate gradient
method with preconditioner of the form (5.11) and zero starting vector.

e We also use V-cycles with one presmoothing and one postsmoothing.
step as solvers; our smoother within these cycles is the symmetric
Gauss-Seidel method and we start with zero initial guess.

e As stopping criterion we employ
e/ [1r O < rex (5.12)

in the whole chapter: In (5.12) rex is a small positive constant and r*)
denotes the residual after k iterations.

e In our tables n will always denote the number of unknowns.

Example 7 (One-dimensional elliptic test problems)

As numerical examples we consider uniform finite difference discretizations
of the 1D elliptic PDE

(a(@)u(2)s)e = f(z) (5.13)
with homogenous Dirichlet boundary conditions and right hand side f(x) =1
on the unit interval for

101

(EX1)
(EX2)
(EX3)
(EX4)

(EX6)
(EX7)
(EX8)

Note that

a(x
a(z) =1+ sin(327z)?,
a(z) =1+ exp(2rx)sin(2rx)?,
a(z) =1+ exp(rz)sin(8rx)?,
(EX5) a (
a(x) =1+ exp(8mx)sin(8rx)?,
a(zx) is piecewise constant with ten different values in [0.1,2.1].
a(x) is piecewise constant with ten different values in [0.1,1.5F + 4].

constant,

8

AN AN AN AN N AN N N

)
)
) =
) =
; =1+ exp(27z)sin(8rz)?,
)
)
(

EX1) is nothing but the 1D Laplacian (2.1).

5.4.2 Comparing condition numbers

In this subsection we can still afford always to choose a as the exact eigen-
value of A:

The next tables display the condition numbers for the additive Matrix Multi-
level Method based on Algorithm 9 and computing «; on every level (MML),
only on the finest level (MMLO), for the standard MDS-method (MDS), and
for the Jacobi-preconditioned original problem.

n MML MMLO MDS DA
2° 4.55 6.32 4.60 414.3
26 5.43 7.26 5.12 1.7E3
27 6.34 8.19 5.62 6.6E3
28 7.26 9.14 6.11 2.7TE4
Table 5.1. Condition number example (EX1), a(x) = const.
n MML MMLO MDS DA
2° 4.55 6.32 4.60 414
20 5.191 7.98 6.30 1.9E3
27 6.12 7.93 98.8 7.1E3
28 7.15 9.00 80.6 2.8E4
Table 5.2. Condition number example (EX2),

102

a(z) = 1+ sin(32mx)%

n MML MMLO MDS DA
2° 4.37 6.08 36.4 605.4
26 2.37 7.16 32.0 2.2E3
27 6.32 8.16 29.9 8.8E3
28 7.26 9.13 31.2 3.6E4

Table 5.3. Condition number example (EX4), a(z) = 1 + exp(mx)sin(87z)2.

n MML MMLO MDS D™'A
2° 4.37 6.10 250.5 2.6E3
20 2.37 7.17 149.4 6.2E3
27 6.32 8.18 97.5 1.7E4
28 7.26 9.14 86.3 6.2E4

Table 5.4. Condition number example (EX5), a(z) = 1+exp(2rx)sin(87x)2.

n MML MMLO MDS DA
2° 4.25 5.94 8.5E8 6.3E9
20 0.47 7.17 5.7TES8 1.3E10
27 6.42 8.23 3.7E8 2.7E10
28 7.32 9.19 2.2E8 5.5E10

Table 5.5 Condition number example (EX6), a(x) = 1 + exp(87x)sin(87z)2.

For the above examples we get nearly the same condition numbers for
the two different additive matrix multilevel preconditioners. We see that the
MML is very robust with respect to the function a(z) - whereas the standard
MDS preconditioner is not - and the condition numbers only grow slightly
with the problem size n.

5.4.3 Estimating the largest eigenvalue

Obviously, it is far too expensive to use the exact maximum eigenvalue
Q@ = Apqz ON every level.

Hence our idea is to get an estimate for o by running the Lanczos method
(see e.g. [54], ch. 2) up to |m| steps and

103

setting & = 00 (denoted by m > 0 in our tables) or
setting & = Az + Amin (denoted by m < 0 in our tables).

There is even a more ”lazy” way to get a reasonable estimate for a. Remem-
ber that we only work with diagonally scaled matrices on every level, i.e. all
our matrices fij have ones on their diagonals. Furthermore we assumed that
A was a symmetric weakly diagonally dominant matrix. Hence Gershgorin’s
theorem (see Axelsson [2], pp. 127) tells us that o = 2 is an upper estimate
for the maximum eigenvalue A4,

Theorem 7 (Gershgorin circles)
The spectrum S(A) of the matriz A € C**™ is enclosed in the union of the
discs
Ci={2€C:lz—ayl <> lanl}, 1<j<n,
kg

and in the union of the discs

C;:{Z€C3|Z—ajj|§2|akj|}a 1<j<n.
Py
That 1s,

!

S(A) C (Uj=,Cy) N (U=, C5)

Jj=1>j

As we know that o = 2 is indeed an upper bound, we will assume that the
corresponding transfer operators preserve positive definiteness and that all
the coarse level matrices are weakly diagonally dominant as well. (This may
seem obvious; anyway, we shall analyze and prove it formally in subsection
5.5.2) Hence we shall try to use the estimate o = 2 on every level. This will
be denoted by A.s; = 2 in our tables.

In the next table we compare the influence of the choice of « for the conver-
gence of the Matrix Multilevel Method. It turns out that as well with the
simple choice \.5; = 2 as with only one or two iterations of the Lanczos pro-
cess we get eigenvalue estimates that lead to the same iteration numbers in
the Matrix Multilevel Method as using the exact maximum eigenvalue \,,,;:

104

| n | MDS [Ao | Aest =2 | m=2 [m=3 | m=4 [m=-1 | m=-2 [m=-3 |

20 37 10 10 10 10 10 11 11 11
27 45 12 12 12 12 12 12 12 12
28 53 14 14 15 15 14 14 14 14
29 61 16 17 28 21 17 17 17 17
210 72 18 18 42 34 28 18 18 18
211 80 * 20 61 49 43 20 20 20
212 98 * 22 92 73 60 23 22 22

Table 5.6. CG iteration numbers for additive preconditioners for example
(EX6) with rex = 10~%. The final eight columns compare the different
choices for o within the MML. (A % denotes that the computation would
have been too expensive.)

All our tests confirm that the "lazy” estimate \.5; = 2 is indeed sensible
—and, in general, we would recommend to use it.
However, we might equally well employ Lanczos: In that case we recommend
to set o = S\m,n + S\mm where S\mam and S\mm are estimates for largest and
smallest eigenvalue of A. Table 5.6 shows clearly that very few Lanczos
steps are sufficient in order to compute these estimates. Note that Lanczos
yields inner approximations to the extremal eigenvalues and that « should
be greater or equal \,,.;, because otherwise the projected matrix can get
indefinite. Note that the costs for estimating o with the Lanczos method
correspond roughly to the costs for one Matrix Multilevel iteration step —
and hence the choice to use Lanczos is not quite expensive, either.
We finally remark that sometimes the projection with A.;; = 2 gives better
results and sometimes the projections based on estimating the maximum
eigenvalue via Lanczos does better.

5.4.4 Numerical results for 1D problems

The following four tables clearly demonstrate the superiority of the new MML
transfer operators in comparison to standard prolongations/restrictions — the
first two deal with additive preconditioners, the following two with V-cycle
solvers. Other than the standard approach the MML approach is very robust
with respect to the function a(z) and we observe optimal computational
behaviour in many cases:

105

| n | MDS | MML: Alg. 9 [Aest =2 | m= -2 m=-3

27 32 13 13 13
28 43 14 14 14
29 51 16 16 16
210 57 17 17 17
211 66 18 18 18
212 80 19 19 19

Table 5.7. CG iteration numbers for example (EX7), rex = 10~

| n | MDS [MML: Alg. 9 [Aeye =2 [m=—-2[m=-3|

27 60 16 17 16
28 81 18 20 18
29 97 19 21 20
21011 110 20 23 22
21111 125 22 27 25
21211 167 23 31 28

Table 5.8. CG iteration numbers for example (EXS8), rex = 102

‘ n H Standard MG H MML: Alg. 10 ‘ Aest = 2 ‘ m=—2 ‘ m=—3
27 646 6 6 6
28 1381 6 6 6
29 > 2000 7 6 6
210 > 2000 7 6 6
211 > 2000 7 6 5
212 > 2000 7 7 5
Table 5.9. Numbers of V-cycle iterations for example (EX6), rex = 1075.
‘ n H Standard MG ‘ MML: Alg. 10 H Aest = 2 ‘ m=—2 ‘ m=—3
27 641 7 7 7
28 1223 7 7 7
29 > 2000 8 8 7
210 > 2000 8 6 6
211 > 2000 8 6 6
212 > 2000 7 6 6

Table 5.10. Numbers of V-cycle iterations for example (EX7), rex = 1075.

106

Let us finally take up our introductory example T, = tridiag(1, 2, 1) from
Section 5.1 again and show that the Matrix Multilevel approach can indeed
be applied successfully for weakly diagonally dominant problems which are
not M-matrices.

‘n H MDS H MML:Alg.QH)\est:2‘m:—1‘m:—2‘m:—3‘

26 53 7 7 7 7

27 113 7 7 7 7

28 11 247 7 7 7 7

2911 330 7 7 7 7
Table 5.11. CG iteration numbers for Ty = tridiag(1,2,1), rex = 107,

5.5 Analysis of the MML — and a new variant

Let us take a closer look at the choice a = A4 = 2 in Algorithms 9 and 10
and investigate why it is in fact sensible.

5.5.1 MML prolongations with abs(A) for M-matrices

Let us assume A is a tridiagonal M-matrix, e.g. one of the problems (EX1)-
(EX8) from Example 7. Then we see that for the diagonally scaled version

A of A the prolongation operator B = 2 x [— A could also be expressed as
B = abs(A).

Following Hackbusch [62], pp. 212, we see that there is another way to derive
transfer operators of the form B = abs(A): Let us choose

a(z) = { Z; 2 Sre § (5.14)

in our 1D elliptic model equation (5.13). For this interface problem a uniform

second-order finite difference discretization on the level [is given in the form
Alul = fl with

Ay = h P —a(r — %) a(r — %) +a(r + %) —a(x + =)

107

in stencil notation. Certainly, £ should be a grid point — for otherwise the
discretization error might become huge — and we obtain

h%a”[-1 2 —1] for 0<z<¢
Ay=< h?[-a= a +a* a*] for x=¢ (5.15)
h%at[-1 2 —1] for £<z<1

Now let us assume that £ is not a grid point on the next coarser level [— 1.
With v;_; being a vector on that coarse level, we can compute an appropriate
prolongation operator p using the homogeneous difference equation

(Apvi—1)(€) = 0. (5.16)

From (5.16) we get

a” a’

(pvi1) (&) = mvlq(f —) + mvkl(ﬁ + hi) (5.17)

at the point £ whereas we can apply standard linear interpolation for the rest
of the grid points: If we write this prolongation in stencil notation it reads
as

p=[p-1(z) po(x) pi(z)]

with po(z) =1 and

_Jat/(am+at) ifx=E+N
p-1(z) = { 0.5 otherwise

and i +) .
_Ja/lam+a") =Ny
pi(z) = { 0.5 otherwise

Of course, the corresponding restriction operator for a multigrid treatment
of (5.14) is given by the transpose of the prolongation we computed.

Now we have derived in detail a suitable prolongation operator p for the
problem (5.14) using the homogeneous difference equation (5.16) which we
could also express in MML terms as C' = B(:,2: 2 : n) with B = abs(4,).

From the previous analysis we understand why o = \.5; = 2 gives an appro-
priate choice within Algorithms 9 and 10 in case A is an M-matrix. But the
consequences of the above reasoning go much further:

108

First of all, we would like to emphasize very strongly that the idea underly-
ing the homogeneous difference equation (5.16) is that the interface problem
(5.14) has a continuous solution with a discontinuous derivate, i.e. the pro-
longation based on abs(A) takes into account the non-smooth behaviour of
the solution. For more details on ”continuity interpolation” we refer to [1],
[77], [56], ch. 5, or [62], pp. 212.

Obviously, from an analytic point of view is no ”better choice” for a pro-
longation operator to be used for our problem (5.14) than the one satisfying
(5.16). If we base the Matrix Multilevel method on eigenvalue estimates this
also explains why we should use scaled matrices on every level: If we do not
scale our matrix, then the prolongation operator based on B = af — A with
@ = Apae might no longer be close to the one satisfying (5.16). But if we
work with the scaled matrix A and use o = Aest = 2 then on the basis of
B = ol — A we get a prolongation matrix matching (5.16). Note that this
also provides a new interesting link between the largest eigenvalue, diagonal
scalings and transfer operators based on homogeneous difference equations
in multigrid algorithms.

Secondly, we see that for symmetric M-matrices we can derive a new MML
algorithm based on B = abs(A) which use the formulation (5.10), i.e. we
can this time build a preconditioner without scaling our matrices on each
individual level:

Algorithm 11 (Additive MML with abs(A) and no scalings in 1D)
We start with the M-matrix A = A;.

- On every level use Bj = abs(A;) and C; = Bj(:,2 : 2 : n) for prolongation
and restriction.

- After computation of Aj11 = C’]TA]'C’j save the diagonal entries in Dj .

- Based on the matrices C; and Dj, j = 0, ...,1, we can recursively implement
the multiplication of the matriz (5.10) with o given vector and thus use the
preconditioned CG method.

The multiplicative version of Algorithm 11 is straightforward: It can be
viewed as an analogue of Algorithm 10 without individual scalings on every
level and applicable only to M-matrices.

Algorithm 12 (Mult. MML with abs(A) and no scalings in 1D)
We start with the M-matrix A = A;.
- On every level use Bj = abs(A;) and C; = Bj(:,2 : 2 : n) for prolongation

109

and restriction.

- Compute Ajq = C’J-TA]-C’J- to set up the coarse grid matrix

- When going down we restrict the residuals using R; = C’JT and when going
up we use R].T for prolongation.

5.5.2 Properties of the new MML transfer operators

In 5.4.3 we said that we dare to use the estimate o = A, = 2 on every level,
because we assume that our transfer operators will preserve weak diagonal
dominance (and hence positive definiteness) on every level. To be on the safe
side, we would now like to make these statements precise. Our presentation
follows the Ph.D. thesis of P. De Zeeuw [37], ch. 3:

Obviously, the MML crucially depends on the fact that we are using Galerkin
coarse grid operators with an underlying variational principle, i.e. we obtain
the coarse level representations via

Rl,1 - Plfl (518)
A = R_AP. (5.19)

With (-,-);_; and (-,-), denoting the Euclidian inner product on the spaces
corresponding to the coarser level [— 1 and the finer level [, respectively, we
see that

(Armyuw—r, v—1)io1 = (AP, Poi_q) (5.20)

for all vectors u;_; and v;_; in the space belonging to the level [— 1. From
(5.20) we immediately understand that Galerkin coarsening with R, = Pl
preserves symmetry.

Anyway, we would like to have stronger results. For an M-matrix A we can
easily prove that MML-prolongations based on B = abs(A) preserve the M-
matrix property:

Let 1,_; and 1; denote the vectors of ones on the spaces belonging to the
levels [— 1 and [, respectively. Trivially, prolongations based on B = abs(A)
satisfy P11 = ¢; x1; with a constant ¢; € R and we can prove the following
lemma (see [37], p. 48):

Lemma 8 (Preservation of M-matrix property)

Let the coarse level matrices in a multigrid scheme be constructed via Galerkin
coarsening according to (5.18) and (5.19) and let the prolongation operators
P, satisfy P1;_1 = ¢; x 1; with a constant ¢, € R on every level . Then there

110

holds:

(i) if every row sum of the matriz A; equal zero, then every row sum of A; 4
equals zero.

(i) if every column sum of the matriz A; equal zero, then every column sum
of Ai_1 equals zero.

The proofs can both be given in one line each: As for (i) observe that
Al =R ARL =R (Aalia) = R0 =0
Similarly, (ii) holds because
AP 4y = (R AP) L =R ATPL =Ry o (AL 1,1) = 0.

Finally, note that the above lemma is valid even for nonsymmetric M-matrices.

5.5.3 A general MML algorithm for one-dimensional
problems and numerical results

We have not forgotten that our goal was an efficient multigrid algorithm
which also works in the case when we are not dealing with M-matrices: If A
is a symmetric weakly diagonally dominant tridiagonal matrix, then there is
an obvious generalization of the choice B = abs(A), namely

B =2 xdiag(A) — A. (5.21)

Furthermore, it is clear that if we build prolongations via (5.21) on the finest
level, then the matrix A, on the second level will already have become an M-
matrix, because all the positive entries in A = A; will have been multiplied
appropriately with negative weights. Note that the choice (5.21) for setting
up transfer operators reflects the original MML Algorithms 9 and 10 based
on estimating the largest eigenvalue of a diagonally scaled matrix.

We can now formulate a general one-dimensional MML algorithm for weakly
diagonally dominant M-matrices A:

Algorithm 13 (General additive MML in 1D — scalings optional)
If we do not want to scale on every level then we need to start with the matrix
A = Ay and to follow steps (1),(2) and (3).

If we choose the option to scale on every level, then we need to start with the

111

scaled matriz Ay and to follow steps (1),(2a) and (3a) instead:

(1) On every level use B; = 2 x diag(A;) — A; and C; = B;(:,2 : 2 : n) for
prolongation and restriction.

(2) After computation of Ajy1 = CjTAjCj we save the diagonal entries in
Djy and step forward with Aj,. .

(2a) After computation of Aj1, = C]-TAJ-C’J- we step forward with the scaled
matric flj+1.

(3) Based on the matrices C; and D;, j = 0,...,1, we can recursively imple-
ment the multiplication of the matriz (5.10) with a given vector and thus use
the preconditioned CG method.

(3a) Based on the matrices C; and D;yy = diag(Cijle’j), Jj=0,..1, we
can recursively implement the multiplication of the matriz (5.11) with a given
vector and thus use the preconditioned CG method.

The multiplicative counterparts of Algorithm 13 are given analogously to Al-
gorithm 10 in case diagonal scalings are to be included and analogously to
Algorithm 12 if we do not want to include diagonal scalings.

As we have explained before, we could in step (1) of Algorithm 13 also set
B; = abs(A;j) for j > 1, i.e. as soon as we are no longer on the finest level.

Finally, we still need to test whether it is preferable to include the diagonal
scalings or not. Therefore we revisit tables 5.7, 5.9 and 5.11:

‘ n H MML: Alg. 13 with scalings ‘ MML: Alg. 13 without scalings

27 13 22
28 14 22
29 16 26
210 17 29
211 18 39
212 19 39

Table 5.7a. CG iteration numbers for example (EX7), rex = 10~%.

112

‘ n H MML: Alg. 13 with scalings ‘ MML: Alg. 13 without scalings

27 7 7
28 7 7
29 8 7
210 7 6
211 7 6
212 7 6

Table 5.9a. V-cycle iteration numbers for example (EX7), rex = 107°.

‘ n H MML: Alg. 13 with scalings ‘ MML: Alg. 13 without scalings

27 5))
28 5))
29 5) 5)
210 5) 5)
21 5) 5)
212 5))
Table 5.11a. CG iteration numbers for T, = tridiag(1,2, 1) with rezx = 107,

From all our experiments we conclude that for additive preconditioners it
comes out to be favourable to work with diagonally scaled matrices. As for
the V-cycles our tests results showed that the scalings usually did not make
any difference in terms of iteration counts.

5.6 The two-dimensional case

The aim of this section is to generalize the derived method to the higher di-
mensional case. Therefore we have to decompose the original ill-conditioned
matrix into a sum of one-dimensional problems, e.g. A = A; + A,. Here, A;
and A, should be ill-conditioned, too, and such that the 1D Matrix Multilevel
approach works well. Furthermore, both matrices should be independent in
a certain sense, for otherwise the projections relative to A; lead to a strong
change of A; and vice versa. Such a decomposition is given in a natural way
by a PDE in terms of the parts relative to the derivatives in z-direction and
in y-direction. In the following we mainly consider uniform finite difference

113

discretizations of the 2D elliptic PDE

(a(@, y)u(z,y)e)e + (0(z, y)u(z,y)y)y = f(z,y)- (5.22)

5.6.1 Algorithms for separable problems

Let us first focus on a separable PDE, i.e. a(x,y) = a(z) and b(z,y) = b(y).
Then the matrix A can be written as a Kronecker sum (see e.g. [70])

A=A ®1) + (I ® Ags)

The matrix B that is applied in the standard multigrid approach is given
not by a Kronecker sum but by a Kronecker product B; ® By with B; =
tridiag(1,2,1). Hence, we will also choose a matrix B as a Kronecker product
B = B; ® B, and then use B to define the matrix C in the form C = BP
with P denoting the projection matrix.

Generalizing the one-dimensional MML, i.e. Algorithm 13, we will choose our
prolongations to be B = By ® By with

Bl = 2% dmg(AKl) — AKI and BZ = 2 % dmg(AKQ) — AK2

Furthermore, the elementary projection matrix P can be chosen as P =
P, ® P,, and then on the second level we get

CTAC = (CT A0y ® CTCy) + (CTCh @ CT AsCs) .

In the next step we can again define the restriction matrix via the Kronecker
product where the first factor is designed to improve on CT A C}, and the
second factor is related to 02T AgoCy. This is the direct generalization of
the 1D approach to higher dimensions via the Kronecker product. The 2D
projection is derived as the Kronecker product of the 1D projections for the
separated problems in Ax and Ago.

In the previous sections we showed that we might prefer to apply the Matrix
Multilevel method in connection with diagonal scalings on each level, par-
ticularly for additive preconditioners. This leads to difficulties in the higher
dimensional case: Then the 1D and the 2D diagonal scaling do not corre-
spond anymore. A resort would be to use the Jacobi scaled 1D matrices
Agj) and Agj) with the diagonal matrices ng) and Déj) for constructing the
prolongation matrices on every level j; in the same way the matrix A9 could

114

be scaled by ng) ® ng). Furthermore, the diagonal of the matrix AY) could
be used for smoothing in the form (5.11).

The following algorithm summarizes the MML algorithm for separable prob-
lems both with and without diagonal scalings:

Algorithm 14 (Additive MML for problems with Kronecker struc-
ture A = Ag1 ® I + 1 ® Ago — with optional scalings)

First set Agl) = Ay, Aél) = Agy and A = A:

- OPTIONAL: On every level j scale the matrices Agj) and Agj) with their
diagonals ng) and Dé‘j), respectively. Then also scale AY) on every level with
kron(DY DY),

- Like in Algorithm 13 compute

Bi(j) =2x% diag(AEj)) — AY

()

and C’i(j) = Bg‘j)(:,Q :2:n) fori = 1,2, on every level j. Then we get the
prolongation by CU) = C’fj) ® C’éj)

- Step forward with the matrices AEjH) = (Ci(j))TAEj)C’i(j) for i =1,2 and
with AU+ = (COYT ADCW)

- Then we can implement an additive preconditioner for the CG method ac-
cording to (5.10) or (5.11) in the cases with or without scalings, respectively.

Note that if we decide to include scalings we can expect very good results
particularly for the case that for the original problem the 1D and 2D diagonal
scalings coincide, e.g. if diag(A;) = const x I and diag(As) = const x I, or if
the partial problems Ay and Ags are already diagonally scaled.

5.6.2 Algorithms for general problems in more than
one dimension

Now let us consider general matrices of the form A = A; + Ay where A; and
Ay can be solved efficiently by the 1D Matrix Multilevel approach. We have
to replace the Kronecker products by usual multiplications of matrices. To
this aim we use a kind of semicoarsening and think of the prolongations in
the form

C:BP:(B1®B2)(P1®P2) - (BIP1®BQP2):
:(B1P1®I)(IT®B2P2) = Fl*Fg,

115

where [, is the identity matrix of half size and each matrix F; reduces the size
by a factor 1/2. Then we are able to write the prolongation in the following
form

F=00, = (Bi1P)® (Bl%) =
=(B@N)(P,@I)x (I, ® ByP,) = By(P,®I)* (I, ® By)(I, ® P,) =
=Bi(P®]) * By(,®Py) = FixF (5.23)

where B, = 2 x diag(A;) — Ay and By = 2 % diag(flg) — A, with the matrix
Ay = Ay(2:2:1n,2:2:n) chosen to be the result of a trivial projection of
Ay in z-direction. Hence, we get the whole 2D prolongation by F' = F} x F,
with F} an n x (n/2) matrix, and F, an (n/2) x (n/4) matrix. Then FAF”
is an (n/4) x (n/4) matrix. Thereby we do not need any Kronecker structure
of the given matrix A, but only two independent ill-conditioned parts A; and
As. The numerical realisation is analogous to Algorithm 14:

Algorithm 15 (Additive MML for problems with structure A =
A; + Ay — with optional scalings)

First set AV = A;, AV = A, and AW = A:

- OPTIONAL: On every level j scale the matrices A?’) and Agj) with their
diagonals ng) and Déj), respectively. Then also scale AY) on every level with
DY « DY,

- Like in Algorithm 13 compute

B;j) =2x diag(Agj)) - Aﬁj’ and Béj) =2x% diag(flgj)) — flgj)

with fléj) = Aéj)(Q :2:n,2:2:n) on every level j. Then we get the prolon-
gation CV) via (5.23).

- Step forward with the matrices AEjH) = (Ci(j))TAEj)C’i(j) for i =1,2 and
with AU+ = (COYT ADCW)

- Then we can implement an additive preconditioner for the CG method ac-
cording to (5.10) or (5.11) in the cases with or without scalings, respectively.

The multiplicative versions of Algorithms 14 and 15 are almost identical to
the additive algorithms: Prolongations and restrictions are obtained in the
same way and the identical coarse grid matrices are used. In case scalings
are included the residuals are restricted on the level 7 by multiplication with
(kron(DY), DY))=1/24(CD)T in the Kronecker case and with (DY) D§))=1/2

116

UNT 4 i . i i T
Y J
(CU))" in the general case, respectively; otherwise we can simply use (C'7))
for restriction.

In general we can write A in the form A = A; + .-+ A, for a d-dimensional
problem, where each term is related to the i-th direction. Then for A; we can
define a matrix B; = 2 x diag(A;) — A; and apply the related prolongation
F; to Ay, and trivial projections in z-direction on As, ..., A;. Then, F, is
given by the projected As, and elementary projections are again applied
on As,...,A; and so on. In the end we define F' = FiF,---F; with F} of
decreasing dimension.

5.6.3 Numerical Experiments for separable problems

The following numerical examples compare Algorithm 14 (Kronecker) and Al-
gorithm 15 (directionwise approach) to the standard approach for 2D prob-
lems. Furthermore, we still have to investigate if and when to use scaled

versions of our algorithms. In our tables scaled versions will be identified by
a bracketed ”SC”.

Let us first take a look at separable problems: Tables 5.12 and 5.13 deal with
additive preconditioners for CG:

| n [MDS | MML || Alg. 14 [Alg. 14 (SC) | Alg. 15 | Alg. 15 (SC) |

24 5 24 23 20 18 20 18
20 % 2° 28 25 26 25 26
20 5 26 37 38 31 38 31
27 % 27 44 52 38 52 38

Table 5.12. CG iteration numbers for A = A @ I + I ® Ago, rex = 1074,
with A from example (EX1) and Ay, from example (EX7).

| n [MDS || MML || Alg. 14 [Alg. 14 (SC) | Alg. 15 | Alg. 15 (SC) |
20520 28 26 13 26 13
252> | 38 32 15 32 15
20528 | 57 51 17 51 17
27«27 || 82 69 19 69 19

Table 5.13. CG iteration numbers for A = Ap ® I + 1 ® Ago, rex = 1072,
with Ak the diagonally scaled matrix from example (EX3) and Ak, the
diagonally scaled matrix from example (EX7).

117

Note that the problem investigated in table 5.13 is different in style from
the one in table 5.12, because the matrices Ag; and Ag, were diagonally
scaled in advance.

Tables 5.14 and 5.15 list iteration numbers for V-cycle solvers (with one
pre- and one postsmoothing step of the symmetric Gauss-Seidel method) for
separable problems:

| n [MDS || MML || Alg. 14 [Alg. 14 (SC) | Alg. 15 | Alg. 15 (SC) |

25 % 2° 30 16 16 16 16
20 5 26 44 16 16 16 16
27 % 27 ol 16 16 16 17
28 %28 || 115 17 17 17 17
29 %27 || 168 17 17 17 17

Table 5.14. Numbers of V-cycle iterations for A from table 5.12, rex = 1075,

| n | MDS || MML [| Alg. 14 | Alg. 14 (SC) | Alg. 15 [Alg. 15 (SC) |

25 % 2° 76 25 25 25 25
20 5 26 145 25 28 25 28
27527 | 238 27 28 27 28
28 % 28 || > 250 28 28 28 29
29 %27 || > 250 28 28 28 28

Table 5.15. Numbers of V-cycle iterations for A = BI+I® B, rex = 1075,
with B from example (EX7).

Tables 5.12 to 5.15 clearly demonstrate the superiority of the MML trans-
fer operators in comparison to standard prolongations and restrictions. Like
in 1D, diagonal scalings might pay off in additive preconditioners. Finally,
we would like to emphasize that for the problems in tables 5.14 and 5.15
the MML shows optimal computational behaviour — in the sense that the
numbers of iterations needed are independent of the problem size.

118

5.6.4 Numerical experiments for general two-dimensional
problems

We would now like to test general problems A = A; 4+ A, without Kronecker
structure. Therefore we consider uniform finite difference discretizations of
2D elliptic PDEs of the form (5.22) with right hand side f(z,y) = 1 and
homogenous Dirichlet boundary conditions on the unit square.

Let us first take a look at three problems where diagonal scalings seem rea-
sonable and might lead to a better performance of the MML, i.e. we look at
the case diag(A;) = diag(Az) or where the diagonal entries of A; and A, are
at least of the same orders of magnitude:

| n | Standard MG || MML | Algorithm 15 | Algorithm 15 (SC) |

25 % 2° 16 8 8
20 % 26 18 8 8
27 % 27 22 8 8
28 % 28 23 8 8
29 % 2Y 23 8 8

Table 5.16. Numbers of V-cycle iterations for a problem of the form (5.22)
with a(z,y) = b(z,y) = 1 + exp(8 * (x + y)) * sin(2 * (v + y))?, rex = 107°.

| n | Standard MG || MML | Algorithm 15 | Algorithm 15 (SC) |

25 % 2° 26 13 13
20 5 26 33 13 13
27 % 27 62 13 19
28 % 28 66 17 19
29 % 2° 68 17 20

Table 5.17. Numbers of V-cycle iterations for a problem of the form (5.22)
with a(x,y) =1+ exp(16 * (z + y)) * sin(2 x (x +y))? and
b(z,y) =1+ exp(17* (x +y)) * sin(2 * (v + y))?, rex = 107°,

Let us also take a look at an example that is not an M-matrix in order
to demonstrate the broader applicability of the two-dimensional MML com-
pared to standard multigrid. This matrix M was obtained by first setting
up the block tridiagonal matrix A =T ® I +1®T with T = tridiag(1,2,1).
Afterwards we only left the first and last off-diagonal blocks as well as the

119

second and last but one diagonal block untouched, but we made all the other
off-diagonal entries jump between 1 and —1 by flipping signs.

| n | Standard MG || MML | Algorithm 15 | Algorithm 15 (SC) |

25 % 2° 79 3 5
20 5 26 221 5 Y
27 % 27 > 250 5 Y
28 5 28 > 250 5 Y
29 5 27 > 250 5 Y

Table 5.18. Numbers of V-cycle iterations for 'jump matrix’ M, rex = 1075,

Finally, let us go for a completely different example that is frequently used
to test algebraic multigrid approaches, the so-called cut-square problem
(see e.g. [5] or [4]): It is a version of (5.22) with discontinuous coefficients
and we define it by

1 for (z,y) € [0,1]%\[0.25,0.75]2

alz,y) = blz,y) = { val for (z,y) € [0.25,0.75]? (5:24)

For such an interface problem we can no longer expect diagonal scalings to
be reasonable — and this is confirmed in our numerical experiments:

| n | Standard MG || MML | Algorithm 15 | Algorithm 15 (SC) |

20 % 2° 104 11 > 250
20 % 26 111 11 > 250
27 % 27 116 11 > 250
28 % 28 120 11 > 250
29 % 29 123 11 > 250

Table 5.19. Numbers of V-cycle iterations for the cut-square problem (5.24)
with val = 100, rex = 1075.

Table 5.19 is very remarkable: MML without scalings shows optimal compu-
tational behaviour and beats standard multigrid significantly. On the other
hand, if we include diagonal scalings within Algorithm 15 then the perfor-
mance deteriorates completely.

120

5.6.5 Brief analysis of the two-dimensional MML pro-
longations

We would now like to explain the behaviour observed in table 5.19 in more
detail:

Let us start with a five-point discretization of the cut-square problem (5.24)
which we will again write as A = A; + Ay: When we run Algorithm 15 on
that problem, we apply first apply a semicoarsening step in x-direction based
on By = abs(A;) which is then followed by coarsening in y-direction based
B, = abs(ﬁg) with Ay = Ay(2:2:m,2:2:n). According to subsection
5.5.1 we can write these directionswise prolongation operators as stencils in
the forms

=p9 1 P and @ =Y 1 pYT (5.25)

with p) 4+ p{ =1 and p¥ + p* = 1. It is now very obvious why scaling
the matrices A; and A, individually before computing the transfer operators
would lead to totally corrupted stencils; basically, all the information on the
underlying differential equation (5.24) and directional dependencies would
be lost if we scaled 4; and A, in advance.

Note that we can merge the two one-dimensional stencils (5.25) into one big
stencil expressing the two-dimensional prolongation operator as

pp) p plplY)

p=| p¥ 1 Y

P p pip”
Obviously, for any prolongation p; defined via the above stencil there holds
pl;_1 = 1; on every level [: Hence Lemma 8 is applicable and we can be
sure that Algorithm 15 will preserve the M-matrix property on every level.
(Note that both statement and proof of Lemma 8 are independent of the
dimension.)

We would finally like to mention that ideas for prolongations very similar to
(5.25) have been proposed by Alcouffe, Brandt, Dendy and Painter in [1] and
by Griebel in [56], ch. 5, for M-matrices arising from diffusion equations and
convection-diffusion problems, respectively. However, their algorithms differ
from Algorithm 15 in certain aspects; in particular, they do not set up coarse
grid versions of the matrices A; and A, in the coordinate directions.

121

Other successful matrix-dependent prolongation operators have been pro-
posed by Dendy in his ”"black box multigrid” approach in [34] and [35] on
the basis of ”platting” discretization stencils.

5.6.6 Summary, conclusions and outlook

We have developed a purely matrix-dependent multilevel scheme which can
be applied to symmetric weakly diagonally dominant matrices A having the
same sparsity pattern as a uniform 9-point discretization of the Laplacian,
i.e. A is block tridiagonal with tridiagonal blocks.

As we have pointed out in the last two subsections, it might be dangerous to
include diagonal scalings in Algorithm 15 in higher dimensions — and, hence,
except for special cases outlined in subsections 5.6.3 and 5.6.4, we strongly
recommend not to do it.

As a major result of our investigations we would at this point like to repeat
Algorithm 15 in a multiplicative version without mentioning the optional
diagonal scalings. The reader may view it as the ”final” version of the MML
algorithm for two-dimensional problems:

Algorithm 16 (Multiplicative MML for 2D problems with struc-
ture A = A; + A,)

First set Agl) = Ay, AS) = Ay and AWM = A:

Like in Algorithm 13 compute

ij) =2x diag(Agj)) - Aﬁj’ and Béj) =2x% diag(flgj)) — flgj)

with flgj) = Agj)(2 :2:1n,2:2:n) on every level j. Then we get the
prolongation CY9) via (5.23).

- Step forward with the matrices AEjH) = (Ci(j))TAEj)C’Z-(j) for i =1,2 and
with AUV = (CW)T AD V)

- When going down we restrict the residuals using RY) = (CU)T and when
going up we use CY) for prolongation.

A possibility for future investigations could be to test Algorithm 16 — or its
three-dimensional counterpart — for challenging convection-diffusion prob-
lems, e.g. with discontinuous coefficients. However, we are aware that there
are very successful and established matrix-dependent transfer operators for
convection-diffusion problems by De Zeeuw [36]. First experiments for rather

122

simple convection-diffusion equations are indicating that these transfer op-
erators are strongly superior to Algorithm 16. But note that this is not
actually surprising as De Zeeuw’s prolongations are particularly designed for
convection-diffusion problems, whereas the MML was meant to be a general
approach for symmetric weakly diagonally dominant matrices.

5.7 Case study on elliptic equations with highly
oscillatory coefficients

We have established that the MML gives a very robust scheme suitable for
elliptic problems with highly oscillatory or discontinuous coefficients. In the
following case study we would like to compare the behaviour of the MML
for problems with rapidly oscillating coefficients to an approach by Engquist
and Luo (see [82], [45] and [44]). They proposed to set up coarse grid oper-
ators analytically by discretizing the corresponding homogenized equations.
Similarly to the MML, their methods are also motivated via eigenvalues:
One characteristic feature of problems with highly oscillatory coefficients is
that the smallest eigenvalues do not belong to very smooth eigenfunctions —
and thus, Engquist’s and Luo’s algorithms try to cure the fact the standard
multigrid can not represent well the smooth eigenfunctions on coarser grids.

5.7.1 The work by Engquist and Luo

Following [82], ch. 1, let us consider a uniform finite difference discretization
of the two-point boundary value prolem

X

with homogenous Dirichlet boundary conditions and continuous right hand
side f(z) on the unit interval. In (5.26) bc(z) = b(%) is a 1-periodic positive
function.

From the theory of homogenization (see e.g. [3]) we know that as € goes to
0, the solution of (5.26) converges strongly in the || - ||-norm to the solution
u of the corresponding homogenized equation

1 1 . B)
—(/) s =) (5.27)

123

subject to the same boundary conditions as (5.26). Observe that (5.27) no
longer has oscillating Coefﬁcients; instead, it is a (well-behaved) 1D Laplacian.
Note that p = fo bl ds)~! denotes the harmonic average.

Based on the 0bservat1on that standard multigrid with Galerkin coarsening
has difficulties treating problems of the type (5.26) and that natural coarse
grid operators fail completely, Engquist and Luo proposed to use a discrete
version of (5.27) as the coarse grid representation.

Luo was able to prove the following theorem (see [82], pp. 51):

Theorem 8 (Twogrid with homogenized coarse grid operator)

We want to solve the linear system A, o = b which represents a discretization
of (5.26). Assume we would like to solve this system via a twogrid method
employing a discrete version Ay of (5.27) as the coarse grid representation.
Let the smoothing operator be chosen as S = I — A, with ¢ denoting the
inverse of the largest eigenvalue of A.p. Then, like in (2.12), the twogrid
operator M with v smoothing steps can be written as

M = (I — PA/RA.;)S”
The twogrid method converges, i.e.
p(M) < pPo <]-7
whenever there exists a constant C' such that either one of the following con-
ditions 1s satisfied:
(i) the ratio of h to € is less than ¢*/* and
v > Ch=26Y In(e);
(i) the ratio of h to € belongs to the set of Diophantine numbers and

v > Ch™"2In(h)

Note that if the theory of homogenization is applied in numerical analysis
then the ratio of h and € plays a major role: In particular, it should be
irrational — a fact that has its mathematical foundations in ergodic theory
(see [43] for details).

124

5.7.2 Numerical results in 1D

We will investigate four different choices to combine transfer operators and
coarse grid representations to solve a discrete version of (5.26):

e Galerkin operator and standard prolongations (GAL — Std.),

e Galerkin operator and MML prolongations according to Algorithm 12
(GAL - MML),

e Homogenized operator and standard prolongations (HOM — Std.),

e Homogenized operator and MML prolongations according to Algorithm
12 (HOM - MML).

We choose the same example problem as Luo in her Ph.D. thesis (see [82],
p. 63), i.e. we set

be(z) = 2.1 + 2 % sin(27) (5.28)
€

with the harmonic average
p=m(1/b)"" =1.5618
in equation (5.27).

Like in [82], ch. 4, we choose € = \/2h in our numerical examples, i.e. in the
following table the value of € depends on the number of unknowns n. Clearly,
in the context of homogenized coarse grid representations it is very sensible
to investigate on twogrid steps only.

| n || GAL - Std. | GAL - MML | HOM - Std. | HOM — MML |

27 90 7 85 76
28 97 7 92 82
29 100 7 96 86
210 106 7 114 99
211 108 7 104 93
212 112 7 107 96

Table 5.20. Iteration numbers for a twogrid method for solving (5.28) with
€= \/E/h and two Gauss-Seidel steps for smoothing.

Table 5.20 points out that Galerkin coarsening with proper matrix-dependent

125

transfer operators is the clear winner. Anyway, with homogenized coarse grid
operators one may still beat standard multigrid; furthermore, Engquist’s and
Luo’s approach works better if combined with MML prolongations than with
standard transfer operators.

5.7.3 Numerical results in 2D

As it is very common with convergence results for multigrid algorithms with-
out Galerkin coarse grid operators there is no analogue to Theorem 8 for
general problems in 2D, because one does not know enough about eigenval-
ues and eigenvectors of the system matrices in that case. However, as pointed
out [82], pp. 58, Theorem 8 can be carried over to separable problems of the
form (5.22) in case the coefficients are highly oscillatory in one direction only.
Hence let us investigate uniform finite difference discretizations on the unit
square of the separable problem

(a(z)u(z,y)2)e + (be(y)ulz,y)y)y = f(2,y) (5.29)
with a(r) =1 and b(y) = 2.1 + 2 * sin(27Y) as before.

As pointed out in [82], pp. 56, the homogenized equation corresponding to
(5.29) has the form

d*uxx+ﬂ*uyy:f(xay)

where @ denotes the arithmetic average

and as before u denotes the harmonic average
p=m(1/b) ' =1.5618

Like in 1D we will investigate four different choices to combine transfer op-
erators and coarse grid representations to solve a discrete version of (5.29):

e Galerkin operator and standard prolongations (GAL — Std.),
e Galerkin operator and MML prolongations according to Algorithm 16
(GAL — MML),

126

e Homogenized operator and standard prolongations (HOM — Std.),

e Homogenized operator and MML prolongations according to Algorithm
16 (HOM — MML).

Here are the results for twogrid step with fixed ¢ = /2/128.

n || GAL - Std. | GAL - MML [HOM - Std. | HOM - MML |

25 % 2° 27 9 41 37
20 5 26 85 10 76 60
27 % 27 73 9 70 61
28 5 28 93 9 81 I6)

Table 5.21. Iteration numbers for a twogrid method for solving (5.29) with
¢ = 1/2/128 and two Gauss-Seidel smoothing steps.

Our observations are like in one dimension: Again, proper variational
coarsening with the MML beats all the other approaches by far: We under-
stand that ”Galerkin coarsening gives good homogenization”.

This case study emphasizes on the merits of Galerkin coarsening for certain
classes of problems: In Chapter 4 we saw that for dense Toeplitz matrices it
is preferable not to take the difficulties of setting up a Galerkin operator and
replace it by an appropriate natural coarse grid operator instead. However,
for the class of problems investigated in this section Galerkin coarsening with
proper matrix-dependent prolongations and restrictions simply needs to be
the method of choice.

127

Chapter 6

Image deblurring and the
multigrid method of the second
kind

Today image processing is maybe the most eminent field of applications of
Toeplitz matrices (see e.g. [19], [20]). The most well-known example are
dense matrices from image deblurring.

In the following we will study Toeplitz and BTTB matrices as they arise
from deblurring models based on integral equations of the first kind. We
shall use Tikhonov regularization to solve these inverse problems. Our in-
vestigations are based on a proposal for a multigrid algorithm by R. Chan,
T. Chan and W. Wan [22] which employs a semi-iterative smoother. We shall
put their algorithm into the context of the so-called ”"multigrid method of
the second kind” by Hackbusch (see [62], ch. 16, and [63], ch. 5) which allows
to treat integral equations of the second kind efficiently and uses Richardson
as a smoother. Indeed, we confirm the need for a semi-iterative smoother
expressed in [22]. However, we can significantly improve the algorithms by
R. Chan, T. Chan and W. Wan by using a natural coarse grid operator: We
shall explain clearly why an efficient O(nlogn) algorithm for image deblur-
ring can in general only be gained if coarse grid operators are constructed
via rediscretizations. Finally, we test our new multigrid algorithms for recon-
structing images subject to atmospheric turbulence blur and Gaussian white
noise.

Parts of the results of this chapter have already been published in sections 4
and 5 of the paper [73].

128

6.1 Introduction

6.1.1 The one-dimensional model

Let us start with an idealized model for one-dimensional image deblurring.
There we want to solve an integral equation of the first kind of the form

Ku(z) = /Q bz — 2)u(e)da’ (6.1)

with a convolution kernel of the form k(x) = exp(—x?/0?) with o €]0,1[on
the interval Q = [—p,p|. The operator K is often referred to as ” Gaussian
blur”.

We can now discretize this integral equation on a uniform grid via the mid-
point quadrature rule and will end up with a Toeplitz matrix (see e.g. [19],
sec. 4.4, or [91], ch. 2): We work with the mesh size h = 2 and the midpoints

h
l‘j:_p+(2*j_1)*§7 j:1727“"n‘

Then we use the midpoint quadrature rule and the convolution operator (6.1)
translates into

D n—1
Ku(z;) = / k(z; — 2" u(z")dz' ~ Zk(xz — z;)u(z;)h = [Ka;
p =
with the symmetric positive definite Toeplitz matrix

K = hxtoeplitz(k((1 —n) * h),...,k(0), k(1 xh),...,k((n—1)xh)) (6.2)
and the vector u = [u(xy), ..., u(x,)]’.
We finally note that discretizing an integral operator via quadrature is fre-
quently referred to as Nystrom’s method going back to papers of E. Nystrom
[85] and [86] from 1928 and 1930, respectively.

6.1.2 Inverse problems and Tikhonov regularization

It is well known that the blurring matrices K are highly ill-conditioned and
hence deblurring algorithms are extremely sensitive to noise [52], [80], i.e. we
are dealing with an inverse problem and hence we need to regularize.

129

Let us go a little bit more into detail: The integral operator K defined in
(6.1) is compact (see [117]) and hence we are dealing with an ill-posed prob-
lem. Thus it would be completely useless simply to invert the matrix K
from (6.2); the computed solution would be totally corrupted by the small
eigenvalues of K.

The following paragraphs are not meant to serve as an introduction to in-
verse and ill-posed problems: Instead for a sound and detailed overview on to
this challenging and important subject we refer to the books [106], [81] and
[42] for the mathematical theory and to [67] and [112] for the computational
aspects.

Generally speaking, the idea of regularization is to replace an ill-posed prob-
lem with one that is well-posed. In this thesis we shall only investigate on
Tikhonov regularization. Following [91], ch. 2, we can write this idea in an
abstract Hilbert space setting as

uy = argmeig(HlCu—z||2+)\<£u,u>), (6.3)

i.e. we want to find a regularized solution u, — belonging to the regularization
parameter A —that minimizes the expression in the brackets on the right hand
side of (6.3) on a given subspace S of the domain of our integral operator
IC. We can think of (6.3) as a penalized least squares method and interpret
||ICu — z||* as the ”discrepancy functional” ruling how well the regularized
solution fits the given data and (Lu,u) as the penalty functional.

In classical Tikhonov regularization we work in the space Ly(£2) and set L
simply to be the identity, i.e. (Lu,u) = ||ul|3. In that case after discretization
our system matrix for solving (6.1) becomes

L=K+M\ (6.4)

with regularization parameter A\. Note that we do not have to work with
the normal equations in this special case, because K is guaranteed to be
symmetric positive definite. (In other words: In general, (6.3) would result
in a system matrix of the form L = K"K + \I.)

There is also another variant of Tikhonov regularization which is sometimes
also used in the context of image restoration due to the fact that it penalizes
a little better against solutions with spurious oscillations: Instead of the

130

Ls-norm the Hi-norm is used with

d
0%u

j=1

i.e. L is the d-dimensional Laplace operator. In this case we speak of Hi-
regularization. After discretization our system matrix (6.1) becomes

L=K+M\A

with A = tridiag(—1, 2, —1) denoting the one-dimensional Laplacian. (Again,
as K is s.p.d. we can avoid setting up the normal equations in this special
case.) For simplicity, in the following our focus will lie on the Ly-based case
(6.4). However, carrying over our reasoning to the H;-based case will be
straightforward.

6.1.3 The algorithm of R. Chan, T. Chan and W. Wan

Efficient multigrid treatment of image deblurring problems comes out to be
rather difficult: So far, there has essentially been only one paper on the sub-
ject which was written by R. Chan, T. Chan and W. Wan [22]. (This paper
can also be found as chapter 8 in Wan’s Ph.D. thesis [113].)

The paper [22] reports that for the system matrices in question standard
relaxation methods like Richardson fail as smoothers. (This problem is ex-
plained with the fact that small eigenvalues K belong to highly oscillatory
eigenvectors whereas large eigenvalues can be associated with smooth eigen-
vectors.) To overcome this difficulty a semi-iterative smoother is used: They
employ conjugate gradients with optimal cosine transform preconditioner
[23]. The approach does not make any explicit use of Toeplitz structure; fur-
thermore, standard prolongations and restrictions and Galerkin coarsening
are used without any further explanation (see [22], p. 70).

Do the methods presented in Chapter 4 relate to this case? First of all, we
need to state that obviously there is no underlying function connected with
our matrices K from (6.2). However, if we simply assign functions to ma-
trices of different size, we quickly observe that we are dealing with a ”single
zero of infinite order” located at zo = .

Anyway, this information does not help us to devise multigrid transfer op-
erators. The reasoning associated with (4.2) is no longer applicable as we
certainly do not want to use anything like b(x) = (1 — cos(x)).

131

6.2 The multigrid method of the second kind
enhanced by semi-iterative smoothing

Integral operators of the form (6.1) have been considered for multigrid treat-
ment — however, not in connection with integral equations of the first kind
like in the previous section, but in connection with integral equations of the
second kind (which usually are much better behaved). We found out that the
observations and algorithms reported in [22] make much more sense as soon
as they are put into the context of the so-called ”multigrid method of the
second kind” which was developed mainly by Hackbusch in the eighties for
the purpose of an efficient iterative treatment of discrete Fredholm integral
equations of the second kind (see [62], ch. 16, and [63], ch. 5).

6.2.1 Appropriate transfer operators

Let us take up the problem of finding suitable transfer operators for (6.2)
again with which we ended subsection 6.1.3.

Studying the work of Hackbusch, we see that this question has long been an-
swered: As pointed out [63], sec. 5.3, discretizations K of the operator I and
the corresponding prolongations P, and restrictions R; need to satisfy cer-
tain consistency conditions. From these conditions it follows that canonical
choices for P, and R; need to be used, in particular the prolongations P, need
to be standard interpolation schemes of the same order as the discretization.
For the restrictions R, trivial injections (2.26) are shown to be the canonical
choice, but it is pointed out that weighted schemes with R; = P also come
out to be suited.

To be more specific let us go back to the discretizations of our integral oper-
ator (6.1) via the midpoint quadrature rule: In this case we know that the
discretization error will be of order O(h?) and as explained in [63], p. 176
and p. 185, the prolongations P, should be the standard linear interpolations
given by (2.18). Employing trivial injections (2.26) as restrictions R; comes
out to be the most straightforward choice, because then

holds (see [63], pp.187, or [62], pp. 308, for details). When we test our algo-
rithms it will later be interesting to check whether weighted restrictions or
trivial injections lead to better numerical results.

132

As from the Toeplitz point of view we would like to emphasize that Hack-
busch’s theory clearly states that it would be totally inappropriate to scale
the matrix via the diagonal matrices diag(1, e*™, e**" ...} from (4.6) in order
to move the ”zero of infinite order” at xy = 7 to the origin for the discrete in-
tegral operators K from (6.1). In this case shifting the zero via (4.11) would
mean violating consistency conditions and thus corrupt the whole multigrid
approach.

6.2.2 The multigrid method of the second kind

Let us view our system matrix L = K + Ax I in terms of a Fredholm integral
equation of the second kind: Setting k(z,y) := —k(z,y) and obtaining a
discretization K via the midpoint quadrature rule we can rewrite (6.4) as

L=XAxI—-K (6.6)
in the standard form of an integral equation of the second kind.

It will be very helpful first to take a closer look at the the multigrid method
of the second kind and convergence results known about it:

Let K denote a discretization of our original integral operator of convolution
type as before and A > 0 be positive parameter. The multigrid method of the
second kind for solving discrete Fredholm integral equations of the second
kind written in the form

(I — (1/X) « K)x = (1/\) % b (6.7)

is a W-cycle solver which usually employs only one presmoothing step of
the Richardson iteration and no postsmoothing. Now we know that the
Richardson method — if it were used as a stand-alone solver — converges if
and only if

p(K) <\
On the other hand for p(K) > A Richardson will diverge rapidly (see also
[63], pp. 171).

In standard applications of integral equations of the second kind we mostly
deal with the case A = 1 and then the multigrid method of the second kind
will usually work out perfectly for the given problem (6.6). However, as soon

133

as A becomes small, problems can arise due to the fact that the Richard-
son smoother is strongly divergent, because the smoothing steps ”worsen”
the approximate solution in every iteration (and on each level): Of course,
convergence of the Richardson iteration itself is not a condition for the con-
vergence of the multigrid method of the second kind on the problem (6.7).
However, as shown in [63], pp. 200, the convergence factor of the standard
version of the multigrid method of the second kind (i.e. the variant with one
Richardson smoothing step on every level) depends quadratically on (1/A);
this means that for very small A the multigrid method of the second kind
will also diverge rapidly.

Furthermore, there are variants of the multigrid method of the second kind
which are especially designed for the case of smaller A and also employ
Richardson smoothing: We need to mention in particular an algorithm by
Hemker and Schippers [68] and an algorithm by Hackbusch which basically
misses out every second smoothing step on each of the coarse levels (see [62],
sec. 16.2.3, or [63], sec. 5.5.5). As pointed out in [63], p. 211, Hackbusch’s
method of missing out certain smoothing steps is not only cheaper compu-
tationally, but one is also never worse off than with the variant by Hemker
and Schippers. Furthermore, Hackbusch could show that for his improved

variant the convergence factor of the W-cycle solvers depends only linearly
on (1/A).

6.2.3 Good smoothing via conjugate gradients

In plenty of numerical tests we have checked very carefully that even the
improved variants of the multigrid method of the second kind employing
Richardson smoothing do not lead to convergent algorithms for the small
regularization parameters A we need to deal with in image deblurring prob-
lems. As explained before the small values of A in (6.4) render the multigrid
method of the second kind impractical and make it diverge quickly. Note
also that L in (6.4) usually exhibits huge condition numbers due to a vast
range of magnitudes of eigenvalues.

According to the observations of R. Chan, T. Chan and W. Wan all our nu-
merical experiments also confirmed the need for a semi-iterative smoother:

As we explained in the previous subsection, the problems of Richarson smooth-
ing are mainly due to the fact that it diverges rapidly for small A\. Thus an
appropriate smoother would be a scheme that never diverges for problems of

134

the form (6.4) — and the (preconditioned) conjugate gradient method is an
algorithm known to have this property (see e.g. [19]). As we shall see in the
next subsection conjugate gradients combined with the circulant precondi-
tioner from Lemma 6 gives a very efficient smoother.

Finally, we would like to emphasize that we improve the algorithms from the
paper [22] significantly in one aspect: We again prefer to use a natural coarse
grid operator — instead of Galerkin coarsening used by R. Chan, T. Chan and
J. Wan (see [22],p. 70) — in order to preserve Toeplitz structure on the coarse
levels. Note also that it is problematic to compute the optimal T. Chan
circulant preconditioner — which is needed within our PCG smoothing — for
a general dense matrix A € R**" (- like e.g. a coarse grid matrix obtained
via the Galerkin approach —) with a computational effort less than O(n?); on
the other hand, as long as we construct our coarse level matrices via redis-
cretizations we will have Toeplitz structure on all levels and can set up our
preconditioner with O(n) efforts as explained in subsection 3.2.3.

Finally, note that the conjugate gradient algorithm can not be expressed as a
stationary iterative method in the form (2.8). Thus our multigrid cycles are
no longer available as preconditioners for standard Krylov subspace solvers:
In fact, our multigrid preconditioner changes during the iteration as a result
of the PCG-smoothing. However, we could use so-called ”flexible” Krylov
subspace methods, like e.g. the FGMRES variant by Saad [93], which allows
to use a different preconditioner in every iteration step. But as our system
matrix (6.4) is symmetric positive definite, symmetric versions of flexible
Krylov solvers would also come into account (see [32]).

6.2.4 Numerical results for one-dimensional problems

In the following we give numerical results for discretizations of the one-
dimensional deblurring problem (6.1) on €2 = [—1, 1] using Ly-based Tikhonov
regularization with different regularization parameters A\. As we said we have
implemented a multigrid algorithm using conjugate gradients with the opti-
mal circulant preconditioner [28] as a smoother. In all our tables the multi-
grid solvers employ two presmoothing and no postsmoothing steps.

Throughout the whole chapter we always employ the following stopping cri-
terion to obtain the iteration counts we list in our tables:
17l

<107°
[rO o

135

Again, %) denotes the residual after j iterations and () the original resid-
ual, i.e. we stop iterating when the relative residual corresponding to the
maximum norm is less or equal 10,

Within our multigrid cycles we also wanted to check whether it is prefer-
able to use trivial injection (2.26) for restriction what is motivated by the
fact that it satisfies condition (6.5) or if the standard full-weighting operator
(2.20) gives the better results. We will distinguish these two choices by the
abbreviations "MG (triv)” and "MG (lin)”, respectively.

The following tables 6.1a, 6.1b and 6.1c list the iteration counts for W-cycle
solvers with natural coarse grid operators and two presmoothing steps of
circulant-preconditioned CG for the choice o = 0.1 in (6.1) and for the three
regularization parameters A = le — 3, A = le — 4 and A = 1le — 5. For com-
parison we also list the iteration counts of CG with circulant preconditioning
as a stand-alone solver, abbreviated by ” Circ-CG”.

| number of unknowns [| 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |

MG (triv) 51 5 | 4] 3 | 3 2 3
MG (lin) 5 4 | 4 | 3 | 3 3 3
Cire-CG 91 9 | 9 | 9 | 9 9 9

Table 6.1a. Iteration counts for 1D deblurring problem (6.4) with A = 1le—3.

| number of unknowns [| 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |

MG (triv) 6 | 5 | 5] 5 | 4 3 3
MG (lin) 9 7] 6 | 5 | 5 1 1
Cire-CG 15| 15 | 16 | 15 | 15 | 15 15

Table 6.1b. Iteration counts for 1D deblurring problem (6.4) with A = le —4.

| number of unknowns [| 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |

MG (triv) 0] 10 8 | 6 | 4 1 3
MG (lin) 37 | 26 | 17 | 12 | 9 7 6
Cire-CG 27 | 25 | 27 | 26 | 26 | 26 | 26

Table 6.1c. Iteration counts for 1D deblurring problem (6.4) with A = le —5.

136

Tables 6.1a to 6.1c show that by using circulant-preconditioned conjugate
gradients as a smoother we can obtain the typical convergence behaviour of
the multigrid method of the second kind also for the case of very small A,
i.e. iteration numbers even decline for a larger number of unknowns. Hence
the idea to employ a semi-iterative smoother can be seen as an extension of
the multigrid method of the second kind in order to handle very small A.

Furthermore, we observe that using trivial injection (2.26) as the restriction
operator leads to lower iteration counts in our W-cycle solvers. Hence the
theoretical condition (6.5) which comes up in the mathematical analysis of
Hackbusch is also meaningful in practice. Finally, we would like to emphasize
that the multigrid structure comes out to be sensible and to pay off from the
point of view that for large problems and small A our W-cycle solvers need
significantly less PCG smoothing steps on the finest level than circulant-
preconditioned CG used as a stand-alone solver.

We would like to admit right now that the comparisons with fixed regu-
larization parameters A reported in the previous tables may seem slightly
questionable from the point of view of solving an inverse problem from signal
or image processing. Certainly, the regularization parameter would normally
not be picked without looking at the matrix first. For criteria for choosing
the regularization parameter like e.g. the generalized cross-validation (GCV)
method, the Cr-method or L-curve based schemes we again refer to the
books by Hansen [67] or Vogel [112]. Anyway, the focus of this work lies
on efficient numerical linear algebra and not on regularization and inverse
problems; hence we are deliberately presenting our numerical results in this
way in order to focus on the strong connection of our algorithms and the
multigrid method of the second kind.

In order to strengthen this connection to the multigrid method of the second
kind we also applied our algorithms to a problem with a kernel very much
different from the blurring operator given by (6.1). The example is taken
from [63], p. 124, like (6.1) it is of convolution type but the kernel is defined
by

k(z,y) = _;_ (6.8)

|z =y

Note that this kernel exhibits a discontinuity.

The following table lists iteration counts for Fredholm integral equations of

137

the second kind with system matrices
L=K-\

with K denoting a discretization of the integral operator with the non-smooth
kernel (6.8). Like before, our W-cycle solvers use two steps of PCG for pres-
moothing:

| number of unknowns [| 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 |

MG (triv) 51 4 | 3] 3 | 3 3 2
MG (lin) 5 | 4 | 4 | 4 | 3 3 2
Cire-CG 71 7 | 7 | 7|7 7 7

Table 6.2. Iteration counts for a discrete Fredholm integral equation of the
second kind: The kernel is chosen to be (6.8) and A = le — 4.

Comparing tables 6.1b and 6.2 we reckon that the problem with the kernel
(6.8) is less ill-conditioned and hence the discretized problem is easier to
solve. In fact, it can proved to be true that the smoother the kernel, the
faster the singular values decay to zero — and hence the more ill-conditioned
are the discretization matrices (see e.g. [67]).

6.3 The twodimensional case

6.3.1 The model and its discretization

It is straightforward to carry over the algorithms from the previous section
to practical (i.e. two-dimensional) image deblurring problems: There we are
dealing with a two-dimensional Gaussian blur, i.e. we need to solve an integral
equation of the first kind of the form

Kulwy) = [B =y = ule', /)i’ dy (6.9

Q
with a convolution kernel k(z, y) = exp(—(2* + y*)/0?) with o €]0, 1] on the
square 2 = [—p, p]>. This kernel models atmospheric turbulence blur and it

is used in practice e.g. for the restoration of satellite images.
Analogously to Section 6.1, we discretize via midpoint quadrature and end

138

up with a positive definite BTTB matrix K having a ”single zero of infinite
order” at zy = (m,) (see e.g. [19], sec. 4.4, or [91], ch. 2):

To see this let us again work with the uniform mesh size h = %” and the
midpoints

. h . h .
= —pt 2ok, y=—p+(2ej-l)rg, Lj=12..n

Then we use the midpoint quadrature rule and the two-dimensional convo-
lution operator (6.9) translates into

Ku(z;,y;) = // —yu(z',y")dx'dy’
—p

n—

,_.
,_.

n—

Q

h? x (k(x; — 20,y — ys)u(r, ys))

ﬁ
I
=)

L w
I
o

~ [Ku;;
with the symmetric positive definite BT TB matrix
K =h*+« BTTB([ki_n,k2—n, ..., ko, k1, ..., kn_1]) (6.10)
having the columns
k; = [k((1 —n)*h,j*h),....k(0,j*h),... ., k((n—1) xh,j*h)]"

and the vector u of unknowns formed by lexicographic row-wise ordering.

Anyway, as for the mathematical theory concerning regularization and the
multigrid method of the second kind the treatment of the two-dimensional
convolution operator (6.9) does not differ at all from the one-dimensional
case.

Like in subsection 6.2.4 we can build efficient multigrid algorithms by em-
ploying conjugate gradients with either the optimal BCCB preconditioner by
T. Chan and J. Olkin [31] from Remark 4 or the Block circulant extension
preconditioner from Algorithm 8 as a smoother. Note that this idea can only
lead to a practical O(nlogn) image deblurring algorithm if we get our coarse
grid operators via rediscretization. In particular, observe that the Block cir-
culant extension preconditioner from Algorithm 8 is only defined for BTTB
matrices at all.

139

6.3.2 Numerical results

The following tables test our algorithms for various regularization parame-
ters. We are dealing with a discretization of the two-dimensional deblurring
operator (6.9) on = [—1,1]%. Again, our W-cycle solvers employ two pres-
moothing and no postsmoothing steps.

Anyway, this time more different variants are to be considered than in the
1D case: Within our multigrid algorithms we wish to test two different re-
strictions and two different BCCB preconditioners inside our PCG smoother.
Like in subsection 6.2.4 ”triv” will indicate that we use trivial injection (2.26)
for restriction whereas ”lin” identifies the full weighting operator (2.22). As
the BCCB preconditioner by T. Chan and J. Olkin [31] from Remark 4 mini-
mizes the Frobenius norm we indicate it by "FR-CI” whereas ” EX-CI” stands
for the block circulant extension preconditioner. Analogously, ”FR-CI-CG”
and "EX-CI-CG” identifty BCCB-preconditioned conjugate gradient meth-
ods as stand-alone solvers.

The following tables 6.3a, 6.3b and 6.3c list the iteration counts for our W-
cycle solvers with natural coarse grid operators for the choice ¢ = 0.05 in
(6.9) and for the three regularization parameters A = le — 3, A = le — 4 and
A = le — 5. The linear systems are of the form (6.4), i.e. we use Lo-based
Tikhonov regularization.

| number of unknowns || 64 « 64 | 128 128 | 256 * 256 | 512 % 512 | 1024 x 1024

MG (FR-CI, triv) 6 5 1 1 1
MG (FR-CI, lin) 7 5 5 1 1
FR-CI-CG 12 12 11 11 11
MG (EX-CI, triv) 3 3 3 3 3
MG (EX-CI, lin) 3 3 3 3 3
EX-CLI-CG 8 8 8 8 8

Table 6.3a. Iteration counts for 2D deblurring problem (6.9) with A = 1le —3.

140

[number of unknowns || 64 % 64 | 128+ 128 | 256 * 256 | 512 512 | 1024 x 1024

MG (FR-CI, triv) 15 9 6 5 1
MG (FR-CT, lin) 20 12 8 5 5
FR-CI-CG 24 25 25 25 25
MG (EX-CI, triv) 7 6 5 5 1
MG (EX-CTI, lin) 8 7 6 1 1
EX-CI-CG 18 17 17 17 17

Table 6.3b. Iteration counts for 2D deblurring problem (6.9) with A = le —4.

| number of unknowns [| 64 x 64 | 128 x 128 | 256 * 256 | 512 « 512 | 1024 x 1024

MG (FR-CI, triv) 12 32 21 14 9
MG (FR-CL, lin) 68 30 20 24 21
FR-CL-CG 39 A1 A1 43 44
MG (EX-CI, triv) 22 23 18 13 7
MG (EX-CI, lin) 16 16 21 19 17
EX-CL-CG 37 40 A1 42 42

Table 6.3c. Iteration counts for 2D deblurring problem (6.9) with A = le —5.

From tables 6.3a to 6.3c we can observe the typical convergence behaviour
of the multigrid method of the second kind like in one dimension: For fixed
regularization parameter A iteration counts decrease for larger matrix sizes.
Furthermore, our multigrid algorithms can also handle very small regulariza-
tion parameters \.

Furthermore, we also observe that trivial injection for restriction does a bet-
ter job than full weighting. However, the differences are a little less striking
than in the one-dimensional case. We also confirm the observation by Vogel
(see [112], ch. 5) that the Block circulant extension preconditioner usually
gives slightly faster convergence than the optimal BCCB preconditioner from
[31]. Due to its faster convergence it also gives a better smoother.

We have so far said hardly anything about Hj-based Tikhonov regulariza-
tion. As already observed in [22] in one-dimensional tests the idea carries
over without any problems. Anyway, this is not quite surprising: As we

141

know how well the discrete Laplacian can be handled by multigrid and as
our algorithms use transfer operators that can also be used for the discrete
Laplacian, we would be rather dismayed if H;-based Tikhonov regularization
would cause problems.

The following table 6.4 compares iteration counts for solutions of (6.9) with
Hi-norm regularization. We choose ¢ = 0.02 in (6.9) and the regularization
parameter is A = le — 4. In table 6.4 "pure CG” stands for the unprecon-
ditioned CG algorithm; all the other abbreviations are as in tables 6.3a to
6.3c. Again, we work on the domain Q = [—1, 1]%

| number of unknowns [| 64 x 64 | 128 x 128 | 256 * 256 | 512 « 512 | 1024 x 1024

MG (FR-CI, triv) 12 9 7 6 6
MG (EX-CI, triv) 5 4 4 4 3
pure CG 25 27 25 29 34
FR-CI-CG 14 16 16 18 19
EX-CI-CG 10 11 11 12 12

Table 6.4. Tteration counts for 2D deblurring problem (6.9) with A = le — 4
and H;-norm regularization.

Indeed, we have been able to develop a fast multigrid algorithm that be can
used for deblurring images. Figure 6.1 shows the reconstructed solutions
based on both Ls- and H;i-regularization. The original picture was subject
to atmospheric turbulence blur given by the operator (6.9) with ¢ = 0.02
and to Gaussian white noise with a signal-to-noise ratio of 100. Our regular-
ization parameter was A = 5 % 1075, We solved the arising linear system via
multigrid methods with natural coarse grid operators, the trivial injection
as the restriction and block circulant extension preconditioned CG as the
smoother.

The picture of a satellite we used is provided by the Starfire optical range,
USAF Phillips Laboratory at Kirkland AFB, New Mexico. It is frequently
employed as a test problem in image deblurring.

6.4 Outlook and conclusions

We have started with an algorithmic idea by R. Chan, T. Chan and J. Wan
[22] and put it into the context of the multigrid method of the second

142

Figure 6.1: Reconstruction of an image subject to atmospheric turbulence
blur (6.9) with o = 0.02 and to Gaussian white noise with signal-to-noise
ratio of 100. On the top left we see the original image, on the top right the
blurred and noisy image, on the bottom left the restoration based on the L,-
norm and on the bottom right the restored based on the H;-norm. The H;-
norm based restoration is marginally better. The regularization parameter
was A = 5% 107°.

143

kind. By getting coarse grid representations via rediscretization instead
of a Galerkin approach we have come up with an efficient algorithm that
can be used to solve linear systems arising in image deblurring efficiently in
O(nlogn) speed. However, we would certainly like to be honest and express
that we do not expect our multigrid solvers to succeed in the engineering
practice. As it is well known — and as we also have shown in our numerical
experiments — there are BCCB preconditioners for the image deblurring ap-
plications we have discussed which lead to highly efficient O(nlogn) solvers
if used for preconditioning conjugate gradients. Due to their simplicity, their
robustness and the ease of their implementation we reckon that they will be
preferable from an engineer’s viewpoint to our sophisticated W-cycle solvers
employing these preconditioned conjugate gradient methods as smoothers
even for extremely large problems.

We have pointed out how the new algorithms can be interpreted as general-
izations of the multigrid method of the second kind: In fact, preconditioned
conjugate gradients can be employed as smoothers in multigrid methods for
general discrete Fredholm integral equations of the second kind — not neces-
sarily of convolution type — to give convergence in the case of very small A.
On the aspect of preconditioned conjugate gradients for smoothing it would
be nice to have much more analysis of our algorithms. This will certainly
be subject of our future research and we would hope to understand the new
algorithms as completely as the classical variant of the multigrid method of
the second kind with Richardson smoothing. However, we are aware that as
soon as semi-iterative smoothers are involved, analysis is usually significantly
much more difficult than in the normal case when only stationary iterative
methods (2.8) are employed for relaxation. For existing work about semi-
iterative smoothers in multigrid algorithms we would finally like to refer to
[64], pp. 332.

To us, it was particularly interesting to understand that the inverse problems
investigated in this section can not be viewed under the same terms as the
multigrid methods for Toeplitz matrices generated by functions with a finite
number of zeros of finite order. In fact, here we are dealing with a ”zero of
infinite order” which is not located at the origin — but there is an underlying
analysis telling us clearly not to shift it to the origin via (4.11).

144

Chapter 7

A new optimal preconditioner
for high-resolution image
reconstruction

In this chapter we study the efficient solution of linear systems arising from
the problem of high-resolution image reconstruction with multisensors: There
a high-resolution image is reconstructed from four undersampled shifted, de-
graded and noisy low resolution images.

We start with a few general remarks on superresolution and explain why the
investigated technique of high-resolution image reconstruction is important
e.g. in enhancing the quality of pictures of the ground taken from a satel-
lite. Then we introduce the mathematical model and its discretization: We
will study both zero (Dirichlet) boundary conditions, i.e. a dark background
around our image is assumed, as well as Neumann boundary conditions, i.e. it
is assumed that the scene outside is a reflection of the original scene at the
boundary. As observed by R. Chan and collaborators in [24] and [27] the
Neumann boundary condition is preferable as zero boundary conditions give
a ringing effect around the image.

In the ideal case when there are no calibration errors within our device of
multisensors the system matrices for Dirichlet conditions will be of the form
AT A with A being a sparse ill-conditioned BTTB matrix whereas for Neu-
mann conditions the upper left and lower right entries are changed such that
A will become Block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks.
Like in the previous chapter, we will employ the Tikhonov functional for
regularization.

145

In [24] and [27] R. Chan and collaborators have been proposing effective
preconditioners for the arising sparse linear systems in the Neumann case
based on the fast cosine transform. Our goal was to develop an O(n) pre-
conditioner: We first explain why the multigrid methods from Chapter 4 can
not be carried over; in the case with Dirichlet boundary conditions and no
calibration errors the BTTB matrix A will be generated by a nonnegative
function with an infinite number of zeros of order 2. However, there is a sim-
pler way to devise an O(n) preconditioner based on an ”analytic” incomplete
factorization. Finally, we will show the efficiency of our new preconditioner.

The original contributions of this chapter are the implementation of the new
preconditioner, its integration into a powerful software package — which the
author was handed by his friend Andy Yip during his stay at UCLA — and
the numerical tests. However, the derivation of the preconditioner presented
in 7.3.2 was performed by the author’s advisor.

7.1 Introduction

Superresolution is a general term for restoring a high-resolution image from
multiple undersampled shifted, degraded and noisy images [78], [84], [96],
[109]. It has various practical applications, including aerial or facilities
surveillance, consumer, commercial, medical, forensic and scientific imag-
ing.

In the following we will study a special case of superresolution where a device
consisting of a 2 x 2 sensor array is used to take four shifted low resolution
images of the same scene. This technique has first been proposed by Bose
and Boo in the paper [7] and is since then referred to as high-resolution image
reconstruction with multisensors. The main reason for the development of
the approach was that — due to hardware limitations — it may frequently not
be possible to improve the resolution of an image any further. In particular,
let us think of pictures of the ground taken from a satellite: Even if excellent
sensors are used, it might still be difficult — if not impossible — to retrieve
details on the ground. However, taking four appropriately shifted pictures of
the same scene provides more spatial information and we can use this infor-
mation to get an image of higher resolution as described in [7].

The technique of high-resolution image reconstruction [7] has been analyzed
mathematically and numerically as well as further improved by R. Chan,

146

T. Chan and their collaborators in [24], [27], [29], [30] and [26]; and our
presentation of the subject is very strongly influenced by their results. In
particular, as we have already mentioned it was them who pointed out that
it is preferable to replace the zero (Dirichlet) boundary conditions (employed
in the original approach by Bose and Boo [7]) by Neumann conditions to
avoid boundary artifacts around the reconstructed image.

7.2 The mathematical model and its discretiza-
tion

7.2.1 Making use of low resolution images

We would like to introduce the mathematical model rather briefly here. More
details can be found in [7] or [24].

We work with a sensor array — or multisensor — with 2 x 2 sensors: Each
sensor has N x N sensing elements, i.e. pixels, and the pixel size is T'xT. The
purpose is to restore an image of higher resolution M x M with M = L x N.

Certainly, we can only gain a higher spatial resolution out of the four low
resolution images if the sensors are shifted appropriately from each other,
i.e. there need to be subpixel displacements between the sensors. In the
ideal case the sensors are shifted from each other by a value proportional to
(T'/2) x (T'/2). However, in practice small perturbations around these ideal
subpixel locations may occur due to imperfection of the mechanical imaging
system. Fortunately, these so-called calibration errors can be detected and
measured by the manifacturer during the camera calibration process.

Let us place the reference sensor in the position [0,0]. Then for k,l € {0,1}
with (k,1) # (0,0), the horizontal and vertical displacements df ; and dj ; of
the [k, []-th sensor array with respect to the reference sensor are given by

kil = g(k + €k) and d%,z = 5(1 + Gz,z)

with e} ; and €] ; denoting the normalized horizontal and vertical displacement
errors. We can assume that

1 1

lehl < B and |6%,z| < B

for otherwise the low resolution images would be overlapped so much that

restoring a high-resolution image is rendered impossible (see also [7], [30]).

147

Anyway, in practice we may expect values for €f ; and Gz,z significantly smaller
in modulus than %

Let f be the original scene. Then we can model the observed low resolution
image gy, for the [k, {]-th sensor by

T(nt3)+dy, pT(m+5)+df,
/ f(z,y)dzdy + ng [m,n] (7.1)

mon) = 75 |
m,n| = —
G|, T2 Sty

for the pixels m,n =1,... N, with n; standing for the noise corresponding
to the [k,]-th sensor. To be more precise: g [m,n] denotes the average
intensity registered at the [m,n]-th pixel for the [k, []-th sensor.

Now we intersperse the four low resolution images to form a large M x M
image by assigning

g2 (m—1)+ k2% (n—1)+1] = gr[m,n] (7.2)

T(m—3)+d§

We call g the observed high-resolution image. It is already an improvement
over the low resolution samples; however, it is still blurred. Figure 7.1 shows
how a 4 x 4 image is formed out of the values of four coarser images of 2 x 2
pixels.

To obtain a better image than the observed high-resolution image from
(7.2), we need to solve (7.1) for f. We shall do this using the rectangular
quadrature rule: Note that this is also a reasonable approximation to the
physics of our multisensor, meaning that for each pixel in the high-resolution
image f we are going to restore the intensity is constant for each point
within that pixel (see [7]). If we now carry out the numerical integrations in
(7.1) for each of the four sensors and perform the reordering given by (7.2)
afterwards, then we will obtain a system of linear equations which relates the
unknown values f[i, j] to the given low resolution pixel values g[i, j]. In the
first place this linear system would be underdetermined (and not square),
because some evaluations of the rectangular rule in (7.1) also involve points
outside the scene. In other words: The boundary values of ¢ are influenced
by the values of f outside the scene — and in order to set up a sensible model
we need to impose boundary conditions. (Finally, note that this need for
boundary conditions is due to fact we are dealing with a finite-dimensional
convolution operator in this model — whereas in Chapter 6 when we studied
Fredholm integral equations of the first kind the convolution operators given
by (6.1) and (6.9) were infinite-dimensional and hence there was no need to
impose boundary conditions.)

148

a3 a4 b_3 b_4 a llb_l|a2|b2
e_l|d_l c 2|d.2
a_3|b_3 | a_4|b 4
c 3|d3 [c4|d4

' e 2 d1 d 2

e 3 i d_3 d_4

Figure 7.1: A model for the construction of the observed high-resolution
image

7.2.2 Imposing boundary conditions

In the original approach Bose and Boo [7] assigned zero boundary conditions,
i.e. they assumed there was a dark background outside the scene in the image
reconstruction.

Let g and f denote respectively the discretizations of the observed high-
resolution image g constructed by (7.2) and the high-resolution image f we
want to restore; furthermore, let g and f be ordered column by column. Then
under the zero boundary condition the blurring matrix belonging the [k, []-th
sensor can be described as

ﬁk,l(e) = Hﬁl(e) ® Hil(e)

where ﬁﬁyl(e) is a tridiagonal Toeplitz matrix given by

1 h",g’j 0
i her 1 hf;;‘j
k,l(ﬁ) = 2 ;f, . o
hk,l 1 hk,l
0 hi, 1

)

149

with .

hwi i

k,l 9

The tridiagonal Toeplitz matrix ﬁil(e) modelling the blur in y-direction is

defined analogously. However, ringing effects will be visible at the boundary

of the restored image in the case that f is not indeed rather dark at the
boundary.

+ Gi,l. (7.3)

To overcome these inconvenient boundary artifacts, the use of Neumann
boundary conditions was established in [24] and [27]: There we assume that
the scene immediately outside is a reflection of the original scene at the
boundary. Under the reflecting boundary condition the corresponding blur-
ring matrices Hy)(¢) and Hy |(e) are still tridiagonal, but the upper left and
the lower right entry are changed. We can view the matrices Hf (€) and
HK)l(e) to have Toeplitz-plus-Hankel structure, i.e. we display them as

1 hiy 0 higy 0 0
i . higy 1 bl . 0 0 0
H\(6) = 5 = Lo
R R 0 0 0
0 hipo 1 0 0 het

with h‘,’ﬁ defined as before in (7.3) and Hy | (¢) defined analogously. Of course,
the blurring matrix belonging to the [k,[]-th sensor under the Neumann
boundary condition is again given by the Kronecker product

Hy,(€) = Hyy(€) ® HY (e).

Finally, the blurring matrix H(e) for the whole multisensor needs to be con-
structed from the four blurring matrices Hyj(€) of the individual sensors
by
11
H(e) =Y) DiHy(e) (7.4)
k=0 1=0
In equation (7.4) Dy, are diagonal matrices with diagonal elements equal
to 1 if the corresponding component of g comes from the [k,[]-th sensor
and zero otherwise, i.e. these diagonal matrices simply reflect the way the
observed high-resolution image is built in (7.2). Of course, in the case of zero

150

boundary conditions the blurring matrix H(e) is constructed identically.

Note that the blurring matrices which came up in the modelling of this
inverse problem will be highly ill-conditioned. Furthermore, they will in
general be nonsymmetric and indefinite. Like in Chapter 6 we will again
employ Tikhonov regularization and then our systems become

(H(e) H(e) + aR)f = H(e) g and (H(e)"H(e) + aR)f = H(e) g (7.5)
for Dirichlet and Neumann boundary conditions, respectively, with R denot-
ing a discretization of the regularization functional in (6.3), i.e. the identity
in case of the Ly-norm and the 2D discrete Laplacian with the respective
boundary conditions in case of the H;-norm.

7.3 A new O(n) preconditioner

After regularization the matrices from (7.5) will no longer be ”asymptoti-
cally” ill-conditioned. However, the condition numbers arising in practice
will still be huge — and hence it is far from recommendable to solve the sys-
tems (7.5) via CG without a good preconditioner.

In [24] and [27] quite effective preconditioners based on the fast cosine trans-
form have been proposed for the case of Neumann boundary conditions in
(7.5). On the other hand, as soon as the fast cosine transform is involved the
computational complexity for the numerical solution of the sparse linear sys-
tems (7.5) will be of order O(nlogn). Hence we are interested in developing
an efficient O(n) preconditioner.

7.3.1 Difficulties in a multigrid approach

The first idea would be to attempt to carry over the multigrid algorithms for
BTTB systems from Section 4.5. Hence let us first take a look at the ideal
spatially invariant case (i.e. no calibration errors) with Dirichlet boundary
conditions: Then we know from the previous section that the blurring matrix
H(0) is given by

= : 1 RN B |

HO0)=A® A with A= 3 * trzdzag(i, 1, 5), (7.6)
i.e. H(0) is a s.p.d. BTTB matrix generated by the function

ki(x,y) = % * (1 + cos(x)) * (1 + cos(y)).

151

AN \\““

IS et >

Figure 7.2: A plot of the function ky(z,y) = (1 + cos(z)) * (1 + cos(y)) on
the square Q0 = [—m, m|2. We see that ks, is zero along the lines z = +7 and
y = *+m.

However, this function is zero in | — 7, 7]* whenever = 7 or y = 7, meaning
that it exhibits an infinite number of zeros of order 2. In Figure 7.2 we plot
the function ko(z,y) =4 * k1(x,y) = (1 + cos(z)) * (1 + cos(y)).

Thus we have seen that our multigrid methods from Section 4.5 are not
applicable in this case.

7.3.2 An efficient idea simpler than multigrid

Let us stay with the spatially invariant case first: It is clear that the
matrix (7.6) can be inverted in O(n) spead as it is a Kronecker product of
a banded matrix with itself — and, of course, the same is true for its coun-
terpart H(0) in the case of reflecting boundary conditions. (Remember that

152

there holds A® A=(AR®1I)-(I®A) and that A is tridiagonal.)

If there are no calibrations errors, then basically the only reason prevent-
ing us from inverting the systems (7.5) directly via their Kronecker product
structure is the compulsory regularization term. However, this leads to a
promising idea for a preconditioner.

Let start with the Ly-based case, i.e. R = I in (7.5). Then the system
matrices can be written as

(A A" (A A +axNf =(Ax A)'g (7.7)
with A = % * tm’diag(%, 1, %) in the Dirichlet case and the same A with upper
left and lower right entry changed from % to % in the Neumann case.

A very straightward idea for a preconditioner for (7.7) making use of the
Kronecker products ”hidden inside” would be

P=(ATA+ Jal) ® (ATA + JaI) (7.8)

We would like to underline briefly that (7.8) is indeed a sensible choice for
a preconditioner: We know that for the smallest eigenvalue of the system
matrix

(A AT(A®A) +axT

« is an extremely close lower bound, i.e. we may say it is of order O(«).

Now let us employ the following heuristics: Let o be the smallest eigenvalue
of A. If the system matrix in (7.7) and the preconditioner (7.8) were having
the same eigenvectors, then the we could see from the Rayleigh quotient via

4% 0+«
4% 0%+ a+ 2% y/a* 0?

— 0(V0)

that the smallest eigenvalue is improved to order O(y/a)) what should lead
to a significantly faster convergence of the CG algorithm. (Note that it is
plain that any sensible regularization parameter o in image processing will
be significantly smaller than 1.)

In the spatially variant case we will build our preconditioner as follows:
First of all, we sample the calibration errors in the x- and y-direction, i.e. we
compute

1 1
o 1* (6o +eps +e€7y) and & = 1" (€10 + €0, +€1,1) (7.9)

153

Note that the factor i reflects that there is never any calibration error con-
nected with the [0, 0]-th reference sensor. Afterwards we set up the matrices
H(e*) and H(é¥) as in 7.2.2 subject to the same boundary condition as the
linear system to be solved. Then our preconditioner reads as

(H(F)TH(@) + Va = R) @ (H(&) H(@) + Va * R) (7.10)

with R denoting the discretization of our regularization operator, i.e. the
identity in the Lo-based case and the discrete 1D Laplacian with correspond-
ing boundary conditions in the H;-based case. Note that this preconditioner
can be viewed as a kind of an ”analytic factorization” of the system matrices
(7.5) — and that the two banded factors can be inverted quickly.

7.4 Numerical results

There are a lot of aspects we need to test in connection with our new pre-
conditioner (7.10).

First of all, we wish to state that plenty of numerical experiments have con-
firmed that our way of sampling the calibration errors (7.9) is very reasonable.
In particular, we have compared it to an analogous sampling with factor %:
Although this did usually not make a big difference in the iteration counts,
we were never better off than with our choice (7.9), i.e. with the factor 1, in

our tests.

In our tables we will list iteration counts of the preconditioned conjugate
gradient method which we obtained employing

[P

<10°°
[r©@fly —

as the stopping, i.e. we stop iterating when the relative residual with respect
to the Euclidian norm is less or equal 10,

In the following we have tried our preconditioner for various calibration er-
rors, for both Dirichlet and Neumann boundary conditions and for Tikhonov
regularization with both the Lo- and the H;-norm using different regulariza-
tion parameters o. Again, we note that in practice it might be preferable
to pick a certain criterion, like e.g. the C'r-method, yielding a regularization
parameter for each individual matrix — and like in Chapter 6 we refer to the

154

books by Hansen [67] and Vogel [112] for different schemes to choose regular-
ization parameters. And although we admit that our decision simply to test
different regularization paramaters in our tables is slightly questionable, we
wish to state that the same kinds of comparisons are being done by R. Chan
and his collaborators (compare e.g. [24], [26]).

Firstly, we would like to point out that in our way to construct the precon-
ditioner we have indeed picked an appropriate power of « in (7.10):

From an analytic viewpoint we have already pointed out in the previous sec-
tion why we propose to use </« in (7.10); however, there is still an important
point in comparing it to other choices. In the following two tables 7.1a and
7.1b we also list the iteration numbers for the variants with «, </« and /o
in (7.10):

| number of unknowns || pure CG || (7.10) with Yo || o | Va | Vo
16 % 16 83 21 37 | 34 | 41
32 % 32 111 21 81 | 33 | 43
64 x 64 124 24 128 | 38 | 48
128 % 128 116 23 142 | 38 | 50

Table 7.1a. Iteration counts for Dirichlet boundary conditions and Ls-norm
based Tikhonov regularization with @ = le — 3. There was a uniform cali-
bration error of € = 0.1.

| number of unknowns || pure CG || (7.10) with Yo || o | Vo | Vo

16 % 16 201 27 33 | 47 | 68
32 % 32 269 32 96 | 58 | 81
64 x 64 273 31 247 | 57 | 82
128 % 128 315 36 413 | 65 | 97

Table 7.1b. Tteration counts for Dirichlet boundary conditions and Ls-norm
based Tikhonov regularization with o« = 1le — 4. There was a uniform cali-
bration error of € = 0.1.

From tables 7.1a and 7.1b we can see that our preconditioner (7.10) is in fact
very efficient and reduces the iteration counts significantly in comparison to
the unpreconditioned CG algorithm (denoted by ”pure CG” in our tables).
For the small regularization parameter o = le — 4 used in table 7.1b our

155

preconditioner reduces the numbers of iterations needed even by a factor of
approximately 9.

Furthermore, we see that our mathematical reasoning in setting up (7.10)
with respect to the power of « is strongly confirmed numerically. Iteration
counts are always larger for /o and they worsen more strongly for /«. The
variant with « does not pay off at all and for large problems it might even
need much more iterations than the unpreconditioned CG algorithm.

Thus in the following we shall only compare conjugate gradients with our pre-
conditioner (7.10) and unpreconditioned conjugate gradients, abbreviated by
"PCG” and ”CG, respectively.

| number of unknowns [16 % 16 | 32 % 32 | 64 % 64 | 128 % 128 | 256 x 256 |

PCG, a=1e—3 28 29 26 26 25
CG,a=1le—-3 105 116 110 109 107
PCG, a=1e—4 35 44 44 43 42
CG,a=1le—-4 270 282 315 286 273

Table 7.2. Iteration counts for Neumann boundary conditions and Lg-norm

based Tikhonov regularization. There was a uniform calibration error of

e =20.1.

| number of unknowns || 16 % 16 | 32 % 32 [64 64 | 128 « 128 | 256 256 |

PCG, a=1e—3 26 26 26 25 26
CG,a=1le—-3 64 71 71 68 69
PCG, a=1e—4 43 43 41 41 41
CG,a=1le—-4 145 173 174 180 173

Table 7.3. Iteration counts for Dirichlet boundary conditions and H;-norm
based Tikhonov regularization. We employed a calibration error with six
different values €7 €]0, 1].

156

| number of unknowns || 16 % 16 | 32 % 32 | 64 64 | 128 128 | 256 x 256

PCG, a=1e—3 27 27 27 26 26
CG,a=1le—3 61 62 62 60 60
PCG, a=1le—4 48 48 47 47 47
CG,a=1le—14 151 166 166 163 165

Table 7.4. Tteration counts for Neumann boundary conditions and H;-norm
based Tikhonov regularization. We employed a calibration error with six
different values €, €0, ;].

The above tables clearly confirm that our new preconditioner (7.10) works
very well and gives optimal order convergence also in the cases of H;-based
Tikhonov regularization and larger calibration errors.

In figures 7.3 and 7.4 we use the technique of high-resolution image recon-
struction for a picture of a parrot — or to be more precise: a cockatiel. We
see that the Neumann boundary condition leads to slightly better restored
images. However, we admit that the ringing effect resulting from the use of
Dirichlet boundary conditions is hardly visible on paper, although one can
clearly see it on a screen.

7.5 Conclusions

We have developed a new preconditioner for sparse matrices resulting from
the problem of high-resolution image reconstruction with multisensors and
shown its numerical efficiency in various tests. In this case it came out to
be much simpler to devise an O(n) method by using the Kronecker product
structure of the linear systems involved than to go for a multigrid scheme.

It will be interesting to carry over our preconditioner to the reconstruction
of colour images according to [26]: In that case the system matrices are still
of the structue (7.5) within and across the red, green and blue channels. Re-
specting these colour channels and their combinations, the linear systems to
be solved become even larger and the need for an efficient preconditioner is
even more viable.

On the other hand, we agree that our preconditioner is tailored to the tech-
nique of reconstructing a high-resolution image out of low resolution images
taken by a 2 x 2 multisensor; hence it will be difficult to carry over the same
preconditioning approach to general superresolution problems.

157

Figure 7.3: The technique of high-resolution image reconstruction applied to
an image of a cockatiel. This time we use Tikhonov regularization based on
the Ly-norm. On the top left we see the original image, on the top right a
coarse image taken by the [0, 1]-th sensor, on the bottom left the restoration
with zero boundary conditions and on the bottom right the restoration with
reflecting boundary conditions. Observe also the ringing effect for Dirichlet
boundary conditions which is reasonably visible at the top and on the left of
the restored image.

158

Figure 7.4: The technique of high-resolution image reconstruction applied to
an image of a cockatiel. This time we use Tikhonov regularization based on
the Hi-norm. On the top left we see the original image, on the top right a
coarse image taken by the [1,0]-th sensor, on the bottom left the restoration
with zero boundary conditions and on the bottom right the restoration with
reflecting boundary conditions.

159

Finally, from the Toeplitz point of view, we found it remarkable to get a
different characterization of ill-posedness for this convolution problem than
in the previous chapter. Still, in this case the zeros are only of order two —
but there is an infinite number of them.

160

Bibliography

1]

2]

[4]

(6]

7]

8]

9]

R. Alcouffe, A. Brandt, J. Dendy and J. Painter, The multi-grid method
for the diffusion equation with strongly discontinuous coefficients, STAM
J. Sci. Stat. Comput. 2 (1981) 430-454.

O. Axelsson, Iterative solution methods, Cambridge University Press
(1996).

A. Bensoussan, J. Lions, G. Papanicolaou, Asymptotic analysis for
peridic structure, Studies in Mathematics and Its Applications, Vol. 5,
North Holland (1978).

M. Bollhofer and V. Mehrmann, Algebraic Multilevel Methods and
Sparse Approximate Inverses, Preprint SFB393/99-22, Dept. of Mathe-
matics, TU Chemnitz (1999).

J. Bordner and F. Saied, MGLab: An interactive multigrid environment,
In: Proc. of the Seventh Copper Mountain Conf. on Multigrid Methods,
Vol. CP 3339, NASA (1996) 57-71.

F. Bornemann and H. Yserentant, A basic norm equivalence for the
theory of multilevel methods, Numer. Math. 64 (1993), 455-476.

N. Bose and K. Boo, High-resolution image reconstruction with multi-
sensors, Int. J. of Imaging Systems and Technology 9 (1998) 294-304.

D. Braess, The contraction number of a multigrid method for solving
the Poisson equation, Numer. Math. 37 (1981), 387-404.

J. Bramble, J. Pasciak and J. Xu, Parallel multilevel preconditioners,
Math. Comp. 55 (1990) 1-22.

161

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Brandt, Multilevel adaptive solution to boundary value problems,
Math. Comp. 51 (1977) 389-414.

A. Brandt, Rigorous quantitative analysis of multigrid: 1. Constant co-
efficients two level cycle with Ly-norm, SIAM J. Num. Anal. 31 (1994)
1695-1730.

A. Brandt and I. Livshits, Wave-ray Multigrid Method for Standing
Wave Equations, ETNA 6 (1997) 162-181.

W. Briggs, A Multigrid Tutorial, STAM, 1987.

O. Broker and M. Grote, Sparse approximate inverse smoothers for ge-
ometric and algebraic multigrid, preprint(2000), to appear in Applied
Numerical Mathematics .

O. Broker, M. Grote, C. Mayer and A. Reusken, Robust Parallel
Smoothing for Multigrid via Sparse Approximate Inverses, STAM J. Sci.
Comp. 23 (2001) 1395-1416.

X.-C. Cai and O.Widlund, Multiplicative Schwarz algorithms for some
nonsymmetric and indefinite problems, SIAM J. Numer. Anal. 30
(1993), 936-952.

R. Chan, Circulant preconditioners for Hermitian Toeplitz systems,
SIAM J. Matriz Anal. Appl. 10 (1989) 542-550.

R. Chan, Toeplitz preconditioners for Toeplitz systems with nonnegative
generating function, IMA J. Numer. Anal. 11 (1991) 333-345.

R. Chan and M. Ng, Conjugate Gradient Methods for Toeplitz Systems,
SIAM Review 38 (1996) 427-482.

R. Chan and M. Ng, Scientific Applications of Iterative Toeplitz Solvers,
Calcolo 33 (1996) 249-267.

R. Chan and P. Tang, Fast Toeplitz Solvers based on Band-Toeplitz
Preconditioners, SIAM J. Sci. Comp. 15 (1994) 164-171.

R. Chan, T. Chan and W. Wan, Multigrid for Differential-Convolution
Problems Arising from Image Processing, In: Proc. of the Workshop on
Scientific Computing, Hongkong 1997, Springer (1999) 58-72.

162

[23] R. Chan, T. Chan and C. Wong: Cosine Transform Based Precondition-
ers for Total Variation Deblurring, IEEE Trans. Image Proc. 8 (1999)
1472-1478.

[24] R. Chan, T. Chan, M. Ng and A. Yip, Cosine transform preconditioners
for high resolution image reconstruction, Lin. Alg. Appl. 316 (2000)
89-104.

[25] R. Chan, Q. Chang and H. Sun, Multigrid method for ill-conditioned
symmetric Toeplitz systems, STAM J. Sci. Comp. 19 (1998) 516-529.

[26] R. Chan, M. Ng and W. Kwan, A Fast Algorithm for High-Resolution
Color Image Reconstruction with Multisensors, In: Numerical Analy-

sis and Its Applications, Second International Conference, NAA 2000,
Rousse, Bulgaria, LNCS 1988, Springer (2001) 615-627.

[27] R. Chan, M. Ng and A. Yip, High-Resolution Image Reconstruction with
Neumann Boundary Condition, In: Proceedings of the Fourth Japan-
China Seminar on Numerical Mathematics, Springer (1998) 11-21.

[28] T. Chan, An Optimal Circulant Preconditioner for Toeplitz Systems,
SIAM J. Sci. Stat. Comp. 9 (1988) 766-771.

[29] R. Chan, T. Chan, L. Shen and Z. Shen, Wavelet algorithms for high-
resolution image reconstruction, preprint (2000), 24 pages.

[30] R. Chan, T. Chan, L. Shen and Z. Shen, Wavelet Deblurring algorithms
for spatially varying blur from high-resolution image reconstruction,
preprint (2001), 13 pages.

[31] T. Chan and J. Olkin, Circulant preconditioners for Toeplitz-block ma-
trices, Numerical Algorithms 6 (1994) 89-101.

[32] T. Chan, E. Chow, Y, Saad and M. Yeung, Preserving symmetry in pre-
conditioned Krylov subspace methods, SIAM J. Sci. Comp. 20 (1999)
568-581.

[33] J. Demmel, Applied Numerical Linear Algebra, STAM (1997).

[34] J. Dendy, Black box multigrid, J. Comput. Phys. 48 (1982) 366-386.

163

[35] J. Dendy, Black box multigrid for nonsymmetric problems, Appl. Math.
Comput. 13 (1983) 261-283.

[36] P. De Zeeuw, Matrix-dependent prolongations and restrictions in a
black-box multigrid solver, J. Comput. Appl. Math. 33 (1990) 1-27.

[37] P. De Zeeuw, Acceleration of Iterative Methods by Coarse Grid Correc-
tions, Ph.D. Thesis, CWI Amsterdam (1996).

[38] F. Di Benedetto, G. Fiorentino and S. Serra, C.G. preconditioning for
Toeplitz matrices, Comp. Math. Appl. 25 (1993) 33-45.

[39] H. Elman and O. Ernst, Numerical experiences with a Krylov-enhanced
multigrid solver for exterior Helmholtz problems, In: Mathematical and
numerical aspects of wave propagation (Santiago de Compostela, 2000),
STAM (2000) 797-801.

[40] H. Elman, O. Ernst and D. O’Leary, A multigrid method enhanced by
Krylov subspace iteration for discrete Helmholtz equations, SIAM J.
Sci. Comp. 23 (2001) 1290-1314.

[41] L. Elsner, C. He and V. Mehrmann, Minimizing the condition number
of a positive definite matrix by completion, Numer. Math. 69 (1994)
17-23.

42| H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Prob-
g
lems, Kluwer Academic Publishers (1996).

[43] B. Engquist, Computation of oscillatory solutions for partial differential
equations, Lecture Notes in Mathematics 1270 (1989) 10-22.

[44] B. Engquist and E. Luo, Multigrid methods for differential equations
with highly oscillatory coefficients, in: Proc. of the Sixth Copper Moun-
tain Conf. on Multigrid Methods, Vol. CP 3224, NASA (1993) 175-189.

[45] B. Engquist and E. Luo, Convergence of a Multigrid Method for Elliptic
Equations with Highly Oscillatory Coefficients, SIAM J. Numer. Anal.
34 (1997) 2254-2273.

[46] G. Fiorentino, Tau Matrices and Generating Functions for Solving
Toeplitz systems, Ph.D. thesis TD-4/97, University of Pisa (1997).

164

[47] G. Fiorentino and S. Serra, Multigrid methods for Toeplitz matrices,
Calcolo 28 (1992) 283-305.

[48] G. Fiorentino and S. Serra, Multigrid methods for symmetric positive
definite block Toeplitz matrices with nonnegative generating functions,
SIAM J. Sci. Comp. 17 (1996) 1068-1081.

[49] G. Fiorentino and S. Serra, Multigrid methods for indefinite symmetric
Toeplitz matrices, Calcolo 33 (1996) 223-236.

[50] D. Givoli, J. Keller, Exact non-reflecting boundary conditions, J. Com-
put. Phys. 82 (1989) 172-192.

[51] G. Golub, C. Van Loan, Matrix Computations, Third Edition, John
Hopkins University Press (1996).

[52] R. Gonzalez and R. Woods, Digital Image Processing, Addison-Wesley
(1992).

[53] A. Greenbaum, Analysis of a multigrid method as an iterative technique
for solving linear systems, SIAM J. Num. Anal. 21 (1984), 473-485.

[54] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM
(1997).

[55] U. Grenander and G. Szegd, Toeplitz Forms and Their Applications,
Second Edition, Chelsea (1984).

[56] M. Griebel, Zur Losung von Finite-Differenzen- und Finite-Element-
Gleichungen mittels der Hierarchischen-Transformations-Mehrgitter-
Methode, TU Miinchen, Institut f. Informatik, TUM-19007 (1990), SFB-
Report 342/4/90. In German.

[57] M. Griebel, Multilevel algorithms considered as iterative methods on
semidefinte systems, SIAM J. Sci. Comput. 15 (1994), 547-565.

[58] M. Griebel, Multilevelmethoden als Iterationsverfahren tiber Erzeugen-
densystemen, B.G. Teubner (1994). In German.

[59] M. Griebel and P. Oswald, On the abstract theory of additive and mul-
tiplicative Schwarz algorithms, Numer. Math. 70 (1995), 163-180.

165

[60] M. Grote and T. Huckle, Parallel Preconditioning with Sparse Approx-
imate Inverses, SIAM J. Sci. Comp. 18 (1997), 838-853.

[61] W. Hackbusch, Ein iterative Verfahren zur schnellen Auflésung elliptis-
cher Randwertprobleme, Report 76-12, Institute for Applied Mathemat-
ics, University of Cologne, 1976. In German.

[62] W. Hackbusch, Multigrid Methods and Applications, Springer (1985).
[63] W. Hackbusch, Integralgleichungen, Teubner (1989). In German.

[64] W. Hackbusch, Iterative Losung groBer schwachbesetzter Gleichungssys-
teme, Teubner (1993). In German.

[65] W. Hackbusch, U. Trottenberg, Multigrid Methods, Springer (1982).

[66] M. Hanke and J. Nagy, Toeplitz approximate inverse preconditioner for
banded Toeplitz matrices, Num. Alg. 7 (1994) 183-199.

[67] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM
(1998).

[68] P. Hemker and H. Schippers, Multiple grid methods for the solution of
Fredholm integral equations of the second kind, Math. Comp. 36 (1981)
215-232.

[69] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving
linear systems, J. Res. Nat. Bur. Stand. 49 (1952) 409-436.

[70] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge Univer-
sity Press (1989).

[71] T. Huckle, Matrix Multilevel Methods and Preconditioning, SFB-
Bericht 342/11/98, Technical Report (1998), Technische Universitit
Miinchen. Old version of [72].

[72] T. Huckle and J. Staudacher, Matrix Multilevel Methods and Pre-
conditioning, preprint (2000), accepted for publication in BIT,
20 pages. Currently available online via http://wwws.informatik.tu-
muenchen.de/persons/staudacy.html

166

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

T. Huckle and J. Staudacher, Multigrid preconditioning and Toeplitz
matrices, preprint, submitted to ETNA (2002), 23 pages. Also available
as technical report TUM-10202, Technische Universitat Miinchen (2002),
via hitp://wwwbib.informatik.tu-muenchen.de/infberichte/2002/TUM-
10202.ps.gz

X. Jin, A note on preconditioned block Toeplitz matrices, SIAM J. Sci.
Comput. 16 (1995) 951-955.

X. Jin, Band Toeplitz preconditioners for block Toeplitz systems, .J.
Comput. Appl. Math. 70 (1996) 225-230.

M. Kac, W. Murdoch and G.Szeg6, On the extreme eigenvalues of cer-
tain Hermitian forms, J. Rat. Mech. Anal. 13 (1953) 767-800.

R. Kettler, Analysis and comparison of relaxation schemes in robust
multigrid and preconditioned conjugate gradient methods, in: [65]
(1982) 501-534.

S. Kim, N. Bose and H. Valenzuela, Recursive reconstruction of high
resolution image from noisy undersampled multiframes, IFEE Trans.
on Acoust., Speech and Signal Process. 38 (1990) 1013-1027.

T. Ku and C. Kuo, Design and analysis of Toeplitz preconditioners,
IEEE Trans. Signal Proc. 40 (1992), 129-141.

R. Lagendijk and J. Biemond, Iterative identification and restoration of
images, Kluwer Academic Publishers (1991).

A. Louis, Inverse und schlecht gestellte Probleme, Teubner (1989). In
German.

E. Luo, Multigrid method for partial differential equations with oscil-
latory coefficient, Ph.D. thesis, University of California, Los Angeles
(1994).

K.W. Morton and D.F. Mayers, Numerical Solution of Partial Differen-
tial Equations, Cambridge University Press (1994).

N. Nguyen, Numerical algorithms for image superresolution, Ph.D. The-
sis, Stanford University (2000).

167

[85] E. Nystrom, Uber die praktische Auflssung von linearen Integralgle-
ichungen mit Anwendungen auf Randwertaufgaben der Potentialtheorie,
Soc. Sci. Fenn. Comment. Phys.-Math. 4 (1928) 1-52. In German.

[86] E. Nystrom, Uber die praktische Auflésung von linearen Integralgle-
ichungen mit Anwendungen, Acta Mathematica 54 (1930) 185-204. In
German.

[87] P. Oswald, On discrete norm estimates related to multilevel precondi-
tioners in the finite element method, In: Constructive Theory of Func-
tions, Proc. Int. Conf. Varna 1991, Bulg. Acad. Sci. (1992) 203-214.

[88] P. Oswald, Multilevel Finite Element Approximation. Theory and Ap-
plications, Teubner (1994).

[89] B. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall (1980).

[90] A. Reusken, Fourier analysis of a robust multigrid method for
convection-diffusion equations, Num. Math. 71 (1995), 365-397.

[91] K. Riley, Two-level preconditioners for regularized ill-posed problems,
Ph.D. thesis, Department of Mathematics, University of Montana at
Bozeman (1999).

[92] J. Ruge and K. Stiiben, Algebraic Multigrid, In: Multigrid Methods,
S. F. McCormick (Ed.), STAM (1987) 73-130.

[93] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, STAM
J. Sci. Comp. 14 (1993) 461-469.

[94] J. Schroder and U. Trottenberg, Reduktionsverfahren fiir Differenzen-
gleichungen bei Randwertaufgaben I, Num. Math. 22 (1973), 37-68. In
German.

[95] J. Schroder and U. Trottenberg, Reduktionsverfahren fiir Differenzen-
gleichungen bei Randwertaufgaben II, Num. Math. 26 (1976), 429-459.
In German.

[96] R. Schultz and R. Stevenson, Extraction of high-resolution frames from
video sequences, IEEE Trans. Image Process. 5 (1996) 996-1011.

168

[97] S. Serra, Preconditioning strategies for asymptotically ill-conditioned
block Toeplitz systems, BIT 34 (1994) 579-594.

[98] S. Serra, Conditioning and solution of Hermitian (block) Toeplitz sys-
tems by means of preconditioned conjugate gradient methods, In: Proc.
in Advanced Signal Processing Algorithms, Architectures, and Imple-
mentations - SPTE conference, SPIE (1995) 326-337.

[99] S. Serra, Convergence analysis of two-grid methods for elliptic
Toeplitz/PDEs Matrix-sequences, preprint (2001), submitted to Numer-.
Math., 31 pages.

[100] S. Serra and C. Tablino Possio, Preliminary Remarks on Multigrid
Methods for Circulant Matrices, In: Numerical Analysis and Its Appli-
cations, Second International Conference, NAA 2000, Rousse, Bulgaria,
LNCS 1988, Springer (2001) 152-159.

[101] S. Serra and C. Tablino Possio, Multigrid methods for multilevel cir-
culant matrices, preprint (2001), submitted to SIAM J. Sci. Comp., 16

pages.

[102] B. Smith, P. Bjérstad and W. Gropp, Domain decomposition, Cam-
bridge University Press (1996).

[103] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl.
Math. 74 (1986), 171-176.

[104] H. Sun, R. Chan and Q. Chang, A note on the convergence of the
two-grid method for Toeplitz Systems, Comp. Math. Appl. 34 (1997)
11-18.

[105] H. Sun, X. Jin and Q. Chang, Convergence of the multigrid method
for ill-conditioned Block Toeplitz systems, BIT 41 (2001) 179-190.

[106] A. Tikhonov and V. Arsenin, Solutions of ill-posed problems,
V. H. Winston and Sons (1977).

[107] L.N. Trefethen and D. Bau, Numerical Linear Algebra, STAM (1997).
[108] U. Trottenberg, C. Oosterlee and K. Schiiller, Multigrid, Academic
Press (2001).

169

[109] R. Tsai and T. Huang, Multiframe image restoration and registration,
Advances in Computer Vision and Image Processing 1 (1984) 317-339.

[110] C. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form, STAM (1992).

[111] R. Varga, Matrix iterative analysis, Prentice Hall (1962).

[112] C. Vogel, Computational Methods for Inverse Problems, book in prepa-
ration, to be published with STAM (2002). Currently available online via
http:/ /www.math.montana.edu/~vogel/

[113] W. Wan, Scalable and multilevel iterative methods, Ph.D. thesis, Uni-
versity of California, Los Angeles (1998).

[114] H. Widom, Toeplitz matrices, In: Studies in real and complex analysis,
I. Hirshman Jr.(Ed.), Math. Ass. Am.(1965).

[115] G. Wittum, On the robustness of ILU-smoothing, SIAM J. Sci. Stat.
Comput. 10 (1989) 699-717.

[116] J. Xu, Iterative methods by space decomposition and subspace correc-
tion, STAM Review 34 (1992), 518-613.

[117] K. Yosida, Functional Analysis, Springer (1974).

[118] D. Young, Iterative solution of large linear systems, Academic Press
(1971).

[119] H. Yserentant, Old and new convergence proofs for multigrid methods,
Acta Numerica 2 (1993) 285-326.

[120] X. Zhang, Multilevel Schwarz methods, Numer. Math. 63 (1992) 521-
539.

170

