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Abstract

Cryptography was and still is one of the most interesting fields in Computer
Science-related research. Where its origin lies in military and governmen-
tal use, today cryptography is widely used in everyday life. Cryptography
secures communication between smart cards and card readers. It scrambles
transmissions between DECT telephones and their base stations, it even en-
tered the living rooms through digital Pay TV channels which use crypto-
graphic methods to make sure that only their subscribers can watch their
transmissions – and only what they have payed for. Similarly, each DVD
player contains cryptographic techniques which were implemented to pre-
vent unauthorized copying and playback.

Also for network infrastructures, company intranets, or the global inter-
net with its shared resources, cryptography is essential to secure transmit-
ted data against snooping. This is especially vital to so called virtual pri-
vate networks (VPNs), where a (virtually) private network is spanned using
shared network resources meaning that although a shared medium is used,
the spanned network behaves like a private network in terms of data secu-
rity and connectivity. Even the underlying physical network infrastructure
is hidden.

One of the biggest problems with modern cryptography is data through-
put. Combined video/audio data as on DVDs or broadcasted via Pay TV
stations easily needs – depending on the quality – 2 to 10 MBit/s and more
which means that networks carrying this data have to be able to provide at
least the same bandwidth: A smaller bandwidth would lead to visible and
audible artifacts.

Such applications require network devices which are not only capable of
transporting the incoming data stream but also encrypt or decrypt them with-
out becoming a bottleneck. For this reason, a number of dedicated hardware



solutions exist which support one or more crypto algorithms. Naturally,
such solutions do not allow to change the supported algorithms. Change of
algorithm automatically means change of hardware; similarly, supporting
a number of algorithms requires to have several of dedicated architectures
each supporting one algorithm.

A programmable architecture is a solution to this dilemma. General
purpose processors seem to be the ideal candidates for this task, however,
these did not supply the needed computation power in the past – and today,
where they do, they need too much electric power and produce too much
heat. Also, it is not economically sensible to use processors worth several
hundred Euro but using only a fraction of their potential.

In this thesis a programmable architecture dedicated to typical needs of
cryptographic algorithms is presented. Starting with the analysis of several
major cryptographic algorithms key parameters and hardware requirements
were identified. Based on these, an architecture was designed which not
only suits these requirements but also satisfies economic factors like cost of
production and power consumption. A number of algorithms were imple-
mented on an architectural simulator and dedicated parts of the architecture
were realized using VHDL to measure hardware parameters such as logic
use and routability. These numbers were compared against existing solu-
tions; the comparison has proven that a programmable architecture like the
one proposed within this work can achieve performance similar to or even
better than existing dedicated hardware solutions while still retaining mod-
est hardware requirements.
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Introduction and Motivation

1.1 What is Cryptology?

When talking about cryptology in general the terms cryptology and crypto-
graphy are often used very loosely. To avoid confusion this document fol-
lows the definitions given by the American National Standard for Telecom-
munication (ANST) as part of the Alliance for Telecommuncations Industry
Solutions (ATIS) [6] which are cited below.

Cryptology is both “the science that deals with hidden, dis-
guised or encrypted communications” and “the field encom-
passing cryptography and cryptanalysis” [123].

The term cryptography describes “the art or science concern-
ing the principles, means and methods for rendering plain in-
formation unintelligible, and for restoring encrypted informa-
tion to intelligible form” [122]. It also refers to this term as
“the branch of cryptology that treats the principles, means, and
methods of designing and using cryptosystems” [122].

Measuring the quality of a cryptographic method is done by means of
cryptanalysis, namely “operations performed in converting encrypted mes-
sages to plain text without initial knowledge of the crypto algorithm and/or
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1. INTRODUCTION AND MOTIVATION

key employed in the encryption” [121]. This definition can be condensed to
“study of encrypted texts” [121] 1.

1.2 Use of Cryptology
Today, cryptology is widely used and has already pervaded everyday life
in many ways. So called smart cards use encryption for securing the com-
munication between its host – for example a public telephone – and the
smart card processor. Digital pay TV stations scramble their signals in a
way which allows only the subscribers to descramble the transmissions. ID
cards attached to a PC are used for authentication and digital subscription.

As these examples show, the role of cryptography is manifold; crypto-
graphic algorithms perform the following tasks which directly relate to the
above examples:

• Securing a point-to-point connection making it impossible to snoop
into the communication to gain information about both, the transmit-
ted data and the protocol used for data transmission. Two flavours of
reversible data encryption exist which are symmetric and asymmetric
encryption. In the first case, the same key is used for encryption and
decryption; in the second case different ones are used. This will be
explained in more detail when discussing asymmetric algorithms in
Section 2.1.

• Securing a one-to-many broadcast ensuring that a group of individ-
ual recipients (and only this group) is able to decipher the transmitted
data. This requires special encryption techniques which allow the use
of group key(s) for encryption where the decryption is done using
individual (subscriber, for instance) keys.

• Authentication of data; this can mean either proving the integrity of
the transmitted data by providing some kind of checksum or authenti-
cating the origin of a message. Data integrity is ensured by perform-
ing a one-way hash function over the received data and comparing the

1Since this work focuses on the development of an efficient programmable architecture
for crypto algorithms this work will not deal with cryptanalysis issues beyond introductory
information to each algorithm.
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computed value against a reference value provided by the sender. A
commonly known use of this technique is storage and verification of
passwords under the various Unix and Unix-like operating systems
which only store the hash value of the password instead of the pass-
word itself.

Sender authentication comes virtually for free when using asymmetric
Public Key encryption techniques which will be introduced in Section
2.1.

1.2.1 Secure Data Transfer

This is the basic application of cryptography: Information has to be en-
crypted in a way that only the recipient (or a group of recipients as for the
Pay TV example) can access the original, unencrypted data.

As mentioned in Section 1.2, two basic encryption methods exist: sym-
metric encryption and asymmetric encryption. In Section 2.1 these methods
will be discussed more detailed showing how this class of algorithms can be
used for digital signing of data.

Also, the way data is transmitted needs to be taken into account. Al-
gorithms can either work on data chunks of same size (block ciphers) or
continuous data streams (stream ciphers). This will be discussed in Chap-
ter 2 which will also include an introduction into chained ciphering where
preceding data is included into the encryption process of following data.

1.2.2 Authentication of Documents

Securing data transfer does only guarantee (to a certain degree) that no unau-
thorized person is able to read the encrypted message. However, it does not
prove authenticity. Besides securing against so-called snooping, the recipi-
ent has also to be sure that the transmitted data is authentic and does indeed
originate from the denoted sender.

One example might be online banking: The bank has to ensure that out-
going money transfers are initiated by the account holder only. Just using
login and password for authentification would be highly insufficient; thus,
every transaction is not only secured by the Personal Identification Number
(PIN) but also by a per-transaction individual Transaction Number (TAN).
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Used TANs are stored in a blacklist ensuring that each TAN can be used
only one time.

Another example comes from civil service: Recent approaches target
an entire ”electronic service“ allowing citizens to fill out necessary forms
for services like passport renewal, announcing movements, or car licensing
on-line. Security for this systems needs to be very tight to prevent possible
identity frauds. Both, the abuse of another person’s account, and pretending
a different identity must be prohibited. Furthermore, all transfers must be
encrypted in a way that only the denoted recipient is able to decrypt the
transmissions to avoid disclosure of sensitive or personal data.

The already mentioned asymmetric encryption also known as public key
encryption offers a solution to this problem.

1.2.3 Data Distribution

In certain cases it wanted to address a group of recipients rather than allow
only one single recipient to decrypt an encrypted message. The most com-
mon use of this technique is Pay TV where all subscribers of a channel have
to be able to decrypt the scrambled TV transmission. It is also applicable
to other means of Digital Rights Management (DRM) where access to in-
formation is restricted to a set of subscribers, possibly with varying access
rights.

Since this is mainly a mathematical problem dealing with key generation
algorithms further discussion of this field are omitted from this work. An
introduction into the field of DRM can be found in [64] and [77].

1.2.4 Virtual Private Networks

Instead of expensively creating their own physical network many companies
use existing network infrastructures. These can be either private networks
shared among several companies but also public ones like the Internet. In
either case sensitive corporate data needs to be secured from external ob-
servation - despite the shared medium the transported data still needs to be
kept private, thus the term Virtual Private Network (VPN).

Several software solutions exist which create a secured so-called tunnel
between two endpoints spawning a virtual network structure over an existing
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network. One of the most common software packages used is the IPSEC
system as incorporated in the FreeS/WAN project [124].

It is not uncommon that two VPN nodes connecting entire internal net-
works (hereafter referred to as intranets as opposed to the Internet) need
to process an enormous workload of several 100 MBit/s. The connecting
nodes have to cope with these data streams and process them immediately
so they do not become a bottleneck and slow down the network intercon-
nection. This would eventually disrupt ongoing real-time data streams like
video conferencing, for example.

1.2.5 Other Cryptological Applications
Plenty of additional applications for cryptological algorithms exist such as
electronic voting: Here it must be ensured that every person is able to vote
only one time, but on the other hand the identity of that person has to be kept
secret. For a detailed introduction into secret voting the interested reader is
referred to pages 149 to 159 of [106]. The same source also lists many other
applications such as distributed secret sharing where a message is split up
into a number of pieces where each piece can be proven to be authentic but
the message can only be decrypted when all pieces are put together. This
encryption method is ideal for companies selling a unique product such as
the Coca Cola company which obviously have to ensure that never a single
person knows the receipe for their soft drinks.

Other examples of cryptological applications are immediate exchange of
secrets, immediate signing of contracts, exchanging data through a trusted
third party like a notary, or approving data by a third person. All of these are
interesting mathematical questions concerning algorithm construction and
key generation; the interested reader might find an absorbing introduction
into the various applications of cryptology in [106]. For this work, however,
this short introduction should be sufficient.

1.3 Key Generation
Keys needed for asymmetric cryptographical algorithms (see Section 2.1)
are based on huge prime numbers. To find such numbers fast is still one of
the greatest challenges in cryptology. An introduction into this field would
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surely go beyond the focus of this work; the interested reader will find an
overview over the various methods of prime number generation and proving
primality in [29] and [38].

For about 15 years polynomial methods based on elliptic curve equations
[12, 129] have been proven to be among the most efficient methods; for
that reason a number of elliptic curves are recommended by the National
Institute of Standards and Technology (NIST) [78] and numerous work was
done on the field of implementing so-called elliptic curve processors, both
in hardware [98, 71, 75, 76, 87, 130, 117] and software [14, 49, 111, 88].
However, the problem of generating large prime numbers is quite different
from the cryptographic algorithms used for en- or decryption, which is why
key generation will not be included in this work.

Whenever the term key generation is used it refers to round key gen-
eration2. The term round denotes one iteration of the algorithm’s inner
loop. For example the DES algorithm consists of 16 rounds as explained
in Section 3.3. Unlike the cipher key, which has been computed by afore-
mentioned methods, the round key is generated using independent rules as
defined within the chosen cryptographic algorithm. Roughly said, it is a spe-
cial permutation based on the cipher key and an integral part of its referring
cryptographic algorithm. The methods of key generation will be discussed
along with the respective cipher algorithms in Sections 3.3 and 3.4.

1.4 Need for speedy and secure cryptography

The use of cryptography is an emerging market. The growing demand for
cryptography arises from the desire to secure networks and data against po-
tential intruders and also the marketing of intellectual property.

In the past the data media itself was adequate copy protection: it is im-
possible (or better: economically not sensible) to create an exact copy of
a book or a magazine, the same goes for audio vinyl records or movies on
VHS tape. Whenever one tries to copy these media by means available at
reasonable prices the copy is of lower quality than the original. The digi-
tal age has changed this dramatically: Data stored on digital media can be
copied without loss of quality and at nearly no cost.

2Another term for round key generation often found in literature is key setup.
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With increasing network performance and growing storage capacities
the type of transmitted data changed. Whereas text data such as HTML
pages usually does not require much bandwidth or, in case of text doc-
uments, does not have any real-time demands, requirements for so-called
multimedia data like streaming video and audio are quite different. Audio
streams in CD quality usually have a bit rate of 128 kBit/s to 256 kBit/s
which is already twice to four times the data rate provided by a single ISDN
data channel. Even more resource-greedy is video transmission which can
easily use 10 MBit/s – an amount which was quite sufficient for entire com-
panies’ internal networks (intranets) just a decade ago.

This shows that especially for securing multimedia streams (usually on a
per-user base as being used for pay-per-view services) a huge amount of data
needs to be encrypted with minimum latency and appropriate throughput to
meet the strict real-time requirements such streams have.

But it is not only multimedia which has high demands for bandwidth
and data throughput. As mentioned before, companies often connect their
local intranets over the internet using secure tunnels. These VPNs have
to transport the entire communication between physically separated local
nets. Companies with great network bandwidth demands use 155 MBit/s to
622 MBit/s lines to realize the intranet linking already requiring dedicated
network routers. En- or decrypting these enormous data streams in real-
time requires further hardware since this is far beyond the capabilities of
any PC-based software solution.

Such solutions already exist. Back in the 1980s dedicated DES proces-
sors were built; today the first chips targeted towards the Advanced Encryp-
tion Standard (AES) have hit the market. However, these processors can
only perform one single cryptographic algorithm – even worse with AES
where common hardware solutions usually support only one out of 9 possi-
ble configurations as shown in Chapter 7.

Interestingly, until now almost no universally programmable crypto pro-
cessors are known to the public. The available solutions, mostly for smart-
card based cryptography, are designed for low-bandwith applications like
exchange of keys or challenge-response operations. As of today, only
one freely programmable and algorithm-independent crypto processor has
shown up in literature which is capable of processing at least medium band-
width data [131]. In addition, a microprogrammable solution [67] exists
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which – although it was tailored towards the IDEA algorithm – is not nec-
essarily restricted to that algorithm.

1.5 Research Contribution
The research contribution of this work is the development of a novel crypto
processor architecture targeting high-bandwidth applications. It is based
on exhaustive algorithm analysis with respect to parallelism, memory, and
register use as well as support of non-standard functions. Currently ex-
isting solutions are mainly hardwired logic which means that these chips
perform only one or a very limited set of algorithms. In contrast, the pro-
posed CRYPTONITE architecture is fully programmable and is not tailored
towards a single algorithm: The flexibility of the CRYPTONITE architecture
is not achieved by a collection of dedicated processing units where each
unit is responsible for a single algorithm; instead, the computation units are
designed to be as general as possible3.

To determine the proper base architecture a set of crypto algorithms was
selected and analyzed to determine the architectural needs of each algo-
rithm. This analysis started with a straight-forward implementation of the
selected algorithms to firstly determine exploitable parallelism by analysis
of data and control flow. A more fine-grained analysis was then performed
to determine the number and type of functional units as well as support-
ing instructions. The data was collected and processed to determine an ar-
chitecture which would be suitable for all investigated algorithms. Based
on current and expected usage some algorithms were weighted over others
(AES/DES).

The aim of this work was to create a programmable architecture suitable
for a broad range of cryptographic algorithms used for encryption, decryp-
tion and fingerprinting (authentication) of data with respect to processing
speed and manufacturing costs. To achieve this the algorithms were imple-
mented in many ways to determine the optimal compromise between speed
and complexity of the architecture as presented through Chapters 3 to 5;
Section 5.2 lists reasons why a dedicated crypto architecture was preferred
over using a high-performance general purpose processor.

3In case of DES, however, it was vital to provide a specialized DES unit to achieve high
throughput. See Section 5.8.4 for further discussion of this topic.
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Performance numbers as listed in Chapter 6 have been calculated based
on software simulation and VHDL model synthesis. For software simula-
tion a cycle-exact simulator was written to allow implementation and testing
of selected algorithms. To determine hardware requirements selected parts
of the CRYPTONITE architecture were modelled using VHDL; these models
were then synthesized and fitted into the Xilinx Virtex-IIpro FPGA family.

Depending on the algorithm, the CRYPTONITE architecture presented
within this work shows a raw crypto performance of 250 to 780 MBit/s
including round key calculation. Is is remarked that usual software and
also some hardware implementations do not include round key generation
embedded into the ongoing encryption or decryption process but rather op-
erate on precomputed round keys. The achieved throughput is not only in
the range of comparable dedicated hardware solutions but even outperforms
a number of these as shown in Chapter 7. In addition, the proposed ar-
chitecture shows also superior performance within the sparse field of truly
programmable solutions. It shall be remarked again that the algorithm im-
plementations as realized on the CRYPTONITE architecture include round
key generation.

This very promising performance is resulting from the general archi-
tectural concept which was tailored towards the demands of typical cryp-
tographic algorithms and a special memory access technique, the S-Box
lookup as explained in Section 5.8.1, and specialized arithmetic operation
supporting certain algorithms as listed in Section 5.7.3.1.

1.6 Thesis Organization

The thesis is organized as follows: Chapter 2 will give an overview over the
field of cryptology and basic definitions such as operation modes of crypto
algorithms. After this introductionary part, the following Chapter 3 will
present selected algorithms used for architectural demand analysis together
with their relevance within the field of crypto systems.

Based on this analysis, the architectural requirements are summed up in
Chapter 4 and the resulting architecture is presented in Chapter 5. Imple-
mentational aspects of both, the software and hardware side, are shown in
Chapter 6 which also gives performance estimations based on software sim-
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ulation and VHDL model synthesis. This topic is completed with Chapter 7
which compares the proposed architecture against existing solutions.

The thesis is closed with Chapter 8 giving conclusion and summary fol-
lowed by Chapter 9 offering a brief outlook on future work and closes with
some final remarks. It is finished with an overview of the instruction set in
Appendix A and a description of the instruction word format described in
Appendix B. Finally, the Assembly Language Format for CRYPTONITE is
presented in Appendix C together with sample code.
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Crypto Algorithms – Terms and
Definitions

This chapter will elaborate on certain crypto algorithms: Those used for
reversable encryption, which hereafter will be called cipher algorithms, and
those for the generation of fingerprints or hashes, the hash algorithms.

Cipher algorithms are bijective mathematical constructs: They allow en-
cryption of a plain text message into cipher text but also the reverse oper-
ation, decryption of a cipher text into the original plain text message. The
group of hash algorithms, however, is injective. For every input message
they create a distinct hash code of a typical size (512-bit for MD5) which
then, for instance, can be used for authentication of messages.Traditionally,
Cipher algorithms can be as simple as the Caesar chiffre which is just a per-
mutation of the alphabet by a certain permutation factor. Instead, modern
crypto systems make use of so-called cipher keys. These keys are derived
from a special cipher key space which has to adhere to certain rules.

For systems which use the same keys for encryption and decryption
equations 2.1 and 2.2 apply. Here,

���
and � �

represent the respecting
encryption and decryption functions based on a key � . � and 	 denote
original message and cipher text. The functions

�
�
and � �

are constructed
to be the reverse functions of each other so that equation 2.3 is valid.

	�� ���� ��� (2.1)� ��� ��� 	�� (2.2)� ��� ��� 	 ��� ����� (2.3)
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Algorithms following equations 2.1 to 2.3 use the same key for encryp-
tion and decryption. Apart from these, a second class of algorithms exists.
These algorithms use different keys ��� and ��� for encryption and decryp-
tion instead of a uniform cipher key � . For these algorithms equations 2.4
to 2.6 apply.

	�� ������ ��� (2.4)� ��� ����� 	�� (2.5)� ��� ����� 	 ��� � ����� (2.6)

2.1 Symmetric and Asymmetric Algorithms
As just discussed, cipher algorithms can be divided into two distinct classes
which are symmetric and asymmetric (or public key) algorithms.

Symmetric algorithms use the same key for encryption and decryption
of a message as discussed in the previous section. Consequently, this com-
mon key has to be kept secret between the communication partners under
all circumstances. The class of symmetric algorithms divides further into
stream ciphers and block ciphers. As the name suggests, stream ciphers op-
erate on a stream of data; depending on the context such a stream can be
either be a stream of bits or bytes. Block ciphers, in contrast, operate on
data chunks of certain size which means that a message distributes over a
number of blocks. The size of these blocks are determined by the selected
algorithm and algorithm configuration. In case of DES, which is the first
standardized crypto algorithm, block size is 64-bit. Using certain opera-
tion modes as discussed in Section 2.2, block ciphers can also be applied to
streaming data.

Asymmetric algorithms – more figuratively called public key algorithms
– use different keys for encryption and decryption. One key is called pub-
lic key and can be handed out to all communication partners without com-
promising security. The second key, however, must be kept private and is
therefore called private key .

Public key algorithms are designed in a way that a message encrypted
with someone’s public key can only be decrypted with that person’s pri-
vate key – and vice versa. This makes it possible to encrypt a message in
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a way that it can be only deciphered by the addressee. Together with mes-
sage authentication based on hash algorithms – which provide information
about whether a data transmission was modified during transportation or
not – public key algorithms ensure the authenticity of a message where the
addressee can be sure that the message originates from the denoted sender
(provided by the public key algorithm) and that the message content has not
been altered (provided by the hash algorithm).

2.2 Modes of Operation
When discussing cipher algorithms in the context of developing a suitable
crypto architecture, both, the algorithm itself and its mode of operation must
be taken into account. These operation modes influence the way an algo-
rithm can be implemented and especially affect efficiency and possible ex-
ploitation of parallelism. Besides, certain modes of operation allow the use
of block-based cipher algorithms for character-based data streams which,
for instance, are used for remote terminal applications (remote shells).

Numerous operation modes and combinations of these exist which can
be reduced to one of the “primitive” modes which are electronic codebook
mode (ECB), cipher block chaining (CBC), cipher feedback mode (CFB),
output feedback mode (OFB), and counter mode (CM). Some of these modes
employ shift registers into which computation results are fed back; another
group of operation modes uses sequence numbers instead of computation
results and are therefore called counter modes. For modes being derived
from these modes the dedicated reader is referred to [103].

For certain crypto algorithms various operation modes are specified;
Sections 2.2.1 to 2.2.5 will shortly introduce these operation modes prior
to discussing the examined cipher algorithms in detail. For a more detailed
discussion on operating modes please refer to [105].

2.2.1 Electronic Codebook Mode (ECB)
ECB is a straightforward way to use block cipher: a plain text block is di-
rectly encoded into a cipher text block. Assuming the use of identical keys
plain text blocks of same content will be encrypted into cipher text blocks
of same content. This would allow the creation of a codebook or dictionary
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showing the correlation between plain and cipher text block. On one hand,
this is only a theoretical consideration since with cipher algorithms working
on n-bit blocks such a codebook would have !#" entries, furthermore with
a key size of k bit, !%$ of these codebooks would be needed. On the other
hand a professional cryptanalyst would be able to attack this mode by creat-
ing such codebooks and do a statistical analysis: Recent experiments have
shown that it indeed is possible to identify language and even the author
by statistically analyzing the codebook of compression algorithms which
use codebook methods similar to ECB-based encryption against known lan-
guage parameters [13, 50].

Since plain text blocks can be processed independently, ECB ensures
linear coarse-grained increase in throughput by simply increasing the num-
ber of computation units and distributing a message of arbitrary length
(which has to be a multiple of the block size & , of course) evenly among all
computation units present in the system. This is unlike the feedback modes
discussed in the following sections which inherently inhibit this coarse-
grained parallelism.

ECB is resistant against bit errors (bit value changes) since only the
block containing one or more error bits is affected; there is no error prop-
agation. However, ECB is very sensitive to synchronization errors: Once
the synchronization is lost, for example by accidental bit insertion when
receiving a encrypted message, the remaining message will be unreadable.

2.2.2 Cipher Block Chaining Mode (CBC)
With cipher block chaining the previously generated cipher text block block
is used as another input value for the en- or decryption process. This means,
that processing a single data block is not independent like in ECB but de-
pends on all previously computed data blocks.

The cipher text block of the previous computation round is XORed to
the current round’s plain text block. While encrypting plain text blocks this
XOR function takes place prior to the encryption function, for decrypting
cipher blocks it takes place after the decryption function. The method is
depicted in Figure 2.1 and can be formulated mathematically as follows:

Encryption: 	(')� ����+* '�,-	('/.102�
Decryption:

* ')��	('3.104,5� ��� 	('6�
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	(' and
* ' denote the cipher and plain text blocks,

���
and � �

represent the
encrypt and decrypt functions.

By feeding back the previously generated cipher text, CBC circumvents
the major problem of ECB which transforms plain text blocks of same con-
tent into cipher text blocks (result blocks) of same content. Using CBC,798;:;:;<#=>8;: of same content will be processed into result messages of same
content. This can be circumvented by initializating CBC using appropriate
initialization vectors.

Unlike ECB, CBC mode shows error propagation since in case of a re-
ceived cipher block containing an error not only is this block affected but
also the following one before it recovers; much like ECB, however, it will
not recover from synchronization errors [104].

There are certain security issues with CBC mode allowing attacks based
on cryptanalysis which can be circumvented by slightly modifying the feed-
back pattern. Since security discussions are beyond the scope of this docu-
ment, the interested reader is referred to [104].
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Figure 2.1: Encryption and Decryption using CBC
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2.2.3 Cipher Feedback Mode (CFB)

One of the problems with ECB and CBC modes is that they operate on block
size rather than single characters or bits as it would be necessary for certain
applications such as securing a data stream from or to a terminal: In this
example an immediate reaction to single characters is necessary rather than
collecting a complete block of characters prior to processing. The straight-
forward idea of padding a block – even with cryptographically sensible val-
ues – is not resonable since a potential attacker would know that the data
payload of a complete block is only a single character. Instead of simple
padding, a scheme as illustrated in Figure 2.2 is used.

The idea behind this scheme is easy to understand: Since a block algo-
rithm can only work on entire blocks rather than symbols of arbitrary size
where simple padding to block boundaries obviously is not reasonable a
shift register is used to generate blocks of required length. This register is
initialized by a cryptographically sensible value, the so-called initialization
vector. Assuming a byte-wise encryption or decryption based on a 64-bit
algorithm this shift register contains 8 positions. Whenever a character is
sent out, the register content will be (de)scrambled using the (de)cipher key;
the leftmost byte of the result of this operation is then XORed with the input
byte and the register is shifted by one position to the left.

In case of encryption, the plain text byte is fed into the XOR operation
and the resulting cipher byte is stored at the righmost position of the shift
register. For decryption, the incoming cipher byte is stored there and is
fed into the XOR operation; the result then is the plain text byte. This equals

Encryption: 	(')� * '>, ���� 	('/.102�
Decryption:

* ')��	('>,5� ��� 	('/.102�
and Operation starts with index ?@�BA and an initialization vector C�D is used
as a “seed” for the process.

Of course, the feedback mechanism makes CFB less resistant against
bit errors and more susceptive to error propagation: A packet containing
an error bit will not only affect the current but also the & following rounds
where & is the size of the shift register; the maximum boundary for error
propagation is "EGF A with & being block and 7 being symbol size. For the
aforementioned 9 byte example, the current plus eight following rounds will
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retain an error. However, it will recover from synchronization errors since
the error will age out of the shift register after "E steps.

p i

k i

c i

Shift Register

EncryptionKey

k i

p ic i

Shift Register

DecryptionKey

Figure 2.2: Cipher Feedback Mode (CFB)

2.2.4 Output Feedback Mode (OFB)
This mode is very similar to CFB. However, the symbol being fed back into
the shift register is the cipher symbol HI' generated from the shift register.
Thus, the feedback mechanism and the contents of the shift register JK' are
completely independent from the cipher data stream but only depend on
the cipher key [30] as illustrated by Figure 2.3. Hence, its formula can be
written as:

Encryption 	L'�� * '>,MJ)' J)'�� ��
� J)'/.102�
Decryption

* '��N	('>,MJ)' J)'�� ��
� J)'/.102�
The advantage of OFB over CFB and CBC is that feedback computation
can be done in advance and independently from the message if the size of
message blocks sharing the same key is known in advance. Like in ECB
mode this allows a more coarse grained parallelization since HO' and J)' are
independent from the message itself.

Also, for the same reason errors in transmission do not propagate as
in the previously discussed feedback modes. However, there are various
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security issues concerning the use OFB modes [68, 42, 43, 48] which the
dedicated reader is referred to.

kE kE0S
1 2

P 21

C 21

P

C

S S

Figure 2.3: Output Feedback Mode (OFB)

2.2.5 Counter Mode (CM)
The security issues of OFB regarding block and feedback size (which have
to be of same number for maximal security) as discussed in the previous
section can be solved by using the Counter Mode (CM): Block ciphers using
CM create their internal state from sequence numbers rather than output of
the cipher algorithm itself [44, 51, 69] where the counter is incremented
by a constant value after each round. This mode has the same attributes as
OFB concerning error propagation and loss of synchronization but allows
the generation of output smaller than block size.

The nature of the used counter does not matter; it can be either a sim-
ple up-counter, be incremented by a certain offset, or constructed around
pseudo-random number generators. Based on this counter, the cipher key,
and a rather complicated output function, the cipher symbol ��' is computed
[51, 44] which will then be used for encryption or decryption of a message
block.

2.3 Summary
Within this chapter a basic introduction into the field of cryptography was
presented and definitions of the encryption and decryption process were
given. Also, the difference between symmetric and asymmetric algorithms
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was worked out. The foci of this chapter are the various operation modes of
crypto algorithms.

For security reasons, today mostly chained operating modes are used.
For example, IPSEC defines each packet to have its own initialization vector
which means that within a packet the blocks are “chained” together. As the
name suggests, these modes include results of previous calculations. This
already makes one basic decision about the processor architecture: Speeding
up algorithm processing has to be achieved by single, powerful processor
cores rather than a SIMD-like architecture with a certain number of proces-
sor cores working on different data chunks. Doing so would gain speed-up
only for ECB mode. For chained modes a SIMD architecture would not nec-
essarily lead to higher per-channel computation power, but provide multiple
channels sharing the same crypto algorithm multiplying the overall through-
put. Looking at the IPSEC example, such a SIMD architecture would allow
multiple channels to be processed in parallel.

Similarly, also a MIMD approach would not provide higher per-channel
throughput. Like a SIMD architecture it would offer multiple channels, but
– contrary to SIMD – an individual crypto algorithm can be applied to each
channel.
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Algorithm Discussion and Analysis

3.1 Exploitable Parallelism

Network communication exposes many levels of possibly exploitable paral-
lelism that can be used to improve throughput. This can happen on a per-
connection base, for example by assigning one processing unit to one single
connection. It also can happen on a per-packet base; each packet consists –
depending on the selected packet size for transmission and the used crypto
algorithm – of several data blocks. With IPSEC in CBC mode, for example,
each packet will use different initialization vector which means that packets
can be processed individually.

Within one packet, the amount of exploitable parallelism is influenced
by the operation mode used and the algorithm itself. Using ECB mode, each
block of a packet can also be processed individually; this is not possible with
feedback modes where the previously processed block is fed into the current
block’s encryption (or decryption) process. As mentioned in Section 2.2.1
ECB for security reasons is hardly used anymore which usually means that
blocks cannot be processed individually because a data dependency exists
between consecutive blocks of a packet.

On the block level, parallelism is dictated by data dependencies within
the used algorithm and number of functional units. The following sections
concentrate on selected cryptographic algorithms, possibly exploitable par-
allelism and additional requirements such as dedicated functional units.
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3.2 Selection of Algorithms
For this work an initial set of algorithms was chosen consisting of
DES/3DES [26], AES/Rijndael [40], and MD5 [93].

DES was chosen since it is the very first standardized crypto algorithm.
Despite its age it is still widely used, although software realization of DES is
quite problematic since it is very hardware oriented containing many single-
bit permutations rather than operations on complete data blocks. Addition-
ally, it operates on a variety of data sizes which are 64-bit, 56-bit, 48-bit,
32-bit and 28-bit which are usually not ideally supported by standard archi-
tectures.

AES/Rijndael on the other hand is the new encryption standard and was
especially designed to run on current general purpose architectures. Here,
the challenge is developing an architecture which supports AES/Rijndael
best in all configurations but also does not contain too many AES-specific
elements.

The third candidate, MD5, is a widely used hash algorithm which was
chosen to demonstrate the flexibility and universability of the architecture
described in this work. It is very similar to other hash algorithms like its
predecessor MD4 [92] or SHA-1 [27, 108] which are also included within
this chapter.

Also, two further algorithms, IDEA [73, 101] and RC6 [96] were added;
IDEA was developed in the beginning 1990s as an algorithm easily and effi-
ciently implementable on 16-bit architectures and gained popularity through
the PGP tool mainly used for securing email privacy. RC6 is a recent algo-
rithm and was one of the finalists in the AES competition.

3.3 The Data Encryption Standard (DES)
DES is the first standardized crypto algorithm. It was developed by IBM in
the 1970s and published in the Official Gazette of the United States Patent
and Trademark Office in 1975 [126] and 1976 [127]. In 1977 DES became a
Federal Information Processing Standard (FIPS) [26]. It fulfills the later de-
fined Security Requirements for Cryptographic Modules [28] which specify
security requirements for protecting classified information within computer
and telecommunication systems.
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3.3. THE DATA ENCRYPTION STANDARD (DES)

The DES algorithm can be used in four different modes [70] which are
Electronic Codebook mode (ECB), Cipher Block Chaining mode (CBC),
Cipher Feedback mode (CFB), and Output Feedback (OFB). A discussion
of these operation modes and their architectural impact was already given
in Section 2.2.
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Figure 3.1: Workflow of the DES Algorithm
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3. ALGORITHM DISCUSSION AND ANALYSIS

3.3.1 Design of the DES Algorithm

The DES algorithm basically consists of three parts which are initial per-
mutation, 16 rounds of encryption and final (inverse initial) permutation as
shown in Figure 3.1. It operates on 64-bit chunks of data, hence any message
which needs to be encrypted using DES has to be padded with appropriate
filling data to the next 64-bit boundary. Also the key provided for en- or de-
cryption needs to be 64-bit, however, every eighth bit is dropped during the
key permutation resulting in an effective bit length of 56-bit. The remaining
8 bits can be used for parity checks but do not contribute to cryptographic
strength.

Within each round, key generation and encryption take place. Key gen-
eration is fairly easy: The 56 bits of key data are split into halves; each
half is fed into a 28-bit cyclic left-shift register which according to a round
constant rotate the key halves up to two positions.
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Figure 3.2: A single DES round
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The encryption process itself (see Figure 3.2) is slightly more compli-
cated: The input data is split into two chunks of 32 bits each where only the
right half is included into the encryption function. Through an expansion
permutation these right 32 bits are expanded to 48 bits; similarly, the 56-bit
key is compressed to 48 bits. Both values are then XORed, the result of
this operation is fed into a lookup table implemented as 8 S-Boxes. These
S-Boxes provide the main encryption (or decryption) function within the
DES algorithm. All other permutations employed are used to evenly scat-
ter the input data among a 64-bit chunk ensuring that no conclusions about
message and key can be drawn by analyzing multiple chunks of encrypted
data.

Functionally, each S-Box is a ROM with 32 memory locations: It trans-
lates a 5-bit input value into a corresponding unique 4-bit output value. No
two S-Boxes are the same. The 48-bit result of the previously performed
XOR operation between compressed round key and expanded right half of
the input data is fed into the array of S-Boxes producing a 32-bit lookup
value. This value undergoes another permutation, the P-Box permutation,
before it is XORed with the left half of the input data.

S1 S4 S5 S6 S8S2 S3 S7

Input Data (48 bit)

Output Data (32 Bit)

Figure 3.3: The DES S-Box

For the next round, the computed result becomes the left half of the
input data where the previous left half is swapped with the right half. This
swapping is omitted in round 16, instead the 32-bit values are concatenated
and sent through the final permutation which is the reverse operation of the
initial permutation.

Since DES is a symmetric algorithm decryption works just the same as
encryption, only the round keys have to be applied in reverse order.
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16 DES
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16 DES
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Key #2
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Key #1

Initial
Perm.

Final
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Figure 3.4: Triple-DES

Today, plain DES usually is not used anymore for security reasons since
with modern machines it can be broken in comfortable time using brute-
force methods (for example, the DES-II challenge was won on July 15,
1998 using the DES Key Search Machine after 56 hours [1]; half a year
later, the DES-III challenge was won on January 18, 1999 after less than
24 hours [2]). Instead, Triple-DES – usually referred to as 3DES – is used:
This means, that each data packet is DES encrypted three times using two
different keys as shown in Figure 3.4.

3.3.2 Analysis of the DES Algorithm

Figure 3.1 shows very clearly that the DES algorithm divides into three steps
which are input permutation together with key transformation, encryption,
and final permutation. The main time consuming factor of DES is the en-
cryption since it is performed 16 times (48 times with 3DES).

3.3.2.1 Speeding up Encryption

Recalling Figure3.2 displays the encryption process consisting of five major
steps; assuming these can be computed in 5 cycles this leads to 80 cycles
in total for a complete DES encryption, 240 cycles for 3DES which are
itemized in Table 3.1.

It is obvious that each permutation is followed by an accompaning XOR
operation. This XOR/permutation compound takes two inputs, one of which
is permutated prior to the XOR operation, the other is fed in directly. With
this observation DES encryption can be reformulated as follows needing
only 48 (144 for 3DES) cycles as dissected in Table 3.2.
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3.3. THE DATA ENCRYPTION STANDARD (DES)

1. Expansion-Permutation of P�'/.10 , transfer PQ'/.10 to RS'
2. XORing the result from step 1 with the generated round key
3. Perform an S-Box lookup based on the XOR result
4. Do a P-Box Permutation on the lookup value
5. XOR that result with the value of R@'/.10 and store the result

into PQ'
Table 3.1: Naive DES Implementation

1. Expand/XOR P�'/.10 with the actual round key, transfer P�'/.10
to RT'

2. Perform an S-Box lookup based on the Expand/XOR result
3. P-Box permutate/XOR the lookup value with RU'/.10 and store

the result into PQ'
Table 3.2: A faster DES Implementation

1. Initial expansion/XOR function followed by an S-Box
lookup (2 cycles)

2. 14 iterations of the monolithic function followed by an S-
Box lookup (2 cycles, 28 cycles in total)

3. A final P-Box/XOR function (1 cycle)

Table 3.3: An even faster DES implementation (excluding key generation)

1. One cycle from the initial permutation and key transforma-
tion

2. 31 (3DES: 93) from the encryption (key switch within
3DES can be happen in parallel to the P-Box/XOR func-
tion)

3. One cycle from the final permutation

Table 3.4: Ideal DES implementation including Round Key generation

27



3. ALGORITHM DISCUSSION AND ANALYSIS

Since 16 consecutive rounds of encryption (or decryption, which is basi-
cally the same algorithm) occur, P-Box/XOR and Expansion/XOR happen
sequentially for the inner fourteen rounds and can be further condensed to a
monolithic three-input function which takes the result of an S-box lookup,RT'/.10 and the round key and produces the index value for the S-box lookup.
Within this function also the transfer from P�'/.10 to RS' also takes place.

Using such a function, the 16 rounds of encryption can be further shrunk
bringing the complete DES encryption down to 31 (93 for 3DES) cycles as
explained in Table 3.3 leading to an ideal (3)DES implementation listed in
Table 3.4.

3.3.2.2 Round Key Calculation

Round key calculation consists of two steps which are key shifting and key
compression. Since this computation is not dependent on any other input
data besides the shift value and the content of the key register this process
can happen in parallel to the encryption. Ideally, round key calculation is a
combined operation like expansion/XOR or P-Box/XOR and takes only one
cycle.

On an ideal parallel architecture calculation of the round key can take
place during an S-Box lookup for rounds 2 to 16; the first round’s key cal-
culation can happen in parallel to initial permutation needing key transfor-
mation prior to rotation. In that case the round key generation can be com-
pletely overlapped with the main encryption algorithm without incurring
extra cycles.

3.3.3 Proposed Computation Speed

Following the above assumptions based on an ideal architecture, the encryp-
tion of a complete 64-bit data block takes 33 (3DES: 95) cycles resulting in
0.52 (1.48) cycles per bit or a throughput of 775 (3DES: 270) MBit/s as-
suming that the architecture is running at 400 MHz and offers capabilities
as listed in Table 3.5.
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Parallelism • Arithmetic operations can happen in parallel
with memory lookup (round key generation to-
gether with S-Box lookup)

• Two arithmetic operations can be processed in
parallel (round key generation together with in-
put permutation)

Instruction Set • DES Input Permutation

• DES Final Permutation

• combined DES expansion/XOR operation

• combined DES P-Box permutation/XOR oper-
ation

• method to combine the above two operations
into one monolithic operation

• monolithic round key generation operation con-
sisting of switchable key transformation, key
rotation, and key compression

Data Size • Input/Output: 64 bit

• Intermediate Results: 28, 32, 48, and 56 bit

Table 3.5: Architectural requirements for efficient (3)DES implementation
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3.4 Advanced Encryption Standard (AES /
Rijndael)

When this work was started the Rijndael algorithm [39] was one of the par-
ticipiants in the contest for becoming the new encryption standard. At the
end of 2001 it won against its competitors and became the so-called Ad-
vanced Encryption Standard (AES) [40] which over time will replace DES
and possibly many other, not officially standardized crypto algorithms, at
least in the commercial and governmental area.

Unlike DES which was designed to easily fit into 1970s hardware tech-
nology AES/Rijndael was developed to efficiently run in software on mod-
ern general purpose processors. Where DES is very easy to implement in
hardware it tends to be quite slow in software due to exhaustive bit shuffling
and internal changes in data chunk sizes (56-bit to 48-bit, 48-bit to 32-bit,
4-bit to 6-bit, etc.); in AES/Rijndael data chunks are either 8-bit or 32-bit
and all internal operations work on these chunk sizes. For block and key
size usually multiples of 32 bits are given; in this context, a size of 4 meansV�WYX !Z�[A;!%\ bits.

A further advantage of the AES/Rijndael algorithm over DES is its flex-
ibility to operate on different key and data block sizes1. Encryption strength
can be adjusted to the actual needs as shown in Table 3.6.

Block Size
4 6 8

4 10 12 14
6 12 12 14

K
ey

Si
ze

8 14 14 14

Table 3.6: Number of Rounds as a function of block and key size

The AES/Rijndael algorithm as realized in the reference implementation
can be divided into three phases: Round key generation and initialization,
first round and remaining rounds. For decryption, the latter two phases be-
come “first rounds” and “last round”. The phases are illustrated in Figures

1It must be noted, however, that usually the data block size is 128 bits. This means, that
only three of nine possible configurations are used.
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Figure 3.5: AES Encryption

3.5 and 3.6. The rounds themselves split into round key addition, substitu-
tion, row shifting, and column mixing or their inverse operation for decryp-
tion. Again, the main cryptographic operation is a non-linear transformation
based on an S-Box lookup which happens during the substitution stage.

3.4.1 Key Scheduling
AES/Rijndael does not directly operate on the cipher key or a primitive per-
mutation of it. Instead, a sequence of round keys is generated according to
the following rules:

• The number of round key bits must equal the block length times the
number of rounds plus one. Assuming a block length of 128 bits and
a key of same size this results in 10 rounds or A;!%\^] � A`_ F A;�L�aA V _%\
needed round key bits.

• For this purpose the cipher key is expanded into an expanded key.
From this expanded key the round keys are taken in blocks of bdc
words where bec denotes the block size in bits divided by 32.

The expansion is done recursively using rotation and exclusive-or op-
erations where the expansion algorithm is dependent from the key size b $
which is the key size in bits divided by 32. This algorithm is explained
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Figure 3.6: AES Decryption

on pages 14 to 15 of [39] and generates the expanded key array fhgi?kj from
which round keys of desired block size are taken.

Although the reference implementation – for the sake of simplicity and
intuition – precomputes all round keys, the algorithm is designed in a way
that round key generation can be done on the fly and interwoven with en-
cryption or decryption. This was done in a fast AES-128/128 implementa-
tion [45].

3.4.2 Inner architecture of AES/Rijndael

As explained before, AES/Rijndael encryption or decryption divides into
four different steps which are explained below. For the following expla-
nations the nomenclature of the Rijndael description using the term state
applies [40, 39]:

The different transformations operate on the intermediate re-
sult, called the state. This state can be pictured as a rectangular
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array of bytes with four rows and a variable number of columns
equal to the block length divided by 32.

So whenever the term State is used in the following explanation the in-
termediate result of an ongoing encryption or decryption is meant.

• Key Addition
During this operation a round key H is applied to the State < by
a bitwise exclusive-or operation. The round keys must have been
computed from the cipher key by the key scheduler prior to addition
and equals the block length in length. Mathematically expressed, key
addition performs the following operation:l ?�monqp#rs'3t uv� < '/t uS,-rw'/t u

• Substitution
This operation replaces each element of the State < by its referring
entry in the S-Box table and is performed by a simple table-lookup
and write-back algorithm: l ?�monxp < '3t uY� : rzy;{|g < '/t uzj
Unlike DES where the entries of the S-Box tables were designed by
the NSA giving no further insight into the construction of those tables
the creation of the AES/Rijndael S-Box is well documented and can
be found in Chapter 4.2.1 of [39].

• Row Shifting
In this stage, rows 1 to 3 of the State are cyclically shifted over dif-
ferent offsets where the shift offsets are individual per row and are
dependend on the block length b}c . Row 0 is not shifted. Table 3.7
shows the shift offsets depending on block lengths.

b�c Row 1 Row 2 Row 3
4 1 2 3
6 1 2 3
8 1 3 4

Table 3.7: Shift offsets for different block lengths
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• Column Mixing
In this stage, the columns of the State are considered as polynomials
over GF( !%~ ). They are multiplied modulo {�� F A with a fixed
polynomial C � {)� given by

C � {)� =‘03’ {�� +‘01’ {�� +‘01’ { +‘02’

Because this polynomial is coprime to {�� F A and therefore invertible,
it can be written as a matrix multiplication following the formula���
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3.4.3 Implementational aspects of AES/Rijndael
For the other algorithms discussed in this chapter due to their simplicity
there is hardly a difference between optimized and reference implementa-
tion especially when considering hardware implementation. AES/Rijndael
is different since it has been designed to run especially well in software. The
algorithm itself is well described both in the NIST standard paper and the
reference implementation, for evaluating its architectural demands it must
be assumed that there is a noticeable difference between an evaluation based
on the reference implementation and an optimized version. For this reason,
the reference implementation of this algorithm has been reverse-engineered
to get the “naked” (not optimized for software implementation) algorithm.

This work is based on an algorithm analysis and evaluation documented
in [45]. The implementation based on this analysis is able to perform AES-
128/128 encryption within 80 cycles including round key generation as op-
posed to 60 cycles excluding round key generation for the straight-forward
implementation documented in [46].

3.4.4 Architectural Impact
[46] already demands supporting operations which are further extended by
[45]. Unlike DES, the needed operations are not explicitly AES-specific and
can be used for other algorithms as well.
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AES/Rijndael was created with 32-bit architectures in mind. All opera-
tions within the algorithm operate on 32-bit (for computation) or 8-bit (for
table lookups) quantities, the latter can be avoided by aligning the 8-bit ta-
ble contents to 32-bit borders. Unlike with RC6, which will be discussed
later in this chapter, this behaviour remains consistant throughout all AES
configurations. Data and key size do not influence operand sizes, only com-
putation effort. On the other hand, with RC6 the computation effort stays
constant and the operand sizes vary. Unlike (3)DES, intermediate results
always have 32 bits.

Since DES favours a 64-bit architecture, [46] and [45] were developed
having a hypothetical 64-bit architecture in mind which led to the require-
ments as listed in Table 3.8.

Parallelism • Two parallel arithmetic operations per cycle
sufficient for encryption

Instruction Set • S-Box lookup

• Swap-Operation for swapping 32-bit halves of
64-bit registers

• Splitted 32-bit shift/rotate allowing two 32-bit
halves of one register to be shifted by two indi-
vidual amounts

• Fold-Operations (see 5.7.3.1)

• Bit-“Butterfly”-Operations

Data Size • 32-bit for arithmetic operations

• 8-bit for table lookups (see text)

Table 3.8: Architectural requirements for efficient AES/Rijndael implemen-
tation
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3.5 The MD5 Message Digest Algorithm
The MD5 message digest algorithm [93, 107] generates a 128-bit hash value
from an input message. Due to the algorithm’s workflow the message size
has to be a multiple of 512 bits (minus 64 bits) which is achieved by padding
the message with a single one bit followed by null bits until the next “512
bits minus 64”-boundary is reached. The final 64-bit field is then filled with
a representation of the original message length. This padding mechanism is
illustrated in Figure 3.7. The overall length divided by 512 determines the
number of MD5 iterations where each iteration processes one 512-bit block
of the padded message.
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Figure 3.7: Message Padding for MD5
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Table 3.9: Chaining Variables Init Values

The hash value is based on four so-called chaining variables , each being
32-bit wide. They are named A to D and get initialized with the values shown
in Table 3.9.

An MD5 iteration as illustrated in Figure 3.8 is based on four rounds of
identical architecture. The current 512-bit block is split up into four 128-bit
chunks each being fed into one round which consists of 16 steps. Within
each round step as shown in Figure 3.9 the values of B, C, and D are fed into
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a non-linear function. The result of this function is XORed with a 32-bit ex-
cerpt of the j-th 128-bit chunk � u of the message block being currently pro-
cessed, and the resulting value is then XORed with a 32-bit value taken from
a lookup table ¡¢' 2. This first intermediate result is then circularly shifted left
by : bits where : is one of four values taken from the actual round table.
Finally, the computed value is XORed with B, the chaining variables are
rotated clockwise so that B becomes A, C becomes B, D becomes C and into
A the result of the aforementioned computation is stored.

A
B
C
D

A
B
C
D

Round 2 Round 3 Round 4Round 1

Message Block

Figure 3.8: Workflow of the MD5 Algorithm
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Figure 3.9: A single MD5 round

The hearts of the MD5 hash generation are non-linear functions em-
ployed in each round and round step. Each round uses an individual func-
tion which is listed in Table 3.10. These functions are designed in a way
that the result’s single bits are independent from each other and evenly dis-
tributed (assuming that this is also valid for the input values £ , ¤ , and ¥ ).

2The values of this table are based on the formula ¦�§+¨�©�ª`«¢¬�3¬2®°¯�±®6²+² [107].
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3. ALGORITHM DISCUSSION AND ANALYSIS

Having processed all 512-bit message chunks the resulting MD5 hash is the
concatenation of the four chaining variables.

Round 1: � � £ mw¤Umz¥�� =
� £´³µ¤}�4¶ �2�¸· £¹�4³ ¥��

Round 2: = � £ mw¤Umz¥�� =
� £´³µ¤}�4¶ � ¤º³ �¸· ¥��2�

Round 3: » � £¼ms¤Ums¥�� = £B½ ¤¾½ ¥
Round 4: ? � £¼ms¤Ums¥�� = ¤ ½ � £¿¶ �¸· ¥����

Table 3.10: The non-linear functions

3.5.1 Analysis of the MD5 Algorithm
As shown in Figure 3.8 MD5 consists of four different rounds with 16 iter-
ations each. Since there is not much outside the round iterations besides
chaining variable initialization and final addition, the main computation
time is used within the four rounds which therefore determine computation
speed.

M i t isi d c b

NLF

a

<<<

Figure 3.10: MD5 Data Dependencies

3.5.1.1 Round Analysis

A generic round has a structure as depicted in Figure 3.10 and initially con-
sists of two parallel paths which are the computation of the non-linear func-
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3.5. THE MD5 MESSAGE DIGEST ALGORITHM

tion (NLF) plus the addition of < , � u , and ¡o' . The results of these operations
are then added and shifted, finally r is added to this result. The final sum is
stored in the chaining variable < , then the registers are rotated and the next
round begins. After the final step instead of the register rotation the initial
values of the chaining variables are added onto their computed values.

3.5.1.2 The non-linear functions

Looking at the non-linear functions as sketched in Figure 3.11 shows an
almost identical data flow for these: One parameter is negated, combined
with another parameter and this result is in term combined with the third
parameter.

X Y X Z X Z Z Y

X Y Z

Z X Y

Figure 3.11: The MD5 non-linear functions F, G, H, and I

3.5.2 Similar Hash Algorithms
There are some hash algorithms which are closely related to MD5 and sim-
ilarly wide-spread in use: These are namely the MD4 Message Digest algo-
rithm [92, 91], and the Secure Hash Algorithm (SHA) [27, 108]. The latter
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3. ALGORITHM DISCUSSION AND ANALYSIS

is superficially similar to MD4 and MD5. However, a closer look reveals
that SHA is quite different regarding parallelism which will be discussed in
3.6.

Round 1: � � £ ms¤@mz¥�� =
� £À³µ¤}�4¶ �¸· £¹�4¶¼¥

Round 2: = � £ ms¤@mz¥�� =
� £À³µ¤}�4¶ � £À³ ¥��4¶ � ¤N³µ¥��

Round 3: » � £ ms¤@mz¥�� = £À,-¤N,5¥
Table 3.11: MD4 non-linear functions

Since MD4 is the direct predecessor of MD5 it is not surprising that
it is a less complex version of MD5. It consists of only three functions
and also misses the final addition of the chaining variable r to the result
of the shifting operation. Besides, MD4 uses slightly different non-linear
functions as listed in Table 3.11. It also uses a different message block
indexing for �¼u and a different look-up table ¡¢' .

For a discussion of computation speed and architectural impact of MD5
see Section 3.6.1 which will also cover SHA.

3.6 The Secure Hash Algorith (SHA)

SHA [27, 108] was designed for use with the Digital Signature Standard
[41] and is also very similar to MD5, but unlike that algorithm it employs
five 32-bit chaining variables (producing a 160-bit hash) instead of four (re-
sulting in a 128-bit hash) and 20 iterations per round instead of 16. Also, it
applies rotate functions to those chaining variables not employed in the cur-
rent non-linear function. However, where it is slightly more complex on the
computational side as it only uses four round constants, one for each round.
MD5, in contrast, uses individual constants for each iteration. SHA uses the
same three non-linear functions as MD4 (see Table 3.11 where = � £ mw¤Umz¥��
is applied to rounds 2 and 4); their data flow is shown in Figure3.13.

However, as Figure 3.12 reveals, there are lesser data dependencies
within an SHA round. Where MD5 has 3 sequential steps following the
computation of the non-linear function, only one exists with SHA. This
means that based on the data dependency graph the non-linear function
(NLF) is the main time consuming factor within SHA with 50 to 75 per-

40



3.6. THE SECURE HASH ALGORITH (SHA)

cent, where with MD5 the NLF’s contribution to the overall computation is
between 25 to 50 percent.

b c da e Wt Kt

NLF<<< <<<

Figure 3.12: SHA Data Dependencies

Round 1: � � £¼ms¤Ums¥�� =
� £À³¼¤}�4¶ �+· £¹�4¶¼¥

Rounds 2 and 4: = � £ ms¤@mz¥�� = £À,5¤º,M¥
Round 3: = � £¼ms¤Ums¥�� =

� £À³¼¤}�4¶ � £À³¼¥��4¶ � ¤º³ ¥��
Table 3.12: The SHA non-linear functions

3.6.1 Proposed Computation Speed and Architectural Im-
pact

The time determining factors within SHA are the non-linear functions; on an
ideal architecture these vary between 1 and 3 cycles which means that this
architecture needs to perform both shifts in parallel to the NLF computation
resulting in 3 parallel ALUs. It will also need 3-input logical operations ( ³
and , ) and a 5-input addition; when limiting to 3-input logical operation a
fourth ALU would be required since the 5-input addition needs to be split
into two 3-input additions.

Assuming an ideal architecture we get the following numbers for all 4
rounds per 20 iterations: A F !%_ W � V F ! F X F !%� F AÁ�Â!#!#! cycles per
512-bit chunk equalling 0.43 cycles/bit or 2.31 bits/cycle for an ideal SHA
processor as opposed to A F A �}W � � F � F V F � � F A � XI��V

cycles per
512-bit chunk which equals 0.69 cycles/bit or 1.44 bits/cycle for an ideal
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X Y X Z

X Y Z

X Y X Z Y Z

Figure 3.13: The SHA non-linear functions for rounds 1, 2/4, and 3

Parallelism • up to 5 parallel arithmetic operations

• up to 4 input variables needed per computation
step

Instruction Set • special monolithic functions not necessary

• need for indexed addressing to access round ta-
bles

Data Size • Input: 512 bit arranged in 32-bit chunks

• Output: 128/160 bit (MD5/SHA) arranged in
32-bit chunks

• Intermediate Results: 32 bit

Table 3.13: Architectural requirements for efficient MD5 and SHA imple-
mentation
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MD5 processor. Applied to the 400 MHz example this means a throughput
of 924 MBit/s for SHA and 576 MBit/s for MD5.

Neither MD5 nor SHA need specific instructions although they would
greatly benefit from monolithic non-linear functions or even monolithic
round functions, but considering the already high throughput such special-
ized functions would clearly be overkill. Both algorithms show up a high
level of parallelism and could use up to 5 parallel ALUs plus appropriate
memory units providing the input values. The algorithms’ requirements are
summed up in Table 3.13.

3.7 The International Data Encryption Algo-
rithm (IDEA)

The IDEA algorithm appeared in 1992 [73] and was the result of an ongoing
improvement of the original Proposed Encryption Standard (PES) which
was presented in 1990 and its successor the Improved Proposed Encryption
Standard (IPES) [74, 72]. Due to patent reasons it never was as widely used
as DES but gained popularity through the well-known and widely used PGP
software [139, 138, 102] which is mainly used for email encryption and
authentication.

Like DES, the IDEA algorithm is a symmetrical algorithm and operates
on 64-bit data chunks. Contrary to DES, key size was doubled to 128 bit.
Also round key generation for decryption is more complex. Figure 3.14
gives an overview of the IDEA algorithm.

The 64-bit input data is split up into four chunks of 16 bits which are
fed into the first round of calculation. After 8 rounds the data undergoes an
output transformation and the resulting four 16-bit chunks are concatenated
to form the 64-bit output data.

A single computation round is depicted in Figure 3.15. Unlike DES
which is mainly based on static permutation and XOR, IDEA was designed
using “a mixture of operations from different algebraic groups” [101].
These operations are chosen to be efficiently implementable, both in hard-
ware and software. Since the data chunks used for computation are 16 bits
in size, IDEA is efficiently implementable on 16-bit architectures and does
not prefer 32-bit architectures like AES/Rijndael or MD5.
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K3[9] K4[9]K1[9] K2[9]

Round 8

Round 1
K[1] (96 bit)

K[8] (96 bit)

Output Data (64 bit)

Input Data (64 bit)

Figure 3.14: Workflow of IDEA

3.7.1 Round Key Generation

Round key generation for IDEA is fairly easy. The 128-bit key is divided
into 8 sub-keys of 16 bits each. From these 8 sub-keys, the first six are
applied as round keys named ¥�Ã 0+Ä0 to ¥^ÃÆÅ Ä0 to the first round, the last two are
used as ¥^Ã 0+Ä� and ¥^Ã � Ä� for the second round. Now all 8 sub-keys of the first
iteration are applied and the 128-bit key is rotated left by 25 bits and again
divided into 8 sub-keys. The first four of this second iteration will be applied
to round 2 as round keys ¥ZÃ � Ä� to ¥^ÃÆÅ Ä� , the remaining four go to round 3 as
keys ¥^Ã 0+Ä� to ¥^Ã � Ä� . Now the 128-bit key is again rotated left by 25 bits and
the distribution of sub-keys starts over again. This scheme is applied to all 8
rounds, the very last four sub-keys are used with the output transformation
which makes a total of 52 sub-keys (cipher keys) to be used within IDEA.

Decryption is similar, however the keys are applied in reverse order; fur-
thermore the round keys are partly different: For the even numbered round
keys the additive inverse Ç�¥�Ã '±Äu is used, for odd numbered round keys the
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K1 K2 K3 K4

K6

K5

A[i−1] B[i−1] C[i−1] D[i−1]

B[i] C[i] D[i]A[i]

Figure 3.15: A single round of IDEA

multiplicative inverse ¥ZÃ 'ÈÄÉ.10u is applied. Like all computations within IDEA
also the inversion is based on modulo ! 0 Å F A arithmetics.

Table 3.14 shows the context between round number and round key gen-
eration for both, encryption and decryption.

3.7.2 Algorithm Analysis
IDEA was designed to run especially well on 16-bit hardware. Hence it is
not surprising that all data chunk sizes used during computation are plain
16-bit – much unlike DES with its many different chunk sizes (28-, 32-, 48-
, and 56-bit), AES/Rijndael, or MD5 which were designed having today’s
32-bit architectures in mind and operate only on 32-bit (long/int) and 8-bit
(byte) quantities.

Much unlike these algorithms, IDEA makes heavy use of multiplica-
tions. To ideally support IDEA an architecture would need a 16x16-bit7 y��IÊ�Ë6yI0 Å multiplier. Furthermore, for decipher key (decryption round key)
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Round Encryption Round Key Decryption Round Key
1 Ì/ÍÎ ÏÎ Ì ÍÎ ÏÐ Ì ÍÎ ÏÑ Ì/ÍÎ ÏÒ Ì/ÍÎ ÏÓ Ì ÍÎ ÏÔ Ì ÍÕ Ï3ÖÎÎ × Ì/ÍÕ ÏÐ Ì/Í Õ Ï3ÖÎÑ × Ì ÍÕ ÏÒ Ì ÍÕ Ï3ÖÎÓ × Ì/ÍÕ ÏÔ

2 Ì3Í Ð ÏÎ Ì Í Ð ÏÐ Ì Í Ð ÏÑ Ì3Í Ð ÏÒ Ì3Í Ð ÏÓ Ì Í Ð ÏÔ Ì ÍØ Ï3ÖÎÎ × Ì3ÍØ ÏÐ Ì3Í Ø Ï3ÖÎÑ × Ì ÍØ ÏÒ Ì ÍØ Ï3ÖÎÓ × Ì3ÍØ ÏÔ

3 Ì/Í Ñ ÏÎ Ì Í Ñ ÏÐ Ì Í Ñ ÏÑ Ì/Í Ñ ÏÒ Ì/Í Ñ ÏÓ Ì Í Ñ ÏÔ Ì ÍÙ Ï3ÖÎÎ × Ì/ÍÙ ÏÐ Ì/Í Ù Ï3ÖÎÑ × Ì ÍÙ ÏÒ Ì ÍÙ Ï3ÖÎÓ × Ì/ÍÙ ÏÔ

4 Ì3Í Ò ÏÎ Ì Í Ò ÏÐ Ì Í Ò ÏÑ Ì3Í Ò ÏÒ Ì3Í Ò ÏÓ Ì Í Ò ÏÔ Ì Í Ô Ï3ÖÎÎ × Ì3Í Ô ÏÐ Ì3Í Ô Ï3ÖÎÑ × Ì Í Ô ÏÒ Ì Í Ô Ï3ÖÎÓ × Ì3Í Ô ÏÔ

5 Ì/Í Ó ÏÎ Ì Í Ó ÏÐ Ì Í Ó ÏÑ Ì/Í Ó ÏÒ Ì/Í Ó ÏÓ Ì Í Ó ÏÔ Ì Í Ó Ï3ÖÎÎ × Ì/Í Ó ÏÐ Ì/Í Ó Ï3ÖÎÑ × Ì Í Ó ÏÒ Ì Í Ó Ï3ÖÎÓ × Ì/Í Ó ÏÔ

6 Ì/Í Ô ÏÎ Ì Í Ô ÏÐ Ì Í Ô ÏÑ Ì/Í Ô ÏÒ Ì/Í Ô ÏÓ Ì Í Ô ÏÔ Ì Í Ò Ï3ÖÎÎ × Ì/Í Ò ÏÐ Ì/Í Ò Ï3ÖÎÑ × Ì Í Ò ÏÒ Ì Í Ò Ï3ÖÎÓ × Ì/Í Ò ÏÔ

7 Ì3Í Ù ÏÎ Ì ÍÙ ÏÐ Ì ÍÙ ÏÑ Ì3ÍÙ ÏÒ Ì3Í Ù ÏÓ Ì ÍÙ ÏÔ Ì Í Ñ Ï3ÖÎÎ × Ì3Í Ñ ÏÐ Ì3Í Ñ Ï3ÖÎÑ × Ì Í Ñ ÏÒ Ì Í Ñ Ï3ÖÎÓ × Ì3Í Ñ ÏÔ

8 Ì/Í Ø ÏÎ Ì ÍØ ÏÐ Ì ÍØ ÏÑ Ì/ÍØ ÏÒ Ì/Í Ø ÏÓ Ì ÍØ ÏÔ Ì Í Ð Ï3ÖÎÎ × Ì/Í Ð ÏÐ Ì/Í Ð Ï3ÖÎÑ × Ì Í Ð ÏÒ Ì Í Ð Ï3ÖÎÓ × Ì/Í Ð ÏÔ

Output Xform Ì Í Õ ÏÎ Ì ÍÕ ÏÐ Ì ÍÕ ÏÑ Ì/ÍÕ ÏÒ Ì ÍÎ Ï3ÖÎÎ × Ì/ÍÎ ÏÐ Ì/ÍÎ Ï3ÖÎÑ × Ì ÍÎ ÏÒÌ/ÍÚ ÏÛ means the j-th sub-key of Round i

Table 3.14: IDEA sub-keys used for encryption and decryption
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Z5

Z2

Z6

Z1X1 X3 Z3 X2 X4 Z4

Figure 3.16: Data flow within an IDEA round

calculation division and modulo arithmetics based on modulo ! 0 Å Ç�A are
needed. Although these operations can be emulated using just addition,
subtraction, and Boolean operations, doing so would highly impact compu-
tation speed.

Assuming that the needed functions are present, data flow analysis of
IDEA shows a quite high register pressure. Not less than 8 input variables
are fed into the first calculation step where four of the results have to be kept
for further processing in steps 6 and 7. Similarly, the results of step 2 and 3
have to be queued for later use.

Regarding parallelism, IDEA gives a quite unbalanced view as shown in
Figure 3.16. For the very first step four algorithmical operations can happen
in parallel; this drops down to two in step 2 and reaches strict sequentiality
for steps 3 to 5. The following two steps again incorporate 3 and 2 parallel
operations, finally a swap operation between two results takes place and
the next round begins. For the eighth round the final swapping is omitted,
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Parallelism • Maximum parallelism of 4 instructions per cy-
cle; ideally, either 4 memory operations, 4 al-
gorithmic operations or mixtures of both

• Round key generation can be embedded into se-
quential part of round calculation

Instruction Set • 128-bit rotation for round key generation

• single-cycle 16x16-bit multiplication

• single-cycle 16:16-bit division and modulo op-
eration for decipher key generation

Data Size • Input/Output: 64 bit (Data), 128 bit (Key)

• Intermediate Results: 16 bit

Table 3.15: Architectural requirements for efficient IDEA implementation

instead the output transformation, four parallel arithmetic operations, take
place.

Thus, an ideal IDEA processor could process a complete encryption or
decryption within A F \ W \�� �I�

cycles which equals a processing rate ofÅ � c°'ÆÜÞÝÅoßoàÉá�à6â �ãÝ �N_�äå�%� bits per cycles or 1.01 cycles per bit which is about twice the
numbers as calculated for DES, which also operates on 64-bit data chunks.
Assuming that this IDEA processor runs at 400 MHz it will reach a through-
put of about 394 MBit/s as opposed to 775 MBit/s for DES.

3.8 The RC6 æ � Block Cipher
RC63 was one of the competitors for becoming the new AES standard and is
a successor to the RC5 Block Cipher[94, 95, 109]. It was not only designed
to meet the AES committee’s requirements but also to be ideally suited for
today’s 32-bit microprocessors.

3RC6 is a registered trademark of RSA Laboraties
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BLOCK CIPHER

Like RC5, RC6 is parametrizable and should correctly be written RC6-ç
è�é%è r where ç denotes the size of data chunks in bits, é number of rounds
and r the length of the encryption key in bytes which can be any number be-
tween 0 and 255. For AES submission, RC6 was configured with ç � X ! ,é �ê!%_ and r��BA � . With these parameters, key and block size of RC6 cor-
respond to Rijndael-128/128. Regardless of configuration data, RC6 always
employs four working registers of ç bits size and six basic operations which
are listed in Table 3.16.
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Figure 3.17: Workflow of the RC6
���

Block Cipher
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< F r integer addition modulo !%ë< Ç¾r integer subtraction modulo !%ë<qì r integer multiplication modulo !�ë< ,5r bitwise exclusive-or of ç -bit words<îí r rotate the ç -bit word < to the left by the amount given
by the least significant log � ç bits of r<îï r rotate the ç -bit word < to the right by the amount
given by the least significant log � ç bits of r

Table 3.16: RC6 Basic Operations

3.8.1 Key Scheduling

Key scheduling of RC6 is practically identical to key scheduling of RC5:
As said before, any key r consists of _ñðòr¼ðÂ! �%� bytes. From this key,! é F V

words of ç bits each are generated and stored in the round key arrayJvgó_>m ä ä ä�mz! é F X j .
The key scheduling consists of two loops, an initialization loop which

presets the round key array based on distinct initialization values, and the
main computation loop which generates the round key array by severe mix-
ing of the supplied user key [96]. Compared to other algorithms, RC6’s key
generation is rather heavyweight and makes it sensible to precompute the
round key array. This eventually causes performance issues as illustrated
in [97]. Implementations on smaller processors or in hardware might suffer
from the use of multiplication and modulo operations for round key genera-
tion.

3.8.2 Algorithm Analysis

Like all other algorithms discussed so far also RC6 is based on rounds. As
depicted in Figure 3.17, RC6 consists of an initial addition of the first two
round keys to the input variables

�
and � followed by é rounds. Finally,

the
�

and 	 results are added to the ! é F !%" � and ! é F X�ô � round key.
For decryption the algorithm is just processed backwards starting with

keys ! é F ! and ! é F X
being added to

�
and 	 followed by é rounds and

ending with the addition of key _ and A to
�

and 	 . In this manner it
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Figure 3.18: Data flow within one RC6
���

round

resembles much of DES if you consider these key additions to be input and
output transformation.

Basically, each round consists of two identical õ strands which results
are intermixed after the shift operation. There is a strong data dependency
within each strand which makes it impossible to combine or precompute
intermediate results as shown in Figure 3.18 which means, that there is –
again much like DES – not much parallelism to exploit. The round key
generation is pretty trivial as shown in 3.8.1 and can be reduced to memory
lookups.

This leads to technology requirements as shown in Table 3.18 with the
speed estimations listed in Table 3.17: For AES configuration ( ç =32 bits,é =20 rounds, r =16 byte=128 bits) this should give a performance of ! F� !%_ W�� � F A��ÂA VIX cycles equalling 0.90 bits per cycle or 1.12 cycles per
bit without having the monolithic RC6-specific function. On an estimated
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400 MHz clock rate this will lead to a throughput of 358 MBit/s. If the
RC6-specific function is present, the numbers are ! F !%_ WKV F A(��\ X cycles
equalling 1.54 bits per cycle or 0.65 cycles per bit leading to a throughput
of almost 617 MBit/s at 400 MHz.

Initialization 2 cycles
Round Processing 7/4 cycles
Postprocessing 1 cycle

Table 3.17: Speed estimations for RC6 on an ideal architecture

Parallelism • Arithmetic operation can happen in parallel to
memory lookup (round key)

• RC6 consists of two strands with sequential na-
ture; thus, two arithmetic operations can be pro-
cessed in parallel

Instruction Set • Addition and Multiplication modulo ! ë
• Exclusive-OR on operands of ç bits

• Rotate-Left by log � ç positions on ç -bit
operand

• Register Swapping

• Special instruction � � {)�@�M{ W � !ö{ F A;� í Ë6y = ë
would save 3 cycles per round

Data Size • Input/Output: ç WOV
bit, typically 128 bit ( ç =32)

• Intermediate Results: ç bit (32, 48, or 64-bit
operand size)

Table 3.18: Architectural requirements for efficient RC6
���

implementation
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3.9 Summary
In this chapter, a selected set of crypto algorithms was presented. These are
namely DES and 3DES, AES/Rijndael, IDEA and RC6. Also, a number
of hash algorithms used for message authentication were investigated: The
widely used MD5 and its somewhat improved version SHA-1 were selected;
furthermore, the relationship to their common predecessor, MD4, was illus-
trated. Also, the influence of selected algorithm and operation mode on
possibly exploitable parallelism was explained.

The algorithms were selected for many reasons. DES is not only the first
standardized crypto algorithm but is also very hardware-oriented, In con-
trast, AES/Rijndael, the new standard, was designed with respect to actual
32-bit architectures but can be also realized on less powerful architectures.
IDEA stands somewhat in between these two algorithms since it was de-
signed for 16-bit architectures but requires fast modulo-multiplication and
-division units. Finally, RC6 was selected, since it was one of the most
promising candidates in the AES competition. The hash algorithms were
selected to include a different algorithm class into this investigation to work
out a most general architecture.

Where this chapter concentrated more on the needs of the single algo-
rithms and how they can be implemented in an ideal manner, their impact
on the CRYPTONITE architecture will be elaborated in Chapter 4.
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Architecture Impact resulting from
Algorithm Analysis

In the previous chapter a set of well known and widely used algorithms was
discussed. These algorithms were selected to cover a broad range of possi-
ble applications and included crypto algorithms designed for hardware im-
plementation (represented by DES and 3DES), and these developed to run
efficiently on 16-bit (IDEA) and 32-bit (AES/Rijndael, RC6) general pur-
pose processors. Also hashing algorithms, MD5 and SHA, were included.

Each algorithm has certain architectural needs. Some algorithms would
greatly benefit from three-input functions, others require special monolithic
functions for high performance. However, in a programmable environment
algorithm-specific functions have to be reduced to an absolute minimum
since the idea of such an architecture is certainly not building a container
around dedicated hardware solutions.

Based on the results of the previous chapter the influences on the archi-
tecture will be investigated by determining the average requirements of all
explored algorithms. This examination will then provide information about
the basic architectural concepts like number and type of functional units,
register size and count, and the necessary instruction set.

4.1 Functional Units
Analyzing the algorithms with respect to used operations results in the list
printed in Table 4.1. Concerning the XOR functions two observations can
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• Boolean operations like logical AND, OR and XOR; also a NOT
operation for inverting an operands bit pattern is needed as a result
of the hash algorithm analysis

• simple 7 yö�IÊ�Ëky ë algorithmic operations like addition, subtraction

• complex 7 y��IÊ�Ë6y ë algorithmic operations like multiplication, di-
vision, and modulo as needed by the IDEA algorithm

• single indexed memory access for loading round constants and
storing results

• simple load/store memory access for keeping and reloading inter-
mediate results

• multiple parallel indexed memory accesses as needed for S-Box
lookups

• conditional looping of code snippets for repeating computation
rounds without the need of loop unrolling which would lead to
bloated code size

Table 4.1: Operations employed in analyzed algorithms

be made: First, there are certain circumstances where especially the XOR
function could use more than one input, for instance within one of the non-
linear functions of MD5 and SHA which ideally make use of a 3-input XOR
function. Second, the XOR function often is the final step after a series
of computations. Ideally, this final step could happen in parallel to other
algorithmic operations to speed up computation. This consideration leads to
a somewhat partite ALU consisting of a register file for parameter storage,
an XOR unit and an arithmetic unit as described in Section 5.7.

For memory access a very basic architecture was considered: No im-
mediate memory access is possible, but memory access is always register-
based which means that a memory address has first to be loaded into an
address register; memory access can then happen based on the content of
a selected address register. Extending this model by a simple adder logic
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enables combining two address registers; this leads to indexed memory ad-
dressing. This scheme can be modified to allow parallel S-Box access as
described in Section 5.8.1 when discussing the address generation unit. The
complete memory unit is presented in Section 5.8.

Since some of the crypto algorithms clearly separate into two strands as
shown with DES (encryption and key generation), IDEA or RC6 (two paral-
lel strands interchanging values within encryption) it seems to be somewhat
natural to realize two individual sets containing one ALU and memory unit.
This reproduces the observed two-strand behaviour in hardware. This basi-
cally means just doubling ALUs, associated memory units and data mem-
ories which leads to a structure as described in Section 5.3. This structure
also allows the architecture to exploit parallelism found within the other
algorithms and leads to fast execution times as shown in Chapter 6.

This split architecture, however, creates a problem of exchanging values
between the two strands as needed for all discussed algorithms. Here, a
bipartite approach has been taken making it possible to forward computated
results or register values from one ALU to the other as shown in Section 5.7

4.2 Register File
Registers are needed to hold input and output data as well as intermediate
results. For that reason they need to satisfy a wide range of constraints such
as data size and number of values to hold.

Not supporting certain data sizes would eventually result in additional
cycles needed for modulo arithmetics or masking out unused bits. Support-
ing too many data sizes would unnecessarily add complexity to the design
resulting in slower processing speed and higher power consumption.

Similarly, implementing too few registers will create a cycle penalty for
intermediate results to be stored to or fetched from memory; too many reg-
isters, however, will increase the processor’s die size, cause higher power
consumption and potentially slower processing speed.

4.2.1 Register Size
Looking at the algorithms, the common data chunk size is 32-bit which is
found within many of the discussed algorithms. Both hash algorithms use it,
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also AES/Rijndael and RC6 in AES configuration work on 32-bit entities.
IDEA, however, is strictly 16-bit based.

A second common data chunk size is 8-bit which is commonly used for
table (S-Box) lookup e.g. within AES/Rijndael and DES, the latter being
quite special here since it takes 64-bit quantities but internally operates on
a broad variety of bit sizes like 56-bit after input and before output trans-
formation, 28-bit for key generation, 48-bit for S-Box lookup and 32-bit for
intermediate round results. However, a closer look reveals, that these sizes
can be mapped either to 32 or 64 bits by rearranging the “odd” sizes to 8-
or 32-bit boundaries. That way the 28-bit value would refer to an aligned
32-bit value, similarly the 48-bit data size as appearing together with the
S-Box lookup can be rearranged to a 64-bit value where the 6-bit chunks
are aligned to 8-bit boundaries.

A software implementation of DES following these alignment schemes
and hence requiring only data sizes of 32- and 64-bit displayed no nega-
tive side-effects concerning registers. For this reason and since 8-bit data
size is only employed within an S-Box lookup as mentioned above the de-
cision was made to support only two data sizes: 64-bit (word), and 32-bit
(half-word where upper and lower half-word of a 64-bit word are directly
accessable). To select these data sizes a 2-bit control value is needed re-
sulting in 4 possible states. The fourth, unoccupied, state is used to clear
a register or zero its output (“muting´´ the register), allowing an easy reset
of the register contents to zero as described in Section 5.7.2 and illustrated
through Table 4.2.

4.2.2 Number of Registers

Looking at the algorithms shows that most of these incorporate just two-
input functions; this is certainly true for DES, RC6 and IDEA. Also most
operations used for hashing only have two input parameters. Additionally, a
straightforward implementation of AES/Rijndael shows that two-input func-
tions are sufficient.

This means, that for a simple calculation step only two source registers
are needed; some algorithms like IDEA or RC6 need to keep intermediate
results for later computation steps so having an intermediate result register
like an accumulator placed inside the ALU would come in quite handy.

58



4.3. SPECIAL INSTRUCTIONS

Control Value Operation_#_ � clear or “mute” register_�A � load 64-bit value into registerA`_ � load lower 32-bit half of registerA#A � load upper 32-bit half of register

Table 4.2: Register Size Control

Three registers already need two address lines for access control which
means that a fourth register comes in virtually for free in terms of system
control. Such a fourth register will be quite useful on algorithms with great
register pressure like AES/Rijndael or IDEA and can be used for storing
multiple intermediate results or accelerate operations by pre-loading needed
values.

Following this argument the number of registers per register file has been
set to four as a compromise between register pressure caused by register-
hungry algorithms like IDEA or AES/Rijndael and on-chip space require-
ments caused by the registers itself and their address and data paths.

Releasing this pressure by the possibility of exchanging values between
registers of the two strands is a beneficial side effect of the interlink structure
already described in Section 4.1. In addition, pressure is further eased by
the possibility to use the Memory unit’s data output register, which is needed
for synchronizing data, as a supplementary source and destination registers
for arithmetic operations as described in Section 5.8.

4.3 Special Instructions

A programmable device should not be a collection of specialized hardware.
Instead, it should be based on ideally primitive and reusable hardware func-
tions.

For some algorithms, however, the fully programmable approach does
not make sense when it comes to computation speed: DES is a good exam-
ple of an algorithm which has to be clearly based on specialized hardware.
Of course, all DES operations can be reduced to a series of primitive opera-
tions such as Boolean algebra functions or shift operations, but this leads to
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a highly ineffective code. As a result of the DES analysis there clearly has
to be a specialized DES unit to support this algorithm at reasonable speed as
discussed in Section 5.8.4. AES/Rijndael is another example since both, its
basic [46] and fast [45] implementations clearly need supportive operations
to enable the desired speed requirements. However, unlike DES these op-
erations as described in Section 5.7.3.1 do not need to be Rijndael-specific
but could possibly be used for other applications.

It can be observed, that for efficient implementation especially the two
standardized crypto algorithms show great need for specialized functions. In
contrast, the other algorithms can easily be realized using Boolean and ba-
sic mathematical operations. Due to the continued use of (3)DES in many
real-time applications such as (de)scrambling digital pay TV and the ex-
pected success of AES, operations supporting these algorithms must be im-
plemented regardless of whether they can be re-used for other algorithms or
not.

IDEA and RC6 use modulo-based multiplication which makes them
quite different from all other discussed algorithms which only rely on table
lookups, simple arithmetics, and boolean operations. Implementing a hard-
ware multiplier would support these algorithms and enhance computation
speed greatly. However, the problem arises that IDEA uses 7 yö��0 Å multipli-
cation where RC6 favours 7 y�� �o� to 7 y�� Å � multiplication depending on the
configuration. The solution to this dilemma with respect to the already taken
decision towards a 64-bit architecture would be a configurable multiplier
which either works as 64-bit*64-bit 7 y�� Å � , 7 y�� �o� , or 7 yö�÷0 Å multiplier. In-
teger division and modulo operator, however, should not be included: With
the investigated algorithms these operations are only needed together with
IDEA round key calculation for decryption. The construction rules of these
keys, however, disable embedding the round key generation into the en-
cryption routine. Instead, they should be precomputed by external means
and applied together with the input data.

4.4 Summary
Where Chapter 3 focused on the algorithms and an ideal architecture for
each algorithm, this chapter concentrated on shaping out an architecture
which serves well for a broad variety of algorithms.
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For this reason, the needs of all algorithms investigated in Chapter 3
was summed up and discussed with respect to their needs towards number
and type of functional units, number and size of internal registers. Also,
algorithm-specific instructions have been discussed.

Based on this discussion, an initial architecture partitioning into an arith-
metic unit consisting of arithmetic-logical unit (ALU), XOR unit (XU) and
associated register file, and a memory unit (MU) being responsible for data
transfers from an associated data memory to the registers and vice versa was
developed. A decision was made to incorporate two independent strands
consisting of these units since many algorithms showed a certain amount of
inherent parallelism which can be exploited by this two-strand model.

Furthermore, the register file has been defined as a set of four 64-bit
registers with directly addressable 32-bit halves; to release register pres-
sure and to allow exchange of values between the two strands, an interlink
mechanism was created which enables forwarding of register values and
computation results between the two independent strands.

Finally, a set of more or less algorithm-specific instructions was dis-
cussed. As for DES this resulted in a completely independent DES unit
since DES operations are too special to be used for any other algorithm;
using less specific operations, however, would lead to a inacceptable slow-
down of DES performance. For AES/Rijndael a more unspecific set of sup-
porting instructions has been defined. The presence of a 7 yö� ë multiplica-
tion unit is recommended for IDEA and RC6, but can be omitted fue to the
low distribution and use count of these two algorithms.

Chapter 5 will now describe the resulting architecture in detail. Please
notice that due to signed contracts the work presented there is intellectual
property of Agere Systems, USA.
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According to contracts signed by the author the work presented in this
chapter is intellectual property of Agere Systems, USA, with patents
pending. With permission of Agere Systems the author is allowed to
publish this chapter publicly.

If you plan to use the architecture described in this chapter or parts of it
commercially, please contact Mr. Nevin Heinze of Agere Systems. He can
be reached as follows

Agere Systems
Processor Architectures & Compiler Research
Mr. Nevin Heintze
4 Connell Drive, Room 4P-739
Berkeley Heights, NJ 07922
U.S.A.

Alternatively, you can reach Mr. Heintze via e-mail (nch@agere.com).
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5.1 Design Goals

To understand how this architecture was designed the following design cri-
teria have to be taken into account which are

• Technology limitations The most critical design parameters for the
CRYPTONITE architecture are single-cycle access to registers and on-
chip memory and single-cycle execution of the implemented arith-
metic operations to enable maximum processing speed. For technol-
ogy reasons, namely single cycle access to memory, the operating
frequency was limited to 400 MHz. Also, pipelining techniques have
to be used since it is infeasible that instruction fetch, decoding, and
execution can happen within one 400 MHz cycle.

• Due to bandwidth demands, however, an ideal architecture should be
able to cope with a summarized data bandwidth of 4 GBit/s. Since this
is definitely not achievable with a single, fully programmable proces-
sor element a per-element throughput of 500 MBit/s was defined. A
production system should then achieve the denoted 4 GBit/s through-
put by employing multiple processor elements serving independent
data streams.

• These hard parameters, 500 MBit/s throughput at 400 MHz resulting
in a relative speed of 1.2 bits per cycle or 0.8 cycles per bit, propagate
a parallel architecture with very tight timing constraints. This means
that functional units have to be designed in a way that the overall
signal latency must still fit into a single cycle.

These targets are not only independent of the crypto algorithms, which
in turn define which functional units are needed in what configuration, but
also have higher priority which means that the proposed architecture is a
trade-off between technological specifications and algorithm demands: For
example, throughput issues dictate a rather high bits-per-cycle ratio de-
manding a single-cycle execution model to guarantee maximal throughput.
Economical issues limit the frequency to 400 MHz where technology issues
make a pipelined architecture mandatory to ease hardware parameters but
still be able to provide necessary computation speed.
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5.2 General Purpose Architectures – An Alter-
native?

Today’s high-performance general purpose architectures (GPAs) like the In-
tel Pentium or Itanium families represented through Pentium 4 and Itanium-
II are able to deliver an enormous computation power. The decision to use
a dedicated architecture at first glance does not seem to be justified for the
following reasons:

• Modern GPAs are superscalar architectures and offer computation
speeds up to 2.5 GHz

• They are mass products resulting in comparably low prices; also, nu-
merous development systems exist for these processors which pro-
grammers are used to.

• Similarly, readily developed interface hardware like PCI bridges, even
complete hardware infrastructures – main or mother boards – exist in
many configurations which decrease development time significantly.

However, despite these quite convincing facts, there are also reasons
against using GPAs:

• Despite their computation power, GPAs still are not able to compete
with dedicated processors for certain applications. This is especially
true for cryptography. Based on the numbers given in [47] and [110]
cycle count of software implementations based on GPAs is still an
average factor of 7.55 higher than cycle count for the same algo-
rithms implemented on the CRYPTONITE architecture. In worst case
(AES/Rijndael decryption including round key generation) the perfor-
mance gap reaches even a factor of 21.76.

• High-performance GPAs have an enormous power consumption. For
example, members of the Pentium-4 family running at 2.53 GHz use
nearly 70 Watts [35]. For this reason, these processors produce a
tremendous amount of heat which requires either huge coolers or –
in case space matters – complicated and expensive cooling systems.
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The chipsets necessary to interface these processors to RAM and pe-
ripheral buses, the Memory Controller Hub (MCH) [33] and I/O Con-
troller Hub (ICH) [32], consume another 11 Watts and therefore pro-
duce also a noticeable amount of heat. These two factors, power dis-
sipation and heat generation, make these processors almost unusable
for embedded systems.

• These processors only provide highest performance if the problem to
be computed can be entirely held in cache. If accesses to external
RAM are needed, they have to be reordered to hide RAM access la-
tencies. As the investigated algorithms show very tight inner loops
there is not much – depending on the algorithm even almost no – time
to hide RAM access latencies. Due to the real-time character of the
processed data streams it is neither possible to preload a bigger set of
data in advance.

• Although the GPAs are comparably low in price, they need special in-
terface chips (within the PC market referred to as“chipset´´) to make
them work together with SDRAM or RDRAM and standardized pe-
ripheral buses like PCI. Typically, such a system consisting of main
board holding the chipset together with a decent GPA running at 2.5
GHz will cost around 1000 Euro as of August 2002.

For the above reasons the development of a specialized architecture is
justified: It will provide the necessary computation speed but will only con-
sume a fraction of the power a current GPA needs and therefore produce
much less heat. In addition, due to the lesser chip complexity the fabrica-
tion costs are expected to be much lower.

5.3 Architecture overview
CRYPTONITE as shown in Figure 5.1 can be divided into two strands each
consisting of an Arithmetic Unit (see Section 5.7) and its corresponding
Memory Unit (see Section 5.8) controlling the associated data memory. The
Memory Unit itself separates into an Address Generation Unit (AGU) being
responsible for address generation based on the selected addressing mode
(Sections 5.8.1 and 5.8.2) and a Data Input/Output Unit (DIO) (Section
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5.8.3) where the latter holds also a DES-specific unit (Section 5.8.4).

The following architecture presentation will concentrate on single units.
The reader should keep in mind that whenever the text refers to ALU regis-
ters, local address registers or data input/output registers these register sets
are individually present within each strand.

5.4 The Pipeline
CRYPTONITE is targeted towards 400 MHz operating frequency provid-
ing single-cycle execution. For this reason, the architecture needs to be
pipelined since it is not realistic to assume that instruction fetch, decoding
and execution can happen within one 400 MHz cycle. Theoretically, the
pipeline could be hidden if the 400 MHz clock is internally tripled resulting
in an internal clock frequency of 1.2 GHz. Doing so would, however, cause
too high requirements towards chip hardware and design.

Stage Function Function
1 Instruction < �O� é^ø * 	

Fetch
* 	 ø * 	 F A

2 Instruction create internal control signals
Decode

* 	 ø ? 7ù798 �I? < ¡ 8v< ��� é�8;:;:
(PC assignment for immediate
branches only)

3 Execution & perform operations
Writeback

* 	 ø ? 7ù798 �I? < ¡ 8v< ��� é�8;:;:
(PC assignment for conditional
branches only)

Table 5.1: Pipeline Stages of the CRYPTONITE Architecture

For this reason, a three-stage pipeline is employed as explained in Table
5.1. Besides releasing timing pressure from hardware, the proposed instruc-
tion pipeline motivates the use of delayed branches as also shown in Table
5.1. Immediate branches have a one-cycle delay and become effective after
pipeline stage 2 (instruction decode); for conditional branches the delay is
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2 cycles since these have to wait for the result of the execute stage which
means that the new PC value – in case the conditional branch was taken –
becomes effective after pipeline stage 3. Already fetched instructions will
be processed during the delay cycles.

Branch delay is a characteristic which applies to all pipelined architec-
tures and is therefore known from several architectures like the industri-
ally manufactured AMD AM29K [4] or the educational DLX processor de-
signed by Hennessy & Patterson [52]: Depending on the pipeline length and
the branch delay caused through this, one or more instructions following a
branch instruction are executed.

For typical crypto algorithms as discussed in Chapters 2 and 3 the con-
trol flow is usually not data driven which makes it easy to rearrange code
avoiding increase in cycle count or code size. In most cases branch delay
can be circumvented by code rearrangement, only in very few situations
code increase applies: These are usually loops with bodies smaller than 3
instructions. To avoid padding NOP instructions – which negatively affect
throughput – loops of this type have to be partially unrolled to allow code
rearrangement.

5.5 Access from External Devices

External access to CRYPTONITE is necessary to enable updates of internal
look-up tables as needed for external computation of round keys and also to
feed in data chunks and key updates within a running computation as well
as reading back result data. The physical interface between CRYPTONITE
and an external device is realized through the External Access Unit (EAU)
as depicted in Figure 5.2.

Whenever an external access to local data memory happens, the re-
quested address plus the actual content of the external data bus is sampled;
at the same time a ready flag is cleared to signal to the external unit that
CRYPTONITE is now busy with the requested data transfer. This flag is also
fed into the Control Unit (see Section 5.6). Internally, a maskable inter-
rupt is triggered which stops current execution and performs the requested
memory operation by inserting 3 cycles into the pipeline as shown in Ta-
ble 5.2. This kind of external access interrupt is enabled by default but can
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Figure 5.2: The External Access Unit

be disabled using the CU’s DI command. To re-enable interrupts, the EI
command is used.

Within the first cycle, the sampled address is put on the local memory
address bus; in case of write access, the sampled data is transferred into the
data input register, which in term is saved to a shadow register. During the
second cycle, the requested data transfer happens and – in case of a read
access – the return data is sampled in the data output register. In this case,
the previous value of the data output register is saved to a shadow register.
In the third cycle, the data input and output registers are restored while the
content of the data input register is transferred to the external data register
and the ready flag is risen.

To allow synchronous transfer, a hold input signal exists. Whenever
the CU encounters a HOLD command, it puts further execution on hold by
assigning NOP operations to all units and not incrementing the program
counter until the hold input signal raises from low to high level. Due to
the employed pipeline, HOLD will show the same delay as unconditional
branches as explained in Section 5.6.2.

This approach was taken to provide a method of accessing local data
memory and synchronizing CRYPTONITE to external devices with minimal
impact to the core architecture. More heavyweight interface structures being
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Cycle Name Function
1 Rescue ��ú>P�û ��ú>P�Ý+üzýþ�¢ÿ ë

& Transfer � < ¡ < ?¸& â ý¢Ü à üz�¸�vû �qúOP���eP�û ���eP�Ýküzý2�¢ÿ ë< �O� é�8;:;: â ý¢Ü à üz�+�Lû ËkyöC < Ë 798 7 y é���< ��� é�8;:;:
2 Memory é�8`< � < C�C 8;:ö: p 798 7 y é�� � < ¡ < û ���eP

Access çQé ?k¡ 8Y< C�C 8;:ö: p ��ú>P�û 798 7 y é�� � < ¡ <
3 Return ����P�û � < ¡ < y;Ê1¡

& Restore ��ú>P�Ý+üzýþ�¢ÿ ë û ��ú>P���eP�Ý+üzý2�¢ÿ ë û ����P
set ready flag

Table 5.2: Interrupt Cycles

essential to directly connect CRYPTONITE to the PCI bus or similar bus
interfaces are not covered by this work.

5.6 The Control Unit
Architecturally, CRYPTONITE consists of several independent units being
controlled by a central dispatcher which generates the appropriate control
signals based on internal state and current instruction word.

This dispatcher is called the Control Unit (CU) and is depicted in Fig-
ure 5.3. It contains the instruction word decoder and additional units which
are needed for proper program processing; it supports linear addressing and
conditional branching as needed for conditional constructs like IF/THEN
and loops. It also provides immediate values being encoded into the com-
mand stream. This command stream is fetched by the CU from program
memory.

5.6.1 Supplying immediate values

The CRYPTONITE architecture supports two types of immediate values: Big
immediates (64 bit) for initialization of ALU and MU registers plus 12-
bit address/immediate values used for counter register initialization (8-bit)
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and providing branch addresses for conditional and unconditional branches
(12-bit). The 64-bit immediates are named global immediate values (GIV)
since they are common for all addressable registers within a so-called strand
consisting of ALU, MU and associated memory, where the 12-bit value can
be used within the Control Unit and for register initialization within the
MAU.

Since initialization with GIVs usually does not take place very often and
happens only during an algorithm’s initialization stage a special immediate-
load operation LDI changes the interpretation of the VLIW-style instruction
word as explained in Appendix B. During an LDI cycle both strands are put
in a special load mode and normal operation of ALU and MU is disabled
for this cycle.

This decision was made to allow the load of registers with values of up
to 64-bit in size while not dramatically the size of the already wide instruc-
tion word. This load mechanism fits into the already existing architecture.
For this reason, GIVs are internally treated as values being read from data
memory.

5.6.2 Counters, looping, and conditional branching

The CRYPTONITE architecture only supports basic down-counting loops
based on 12 counter registers cr0 to cr11where each of these registers can
be loaded with an immediate value for loop initialization. As implemented
in the architecture, loops are pre-decrement which means a register’s value
is read out, decremented and based on the result a branch is taken or not. In
terms of functionality it is similar to the DJNZ instruction as known from
several processors like the Intel x86 processor family [34] or Zilog’s Z80
[137].

While this minimal loop support is sufficient for almost all analyzed al-
gorithms, the IDEA algorithm also needs conditional branching based on
ALU results. To make this concept fit into the existing ALU and CU de-
signs, the counter registers cr12 to cr15 will sample the current state of
the two ALU’s zero and sign outputs and serve as flags rather than being
used as ordinary counter registers. This way the flag states can be checked
by the equal-to-zero comparator as already used together with counter reg-
isters cr0 to cr11.
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5.6.3 System Control

As mentioned in Section 5.6, the Control Unit generates the necessary con-
trol signals from the current instruction word for parametrization of all on-
chip units.

The instruction word has 10 parts and contains the coded control words
for the five units which are Control Unit, two ALUs, and two Memory Units
plus the address/immediate field. A description of the instruction word for-
mat is given in Appendix B.

5.7 The Arithmetic Logical Unit
Crypto algorithms usually employ a variety of basic arithmetic operations
like Boolean operations, addition/subtraction, and bit-shifting or -rotation.
Depending on the algorithm quite a number of intermediate results have to
be stored which ideally can be held in registers rather than external memory
to avoid latencies caused by external memory access.

However, a register file must not exceed a specific size to follow the
technological specifications. Where a huge and massively interconnected
register file, i.e. having many input and output ports, will certainly ease
program realization it will easily exceed technology limitations.

In this chapter an arithmetic logical unit (ALU) will be described which
is not only suited for fast and efficient computation of typical crypto algo-
rithms and but will also fulfill the technological requirements as listed in
Section 5.1.

5.7.1 Overview
CRYPTONITE’s ALU consists of 3 functional units which are the Register
File (RF), the Arithmetic Unit (AU), and the XOR Unit (XU) as depicted in
Figure 5.4. The following sections will discuss these units in detail.

5.7.2 The Register File
The RF holds four 64-bit registers, r0 to r3, which can be individually
loaded from two internal buses called A and X. The A bus transports the
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result of a previous arithmetic operation where the X bus supplies the result
of a previous XOR operation. For exchange of data between the two ALUs,
register r0 of each ALU register file can also be loaded from the ALU
interlink bus.

Once a bus is assigned to a register the input data size selector deter-
mines whether the complete 64-bit data, or the high or low 32-bit portion
should be loaded into the register. Alternatively, the data size selector can
be used to simply apply a zero value for clearing the register as already
mentioned in Section 4.2.1.

At the output port of the register a similar data size selector is employed
which again enables selection of the entire 64-bit, or high or low 32-bit of
a stored value, or to “mute” the register by outputting a zero value without
changing the register’s content. Each register has three output ports for ad-
dressing the XOR unit and the source inputs #1 and #2 of the ALU. There
is no immediate way of storing a register value to memory (or the data in-
put register, respectively). This is only possible for results of arithmetic or
boolean operations. In case the unaltered register value needs to be stored,
the used AU or XOR unit has to perform a NOP operation. Direct read-out
of register values was omitted since this would need another output unit per
register and four additional 64-bit datapaths within the chip.

Again, register r0 can serve for interlink purposes and has a fourth out-
put port for feeding the AU interlink.

5.7.3 The Arithmetic Unit (AU)
The AU is able to perform all standard arithmetic and Boolean operations
plus specific functions needed to improve speed on AES/Rijndael calcula-
tion based on input values provided through the Register File registers, the
associated Memory Unit’s Data Output Register, and the AU’s internal ac-
cumulator. The accumulator can be used for storage of intermediate results
and can be loaded from either of the two source inputs. Its use is optional.

Besides basic arithmetic (addition & subtraction) and Boolean functions
(AND, OR & XOR) the ALU employs a barrel shifter which can be used to
shift or rotate either a 64-bit value or two 32-bit values by an arbitrary num-
ber of bits and enables special functions as explained in Section 5.7.3.1.
The AU also offers a swap instruction by which the 32-bit halves of a 64-
bit quantity can be swapped; as a result of this operation and the presence
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of a barrel shifter, also combined swrt operations based on swapping and
left-rotation are possible which are employed for fast AES/Rijndael imple-
mentation [45].

The analysis of IDEA and RC6 motivated the use of a parametrizable
multiplier. For example, IDEA uses 16-bit

W
16-bit 7 yö��0 Å multiplications,

RC6 – depending on its configuration – employs 32-bit
W
32-bit 7 y�� �o� to 64-

bit
W
64-bit 7 y�� Å � . Such a unit would greatly enhance the performance of

these algorithms and also support asymmetric cryptography. For the CRYP-
TONITE architecture, this unit is optional because of the lesser relevance of
IDEA and RC6 and since its focus is symmetric If implemented, only the
modulo operation should be configurable with respect to the 64-bit architec-
ture. The input data size is always 64-bit as with all other ALU units.

The result of an arithmetic operation is put on the internal A bus and can
be routed to any of the four registers or the Data Input or Ouput Register of
the associated Memory Unit.

5.7.3.1 Special Functions

As a result of the AES/Rijndael analysis a set of instructions was developed
to speed up that algorithm. However, unlike the DES Unit which is only
applicable to (3)DES, these instructions are not AES/Rijndael-specific and
can be used for other algorithms as well.

These functions sometimes operate in 32-bit quantities. In such cases,
indices » and Ë denote the referring 32-bit portion of a 64-bit quantity with» being the leftmost and Ë the rightmost one. Numeric indices refer to the
corresponding byte (8-bit portion) of a 64-bit quantity with byte #0 being
the rightmost one.

• The upper64 operation takes two 64-bit quantities x and y and outputs
the 64-bit quantity {��{ � �  � � { Å { � � Å � � where the indices denote the
referring byte within the input values.

• Similarly, lower64 generates the 64-bit quantity { ß {�0 � ß � 0ã{ � {�D � � � D .
upper64 � � {Km � �T�N{��{ � �  � � { Å { � � Å � �lower64 � � {Km � �T�N{ ß {�0 � ß � 0o{ � {�D � � � D

Table 5.3: The upper64 and lower64 functions
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• The swap instruction takes two 64-bit quantities { and � and generates
the 64-bit result { â � ü (or {�ü � â depending on the parametrization of the
register output multiplexers). The indices denote the referring 32-bit
half of an input value.

• The swrt instructions are based on the swap instruction and rotate
operations; they take a two 32-bit quantities like the swap instruction
but rotate these by individual amounts as shown in Table 5.4.

swap � � {Km � �T�N{ â � üswrt0 � � {)�S� � {�ü í \I� � âswrt1 � � {)�S� � {�ü í ! V � � � ü í A � �
Table 5.4: The swap functions

• A set of fold instructions is included. These perform a series of
XOR operations based on two input values and intermediate results
as shown in Table 5.5.

foldb32 � � {Km � � � l _xðM?@ð X p � ?|��_îp#{�D , � D?����_îp � '/.10K, � '
foldb64 � � {Km � � � l _xðM?@ð � p � ?|��_îp#{�D , � D?����_îp � '/.10K, � '
foldw64 � � {Km � � � l _xðM?@ð�A^p � ?|��_îp � ü
�º{ â , � ü?|� A^p � â � � â , � â

Table 5.5: The fold operations

Within the AU most of these functions are performed by the so-called
bitmux unit which performs the mentioned swap, upper64 and lower64
operations as shown in Figure 5.5. This unit also feeds the barrel shifter to
allow complex swap and rotate operations. The fold operations are com-
puted in a separate fold unit.
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5.7.4 The XOR Unit
The exclusive-or (XOR) operation is the key operation of all cryptological
algorithms which makes it vital to implement a fast and efficient method for
performing a series of XOR operations.

In CRYPTONITE the XOR Unit not only performs the XOR operation on
two to six operands consisting of the register file together with the content of
the associated Memory Unit’s data output register dor and an optional sixth
value provided through the ALU interlink as described in Section 5.7.5, but
also allows the negation of a bit pattern. For that reason the XOR unit has
an internal switch to optionally invert the result of an XOR operation.

To minimize on-chip buses the XOR unit is partly embedded into the
data path. The first XOR stage already sits within the register file and com-
bines the values of register 1 and 2, or 3 and 4 respectively. The result of this
first XOR stage is then combined in another stage before it is fed into the
XOR unit’s main part as depicted in Figure 5.4. This method of embedding
an arithmetic function into the physical on-chip data path is currently filed
for patenting.

Like register r0 of the Register File also the XOR Unit has a special
interlink input enabling to forward the value of the opposite ALU’s register
r0 directly into the XOR Unit’s main part to be concatenated with the re-
sult of the register combination if needed. Finally, the overall result can be
inverted and the result is put onto the ALU’s X bus to be routed to any of the
four registers r0 to r3 or the associated Memory Unit’s data input dir and
data output registers dor. The XOR unit furthermore can distribute a GIV
(provided by the CU as mentioned in 5.6.1) to the aforementioned registers.

5.7.5 Avoiding register pressure: Crosslinking the arith-
metic units

The original design considered an 8-register file with full connectivity of
registers to both ALUs. This concept was cancelled for speed reasons since
full connectivity would mean more read and write ports per register and less
optimal routing, especially long wires.

Instead, the concept of individual register files per ALU was taken with
only four registers per file. This turned out to be enough for most cases;
however, it limited the possibilities of parallel computation of independent
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values since the computation of a single formula had to be fully assigned
to one ALU. Also, some algorithms turned out to lay rather high pressure
on the register file during a sequential calculation forcing the writeback and
reload of intermediate values to and from memory.

For this reason an interlink mechanism was designed to allow forward-
ing of register contents to the opposite ALU. To minimize technological
impact, mainly speed and delay issues, link exchange takes only place be-
tween register r0 of each ALU. To allow immediate use of these values
within ongoing computations, it is additionally possible to directly feed the
current value of register r0 into the opposite ALU’s arithmetic and XOR
units. Doing so avoids a one-cycle delay otherwise occuring for value trans-
fer from one register r0 to its opposite ALU’s sibling.

5.8 The Memory Unit
Each ALU has a corresponding Memory Unit (MU) for data storage. The
MU consists of an address generation unit (AGU) responsible for proper ad-
dress generation based on a selected addressing scheme (see Section 5.8.1),
and a Data Input/Output Unit (DIO) (see Section 5.8.3) which is basically
used for data transport but also contains the DES Unit as explained in Sec-
tion 5.8.4. Attached to the MU is the local data memory as depicted in
Figure 5.1.

5.8.1 Address Generation Unit
The AGU as depicted in Figure 5.6 is responsible for generating addresses
during data memory access and inherently supports direct and S-Box ad-
dressing; indexed and modulo addressing are also supported by the AGU,
but computation of addresses takes one cycle. When using these addressing
modes the programmer must remember this post-increment/post-modulo
model (as opposed to pre-decrement as used within the control unit for loop
support). The complete list of supported addressing modes is listed in Table
5.6.

To enable external access to data memory, it is also possible to supply an
external address instead of the generated one. This allows an external pro-
cessor, a network protocol processor for example, to directly read computed
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results or feed in new data like plain-text chunks or key updates; similarly,
look-up tables can be easily exchanged using an external processor.

address
generator

write
control

source index
register register

in
de

x

so
ur

ce

value
immediate

local address
registers

index
sbox

Modulo

source

0

0x8000

local memory
address

external
address

Figure 5.6: The Address Generation Unit

The basis of all address generation is the Local Address Registers
(LAR). In the simplest configuration, direct addressing, a LAR holds an
address pointer which is directly used as a memory address; indexed ad-
dressing is supported in two ways, using immediate index values as supplied
by the control unit (which means that the index value is embedded into the
opcode) or index values derived from other LARs. With both methods, the
index value is added to an address supplied by a LAR. Also, as mentioned
before these modes provide deferred results. The reason for doing so was to
keep the memory address generation as fast as possible to be able to provide
memory data right in time and minimizing the address setup time for the
on-chip memory.

With these three modes the AGU also supports modulo addressing to
automatically keep a generated address within a dedicated memory segment.
This is especially useful for hash algorithms like MD5 or SHA-1 where a
table of 16 (20 for SHA-1) entries is accessed using indexed addressing with
an offset pointing into the table and an index increment greater than one.
Figure 5.8 illustrates the effect of modulo addressing applied to indexed
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Addressing Mode Address Computation LAR Update
direct � � ���� � ��

”, w/ register modulo � � ���� � ���� � � �� � � ��� � � ����
”, w/ immediate modulo � � ���� � ���� � � �� � � ��� �� �� 
S-Box

!"# � # $&% � � ���' � ( � ��) *+ ,- * * ./ � �� ' (LAR unchanged)
immediate-indexed � � ���� � �� � �� � � � �0 � �  
ditto, w/ register modulo � � ���� � ���� � � �� � ( � � �� 0 � �  . � � ����
register-indexed � � ���� � � �� � � �� � � ��� 0 � � ���
ditto, w/ immediate modulo � � � �� � � ��� � � �� � ( � � �� 0 � � �� . � � �� 

Addressing modes written in italics are based on architectural side-effects
and have not been designed in by purpose.

Table 5.6: Addressing modes supported by CRYPTONITE’s AGU
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addressing: The dashed location would be addressed with straight index
addressing; using modulo-4 addressing, however, the resulting address is
location 1 instead of 5.
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Figure 5.7: Direct and indexed address generation

Like the indexed modes also the modulo operation is deferred. For hard-
ware reasons the modulo operation is limited to powers of two which makes
it possible to implement this function using the Boolean AND operation as
opposed to an extensive integer division unit.

LAR

Figure 5.8: Modulo addressing

5.8.2 Speeding up table lookups: S-Box support

A very special feature of the AGU is the S-Box addressing mode. Unlike the
previously described modes which address the memory in 64-bit mode, S-
Box addressing makes use of the memory’s feature to be addressed as eight
8-bit quantities instead of a single 64-bit chunk. The use of 64-bit memory
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as eight user-definable 8-bit S-Boxes is a unique feature not found in crypto
processor architecture so far and is also currently filed for patenting.

The address per 8-bit chunk is derived from an LAR supplying the S-
Box address plus the S-Box index. Since each index is 8 bits in size the
address space of an S-Box is 256 addresses.

With S-Box addressing mode, the base LAR provides the S-Box number
where the index value contains the eight 8-bit indices into the selected S-
Box as depicted in Figure 5.9. S-Box access can happen only aligned to
2048-byte boundaries (256 addresses times 8 bytes); unaligned addressing
is not possible since the lower address bits of the LAR are replaced by the
corresponding S-Box index. This method was chosen over the use of an
adder for timing reasons to not increase latency of this critical data path.

121121121121323323323323

424424424424525525525525
62626626267272772727

828828929929:2:2:
:2:2:;2;;2; <2<<2<<2<<2<

=2==2==2==2= >?>?>?>>?>?>?>@?@?@?@@?@?@?@A2A2AA2A2AA2A2AA2A2AB2B2BB2B2BB2B2BB2B2B
C?C?C?CC?C?C?CD?D?D?DD?D?D?DE2EE2EE2EE2EF2FF2FF2FF2FG2G2GG2G2GH2HH2HI2II2IJ2JJ2JK2K2KK2K2KL2L2LL2L2LM2MM2MM2MM2MN2NN2NN2NN2NO2O2OO2O2OO2O2OO2O2OP2P2PP2P2PP2P2PP2P2P Q2QQ2QQ2QQ2QR2RR2RR2RR2R

S−box index

LAR
(providing page)

Resulting Data

Figure 5.9: S-Box address generation

5.8.3 The Data Input/Output Unit
Due to the very tight timing of the architecture it is necessary to provide
a method of synchronizing data for long distance transport as needed for
transfer of data between embedded SRAM and the ALUs.
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The DIO as depicted in Figure 5.10 consists of a Data Input Register
(DIR) where data coming from the ALU is written into prior to be stored
to memory. Respectively, a Data Output Register (DOR) exists which will
buffer a value transferred from memory to ALU. Since the DIR will also
provide the S-Box index coming either from ALU or a previous DES round,
the DIR input can select either ALU data or a result coming from the DES
unit discussed in Section 5.8.4. As already mentioned in Section 5.7, the
DOR can serve as an additional source or destination for arithmetic oper-
ations. In Section 5.5 it has already been pointed out that DIR and DOR
have accompanying shadow registers used to rescue and restore the original
register values during external access interrupt handling.

Input
Register

Output
Register

DES
Unit

sbox
address

memory
data

data
ALU

data
external

DES Output

Input Register Content

Figure 5.10: Data I/O from embedded SRAM

Besides these registers, the DIO also contains a DES Unit which will
provide the necessary functionality needed for fast and efficient (3)DES
computation. To allow further processing or storage of a DES operation’s
result, these can be either directly fed back to memory or into the ALU
through the output register. Since DES provides independently computed
S-Box indices, it can directly access the S-Box address path providing the
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necessary 64-bit S-Box index value. The following Section 5.8.4 will dis-
cuss the DES Unit in detail.

5.8.4 The DES-specific unit

The heart of the DES algorithm is the non-linear function based on the so-
called S-Box table lookup. All other functions within the DES algorithm
are mainly bit-shuffling plus shifting of the two key halves.

These bit-shuffling functions are DES-specific and are not reusable for
other functions. Similarly, the 28-bit rotating shift operation does not apply
to other cryptographic functions which usually operate on multiples of 8-bit,
mainly 32-bit. For this reason and since the main cryptographic operation of
DES is an S-Box lookup the DES-specific functions were transferred from
ALU into the memory unit. Doing so, the ALU can be less complex; in
addition, the necessary physical data paths for DES computation are kept as
short as possible which potentially supports higher clock frequencies.

5.8.4.1 ALU-based initial approach

The initial approach was to implement the bit-shuffling functions into the
ALU and allow another shifter configuration for the 2x 28bit operation. The
idea behind this approach was to avoid a huge, monolithic function for the
sake of an increased cycle count.

• DES input permutation

• DES data expansion

• DES key compression

• DES P-Box permutation

• DES final permutation

• 2x28-bit rotation configuration for barrel shifter

Table 5.7: Special functions for non-monolithic DES implementation
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As already explaind in Section 3.3.2 this leads to 5 cycles per DES round
based on the 5 DES-specific ALU functions. In addition, a special shifter
configuration for DES key computation is needed resulting in special oper-
ations as listed in Table 5.7.

5.8.4.2 Speed-up by pipelining DES

Looking at DES at a more coarse-grained scale, it turns out that DES is easy
to pipeline: All specific functions apart from input and final permutation
can be melted into two monolithic functions which as listed in Table 5.8.
Besides these two functions only input and output permutation apply which
can be realized as translation functions embedded into the data path of theR and P variables during computation as shown in Figure 5.11.

However, these monolithic functions are clearly DES-specific and can
certainly not be reused for anything else. It would not be sensible to bloat
the ALU with this heavy-weight functional unit as shown in Figure 5.11,
especially since both functions are tighly coupled to memory lookups which
makes the memory unit a by far more reasonable place to integrate this unit
into.

Separating the DES unit also means that it needs to contain the necessary
control logic for providing the round constants (shifting amount) since these
values cannot be externally applied anymore.

For this reason, a clearable 4-bit register with an associated incrementer
is employed for address generation. This address is fed into a small round
constant memory which contains of 16 entries of 2 bits each to provide
a single round’s shift amount. The address can be inverted resulting in a
backward address count as needed for decryption.

• expand PQ'/.10 , shift & compress key, and XOR the results

• permutate the S-Box result using P-Box shuffling and XOR this
result with RT'/.10 ; forward PQ'/.10 to RT'

Table 5.8: Special functions for pipelined DES implementation
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5.9 Summary
In this chapter, the architecture of the proposed CRYPTONITE architecture
was presented and reasons were given why such a specialized architecture
makes sense even with powerful modern general purpose processors being
able to deliver similar computation power.

This architecture consists of a Control Unit (CU) parsing the instruction
stream and creating control signals for the other units. These other units
form two strands consisting of Arithmetic Logical Unit (ALU) and its cor-
responding memory unit (MU) and associated SRAM-type data memory.
Besides, the CU is responsible for data transfer from program to data mem-
ory and vice versa. It also controls program flow: For this reason it employs
counter registers, status flags and a small decrement/compare logic to allow
conditional branching.

The ALU further divides into an Arithmetic Unit (ALU) including the
accumulator, the XOR Unit (XU) and a register file (RF) holding four 64-
bit general purpose registers. Memory access uses two buffering regis-
ters named Data Input (DIR, for memory writes) and Data Output Register
(DOR, for memory reads). Computation results can be stored in either DIR,
DOR or both, where the DOR can be read back by AU and XU through an
individual input. Storage of RF register values to memory are only possibly
through the DIR. The ALU employs a crosslink mechanism which allows
forwarding either register r0 or an ALU result to the sibling ALU.

Similarly, also the MU dissects into further units which are Address
Generation Unit (AGU) and Data I/O Unit (DIO). The AGU holds two sets
of eight local address registers; these sets are individual for read and write
operations. It contains simple logic to support various addressing modes as
explained in Section 5.8.1, S-Box addressing being one of these allowing 8
parallel S-Box lookups within one cycle. A DES-specific unit is part of the
DIO.

The presented architecture is the result of the algorithm analysis pre-
sented in Chapter 3. It is as general as possible and contains only special
functional units and operations where needed for speeding up certain algo-
rithm computation.

Based on the algorithm analysis in Chapter 3 this architecture provides
the necessary computation power to allow fast and efficient implementation
of several crypto algorithms, but was kept as simple as possible to enable
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high clock rates when being implemented in hardware. The performance
numbers of both, algorithm implementations and hardware realization, will
be presented in Chapter 6.
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Implementational Aspects

The previous chapters focused on algorithm analysis (Chapter 3), how these
algorithms influenced the CRYPTONITE architecture (Chapter 4), and fi-
nally presented the resulting architecture (Chapter 5). This chapter now
will present actual results based on the proposed architecture to answer how
the algorithms will perform on CRYPTONITE and what the technology im-
plications are.

Since no complete CRYPTONITE processor has currently been built, the
numbers presented for CRYPTONITE are based on software simulation and
synthesis results of dedicated hardware parts. Although the author is con-
fident that these simulation results accurately reflect reality, he wants the
reader to be clear about the numbers not being based on measurements per-
formed on existing hardware.

6.1 Software Implementation
This section concentrates on the algorithm implementations in software
based on the architecture described in Chapter 5 to provide comparative
numbers for processing speed and data throughput. To collect these num-
bers, test implementations in of each algorithm were created. These im-
plementations, with the exception of AES, were run on a self-written sim-
ulator to verify the correctness of these implementations. This simulator
is basically a C library emulating the CRYPTONITE assembly language as
described in Appendix C by providing appropriate function calls together
with sanity checks to ensure that an algorithm implementation does not vi-
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olate CRYPTONITE hardware contraints. AES was implemented using the
Standard Modelling Language (SML) language and runtime environment.
Both simulation environments do not provide any timing analysis besides
cycle count; hardware parameters will be investigated in Section 6.2 using
Synopsys [118] hardware development software.

Cycle count of all algorithms implemented using the aforementioned
softwre simulators is summed up in Table 6.1. Comments to each imple-
mentation are given within the referring subsection. Where appropriate,
cycle count is provided as a formula : F é W C FTS . Here, : represents number
of cycles used for setup, é W C gives number of rounds times number of cycles
per round, and S represents cycles used for clean-up and post-processing.

Throughput (@400MHz)
Algorithm Cycle Count Bits/Cycle MBit/s

AES-128/128 U 2+9*8+6=80 1.6 640
AES-128/128 V 2+9*7+5=70 1.83 732
DES 4+15*2+1=35 1.83 732
3DES 3*(30+5)=105 0.61 244
IDEA 8*11+2=90 0.71 284
RC6 3+20*(7+3)+3=206 0.62 249
MD5 2+16*(8+8+7+8)+6=504 1.02 406
SHA-1 2+16*(8+7+8+7)+6=488 1.05 420

Table 6.1: CRYPTONITE Performance Data for Selected Algorithms

6.1.1 AES/Rijndael

For comparison, the 128/128-configuration of AES/Rijndael [45] was im-
plemented in two ways. The simpler implementation ( V ) relies on precom-
puted round keys, the second implementation ( U ) creates needed round keys
on the fly from the supplied user key.

Cycle count sums up to two initial cycles, 8 cycles (7 cycles for the
simple version) for the first 9 rounds and 6 (5) cycles for the last round and
writeback. Performance numbers are given for both versions.
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6.1.2 DES and 3DES
These implementations are fairly trivial since DES is supported through spe-
cial instructions. Since these instructions are strictly sequential and only one
key register exists, it does not make any difference if 3DES is used in two-
or three-key configuration since the key register needs to be reloaded for
every key change.

The given formula for cycle count represents a 4 cycle init phase fol-
lowed by 16 rounds per 2 cycles each and a final cycle for writeback.

6.1.3 IDEA
The IDEA implementation does only include the plain encryp-
tion/decryption algorithm; key generation is omitted since it needs division
and modulo arithmetics which are not included within the CRYPTONITE
architecture. Furthermore, it makes the assumption, that a 7 y���0 Å 16-bit
multiplier is present.

For these reasons, the cycle count cuts down to 8 rounds per 11 cycles
plus two cycles for final processing and result writeback.

6.1.4 RC6
RC6 in AES configuration showed an interesting result; although this al-
gorithm configuration seems to be perfectly suited for the CRYPTONITE
architecture it needs 11 cycles (8 for computation, 3 for swap) per round.
This implementation partly omits the round key generation, which means
that the implementation assumes that the key array has already been written
to memory. Also, it makes the assumption that a 7 yö� �o� 32-bit multiplier is
present.

Then, the cycle count distributes on 3 cycles each for init and postpro-
cessing plus 220 cycles for the 20 rounds.

6.1.5 MD5 and SHA-1
Due to the similarities of the two algorithms their implementations are fairly
identical. SHA-1 shows slightly better performance since it incorporates
two “fast” rounds of 7 cycles as opposed to only one for MD5.
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Initialization takes 2 cycles, postprocessing 6 cycles. The main impact
comes from the 16 iterations per each of the 4 rounds and equals 480 (SHA-
1) or 486 (MD5) cycles.

6.2 Hardware Implementation

Within this section, the hardware parameters are evaluated to generate real-
istic numbers for core speed and die or logic size. These numbers can be
compared against parameters provided by core vendors; however, these are
highly dependent on the technology used. Usually, the numbers are based
on FPGA families like Altera APEX [8, 7] or Xilinx Virtex [132, 133] and
ASIC fabrication processes from TSMC [119] and UMC [125]. Although
they lose relevance when considering chip mask design, the numbers still
give an estimation about the proposed 400 MHz core speed being possible
or not.

For testing and implementing the VHDL models as well as creating tim-
ing and chip usage reports the Synopsys software package running under
Sparc/Solaris together with the FPGA compiler provided by Xilinx [65] was
used.

6.2.1 Technology Requirements

The CRYPTONITE architecture consists of the processing unit itself and as-
sociated memory which means that the used fabrication process must be
able to provide fast and efficient static memory (SRAM). This SRAM has
to be fast enough to deliver data content within the running cycle.

As for memory size, the proposed address space requires 12 address
lines. With these, 4kBit*64 equivalent to 32kB of plain data or 16 sets of
8 S-Boxes can be held in memory which the author believes to be adequate
for future algorithms.

When realized on FPGAs and ASICs, a dedicated hardware multiplier
would help greatly. Otherwise, the multiplier has to be realized using stan-
dard techniques which are quite space inefficient and create long delays.
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6.2.1.1 Register File

The register file consists of four identical registers with an input and output
multiplexer. These multiplexers make possible to read in data from either A
or X bus, for register r0 also the interlink serves as an additional input.

6.2.1.2 Arithmetic Unit: Shift & Rotate Unit

This is the most complex unit within the arithmetic unit consisting of the
swap multiplexer, a barrel shifter and the final bit splicer containing the
longest single data path.

6.2.1.3 Address Generation Unit

The AGU is the by far most timing critical unit. It needs to provide the mem-
ory address fast enough to comply with the memory’s setup time allowing
single-cycle memory accesses regardless of selected addressing mode.

6.2.2 Implementation Results
For test purposes Xilinx’ [132] latest FPGA family Virtex-II Pro [133] was
chosen since this family is almost the biggest FPGA family on the market.
The reason doing so was to avoid running into resource limitations like too
few logic elements, interconnects or I/O pins when synthesizing and analyz-
ing parts of the CRYPTONITE architecture. However, it appeared that even
with the largest model the sheer number of employed signals made it impos-
sible to test specific behaviour like the ALU interlink timing for instance.
For this, two complete ALUs had to be instantiated with a rather large
amount of input and output signals. Interestingly, this problem would not
arise for testing the complete design, since these numerous signals would
not occur as physical I/O signals on the final design but only as internal
signal nodes.

For this reason, only small parts of the CRYPTONITE architecture could
be synthesized and analyzed to get an idea about the signal delays within
the chip.

These results were very promising: Without further optimization the
designs reach speeds up to 141 MHz; the limiting factor here is neither
logic nor routing, but delay caused by routing the signals to the I/O pads:
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Speed Size
Unit MHz Logic IOBs Slices

Register File 122.7 22% 749 (87%) 929 (4%)
Swap&Rotate 99.8 34% 201 (23%) 545 (2%)
Adress Generation 141.3 50% 188 (22%) 274 (1%)

Table 6.2: Synthesis Results on Xilinx Virtex-IIp FPGA family

For the Register File the delay ratio caused by logic is only up to 22%, for
the Swap&Rotate Unit this value reaches up to 35%; interestingly, the logic
needed for address generation makes 50% of the delay ratio.

Since these results are based on a straight-forward implementation and
do not make use of any special feature offered by the Virtex-IIp FPGA fam-
ily, it can be expected that an optimized design and proper floorplanning
will push the speed even for the FPGA-based design into the speed range of
slower ASIC designs (155 MHz).

When targetting usual 0.18 W m ASIC technologies a speed-up of 100 to
200 percent compared to the FPGA-based solution can be expected; this
is not only an educated guess among chip designers but also demonstrated
by the numbers presented in Table 7.2 which show a speed-up range from
1.73 to 2.74 equalling 73 to 174 percent; this will give an estimated clock
frequency of about 300 to 450 MHz for the ASIC solution.

With fully custom chip design situation is even better considering that
the main timing impact comes from signal routing following given signal as
dictated by the used FPGA technology. Since also the logic circuitry can be
tailor-made and does not need to be mapped to present logic cells, a speed-
up by a factor of 4 as compared to the FPGA technology is possible. Based
on the used fabrication technology the estimated core logic speed for the
CRYPTONITE architecture can reach 400 MHz to 600 MHz.

The effective operating frequency will, however, be dictated by mem-
ory access time. Using aforementioned processes, 400 MHz access rate is
possible, but achieving higher frequencies is not likely.
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6.3 Summary
Within Section 6.1 of this chapter it was shown that the proposed CRYP-
TONITE architecture is able to perform the selected crypto algorithms at
sufficient throughput.

The single algorithms were listed with complete cycle counts and addi-
tional explanations about the numbers where applicable; also, if an imple-
mentation makes assumptions about special units and configurations, this
was remarked.

Within this paper, a clock rate of 400 MHz was proposed. The reason
for doing so was given in Chapter 5. In Section 6.2 it was proven that this
rate indeed is possible when using custom chip fabrication; the presented
numbers are promising enough that even with current ASIC technologies
the postulated 400 MHz can be reached.

This speed estimation was done by realizing selected parts of the ar-
chitecture as VHDL modules, synthesizing and fitting them into the Xilinx
Virtex-IIpro FPGA family and creating a timing analysis based on routing
information and logic consumption as provided through the Synopsys de-
velopment suite and the technology-specific programs provided by Xilinx.

These tests have proven the suitability of the CRYPTONITE architec-
ture which will now be compared against existing hardware cores and pro-
grammable solutions in Chapter 7.
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Comparison of CRYPTONITE against
Existing Solutions

Comparing this architecture against existing solutions is not an easy task.
First of all, almost no programmable solutions for solving cryptographic
tasks exist. Most of the existing solutions are hard-coded, usually not even
parametrizable which makes CRYPTONITE quite unique compared to its po-
tential competitors.

Another obstacle are the numbers given by chip vendors. Hardly any
company provides detailed performance data nor an insight into the archi-
tecture itself. Instead, an overall peak pipeline performance is given but
no further information about the chip’s architecture, especially its pipeline
depth.

In some cases, these numbers only reflect the plain encryption perfor-
mance and do not involve round key generation. Similarly, sometimes only
numbers for the encryption process are given which makes comparison hard
if not impossible: Chapters 2 and 3 have shown that round key generation
is usually the by far more complex task compared to encryption itself as
the IDEA example demonstrates; also, the fast AES implementation [45]
indicates that decryption can be more complicated leading to slower perfor-
mance. A comparison of a monolithic routine incorporating both directions
and the round key generation against lightweighted solutions is quite diffi-
cult and easily draws a distorted picture.

Despite these problems, this chapter will try to compare the numbers
for the CRYPTONITE architecture as presented in Chapter 6 against existing
solutions and concepts. Based on this comparison a proper positioning of
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the proposed architecture within the field of crypto cores and programmable
solutions will be worked out.

7.1 Hardware Solutions & IP Cores

In the very beginning crypto algorithms were designed to easily fit into the
respective time’s technology. A good example for this is the DES algo-
rithm which was developed to match 1970’s technology. Also, in later times
special hardware was designed to perform crypto operations fast and effec-
tively. Although general purpose processors have evolved and today easily
outperform yesterday’s crypto hardware, dedicated hardware solutions are
still far from being obsolete as dedicated hardware solutions naturally are
faster than any general purpose processor solution.

For this comparison, a number of crypto cores was selected based on the
data sheets provided by the respective companies. Selection reasons were
speed, availability and technology numbers. As a side effect, the collected
data also allows a comparison between cutting-edge hardware solutions like
those offered by Amphion and SecuCore and established products like those
included in the Broadcom and Hifn portfolios.

7.1.1 Amphion Semiconductor Ltd.

Amphion [9] is employed in a wide range of communication applications
like speech encoding, video/imaging, channel coding and signal processing.
One of their working fields also covers cryptography where Amphion has
developed a set of AES encryption and decryption cores which are applica-
ble to a wide range of fabrication technologies.

Fortunately, Amphion is one of the rare companies who publish straight
numbers allowing not even performance but also technology comparison
with CRYPTONITE. These numbers are presented in Table 7.2 which shows
the hardware requirements of the various cores referring to selected target
architectures. Table 7.1 compares the resulting throughput based on synthe-
sis technology and core architecture.
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Device Key Cycles Data Rate in Mbits/s
Size per Op. ASIC APEX Virtex-E Virtex-II

Encryption Devices
CS5210 128-bit 44 581 226 275 341

192-bit 52 492 191 233 289
256-bit 60 426 166 202 250

CS5220 128-bit 44 581 305 294 350
CS5230 128-bit 11 2327 999 1061 1323
CS5240 128-bit 1 25600 - n/a - 9882 10880

Decryption Devices
CS5250 128-bit 44 581 215 246 426

192-bit 52 492 182 208 369
256-bit 60 426 158 181 290

CS5260 128-bit 44 581 233 264 290
CS5270 128-bit 11 2327 727 896 1064
CS5280 128-bit 1 25600 - n/a - 8704 9344

Table 7.1: CS52xx AES Core Performance

7.1.1.1 CS5210/40 High Performance AES Encryption Cores

The CS5210/40 family of AES encryption cores [10] are targeted towards
a wide range of needs: Only the CS5210 is fully configurable and allows
processing of any plaintext size together with any key size as defined within
the AES specification, where the CS5220 is a shrunk down version of the
CS5210 which supports only 128-bit key sizes but shares the same basic
architecture. Plaintext data size is limited to 128 bits only.

CS5230 and CS5240 target high-performance areas and implement AES
using pipelining techniques which boost the throughput by a factor of 4
(CS5230) and 44 (CS5240) achieving up to 25.6 GBit/s encryption rate
compared to 581 MBit/s for the standard implementation as incorporated
within CS5210 and CS5220.

These encryption cores have a basic interface which enables feeding in
plaintext and key data on separate buses; similarly, the ciphertext output
is available from an individual bus. The current chip status is presented
through distinct status lines which signal if the chip is ready to accept new

103



7.
C

O
M

PA
R

IS
O

N
O

F
C

R
Y

PT
O

N
IT

E
A

G
A

IN
ST

E
X

IS
T

IN
G

SO
L

U
T

IO
N

S

Device TSMC XYZ [ \ Altera APEX-20K Xilinx Virtex-E Xilinx Virtex-II
Logic Clock Logic ESBs Clock Slices Block Clock Slices Block Clock
Gates Speed Elem. Speed RAM Speed RAM Speed

CS5210 18.2K 200 1452 8 77.8 696 4 94.7 696 4 117.3
CS5220 14.8K 200 869 8 105 421 4 101 403 4 102.2
CS5230 27.0K 200 1167 20 85.9 573 10 91.2 573 10 113.7
CS5240 203.0K 200 – n/a – 2397 100 77.2 2181 100 85
CS5250 19.2K 200 1560 8 74.1 745 4 84.7 746 4 100
CS5260 16.4K 200 1176 11 80.4 549 4 91 549 4 100
CS5270 34K 200 1481 20 62.5 778 10 77 778 10 91.5
CS5280 283K 200 – n/a – 4626 100 68 3998 100 73

Table 7.2: Technology and Performance Comparison for Amphion Cores
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plaintext or key data, if the encryption process is still running, or if the
ciphertext data is valid.

7.1.1.2 CS5250/80 High Performance AES Decryption Cores

The CS5250/80 family of decryption cores [11] is the counterpart to the
aforementioned encryption core family and incorporates the same basic de-
sign. However, compared to encryption the numbers show a decrease of
throughput of up to 30% for decryption with FPGAs as target technologies
together with an increase in size of up to 93%.

If realized using ASIC technology the throughput remains the same but
also an increase in chip size of up to 40% can be monitored.

7.1.2 Broadcom Corporation
Broadcom [25] is specialized in broadband communications and network-
ing of voice, video, and data services. They offer a wide product range of
integrated silicon solution targeting network access using various technolo-
gies (optical, wireless, xDSL) and also data security. For the security market
Broadcom offers a variety of cryptographic and security processors targeted
towards high-bandwidth networks and e-commerce. Broadcom’s portfolio
holds integrated devices including PCI-bus interface which can be attached
to any PCI-based computer system but also single-chip solutions with an ar-
bitrary interface allowing the chips to be connected to almost any processor
or I/O subsystem using minimal glue logic.

Although Broadcom provides quite informative data sheets [16, 15, 18,
17, 20, 19, 22, 21, 23, 24] these mostly focus on the PCI aspect and do not
reveal any architecture information of their crypto cores. Also, the given
numbers mostly refer to combined operation like encryption plus digesting
like 3DES+MD5 according to data packet sizes as transmitted over network.
This information is collected in Table 7.3.

Table 7.4 presents less individual data and compares raw throughput
showing the core’s theoretical maximum speed against system throughput
giving a vague idea about how much speed is lost for network protocol pro-
cessing. A most interesting number, the sustained performance, is unfortu-
nately given for only one chip, the BCM5802. Since the data sheets claim
that BCM5801, BCM5802, BCM5805, and BCM5820 share basically the
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same architecture [15, 17, 19, 21], the sustained performance was calculated
from the system performance for BCM5801, BCM5805, and BCM5820
based on the relation between system and sustained performance given for
BCM5802.

Since only a summary throughput of combined operations like 3DES
together with MD5 is given, it is not possible to calculate cycle numbers for
individual algorithms which means that these processors cannot be directly
compared to the CRYPTONITE architecture.

7.1.3 Corrent Corporation
The Corrent Corporation [36] is specialized in network security solutions for
Gigabit-speed encryption in e-commerce (SSL) and virtual private networks
(IPsec) applications [37] and gained big respect by earning the Micropro-
cessor Report Analysts’ Choice Award for Best Security Processor of 2001
[89, 90] for their CR7020 SSL Security Processor.

However, Corrent was unable to provide the necessary data sheets al-
lowing a deeper insight into the architecture and its capabilities. Based
on [89] the CR7020 compares to Broadcom’s BCM5840 and Hifn’s 8154
but achieves a peak IPsec bandwidth of 3.8 GB/s and up to 5000 RSA op-
erations per second. It supports AES, DES, 3DES and ARC4 encryption
together with SHA-1 and MD5 hashing functions and random number gen-
eration and can be interfaced to 33 and 66 MHz PCI bus systems. For the
lack of proper datasheets this chip – although very interesting – was omitted
from further comparison.

7.1.4 Hi/fn, Inc.
Hifn [63] is a supplier of compression, encryption, authentication, and appli-
cation recognition technologies especially targetting virtual private network
and e-commerce markets. They offer a broad range of products of which
the security-related processors were selected for comparison.

Much like Broadcom Hifn provides detailed data sheets [53, 54, 55, 56,
57, 58, 59, 60, 61, 62] which concentrate on the PCI aspect but hardly give
any insight into the architecture besides the information that the crypto en-
gines use pipelining technologies. Also, the core performance is not given
for all architectures but only the network throughput: As for 7814 and 7854
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Device PCI Config Core Throughput/Mbps @ Packet Size/Bytes
Speed Speed 64 128 256 512 1024 2048 5120 10240

BCM5801 33MHz – 66 41 n/a 97 127 149 162 n/a n/a
66MHz – 66 43 n/a 112 152 186 205 n/a n/a

BCM5802 33MHz – 33 28 n/a 67 89 104 113 n/a n/a
BCM5805 encrypt 50 44 75 110 145 168 198 198 204

decrypt 50 75 101 133 162 179 194 201 205
BCM5820 33MHz inbound 33 26 45 62 84 101 111 n/a n/a

outbound 33 45 64 81 98 109 116 n/a n/a
inbound 90 55 95 132 178 211 233 n/a n/a

outbound 90 77 117 154 191 219 236 n/a n/a
BCM5820 66MHz inbound 66 50 88 124 168 201 233 n/a n/a

outbound 66 87 119 158 193 218 233 n/a n/a
inbound 90 55 97 138 193 240 269 n/a n/a

outbound 90 87 119 163 212 248 274 n/a n/a

Table 7.3: Broadcom BCM58xx performance regarding packet size
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Supported Algorithms Speed Performance (MBit/s)
Device Crypto Hash (MHz) ctrraw system sustained

BCM5801 DES, 3DES SHA-1, MD5 33 320 200 100
BCM5802 DES, 3DES SHA-1, MD5 33 150 100 50
BCM5805 DES, 3DES SHA-1, MD5 33 240 200 100
BCM5820 DES, 3DES, ARC4 SHA-1, MD5 33 330 290 145
BCM5821 DES, 3DES, ARC4 SHA-1, MD5 125 n/a 470 (3DES/SHA1) n/a

600 (ARC4) n/a
BCM5840 DES, 3DES SHA-1, MD5 n/a n/a 2400 (3DES/SHA1) n/a

Table 7.4: Broadcom BCM58xx performance data
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only the vague information that “AES [has] somewhat greater performance
than 3DES” [56] is given, for 7851, 8x65 and 8154 no core performance
numbers at all are provided.

For this reason, the core performance data as provided through Hifn’s
data sheets is listed in Table 7.5. From these given values rough cycle count
numbers as shown in Table 7.6 were calculated to allow further comparison
using the formulaC � C Ë 8;: � Ã�] ÿ ô �_^a`z�¸�¸�cb �edgf Äih Ã�j ý¢Ü±ý ] üak " $ ^;' f �lb?m÷'ÆÜÞÝ¸Än � ôpo ÿ ô E ý " à �_b � m÷'ÆÜiboÝAlthough these numbers might not reflect the exact cycle count they
are a good base for architecture comparison. It must be noted, however,
that the numbers for AES (where applicable) assume 128-bit data and key
size (AES 128/128) and are based on the 3DES throughput numbers since
the data sheets claim the AES performance to be “somewhat greater than
3DES” [56]. These numbers have to be taken with caution.

No numbers were calculated for RC4 since neither key nor data size
were given; similarly the 80xx/81xx family of Secure Session Processors
was omitted from this list as no detailed data was provided.

7.1.5 NetOctave, Inc.
NetOctave [84] is specialized in building security processors and secu-
rity accelarator boards targeting Secure Sockets Layer (SSL), IP Security
(IPSec) and IP Storage markets. With their NSP2000 [79, 80] and NSP3200
[82, 81] NetOctave provides dedicated PCI-enabled crypto processors tai-
lored towards direct network attachment to support SSL (NSP2000 [80])
and IPsec (NSP3000 [81]) secured connections. The NSP series of pro-
cessors was presented to a wider audience on the Communications Design
Conference (CDC) 2001 through [99] and [100].

7.1.5.1 Performance Data

Also NetOctave does not provide sufficient data for an architectural com-
parison, only maximum numbers for network throughput are given. which
reaches up to 4.8 GBit/s for the NSP3200 Security Processor [82] with 650
MBit/s for combined 3DES/SHA-1 or 3DES/MD5 running on a NSP300x
IPsec Security Accelerator Board [81]. For the NSP200x SSL Security Ac-
celerator Board [80] only the core performance of 650 MBit/s (NSP2000/2)
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Core Performance (MBit/s)
Processor Speed AES DES 3DES RC4 SHA-1 MD5

Encryption Processors
7711 33 – 245 82 129 84 100
7751 33 – 164 83 122 80 96

Network Security Processors
7811 90 – n/a 252 200 301 376
7814 40 “AES somewhat greater performance than 3DES”
7851 100 n/a (no AES support)
7854 100 “AES somewhat greater performance than 3DES”
7901 50 – 143 53 78 50 60
7902 50 – 143 53 78 50 60

66 – 188 70 103 66 79
7951 66 – 143 70 103 66 79

Secure Session Processors
8065/8165 66 AES performance similar to DES
8154 100 AES performance similar to DES

Table 7.5: Performance Data of Hifn Processors

Cycle Count for
Algorithm 7711 7751 78xx 79xx
AES n/a n/a 46 n/a
DES 9 13 n/a 22
3DES 26 25 23 61
SHA-1 201 211 153 512
MD5 169 176 123 427

Table 7.6: Algorithm cycle counts computed from given performance data
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Supported Algorithms Performance
Product Crypto Hash Core Network

Data provided by NetOctave
NSP2000B 3DES, ARC4 MD5, SHA1 650MBit/s n/a
NSP2002B 3DES, ARC4 MD5, SHA1 650MBit/s n/a
NSP2004B 3DES, ARC4 MD5, SHA1 1300MBit/s n/a
NSP3000B 3DES MD5, SHA1 650MBit/s n/a
NSP3200 AES, 3DES MD5, SHA1 n/a 4.8GBit/s

Data provided by Chipcenter
NSP2000 3DES 1000MBit/s n/a
@100MHz MD5 1190MBit/s n/a

SHA 2000MBit/s n/a

Table 7.7: Performance Data for NetOctave SSL and IPsec Processors

and 1.3 GBit/s (NSP2004) are given. Chipcenter [79] gives more detailed
but different numbers which have also been added into Table 7.7.

Although a white paper about NetOctave’s FlowThrough Security Ar-
chitecture [83] is provided, it does not give a detailed description of the
architecture but contains only basic information about the various modules
integrated into one chip.

Similar to Broadcom, NetOctave only provides numbers for combined
operation which do not allow to calculate approximate cycle counts for in-
dividual operations as needed for comparison with the CRYPTONITE archi-
tecture.

7.1.6 OpenCores.org

OpenCores [86] follows the same ideology as the Open Software Founda-
tion (OSF) [85]. Where OSF provides free software, OpenCores focuses on
free hardware cores. Through their pages, OpenCores offers a wide range
of Verilog and VHDL hardware models in different development stages;
from the crypto cores section only the DES core [128] is readily developed
and tested on various hardware achitectures. In addition, the IDEA [3] core
is developed far enough to present at least minimal numbers. Currently
under development are AES/Rijndael [136], RC4 [134], Twofish [5] and

111



7. COMPARISON OF CRYPTONITE AGAINST EXISTING SOLUTIONS

Hardware Speed (MHz)
Platform Size Core Processing

Area Optimized
0.18 W m UMC ASIC 3k Gates 155 9.68
Altera APEX 20K 1106 Icells 27 1.68
Altera FLEX 10K50 1283 Icells 43 2.68

Performance Optimized
0.18 W m UMC ASIC 28k Gates 290 18.13
Altera APEX 20K 6688 Icells 53 3.31
Altera FLEX 10K50 6485 Icells 76 4.75

Table 7.8: OpenCores DES Performance Data

SHA-256 [135] cores as well as a monolithic crypto accelerator supporting
AES/Rijndael, Twofish, and SHA-1 [120]. Since these cores are mostly still
in planning stage they are listed for completeness but will not be further
investigated.

7.1.6.1 OpenCores DES Core

The DES core has already been implemented and tested on multiple hard-
ware platforms. It takes 16 cycles to perform a full encryption or decryption
which implies that each round takes one cycle, input/output permutation are
embedded into the data path. The performance data is shown in Table 7.8.
For this core the bits-per-cycle ratio equals 4.

7.1.6.2 OpenCores IDEA Core

Although announced for quite some time, this core still is not finished. How-
ever, it has already been implemented in hardware and is said to achieve a
throughput of 177 MBit/s, further information about the core speed and the
needed cycles per IDEA encryption or decryption is omitted. The given di-
agrams are no help since they are somewhat contradictory: The core’s block
diagram seems to receive key and data 16-bit-wise, similarly the cipher text
is written out in items of 16-bit. The IDEA Machine, however, as main
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Throughput Data Chunk Bits per
Core (GBit/s) Cycles Size Cycle
AES-128 1.94 11 128 11.6
DES 2. q �

64 12.04
3DES 0.67 r�A � 64 4.01
MD5 1.25 68 512 7.53
SHA-1 1.01 84 512 6.10
SHA-256 1.25 68 512 7.53

Table 7.9: SecuCore Performance Data

functional unit seems to perform the complete IDEA operation within one
cycle.

Since no additional documentation is given, this core is omitted from
further comparison due to incomplete and contradictory data.

7.1.7 Secucore Consulting Services
SecuCore [116] is a provider of high performance hardware core models
targeting data security. They offer a broad variety of cores for different
crypto algorithms, namely AES/Rijndael [112], DES and 3DES [113], MD5
[114], and SHA-256 [115] which deliver high performance using a 0.18 W m
ASIC technology.

7.1.7.1 Performance Overview

According to the data sheets, SecuCore used TMSC’s 0.18 W m ASIC tech-
nology running at 166 MHz to benchmark their cores. Also, most of the data
sheets provide the number of cycles needed to perform the crypto operation
on the algorithm’s specific data chunk size. For DES and 3DES, however,
these values were not provided and had to be calculated from throughput,
core speed and data size.

7.1.8 Zyfer, Inc.
Zyfer’s [140] main area of operation is precision synchronization devices as
used for communication, networks and military applications with focus on
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secure and robust data transfer through ground and satellite links. One of
their products is the SKP-100 Gigabit Network Security Processor [141]

7.1.8.1 SKP-100 Gigabit Network Security Processor

The SKP-100 is currently under development, so Zyfer publishes only
a short product information presenting minimal facts. It supports
AES/Rijndael-128/128, 3DES in 2- and 3-key configuration and plain DES,
all in EBC and CBC mode. For authentication, MD5, SHA-1, and SHA-256
hash algorithms are supported.

For 3DES and Rijndael the product information claims that full duplex
OC-48 speed (2.4 GBit/s) is achieved, but since this number is also given
as “pipe speed” it can be safely assumed that that these algorithms are not
implemented single-cycle.

Since further insight into the architecture like pipe length or number
and structure of processing units are given, no comparative values can be
calculated.

7.2 Programmable Solutions

Fully programmable crypto processors are still a novel concept: Until now
almost nobody has entered this field and so far only one fully programmable
and algorithm independent machine, the CryptoManiac [131], is known.
Besides, a microprogrammable processor targeted towards IDEA exists, the
PLD001 Cryptoprocessor [67]. Although it was developed with respect to
IDEA it is not clearly IDEA specific and can be considered as another pro-
grammable solution.

7.2.1 CryptoManiac

CryptoManiac appeared in mid 2001 and is a 4-wide 32-bit VLIW archi-
tecture. It basically consists of 4 functional units operating on a commonly
used data memory which are part of a 4-stage pipeline. To keep this pipeline
filled a 16-entry branch target buffer is used for branch prediction. Figure
7.1 gives an overview over the CryptoManiac architecture.
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CryptoManiac explicitly supports communication with a host processor
through a queue mechanism providing input and output data queues. A
request scheduler is responsible for distributing incoming requests in order
of appearance. It also offers a special keystore interface to hold key data
and substitution tables.

File
Register

Data
Memory

FU #4

FU #3

FU #2

FU #1

Memory
Instr.

BTB

Instruction
Fetch

Instruction
Decode

Execution /
Memory Access Writeback

Figure 7.1: CryptoManiac Architecture Overview

The heart of the CryptoManiac architecture is the four functional units
as depicted in Figure 7.2 which are less complex than CRYPTONITE’s arith-
metic unit, but are able to perform up to three sequential operations within
one cycle.

7.2.1.1 Conceptual differences to CRYPTONITE

Although there are some similarities between CRYPTONITE and Crypto-
Maniac concerning the concept of multiple functional units or VLIW, the
architectures are quite different at a closer look.

Firstly, CRYPTONITE is a single-cycle execution architecture. It does
not allow multi-cycle operations like CryptoManiac with its instruction-
combining model. The reason to do so was mainly for speed reasons but
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SBox Cache
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Logical Unit
(XOR/AND)

(XOR/AND)
Logical Unit

Figure 7.2: CryptoManiac’s functional unit

to a smaller degree also to ease compiler design, namely resource alloca-
tion. The drawback of single-cycle execution is that it puts great pressure
on the hardware design to ensure that all functions can be performed within
one cycle.

On the level of functional units data access and data processing are
strictly separated1 in CRYPTONITE. All data like input data, keys, tables, or
S-Boxes is held in memory, as opposite to CryptoManiac’s functional units
which employ S-Box caches. On the other hand, CRYPTONITE’s arithmetic
units are more powerful and allow quite complex monolithic operations to
support the needs of advanced crypto algorithms.

1with the exception of the DES unit which is placed in the memory unit as explained in
Section 5.8.4
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Alpha CRYPTO- CryptoManiac
21164 NITE 4WC 3WC 2WC 4WNC

Blowfish 9.58 n/a 4 4 6 5
3DES 23.56 2/3 7 8 9 12
IDEA 91.95 11 14 14 17 15
Mars 28.86 n/a 9 9 9 10
RC4 11.49 n/a 8 8 8 9
RC6 23.24 7+3 7 7 7 9
AES/Rijndael 33.84 8/7 9 11 17 10
Twofish 27.36 n/a 7 8 11 8

Table 7.10: Kernel loop cycle counts per round

Another difference shows up together with memory access: Where
CryptoManiac allows all four functional units to access a common data
memory, CRYPTONITE has separate memory units for both ALUs. Com-
munication with external units is handled through request pipelines within
CryptoManiac; as of now, the CRYPTONITE architecture only provides a
raw interrupt-based communication interface allowing external units to put
CRYPTONITE on hold while accessing the internal memory to update or
read out values. This means that an external control processor handling the
network data stream has to frequently update CRYPTONITE’s data memory
to provide new and read out processed data.

7.2.1.2 Performance Data

For CryptoManiac quite a number of evaluations were done covering com-
putation speed, power dissipation, timing results, and on-chip area require-
ments. The speed evaluation was compared against a modern general pur-
pose processor, the Alpha 21264; also, the numbers for the CRYPTONITE

architecture were added where applicable. The results of these comparisons
are shown in Table 7.10 for performance data and Table 7.11 for physical
parameters.

Unfortunately, the cycle count is only given for an algorithm’s round and
not for the entire encryption process of a data block which makes throughput
calculation a bit problematic. Based on Table 6.1 the ratio between round
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CryptoManiac
4W Comp. 3W Comb. 2W Comb. 4W N-Comb.

Chip Speed 2.78ns 2.66ns 2.54ns 2.75ns
360MHz 376MHz 394MHz 364MHz

Chip Size 1.93mm � 1.77mm � 1.59mm � 1.69mm �
Power 606.37mW 593.51mW 568.50mW 586.86mW
Consumption

Table 7.11: Timing and Area Results for CryptoManiac

cycle count and total cycle count was calculated; these ratios serve as a
multiplication factor for the CryptoManiac kernel loop counts as provided
through Table 7.10. Table 7.12 shows the comparative numbers based on
this calculation.

These numbers have to be taken with extreme caution and are most
likely too optimistic since [131] does not mention round key generation at
all. As for CRYPTONITE code AES round key generation is responsible for
about 30% of the cycle count; for a (3)DES implementation using single-
operation instructions (as opposed to the monolithic instructions employed
within CRYPTONITE) round key generation causes about 16% of the overall
cycle count. To take this into account, corrected values were calculated for
3DES and AES by multiplying the ratio factor by 1.16 and 1.30 respectively.

It must be further noticed that only the CryptoManiac’s 4WC configura-
tion running at 360 MHz was considered.

Round Total Throughput
Algorithm Cycles Ratio Cycles Bits/Cycle MBit/s

3DES 7 * 48 = 336 0.19 68
3DES corr. 7 * 56 = 392 0.16 59
IDEA 14 * 8.18= 115 1.11 400
RC6 7 * 20.6 = 144 0.89 320
AES-128/128 9 * 10 = 90 1.42 511
AES-128/128 corr. 9 * 13 = 130 0.98 353

Table 7.12: Estimated Throughput for CryptoManiac running at 360 MHz
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7.2.2 PLD001 Cryptoprocessor

A crypto processor designed towards IDEA and RSA was developed by Jüri
Pöldre during 1994 to 1997 [67]. Like this work it followed a very simi-
lar approach by analyzing distinct algorithms and tayloring an architecture
towards these algorithms. The PLD001 is a microprogrammable architec-
ture allowing different ALU configurations as needed for certain processing
steps within IDEA computation.

The analysis of RSA and IDEA led to a quad-partite ALU as shown in
Figure 7.3 consisting of four 24-bit wide units. For IDEA these units are
configured as two 16-bit multipliers. Since each 24-bit block can perform
an \ W A � -bit multiplication, two such multipliers do the needed A �xW A � -
bit multiplication in one cycle. If long modular calculation is needed, the
ALU can be configured as an \ W � � -bit multiplier or 96-bit adder/negator
with additional carry logic as shown in Figure 7.4. This configuration is
called calculation mode. The complete data path within PLD001’s ALU is
depicted in Figure 7.5.

alu24.1

alu24.3 alu24.4

alu24.2

B(15..0) C(15..0)

A(7..0)

A(15..8)

D(7..0)

D(15..8)

Figure 7.3: IDEA configuration

Besides ALU configuration, PLD001 microprograms allow access to
the internal memory and selection of desired logical and arithmetic oper-
ations. Memory access is controlled by the so-called ALU control struc-
ture as shown in Figure 7.6. The INDEX CALC unit is capable of either
addressing 6-bit entities inside the 768-bit data registers or loading parts
of the 768-bit memory into the 24-bit register ER. Logic operations be-
tween between immediate values, index register, and ER may apply. Arith-
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Carry
Logic

Negator

Adder

Multiplier

96

96

8

Figure 7.4: Calculation Mode

metic commands only operate on long-data registers and are executed in the
ALU SEQUENCER unit in parallel with index calculation.

PLD001 also supports so-called high-level commands which are basi-
cally calls to microcode programs allowing reusable complex operations.
32 of these are fall under the category external commands which means that
these can be directly selected by applying the proper bit pattern to dedicated
input pins.

ALU mux

ER (23..0)mux

8x96bit 128x96bit

8/6 24

24

96

96 96

RAM8 RAM128

Figure 7.5: Data flow within the PLD001 ALU

7.2.2.1 Performance

[67] gives mainly numbers for IDEA calculation. According to this docu-
ment it takes 50 clock cycles per IDEA transformation equalling 32 MBit/s
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ROM
Code Command

Fetcher

ALU Sequencer Index Calc

High−Level
Commands

Datapath

Memory

Figure 7.6: PLD001 ALU control structure

at the denoted 25 MHz operating speed. RSA key exchange is said to
take about 0.5s which equals 2 key exchanges per second. The values are
summed up in Table 7.13.

Supported Algorithms IDEA and RSA Key Exchange
Core Speed 25 MHz (tested)

20 MHz (calculated)
Technology ES2 1.0 W m and Xilinx FPGAs
Throughput 32MBit/s for IDEA

2 key exchanges per second for RSA

Table 7.13: PLD001 Performance Data

7.3 Algorithm Performance Comparison

Within the last two sections many dedicated hardware solutions and two
programmable solutions were presented. A comparation, however, is not
an easy task since the various sources present quite different data. As cer-
tain parameters had to be estimated or calculated based on estimations, some
values have to be taken with care but nevertheless allow a performance com-
parison between the CRYPTONITE architecture and its competitors.
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7.3.1 AES-128/128 Performance

Table 7.14 shows performance data for those crypto solutions supporting
AES-128/128. The Amphion CS5240 was omitted from this list since it is
a very special single-cycle solution achieving a throughput of 25600 MBit/s
for the sake of an over 10-times bigger gate count. Figure 7.7 compiles this
data into a more pictoral form.

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

Amphion CS5220 44 200 581
Amphion CS5230 11 200 2327
Hifn 7854 46 100 280
SecuCore AES-128 11 166 1931
CryptoManiac (raw) 90 360 511
CryptoManiac (corr.) 130 360 353
CRYPTONITE ( s ) 80 400 640
CRYPTONITE ( û ) 70 400 731

Table 7.14: AES-128/128 Performance Comparison
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Figure 7.7: AES-128/128 Performance Comparison
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Besides CryptoManiac, the 44- and 11-cycle versions from Amphion
(CS5220, CS5230), the 46-cycle version from Hifn (7854) and another 11-
cycle version from SecuCore (AES-128) which runs at slightly slower speed
than the Amphion CS5230 are included which are positioned against the
bidirectional s ) and unidirectional ( û ) versions of CRYPTONITE’s fast
AES implementation [45].

It can be observed, that CRYPTONITE running at 400 MHz outperforms
the 44/46 cycle hardware implementations by a factor of 1.25 to 2.6; as ex-
pected, the 11-cycle versions outperform CRYPTONITE by a factor greater
than 2.64, but it must been taken into account that these cores are extremely
tailored towards the AES/Rijndael algorithm, which is especially true for
the single-cycle solution CS5240. Compared against CryptoManiac CRYP-
TONITE shows an up to two times better performance.

7.3.2 DES Performance

As a result of the dedicated DES unit CRYPTONITE shows excellent crypto
performance as listed in Table 7.15. It outperforms most of the cores by a
factor of 1.18 to 5.12; only SecuCore DES shows again overwhelming per-
formance and beats CRYPTONITE by a factor of 2.73. This data is graphi-
cally presented in Figure 7.8.

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

Hifn 7711 9 33 245
Hifn 7751 13 33 164
Hifn 790x 22 50 143
OpenCores DES 16 155 620
SecuCore DES 5 166 1999
CRYPTONITE 35 400 732

Table 7.15: DES Performance Comparison
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Figure 7.8: DES Performance Comparison

7.3.3 3DES Performance
CRYPTONITE’s great DES performance also shows up for 3DES where it
outruns its hardware competitors by a factor up to 3.13; only the Hifn
7811 shows slighty better performance and reaches 103% of CRYPTONITE’s
throughput as listed in Table 7.16 and depicted in Figure 7.9. The compar-
ison against the programmable competitor CryptoManiac shows the great
benefit of CRYPTONITE’s DES unit. Thanks to this unit CRYPTONITE out-
performs CryptoManiac by factors up to 4.14.

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

Hifn 7711 26 33 82
Hifn 7751 25 33 83
Hifn 7811 25 90 252
Hifn 790x 61 50 78
CryptoManiac (raw) 336 360 68
CryptoManiac (corr.) 392 360 59
CRYPTONITE 105 400 244

Table 7.16: 3DES Performance Comparison
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Figure 7.9: 3DES Performance Comparison

7.3.4 IDEA Performance

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

CryptoManiac/4WC 115 360 400
PLD001 50 25 64
CRYPTONITE 90 400 569

Table 7.17: IDEA Performance Comparison

Also with IDEA CRYPTONITE shows good performance and outper-
forms its fully programmable competitor CryptoManiac by a factor of 1.42;
even the IDEA-optimized PLD001 is outrun by a factor of 8.89 as shown in
Table 7.17 and Figure 7.10.

7.3.5 RC6 Performance

With this algorithm, CryptoManiac is able to defeat CRYPTONITE using
its complex functional units which make it possible to perform up to three
sequential operations at once. It is not a matter of higher parallelism or
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Figure 7.10: IDEA Performance Comparison

common data memory as Table 7.10 shows since the loop cycle count for
RC6 is equal for all incarnations of the CryptoManiac architecture.

As shown in Table 7.18 and Figure 7.11 CRYPTONITE delivers about
29% less performance as CryptoManiac for RC6 in AES configuration.

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

CryptoManiac/4WC 144 360 320
CRYPTONITE 206 400 249

Table 7.18: RC6 Performance Comparison

7.3.6 MD5 Performance

For MD5, CRYPTONITE again shows very good performance against the
competing hardware cores and is able to deliver 1.08 to 6.77 times better
throughput as the Hifn cores; as with previous examples it is again defeated
by the specialized SecuCore solution which outperforms CRYPTONITE by a
factor of 3.08 as shown in Table 7.19 and Figure 7.12.
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Figure 7.11: RC6 Performance Comparison

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

Hifn 7711 169 33 100
Hifn 7751 176 33 96
Hifn 7811 123 90 376
Hifn 790x 427 50 60
SecuCore MD5 68 166 1250
CRYPTONITE 504 400 406

Table 7.19: MD5 Performance Comparison
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Figure 7.12: MD5 Performance Comparison

7.3.7 SHA-1 Performance

A similar picture is drawn by the SHA-1 performance comparison which
shows 1.4 to 8.4 times better throughput for CRYPTONITE compared to the
Hifn cores – but again the winning architecture is the dedicated hardware
core from SecuCore defeating CRYPTONITE by a factor of 2.41 as shown in
Table 7.20 and Figure 7.13.

Cycle Speed Throughput
Architecture Count (MHz) (MBit/s)

Hifn 7711 201 33 84
Hifn 7751 211 33 80
Hifn 7811 153 90 301
Hifn 790x 512 50 50
SecuCore SHA-1 84 166 1013
CRYPTONITE 488 400 420

Table 7.20: SHA-1 Performance Comparison
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Figure 7.13: SHA-1 Performance Comparison

7.4 Summary

Within this chapter alternative crypto processors – both dedicated hardware
and programmable solutions – were presented. In those cases where appro-
priate data was presented by the respective vendor, it was compared against
the CRYPTONITE architecture; in some cases numbers had to be calculated
from the given data and certain assumptions made. This was mentioned in
the respective sections.

The comparison has clearly shown, that a modern programmable solu-
tion does not necessarily need to be slower than typical dedicated hardware
solutions. In most cases CRYPTONITE outperformed the competing hard-
ware cores by factors up to 5.42; even against high-performance cores like
some of the Amphion solutions for AES-128/128 and all SecuCore cores
CRYPTONITE was able to produce quite respectable results: The tradeoff
for a fully programmable solution with as little special units or instructions
as possible is a factor of less than 2.7 averaged over all cases where CRYP-
TONITE was defeated by hardware hardware solutions.

In addition the comparison especially with the CryptoManiac architec-
ture has proven the algorithm analysis of Chapter 3 to be correct; also the
architectural impact and proposals as elaborated in Chapter 4 resulting in
the CRYPTONITE architecture presented in Chapter 5 were justified. The
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CRYPTONITE architecture was proven to be efficient and competitive, both
with programmable and dedicated hardware solutions.
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Conclusion and Summary

Within this work a novel, fully programmable processor architecture fo-
cused but not limited to cryptographic algorithms was presented.

In Chapter 1 the need for such an architecture was demonstrated together
with some real-life examples. High-performance cryptography is pervad-
ing all fields of digital data distribution where broadcasted content has to
be secured against unauthorized access. Of special interest is the field of
high-bandwidth data distribution as necessary for all kinds of real-time data
streams like video-on-demand (or, more generally, multimedia-on-demand)
services, secured video conferencing or spanning of virtual private networks
(VPNs) over existing network infrastructures.

Chapter 2 gives a general introduction into the field of cryptography to-
gether with basic definitions. It shows the difference between symmetric
and asymmetric algorithms and explains typical operation modes of crypto-
graphic algorithms.

For Chapter 3 a set of algorithms was selected and analyzed. The selec-
tion criteria was current and future proliferation; focus has clearly been put
on the old crypto standard DES and the recently defined new standard, AES.
Additional crypto and hash algorithms were added to investigate additional
requirements by algorithms different from AES and DES.

This analysis’ results and their impact on the proposed architecture have
been listed in Chapter 4. Based on the algorithm analysis, needed operations
were collected and weighted. The operations were distributed on functional
units, namely Arithmetic Unit (AU) and XOR Unit (XU) both being part of
the Arithmetic-Logical Unit (ALU). An accompaning Memory Unit (MU)
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enables the ALU to store its results to data memory or load previously stored
data into registers of the register file. To exploit parallel structures found in
certain algorithms this compound of ALU and MU called strand is doubled.
An interlink mechanism provides a possibility to forward data and results
between both strands.

Also, number and size of registers as well as supported data types were
defined. For the analyzed algorithms a file of 4 registers fulfills the require-
ments if the already proposed interlink mechanism is extended by means of
register value forwarding in addition to ALU results and memory data. As
data types, 32-bit and 64-bit were defined with the possibility to individually
access the two 32-bit halves of a 64-bit register allowing a 64-bit register to
be used as two independent 32-bit registers. For data memory accesses this
scheme is maintained and extended by the feature of so-called S-Box access
as necessary for many crypto algorithms employing non-linear functions
based on certain data tables; for an S-Box access the 64-bit of a memory
cell are distributed evenly over eight 8-bit quantities each being addresses
separately using a base address and an 8-bit offset provided through an simi-
larly divided 64-bit index register. These eight 8-bit quantities are combined
to a 64-bit result.

Furthermore, the need for special instructions was investigated. Due to
its hardware-oriented nature DES clearly needs a specialized unit incorpo-
rating the necessary functions for the DES-specific operations, which are
fixed bit permutations, compression and expansion operations together with
round key generation. Also other algorithms could certainly benefit from
specialized, monolithic instructions; the decision was made to only support
AES with further instructions as needed for the fast AES/Rijndael imple-
mentation as provided by Agere Systems [45]. A reconfigurable modulo-
multiplier as needed by IDEA and RC6, for instance, are recommended but
not necessary.

Based on this analysis, an architecture was constructed which is pre-
sented in Chapter 5. It consists of a control unit (CU) being responsible
for command decoding and program flow control. For this reason, it con-
sists of 16 so-called counter registers (CR) together with a small associated
arithmetic unit enabling loop constructs and conditional branching; to also
include conditions based on ALU results, the topmost four CRs mirror the
sign and zero flags of the last ALU operation for each of the two ALUs.
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These ALUs divide into AU, XU and register file (RF) as described
above with the ability to allow value and result forwarding between the
two ALUs. Special operations as defined for fast AES operation are in-
cluded into the AU. There is no direct connection from and to data memory;
instead, registers of the RF can be loaded from data memory through the
MU’s Data Output Register (DOR); similarly, ALU results or register val-
ues can be stored to data memory through the MU’s Data Input Register
(DIR). Value transfer to registers is only possible through an ALU’s A or X
bus as shown in Figure 5.4 which means that during register load operations
either AU or XU can not be used and have to be put in an idle state.

The memory unit (MU) is responsible for memory address genera-
tion and data transportation and thus divides into Address Generation Unit
(AGU) and Data I/O Unit (DIO), the latter also containing the DES unit.
The AGU does not only provide direct and S-Box addressing using but also
indexed and modulo addressing; these more complex addressing modes are
realized through a post-increment / post-modulo circuitry.

This architectural concept was tested using software emulators allowing
test runs of algorithms implemented on the CRYPTONITE architecture. For
selected algorithms the cycle count of certain algorithms is given in Chapter
4 which also covers the hardware implementation of the proposed archi-
tecture. Here, a number of functional units were described using VHDL,
synthesized and fitted to the Xilinx [132] Virtex-IIpro FPGA family [133].
Based on these numbers together with other data provided by hardware core
vendors speed estimations were done considering ASIC and custom chip
layout implementations. This speed estimation forecasts a resulting speed
range of 400 to 600 MHz when using custom chip fabrication techniques.

In Chapter 7 the CRYPTONITE architecture is compared against exist-
ing crypto processor solutions; these include hardware cores being able to
process only one algorithm, or a fixed set of algorithms, and programmable
processors. All these solutions are listed together with their performance
data. To allow independent comparison, absolute (MBit/s) and relative
(Bits/Cycle) numbers were calculated based on the given data where not
provided. The comparison against existing solutions has proven CRYP-
TONITE’s high performance; even compared to hardware solutions it per-
forms very well; the performance impact to be paid for programmabilty
does usually not exceed a factor of 2.4, which means that in worst case
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the proposed programmable solution still offers about 42% of a dedicated
hardware solution.

In summary, this work has presented a novel programmable crypto pro-
cessor architecture. This architecture was carefully designed with respect
to high performance at moderate hardware demands. Running at 400 MHz
this architecture is able to outperform existing hardware solutions as well as
comparable programmable solutions. Newer hardware solutions such as the
SecuCore products of course show superior performance in their specific
field; but even compared with these the programmable CRYPTONITE archi-
tecture is able to provide about 42% of the hardware core’s performance.
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Future Work

The work presented within this document describes the core CRYPTONITE

architecture which was developed with respect to speed and flexibility. As-
sociated with this architecture there are further outstanding projects neces-
sary for industrial use of the CRYPTONITE architecture which are listed in
the following two sections. The third section covers possible areas of use.

9.1 Software Development

Currently, two simulator frameworks exist. One is based on Standard ML
(SML), the other one is a cycle-based emulator written in C making it pos-
sible to write programs in an assembly language-like form. Both emulators,
however, do not allow true native program development. In addition, the
SML solution does not know about the CRYPTONITE architecture thus it
neither knows about architectural restrictions nor does it support variable-
to-register mapping. Instead, the programmer needs to write programs ar-
chitecturally mapped as if writing programs in assembly language.

The cycle-based emulator was designed to allow importing and running
of CRYPTONITE binaries at a later development stage; until now it provides
a framework for processing code in assembly language-like form, basically
C files which call internal library routines mimicking assembly language
commands.
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9.1.1 CRYPTONITE Assembler

For proper program development an assembler is essential and would be
the first step in further software development. The assembler will contain
source file parser, syntactical and semantical checks being able to detect
syntax errors as well as breaches against the architectural rules, and finally
code generation.

9.1.2 C-Compiler for the CRYPTONITE Architecture

A C compiler for the CRYPTONITE architecture is an ambitious task since it
not only has to translate C to assembly language but also incorporate code
analysis to exploit the maximum possible parallelism by assigning code as
densely as possibly to the functional units. These tasks resemble the require-
ments for compilers for EPIC-style processors like the Intel Itanium [66].
Hence, it might be possible to adopt work done for the Trimaran citetri-
maran project which originally targeted the HPL-PD architecture citehpl-pd
but is flexible enough to be used for similar architectures as already shown
through the Triceps [31] implementation, which mapped Trimaran to the
ARM architecture.

9.2 Hardware Development
As of now, CRYPTONITE is just an architecture study. Only selected parts
of the chip were realized and simulated using VHDL. This work describes
the core architecture and only covers a simple interrupt-driven I/O mecha-
nism; more sophisticated interface methods as needed for PCI-bus attach-
ment or inter-processor communication have not yet been targeted. Further
work definitely needs to cover these items to allow easy use of CRYPTONITE
within existing computer systems.

9.2.1 Single-Core CRYPTONITE

A single-core CRYPTONITE would contain the CRYPTONITE core architec-
ture together with an appropriate interface technology. This can be either
a PCI interface to allow attachment of the CRYPTONITE to any PCI-based
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systems but also a simple synchronous (Intel x86-style) or asynchronous
(Motorola 68k-style) bus interface to ease the use of CRYPTONITE with mi-
crocontrollers and non-PCI systems.

9.2.2 Multi-Core CRYPTONITE

Originally, CRYPTONITE was planned to be a SIMD multi-processor system
consisting of multiple individual CRYPTONITE cores. Since quite a number
of crypto algorithms is used in CBC mode, the SIMD approach is somewhat
limited because it would allow only & parallel streams – where & is the
number of cores – using the very same crypto algorithm.

A MIMD approach would be more flexible since it allows to process& parallel streams using different algorithms. Such an architecture could
contain internal load balancing to allow the assignment of incoming data
streams to eventually idle cores or the take-over of lower priorized streams
by higher priorized ones by detaching a running encryption from a core and
reassigning this freed core.

Such a MIMD architecture contains several interesting challenges which
are:

• Access of Program Data: Program data should not be present &
times individually for each processor core. Instead, it would be more
sensible to employ some bootstrap mechanism which loads program
routines as needed from a common program memory into individual
program caches.

• Scheduling of Workload: To allow maximum throughput incoming
data streams have to be assigned to idle cores; similarly, cores have to
be freed after a stream has ended. The assignment procedure has also
to cover loading of the correct program data into the individual core’s
program cache. Unnecessary loads have to be avoided by re-assigning
already initialized cores where possible.

• Priorizing of Streams: Besides simple assignment of streams to idle
cores, it must also be possible to priorize certain streams over others
to allow some sort of quality-of-data service. This not only adds sig-
nificant complexity to the scheduler but also brings up the problem of
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buffering of incoming information as well as inter-core communica-
tion and signalling.

9.3 Use of CRYPTONITE

Many dedicated hardware solutions exist but only very few programmable
ones which brings up the question, where a programmable solution could be
used and if that makes sense – especially, since naturally more sophisticated
hardware cores show superior performance to any programmable solutions.

9.3.1 Research & Development
R&D is the obvious candidate. Here a programmable solutions allows to
create a very flexible experimental platform; algorithms and configurations
can be checked without the need of re-designing hardware. A programmable
high-performance solution will provide a realistic test environment.

9.3.2 Conditional Access Systems
The flexibility of a programmable high-performance solution makes it ideal
for use in conditional access systems like TV set top boxes. In the past,
several of these boxes were hacked in a way that the crypto algorithm was
made public and pirate cards or completely independent decryption devices
were developed.

In such cases, the access providers usually have to replace the existing
conditional access module (CAM, also known as “Smart Card”) which holds
the decryption algorithm or even the complete set top box. Using a fully
programmable high-performance crypto solution it would only require to
update the crypto algorithm within the CAM.

9.3.3 VPN Devices
This is a field similar to the above. Usually, VPN devices make use of spe-
cific hardware solutions to enable high transfer speed. Once an algorithm
becomes obsolete or unwanted because it is considered to be cryptographi-
cally weak, or if security demands require periodically change of the crypto
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algorithm, any device employing dedicated hardware solutions has to be
exchanged or becomes obsolete. A programmable device would allow on-
the-fly reconfiguration and save investment.

Following the R&D approach, a programmable high-performance so-
lution can be used for so-called market openers where already working,
but less powerful (in terms of throughput) solutions are shipped to get later
on updated by the final product which then uses dedicated hardware cores
where sensible.
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Instruction Set

The following chapter will present an overview over the CRYPTONITE in-
struction set. It does not cover the instruction word format which is ex-
plained in Appendix B.

A.1 Immediate Values

As mentioned in Chapter 5, CRYPTONITE basically supports two kinds of
immediate values which are the global immediate values (GIVs) of 64-bit
being used for ALU and MU register initialization and a 12-bit immedi-
ate used for counter register initialization and providing program addresses.
The latter can be either used as destination address for branch instructions
or immediate values for the MAU’s local address registers. In addition, the
MU instruction vector contains a 4-bit immediate field providing immediate
index values or local address register values.

GIVs are only available through the CU’s LDI instruction as shown
in Table A.1 which changes the interpretation of the remaining instruc-
tion word from ALU/MU control to GIV transport. The 12-bit values are
part of the “normal” instruction word and are transported through the ad-
dress/immediate (A/I) field. See Appendix B.1 for a more detailed informa-
tion on this topic.
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A. INSTRUCTION SET

Instruction Operands Description
LDI é�8�= 0zm���� < Ëk0�m é�8�= � m�� � < Ë � load 64-bit immediate value� < Ë into register é%8�= strands 1

and 2; é�8�= can be either one
of the ALU registers r0 to r3
or the MU’s data output reg-
ister; Use of this instruction
changes interpretation of the
instruction word as explained
in Appendix B.

Table A.1: Immediate Load Instruction (applies to Control Unit)

A.2 Control Instructions

These instructions apply to the Control Unit and are needed for program
flow control as listed in Table A.2. The CU instructions divide into three
groups (besides the special LDI instruction) which are counter register ini-
tialization (LD and CLR), branching (BRA, BNZ, BEZ, and DBNZ) plus the
HOLD instruction which stops computation and puts CRYPTONITE on hold
until an externally applied hold input signal is lowered. During this in-
struction, CRYPTONITE performs NOP operations on all slots while the pro-
gram counter is not incremented. To enable and disable this kind of inter-
rupt, EI and DI commands apply.

For the operands, é%8 = refers to one of the multi-purpose registers em-
ployed within the control unit where < �O� é denotes a 12-bit address provided
through the A/I within program memory. ? 7ù7 \ represents an 8-bit imme-
diate also provided through the A/I field. This, of course, means that either
an address or an immediate value can be provided at the same time.

A.3 Memory Instructions

Memory instructions fall into three classes which are register-to-memory,
memory-to-register (A.3), and DES-specific operations (A.4). As men-
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Instruction Operands Description
LD é�8�= m��}? 7ù7 \ load immediate value ? 7ù7 \ into

register é�8�=
CLR é�8�= short for LD reg,#0
DBNZ é%8�= m < ��� é decrement register and branch to

address < ��� é if the result is not
equal to zero

BNZ < ��� é m é%8�= conditional jump to address< ��� é if register reg is not zero
BEZ < ��� é m é%8�= conditional jump to address< ��� é if register reg equals zero
BRA < ��� é unconditional jump to address< ��� é
EI n/a enable external interrupt
DI n/a disable external interrupt
HOLD n/a put CRYPTONITE into idle loop

until the signal applied to the
HOLD input pin is lowered

NOP n/a no operation

Table A.2: Control Instructions

tioned in Section 5.8.4 the DES unit is part of the MAU, therefore its in-
structions are listed in this section.

Here, Ë <Ié refers to a local address register, namely lr0 to lr7 for
memory-to-register operations and lw0 to lw7 for the reverse direction.� : ¡ and :`é C can be ALU registers (r0 to r3, the data input/output registers
dir and dor, or the link input (lnk (applies only to r0) together with size
specification (.w or no specification for 64-bit, .h or .l for upper/lower
32-bit), e.g. XFR r0.h,r1.l moves the low 32-bit of r1 to the high
32-bit of r0.

For index values or initialization data smaller than 16, these values will
be encoded into the memory unit’s 4-bit immediate field. Otherwise, the
MU’s LAR instruction has to be used for loading bigger constants from the
common A/I field into the local address registers.
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Instruction Operands Description
LAR Ë <Ié m��}? 7ù7 A;! load local address register Ë <�é

with 12-bit immediate value? 7ù7 A;! encoded in the in-
struction word’s A/I section;
here Ë <Ié is a 4-bit register ad-
dress where values 0-7 map to
lr0 to lr7 and 8-15 to lw0
to lw7.

LDA Ë <Ié g±mw?¸�#{|g F ?ã� ��è ? 7ù7 jÞj load data from address in Ë <�é
into data input register; if in-
dex register ?ã�#{ is present the
resulting address is < ��� é Fgi?¸�I{1j as mentioned in 5.8.1

LBX Ë <Ié mw?ã�#{ load S-box data from ad-
dress indexed by register idx
into destination register as de-
scribed in 5.8.1

STA Ë <Ié g±mw?¸�#{|g F ?ã� ��è ? 7ù7 jÞj store data from data out-
put register to address inË <Ié ; if index register ?¸�#{ is
present the resulting address
is < ��� é F gi?¸�#{1j as mentioned
in 5.8.1

Table A.3: Memory-to-Register and Register-to-Memory Instructions
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Instruction Operands Description
DES DL Ë <Ié load and input-permutate data from ad-

dress in Ë <�é into DES unit
DES KL Ë <Ié load and key-permutate key from address

in Ë <Ié into DES unit
DES EX n/a perform first half of DES round including

S-Box lookup
DES PBEX n/a perform second half of current and first

half of next DES round including S-Box
lookup

DES PBWR Ë <Ié perform second half of DES round and
store output-permutated data to address inË <�é

Table A.4: DES-specific Instructions

A.4 Arithmetic Instructions

Arithmetic instructions share the same generic form as defined by
instr(dst,src1,src2) and follow the given definitions for : é C and� : ¡ operands with the extensions already mentioned in A.5. In addition, the
ALU’s accumulator ac can be used as an alternative source or destination
operand. Also with the ALU it is only possible to assign a common size
identifier to a sequence of destination registers.

The CRYPTONITE AU supports classes of operations which are Ac-
cumulator instructions, Boolean operations, simple arithmetic operations,
complex arithmetic operations and special operations which are listed in
Table A.5.

A.5 XOR Instructions

The XOR unit can be accessed in parallel to the arithmetic unit and provides
only two instructions which are listed in Table A.6. The operand syntax fol-
lows the definitions given in A.3, although due to the nature of the XOR
command up to six source operands, registers r0 to r3, the respective in-
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Operation Class Operation Description
Accumulator Instructions LDA load accumulator with register

value
STA store accumulator value to

register

Boolean Operations AND logical and
OR logical or
XOR logical exclusive-or

Shift Operations SHL logical left-shift
SHR logical right-shift
ROL rotate left
ROR rotate right

Arithmetics ADD addition w/o carry
SUB subtraction w/o carry
MUL16 7 y���0 Å integer multiplication
MUL32 7 y�� �o� integer multiplication

Special Operations SWAP swap 32-bit halves of registers
SWRT0 swap and rotate halves individ-

ually by zero and 8 positions
SWRT1 swap and rotate halves individ-

ually by 16 and 24 positions
UPPER64 see Table 5.3
LOWER64 see Table 5.3
FOLDB32 see Table 5.5
FOLDB64 see Table 5.5
FOLDW64 see Table 5.5

miscellaneous NOP no operation (no operands)
XFR transfer source to destina-

tion operand (only uses two
operands, :`é C and � : ¡ )

Table A.5: ALU Instructions
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terlink input lnk and the value of the data output register dor are possible.
The destination � : ¡ can be a sequence of up to 6 registers consisting of r0 to
r3, dor and dir. This allows parallel storage of results into more than one
register as needed for the fast AES implementation. To not overly increase
the instruction word’s size, parallel storage allows only one size identifier
common to all destination registers.

Instruction Operands Description
NOP n/a no operation
XFR � : ¡zm : é C transfer source to destination register by

routing the source value through the XOR
unit

XOR � : ¡zm : é C;A#m : é C�!÷gÈm : é C X gÈm : é C V gÈm : é C � gÈm : é C � jÞjÞj3j
logical XOR

NEG � : ¡zm : é C binary negation

Table A.6: XOR Unit instructions
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Instruction Word Format

CRYPTONITE is a VLIW-style machine with a 170-bit instruction word
which divides into the the command unit (CU) section, and two of each
sections for MAU, ALU and XOR unit (called a : ¡ é%< &�� ) which will be ex-
plained in the following sections. Global immediate values (GIV, 64-bit) are
provided through a special instruction LDI which turns the strand-relevant
bit fields into a 64-bit immediate value followed by a 3-bit register num-
ber. As the instruction word size is big enough, the LDI instruction can
assign individual 64-bit values to each strand within one cycle for the sake
of disabling any other operation.

B.1 Instruction Word
The instruction word contains the complete instruction bit stream control-
ling the internal units of CRYPTONITE. As presented in Chapter 5, CRYP-
TONITE divides into the sections for Control Unit (CU), two Arithmetic
Units (AUs) which further divide into Arithmetic Logical Unit (ALU) and
XOR-Unit (XU), plus two Memory Units (MUs) corresponding with the
AUs, and finally the 12-bit address/immediate field which either holds a
12-bit program address or an 8-bit immediate value for counter registers.

Naturally, the instruction word format as shown in Table B.1 resembles
this architecture and divides into smaller chunks each being assigned to an
internal unit. For controlling settings common within one strand the ALU
Common (AC) fields were added; as depicted in Table B.1 and already men-
tioned in Section 5.6, a special interpretation of the instruction word applies
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Normal Operation
Strand #1 Strand #2

CU AC ALU XU MU AC ALU XU MU A/I
– AU #1 – – AU #2 –

Immediate Load Instruction
CU Register GIV Register GIV n/a

Table B.1: CRYPTONITE Instruction Word Format

for the load of 64-bit immediate values. The following sections will give a
detailed description of these chunks.

In several cases the size of employed registers, addressed by a 3-bit field
as listed in Table B.2 has to be denoted by a 2-bit control value. This value
maps to register sizes as shown in Table B.3. If ALU registers r0 to r3
are addressed, state 00 � on the input side means clearing the register; on
the output side, the register is “muted” meaning that instead of the regis-
ter’s content the zero value is put on the referring output bus which is also
true for the data output register. For the data input register (DIR) state 00 �
represents the NOP value meaning that the DIR is left unchanged and not
updated with an ALU result.

Register Address rrr

rrr = 0xx register r0 to r3
100 data output register
101 data input register
110 interlink
111 reserved

Table B.2: Register Adresses

B.2 Support of Immediate Values
Since CRYPTONITE is a 64-bit architecture, providing support of immedi-
ate values requires 64 bits for the value itself plus 4 bits for the destination
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Register Size ss

ss = 00 mute/clear register (see Section B.1)
01 address lower 32-bit half
10 address upper 32-bit half
11 address all 64-bit

Table B.3: Register Size Selection Values

register (registers r0 to r3, data input and output register of each strand).
To not bloat the already wide instruction word for the CRYPTONITE archi-
tecture a different approach was taken to add support for immediate values.
If the LDI (load immediate value) command is encountered, command vec-
tors usually controlling ALU and associated MU will hold a 64-bit value
and the register address. This is possible because the instruction vectors for
ALU and MU are big enough to provide the necessary space to hold this
information. Unused bits will be disregarded and should be padded by the
assembler software with zero bits to ease future use.

B.3 Control Unit Command Encoding

As mentioned in Section 5.6 and further explained in Section A.2 the control
unit supports 8 commands being responsible for program flow control. This
also includes loading of counter registers with immediate values provided
through the A/I field of the instruction word. Table B.4 shows the command
encoding for CRYPTONITE’s control unit. The CU contributes 8 bits to the
instruction word.

B.4 ALU-common Control Encoding

The ALU contains some units which are shared either within the ALU (data
input and output register of the corresponding MU) or between the two
ALUs (interlink). Configuration is done through 6 bits per ALU as ex-
plained in Table B.5.

151



B. INSTRUCTION WORD FORMAT

CU Instruction Pattern cccc rrrr

cccc CU command code
0000 NOP no operation
0001 HOLD suspend and wait for Hold input signal to lower
0010 EI enable external interrupt
0011 DI disable external interrupt
0100 LCR load counter register denoted by rrrr
0101 LDI load 64-bit immediate
011x reserved
1000 BRA branch immediate
1001 BEZ branch if zero
1010 BNZ branch if not zero
1011 DBNZ decrement and branch if not zero
11xx reserved

rrrr register selection (cr0 to cr15)

Table B.4: Control Unit Instruction Format

ALU Common Configuration Pattern ll oo ii

ll Link Size (output size of opposite ALU’s register r0)
oo Data Output Register Size
ii Data Input Register Size

Table B.5: ALU-common Configuration Pattern
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B.5. XOR UNIT COMMAND ENCODING

B.5 XOR Unit Command Encoding

The XOR unit is special in a way that it supports up to 6 source operands
which are the four ALU registers r0 to r3, the interlink input and the cur-
rent value of the MU’s data output register. The command encoding is
summed up in Table B.6. Each XU contributes 20 bits to the instruction
word. The XFR instruction does not explicitly exist for this unit, instead
the NOP operation applies together with appropriate source and destination
register settings.

XOR Instruction Pattern c 0123oiDD 11 22 33 44 o l n

0123oi destination register switches
DD destination register size
11 register r0 output size selection
22 register r1 output size selection
33 register r2 output size selection
44 register r3 output size selection
o data output register (DOR) usage (1=use)
l link input usage (1=use)
n result inversion (1=invert)
c XOR unit command code

0 NOP no operation
1 XOR exclusive-or operation

Table B.6: XOR Unit Instruction Format

B.6 Arithmetic Unit Command Encoding

This is the most complex unit of CRYPTONITE consisting of several sub-
units like the multiplication unit, the bitmux unit, and the configurable barrel
shifter/rotator. Similarly to XU, also for the AU no dedicated XFR instruc-
tion exists; instead, register transfer is encoded into the appropriate register
settings together with a NOP operation. The control word encoding is shown
in Table B.7 and contributes 25 bits per ALU to the instruction word.
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AU Instruction Pattern ccccc r 0123oiaDD sssSS tttTT

0123oiaDD destination register switches and size
sssSS source #1 register and size
tttTT source #2 register and size
cccc AU command code

00000 NOP no operation
00001 reserved
00010 LDA load accumulator
00011 STA store accumulator
00100 AND logical and
00101 OR logical or
00110 XOR logical xor
00111 SWAP swap half-words
01000 SWRT0 swap and rotate (0/8)
01001 SWRT1 swap and rotate (16/24)
01010 UPPER64 upper64 operation
01011 LOWER64 lower64 operation
01100 FOLDB32 foldb32 operation
01101 FOLDB64 foldb64 operation
01110 FOLDW64 foldw64 operation
01111 reserved

cccc AU command code
10r00 SHL shift left
10r01 SHR shift right
10r10 ROL rotate left
10r11 ROR rotate left
r: shifter configuration

0: 1x64-bit
1: 2x32-bit

11000 MUL16 16-bit 7 yö�÷0 Å multiplication
11001 MUL32 32-bit 7 yö� �o� multiplication
11010 ADD Addition
11011 SUB Subtraction
111xx reserved

Table B.7: Arithmetic Unit Instruction Format
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B.7 Memory Unit Command Encoding
The Memory Unit provides 10 commands which cover register transfer,
memory/register and register/memory transport, DES-specific operations
and S-Box accesses as described in 5.8. Immediate values are supported
in two ways, short individual 4-bit values encoded into the instruction for-
mat for providing index steps or table boundaries for modulo addressing,
and 12-bit values for Local Address Register initialization and branch ad-
dresses as provided by the A/I field. The command encoding is shown in
Table B.8. Each MU contributes 24 bits to the instruction word.

MU Instruction Pattern o cccc sSS dDD xxx yyy mmm iiii

o select ALU out data
0 route XOR output to Memory Unit
1 route AU output to Memory Unit

cccc MU command code
0000 NOP no operation
0001 LAR load locale address regis-

ter with immediate value
0010 LDR load data input register

from memory
0011 STR store data output register

to memory
01xx reserved
1000 DES DL DES data load
1001 DES KL DES key load
1010 DES EX DES expand operation
1011 DES PBEX DES expand & P-box op-

eration
1100 DES PBWR DES P-box & write-back

operation
1101 reserved
111x reserved

Table B.8: Memory Unit Instruction Format
(continued on next page)
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MU Instruction Pattern o cccc sSS dDD xxx yyy mmm iiii

sSS source operand s and size SS
0 Data Input Register
1 Data Output Register

dDD destination operand d and size DD
xxx index register
yyy increment register
mmm addressing mode

000 plain
001 !"# indexed
010 !"# $ !" % indexed w/ register postincrement
011 !"# $ !& & indexed w/ immediate postincre-

ment
100 S-Box access
101 DES-based S-Box access
110 ' !"# $ !" % () !& & indexed w/ register postincrement

and immediate modulo
111 ' !"# $ !& & ( ) !"# indexed w/ immediate postincre-

ment and register modulo
Table B.8: Memory Unit Instruction Format '+*,- . !- /0 " (
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Proposed Assembly Language Format

Naturally, the assembly language format very much resembles the target
architecture. Since CRYPTONITE is a parallel VLIW-style architecture di-
viding into Control Unit and two individual strands consisting of ALU and
associated Memory Unit this chapter will work out definitions and conven-
tions regarding the CRYPTONITE assembly language format.

C.1 Register Naming Convention
CRYPTONITE consists of two identical strands, each containing four ALU
registers and 16 local address registers distributing on 8 local read and 8
local write registers. In addition, 16 counter registers exist which are strand-
independent. To linearize register naming, the convention listed in Table C.1
applies.

C.2 Assembly Language Format
Following this register naming convention, the assembly language format
does not necessarily need to mimic the CRYPTONITE architecture as shown
in Table C.2. However, doing so will add clear structure to the code and
ease both, program development and debugging since the programmer can
easily keep track on used and spare units and the data flow.

Since due to the comparatively small sizes of typical crypto algorithms
it is very likely that CRYPTONITE will be programmed in plain assembly
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C. PROPOSED ASSEMBLY LANGUAGE FORMAT

Register Type Register Name
Counter Register cr0-cr11
ALU #1 Zero Flag cf0 or cr12
ALU #1 Carry Flag zf0 or cr13
ALU #2 Zero Flag cf1 or cr14
ALU #2 Carry Flag zf1 or cr15

Register Type Strand #1 Strand #2
ALU Register r0-r3 r4-r7
LAR/read lr0-lr7 lr8-lr15
LAR/write lw0-lw7 lw8-lw15

Table C.1: Register Naming Conventions

language. For this reason, human programmability becomes an issue. Pro-
grammers, however, usually dislike following strict schemes as shown in
C.2 (although doing so would likely prevent quite a number of programming
issues) but rather address units directly. For this reason, a CRYPTONITE
mnemonic should follow the notation given in Table C.3.

control word;
mu#1 command; au#1 command; xu#1 command;
mu#2 command; au#2 command; xu#2 command

Table C.2: VLIW-style Assembly Instruction

As there is only one Control Unit within CRYPTONITE, there is no need
to add any unit identifier to CU-related commands, these apply only for
strand-relevant commands which are A for ALU, M for MU, and X for XU.
These identifiers make it possible to maintain same names for equal opera-
tions since the assignment to units is done through the unit identifier which
eases memorizing the CRYPTONITE commands: For example, the differ-
ence between an ALU-based or an XU-based XOR operation would simply
be XOR.A as opposed to XOR.X. The assignment of commands to strands
is usually done through the register numbering. In some cases, namely the
DES EX and DES PBEX instructions, no parameters are assigned. Here, the
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C.2. ASSEMBLY LANGUAGE FORMAT

<mnemonic>::=<cu_cmd>|<strand_cmd>
<cu_cmd>::=<letter><letter>{<letter>}
<strand_cmd>::=<cmd>{"."{<unit>}<strand>}

<cmd>::=<letter><letter>{<letter>}
<unit>::="A"|"M"|"X"

<strand>::="0"|"1"

Table C.3: BNF Notation of a CRYPTONITE Mnemonic

<instruction>::=
"{"
null|<command>{";" <command>}|<comment>
"}"

<comment>::="#"<char>{<char>}"\n"
<command>::=

<mnemonic>
{

<whitespace>
<bparm>|<bparm>","<cparm>|<cparm>

}
<bparm>::=<params>|"["<params>","<dst>"]"
<cparm>::=<params>|<params>","<dst>
<params>::=<letter>{<letter>|<digit>}

Table C.4: BNF Notation of a CRYPTONITE Instruction
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C. PROPOSED ASSEMBLY LANGUAGE FORMAT

<whitespace>::=" "|"\t"
<letter>::="A"-"Z"|"a"-"z"
<digit>::="0"-"9"
<symbol>::="!"-"/"|":"-"@"|"["-"‘"|"{"-"˜"
<op>::="+"|"-"

<alpha>::=<letter>|<digit>|"_"
<char>::=<whitespace>|<alpha>|<symbol>
<number>::=

<hex_number>|
<oct_number>|
<dec_number>

<hex_number>::="0x"<hex_digit>{<hex_digit>}
<hex_digit>::="0"-"9"|"A"-"F"|"a"-"f"
<oct_number>::="0o"<oct_digit>{<oct_digit>}
<oct_digit>::="0"-"7"
<dec_number>::=<digit>{<digit>}
<name>::=

"_"<alpha><alpha><alpha>{<alpha>}|
<letter><alpha><alpha>{<alpha>}

Table C.5: BNF Notation of Primitives and Composita

160



C.2. ASSEMBLY LANGUAGE FORMAT

strand is denoted by the respective number, .0 or .1. If a command can
be assigned to a unit by name – which is usually the case – the unit iden-
tifier can be omitted. Similarly, the strand number can be omitted if the
assignment can be made based on the register number.

To not force the programmer to fill up unused slots with unnecessary
NOP instructions, bundles of commands which should be assigned to the
CRYPTONITE units within the same cycles are enclosed in curly brackets.
This leads to the definition of a complete assembly instruction shown in
Table C.4. Together with the unit/strand assignment rules, writing NOP in-
struction are completely avoided. Instead, the assembler initializes each
instruction word with NOP instructions for all units and replaces these with
the commands found within each assembly language instruction.

CRYPTONITE supports branch instructions. For this reason, the assem-
bly language also needs to support labels as branch targets. The definition
for labels is given in Table C.6. Similarly, an assembly language should
support constant definitions which together with CRYPTONITE is especially
useful for assigning local memory addresses to more descriptive names. The
definition for such constant assignments is also given in Table C.6.

Finally, it must been noted that certain ALU commands allow multi-
ple destinations. In such cases, the comma-separated list of destination
operands has to be enclosed in square brackets as shown in Table C.4.

<label_decl>::=<name>":"
<const_decl>::=

<name>
<whitespace>{<whitespace>}
<equ>
<whitespace>{<whitespace>}
<number>|
<name>{<op><number>}

<equ>::="EQU"|"equ"

Table C.6: BNF Notation of Labels and Constant Declarations
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C.3 Programming Examples
This section will now contain some basic programming examples followed
by a complete algorithm implementation.

C.3.1 Example 1: Initialization
This example starts with a HOLD command which puts CRYPTONITE on
hold and waits until external initialization (signalled through the level of
the HOLD input line) is finished. Following this instruction, counter regis-
ter cr0 and ALU registers r0 (strand #1) and r4 (strand #2) are cleared.
Local address registers lr0 (strand #1) and lr8 (strand #2) for reading are
initialized to memory location 0x0000.

# wait for initialization of
# internal memory
{ HOLD }

# initialize registers
{

CLR cr0 ;
LAR lr0,#0x0000 ; LAR lr8,#0x0000 ;
CLR r0 ; CLR r4

}

C.3.2 Example 2: Update key & data, return processed
data

For crypto algorithms it is vital to return processed data and fetch in new in-
put data such as plain text and key updates. This example demonstrates how
to achieve this with CRYPTONITE. The main crypto algorithm is embedded
within DI and EI instructions to disallow interrupts during the encryption
process which makes sure that updates will only happen after the current
data block is processed. Since this is mainly a control flow example, it does
not contain any computation relevant parts. In real life, it will be most likely
possible to embed all these control instructions which will save cycles and
program size.
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main:
{ DI }
# encryption takes place here
{ EI }

# wait for external access
{ HOLD }

# and jump back to main loop
{ BRA main }

C.3.3 Example 3: DES Implementation
This DES implementation will now give an example for a complete algo-
rithm implementation. Although this algorithm does not make use of all
the CRYPTONITE’s features it will give an easy to understand example for
using the CRYPTONITE assembly language. It also shows the need for par-
tially unrolling loops to circumvent pipelining issues together with branch
instructions.

# DES example w/ 37 cycles for DES processing
# lr0: pointer to input data
# lw0: pointer to output data
# lr1: pointer to key data
# lr2: pointer to S-Box

# constant declarations
in_dat EQU 0x0000
in_key EQU in_dat+1
out_dat EQU 0x0000
sbox EQU 0x0100

init: # Cryptonite starts execution here

# let external unit init S-Box memory
# and transfer initial set of data/key
{ HOLD ; LAR lr0,in_dat }
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{ LAR lr1,in_key }
{ DI ; LAR lw0,out_dat }
{ LAR lr2,sbox }

main: # load data and key
{ DES_DL lr0 }
{ DES_KL lr1 }

body:
# round 1.1, init counter
{ LD cr0,0x08 ; DES_EX.0 }
{ LBX lr2,des }

loop: # rounds 1.2-16.1
# 2-cycle delay for DBNE
{ DES_PBEX.0 }
{ DBNE cr0,loop ; LBX lr2,des }
{ DES_PBEX.0 }
{ LBX lr2,des }

# round 16.2
{ DES_PBWR lw0 }
{ EI }

# update/readback
{ HOLD }

# process new data
{ BRA body ; DES_DL lr0 }
{ DI ; DES KL lr1 }
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Glossary

3DES Also known as Triple-DES; consists of three sequen-
tially performed iterations of 16 õ DES rounds. Can
be either used with two keys where iterations one and
three use the first and iteration two the second key, or
with individual keys per iteration.

AES Advanced Encryption Standard; new õ NIST crypto
standard from 2001. The AES standardization pro-
cess was an open competition of many algorithms.

ALU Arithmetic Logical Unit; a CRYPTONITE ALU con-
tains õ AU and õ XU

ASIC Application Specific Integrated Circuit; used as a
cost-friendly alternative to fully custom chip design

Asymmetric
Cryptography

Cryptographic method using a pair of keys, one for
encryption ( �Á0 ) and one for decryption ( � � ) so that
the formula � ��� �21`� 	 �43�� ����� is valid with � be-
ing the message, 	 the encryption and � the decryp-
tion function.

AU Arithmetic Unit
Barrel Shifter Circuitry being able to perform bit shifts of arbitrary

size within one cycle
CPLD Complex Programmable Logic Device; õ EEPROM-

based programmable logic device with complexities
between 32 and 512 macrocells, typically used for
glue logic or simple control devices
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D. GLOSSARY

CU Control Unit
DES Data Encryption Standard; former õ NIST crypto

standard from 1977
DRM Digital Rights Management; (mostly cryptographic)

methods to maintain author rights for digital media
EAU External Access Unit; interface between CRYP-

TONITE core and external devices
EEPROM Electrically Erasable Programmable Read-Only

Memory
FPGA Field Programmable Gate Array; usually õ SRAM-

based programmable logic device allowing to be
loaded with fairly complex logic, often used for pro-
totyping õ ASICs

IDEA International Data Encryption Algorithm
Key Generation Process of generating big prime numbers as õ public

and õ private key for õ asymmetric cryptography; not
to be mixed up with õ round key generation

Logical Element
(LE)

Similar to macrocell but usually refers to õ ASICs orõ FPGAs
Loop see õ Loop
Macrocell Building block within õ CPLDs holding a config-

urable storage cell (flip flop) with input and output
switch matrices

MD4 Message Digest #4, Hash Algorithm producing a 512-
bit hash

MD5 Message Digest #5, Hash Algorithm producing a 512-
bit hash; successor to õ MD4

NIST National Institute of Standards and Technology
Private Key Secret key for asymmetric encryption and decryption
Public Key Publicly shared key for asymmetric encryption and

decryption
RC4 Rivest Cipher #4, Cipher Algorithm
RC5 Rivest Cipher #5, Cipher Algorithm; successor toõ RC4
RC6 Rivest Cipher #6, Cipher Algorithm; successor toõ RC5 and competitor in the õ AES selection
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Rijndael Cipher Algorithm named after the inventors V. Rij-
men and J. Daemen; winner of the AES competition

Round Key Gen-
eration

Method of generating individual keys for each en-
cryption (or decryption) round of an algorithm; these
keys are based on a provided cipher (or decipher) key.

SHA Secure Hash Algorithm
SHA-1 Secure Hash Algorithm #1 producing 160-bit hash;

first hash algorithm to be standardized by õ NIST
SHA-256 Secure Hash Algorithm producing a 256-bit hash

value
SHA-384 Secure Hash Algorithm producing a 384-bit hash

value
SHA-512 Secure Hash Algorithm producing a 512-bit hash

value
Slice õ Xilinx-specific term for logical elements within

their Virtex family of õ FPGAs
Strand Within this document, the term strand is used to de-

scribe (mainly) data independent branches of a data
dependency graph. The more pictural term thread is
omitted to avoid confusion since in computer science
literature this term is commonly used as a synonym
for lightweighted processes. The concept of strands
is also mapped to the architectural description where
one strand is a compound of functional units ( õ ALU
and associated õ MU) being able to process such data
independent branches.

SRAM Static Random-Access Memory
Symmetric
Cryptography

Cryptographic method using the same key � for en-
cryption and decryption so that the formula � �� �
� 	 ��� ����� is valid with M being the message, C
the encryption and D the decryption function. In ad-
dition, 	 and � can be identical and differ only in
round key calculation.

Synopsys Both, vendor (Synopsys, Inc.) of an integrated devel-
opment software for hardware design, and the name
of the software itself
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Triple-DES see 3DES
Tunnel Virtual direct connection between two network nodes

using õ VPN mechanisms
VHDL õ VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLIW Very Long Instruction Word
VPN Virtual Private Network; private network realized on

a shared network infrastructure by means of crypto-
graphy

Xilinx Vendor of õ CPLDs and õ FPGAs
XOR exclusive-or (Boolean operation)
XU õ XOR Unit
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