
Shared Memory Programming on
NUMA–based Clusters using a

General and Open Hybrid Hardware /
Software Approach

Martin Schulz

Institut für Informatik
Lehrstuhl für Rechnertechnik und

Rechnerorganisation

Shared Memory Programming on NUMA–based
Clusters using a General and Open Hybrid

Hardware / Software Approach

Martin Schulz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. R. Bayer, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. A. Bode

2. Univ.-Prof. Dr. H. Hellwagner,
Universität Klagenfurt / Österreich

Die Dissertation wurde am 24. April 2001 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Informatik am 28. Juni 2001 angenommen.

Abstract

The widespread use of shared memory programming for High Performance Computing
(HPC) is currently hindered by two main factors: the limited scalability of architectures
with hardware support for shared memory and the abundance of existing programming
models. In order to solve these issues, a comprehensive shared memory framework needs
to be created which enables the use of shared memory on top of more scalable architectures
and which provides a user–friendly solution to deal with the various different programming
models.

Driven by the first issue, a large number of so–called SoftWare Distributed Shared
Memory (SW–DSM) systems have been developed. These systems rely solely on soft-
ware components to create a transparent global virtual memory abstraction on highly scal-
able, loosely coupled architectures without any direct hardware support for shared memory.
However, they are often affected by inherent performance problems and, in addition, do not
solve the second issue of the existence of (too) many shared memory programming models.
On the contrary, the large amount of work done in the DSM area has led to a significant
number of independent systems, each with its own API, thereby further worsening the sit-
uation.

The work presented within this thesis therefore takes the idea of SW–DSM systems a
step further by proposing a general and open shared memory framework called HAMSTER
(Hybrid-dsm based Adaptive and Modular Shared memory archiTEctuRe). Instead of be-
ing fixed to a single shared memory programming model or API, this framework provides
a comprehensive set of shared memory services enabling the implementation of almost any
shared memory programming model on top of a single core. These services are designed
in a way that minimizes the complexity for target programming models making the imple-
mentation of a large number of different models feasible. This can include both existing
and new application or application domain specific programming models easing both the
porting of given and the parallelization of new applications.

In addition, the HAMSTER framework avoids typical performance problems of SW–
DSM systems by relying on so–called NUMA (Non–Uniform Memory Access) architec-
tures which combine scalability and cost effectiveness with limited support for shared
memory in the form of non–cache coherent hardware DSM. Their capabilities are directly
exploited by a new type of hybrid hardware/software DSM system, the core of the HAM-
STER framework. This Hybrid–DSM approach closes the semantic gap between the global
physical memory provided by the underlying hardware and the global virtual memory re-

i

quired for shared memory programming enabling applications to directly benefit from the
hardware support.

On top of this Hybrid–DSM system, the HAMSTER framework defines and imple-
ments several independent and orthogonal management modules. This includes separate
modules for memory, consistency, synchronization, and task management as well as for
the control of the cluster and the global process abstraction. Each of these modules of-
fers typical services required by implementations of shared memory programming models.
Combined they form the HAMSTER interface which can then be used to implement shared
memory programming models without much effort.

This capability is proven through the implementation of a number of selected shared
memory programming models on top of the HAMSTER framework. These models range
from transparently distributed thread models all the way to explicit put/get libraries and also
include various APIs from existing SW–DSM systems with different relaxed consistency
models. It therefore covers the whole spectrum of shared memory programming models
and underlines the broad applicability of this approach.

The presented concepts are evaluated using a large number of different benchmarks
and kernels exhibiting the performance details of the individual components. In addition,
HAMSTER is used as the basis for the implementation or port of two real–world applica-
tions from the area of nuclear medical imaging, more precisely the reconstruction of PET
images and their spectral analysis. These experiments cover both the porting of an already
existing shared memory application using a given DSM API and the parallelization of an
application from scratch using a new, customized API. In both cases, the system provides
an efficient platform resulting in a very scalable execution. These experiment, therefore,
prove both the wide applicability and the efficiency of the overall HAMSTER framework.

ii

Acknowledgments

I would like to take this opportunity to express my deepest gratitude to the following people,
for I realize that this work would not have been possible without their help, guidance, and
support.

First, I am indebted to my two advisors, Prof. Dr. A. Bode, chair of LRR–TUM, and
Prof. Dr. H. Hellwagner, now at the University of Klagenfurt. Prof. Hellwagner initially
took me in as his student and after his move to Klagenfurt, Prof. Bode took over without
hesitation. Together they provided me with an excellent research environment and gave me
the greatest possible freedom to pursue my work and interests. In addition, despite their
busy schedules, they both always had an open ear for me.

I would also like to direct my special thanks to Dr. Wolfgang Karl who, in his func-
tion as leader of the architecture group at LRR, significantly contributed to the excellent
research environment. In addition, his support and the many long, informal discussions and
helpful comments regarding my work were invaluable, especially in times when I seemed
stuck.

I would also like to thank my many colleagues at LRR–TUM; I enjoyed very much
working with them and the many discussions we shared over coffee. Especially I would
like to mention my office mates over the years: Phillip Drum, Michael Eberl, Detlef Fliegl
(who also contributed significantly to the Windows NT driver for the SCI-VM and provided
personal system administration support), Günther Rackl, and Christian Weiß. Additionally,
I would like thank Jie Tao, whose pleasant disposition and enthusiasm made it a pleasure
to work with her.

Our secretaries, especially Mrs. Eberhardt, Mrs. Wöllgens, and Mrs. Brunnhuber,
deserve my special thanks for their help in maneuvering through the many administrative
obstacles ranging from contract issues to business trip applications. Without them, I would
still be sitting here in a pile of paper work. I would also like to thank Klaus Tilk, our system
administrator, for keeping our systems alive and healthy.

I do not want to forget to mention Prof. Dr. A. Chien and the members of his Concurrent
Systems Architecture Group (CSAG) from the University of Illinois at Urbana–Champaign
(now at the University of California at San Diego). During my stay in this group and during
my Master’s work there, they introduced me to a scientific style of working from which I
still very much profit.

The European Union/Commision deserves credit for the funding it provided for the
majority of my work. This was done mainly within the ESPRIT projects SISCI (EP 23174)

iii

and NEPHEW (EP 29907). In addition, the many partners Europe–wide involved in these
projects provided an additional source of inspiration and support. Special thanks go to
Dolphin ICS, most specifically to Kåre Løchson, Hugo Kohmann, Torsten Amundsen, and
Roy Nordstrøm, who were involved not only in these ESPRIT projects, but also technically
supported our work within SMiLE.

The work within NEPHEW also brought me in contact with the Clinic for Nuclear
Medicine at the “Klinikum Rechts der Isar”. From this cooperation I received valuable
input for the evaluation part of this work. This would not have been possible without help
from Frank Munz, Sibylle Ziegler, and Martin Völk and I am very thankful for the time
and energy they invested.

On a more personal note, I am indebted to my friends and my whole family who were
always at my side providing constant encouragement and support. I would especially like
to thank my good friend, Dr. Johannes Zimmer, for all our long talks and for his prolific
help with LATEX. I would also like to express my deepest gratitude to my parents. From
early on, they sparked and encouraged my interest in learning and provided unconditional
support in all of my endeavors, both financially and (most important) spiritually. Last, but
certainly not least, I would like to thank the love of life, my wife Laura, who not only took
the time to review my thesis and to give valuable comments regarding language and style,
but who also supported me throughout the entire time and with her whole heart.

Martin Schulz
April 2001

iv

Contents

1 Motivation 1
1.1 Current Deficiencies of the Shared Memory Paradigm 2
1.2 The Approach 3

1.2.1 Benefiting from the Rise of NUMA Architectures 3
1.2.2 Exploiting Hybrid–DSM Techniques 4
1.2.3 Towards an Open Architecture for Shared Memory 4

1.3 Contributions 5
1.4 Thesis Organization 7

2 Background 9
2.1 Shared Memory Programming 9

2.1.1 Definition of Shared Memory Programming Models 9
2.1.2 Available Models and APIs 10
2.1.3 Shortcomings of Shared Memory Programming 12

2.2 Architectural Support for Shared Memory 12
2.2.1 Full Hardware Support within UMA Systems 13
2.2.2 Improving Scalability with CC–NUMA 14
2.2.3 Transitions Towards Pure NUMA Systems 16
2.2.4 Shared Memory for Clusters 16

2.3 NUMA for Clusters: The Scalable Coherent Interface 18
2.3.1 History and Principles of SCI 18
2.3.2 Shared Memory Support in SCI 18
2.3.3 Commercial Success of SCI 21
2.3.4 Other SCI–based Research Activities 23
2.3.5 HAMSTER as Part of the SMiLE Project 27

2.4 Summary 28

3 HAMSTER:
Hybrid–dsm based Adaptive and Modular Shared memory archiTEctuRe 31
3.1 Related Work 31
3.2 HAMSTER Design Goals 32

3.2.1 Main Characteristics 32

v

3.2.2 Target Architectures 34
3.3 The HAMSTER Layers 36
3.4 Underlying Principles 37

3.4.1 The Principle of Orthogonality 37
3.4.2 Resource and Performance Monitoring 38

3.5 Summary 39

4 SCI Virtual Memory: Creating a Hybrid–DSM System 41
4.1 State of the Art 41

4.1.1 Idea and Concept of DSM Systems 41
4.1.2 Memory Consistency Models for DSM Systems 42
4.1.3 Alternative Approaches 46
4.1.4 Exploiting Existing Hardware Support 48

4.2 The SCI-VM Design 50
4.2.1 Building Block 1: SCI–based Hardware–DSM 50
4.2.2 Building Block 2: Software–DSM Systems 50
4.2.3 Combining Both Building Blocks to the SCI-VM 50

4.3 Static vs. Dynamic Memory Management 51
4.3.1 Static Memory Mappings 52
4.3.2 Dynamic Global Memory Management 54

4.4 Underlying Task and Execution Model 56
4.5 Integrating the SCI-VM with Existing SCI–based Platforms 57

4.5.1 SCI Driver Integration 57
4.5.2 Operating System Integration/Extension 57

4.6 Memory Coherency of the SCI-VM 59
4.6.1 Memory Optimization 60
4.6.2 Impact on Memory Coherency 61
4.6.3 Towards Relaxed Consistency Models 62

4.7 SCI-VM Performance 62
4.7.1 Basic Memory Performance 63
4.7.2 Effect of Memory Optimizations 65

4.8 Remaining Problems and Challenges 67
4.8.1 Transparency Gaps in the Underlying Hardware 67
4.8.2 Full Operating System Integration 68

4.9 Summary 68

5 HAMSTER Management Modules 71
5.1 Memory Management 71

5.1.1 State of the Art 71
5.1.2 Functionalities of the Module 72
5.1.3 Influencing the Memory Layout 73
5.1.4 Controlling the Coherency of Global Memory 77
5.1.5 Dealing with Static Application Data 79

vi

5.2 Consistency Management 83
5.2.1 State of the Art 84
5.2.2 Enabling the Control of the SCI-VM Memory System 84
5.2.3 Minimizing the Global Impact 85
5.2.4 Introducing Scope 86
5.2.5 Functionalities of the Module 87
5.2.6 Low–level Performance 89
5.2.7 Realizing Consistency Models in HAMSTER 89

5.3 Synchronization Management 90
5.3.1 State of the Art 90
5.3.2 Functionalities of the Module 91
5.3.3 Implementation Aspects and Performance of Locks 93
5.3.4 Implementation Aspects and Performance of Barriers 96
5.3.5 Global Counters and Interrupts 99

5.4 Task Management 99
5.4.1 State of the Art 100
5.4.2 Functionalities 100

5.5 Towards a Global View: The Cluster Control Module 102
5.5.1 State of the Art 102
5.5.2 Functionalities 103
5.5.3 Asynchronous RPC-like Communication Service 103
5.5.4 Control Over the Global Process Abstraction 104
5.5.5 Startup Control 104
5.5.6 Clean Termination 106

5.6 Summary 106

6 Implementing Programming Models on Top of HAMSTER 109
6.1 The HAMSTER Interface 109

6.1.1 HAMSTER Services 109
6.1.2 Multiplatform Timing Support 109
6.1.3 Using the HAMSTER Interface 110

6.2 A First Model: Single Program – Multiple Data (SPMD) 110
6.3 Support for Various Consistency Models 111

6.3.1 State of the Art 111
6.3.2 Combining Consistency and Synchronization 112
6.3.3 Implementing Release Consistency 112
6.3.4 Implementing Scope Consistency 114
6.3.5 Experimental Evaluation 116
6.3.6 Applicability 120

6.4 Transparent Multithreading on top of HAMSTER 121
6.4.1 State of the Art 121
6.4.2 Global Thread Identification 122
6.4.3 Forwarding Requests to Potentially Remote Threads 122

vii

6.4.4 Memory Consistency Model 123
6.4.5 Extended Synchronization 125
6.4.6 Available APIs and Limitations 126
6.4.7 Performance Evaluation 127

6.5 Support for Explicit Shared Memory Models 130
6.5.1 The Cray T3D/E Put/Get Programming Interface 130
6.5.2 Implementing Put/Get in HAMSTER 131
6.5.3 Performance Aspects 132

6.6 Implementation Complexity Analysis 135
6.7 Visions for Further HAMSTER–based Models 136

6.7.1 Application or Domain Specific Programming Models 136
6.7.2 HAMSTER as Runtime Backend 137

6.8 Summary 137

7 Application Performance Evaluation 139
7.1 The Principle of Positron Emission Tomography 139
7.2 Reconstruction of PET Images 142

7.2.1 Iterative PET Reconstruction 142
7.2.2 Parallel Implementation 143
7.2.3 Performance Discussion 144

7.3 Spectral Analysis of PET Images 146
7.3.1 Application Description 147
7.3.2 Parallel Implementation 147
7.3.3 Performance Discussion 148

7.4 Summary 149

8 Conclusions and Outlook 151
8.1 Applicability 152
8.2 Future Directions 153

8.2.1 Towards a Cluster–enabled Operating System 153
8.2.2 A Tool Environment for On–line Monitoring 153

8.3 Final Remarks 154

A The HAMSTER Execution Environment 155
A.1 System Requirements 155
A.2 HAMSTER Directory Structure 155
A.3 Installing the HAMSTER Environment 156
A.4 Linking Against HAMSTER 157
A.5 Running Applications 157

B SPMD: A Sample Programming Model on Top of HAMSTER 159
B.1 API Description 159
B.2 A Simple Example Code for the SPMD Programming Model 163

viii

Abbreviations 169

Bibliography 175

Index 199

ix

List of Figures

2.1 Memory organization of UMA architectures. 13
2.2 Memory organization in CC–NUMA architectures. 15
2.3 Memory organization in clusters or NoWs with NORMA characteristics. 17
2.4 SCI HW–DSM using a global address space (from [74]). 19
2.5 The various mapping levels in PC based SCI systems. 19
2.6 Switched SCI ringlets (left) vs. two dimensional torus (right). 22
2.7 Overview of the SMiLE software infrastructure. 27

3.1 SCI topologies used for the SMiLE cluster: ringlet (left) or switched (right). 35
3.2 The HAMSTER framework for SCI–based clusters of PCs. 37

4.1 Classification of memory consistency models; arrows point from stronger
to more relaxed models [86, 169]. 43

4.2 Hardware complexity vs. Performance (after [201]). 48
4.3 Principal design of the SCI Virtual Memory. 51
4.4 Static memory allocation procedure. 53
4.5 Activities triggered by a page fault or swapping event. 55
4.6 Potential cache inconsistency when caching remote memory. 61
4.7 Write performance on SCI-VM memory. 63
4.8 Read performance on SCI-VM memory. 65

5.1 Examples of memory distribution types (based on a system with 4 nodes). 75
5.2 Pseudo code for the SOR code (left) and the Gaussian elimination (right). 76
5.3 Speedup of dense matrix codes using locality annotations. 77
5.4 Segments within the file format and linking process. 80
5.5 Linking process after patching the application’s object files. 81
5.6 Implementing the implicit access scheme to static application data. 82
5.7 Implementing the explicit access scheme to static application data. 83
5.8 Comparing the two locking algorithms under contention. 95
5.9 Lock performance under contention with secure algorithm in different SMP

scenarios. 96
5.10 Barrier performance on up to 6 nodes. 98
5.11 Performance of atomic counters under varying numbers of nodes. 100

xi

5.12 HAMSTER configuration file for complete SMiLE cluster consisting of 6
dual SMP nodes in SCI ringlet configuration — left: exploiting SMPs with
multiple threads; right: exploiting SMPs with multiple teams per node. 105

6.1 Time distribution duringAcquire/Write/Releasecycle (SW–DSM left,
NUMA–DSM right). 118

6.2 Performance underRead, Write, andRead/Writetraffic. 119
6.3 Distribution of work in theRead/Writescenario. 120
6.4 Adding global information to the thread identifier of both Linux and Win-

dows NT/2000 (TM). 123
6.5 Speedup of the SOR code with up to 8 threads (4 nodes/8 CPUs). 128
6.6 Work distribution of the SOR code with up to 8 threads (4 nodes/8 CPUs)

— 1024x1024 matrix (left) and 2048x2048 matrix (right). 128
6.7 Speedup of the LU code with up to 8 threads (4 nodes/8 CPUs). 129
6.8 Work distribution of the LU code with up to 8 threads (4 nodes/8 CPUs) —

1024x1024 matrix (left) and 2048x2048 matrix (right). 129
6.9 Put/Get bandwidth. 133
6.10 Broadcast performance with varying numbers of target nodes and data

transfer sizes (small transfer sizes left, large transfer sizes right). 134
6.11 Performance of collective addition across various number of nodes (left)

and using various numbers of reduction variables (right). 134

7.1 Positron / Electron annihilation (from [166]). 140
7.2 Schematic structure of a PET scanner (from [166]). 141
7.3 Typical sinogram as delivered by the PET scanner before reconstruction. 141
7.4 Reconstructed and post–processed images of a human body, tracer F18 la-

beled glucose analog (FDG) (coronal slices, Nuklearmedizin TUM). 142
7.5 Comparing the image quality of FBP (left) and an iterative reconstruction

(right), both with tracer F18 labeled glucose analog (FDG). 143
7.6 Reconstructed images — data set whole body (before proper alignment of

neighboring scans and without attenuation correction; the borders between
the 6 individual scans are still visible). 145

7.7 Speedup of the PET image reconstruction on up to 12 CPUs. 145
7.8 Aggregated execution times for the PET image reconstruction (left: 1

thread/node, right: 2 threads/node). 146
7.9 Sample slice of a human head, representing the impulse response function

at 60 min after injection, tracer: dopamin receptor legand C–11 diprenorphin.147
7.10 Speedup of the Spectral Analysis on up to 12 CPUs. 149
7.11 Aggregated execution times for the Spectral Analysis (left: 1 thread/node,

right: 2 threads/node). 150

B.1 Update pattern for each point in the matrix. 164

xii

B.2 Data distribution and sharing pattern for the SOR code — from left to right:
initial dense matrix, boundary, splitting the matrix, local boundary, area
with implicit communication. 164

xiii

List of Tables

3.1 Configuration of the SMiLE cluster nodes. 35

4.1 Performance data for low–level experiments: array sum algorithm. 66
4.2 Performance data for low–level experiments: matrix multiplication algorithm. 66

5.1 API of the memory management module. 73
5.2 Statistical information collected by the memory management module. 74
5.3 Memory distribution types available for locality annotations. 74
5.4 Impact of locality annotations on dense matrix codes (on 4 nodes). 76
5.5 Memory coherency types. 77
5.6 Parameters to control the handling the coherency type request. 79
5.7 API of the consistency management module. 88
5.8 System defined scopes. 88
5.9 Statistical information collected by the consistency module. 88
5.10 Cost of consistency enforcing mechanisms (measured on one dual proces-

sor node of the SMiLE cluster). 89
5.11 API of the synchronization management module. 92
5.12 Statistical information collected by the synchronization management module. 93
5.13 Cost of locking operations. 94
5.14 Execution time of interrupts in HAMSTER. 99
5.15 API of the task management module. 101
5.16 Statistical information collected by the task management module. 102
5.17 API of the cluster control module. 103

6.1 Performance ofAcquireandReleaseoperations. 117
6.2 Properties of two applications running with bothReleaseandScope Con-

sistency(on 4 nodes). 121
6.3 Main routines provided by theShmemprogramming model (names simpli-

fied) 131
6.4 Implementation complexity of programming models using HAMSTER. 134

7.1 Parameters for the data set used in the experiments. 144

xv

Chapter 1

Motivation

Even with today’s capabilities of modern microprocessors, a whole range of applications
exist which are too computationally intensive in order to be solved by a single processor
within a reasonable amount of time. Only by spreading the work across multiple processors
can the computational power necessary for these kind of applications be aggregated. This
has led to the development of parallel architectures, but has also raised the question of
their programmability; how can applications organize and manage multiple activities on
different processors and how can information be shared among them?

For this purpose, a variety of different parallel programming paradigms has been pro-
posed, each providing a different approach on how to specify the intended parallelism. The
two most common among them are the message passing and the shared memory paradigm;
the first is based on explicit messages being sent between (in principle) independent threads
or tasks on different processors while the latter one enables a single application running
across all nodes to share data implicitly through a common global address space and uses
additional mechanisms for explicit synchronization.

Each of these two paradigms has its strengths and weaknesses. It depends on the target
application and/or on the user’s preference and previous experience which paradigm is
more suited for a specific parallelization. In general, however, the shared memory paradigm
is seen as easier and more intuitive since it is based on a single global address space.
This is very close to the sequential model, which is familiar to virtually any programmer,
and hence easy to learn and understand. It also provides a simple and straightforward
parallelization without major code changes, in most cases. In addition, the use of a global
address space also eliminates the need for an explicit data distribution across nodes, which
normally requires major changes in global data structures. This has to be seen in contrast
to message passing programming models which do require an explicit data distribution
across the utilized processing nodes and hence often lead to major code changes during the
parallelization of an application. The strongholds of message passing, on the other hand,
have to be seen in the direct mapping of the programming paradigm with its concept of
processing nodes and messages being sent between them to the underlying hardware. In
most cases, this ensures a more predictable performance and allows for easier performance
optimizations as the programmer has to take the distributed nature of the underlying system
into account from the beginning.

A free choice of a certain paradigm is in reality often restricted by external circum-
stances, mostly the missing support for one of them on a particular platform. This problem

2 Chapter 1. Motivation

can actually be found on most of the current parallel architectures or systems and hence
severely limits their flexibility since it introduces additional complexity for the users. They
need to adjust their codes to the subset of available programming models rather than being
able to choose the models most appropriate for their target application.

Researchers in the field of parallel programming have therefore focused for a long time
on eliminating this problem by providing comprehensive software infrastructures for par-
allel architectures, which include efficient implementations of programming models from
both major paradigms on top of a single system. This thesis is a contribution to these
efforts and aims at providing shared memory programming for cluster architectures with
minimal hardware support in the form of a NUMA interconnection fabric, traditionally
the domain of message passing models. More specifically, this work concentrates on clus-
ters connected with the Scalable Coherent Interface (SCI) [75], an IEEE–standardized [92]
state-of-the-art System Area Network (SAN) with NUMA characteristics, and provides a
working prototype for these architectures.

It goes, however, one step beyond the traditional work done in this field in the respect
that not only a single, new shared memory programming model is being implemented on
top of the target architecture, but rather a flexible environment is created that enables the
implementation of almost any shared memory programming model on top of a single shared
memory core. The result is a general and open shared memory programming environment
for NUMA–based clusters called HAMSTER (Hybrid dsm–based Adaptive and Modular
Shared memory archiTEctuRe). This environment provides a maximum of flexibility to
the users since it does not require them to adjust their codes to a specific shared memory
programming model or API, but instead enables them to choose the ones appropriate for
their applications. This significantly increases the attractiveness of shared memory pro-
gramming on NUMA–based clusters and hence represents an important step towards the
envisioned complete software infrastructure for these architectures.

1.1 Current Deficiencies of the Shared Memory
Paradigm

Despite the advantages of the shared memory paradigm with regard to easier programma-
bility, the message passing paradigm currently dominates the area of High Performance
Computing (HPC). For one, this can be attributed to the restricted availability of shared
memory programming models on large scale systems; while message passing models,
mostly represented through libraries like MPI [152] or PVM [60], have been successfully
implemented on almost all common parallel architectures, programming models based on
the shared memory paradigm are mostly restricted to tightly coupled machines like SMPs,
which provide only a limited scalability. Only these machines feature the hardware mech-
anisms which enable the creation of a consistent global virtual address space.

Such support is generally not available on more scalable, loosely coupled architectures.
Therefore, shared memory programming models can only be implemented using software
emulation mechanisms, as is done in SoftWare Distributed Shared Memory (SW–DSM)

1.2. The Approach 3

systems. They create the illusion of a global address space and enable the user to utilize
this illusion directly in their applications. These systems, however, face several inherent
performance problems which are unavoidable in pure software solutions. Examples include
false sharing due to large sharing granularities or complex differential update protocols re-
sponsible for packing and sending data between nodes [143]. Even though vast amounts of
research worldwide have been devoted to these performance problems, no sufficient solu-
tion has been found, thereby confining SW–DSM systems mainly to the realm of research
and lacking broad acceptance.

Besides these architectural deficiencies, the use of shared memory programming is fur-
ther hindered by the fact that a large variety of different shared memory programming
models and APIs have been developed and are present on different systems. This reaches
from pure thread models, as can be found in SMPs, to explicit one–sided communication
libraries and also includes all the different APIs from the individual SW–DSM systems.
This greatly reduces the portability of shared memory codes since they often need to be
retargeted to different APIs when being moved from one machine to another. While this
porting is certainly less complex than porting codes between paradigms, it still requires a
significant amount of work, increases cross–platform code maintenance, and hinders code
reuse. In addition, it steeply increases the learning curve for users since they have to deal
with the subtle details in both syntax and semantics of a large variety of models. All of this
lowers the acceptance of shared memory programming and hinders its wider use among
the HPC user community.

In summary, these deficiencies render the shared memory paradigm unsuitable for many
problems and application areas, especially those generally classified as HPC. Only in cer-
tain areas, mainly those dealing with small number of processors and dynamic task struc-
tures, the shared memory paradigm has gained significant acceptance and is widely avail-
able in the form of thread libraries. In most other areas, however, message passing is
dominant. This is mainly due to the standardization towards only a few portable libraries
and to their straightforward implementation, even on loosely coupled architectures.

1.2 The Approach
The work presented here aims at overcoming these shortcomings connected with shared
memory programming and to provide users with a choice of the appropriate programming
paradigm for their application needs, even on loosely coupled architectures. This is done by
providing a general and open framework for shared memory programming. This framework
is based on the following three principles:

1.2.1 Benefiting from the Rise of NUMA Architectures
As briefly mentioned above, an implementation of shared memory programming systems
on loosely coupled architectures without any hardware support possesses some inherent
performance problems. This work focuses therefore on architectures that offer some sup-
port for shared memory programming models, but maintain the scalability of loosely cou-

4 Chapter 1. Motivation

pled architectures, as is found in NUMA (Non Uniform Memory Access) systems. More
specifically, this work focuses on clusters of PCs connected by using the Scalable Coher-
ent Interface (SCI) [75, 92] which enables a direct remote memory access to any physical
memory location in hardware. This is accomplished using a global physical address space
created by the network which can be used as the basis for shared memory programming.

In general, NUMA architectures, whether they are cluster–based or implemented as
more integrated Massively Parallel Processor (MPP) systems, require only limited hard-
ware resources for their remote memory access capabilities and hence can be implemented
in a straightforward manner. In addition, they are not based on a centralized component
or global maintenance protocol and therefore show very favorable scaling properties. On
the software side, the remote memory access capabilities can be exploited for both shared
memory programming and high performance messaging [51], making these kinds of plat-
forms very attractive for a broad range of users and application domains. Due to these
properties, all kinds of NUMA architectures are becoming increasingly popular and could
rise to become the dominating architecture in the near future, thereby making work in this
direction very promising.

1.2.2 Exploiting Hybrid–DSM Techniques
In order to exploit such NUMA architectures in a loosely coupled scenario, like it is given
in cluster architectures, a new type of DSM system must be developed. On one side, it has
to directly exploit the benefits provided by the NUMA hardware, while on the other side, a
strong software component needs to ensure a global view onto the distributed system across
the individual nodes and distinct operating system instances. This results in a hybrid DSM
scheme, which merges the hardware DSM support found in NUMA systems in the form
of remote memory access capabilities with the global memory management of traditional
software DSM systems. In such a system, any communication is efficiently performed
directly in hardware without any protocol overhead and it thereby forms a bridge between
SW–DSM systems on cluster architectures on one side and complex hardware supported
shared memory systems on the other.

For the implementation of a hybrid DSM system, one major challenge needs to be
solved: the gap between the global physical memory provided by the NUMA system and
a global virtual memory abstraction required for shared memory programming needs to be
closed. This is achieved in tight cooperation with the underlying operating system through
a global memory management component. This software module extends the concept of
virtual memory to all participating nodes within the system. The result is a global virtual
memory abstraction backed transparently by distributed physical resources which can then
directly be used for any kind of shared memory programming.

1.2.3 Towards an Open Architecture for Shared Memory
Such a hybrid DSM system alone, however, has only the ability to solve one of the problems
mentioned above, namely the performance problems of DSM systems in loosely coupled
environments. The second problem, the availability of (too) large a number of different

1.3. Contributions 5

APIs and programming models would remain, if not further worsened, because the new
hybrid DSM would introduce yet another API. On the other side, it is also illusory to work
towards a unified programming model since it would be impossible to convince people to
retarget applications and systems towards a new API based only on its claims to be “better”
or “unified”.

Therefore, another approach has to be found to help users deal with the abundance of
programming models in a manner that allows them to avoid extra porting or maintenance
efforts for their applications. The solution for this problem proposed by the work presented
here and implemented in HAMSTER (Hybrid–dsm based Adaptive and Modular Shared
memory archiTEctuRe) consists of a comprehensive framework which enables the avail-
ability of multiple models on top of a single system. This system is designed in a way
that additional programming models can easily be added without requiring much imple-
mentation complexity thereby making it feasible to create as many programming models
as required.

With this approach, the user is no longer bound to the one programming model pro-
vided by the target system, but has the option to choose a model fitting to the particular
application. This can either be an existing programming model or API adopted from an-
other platform to ease the porting of existing applications or a new programming model
specifically deployed to support a special class or domain of applications. In both cases,
the user is alleviated from tedious porting and implementation efforts thereby significantly
easing the use of shared memory environments.

1.3 Contributions
This work provides the following main contributions:

� Modular framework for arbitrary shared memory programming models

The HAMSTER system, as presented in this work, provides the ability to implement
almost any kind of shared programming model on top of a single core. With that,
it enables users to work with different models on a single system at the same time
without having to worry about obtaining, installing, and maintaining a large number
of models or porting a given application to the particular model available on the target
machine, which is often a cumbersome task. This system therefore allows users to
choose the programming model most suited to the application needs for an efficient
implementation rather than to the hardware and software constraints on the target
platform.

This capability has been tested within this work based on several selected program-
ming models. These models range from full thread libraries to explicit shared mem-
ory programming models and also include the emulation of various APIs from tra-
ditional SW–DSM systems. Each of these programming models was implemented
with only limited complexity proofing both the feasibility and the flexibility of the
pursued approach.

6 Chapter 1. Motivation

� Orthogonal support for shared memory services

This ability to support almost any programming model on top of a single framework
is created by providing a large variety of shared memory services. These services in-
clude facilities for memory, consistency, synchronization, and task management and
are organized in several distinct and independent modules. The modules themselves
are organized in a way that ensures a full orthogonality between them, i.e. each
service can be used without unwanted side effects. This guarantees the required flex-
ibility for the easy and safe implementation of shared memory programming models
on top of these services.

Each of these management modules has been implemented in a way ensuring a max-
imum of flexibility and performance. Special care in this respect has been given
to synchronization and consistency enforcing mechanisms. Both have been imple-
mented in a very lean manner taking direct advantage of present hardware mecha-
nisms, thereby avoiding unnecessary overheads and providing a rich functionality.
This enables the user of HAMSTER to create the necessary synchronization con-
structs and consistency models for the intended target programming models in an
efficient and straightforward manner without high implementation complexity.

� Hybrid–DSM core for NUMA–based clusters

In order to guarantee an efficient performance for all programming models imple-
mented on top of HAMSTER, the framework includes a new type of DSM system,
a hybrid hardware / software DSM system. It directly exploits the hardware capabil-
ities of the underlying NUMA architecture without losing the two main advantages
of loosely coupled architectures, scalability, and cost effectiveness. It provides the
necessary support to transform NUMA support for a global physical memory into a
global virtual memory abstraction suitable for the implementation of shared memory
programming models.

A prototype based on these concepts has been implemented on top of clusters of PCs
interconnected by the Scalable Coherent Interface (SCI) [75, 92]. This prototype
shows both the feasibility and the efficiency of the approach presented in this work.
The overall concepts, however, are not restricted to this specific NUMA architecture
alone, but can be principally be applied to any NUMA–like architecture and hence
represents a general approach for shared memory programming on these kinds of
architectures.

� Detailed performance evaluation

This work includes a detailed performance assessment of the overall system using
several applications and computational kernels from various areas as well as an eval-
uation of the individual components used to create the shared memory services and
management modules. This allows a detailed insight into the system characteristics
and provides useful hints for future users of the system.

1.4. Thesis Organization 7

In summary, this work provides a comprehensive framework which aims at overcom-
ing the current problems of shared memory programming for loosely coupled architectures
with NUMA characteristics. With its ability to support arbitrary shared memory program-
ming models, it guarantees a high degree of flexibility and openness. Additionally, these
properties are achieved without sacrificing performance since the overall system is based
on an efficient Hybrid–DSM core, capable of directly exploiting the advantages of NUMA
architectures.

1.4 Thesis Organization
The thesis is organized as follows: Chapter 2 introduces the fundamental concepts of this
work from both the programming model and the architectural point of view and briefly
discusses the context from which it originates. The work itself, the HAMSTER framework,
is introduced in Chapter 3 together with the discussion of its fundamental design guidelines
and principles.

The following chapters discuss the various components of the HAMSTER system in
detail: Chapter 4 presents the hybrid hardware / software distributed shared memory sys-
tem, followed by the discussion of the various shared memory services provided by several
independent modules in Chapter 5. These services are then used to form shared memory
programming models, which is shown in Chapter 6.

In Chapter 7, the overall system is evaluated using two larger applications from the
area of nuclear medical imaging. Based on these codes, both HAMSTER’s capabilities to
support new codes on top of special programming models and the porting of existing codes
using standard programming models have been evaluated proving the efficiency and wide
applicability of the HAMSTER framework.

In conclusion, Chapter 8 offers a brief outlook on future work and closes with some
final remarks.

The work is completed with a short manual containing information on how to run appli-
cations using HAMSTER in Appendix A and with a small example of a HAMSTER–based
programming model in Appendix B.

Chapter 2

Background

Before going into the details of the shared memory framework for NUMA–based clusters
proposed in this thesis, it is necessary to look at a few basic concepts. This chapter first dis-
cusses the principles of shared memory from both the programmer’s and the architectural
point of view and presents the problems associated with different approaches. It then in-
troduces a NUMA–based cluster interconnection fabric — the Scalable Coherent Interface
(SCI) — as a suitable tradeoff between hardware support for shared memory programming
and architectural scalability and provides a detailed overview of its history, current status,
and its use in both the commercial world and the research community. The chapter ends
with a brief description of the context of this work.

2.1 Shared Memory Programming
Shared memory programming generally refers to parallel programming models that ex-
hibit a global virtual address space which can then be used to share data implicitly among
multiple tasks potentially located on different processors. Synchronization between the
individual tasks within a parallel application is accomplished by using additional explicit
mechanisms specific to the programming model. Additionally, the task model, i.e. the con-
trol over the concurrent activities within a parallel application, varies from model to model
and can range from a static task assignment to processors to a fully dynamic scheme with
task creations and destructions during the runtime of the application.

Compared to other paradigms, this basic approach is often seen as more intuitive and
easier to learn since it eliminates the need for explicit communication and data distribu-
tion. Rather data is shared in the global address space and can be accessed from there by
any node at any time. This simplicity makes the shared memory paradigm especially suit-
able for programmers with little experience in parallel programming or for those lacking a
formal computer science background.

2.1.1 Definition of Shared Memory Programming Models
The exact connotation of the term “Shared Memory” is influenced by the direction from
which it is seen: when looking at it from an architectural view, it normally denotes the
ability of the architecture to access global data, while from a programming model point
of view, the sharing of data is emphasized. In the latter context, often the term “Shared

10 Chapter 2. Background

Variable Programming” [33] is used as a synonym.
In the context of this work, the term “shared memory programming model” refers to

parallel programming models which exhibit a single global virtual address space to all
tasks within the parallel program. This address space is then used for any communication
between the tasks and does not require the use of any explicit communication or copy
routines. Besides this basic definition of memory behavior, no further restrictions to the
type of used programming model is set forth. This refers especially to synchronization
mechanisms and the task structure offered by the programming model. Their definitions
are intentionally left open to include a wide range of models and hence to increase the
scope of this work.

2.1.2 Available Models and APIs
Based on this general definition, many different types of shared memory programming
models and systems exist. The following list provides an overview of the major subtypes:

� Thread libraries

The most typical representatives of shared memory programming models are thread
libraries. Such libraries are present in any modern operating system and are mostly
used to exploit the capabilities of SMPs. Examples for thread libraries arePOSIX
threads[219] as implemented e.g. in Linux,SolarisTM threads[148], a slight vari-
ation for SUN SolarisTM platforms,Win32 threads[154] available in Windows NTTM

and Windows 2000TM , andJavaTM threads[104] as part of the standard JavaTM Devel-
opment Kit (JDK).

Next to these operating system inherent implementations of thread packages, also
several standalone thread libraries exist, mostly from the research community. Ex-
amples for this are the FSU threads [163] or the ACE thread package [191].

� Distributed Shared Memory systems

Distributed Shared Memory (DSM) systems aim at emulating a shared memory ab-
straction on loosely coupled architectures in order to enable shared memory pro-
gramming despite missing hardware support. They are mostly implemented in the
form of standard libraries and exploit the advanced user–level memory management
features present in current operating systems. In recent years, a large number of such
systems, each with its own API, have been developed by the research community, but
only one, the TreadMarks system [5], has made it to the product stage. Examples for
research systems are IVY [136], the predecessor of all DSM systems, Munin [29],
Brazos [209], Shasta [189], and Cashmere [213]. A more comprehensive list and a
detailed description of DSM systems can be found in Chapter 4.1.

� Macro packages for parallel programming

Special macro packages can also be used for the construction of parallel shared mem-
ory applications, although they do not represent full programming models. They

2.1. Shared Memory Programming 11

merely provide an easy and high–level way to specify the intended parallelism in the
target applications and provide the appropriate preprocessor rules to transparently
transform these into intermediate applications based on a second, often platform
specific shared memory programming model at a much lower level of abstraction.
The most prominent example for this kind of approach are the ANL orparmacsm4
macros, which are used within the SPLASH [206, 233] benchmark suite and exist
for a variety of different shared memory platforms.

� Parallel Programming Languages with global address space

In addition to the library–based programming models discussed so far, parallel pro-
gramming languages based on the shared memory paradigm also exist. The most
prominent example among them is High–Performance Fortran (HPF) [236], a data
parallel language, which allows the specification of parallelism based on shared ar-
rays. A compiler then transfers the program into a message passing code which can
then be executed on the target machine. The programmers, however, do not need to
deal with the translated code and therefore maintain the shared memory view on their
application at all times. Due to these properties, HPF has gained acceptance among
the Fortran and scientific computing community and is available on most MPPs.

Besides HPF, also further parallel shared memory languages, again mostly research–
based, exist. An examples for this is ZPL [139], developed and maintained at the
University of Washington, a data–parallel array programming language.

� Program Annotation Packages

Between library based models and full shared memory programming languages, a
third principal approach exists which is based on code annotations. A quite renowned
approach in this area is OpenMP [172], a newly developed industry standard for
shared memory programming on architectures with uniform memory access char-
acteristics. In contrast to HPF , OpenMP is based on task parallelism and focuses
mostly on the parallelization of loops.

OpenMP implementations use a special compiler to evaluate the annotations in the
application’s source code and to transform the code into an explicitly parallel code
which can then be executed. In contrast to full parallel languages, annotated codes
can still be compiled with standard compilers which ignore the annotations and pro-
duce normal sequential codes. Hence a common code basis of sequential and parallel
versions can easily be maintained.

� Explicit shared memory

Lying on the border of the definition of shared memory programming models are
explicit shared memory programming models. In such systems, accesses to remote
data are no longer fully transparent, but are normally executed through special re-
mote memory access routines provided by the programming model which copy the
data to the intended remote location. Accesses to local data however are still carried

12 Chapter 2. Background

out directly without the need to call specific routines. An example for such an ex-
plicit model is the so called “shmem” library provided by SGI and Cray for the MPP
machines [98].

One step further than the Cray shmem library are approaches like Linda [230] or
JavaTM Spaces [158]. They no longer provide even a transparent access to any part
of the data, but rather require users to explicitly call routines for data storage and
retrieval at any time. However, a global address space of some kind is also present in
these approaches, making them at least related to shared memory.

2.1.3 Shortcomings of Shared Memory Programming
Despite the advantages of shared memory programming discussed above, this paradigm has
by far not reached the same level of acceptance as the message passing paradigm, especially
in the area of High Performance Computing (HPC). This can be attributed to mainly two
shortcomings inherently connected with shared memory programming:

Abundance of Different APIs without a Dominant Standard

One shortcoming is already directly visible from the pure size of the list of examples of
shared memory programming models presented above. This abundance of different models
severely restricts both code portability and reuse since codes and code parts frequently have
to be ported from one shared memory programming model to another. In addition, each
programming model may have subtle differences in both syntax and semantics with regard
to their APIs thereby causing ports to be cumbersome and error prone. This results in a
steep learning curve for programmers dealing with more than one system or programming
model.

Limited Scalability of the Underlying Architectures

The second shortcoming comes from an architectural point of view. Shared memory pro-
gramming normally requires hardware support to be present in the underlying hardware
architecture. Traditionally, such support is only available in tightly coupled systems, such
as Symmetric MultiProcessors (SMPs). These architectures, due to their need for a tight
coupling between the individual processors, generally exhibit rather unfavorable scaling
properties and hence provide only a limited amount of aggregated computational power
limiting their use.

2.2 Architectural Support for Shared Memory
In order to further illustrate this shortcoming of limited scalability and to point towards
approaches to overcome it, it is necessary to briefly talk about the various types of memory
organizations in existing architectures and their support for shared memory programming.
This will help understand the implications introduced by hardware shared memory support

2.2. Architectural Support for Shared Memory 13

CC
Prot

CC
Prot

CC
Prot

Cache

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

CPU 0

Memory

System bus

Figure 2.1 Memory organization of UMA architectures.

with respect to scalability and performance and will allow to judge the suitability of existing
architectures for shared memory programming.

To structure this discussion, a simple and straightforward classification of architectures
based upon their type of global memory access is used. Based on this scheme, three major
types can be identified:

� UMA – Uniform Memory Access architectures
In this class of architectures, any memory location can be reached from any processor
with the same access characteristics in terms of cost (i.e. uniform)

� NUMA – Non Uniform Memory Access architectures
Like UMA systems, these architectures allow any processor to access any memory
location directly, but the access characteristics varies with respect to the access la-
tency.

� NORMA – NO Remote Memory Access architectures
In this class of architectures no direct hardware support is available to access memory
locations other than those local to a processor.

2.2.1 Full Hardware Support within UMA Systems
The first class of architectures discussed in more detail are the UMA (Uniform Memory
Access) architectures. Their general structure is shown in Figure 2.1. A number of pro-
cessors, potentially with additional caches in the memory path, are connected to a single
global memory through a common system bus. Such busses are normally only able to cover
short distances due to their electric properties, which leads to systems with all processors
installed within one box. Such systems are therefore often referred to as tightly coupled
systems.

This organization is currently widely used in Symmetric MultiProcessor (SMP) ma-
chines. In these machines several processors of the same type and speed are coupled to a

14 Chapter 2. Background

single system. In addition, no one of these processors has a special role; instead all nodes
are configured in a fully symmetric way1. Typical configurations range from 2 or 4 proces-
sors in commodity PC–based system [38] to up to 16 or 32 processors in high–end servers,
like the SGI Power ChallengeTM [58] and the SUN Enterprise systems [251]. .

As any processor is connected to the global memory through the system bus, it can di-
rectly access any memory location resulting in a full hardware support for shared memory.
In the presence of caches, SMP machines also provide an appropriate cache coherency pro-
tocol [175], which automatically guarantees a coherent state of all involved caches. This
maintains their transparency known from single processor systems also in such a multi-
processor scenario. On the software side, these systems are normally equipped with the
appropriate operating system support for multiple processors, especially with respect to a
global virtual memory management. The shared memory can therefore be easily exploited
by the users without the need for any additional software complexity.

The major drawback to these architectures is their limited scalability. Any access to the
memory has to be performed across a single bus, leading to a major bottleneck with rising
numbers of processors. This can be seen with respect to both performance, due to bus
contention, and space, due to the limited distances such buses are able to cover. In recent
years, a significant amount of effort has been invested in the area of high–end servers to
reduce this bottleneck, leading e.g. to the PowerPathTM bus system [58] used in the SGI
systems. However, the principal problems remain. Due to this, the number of processors
within an SMP system with which a system is still able to provide sufficient performance
will always be limited.

The only way to overcome this problem is to leave the bus–based design and deploy
new, more scalable interconnection technologies which do not suffer from the contention
problem. An example for such a novel approach can be found in the SUN Starfire architec-
ture [34] which couples up to 16 boards with 4 Sparc processors each using point–to-point
links through a highly efficient crossbar backplane. Such a design, however, requires a
very complex hardware in order to keep the total memory latency both uniform and at an
acceptable level.

2.2.2 Improving Scalability with CC–NUMA
This scalability problem of SMPs with UMA organization has led to the development of
CC–NUMA machines. In this class of architectures, whose typical layout is depicted in
Figure 2.2, again any processor has direct access to any memory location in the whole
system. This memory, however, is now distributed to the individual processor nodes and no
longer only available at a single location. This introduces a distinction between local and
remote memory, i.e. memory on the same or on another processor node than the accessing
processor. This distinction with respect to memory location consequently also leads to a
distinction in memory access types, which can also be local or remote and therefore lead to
different (non–uniform) memory access times.

1The only exception is normally visible at boot time, where one processor takes the role of a master and
controls the further initialization of the remaining processors.

2.2. Architectural Support for Shared Memory 15

CC
Prot

CC
Prot

CC
Prot

Mem 0 Mem 1 Mem 3Mem 2

Cache

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

CPU 0

Network

Node 0 Node 1 Node 3Node 2

Figure 2.2 Memory organization in CC–NUMA architectures.

This concept of CC–NUMA architectures enables the construction of systems with a
larger number of processors since it allows a more flexible packing with individual nodes
each with its own memory and replaces the single common bus with a more flexible inter–
node interconnection fabric. To further raise the number of processors, CC–NUMA ma-
chines often use a hybrid scheme with SMP nodes with a small number of processors
sharing a local memory connected by a CC–NUMA interconnection fabric.

Like in the UMA case, a cache coherence protocol (hence the name CC–NUMA) is
deployed to maintain the transparency and consistency of the caches in the system. Its im-
plementation, however, is normally much more complex than in a UMA scenario because
it has to take the increased latencies for remote accesses and the potentially higher number
of involved CPUs and caches into account. This has led to new approaches in the area of
cache coherency protocols [175, 86, 202].

The concept of CC–NUMA machines (sometimes referred to as S2MP: Scalable Sym-
metric MultiProcessing) has gained quite a bit of popularity in the last few years and has
led to both research prototypes, like the FLASH architecture [128], and a number of com-
mercial developments which are used for both server and scientific computing applica-
tions. Commercial examples include the SGI O2000/O3000TM series [131], which couples
Dual SMP nodes to a CC–NUMA architecture, the ExemplarTM [35] machines by Hewlett
Packard (formerly by Convex) with its 8–way SMP nodes connected by four independent
cross–node links, and the Numa–LiineTM [37] by Data General coupling 4–way SMP nodes
based on the PC architecture using a CC–NUMA interconnection fabric. These systems al-
low processor numbers in the range of 32 to 128 processors and hence significantly exceed
the typical number of processors in current SMP systems.

Together with appropriate software mechanisms, present in proprietary operating sys-
tems or extensions thereof, which are available on all of these machines, the concept of
CC–NUMA architectures, like their UMA counterparts, enables users to directly exploit
shared memory programming in a fully coherent global address space. The distributed
nature of the underlying memory resources, however, requires the user to take this distri-

16 Chapter 2. Background

bution into account and to optimize with respect to data locality, which leads to additional
complexity in using such systems for parallel processing.

2.2.3 Transitions Towards Pure NUMA Systems
A problem of these CC–NUMA architectures is their often quite complex cache coherency
protocol. While extremely useful for the user, as it maintains the cache transparency known
from single processor systems, it again forms a limit for the scalability of the overall sys-
tem. This is caused, for one, by the complexity of the protocol which can lead to a perfor-
mance problem and, secondly, by the requirement of tightly coupling the individual nodes
from a logical point of view to allow the maintenence of a global state.

This observation has inspired non–CC–NUMA architectures without a global cache
coherency protocol, which will simply be referred to as NUMA architectures in the fol-
lowing. Such systems are capable of supporting a larger number of processors since the
only hardware requirement imposed by a NUMA system is the ability to perform loads and
stores to remote memory locations. The implementation of this capability requires only
very little hardware complexity enabling a simple and cost effective system design. This
reduced complexity on the hardware side, however, leads to a higher complexity demand
in software as applications have to compensate for the missing hardware coherency. This
can, however, even lead to a higher performance compared to CC–NUMA machines, as the
coherency control can be adapted to the application needs instead of using a general cache
coherency protocol.

Examples for this kind of architecture are the Toronto NUMAchine [70], a research
prototype based on a hierarchical interconnection topology, and the T3D/ETM line [235,
120, 124] by Cray Inc. (now part of Tera Computer Company). Especially the latter one
has had a significant commercial success. It allows the coupling of up to 2048 processors in
a three dimensional torus topology. Due to the programming complexity discussed above,
these machines are mostly programmed using message passing libraries like PVM [60] or
MPI [152], which have been optimized for this NUMA architecture. A direct exploitation
of a pure shared memory programming model is only available on this system in the form
of an explicit shared memory programming model using a put/get semantics since such a
model is capable of hiding the missing hardware coherence. This can be done because any
communication is performed with explicit calls and these points in the execution can then
be used to ensure the correct memory coherency behavior.

2.2.4 Shared Memory for Clusters
On the other end of the architectural spectrum with respect to shared memory support are
the so–called NORMA (NO Remote Memory Access) architectures which offer no direct
hardware support for shared memory programming. Systems in this class of architectures
are often built from independent nodes of either single processor or small SMP type sys-
tems, as depicted in Figure 2.3. The nodes are then interconnected using a general purpose
network like Ethernet. In contrast to the architectures discussed so far, this network is nor-
mally not attached to the main system bus, but rather through an I/O bus and a separate

2.2. Architectural Support for Shared Memory 17

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Mem I/O

NIC

Node 0

Mem I/O

NIC

Node 1

Mem I/O

NIC

Mem I/O

NIC

Node 3Node 2

Figure 2.3 Memory organization in clusters or NoWs with NORMA characteristics.

Network Interface Card (NIC). Due to the ability to use standard single–processor or small
SMP nodes as the basic building blocks, these machines are often referred to as Network
of Workstations (NoWs), Cluster of PCs (CoPs), or Pile of PCs (PoPs) depending on the
type of nodes used.

Due to the missing support for shared memory, any communication in this kind of
system has to be performed in the form of explicit messages. These messages can then
be transfered through the NIC to the network and require an explicit receive on the target
node. Consequently, these architectures are by default programmed using pure message
passing paradigms mostly in the form of standard libraries, since this directly matches the
underlying hardware facilities.

Despite the lack of hardware support for shared memory programming, the advantages
of this paradigm have motivated researchers to provide a global memory abstraction purely
in software for clusters and NoW architectures. This has led to so–called Distributed Shared
Memory (DSM) systems, which either use the page swap mechanisms in modern virtual
memory systems or instrumented applications to track user accesses to global data. The
information gathered is then forwarded to other nodes using explicit communication mech-
anisms. Therefore, such approaches allow shared memory programming in NORMA envi-
ronments despite the missing hardware support and are in principle widely applicable.

Until recently, these approaches have been limited to a certain extent by the network
performance available in these systems. However, with the rise of high–speed System
Area Networks (SAN), like the Scalable Coherent Interface (SCI) [75, 92], Myrinet [20],
ServerNet [82] , or GigaNet [237], this situation has greatly improved. These technologies
allow a direct user–level access to the network interface without the usual protocol stack
and therefore enable a low latency and high bandwidth communication.

18 Chapter 2. Background

2.3 NUMA for Clusters: The Scalable Coherent In-
terface

Among these systems, the Scalable Coherent Interface (SCI) [75] has a special role. It
not only represents a state-of-the-art System Area Network (SAN), but also allows remote
memory accesses. It therefore forms a bridge between cluster architectures and NUMA
systems by maintaining the scalability and cost effectiveness of NORMA systems while
providing NUMA–like remote memory access capabilities. SCI is therefore well suited for
providing both message passing and shared memory programming on clusters. The latter
is explored in detail in this work.

2.3.1 History and Principles of SCI
The work on the Scalable Coherent Interface originated in the late 80s from the Futurebus+
project [93] which aimed at the specification of a successor for the Futurebus [90]. During
this work, it became evident that the traditional bus–based approach for large–scale multi-
processor architectures would no longer be capable of keeping up with the rising speed of
coming generations of microprocessors and would need to be replaced by a more scalable
concept. On the other hand, the services provided by bus–based systems were to be pre-
served in order to keep the familiar environment and to enable an easy interface to existing
and future bus systems. This led to the specification of SCI, which was finished in 1991
and became the formal IEEE/ANSI standard 1596 in 1992 [92].

It specifies the hardware interconnect and protocols to connect up to 65536 SCI nodes,
including processors, workstations, PCs, bus bridges, and switches, in a high–speed net-
work. SCI nodes are interconnected via point-to-point links in ring–like arrangements or
are attached to switches. The logical layer of the SCI specification defines packet–switched
communication protocols using a state-of-the-art split transaction scheme. It decouples re-
quest and response for a remote operation, each being transfered in a separate packet. This
enables every SCI node to overlap several transactions and allows for latencies of accesses
to remote memory to be hidden. Optionally, the SCI standard defines a directory–based
cache coherence protocol which enables the construction of CC–NUMA architectures.

The Scalable Coherent Interface specification, however, does not represent the end of
the road. Its technological principles have been used on other successor projects. The
most visible result is the Serial–Plus project (IEEE P2100), which was formerly known
as Serial Express or IEEE 1394.2. Its intent is to provide a scalable extension for IEEE
1394 [94] installations, also known as FirewireTM , an interconnection technology used in
various consumer products allowing a fast and easy data transfer between digital imaging
equipment like digital cameras.

2.3.2 Shared Memory Support in SCI
The central feature of SCI, which distinguishes it from any other mainstream cluster–
oriented interconnection fabric, stems directly from the original starting point of SCI, the
direct replacement of buses while maintaining bus–like services. It contains the ability

2.3. NUMA for Clusters: The Scalable Coherent Interface 19

SCI
Physical
Memory

SCI interconnect

Figure 2.4 SCI HW–DSM using a global address space (from [74]).

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����

����
����
����
����
����
����

Read and Write operations

address space

Virtual
���
���
���

���
���
���

Mapped by
SCI-ATT

Mapped by
MMU

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

Physical/PCI
����
����
����
����

����
����
����
����

SCI physical
address space

Process i on node A

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

address space

MAP MAP

IMPORT

Process j on node B

����
����
����
����

����
����
����
����

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���
���
���
���

���
���
���
���

����
����
����

����
����
����

Figure 2.5 The various mapping levels in PC based SCI systems.

to support remote memory accesses — both reads and writes — directly in hardware by
providing a Hardware Distributed Shared Memory (HW–DSM). For this purpose, SCI es-
tablishes a global physical address space which allows to address any physical memory
location throughout the system. Any address within this SCI physical address space has a
length of 64 bit, with the higher 16 bit specifying the node on which the addressed physical
storage is located and with the lower 48 bit specifying the local physical address within the
memory on that particular node.

Nodes can access this global physical address space and hence any physical memory
location within the whole system by mapping parts or segments of this memory space into
their own memory. Once such a mapping has been established, users can issue standard
read and write operations to those mapped segments and these are then translated by the
SCI hardware into accesses within the global address space and forwarded to the intended
remote memory. A simplified picture illustrating this concept is shown in Figure 2.4. It
shows four PC nodes and the SCI physical memory together with a few example mappings.

While the SCI standard defines this basic principle and also specifies the protocol used
to transfer the data across the network, it purposely omits any specification regarding the
actual remote memory mapping process needed to access the SCI physical address space.
This process is very system and architecture dependent and needs to be adjusted to each

20 Chapter 2. Background

platform. On PC–based cluster architectures, which form the focus of this work, the con-
crete implementation of SCI is more or less dictated by the I/O subsystem available in
current PCs. Therefore, SCI adapters intended for PC architectures generally come in the
form of PCI adapter cards and implement a PCI–SCI bridge.

The concrete mapping process in such a PCI–based SCI system is shown in Figure
2.5. Any physical memory location within the system is potentially available within the
whole cluster since it can be addressed through the global SCI physical memory. Parts of
this address space can then be mapped into the PCI or I/O space controlled by the PCI–
SCI bridge on a particular node (in the figure on the right side) using a mapping table
on the SCI adapters, the so–called Address Translation Table (ATT). Each entry in this
table is responsible for a given part of the whole I/O space and allows the specification of
(almost) arbitrary parts of the SCI physical memory to be visible within this part of the I/O
space. The granularity of these mappings is dictated by the PCI–SCI adapter and ranges,
depending on the adapter type and configuration between 512 Kbyte and 4 Kbyte. Due
to constraints with regard to the number of available ATT entries and the total amount of
mappable memory, however, for newer generation adapter cards this granularity is typically
set to values around 64 Kbyte and is hence significantly larger than the page granularity.

In order to give user processes access to these mapped memory resources, a second
level of mappings into the virtual address space of the target processes needs to be per-
formed. This mapping is purely local and does not affect the SCI implementation. In the
PC architecture the I/O address space, including the part used by the SCI adapter for re-
mote memory mappings, is an extension of the physical address space used for the local
memory. Hence, the appropriate parts containing the remote memory are mapped into a vir-
tual address space in the same manner as local memory by using the processor’s Memory
Management Unit (MMU).

Once both of these mapping levels have been established, processes can access the
mapped virtual memory regions with standard read and write operations. On nodes on
which physical memory is locally available (left node in the figure) these accesses are
executed in a conventional manner, while on nodes on which the physical memory has
been mapped via SCI (right node in the figure) the memory access will result in an access
to the I/O space, from where the SCI adapter forwards it to the remote node according to
the appropriate ATT entry. The process issuing the memory access, however, does not see
the difference between local and remote accesses except for their latency, thereby resulting
in the intended transparent NUMA–like shared memory behavior of SCI.

This SCI shared memory support has two major shortcomings: for one, the global
address space provided by SCI is solely based on physical addresses since only locations
in the physical memories of any node can be addressed. This limitation is due to the fact
that within the PC architecture no I/O bus exists, which directly uses virtual addresses (in
contrast to e.g. the Sparc Architecture with its SBus system [91]). As a consequence,
no physical page can be accessed safely, which is not pinned into memory, as it could
otherwise be evicted by the operating system at any time. Consequently, the SCI shared
memory support can not directly be used to implement a global virtual address space as it is
required by shared memory programming models. The user rather has to rely on the sharing

2.3. NUMA for Clusters: The Scalable Coherent Interface 21

of separate pinned memory segments which do not provide the desired transparency since
they have to be explicitly allocated and accessed.

A second shortcoming in PC–based SCI systems is the missing cache coherency be-
tween the individual nodes. Even though the SCI standard [92] defines a versatile cache
coherency protocol, it can not be used together with PCI–SCI bridges since the PCI bus
[253] does not allow the snooping of memory transactions. As a result, current PCI–SCI
implementations disable any caching of remote memory locations in order to avoid cache
inconsistencies across nodes. This, however, has a severely negative impact on the read
performance.

2.3.3 Commercial Success of SCI
SCI is currently used in a large variety of scenarios and products. Virtually all of them
are based on the technology of a single SCI manufacturer, Dolphin Interconnect Solutions
(ICS) [239], despite some efforts by the company Interconnect Systems Solutions (ISS)
[241] to provide an alternative source for SCI–based technology. After some initial success,
however, these efforts seem to have been abandoned.

The core for any SCI–based system is the so called Link Controller (LC) chip, which
currently exists in its fifth generation. Its speed has been steadily increased over the years
and has reached 800 MB/s on each link in the latest generation, the LC 3 [9]. It therefore
provides a level of performance already very close to 1 GB/s, which was the original goal
during the SCI standardization process. Based on this component, Dolphin offers several
SCI bridges to various other system busses, including the SUN SBus [91], the PCI bus
[253], and PMC [95]. In addition, Dolphin also provides several types of switches which
allow the creation of larger systems.

Besides these products from Dolphin, several other companies either use or benefit from
Dolphin’s SCI technology and offer further SCI–based products. The small Norwegian
company SciLab [250] offers a sophisticated SCI tracing and trace analysis tool called
SCIview [208], Siemens has developed an optical SCI link called Paroli (now marketed by
Dolphins ICS) capable of bridging larger distances than the standard copper based links,
and Lockheed Martin has designed a large scale SCI switch.

Additionally, several OEM vendors use the SCI chips and adapters provided by Dolphin
to implement their own systems and deliver these as turn–key solutions. SUN Microsys-
tems uses SBus or PCI adapters for SUN EnterpriseTM clusters [157] to enable a high–
performance fault tolerance solution and Siemens integrates SCI bridges into their R600TM

mainframes [244] for clustering and enhanced I/O aiming at the parallel database market.
While these systems use SCI without the optional cache coherency protocol included in
the standard, other vendors have used this option and have created SCI–based CC–NUMA
machines. Data General successfully distributes its NUMA–LiineTM [37], which is based
on commodity multiprocessor PC boards with a special access for SCI to the memory bus
to enable the maintenance of cache coherency, a concept also used by IBM (formerly Se-
quent) for their NUMA–QTM systems [89]. Also, the (now obsolete) ExemplarTM system,
introduced by HP/Convex, uses SCI links based on Dolphin hardware to connect its SMP

22 Chapter 2. Background

SCI ringletSCI node

4 port
SCI switch

Figure 2.6 Switched SCI ringlets (left) vs. two dimensional torus (right).

hypernodes to a full CC–NUMA system [35].
The most common use of SCI, however, which will also be solely considered for the

remainder of this work, is the use of SCI in commodity PC clusters based on the PCI–SCI
bridges or adapters [138] directly developed and marketed by Dolphin. Along with the
continued development of the SCI link controllers, these boards have also lived through
a number of generations. During the timespan of the project presented in this work, the
evolution has gone from the D308, still with LC 1 and for 32–bit/33 MHz PCI busses, over
the D310, with the improved LC 2 chip, to the D320, the first 64–bit PCI card. Just recently,
but not in time to be used for this work, the line of adapters was extended to the D330 series,
carrying the new LC 3 and capable of using 64–bit/66 MHz PCI busses. These PCI adapters
allow very high–performance end–to–end communication with latencies under 2�s and a
bandwidth of up to 85 MB/s with standard 32–bit/33 MHz PCI busses and up to 250 MB/S
(DMA communication) with new 64–bit/66 MHz PCI systems.

By default, all of these adapters can be connected in unidirectional ringlets, the basic
topology of all SCI–based systems. Since this approach, however, can only be applied up
to a certain limited number of nodes before a saturation of the network is reached (typically
at 8–10 machines, depending on the load generated by the nodes), additional switches are
required to allow the connection of multiple independent SCI ringlets. For this purpose,
two different approaches are available in today’s systems, resulting in two fundamentally
different topologies (shown in Figure 2.6). These are the use of traditional switches con-
necting ringlets of several nodes and the creation of multidimensional tori using small
interdimensional switches within each node.

The first option can be realized by using external switching components from Dolphin.
The current generation of switches, in form of the D515 switch [15], is based on the LC
2 and contains 4 ports per switch plus 2 extension ports. Using the latter ones, the switch
can either be expanded to a stacked switch with up to 16 ports or configured to a non–
expandable 6 port switch. Each port can be connected to a ringlet with arbitrary numbers
of nodes, but again the bandwidth limitations of ringlets apply. Internally, the D515 is
based on multiple busses delivering the required cross–section bandwidth.

The next generation of switches, in form of the already announced D535 [142], will

2.3. NUMA for Clusters: The Scalable Coherent Interface 23

change this design to a full crossbar, which is expected to result in a greater overall perfor-
mance and better scalability. This switch, which will be based on the LC–3, can also be
expanded to much larger configurations than the D515 switch enabling configurations with
more than 128 ports.

The second option is the creation of multidimensional tori by using small SCI ringlets
in all dimensions [23]. In such a configuration, each node/adapter will be connected
to each dimension and uses a small switch integrated into the SCI adapter to provide
cross–dimensional packet transmissions. Technically, this solution is realized with separate
daughter boards which are plugged into the base PCI–SCI bridge and provide additional
SCI link controllers. Currently up to three dimensional tori with up to 10–12 nodes in each
dimension can be created, resulting in potentially very large systems.

This latter option has been developed together with Scali AS [249], a Norwegian com-
pany specialized in “Affordable Supercomputing” , i.e. the construction of turn–key solu-
tions for high–performance computing based solely on commodity components. Together
with the appropriate software infrastructure, the so–called Scali Software Platform (SSP)
[190], which includes both high–performance communication support in the form of the
optimized MPI implementation ScaMPI [85, 84] and comprehensive system management
and monitoring support, these systems have found a wide use in both academia and indus-
try. The concept has also been adopted by Siemens and is now marketed as the Siemens
HPC–LineTM [69].

2.3.4 Other SCI–based Research Activities
Along with these commercial developments, a significant amount of research has been
done worldwide focusing on SCI. This has led to a very active research community with
participants from many different areas of science and has manifested itself in a comprehen-
sive book published about the current state of SCI [75], the establishment of a conference
series since 1998 [181, 106, 81], and an international working group supported by the ES-
PRIT programme of the European Union [245] as well as several different ESPRIT projects
[240].

Early work has concentrated mostly on the IEEE standardization efforts of the SCI
protocol which has led to the ANSI/IEEE Standard 1596–1992 [92] and on SCI’s low–level
performance as it has been done e.g. at University of Oslo within the SALMON project
[170], at SINTEF [80], and at the University of Wisconsin [203]. With the rise of other
high performance system area networks (SANs), additional studies e.g. at the Medical
University of Lübeck [177], the ETH Zürich [127], and the University, California at Santa
Barbara [87] have aimed at comparing and contrasting their performance with SCI.

These performance oriented efforts have then been complemented by intensive efforts
to form a suitable software environment for the efficient use of SCI–based clusters. As a
first step in this direction, several approaches have targeted the design of suitable low–level
APIs which led to several competing approaches: an IEEE standardization effort headed
by the physics community entitled PHYSAPI [140, 141], a widely portable interface defi-
nition [64] developed within the SISCI ESPRIT project [207, 50] and adapted by Dolphin

24 Chapter 2. Background

as their primary API for all platforms, and the driver interface used by Scali systems for
efficient MPI support [185]. All three provide approximately the same functionality, i.e.
the creation and mapping of SCI shared memory segments and their competing existence
has led to a significant amount of confusion in the SCI community. By now this situation
has significantly improved as the SISCI API has established itself as the main interface for
SCI due to its wide availability and direct support by Dolphin. The PHYSAPI approach, on
the other hand, seems to have been abandoned and for Scali–based systems, a SISCI com-
patible emulation is now available, allowing the execution of SISCI–based codes without
changes.

Low–level APIs alone, however, only provide a basic abstraction of SCI’s hardware
capabilities and are not directly suited as the basis for future application developments.
This has led to a thorough investigation of the various issues involved in creating high–
performance communication libraries [186, 51, 61, 88, 84]. These studies illustrated the
use of direct user–level access to the network adapter to eliminate the protocol stack over-
head and the efficient use of the special hardware DSM mechanisms for improved com-
munication performance. The result is a broad range of SCI communication libraries.
Examples are ports of the Active Message specification [225] done at the Technische Uni-
versität München [49] and the University of California at Santa Barbara [87]. In addition,
various fast socket implementations at different levels of the operating system have been
undertaken: underneath the TCP/IP stack as a general network driver from the Univer-
sity of Paderborn [218], replacing the TCP/IP stack but still in kernel mode ensuring full
protection from the University of Copenhagen [72], and at user level exploiting the full
performance benefits of SCI from the Technische Universität München [76].

In addition, higher–level message passing layers, which are widely used, have been
targeted in order to provide a wide support for the transition of existing applications to
SCI–based clusters. As part of these efforts, SCI–optimized versions of PVM [60] have
been implemented and evaluated at the University of Paderborn [55] and the Technische
Universität München [52], and MPI [152] has been adopted to SCI by the RWTH–Aachen
[234], the Technische Universität Chemnitz [68], and by Scali AS [249] within their pre-
viously mentioned ScaMPI system [85]. Also a port of the CORBA architecture has been
undertaken (by INRIA [178]) enabling the convenient use of SCI in coarse–grain object–
oriented environments.

Several projects also target the use of shared memory programming for SCI–based
cluster systems. Examples for this are the Madeleine / PM2 environment [10, 8] developed
at the ENS Lyon, the NOA system from INRIA [151], a DSM system implemented at Lund
University [114], the HPPC–SEA DVSM library [40] from the Politecnico di Torino, and
the SVMlib [174] from the RWTH Aachen. These approaches, however, only exploit SCI
as a fast interconnection system by implementing traditional Distributed Shared Memory
(DSM) systems (see also Chapter 4.1). This omits SCI’s potential to directly support shared
memory in hardware and hence fails to fully exploit the advantages of this interconnection
technology.

Despite this, only very few projects follow this path since it is connected with com-
plex implementation and system integration issues. The SciOS system [122, 123], jointly

2.3. NUMA for Clusters: The Scalable Coherent Interface 25

implemented by the University of Copenhagen and INRIA, depends mainly on traditional
SW–DSM mechanisms but enables the use of direct SCI mappings in scenarios where this
is appropriate. The concrete type of implementation used for a particular page, however, is
fully hidden from the user through a common interface which is designed after the System
V shared memory system. The Yasmin system [25, 180] from the University of Paderborn,
on the other hand, provides a simple global memory abstraction directly relying on the
shared memory facilities of SCI, but on the basis of coarse grain segments rather than at
page level. Additionally, it does not include any shared memory optimizations such as the
ability to cache remote memory. These deficiencies can cause some severe performance
problems, as shown later in this work.

The SCI Virtual Memory (SCI-VM) system [198, 193, 195], which forms the core
for the implementation discussed in this work and will be explained later in detail, solves
these deficiencies and therefore represents the first approach which directly exploits the
hardware DSM features of SCI in an efficient and usable way. In addition, the SCI-VM is
not a monolithic system but is rather integrated in the context of a larger, highly adaptable
framework for shared memory programming, the HAMSTER system[145]. This system
will also be introduced in much more detail throughout the remainder of this thesis.

Most of the projects mentioned above, however, investigate only one side of the overall
picture, i.e. only message passing or shared memory programming models. Only few of
them attempt a full integration of both paradigms into a single environment: the SMiLE
project [109, 74] at the Technische Universität München, which forms the greater context
of this work and is explained in more detail in Section 2.3.5, the SISCI project [207, 50], an
ESPRIT project combining the efforts from several partners from both the middleware and
the application area, and the SciOS/SciFS system developed in a joint project between the
University of Copenhagen and INRIA [123, 72] providing both System–V shared memory
and socket communication.

With the software environments for SCI–based clusters maturing, SCI has started to
move more into the industrial field and is now used in a variety of different real–world ap-
plication scenarios. Examples for these, which have been done in cooperation with research
institutions and are therefore publicly known, are the deployment of SCI–based clusters in
clinics for computationally intensive algorithms in nuclear imaging procedures [113, 200]
(conducted at the Technische Universität München, partly within the ESPRIT project
NEPHEW [242]), the use for historic film restoration (implemented within NEPHEW as
well as within another ESPRIT project called DIAMANT [246]), the port of the com-
mercial state-of-the-art fluid dynamics code TfC/CfX [252] (AEA technologies [247] in
cooperation with the SISCI project [207, 50]), the use of SCI–based systems for a Syn-
thetic Aperture Radar (SAR) processing application [24] (realized by Scali [249]), a shared
memory–based implementation of the GROSMOS 96 Molecular Dynamics Code (from
the RWTH–Aachen [45]), and the exploitation of SCI–based high–performance commu-
nication for the optimization of electric fields for high voltage transformers [222] (a joint
project between the Technische Universität München and ABB Research in Heidelberg).
This list is, however, by far not complete and is only a brief compilation of a few interesting
examples of known projects.

26 Chapter 2. Background

Besides these industrially relevant codes, large scale SCI–based applications can also
be found in basic research for particle physics. In this area, large scale experiments are
designed which deliver a huge amount of raw data. This data then needs to be received,
processed, filtered, and stored, requiring high–performance network solutions. Currently
many different interconnection technologies are investigated including the Scalable Coher-
ent Interface. Work in this direction is conducted at the University of Heidelberg targeting a
custom solution for a SCI–based data processing farm [227] as well as at the European Lab-
oratory for Nuclear Research (CERN) and the Rutherford Appleton Laboratories (RAL)
utilizing mainly commodity components [14, 13].

Next to these software related projects, a few academic projects also deal with develop-
ments on the hardware side. These efforts can be roughly split into two main streams: the
development of SCI adapter cards and the design and implementation of hardware tracer
and monitoring equipment. Work in the former category aims at implementing adapter
cards with special features not available in main stream SCI adapters and for providing
access to internals for further research. The first is pursued by the Technische Univer-
sität Chemnitz for the investigation of user–level DMA in a VIA [36] manner [221], while
the latter drives the development of the SMiLE adapter card at the Technische Universität
München [2, 1].

The SMiLE card is also used as the basis for the development of a hardware monitor
[107, 79, 78]. This monitor facilitates the observation of the network traffic with little
intrusion overhead and the generation of memory access histograms across the complete
SCI physical address space. The information acquired using this monitor can then be used
to optimize applications [108].

In addition to this performance aspect of monitoring, the SMiLE hardware monitor
has also been designed to support deterministic debugging [79]. This is enabled through
a feedback line from the monitor to the SMiLE adapter which allows, upon recognition
of certain memory access patterns or events, to hold packets in the buffer RAM. This can
be used to ensure the repetition of memory access patterns in consecutive debug runs and
hence a clean debugging process.

A second hardware monitoring approach is being undertaken at the Trinity College
Dublin [147]. In contrast to the SMiLE monitor mentioned above, this approach enables
the gathering of complete traces in large on board memories, which can then be used for a
post mortem, off–line analysis. For this purpose, the traces are transfered into a relational
database system enabling complex queries across a full trace.

While all research discussed so far deals with real systems, several groups have also
based their work on comprehensive simulations of SCI systems. This approach allows
more flexibility with regard to the concrete target system and SCI implementation and
hence enables the investigation of new or enhanced features. The University of Wisconsin
has implemented a simulation environment with the goal to investigate SCI–based systems
with thousands of processors, the so–called Kiloprocessor systems [115]. The Polytechni-
cal University of Valencia implemented a VHDL–level simulation allowing the evaluation
of new hardware features [204] and at the University of Oslo an OPNET–based [159] sim-
ulation environment [182] has been developed which aims at an accurate modeling of SCI–

2.3. NUMA for Clusters: The Scalable Coherent Interface 27

HAMSTER:
Hybrid-dsm based Adaptive
and Modular Shared memory

archiTEctuRe
CML:

Common Messaging Layer

Distr.
Threads

SPMD
Model

Tread-
Marks
API

High-level
SMiLE API

HW/SW
boundary

PVM:
Parallel
Virtual

Machine
further
models
and APIs...

Alternative
Parallel
Progr.

Models

further
models
and APIs...

Low-level
SMiLE API

MPI:
Message
Passing
Interface

Standardized User APIs for SCI

SCI-VM API

Standard NIC driverCommodity OS: WinNT & Linux

SISCI API

Cluster Hardware (PC nodes with PCI-SCI bridges)

Message Passing and Shared Memory applications

Figure 2.7 Overview of the SMiLE software infrastructure.

based systems for performance prediction. In addition, the latter system has also been used
to study the impact of improved flow control as well as new fault tolerant routing schemes
for SCI networks [183].

2.3.5 HAMSTER as Part of the SMiLE Project
As already mentioned above, the HAMSTER project presented in this work is carried out in
the larger context of a clustering project at LRR-TUM2 with the name Shared Memory in a
LAN-like Environment(SMiLE), which reminds of the hardware DSM capabilities of SCI.
This base mechanism is used within the project to implement highly efficient programming
abstractions adhering to many different programming paradigms.

The SMiLE project broadly investigates clusters based on this interconnection technol-
ogy using both hardware and software approaches. This led to the design and the imple-
mentation of an own PCI–SCI adapter [2] and a hardware monitor for the on–line observa-
tion and evaluation of memory access patterns across the HW–DSM [111, 217]. In the area
of software the SMiLE efforts have led to the development of a comprehensive software
infrastructure (shown in Figure 2.7) featuring programming models from both paradigms,
message passing and shared memory. In addition, other less widely used paradigms have
also been investigated including the graphical representation of dataflow and communica-
tion by PeakWare [112], a product of the French company Sycomore[243], and a multi-
threaded scheduling environment (MuSE) [133, 134] based on the principles of dataflow
and task stealing.

The main cores of the SMiLE software efforts, however, have to be seen in the area of
the two predominant parallel programming paradigms: message passing and shared mem-
ory. The first one can be implemented efficiently and in a straightforward way using the
given HW–DSM capabilities. It is represented in SMiLE with various low–level user-level

2Lehrstuhl für Rechnertechnik und Rechnerorganisation at the Technische Universität München

28 Chapter 2. Background

message passing layers [51] including the implementation of the Active Message concept
[225], a fast socket library omitting the expensive TCP/IP stack [229], and a general mes-
saging layer, called the Common Messaging Layer or CML [51]. On the high level side,
it is completed by a port of the Parallel Virtual Machine (PVM) [60] delivering the perfor-
mance benefits of the CML to PVM–based applications [52].

The efforts in the area of shared memory with the establishment of a general, program-
ming model independent shared memory concept [145] are presented in this work and will
be described in full detail in the following chapters. It consists of a distributed shared mem-
ory core, the SCI Virtual Memory or SCI-VM [193, 198] (see Chapter 4), which establishes
a global virtual memory abstraction across cluster nodes and a set of management modules.
These can then be used for the implementation of a large number of different programming
models allowing the easy adaptation of the overall system to new requirements and existing
applications which guarantees a high degree of flexibility.

In summary, the SMiLE efforts allow the efficient exploitation of the clusters intercon-
nected by SCI using a large variety of different programming models and paradigms. This
allows both the easy porting of existing codes and the efficient and flexible development
of new applications and hence represents an important step towards a full exploitation of
SCI–based clusters.

2.4 Summary
The discussion of shared memory programming in this Chapter has shown the large di-
versity of programming models and the problems induced by it. The portability of shared
memory codes is severely limited as ports from one programming model to another are
frequently necessary and the learning curve for programmers is increased as they have to
be familiar with several different models. Also from an architectural point of view, the
shared memory paradigm is associated with problems since shared memory programming
models are only supported in hardware on tightly coupled systems with a limited scalability
and software emulations on more scalable loosely coupled architectures, like clusters, have
proven to be associated with performance problems.

Nevertheless, the advantages of the shared memory paradigm, in terms of programma-
bility and easier parallelization, remain and justify the further examination of their adoption
for loosely coupled architectures. In order to avoid the performance problems mentioned
above, however, some hardware support should be used for the creation of a global vir-
tual memory. An example for systems with such properties are NUMA systems, which
allow every node to access remote memory on any other node directly and without the
need for any software involvement. However, this occurs without the enforcement of cache
coherency. On the other side, NUMA systems maintain many of the advantages of tra-
ditional loosely coupled architectures, such as good scaling properties and a potentially
good price/performance ratio. NUMA architectures therefore represent a good tradeoff be-
tween the need to support shared memory in hardware and to provide sufficient scalability
at acceptable cost, making them worthwhile to be studied in more detail.

The Scalable Coherent Interface (SCI) [75], an IEEE standardized interconnection fab-

2.4. Summary 29

ric [92], allows the creation of NUMA systems based on clusters of commodity PCs. Using
this technology, the work presented here establishes a comprehensive shared memory pro-
gramming framework called HAMSTER (Hybrid–dsm based Adaptive and Shared memory
archiTEctuRe) which creates a transparent and programming model independent global re-
source abstraction. It therefore allows the efficient use of shared memory applications on
NUMA–based architectures and hence forms a bridge between CC–NUMA architectures
and traditional clusters.

Chapter 3

HAMSTER:
Hybrid–dsm based Adaptive and

Modular Shared memory
archiTEctuRe

As can be seen from the discussion in the previous chapter, shared memory programming
on top of loosely coupled architectures still faces some major obstacles. The two main
problems are the abundance of available programming models without a dominating stan-
dard in sight and the existing efficiency problems inherently associated with traditional
software approaches. The HAMSTER system, the core of this work, approaches both of
these problems in a novel way. HAMSTER, which stands for Hybrid–dsm based Adaptive
and Modular Shared memory archiTEctuRe, allows users to implement a large variety of
different programming models on top of a single efficient DSM core. This core is designed
and implemented for NUMA architectures with hardware DSM capabilities, but without
the need to provide either global memory/cache coherence or a specialized global operat-
ing system. This ensures that the system remains also applicable to loosely coupled NUMA
architectures, like clusters, and therefore profits from their scalability.

On top of this global memory abstraction, the HAMSTER framework then offers a large
number of shared memory services available to the user to implement any kind of shared
memory programming model. This can include both existing models to allow the direct
porting of existing codes and new application field specific models to ease the implemen-
tation of new applications. This system, with its flexibility with regard to programming
models, therefore allows true shared memory programming on scalable NUMA architec-
tures to directly benefit from their hardware support for remote memory accesses.

3.1 Related Work
A system like HAMSTER with the clear intent of supporting any kind of parallel program-
ming model of a certain class on top of a single core has, to our best knowledge, not been
previously attempted. This may stem from the fact that such an approach seems only ben-
eficial in the area of shared memory programming models, as its motivation is taken from

32 Chapter 3. HAMSTER

the observation that presently no clear standard for shared memory programming exists
which is suited for all kind of architectures and application domains1. In other areas, the
situation is different with one or a few standards being clearly accepted, like PVM [60] and
MPI [152] in the area of message passing.

However, even though HAMSTER presents a novel approach as far as the whole system
is concerned, its individual components are connected to a significant amount of related
work from many different areas. This reaches from the previously mentioned Software
Distributed Shared Memory (SW–DSM) systems, to the large amount of existing shared
memory programming models, from the architectural support in NUMA–like system to
operating system issues connected to form a global resource abstraction, and from issues
related to distributed multithreading to global performance monitoring and load balancing.
These issues are discussed in the various “State of the Art” sections in this work included
in the chapters of each subcomponent.

3.2 HAMSTER Design Goals
Before going into the discussion of the system’s details, it is necessary to discuss the main
goals governing the design of the HAMSTER system. This will further illustrate the pur-
pose and intended use of the system and will set the stage for the extensive coverage of the
system’s implementation in the following chapters.

3.2.1 Main Characteristics
The main idea behind the HAMSTER system is the possibility to allow users to imple-
ment as many different programming models as possible or necessary with a minimum of
complexity on top of a single efficient core. In order to achieve this goal, the design of
HAMSTER needs to exhibit a few key characteristics discussed in the following sections.

Flexibility

One of the prime high–level design goals for such a system is flexibility. Since its intention
is to form the framework for large numbers of different, not necessarily a priori known,
programming models, it needs to be able to adapt to varying prerequisites and requirements.
This is important not only with respect to the services provided by HAMSTER to build
programming models, but also with respect to the surrounding environment, which can
greatly change depending on the target applications.

Multi–operating system support

As part of this flexibility, it is also advantageous for such a system to support multiple
operating systems. This increases the available number of target platforms and therefore

1It should be mentioned that there are some standardization approaches also for shared memory, most
prominently OpenMP [172] and HPF [236]. However their focus is either on specific application domains or
special architectural subclasses (mostly on UMA machines).

3.2. HAMSTER Design Goals 33

further eases the portability of applications. In addition, it also allows the porting of various
programming models between the supported operating systems at no extra cost, thereby
further widening the total application platform available on top of the system.

No bias towards any particular model

In order to fulfill the goal of enabling the implementation of almost any shared memory
programming model on top of the target system, it needs to be designed without any re-
striction for, or bias towards, a particular programming model. This would either limit the
number of possible target programming models or increase the complexity of such imple-
mentations. One of the most critical points in this direction is the task or execution model
of programming models, as these can vary greatly between both programming models and
operating systems.

The fulfillment of this goal leads to a non–monolithic system without strong ties be-
tween the individual functionalities exposed by the system. It has more the character of
a large tool box of services available at the digression of the user, but without interfering
with each other. This guarantees a maximum of freedom in the implementation of new
programming models and does not favor any particular one.

Easy retargetability

In addition to the already discussed flexibility to implement a large number of shared mem-
ory programming models, it is also necessary to guarantee a low complexity for such im-
plementations. It has to be easy to retarget the system to a new programming model or
API. Only this will allow users to have several different programming models on top of
HAMSTER concurrently and hence to fully exploit the strongholds of the overall system.
This will make it worthwhile to use application field specific APIs or programming envi-
ronments for a small number of applications.

This goal can be achieved by providing a large number of services for different scenar-
ios with many options and parameters. By specializing these services, a large percentage
of the intended target programming model can then be designed in a way that leaves only
very limited functionality to be implemented from scratch for each new model. The total
effort for a new programming model will therefore be low making the creation of many
concurrent programming models feasible.

Efficient use of available hardware resources

So far the guidelines have only covered the aspects of multi–programming model support
and easy programmability. It is, however, equally important to provide each programming
model implemented in such a system with a maximum efficiency by exploiting the avail-
able hardware resources as directly as possible. In the context of this work, which focuses
on the use of clusters of PCs with a NUMA–like interconnection technology, this translates
to the efficient and direct exploitation of such a NUMA system for the creation of a global
virtual memory abstraction. Any memory access should be executed directly in hardware

34 Chapter 3. HAMSTER

either through the local memory system or by the NUMA network without any further soft-
ware intervention. This eliminates the typical software overhead associated with network
protocols allowing for a maximum of performance.

Besides the efficient exploitation of the underlying hardware in order to achieve an
efficient global virtual memory abstraction, any other mechanism needed for the imple-
mentation of shared memory programming models should be implemented as close to the
underlying architecture as possible. Of special importance hereby are the synchronization
and consistency enforcing mechanisms, as these are frequently used during the execution
of shared memory programs. Therefore, their efficiency has a large potential impact on the
overall system performance.

3.2.2 Target Architectures
As previously discussed in Chapter 2, this work targets the rising class of NUMA architec-
tures since they provide a good trade–off between hardware support for easy programming
and efficient communication in coordination with good scalability properties. More specifi-
cally, this work concentrates on SCI connected clusters of PCs because this specific choice
adds the ability to construct such a system purely from easily available commodity–off–
the–shelf (COTS) components at an optimal price/performance ratio.

The SMiLE Cluster

The work within the HAMSTER project has been done on the SCI–based clusters estab-
lished within the SMiLE project. It also serves as the experimental platform for most of the
experiments described in the following section (unless otherwise noted) and will therefore
be introduced in the following in detail.

At the moment, this cluster consists of six identical nodes, even though certain exper-
iments may only use a subset. All nodes are based on dual XeonTM processor nodes (450
MHz) interconnected using the commercial PCI–SCI adapters available from Dolphin ICS.
The exact configuration of the individual nodes is shown in Table 3.1. Each node is installed
with Windows NTTM 4.0 (SP5) and SuSE Linux (kernel version 2.2.5). The topology of the
SCI network used within the SMiLE cluster setup can be varied between a single ringlet
and a fully switched version. Both options are depicted in Figure 3.1. While the first one
is realized simply based on a single PCI–SCI adapter per node with no extra equipment
necessary, the second option requires an SCI switch. For this purpose, the six port switch
D515 from Dolphin ICS is used.

Both options have their distinct advantages and disadvantages: while the ringlet version
is simple to build and helps to cut cost in deploying SCI, its bandwidth is limited as all
nodes share the same ringlet link. In addition, this setup is not fault tolerant since a single
link failure breaks the ring and therefore disconnects all nodes. Both of these drawbacks
are resolved in the switched system design; each node works on its separate link allowing

2The D320 is the latest of the cards used in the current system and is by default used in the following
experiments. Some older experiments, however, have been done using other adapters. This is then specifically
marked in the discussion of the respective experiments.

3.2. HAMSTER Design Goals 35

Component Description

Processor Intel XeonTM 450 MHz
Number of CPUs per node 2
L1 data cache size (line size) 16 Kbyte (32 bytes)
L2 data cache size (line size) 512 Kbyte (32 bytes)
Main memory 512 Mbyte (ECC)
Disk subsystem SCSI–II & IDE
Disk capacity 2 GB & 10-30 GB
Control network Intel EtherExpress Pro (Fast Ethernet)
System area network PCI–SCI adapter D3202

Table 3.1 Configuration of the SMiLE cluster nodes.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����

����

����

����
����

���� �������� ���� ����

����

���� ����

����

����

����

D 515
Switch

Figure 3.1 SCI topologies used for the SMiLE cluster: ringlet (left) or switched (right).

it to exploit the full bandwidth capabilities of SCI and providing simple fault tolerance on
the connection level. On the downside, however, the switch solution has proven to be less
reliable due to hardware problems and adds extra latency to any transmitted packet as it
passes through the switch [66]. For this reason, and because the ringlet setup has been
available longer, all following experiments have been conducted using the ringlet topology.

Portability to Other Architectures

Even though this work has been done within the SMiLE project and therefore implemented
for and on top of SCI–based clusters, the concepts presented in this work are not restricted
to this specific technology. It presents a general concept on how to use the capabilities
and core mechanisms of general (non necessarily cache–coherent) NUMA architectures
to efficiently support true shared memory programming on such architectures. With these
properties, the proposed system represents a general approach for a NUMA–based global
shared memory programming environment and will therefore (hopefully) also find its ap-
plication beyond SCI.

36 Chapter 3. HAMSTER

3.3 The HAMSTER Layers
Based on the guidelines set forth above, the HAMSTER framework has been designed.
Figure 3.2 gives an overview of the complete system. It is built on top of a cluster of
commodity–off–the–shelf PC hardware running both Linux and Windows NTTM . The clus-
ter is interconnected using SCI [75, 92] which provides high bandwidth and low latency
communication in combination with remote memory access capabilities exhibited in the
form of HardWare DSM (HW–DSM). This hardware capability, which creates a NUMA
architecture, in combination with an additional software component responsible for the
memory setup and control, can be used to create an efficient hybrid hardware/software
global memory abstraction with NUMA characteristics, the SCI Virtual Memory or SCI-
VM [195, 193]. This technique is very similar to the VI approach [36] used in the message
passing world, as all communication can be handled in hardware without any OS or proto-
col overhead.

With this DSM system as the basis, HAMSTER provides several independent modules
for the core services needed by shared memory programming models. Most significant
are the modules for memory, synchronization, and consistency management. The first one
provides mechanisms for a controlled memory allocation and includes both the option to
transparently distribute the memory and to control the memory placement at allocation
time. This flexibility can be used to migrate SMP applications to a HAMSTER–based
system using the transparent memory allocation followed by an incremental memory layout
optimization using distribution hints.

The modules for coherency and synchronization management [196] provide all services
required to implement a coherent and race–free application. This includes mechanisms
to control the relaxed memory consistency of the SCI-VM and typical shared memory
synchronization constructs like locks and barriers. In order to allow the greatest possible
flexibility, these two modules are kept orthogonal to each other, i.e. synchronization does
not include a consistency guarantee and vice versa. The decision on how to combine these
two modules is left to the programming model implementation and can be tailored to its
specific needs.

In addition to these pure shared memory service modules, a separate module is respon-
sible for the task management, i.e. the distributed creation of activities and their control.
This also includes maintaining a global activity counter as well as the controlled termina-
tion of an application. The latter is especially important for the implementation of dynamic
task models as they are present in multithreading environments.

Due to the inherent connection between the concepts of virtual memory and processes,
the creation of programming models with a global virtual memory also requires some form
of global process abstraction. In the HAMSTER system, this is realized with the help of a
cluster control component that provides a global execution environment. It’s tasks include
the cluster configuration (i.e. the identification of participating nodes) and the creation and
management of a global node name space. In addition, the cluster control component also
provides a simple message passing mechanism for control messages, an instrument useful
for almost any implementation of a programming model.

3.4. Underlying Principles 37

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���
���
���
���

���
���
���
���

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

Kernel comp. HAMSTER comp.

SCI-VM: Hybrid DSM

VI-like
comm.
access

through
HW-DSM

Mem.
Mgmt.Mgmt.

Cons.Sync.
Mgmt.

Standalone
OS

Task
Mgmt.

NIC driver

for SCI clusters

Shared Memory application

Shared Memory programming model

HAMSTER interface
C

lu
s.

C
tr

l.

SAN with NUMA characteristicsCluster built
of commodity PC hardware

Figure 3.2 The HAMSTER framework for SCI–based clusters of PCs.

The services exported by all of these modules are combined in one single interface,
depicted in Figure 3.2 as the “HAMSTER interface” , providing all mechanisms needed
for the implementation of shared memory models in a structured and flexible way. This
allows the implementation of such models with minimal amount of effort and code. The
final applications, however, have no direct contact to the HAMSTER environment. They
run fully transparent on top of the respective programming model and its API, using the
benefits of the HAMSTER infrastructure without having to use yet another shared memory
API.

The result is an open and extensible framework for shared memory programming on
loosely coupled NUMA architectures. It combines a maximum of flexibility for applica-
tions running on top of it with a direct and low–overhead access to the interconnection
network.

3.4 Underlying Principles
Before describing the individual components of the HAMSTER system in the next chap-
ters, first a few common principles visible throughout the whole systems are introduced
here.

3.4.1 The Principle of Orthogonality
One of the key design principles of the HAMSTER system is the orthogonality between the
individual management modules introduced above. This means that no module is concep-

38 Chapter 3. HAMSTER

tually based on any other module or restricts the usage and/or the services provided by any
other module. This guarantees a maximal amount of flexibility for any higher layer within
the HAMSTER framework, as it prevents any inter–module constraints and side–effects.
Higher layers can then use any HAMSTER service independently at the finest possible
granularity to form the intended target programming model.

This orthogonality is achieved by clearly separating the services needed to implement
shared memory programming models into the respective management modules. This task
is not always straightforward as many typical constructs for shared memory programming
are anchored in more than one module. An example for this, which will be discussed in
greater detail in Chapter 6.3, is the combination of synchronization constructs and memory
consistency enforcing constructs, as is typically used in relaxed consistency models. In
such cases like this, the required functionality is broken up and independent services are
implemented in each module. These can then be combined in an easy and straightforward
way based on the level of and depending on the requirements of the individual programming
models. On the other side, this approach also allows any higher layers to use any of the
services alone without this combination resulting in the intended amount of flexibility.

In addition, this approach also allows an easier and safer implementation of the modules
themselves, as they can be treated as their own individual entities. Module extensions
and ports to new platforms can therefore be made faster as well as safer, thereby further
increasing the flexibility of the system itself.

This principle of orthogonality is clearly visible throughout the complete design and
implementation of the individual management modules. Chapter 5, which describes the
modules in detail, will discuss this further and illustrate the influence of this overall design
principle.

3.4.2 Resource and Performance Monitoring
In addition to providing the capabilities needed to implement various shared memory pro-
gramming models, it is also necessary to enable resource and performance monitoring on
top of the framework. For this purpose the HAMSTER system includes an implicit moni-
toring system. Each component collects statistics regarding various parameters during the
runtime of an application and allows higher layers (potentially all the way up to the user
if implemented by the programming model) to query them through a monitoring interface.
This can then be used to assess the key parameters describing the behavior of the executed
application and can help to improve its performance either through implicit or explicit op-
timization. The individual parameters and the respective interface will be discussed along
with the individual components in the following chapters.

Without such an implicit monitoring approach, the user would be required to annotate
each application separately in order to get some performance feedback. In addition, only
a restricted amount of information could be collected using this approach, as access to
internal mechanisms and/or parameters is not possible at the application level. The implicit
approach hence provides a more reliable and more accurate performance data collection
mechanism without the burden of any extra programming complexity for the programmer.

3.5. Summary 39

In addition to an application centered performance evaluation, which is discussed
above, this HAMSTER inherent statistics collection also allows the utilization of system
centered performance monitoring and steering using an on–line monitoring framework for
shared memory systems, as it is currently envisioned within the SMiLE project [111, 110].
This allows the collection and evaluation of performance data independent of any program-
ming model or application through an independent system. Such a system can then be used,
in combination with performance data drawn from other sources, to visualize the system’s
behavior using on–line visualization tools and/or to automatically tune the performance
using an adaptive runtime system cooperating with the respective HAMSTER modules.

It should, however, be mentioned that any performance monitoring can cause some
overhead that is simply wasted in scenarios in which no performance data is needed. To re-
duce this impact, the implementation of the statistics collection mechanisms within HAM-
STER is done in a very lean and careful way keeping the inferred overhead as low as
possible. In scenarios, however, where even this is not enough, the user is given the option
to turn any performance monitoring completely off using a compile–time switch during
the compilation of HAMSTER. This could be useful for production environments without
any automatic performance evaluation in which the absolute maximum in performance is
needed; in general, however, the collection of performance statistics is not harmful and
therefore enabled by default.

3.5 Summary
In order to tackle the two major problems currently associated with shared memory pro-
gramming, the abundance of different shared memory programming models and APIs and
the performance problems in loosely coupled systems, a comprehensive framework for
shared memory programming is required. This work presents such a framework, the HAM-
STER system, which enables the construction and use of almost any programming model
on top of a single core. It targets commodity clusters built of PC components intercon-
nected with SCI, a NUMA enabling SAN, and has been designed according to the follow-
ing design principles: flexibility with regard to programming model and application needs,
support of multiple operating systems, no bias towards a particular programming model,
and easy retargetability to new programming models enabling the creation and maintenance
of as many programming models as useful for a certain application scenario, as well as the
direct use of the NUMA features of the underlying architecture in order to eliminate many
of the typical DSM performance problems.

The result is a strongly modularized and therefore open and flexible framework which
offers the necessary services to enable the construction of potentially any shared mem-
ory programming model. These services, which will be discussed in great detail in the next
chapters, are grouped into orthogonal modules, each responsible for one main service class:
memory, synchronization, consistency, and task management. These modules are comple-
mented by a separate cluster control module responsible for the cluster management and
the global process abstraction.

All of these services are combined into a unified interface, called the HAMSTER in-

40 Chapter 3. HAMSTER

terface, which can then be used for the creation of arbitrary programming models without
major complexity, as will be demonstrated later. Applications can then be implemented us-
ing these HAMSTER–based programming models while being completely unaware of the
underlying shared memory framework. This ensures a full portability of existing shared
memory codes without code modifications to HAMSTER–based platforms which creates
the intended flexibility. This prevents the problems arising from the existence of a large
variety of shared memory programming models without having to impose a new unified
programming model, normally a long and tedious process.

Chapter 4

SCI Virtual Memory: Creating a
Hybrid–DSM System

The main prerequisite for shared memory programming is a fully transparent, global vir-
tual address space. This section describes a software layer that provides such a memory
abstraction on top of SCI connected clusters of PCs, the SCI Virtual Memory or SCI-VM.
In contrast to existing systems, it enables the user to directly benefit from the NUMA hard-
ware, present in SCI–based systems. This is achieved by a software component closing
the gap between the global physical memory provided by SCI in the form of HardWare
Distributed Shared Memory (HW–DSM) and the required global virtual memory. The re-
sult is a high performance hybrid hardware/software solution in which any data transfer
can be executed directly and transparently in hardware and only management and control
functionality remains in software.

4.1 State of the Art
The idea of providing a global virtual memory abstraction for clusters and thereby enabling
the use of shared memory programming models for NORMA architectures has inspired
researchers for almost two decades. Due to the missing hardware support in this kind of
architecture, however, a comprehensive software system is required to compensate for this
deficiency. This has led to the development of the so–called SoftWare Distributed Shared
Memory (SW–DSM) systems which enable a software emulation of the intended global
memory abstraction. The following section provides an overview of their basic principles
and the wide variety of existing DSM systems.

4.1.1 Idea and Concept of DSM Systems
The basic idea behind any DSM system is that a software component is used to track any
memory access to globally shared data of an application. This enables the software to
keep a copy of the global memory state and to determine when information needs to be
communicated between nodes in order to maintain the global virtual memory abstraction.
This translates the implicit communication present in the shared memory paradigm in the
form of global memory accesses to explicit communication and hence can be conducted
using some form of message passing. This approach is therefore suitable for all kinds

42 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

of architectures including clusters and NoWs and allows the implementation of shared
memory programming models on these architectures.

The key question in this approach is how to keep track of the memory accesses issued by
an application without having to modify the application itself since this would destroy the
intended transparency of the shared memory abstraction. The mechanism deployed for this
purpose in most current systems is the ability of modern processors and operating systems
to support page–based protection mechanisms. Based on these, global data areas can be
protected which leads to the respective page faults on any access to the data. A DSM
system can use page fault handlers to get a hold of these events and issue the necessary
communication; on read faults data has to be brought to the faulting node while write faults
lead to the marking of the page as dirty and/or the forwarding of the written information to
other nodes. Due to their basic property of relying on the protection of individual pages,
systems based on this approach are often referred to as page–based DSM systems.

The first system adhering to these principles is Ivy [136] (Integrated shared Virtual
memory at Yale) which was implemented by Kai Li and published in his PhD thesis in
1986 [135]. It was the starting point for many DSM systems which took this basic prin-
ciple and added new features or aimed at optimizing their performance. The result is a
large number of different DSM systems [169, 96], all with the same intent to bring shared
memory programming to NORMA architectures. The remainder of this section will present
these systems along with their properties and thereby provide an overview of the current
state of DSM research.

4.1.2 Memory Consistency Models for DSM Systems
The main problem connected with the SW–DSM approach is the high and fine grain com-
munication demand created by the forwarding of global memory accesses. Therefore, a
large amount of research has been invested in finding ways to reduce the communication
in DSM systems. One of the most promising ways, which is by now used in any state-
of-the-art DSM system, is a relaxation of the memory model [30]. It allows to defer the
communication of update information. This optimization has, however, an impact on the
application executed on top of such a system since information written by one thread is
not immediately visible by other threads. This needs to be taken into account during any
application development in order to guarantee a predictable and correct execution.

The role of memory consistency models

In order to give application programmers a formal way to reason about the correctness of
their codes, the behavior of memory systems can be defined using the concept of memory
consistency models [86]. They precisely characterize the behavior of the respective mem-
ory subsystem by clearly defining the order in which memory operations perform in the
specific memory system. As a result, users are provided with a set of constraints contain-
ing this information. The users can then build their application based on these constraints
resulting in a safe and predictable execution of the application.

The concept of memory consistency models and the idea of their relaxation is not only

4.1. State of the Art 43

Release Consistency
(RC)

Weak Consistency
(WC)

Sequential Consistency
(SC)

Processor Consistency
(PC)

Relaxed
Models

Strong
Model

Figure 4.1 Classification of memory consistency models; arrows point from stronger to
more relaxed models [86, 169].

relevant for DSM systems, but also applies to any multiprocessor shared memory environ-
ment. This has led to a significant amount of work in this area targeting both hardware and
software approaches [3, 137, 161].

General classification

A general and intuitive classification of memory consistency models can be found in [86].
It distinguishes models into four main types, as depicted in Figure 4.1: Sequential Con-
sistency (SC), Processor Consistency (PC), Weak Consistency (WC), and Release Consis-
tency (RC). These models and their relation to each other are discussed in the following.

� Sequential Consistency ([129])

Sequential Consistency (SC) was first described in [129] and is defined as follows:
“A multiprocessor system is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some sequen-
tial order, and the operations of each individual processor appear in this sequence
in the order specified by its program” . While this model provides for the program-
mer a very intuitive and easy–to–follow memory system behavior, it can have severe
consequences in terms of performance. The strict ordering requires memory sys-
tems to propagate updates early and prohibits many optimizations in both hardware
and compiler. Due to this, several approaches have been proposed to relax the con-
straints of Sequential Constraints with the goal to improve the overall performance
while limiting the impact on the programmer.

� Processor Consistency ([67])

This issue is addressed by relaxed consistency models which weaken the strict or-
dering constraints imposed by SC. A first example for such a model is Processor

44 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

Consistency (PC). Under this model, Readsare allowed to bypass previous Write
operations from other processors, while all Writeoperations are executed in program
order. However, both operations execute in order with respect to all other operations
from the same processor. This results in a scheme in which operations performed
within a node behave identical to SC, but global operations are relaxed.

� Weak Consistency Models ([47, 205])

Another way to relax Sequential Consistency is taken by Weak Consistency (WC)
Models. They divide memory accesses into standard and synchronizing accesses.
While the latter ones are guaranteed to be sequentially consistent across the whole
system, weak consistency models allow standard accesses to be reordered in relation
to each other. The exact reorder rules differ from one weak model to another. Ex-
amples are the DSB model [47], which is named according to its authors Dubois,
Scheurich, and Briggs, and TSO (Total Store Order), which is used within the Sparc
architecture [205]. A complete description of these models can be found in [86].
These models, however, require programmers to explictly take these consistency
models in their applications into account by introducing the synchronizing accesses.

� Release Consistency ([63])

The Release Consistency (RC) Model continues on the idea of Weak Consistency
by further dividing the synchronizing memory accesses into Acquiresand Releases.
Any standard shared memory access can be performed in arbitrary order, unless all
Acquireaccesses have been completed before any standard memory access and all
accesses have been completed before a Releaseaccess. This results in a scheme in
which an Acquireinformally allows the access to shared data from a particular node
and ensures that all data is up-to-date, while the Releaserelinquishes this access
right again and ensures that all memory updates have been properly propagated. By
separating the synchronization accesses in this way, this model efficiently allows op-
timizations like buffering and pipelining and thereby forms the basis for a significant
performance increase.

Release Consistency in DSM systems

Due to this large potential impact on the performance of the overall system, Release Con-
sistency models have been widely adopted in DSM systems. Depending on the actual
implementation of the consistency protocol within a specific DSM system, a few subtypes
can be distinguished which differ with regard to when communication is performed and
where data is located.

� Eager Release Consistency

With Eager Release Consistency (ERC), updates are propagated to remote nodes as
early as possible, i.e. at the time of a Releaseoperation. An example for a sys-
tem using ERC is Quarks [215], a system aiming at providing a lean implementation

4.1. State of the Art 45

of DSM avoiding complex high–overhead protocols. ERC is very suited for this
approach since, due to the early transmissions, only very little state needs to be pre-
served thereby reducing the work necessary for bookkeeping.

� Lazy Release Consistency

In contrast, Lazy Release Consistency (LRC) [116] performs any communication of
write updates as late as possible when the data is actually needed, i.e. during an Ac-
quire operation. While this allows unnecessary transactions to be avoided in cases
where released data is not used or overwritten by subsequent Acquire operations,
it leads to an increased amount of work to be done for bookkeeping. This stems
from the fact that released data has to be stored on the local node for future Acquire
operations until all nodes have requested the data or it is overwritten. Despite this in-
creased complexity, LRC has proven its capabilities in a variety of systems, including
TreadMarks [5], Shasta [189], and Munin [29].

� Home–based Lazy Release Consistency

The Home–based Lazy Release Consistency (HLRC) model [179] is a slight deriva-
tion of LRC and only differs in the fact that each shared data page is statically as-
sociated with a home location, instead of being unbound as in the standard LRC
case. This again allows some further optimizations with regard to both application
performance and overhead reduction through reduced bookkeeping [256].

Except some minor differences [116], all of these implementation options provide the ap-
plication programmer with the same relaxed consistency model and hence with the same
consistency constraints but their different implementations have an impact on the applica-
tion performance. However, none of these protocol implementations of RC is generally
faster than the others. The concrete performance strongly depends on the individual appli-
cations and their memory access patterns [256, 119].

New models from the area of DSM systems

The consistency models discussed above with their various protocol implementations are
dominating the area of DSM systems. Only few other projects investigate in new, more
relaxed consistency models with new consistency constraints exposed to the application.
The most prominent examples are Scopeand Entry Consistency, which are briefly discussed
below.

� Scope Consistency

Scope Consistency [97] is a generalization of Release Consistency. It is based on the
observation that in an RC implementation Acquireoperations guarantee the visibil-
ity of data written before the last Releaseoperation performed in the system. Scope
Consistency relaxes this constraint by grouping Acquireand Releaseoperations and
by restricting the constraint above to only operations within the same group. This

46 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

implicitly restricts the visibility to regions of memory protected by consistency oper-
ations within the same group, the so–called consistency scopes. As a result of this, a
scope consistency compliant DSM implementation is enabled to decrease the amount
of data that needs to be transfered during consistency operations reducing the DSM
overhead and providing higher overall performance.

This type of consistency model is e.g. used in JiaJia [83] and Brazos [209], both
state-of-the-art SW–DSM systems. JiaJia is implemented for UNIX based clusters
and deploys a home–based version of Scope Consistency, while Brazos has been
developed for Windows NTTM based architectures and supports active multithreading.

� Entry Consistency

In contrast to the implicit relation between consistency operations and data to be kept
consistent used in Scope Consistency, Entry Consistency [21] as it is implemented
in Midway [22] is built upon an explicit scheme. The user associates each lock
and its related consistency operations with regions of memory; only these regions of
memory are then kept consistent by operations of this lock.

While this scheme allows a more precise definition of the data which needs to be
transfered or updated during the individual operations and helps to avoid unnecessary
communication, it is burdened by the fact that programmers have to explicitly specify
the associated memory regions for each lock, often a complex and cumbersome task.

Support for multiple coherency models and protocols

As already mentioned above, no single consistency model or consistency protocol imple-
mentation has proven unrestricted superiority above the others. It strongly depends on the
individual application and its memory access pattern as well as on the properties of the un-
derlying architecture. This has inspired work towards DSM systems capable of supporting
multiple consistency models within one system [6, 30]. These are then adaptable to the ac-
tual constraints and behavior of the target application and can therefore deliver optimized
performance. Examples for systems with these capabilities are the Coherent Virtual Ma-
chine (CVM) [117], a framework for multiple consistency models, ADSM [160], a Release
Consistent system enabling the user to choose among different protocols on a per page ba-
sis, and Munin [29, 17], which is based on Lazy Release Consistency but allows users to
influence many of the protocol parameters.

4.1.3 Alternative Approaches
Beyond the optimization approaches for page–based DSM systems through various mem-
ory consistency models, DSM research has also focused on further developments. One
direction for this are efforts to decrease the distribution and sharing granularity. Page–
based systems are in this respect by their nature always fixed to full pages. In the case
of the x86 architecture [99] this amounts to 4096 bytes. This large and fixed granularity
often has an unfavorable impact on the overall performance of applications. It increases

4.1. State of the Art 47

the chance of false sharing, i.e. the colocation of unrelated data within a single sharing unit
(in this case within a page) and hence can lead to unnecessary communication if multiple
processors access these independent parts of data.

A reduction of the distribution and sharing granularity, however, can only be achieved
by abandoning the page–based implementation and by replacing it with a new mechanism
capable of transparently tracking the memory accesses of applications. One approach for
this is the annotation of load and store operations to global data directly in applications.
This information again provides the complete state of the global memory to the DSM sys-
tem and enables it to create a global virtual memory abstraction. In order to still maintain
the transparency of this abstraction for the user, the required program annotation can not
be part of the source code itself, but rather has to be introduced into the final application
without user interaction. This can be done with the help of binary instrumentation tools
which insert the necessary hooks for the memory control into the final application binaries
without any further user intervention.

Examples for systems built according to this type of memory subsystem are the Shasta
system [189] and CRL [102]. Using this approach, they are enabled to keep track of every
memory access independently (at least in principle) and can therefore adapt the sharing
granularity to the application needs without any restrictions.

A similar approach in the same direction has been undertaken by the Midway system
[254], although used here in combination with page–based mechanisms and in cooperation
with a special compiler responsible for adding code enabling a fine granular write detection.
This is done by setting dirty flags, which are then evaluated before the actual data transfer.
The result is a hybrid solution which reduces the sharing granularity without having to rely
on a complex full software scheme as the systems above.

Another approach to reduce the sharing and distribution granularity is the use of an
object–oriented approach in combination with a global object space. There, objects are
used as the basic unit of sharing and hence the granularity is automatically adapted to
the application’s data structures. In addition, objects also provide a natural way to track
data accesses since objects need to be dereferenced and located in the global object space.
Examples for such a systems are Millipede [100], an object–oriented DSM approach for
Windows NTTM –based clusters, and Orca [11], a parallel programming language based on
shared objects.

Besides these performance oriented research directions, some projects also aim at over-
coming functional deficiencies of traditional DSM approaches. One of them is that DSM
systems generally only support homogenous environments requiring each node in the sys-
tem to be of the same architecture and often also of the same speed. The Stardust [28] and
the Mairmaid system [255] try to overcome this by explicitly targeting heterogenous cluster
and NoW architectures. This leads to several problems, most severely the potentially dif-
ferent data formats on different architectures. The two systems use different approaches to
solve this problem: while Stardust relies on explicit user annotations, the Mairmaid system
uses implicit type specifications exhibited through the loader and linker facilities of the un-
derlying operating system. Both approaches provide the DSM system with type definitions
for any shared data and thereby enable a transparent conversion.

48 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

VIA−like
networks

Memory
Channel

Hardware
Support

Performance

pure SW
DSM

CC
NUMA

Shrimp

SCI
T3E

S−COMA

Ethernet

Figure 4.2 Hardware complexity vs. Performance (after [201]).

In addition to the support for heterogenous architectures, the Stardust system also con-
tains mechanisms for application checkpointing [27]. This allows the persistent storage of
the complete state of the application including the global memory footprint which can be
reactivated after a system or node failure. The Stardust system therefore is part of the class
of recoverable DSM systems. A more complete overview over this class of systems can be
found in [162].

4.1.4 Exploiting Existing Hardware Support
The DSM systems discussed so far rely in their implementation solely on communication
based on standard protocols like UDP/IP or TCP/IP. While this decision offers a clean
and portable approach for general loosely coupled systems, it fails to sufficiently exploit
the available capabilities of novel architectures which often feature additional hardware
mechanisms. These mechanisms could be exploited to increase the efficiency of DSM
systems.

Figure 4.2, which is created after [201], illustrates this approach. With rising hardware
complexity in the underlying target architecture, DSM systems implemented on top of them
are expected to gain performance (if the hardware capabilities are properly exploited). The
spectrum of possible hardware support can range from standard cluster technologies, i.e.
with no special hardware support at all, all the way to full CC–NUMA systems which in-
clude the DSM support in both their hardware and their global operating system, as is the
case in the SGI O2000/O3000TM series [131]. This spectrum also includes all kinds of sys-
tem area networks (SAN) with user–level communication and NUMA–based architectures,
which are the focus of this work.

Several projects have tried to exploit such additional hardware support to implement
DSM systems. The most prominent examples among them are SHRIMP [19, 18] and

4.1. State of the Art 49

CASHMERE [212, 125]. In SHRIMP, a custom–designed network adapter with an auto-
matic global update functionality is used, while Cashmere utilizes DEC’s Memory Channel
[65], a high–performance SAN with remote write capabilities. In both cases, the remote
memory access capabilities can be used to implement update operations in a very direct
and efficient way [213, 16] which has proven to be advantageous for the overall system
performance.

Both systems, however, miss one important feature — remote reads. This leads in
both cases to an implementation that exhibits the same base concepts as in traditional
DSM systems: information has to be brought to nodes using explicit communication at
page granularity. Only updates can be performed in a more direct way using the hardware
support, although still in a manner suited for the page–based information retrieval. Such
an approach therefore leads to relaxed consistency models in a more or less traditional,
protocol–oriented fashion even though they have to be especially adapted to the implicit
remote updates.

NUMA architectures, as they are e.g. present in the form of SCI–based clusters (see
Chapter 2.3), provide the ability for both remote write and read operations and hence have
the capabilities to overcome the need for explicit communication. Their use, however, is
also connected with some implementation complexity, as the remainder of this chapter will
show. Therefore, many DSM systems have been implemented for these architectures based
on the traditional page–based mechanisms, but exploit the NUMA capabilities for a fast
messaging subsystem or for an easier global memory management. Examples for these
kind of systems based on SCI are Madeleine [10], NOA [151], a DSM system developed
by the Lund University in Sweden [114], the HPPC–SEA DVSM library [40], and the
SVMlib [174].

Only few projects aim at a direct utilization of SCI’s NUMA capabilities for a DSM
system. The SciOS system, developed in cooperation between the University of Copen-
hagen and INRIA [122, 123], provides a global System-V memory abstraction which is
mainly based on a traditional page–based SW–DSM approach, but also enables the use of
direct NUMA in some special cases. In contrast, the Yasmin system [25, 180] implements
a global memory abstraction based only on SCI’s NUMA capabilities. However, it merely
resembles a thin mapping library for SCI remote memory and is restricted by the large
granularity of the SCI mappings (see Chapter 2.3.2). In addition, the system does not con-
tain any mechanisms enabling the use of caches, resulting in the caches being turned off, or
allowing the control of the memory coherence leading to increased application complexity.

The system discussed in this work, the SCI Virtual Memory or SCI-VM [195, 198],
takes the idea of hardware support one step further by directly relying on the NUMA–like
shared memory support in SCI and avoiding a software scheme based on page replication of
differential update protocol. This helps avoid typical performance problems of traditional
DSM system like false sharing and extensive protocol overhead. In addition, the missing
cache coherency in the system is compensated based on the concept of relaxed consistency
models which have been adapted for the use on NUMA–based systems. Therefore, the SCI-
VM represents a novel approach in the DSM area closing the gap between systems with
modest hardware support in the implementation of the DSM protocols and CC–NUMA

50 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

systems with full hardware and operating system support, as can be seen e.g. in the SGI
O2000/O3000TM [131] or the HP/Convex ExemplarTM [35].

4.2 The SCI-VM Design
The SCI Virtual Memory (SCI-VM) is based on two fundamental building blocks, the
SCI support for hardware DSM in NUMA fashion and the concepts for a global memory
management borrowed from traditional software DSM systems. By combining these two
concepts, the system is capable of merging the global physical memory provided by SCI
with the global virtual memory abstraction required for shared memory programming. The
result is a new hybrid hardware/software DSM system taking full advantage of the SCI
hardware facilities.

4.2.1 Building Block 1: SCI–based Hardware–DSM
One of the main design goals of the SCI-VM is the direct utilization of the HW–DSM
provided by SCI rather than deploying a traditional SW–DSM system with all its prob-
lems like false sharing and complex differential page update protocols [143]. Only this
exploitation of HW–DSM enables the SCI-VM to benefit from the special features and the
full performance of the interconnection technology. Additionally, the implementation of
synchronization primitives should directly utilize atomic transactions provided by SCI to
ensure greatest possible efficiency.

4.2.2 Building Block 2: Software–DSM Systems
Unfortunately, SCI alone can not provide a global virtual memory abstraction as required
by shared memory programming models. Both its hardware and software components
target only the utilization of large, contiguous, and permanently pinned memory segments.
In order to overcome these limitations and to reach a fully transparent implementation of
a global virtual address space, the SCI remote memory capabilities have to be augmented
by concepts and mechanisms well known from traditional software DSM systems, like
data distribution at page granularity, on–demand access to remote pages, and a relaxed
consistency model [169].

4.2.3 Combining Both Building Blocks to the SCI-VM
Together, the building blocks described above allow the formation of a transparent virtual
address space. The memory resources are distributed at the granularity of pages and these
distributed pages are then combined into a single global virtual address space. In contrast to
purely software based systems though, no page has to be migrated or replicated. All remote
pages are simply mapped using SCI’s HW–DSM mechanisms (described in Chapter 2.3.2)
and then accessed directly. Due to the large amount of necessary mappings (in the worst
case one for each remote page), these mappings are handled on demand with a similar
concept as realized in paging mechanisms of modern operating systems. The SCI-VM

4.3. Static vs. Dynamic Memory Management 51

�� ��

��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

���
���
���
���
���

���
���
���
���
���

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

Virtual address space on A Virtual address space on B

Physical memory on A Physical memory on B

PCI address space on A PCI address space on B

SCI physical address space

Abstraction of a global distributed process

Threads Threads

Team on A Team on B

Node A Node B

Figure 4.3 Principal design of the SCI Virtual Memory.

therefore represents a cluster–aware extension of an operating system’s virtual memory
management.

This concept is further illustrated in Figure 4.3 for a two–node system. In order to build
a global virtual memory abstraction, a global process abstraction has to also be built with
team processes on each node as placeholders for the global process. These processes are
running on top of the global address space which is created by mapping the appropriate
pages from either the local physical memory in the traditional way or from remote memory
using SCI’s HW–DSM.

The mapping of the individual pages is done in a two–step process. First, the page
has to be located in the SCI physical address space from where it can be mapped in the
PCI address space using the address translation tables (ATT) of the SCI adapter cards.
From there, the page can be mapped with the help of the processor’s page tables into the
virtual address space. Problematic is the different mapping granularity in these two steps;
while the latter mapping can be done at page granularity, the SCI mapping granularity
depends on the configuration of the PCI–SCI adapter and can vary from 4 Kbyte or 1
page segments to 512 Kbyte or 128 pages segments. As this setting is done during the
initial setup of the adapter cards and can not be influenced during the runtime of an SCI–
based application, the SCI-VM layer has to overcome this difference. For this purpose, it
manages the mappings of several pages within one single SCI segment. The mappings of
the SCI segments themselves are managed with a dynamic, on-demand scheme very similar
to paging mechanisms in operating systems.

4.3 Static vs. Dynamic Memory Management
The implementation of the basic design above can be either be done by using static map-
pings during the memory allocation time or by deploying a fully dynamic memory man-

52 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

agement scheme. Both exhibit the same functionality to the application, but have different
properties with respect to implementation complexity and resource management. There-
fore, even though this choice is transparent to the rest of the HAMSTER framework, both
options are introduced and discussed below.

4.3.1 Static Memory Mappings
The first option to implement the SCI-VM is to create the necessary mappings in both the
network’s HW–DSM mapping tables and in the processor’s page table during the alloca-
tion of a piece of global memory and then keep them untouched until the application is
terminated. This results in a static scheme in which any memory location within the global
address space is accessible at all times. This also includes the necessity to pin down any
physical memory backing the global virtual address space and thereby preventing it from
being swapped out to secondary storage. Otherwise, the static mappings via SCI would
point to invalid memory locations resulting in unprotected accesses to physical pages not
belonging to the SCI-VM controlled process.

Allocation procedure

The core of such an implementation can be found in the actual allocation routine since any
physical memory is allocated and all mappings are created there. This is done in a five
step process, which is depicted in Figure 4.4. First, the necessary piece of virtual address
space is reserved. This is done equally by all nodes using a globally consistent counter
that guarantees that all nodes are provided with the same piece of virtual memory in their
respective teams. In the next step, the amount of memory (in terms of numbers of pages)
needed by the local node to contribute to the global memory abstraction are computed and
then allocated in step three.

In step four, a globally shared table is used to store an entry for each page contained
within the new virtual address space. Each node then enters the physical addresses along
with its own network ID for all pages it contributes to the newly allocated virtual address
range. During this step, the decision is made on how the physical memory is to be dis-
tributed among the participating nodes. By default, the SCI-VM uses a round–robin scheme
for the page placement, but this can be overwritten by the caller of the allocation routine
and replaced by a new distribution policy. More details on this are provided in Chapter
5.1.3. The step is finished by a global barrier across all nodes to ensure the writing of the
page table is complete and all information from all nodes has been entered.

After the completion of the barrier, all nodes have access to this page table with a
complete description of any page within the newly allocated global virtual address space.
They can now start to map all pages into their location within the local team’s virtual
address space. During this, any page located on the local node is simply mapped using the
MMU while any remote page is first mapped via the network mapping mechanisms and
then by the MMU.

At the end, each team has the complete new piece of virtual address space mapped and
accessible for the rest of the process runtime. No further management calls have to be

4.3. Static vs. Dynamic Memory Management 53

Node BNode A Global
data

Global table
with page

information

Next free virtual
memory region

BarrierBarrier

Create mappings
for all pages

Write local pages
in global page table

Physical Memory
Allocation

Compute amount
of local memory

Virtual Memory
Allocation

Virtual Memory
Allocation

Compute amount
of local memory

Physical Memory
Allocation

Write local pages
in global page table

Create mappings
for all pages

SCI ID Phys. Addr

Figure 4.4 Static memory allocation procedure.

made; the new memory can be accessed from the allocation time on by simply using stan-
dard read and write operations and any access to remote memory is transparently relayed
to the respective node by SCI.

Implementation requirements

One of the main advantages of this static SCI-VM scheme is that the implementation com-
plexity is very low and also the required operating system services for such an implementa-
tion are very limited. Basically only two key functions need to be provided: the allocation
of pinned physical memory and the mapping of arbitrary physical pages into the virtual
address space of a process at page granularity. These two services suffice for the imple-
mentation of the static scheme; the allocation is required to allocate physical pages on the
local node that are prepared to be accessed in a safe way via SCI and the mapping routine is
used to merge local and remote pages into a single virtual address space for the local team.

Besides these operating system services, a direct access to the hardware mappings
within the SCI adapter are also needed to allow an access to remote memory resources
at the granularity of single ATT entries. This should be part of the respective network de-
vice driver to ensure a clean cooperation of the SCI-VM with other applications using the
network device at the same time.

54 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

Tradeoffs

This static implementation scheme closely matches the memory allocation scheme of many
shared memory applications. A large piece of memory is allocated during the initialization
of the application, maintained and accessed during the whole runtime, and not freed before
the end of the application. In addition, many applications, especially those from the area
of scientific or numerical computing, aim at not using any operating system driven pag-
ing since this normally has a large negative impact on performance and therefore do not
require a support for memory paging. Together with its low implementation complexity,
this scheme therefore provides a good tradeoff point and was therefore chosen for the first
implementation of the SCI-VM.

4.3.2 Dynamic Global Memory Management
The static scheme presented above, however, misses a few characteristics that are desirable
in order to provide a more efficient resource management and more flexibility in page
placement. This can only be achieved by tightly integrating the SCI Virtual Memory into
the virtual memory management of all operating system instances in the whole cluster.
This leads the way to a global virtual memory management across node boundaries with
a global resource management. Such a system solves all of the shortcomings described
above in connection with the static scheme.

Global virtual memory management

Even though this dynamic memory management scheme provides the same functionality
to the user, its internal structure is radically different. In contrast to the static scheme, the
allocation procedure is very lean and contains only a small part of the overall implemen-
tation. It is only responsible for reserving a new piece of virtual memory and protecting
it using the virtual memory management facilities. It does not perform any allocation or
mapping of memory resources at this time.

The actual functionality of the SCI-VM under this scheme is executed at runtime. Ac-
cesses to the global virtual address space create page faults which will be handled by the
system. Figure 4.5 shows the main activities carried out by the SCI-VM in case of such
a fault event: first it is tested whether the faulting address actually belongs to the virtual
memory region under SCI-VM control. If not, the fault is handed back to the operating
system and from there to the default handler. If the address is part of the SCI-VM, the
home node of the faulting page is queried either using a global page information structure
or based on a static page distribution that was specified during the allocation process.

If the local node is the home node, the page can be treated as any conventional page of
the local memory and hence the control is handed back to the operating system for further
page fault handling. In case a page from a remote node has been accessed and no mapping
to that page has been established yet, the request is sent to that particular node. This node
is then responsible for ensuring that the requested page is available in memory using the
same principle mechanism. Once this has been accomplished, the page can be mapped on

4.3. Static vs. Dynamic Memory Management 55

Swap out
Event

Handled
by OS

Global page
information

Page-fault
Event

SCI-VM
address

Determine
home nodeHandled

by OS

Handled
by OS

Invalidate
all remote
mappings

No Yes

No YesPage
local

Send request
to home node

Perform
remote map

Figure 4.5 Activities triggered by a page fault or swapping event.

the node on which the fault occurred, allowing full access from that particular point of time
on.

As all allocation and mapping functionality is performed by the operating system, all
pages will be allocated from the pool of pageable pages. This leads to the problem that
pages might be swapped out to disk while SCI memory mappings still exist from other
nodes. This would leave them stale and risk wrong write accesses to memory not partici-
pating in the execution of the HAMSTER system. In order to solve this, a dynamic scheme
also has to create a suitable hook into the virtual memory management layer that allows it
to be notified on page–out events of SCI-VM pages. This can then be used to invalidate all
SCI mappings to the page that is about to be evicted from the local memory allowing a safe
execution of the application even without this page being present.

Implementation requirements

In contrast to the static approach, the dynamic memory management requires a much tighter
integration into the operating system and therefore also a more versatile interface to core
services of the virtual memory management. Besides the actual mapping mechanisms that
are also required by the static scheme, the dynamic scheme needs to be able to insert hooks
for callbacks on events like page faults and page swap–out. While the first one is given
in most operating system and is normally also available in user mode (in UNIX systems
in the form of signals), the latter event is generally not available. Therefore an additional
kernel extension needs to export this functionality in order for the dynamic scheme to be

56 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

implemented.
In addition to these kernel oriented requirements, a dynamic scheme also relies on

a much more complex communication infrastructure. Unlike the static scheme, which
basically only requires the existence of a user–level barrier at allocation time, the dynamic
option requires communication at arbitrary times during the program execution at both user
and kernel level. This further increases the complexity of the implementation.

Tradeoffs

The discussion above has shown that the main drawback of the dynamic scheme is the
rather high implementation complexity, which comes from the necessary deep integration
with the operating system and the required additional kernel component. On the positive
side, the dynamic scheme enables a full integration into the operating system’s virtual mem-
ory management and therefore allows the utilization of swappable memory as well as an
on–demand page allocation and node assignment. These advantages lead to a more efficient
resource utilization without the need to split the physical memory in pinned SCI segments
and standard physical memory. In addition, it eases the implementation of dynamic and
adaptive page placement schemes since the decision where to place a certain page can be
performed at runtime and can take observations about the application’s runtime behavior
into account.

4.4 Underlying Task and Execution Model
Independent of the implementation, the design of the SCI-VM directly imposes a specific
task and execution model on the final system. Each node has to execute one team process
with one or multiple threads. These processes are then combined into a global process
abstraction visible to the user of the SCI-VM. In order to achieve such an abstraction of a
single process, any team is also required to load and execute the same binary. Only this
provides a consistent address space layout across all nodes, being one of the prerequisites
to form a transparent global process abstraction.

Based on this task model, an SCI-VM based application is started by executing the bi-
nary on each node in the cluster. During the initialization of the application, the individual
processes are transformed into teams and merged into the intended global process abstrac-
tion. Initially, each team executes one thread of activity that also continues the execution
of the binary on each node after the initialization. This initial thread per node can then be
used to spawn further threads and to carry out the actual computation across the complete
system.

Even though the SCI-VM is based on such a rigid and static task model, it can serve
as the basis for more complex and dynamic models which will be described in Chapter 5
and Chapter 6. It does therefore not restrict the flexibility of the HAMSTER system with
respect to the intended ability to implement shared memory programming models with
potentially quite different task models.

4.5. Integrating the SCI-VM with Existing SCI–based Platforms 57

4.5 Integrating the SCI-VM with Existing SCI–based
Platforms

The approach presented above represents a direct extension of the virtual memory concept
from node local memory resources to global ones. Its implementation therefore requires
a tight integration into the existing software infrastructure. Specifically, the SCI driver in-
frastructure responsible for the SCI address translation mechanism and the virtual memory
management of the underlying operating system need to be considered in this endeavor.

4.5.1 SCI Driver Integration
As described in Section 2.3 users, by default, get access to SCI through a special low–level
user API called SISCI API [64]. Within this API, shared memory management is done on
the basis of individual coarse grained segments, each with its own address space. This is not
sufficient for a concept like the SCI-VM. Here, fine-grained mappings at page granularity
and the inclusion of mappings into a given virtual address spaces are required. In addition,
the memory management within the SISCI API is always done with global operations in
order to guarantee a global visibility and availability of all segments. This, however, is very
costly and induces a high overhead. This is also not desirable in the SCI-VM concept.

Due to these reasons, an implementation of the SCI-VM requires a more direct access
to the hardware on the SCI adapter cards responsible for remote memory mappings. In
order to allow for this, a special extension has been integrated into the existing driver in-
frastructure provided by Dolphin, more specifically the Interconnect Resource Manager
(IRM), the lower–level driver with direct access to the hardware. This extension, called Di-
rect ATT extension, allows programs to directly allocate, configure, and release ATT entries
as well as to directly control the remote memory mappings. As those operations obviously
are potentially unsafe since they allow to access arbitrary memory locations throughout
the cluster, they are implemented as a kernel level API and only for testing and prototype
purposes exported into user level.

This extension is also implemented in a way that other programs running on top of the
SCI driver infrastructure are not influenced by an SCI-VM application. This ensures a full
interoperability of the HAMSTER environment with the existing infrastructure and also
enables HAMSTER itself to use the existing user–level parts of the SCI driver stack for its
own purposes, like configuration segments and interrupt management.

4.5.2 Operating System Integration/Extension
The integration of the SCI-VM into the virtual memory management of the underlying op-
erating system imposes further difficulties. The mechanisms offered by the public APIs of
current operating systems do not provide the page–level granularity and low–level access
required for the SCI-VM, even though the necessary routines have to be present as internal
mechanisms within the operating system’s core. It is therefore necessary to use these inter-
nal mechanisms or add additional functionality to the operating system kernels to guarantee
a full integration into the virtual memory management. As this is very dependent on the

58 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

concrete underlying operating system, the low–level part of the SCI-VM implementation
also varies greatly between the different supported platforms.

Windows NT/2000 TM

The first version of the SCI-VM was implemented on top of Microsoft’s Windows NTTM

4.0 operating system [146]. As is the case with most commercially available operating
systems, the source code is not freely available, thereby imposing a significant challenge
for the implementation of systems like the SCI-VM. It prohibits a direct access to low–
level mechanisms of the kernel beyond the exported and documented API for kernel–level
drivers which is not designed to allow a fine–grain access to memory mappings or to enable
callbacks on important system events like page faults or disk swap requests.

Therefore, the dynamic version of the SCI-VM can not be realized on top of this plat-
form, and the implementation of the static version can also not be done in a clean coop-
eration with the operating system due to the missing mapping facilities. The only way to
overcome these shortcomings is to bypass the operating system and to perform the neces-
sary mappings at page granularity directly at processor level building on the mechanisms
of the CPU’s memory management unit [99].

This approach, however, has some severe consequences for the OS. As it is completely
bypassed and therefore unaware of the manipulations, its stability and robustness is im-
paired due to conflicts between the SCI-VM and the virtual memory management of the
underlying operating system. An important design guideline used throughout the complete
SCI-VM implementation is therefore the hiding of modifications done by the SCI-VM from
the operating system and the use of distinct resources wherever possible. Based on several
experiments using the current version of SCI Virtual Memory concepts, Windows NTTM has
proven to exhibit an acceptable stability enabling extensive experiments. The critical point
during the execution of a program using direct page mappings is its termination, especially
with several DLLs1 involved. While freeing a process’s memory resources, Windows NTTM

under certain circumstances also attempts to free the resources controlled by the SCI-VM
it is not aware of, thereby leading to an unpredictable system behavior.

Linux – Static memory mappings

Even with access to the source as is possible on the second supported platform Linux,
the implementation of a dynamic version with full support for a pageable, global memory
and dynamic remote page requests, is very complex. Therefore, a static version has been
implemented, however in contrast to the first scenario, in cooperation with the operating
system rather than working around it. Any page mapping required by the SCI-VM is done
using low–level routines of the Linux kernel and therefore does not cause any conflict. The
access to these routines is enabled through a special kernel driver module developed for the
static version of the SCI-VM which exports this functionality into user–mode. As a result,
the static version of the SCI-VM on top of Linux, even though not fully integrated into the

1Dynamic Link Libraries – Windows NTTM ’s counterpart to shared libraries

4.6. Memory Coherency of the SCI-VM 59

memory management as a dynamic SCI-VM solution, represents a stable implementation
of the concepts discussed above.

Linux – Dynamic global memory management

Using the open source approach of Linux, a fully dynamic version of the SCI-VM con-
cepts can also be implemented. This endeavor is further simplified, as the virtual memory
management of the Linux kernel allows to set callbacks for various events, including the
swapping of pages [184] . Together with the available mechanism to register callbacks for
page faults, all necessary prerequisites for the implementation are available.

In order to ease the implementation, parts can be implemented in user level. Looking
back at Figure 4.5, which provides an overview of the internal procedures that need to be
implemented, the dynamic scheme can be split into two parts: the handling of page faults
leading either to the creation or a swap–in of a page and the invalidation of mappings in
case of a swap–out event by the operating system. While the latter requires a kernel–level
implementation since the swap out callback is only available inside the kernel, the former
part can easily be implemented in user level using the application level fault facilities.

Currently, the dynamic scheme for Linux is still under development and will be avail-
able soon. Therefore, all following experiments are based on the static schemes for both
Windows NTTM and Linux. However, as explained earlier, the memory characteristics of
both schemes are the same from the viewpoint of applications running on top. This guar-
antees that the results of the following experiments give a clear indication of the overall
system performance independent of the concrete implementation of the SCI-VM.

4.6 Memory Coherency of the SCI-VM
The concept described above directly relies on the hardware DSM provided by SCI and
therefore any application running on top of it is heavily influenced by its performance.
Hence, it is a fundamental necessity to optimize the SCI memory performance. Similar
to the traditional DSM approaches discussed above, this can also be done within the SCI-
VM by applying relaxed consistency models. These allow the reduction of the amount
of network transactions, or more accurately in this context remote memory accesses, and
therefore have the potential to improve the performance of applications running on top of
the global memory abstraction.

The mechanisms available to reach this goal are, however, fundamentally different. As
discussed above, the traditional DSM systems control the complete virtual memory and
all communication to achieve the global memory abstraction. Therefore any memory op-
timization is also implemented in software giving the DSM system the full control over
the communication carried out within the system. In a Hybrid DSM approach as seen
within the SCI-VM, however, communication is done implicitly by the hardware without
software influence. While this increases the efficiency of the communication by reducing
overhead, it also limits the possible optimizations that can be applied to hardware mecha-
nisms available in the memory pipeline of the underlying architectures. These mechanisms

60 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

are introduced below, together with their system–wide impact on the memory coherence of
the SCI-VM and how to deal with it to guarantee a correct program execution.

4.6.1 Memory Optimization
Both the SCI adapter and the underlying PC architectures offer possibilities for such op-
timizations. They all deal with transparent buffering or prefetching of remote data and
therefore have the potential to reduce the network traffic significantly.

Additional buffering in the SCI adapters

The PCI–SCI adapters by Dolphins ICS [138] offer a large range of parameters to control
the memory traffic for both read and write operations. By default, these settings are set in
a very conservative way to minimize network traffic and to optimize for message passing
communication. It provides, however, several features that can be used to improve the
performance of a distributed virtual memory system.

For write operations, the Dolphin adapters introduce the concept of streams which allow
write accesses to consecutive addresses to be merged into longer network transactions. The
current version of the adapters provide eight concurrent stream registers, allowing for up to
eight series of accesses to be collected independently.

Most important for read operations are speculative buffering and aggressive prefetch-
ing. Both techniques allow implicit prefetching of consecutive address ranges in hardware
by the SCI adapter card [44]. Enabling speculative buffering initiates the transfer of whole
64 byte packets and speculatively holds this data in the stream buffers on the Dolphin SCI
card to be used by future read requests. The aggressive prefetching utilizes a similar tech-
nique but fetches the next consecutive 64 byte block and loads the data into another stream
buffer in the same manner. Obviously, both techniques increase the network traffic on the
SCI network and could result in the transport of potentially unused data. Nevertheless,
they can improve the overall performance of the system, as can be seen in the experiments
presented at the end of this chapter.

Caching of remote memory

These settings alone, however, are not enough to guarantee a high performance of the over-
all system. Especially the long latency of read operations has a drastic impact on the overall
performance of shared memory applications. One way to reduce these latencies is to buffer
or cache the result of remote reads on the local node avoiding many remote memory ac-
cesses and their latency penalties. This can be achieved by enabling the standard processor
caches for remote memory regions, an option normally disabled due to the missing cache
coherency in current PCI–SCI bridges (see also Chapter 2.3.3).

In the x86 architecture based on Intel CPUs, the cache settings are controlled using the
memory type range registers (MTRRs) of the processor [99]. With these registers, up to
eight individual physical memory regions (including the I/O space of the PCI bus used by
SCI adapters for remote memory mappings), can be defined and associated with different

4.6. Memory Coherency of the SCI-VM 61

write

state
after write

Memory and Caches
consistent

1t 2t

SCI
map

SCI
map

�� �� ��

������

��Mem Mem

Inconsistent

CPU CPU CPU CPU

CacheCacheCacheCache

Figure 4.6 Potential cache inconsistency when caching remote memory.

cache types. For this purpose, the Pentium IITM processor offers five different cache types
ranging from uncacheable and strong ordering to write back caching with speculative loads
and weak ordering. To provide the best performance, a PC’s main memory is normally set
to use the latter option. This setting for SCI memory, however, causes problems on the PC
bus system because the PCI bus bridge does not allow write back operations from caches
to be delayed. Exactly this can happen though when an SCI transaction fails and has to be
retried by the SCI hardware. The result is a deadlock on the PCI bus and a halt of the whole
machine [101]. To prevent this, only write through caching can be used for the SCI address
range.

4.6.2 Impact on Memory Coherency
All of these optimizations of the memory system influence the memory coherency of the
overall system. This stems from the fact that remote data is stored in various buffers
throughout the whole system without being held consistent. Especially visible is this im-
pact with the caching of remote memory in absence of a hardware cache coherence proto-
col. As shown in Figure 4.6, updates on local memory are not propagated to remote caches
leaving them with stale values. To avoid any negative impact on the execution and the cor-
rectness of the application in such scenarios, it is necessary to deploy additional software
mechanisms controlling the memory consistency.

These mechanisms need to provide the functionality to manage the utilized buffers and
caches in a way that allow the control over their contents. This means that it has to be
possible to flush and/or invalidate these buffers at any time and with that to either propagate
local data through the network to its destination or to delete stale data on the local node.
All of these mechanisms are provided within HAMSTER within the so–called consistency
management module which is discussed on more detail in Chapter 5.2.

In summary, this leads to a straightforward extension of the hybrid character of the
SCI-VM to the memory coherency control. While the actual memory model is still fully
implemented in hardware, the control is done in software. This hybrid scheme differs sig-
nificantly from the consistency enforcement used in SW–DSM systems; there the actual

62 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

communication and hence the propagation of memory state is triggered by the DSM soft-
ware at well–defined times. In the hybrid scheme discussed here, on the other hand, the
communication is performed implicitly by the system without user control. The consis-
tency enforcing mechanisms merely resemble memory barriers guaranteeing that commu-
nication has been completed at code positions requiring a consistent view on global data.

4.6.3 Towards Relaxed Consistency Models
By utilizing the memory optimizations discussed above and by combining them with the
appropriate usage of the consistency enforcing mechanisms, the SCI-VM is capable of
implementing a large variety of different consistency models. However, not all consistency
models discussed in the current literature (see Chapter 4.1.2) can be implemented due to
restrictions inherently embedded in the underlying hardware architecture.

The most severe restriction is implied by SCI’s property not to guarantee in–order
packet arrival. Therefore, write and read operations can overtake each other destroying
the consistency constraints of models, which directly connect synchronization aspects with
individual read and write operations. Examples for such consistency models are e.g. Se-
quentialand Processor Consistency[86]. They can therefore not be implemented on top
of the SCI-VM. Less restrictive approaches, like e.g. Weak Consistency[86], which intro-
duce separate transfer and consistency operations can, however, be implemented within the
SCI-VM, as the distinct consistency operations provide the necessary hooks to integrate
the consistency enforcing mechanisms.

One further restriction is connected to consistency models which relate consistency to
individual memory regions, like e.g. Entry Consistency. Such a scheme can not directly
be transfered to the SCI-VM because the necessary invalidation or flush of the buffers can
only be performed globally and not on selective address regions. It is, however, possible to
provide a consistency model with the same guarantees to the application by replacing any
selective flush or invalidation by a global one. While this does not exploit the full potential
of optimizations possible with such a model, it still effectively provides a suitable execution
environment for the respective applications.

Besides these hardware imposed restrictions, the SCI-VM system is in principle capa-
ble of implementing any kind of consistency model. In addition, the concrete consistency
model is not fixed by the SCI-VM itself, but can rather be determined independently for ev-
ery target programming model implemented on top of HAMSTER. This satisfies the main
design goals of HAMSTER and contributes to the intent of enabling the implementation of
as many programming models as possible.

4.7 SCI-VM Performance
As the SCI-VM forms the common core for any programming model implemented within
the HAMSTER framework, its performance is crucial for any application utilizing the
framework. This chapter therefore provides a first insight into its performance focusing
on the low–level aspects and the impact of the memory optimizations discussed above.

4.7. SCI-VM Performance 63

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Transfer size [Bytes]

M
B

/s
Max
W-WC-OC
W-WC-C
W-WT-C
W-UC-C
W-WC-R
W-WT-R
W-UC-R

Figure 4.7 Write performance on SCI-VM memory.

Further experiments will be presented in the following chapters further highlighting the
performance details of this core component.

4.7.1 Basic Memory Performance
The first set of experiments assesses the raw bandwidth available on remote memory allo-
cated through the SCI-VM. This is done using various memory regions with different cache
policies and with two different memory access patterns: consecutive and random accesses.
The result for write operations is shown in Figure 4.7. In this figure, lines denoted as WT
have been measured using write through caching (necessary to enable read caching), while
WC denotes write combining and UC stands for uncached (the latter two do not contain
any read caching). The letter at the end indicates the memory access pattern with C for
contiguous and R for random accesses. In addition, the figure contains two further curves:
Maximal and W-WC-OC. The former one stands for the peak bandwidth available on the
cluster and was measured using the official SCI benchmark program provided by Dolphin.
The memory model used for this experiment is also write combining, the default model
of the IRM and the SISCI API. For the W-WC-OC curve the setting equals the W-WC-C
curve, but the transfer loop includes an optimization in the form of write cache flushes
which has proven beneficial to an optimized transfer rate and is also used within the Dol-
phin benchmark.

It should be noted though that this optimization is only effective in combination with
write combining. Other cache or memory types do not profit from it; it sometimes is even
counterproductive. In addition, it is also clear that shared memory applications can not be
expected to perform such an optimization, as any access to global memory is transparent
with regard to the physical location of the data. The latter curve hence represents only a
theoretical experiment to contrast the performance to the theoretical peak.

64 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

This comparison shows equal behavior for transfer sizes of up to 4096 bytes (a full
page) and reaches bandwidth values close 85 MB/s. For larger transfer sizes, the per-
formance measured with HAMSTER drops significantly, even though both experiments
are conducted on the same memory type and use the same optimizations. The difference
comes from the fact that Intel CPUs [99] have two different write combining types, one set
through the page tables and one set via the MTRRs. The latter, which is used by default
within the IRM and the SISCI API and hence also for the Dolphin benchmark, does not in-
fer any restrictions at page boundaries allowing for a smooth bandwidth curve. Within the
HAMSTER system, however, this option can not be used as it would prohibit any caching
of remote memory. Therefore, it is necessary to use page table based write combining
which leads to the observed anomalies at page boundaries. A similar behavior is also visi-
ble without the use of the write cache flush optimization (W-WC-C), but at an overall lower
performance.

This anomaly is limited to write combining and not present in the write–through and
uncached cases. In the former one, a peak bandwidth of about 30 MB/s can be reached
due to a limited support for write combining present in this cache mode, while the latter
one achieves only a sustained throughput of about 10 MB/s. Higher transfer values can be
achieved, however, for some of the smaller data transfer sizes which lead to favorable PCI
burst transactions.

All of the measurements discussed so far relate only to consecutive addresses being ac-
cessed during the transfer. This is, however, quite untypical for shared memory applications
as those do not use the memory for simple data transfers, but rather for random accesses
to their data structures. In order to provide a more realistic scenario taking this behavior
into account, the curves marked with R at the end show the bandwidth values for accesses
to random remote locations. In such scenarios, no PCI burst or write gathering within the
SCI adapter can be used, leading to N individual write operations. The bandwidth therefore
stays roughly constant over all data transfer sizes at about 1 MB/s.

Using the same scenarios as above, also the read performance has been measured. For
these experiments, additionally the SCI read optimizations for buffering and prefetching
have been enabled for the WC and WT cases. The results for this are shown in Figure 4.8
and exhibit no large differences between the individual curves. In contrast to the write sce-
nario, the consecutive and the random access behave almost identical since read operations
are always blocking and therefore offer no possibility for pipelining.

Of special interest is the curve for cached accesses. Their performance is significantly
lower for very small accesses since each access triggers the fetching of a full cache line.
With rising consecutive transfer sizes, this can be utilized, leading to the best performance
for transfer sizes equal to or larger than the cache line size of the first level cache (32
bytes). In the random case, cache lines can not be reused effectively, leading to the lower
performance. With rising numbers of transactions, cached data can be reused leading to
increased performance.

4.7. SCI-VM Performance 65

0

0,2

0,4

0,6

0,8

1

1,2

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Transfer size [Bytes]

M
B

/s

R-WT-C R-WT-R

R-WC-C R-WC-R

R-UC-C R-UC-R

Figure 4.8 Read performance on SCI-VM memory.

4.7.2 Effect of Memory Optimizations
The bandwidth experiments discussed above, however, only indicate the raw performance
of the underlying network infrastructure and do not allow a direct prediction of application
performance. Hence, further experiments using kernels and applications are required. As a
first step in this direction, the memory optimizations discussed above have been evaluated
using two sets of experiments using small numerical kernels: an array sum and a matrix
multiplication. The experiments were conducted on an older cluster in a reduced configura-
tion consisting of two PCs with 233 MHz Pentium IITM processors running Windows NTTM

4.0, and connected via Dolphin’s PCI–SCI cards (D308, PSB Rev.B). In all experiments,
only one of the two nodes is used for computing; the second node can be seen as a memory
server supplying remote memory pages.

Evaluating prefetching capabilities: array sum

The first experimental kernel computes the sum of a 256 Kbyte array by using a standard
loop. All data is accessed sequentially and no data is reused. This experiment shows the
worst case behavior of a transparently distributed program since 50% of all data is remote.
In addition, all remote data is accessed and therefore needs to be transferred.

The program was tested in several versions with different optimizations: both SCI op-
timization techniques, speculative buffering and aggressive prefetching, have been applied
individually and combined each with both caching disabled and enabled. The results can
be seen in Table 4.1. As expected, the unoptimized version of the program shows a dra-
matic overhead as the number of remote reads compared to local reads and computation is
extremely high. The code therefore runs more than a factor of 60 slower.

Significant performance gains can be achieved by enabling the prefetching capabilities
of the SCI adapter cards. Especially in this example, prefetching techniques are extremely

66 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

without caching with caching
total [ms] overhead total [ms] overhead

Local memory / baseline - - 2.6 0.00%
No SCI optimizations 164.2 6152.52% 23.1 801.05%
Speculative buffering 25.5 869.44% 13.8 437.62%
Aggressive prefetching 279.8 10555.07% 20.9 716.17%
Both optimizations 16.2 518.40% 4.8 88.31%

Table 4.1 Performance data for low–level experiments: array sum algorithm.

without caching with caching
total [ms] overhead total [ms] overhead

Local memory / baseline - - 62.2 0.00%
No SCI optimizations 15875.2 25414.67% 67.9 9.43%
Speculative buffering 12426.6 19872.20% 65.9 6.21%
Aggressive prefetching 28261.2 45321.63% 68.3 10.09%
Both optimizations 21776.2 34898.94% 65.3 5.35%

Table 4.2 Performance data for low–level experiments: matrix multiplication algorithm.

effective as the program traverses all memory in a linear fashion. The data also clearly
shows that aggressive prefetching alone does not help at all; it is even counterproductive.
This is most probably due to the fact that data that is being prefetched can not be utilized
directly by the program since it needs other data first. The prefetching, therefore, becomes
a pure waste of bandwidth. This scenario changes with buffering activated. Now all neces-
sary data that is used before the data from the prefetched block is needed is being loaded
together with the first load in a 64 byte memory range. Due to this the prefetched data can
actually be utilized and the program performance is increased compared to only applying
speculative buffering.

Enabling caching of remote memory also boosts the performance significantly. This
effect is achieved by implicit prefetching of whole cache lines. It is, however, less effec-
tive than speculative buffering and aggressive prefetching using the SCI hardware because
the PCI–SCI adapter triggers prefetching of consecutive blocks whereas the prefetching
through caching is limited to single cache lines. However, combining the two techniques
provides the best performance as the two prefetching levels efficiently complement each
other. The result is an overhead factor of less than 100% which leaves room for speedups
when the computation is distributed as well.

Temporal and spatial locality: matrix multiplication

The second experiment implements a standard matrix multiplication. Both source matrices
and the result matrix are distributed. The total working set of this program is also about

4.8. Remaining Problems and Challenges 67

256 Kbytes and therefore still fits into the L2 cache of the Pentium IITM . This program also
exhibits a rather large number of remote reads compared to the amount of local computa-
tion.

The same experiments as with the code above were conducted and the results are shown
in Table 4.2. It can clearly be seen that using distributed memory via SCI causes a severe
performance degradation when it is used transparently without caching. Unlike in the sum
experiment, not even the SCI optimizations are able to improve the performance to a point
that a parallel execution on several nodes would deliver a speedup. Comparing the SCI
optimizations with each other, a similar picture than with the sum code can be seen. Spec-
ulative buffering alone improves the performance drastically, while aggressive prefetching
decreases performance due to increased network traffic. Unlike in the sum experiment,
however, both optimizations combined perform worse than even the unoptimized case.
This is due to the fact that a large part of the memory accesses in the matrix multiplication
code do not exhibit a single, large linear stride through the memory. Aggressive prefetching
therefore does not help significantly because the stream buffers on the SCI adapter cards
that hold the prefetched data are reused for other remote reads before the prefetched data
can be used.

Only after enabling caching for remote shared memory segments, an acceptable perfor-
mance can be achieved. With any of the SCI optimization levels, the overhead is lower or
equal 10%, i.e. utilizing the global SCI-VM only costs 10% of the total program execution
time, thereby leaving room for excellent speedups in systems that utilize the computa-
tional power of several computing nodes. This can be attributed to the fact that the matrix
multiplication algorithm exhibits a large degree of both temporal and spatial locality and
therefore significantly benefits of caching.

Like in the case discussed above, speculative prefetching again improves the perfor-
mance and decreases the overhead factor to around 6%. Aggressive prefetching alone, like
in the non–cached case, again reduces the performance, but combined with speculative
prefetching the optimal performance with an overhead of less than 5.5% is reached. This
would allow for very good speedups in clusters of several computing nodes and shows that
this concept is feasible and has the potential to exhibit good and scalable performance.

4.8 Remaining Problems and Challenges
The SCI-VM used within HAMSTER is currently implemented as a prototype. While this
system provides the complete functionality needed for an experimental evaluation of the
overall system, a few issues remain open. These are briefly discussed below.

4.8.1 Transparency Gaps in the Underlying Hardware
As the SCI-VM directly relies on the underlying SCI hardware, it is capable of directly
exploiting its capabilities, but is also bound by its technical limitations. The main one
stems from the fact that the SCI Virtual Memory is designed with the assumption of a fully
transparent hardware DSM system. This transparency, however, is not fully present in the

68 Chapter 4. SCI Virtual Memory: Creating a Hybrid–DSM System

current SCI implementations [26]; both the PCI subsystem of current PC architectures and
the PCI–SCI bridge can be the source of transaction failures.

It has to be mentioned, though, that this transparency gap is in both cases, for the PCI
bus and the SCI bridge, are not a principal but merely a pure implementation problem. Both
are based on standards, which guarantee the transparency expected by the SCI-VM, but the
current hardware does not fulfill these standards. The most common problems include
deadlock situations on the PCI bus resulting in packet loss and buffering problems in the
SCI link chip, again resulting in unrecoverable packet loss. During the last years, these
problems have constantly decreased due to newer PCI chipsets (currently the Intel BX/GX
chipsets seem to be the least affected) and newer SCI generations (especially the new link
chip generation with the LC-3 is expected to solve many of these problems).

However, until this development is completed and has led to hardware fully adhering
to their respective standards, the SCI-VM and with it the HAMSTER system, has to live
with these problems. As a result, the stability of the overall system is affected since shared
memory programming models are not capable of tolerating such transmission errors due to
the implicit nature of the communication2. The HAMSTER system is therefore at the mo-
ment only an experimental system exploring the shared memory capabilities of hardware
DSM architectures without the option for a production quality system in the immediate
future. The hope is, however, that this will change with either further advances in hardware
development guaranteeing the transparency promised by the respective standards or with
ports to other NUMA architectures.

4.8.2 Full Operating System Integration
As described above, the current version of the SCI-VM is based on the static memory
management scheme. While this provides the intended experimental platform to evaluate
the overall system, it has some limitations with respect to the resource management. One
of the currently open issues is therefore to complete the integration of the SCI-VM into
the virtual memory management of the OS and therefore the elimination of the problems
mentioned above.

4.9 Summary
Distributed Shared Memory systems are one of the main prerequisites for the implemen-
tation of shared memory programming models on architectures without direct hardware
support. They allow the emulation of a global virtual memory based on software mecha-
nisms. Since their introduction with the IVY system [136] in the mid 80’s, a large variety of
systems have been developed exploring the different aspects associated with them. This in-
cludes the exploration of various relaxed consistency models for the reduction of inter–node
communication requirements as well as the investigation of additional hardware support for

2In contrast to explicit communication mechanisms, as given e.g. in message passing systems, where the
successful completion of individual transmissions can be controlled and the transmission can be repeated in
the case of an error.

4.9. Summary 69

their optimization. The latter one, however, has mostly been restricted to interconnection
fabrics with remote write or update functionality, but without remote read capabilities.

By using a NUMA–based interconnection fabric, namely the Scalable Coherent Inter-
face (SCI), this work can go a step further and deploy the HW–DSM provided by SCI
directly for the creation of a global virtual memory. This HW–DSM alone, however, is not
enough because it only relies on physical addresses and not on a virtual address space as
required for a shared memory programming model. Therefore an additional software com-
ponent is required. The result is a new type of DSM system called SCI Virtual Memory
or SCI-VM, merging SW– and HW–DSM in a hybrid fashion: any communication is car-
ried out directly in hardware without any protocol overhead while the memory and system
management remains in software.

As this concept directly relies on the underlying HW–DSM, it is important to optimize
its performance. For this purpose, various buffering and caching mechanisms available
on both the local system and the SCI network adapter can be enabled. Experiments have
shown that this has the potential to significantly increase the performance of applications
running on top of the SCI-VM. These optimizations, however, have an impact on the mem-
ory coherency presented to the user since data is stored in the various buffers and updates
are delayed or invisible due to stale cache contents. Users therefore are required to take
this into account within their applications and use memory consistency enforcing mecha-
nisms to guarantee a correct program executions. This leads the way to relaxed consistency
models, as they are known from traditional SW–DSM solutions, However, based here on a
radically different hardware/software implementation.

Chapter 5

HAMSTER Management Modules

The HAMSTER system is designed to accommodate as many shared memory program-
ming models as possible. In order to accomplish this goal, the system provides a number
of services beyond the pure shared memory abstraction implemented by the SCI Virtual
Memory or SCI-VM. These services are grouped into a number of modules, including
modules for memory and consistency management, synchronization, and task control. In
addition, a separate cluster control module provides the base services needed for cluster
management and for the creation and maintenance of the global process abstraction. This
chapter introduces these modules, their functionality, and also discusses their relation to
each other.

5.1 Memory Management
The first module discussed here is responsible for the management of the globally shared
memory. It directly relies on the SCI Virtual Memory described in Chapter 4 and provides
its capabilities to form a global virtual memory to higher layers allowing them to allocate
and control this global memory. The control hereby ranges from memory coherency type
selection to locality annotations during allocation time.

In addition, this module provides some control over static data contained within the
application’s binary. This data is by default not shared since it is allocated during the
initialization of the application by the operating system without the chance for the SCI-
VM to gain control of this data. The memory management module therefore provides
mechanisms to identify this memory area and to make it available within the cluster in an
either implicit or explicit way, as dictated by the intended target programming model.

5.1.1 State of the Art
Memory management for NUMA architectures, both with and without cache coherency,
has been investigated in a variety of projects and products. Their main goal has been the
improvement of data locality since a good data locality is the key requirement for good
application performance on NUMA machines. Therefore, most CC–NUMA machines,
which use their own operating system or extension thereof to provide a global system
and memory management, contain some sort of automatic and transparent data locality
optimization. Examples for this can be found in the IRIX operating system [39] for the

72 Chapter 5. HAMSTER Management Modules

O2000/O3000TM series by SGI [131], which enables transparent thread and data migration,
and in the FLASH architecture [128], which uses a sampling of the cache performance
counters in the processors to optimize the data layout at runtime [223].

Also for pure NUMA machines, a significant amount of work in this direction has been
done. The DUnX system (Duke University nX2) provides a general framework for the
evaluation of different NUMA placement and migration policies [105]. It has shown that
no single policy is optimal for all applications and the best scheme is highly dependent on
each application’s memory access pattern and locality behavior. A similar conclusion is
also drawn by Bolosky et.al. [53] by using a trace driven simulation of several existing
NUMA management schemes.

This observation has inspired work on application driven locality optimizations, which
enable programmers to influence data placement decisions. Using this approach, semantic
knowledge from the application can be used directly for the optimization process, but it also
results in more coding complexity for the programmer. To keep this impact at a minimum,
novel programming systems have been developed which aim at providing higher–level pro-
gramming constructs for the easy specification of data locality. An example for this is the
Tornado [59] NUMA operating system. This work, which is implemented for the Toronto
NUMAchine [70], uses an object–oriented abstraction for this purpose. Programmers can
form groups of objects, so–called cluster objects, and base the locality specification on
these application and data set specific entities.

Data locality optimizations are also present in SW–DSM systems, however, mainly in
an explicit form. This means that the programmer is required to either explicitly place
data parts on certain nodes or to manually initiate data migrations. Only few systems,
mainly those which combine DSM principles with a higher–level programming model,
enable an implicit data distribution. The COOL system [32, 31], an extension of C++
for parallel programming based on a global memory abstraction, allows programmers to
specify affinities between data and tasks to processing nodes in the form of optional hints.
With their help, the locality of COOL applications can be optimized resulting in more
efficient program execution.

Another example for such a system is the Global Array toolkit [168], an explicit shared
memory programming environment. It is intended for applications working on dense ma-
trices and bases its locality and data distribution policies on the programmer’s data speci-
fications on parts of matrices. Any matrix under control of Global Array is available from
any node, but in contrast to true shared memory programming models users have to explic-
itly use library calls for data accesses. This allows a much easier software implementation
and also renders this approach feasible in Wide Area Network (WAN) scenarios [167].

5.1.2 Functionalities of the Module
The functionality of this module is closely related to the SCI Virtual Memory layer dis-
cussed in Chapter 4. It allows to directly control the memory allocation process and the
virtual memory regions that are part of the global memory abstraction. The routines pro-
vided by the module for this purpose are listed in Table 5.1. The main routine, scivm_alloc,

5.1. Memory Management 73

API call Description

scivm_alloc2 Allocate a chunk of global virtual memory
scivm_getGlobalMem Reserve a piece of configuration memory
memMod_shareStaticImpl Implicit distribution of static application data
memMod_shareStaticExpl Explicit distribution of static application data
memMod_getStaticAddr Query addresses for explicit distribution
memMod_getStatistics Query the current status of the collected statistics
memMod_resetStatistics Query the statistics and reset them

Table 5.1 API of the memory management module.

deals with the allocation of global memory. It can be used in two different modes: while
the first one allows to allocate global memory in a transparent fashion, i.e. in a round-robin
manner at finest possible granularity1, the second one gives the caller some control on how
the newly allocated memory will be distributed among the nodes participating in the global
process abstraction of the SCI-VM. This can help to improve performance in cases where
the memory access pattern of the application is known, as discussed later in this chapter.
In addition, the latter mode also allows higher layers to request certain memory coherency
guarantees in the form of coherency types, which will also be discussed in more detail
below.

Besides the allocation of new dynamic memory in a heap–like fashion, the memory
management module also allows some control over the existing static data, which is part
of the application’s executable and provided at load time by the operating system’s loader
mechanism. Here both an implicit scheme, i.e. hiding the existence of node local versions
of this data by extending the global memory abstraction, and an explicit scheme, i.e. pro-
viding explicit access to the individual static data segments on all nodes, are offered to
higher layers. The appropriate distribution and coherence type, if any at all is needed, can
then be chosen by the intended target programming model.

In addition, the memory management module is also gathering statistical information
about the status of the global memory and therefore contributes to the HAMSTER moni-
toring interface mentioned in Chapter 3.4.2. Table 5.2 lists the information recorded during
the application execution. This information can then be queried by higher layers within
the HAMSTER infrastructure, either a specific programming model or an appropriate tool
environment [110, 111]. The appropriate routines are also listed in Table 5.1.

5.1.3 Influencing the Memory Layout
As mentioned above, the memory management module gives higher layers the option to
influence the distribution of the physical memory backing the newly allocated global virtual

1On currently supported systems consisting of commodity PC hardware this normally is page (4 Kbyte)
granularity.

2The prefix scivmis used instead of memModdue to historic reasons.
3This value is always zero if the static application memory is shared neither implicitly nor explicitly.

74 Chapter 5. HAMSTER Management Modules

Variable Purpose

numAlloc Number of times scivm_alloccalled on local node
staticSharedImpl Static application data shared implicitly
staticSharedExpl Static application data shared explicitly
virtMem Total amount of memory under the control of the SCI-VM
allocMem Amount of global memory requested by the local node
physMem Amount of local physical memory used by the SCI-VM
allocStatic Size of static memory under SCI-VM control3

Table 5.2 Statistical information collected by the memory management module.

Pattern Parameters Description

TRANSPARENT4 — Distribute memory at finest
possible granularity

FULLDIST node Use physical memory on node
BLOCKDIST node Distribute the memory in blocks

put block 0 on node
CYCLEDIST node,size Distribute chunks of sizein a round

robin fashion, put chunk 0 on node

Table 5.3 Memory distribution types available for locality annotations.

memory during the allocation process. This is done on the basis of locality annotations that
are passed to the system along with memory allocation requests. The newly allocated
physical memory used to back the requested global virtual memory will then be allocated
as specified in the annotation.

The user currently has the option of four different basic distribution types. These are
listed together with their respective parameters in Table 5.3 and visualized in Figure 5.1.
With these four types, most of the commonly needed distribution options can be described.
In addition, it is planned to allow the user to hand tune the distribution by providing the
system with a concrete distribution list containing the information about where each page
of the newly created memory region should be located. Such an option would, however,
be very cumbersome to use and is intended more for the implementation of higher–level
programming models deploying parallelizing compilers or other means of code generation.

It is worth noting that these extra locality parameters are here referred to as annota-
tions as they merely guide the allocation of resources among the cluster but do not in-
fluence the actual functionality of the system. No matter which annotation is passed to
the memory management module, the system always returns with a newly allocated piece
of virtual memory accessible from any node within the system; merely the access times
to the memory can vary as different memory layouts lead to different locality properties.
This mechanism can be used for an easy and safe incremental performance optimization;

4This option is also used if no locality annotation is provided at allocation time.

5.1. Memory Management 75

���
���
���
���

���
���
���
���

���
���
���
���
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

������
������
������

������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�������
�������
�������
�������

������
������
������
������

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

FULL (node=2)

BLOCK (node=1)

CYCLE (node=1, size=2 pages)

CYCLE(node=0, size=1 page) = TRANSPARENT

page on node 0

page on node 1

page on node 2

page on node 3

Figure 5.1 Examples of memory distribution types (based on a system with 4 nodes).

the application can first be ported to a HAMSTER–based system just using the transpar-
ent allocation mechanisms. Once this is completed and the correctness of the code has
been verified, the performance can then be tuned by introducing locality annotations at the
memory allocation points in the code. This no longer changes the functional behavior of the
code, but instead allows for a fine tuning of the memory layout adhering to the application’s
memory access pattern.

Especially codes based on large regular data structures, like dense matrices, and with
regular and static task distributions can profit significantly from locality annotations. This
is illustrated in the following using two codes with these characteristics, more specifically
a code performing an iterative Successive OverRelaxation (SOR) and a code implementing
a Gaussian Elimination with pivoting. The pseudo code for both kernels is shown in Figure
5.2. It can be seen that, in both cases, each node is responsible for a subpart of the total
matrix. This property can be used to optimize the data layout by distributing the data in a
way that all matrix rows are located on the node responsible for the respective row. In the
SOR code, this leads to a regular block distribution and for the Gaussian elimination to a
block–cyclic distribution with block sizes equal to the size of single rows.

Table 5.4 shows the performance for both codes with two different matrix sizes each
using both a transparent and the optimized data layout discussed above. The data shows
a significant improvement that is gained by optimizing the codes through locality opti-
mizations. Without optimizations, the performance is very poor and does not lead to any
speedup while the optimized versions show the expected speedup. The speedup of the SOR
code is thereby slightly higher than the one of the Gaussian elimination since the latter one
requires a more fine grain parallelization and induces more global communication caused
by the global pivoting.

76 Chapter 5. HAMSTER Management Modules

Split matrix in #nodesblocks for all rows i
if (i modulo #nodes) = rank

for all iterations compute pivot column
for all rows i in block rank end if

for all columns j in row i
compute matrix element (i,j) global barrier

end for
end for for all rows j greater than i

if (j modulo #nodes) = rank
global barrier compute all elements in row j

end for end if
end for

global barrier
end for

Figure 5.2 Pseudo code for the SOR code (left) and the Gaussian elimination (right).

SOR code Gauss code
Matrix size 512x512 1024x1024 512x512 1024x1024

Seq. execution 1.36 s 5.58 s 4.83 s 40.23 s

Par. execution 78.16 s 1033.4 s 44.95 s 341.19 s
Speedup 0.0174 0.0054 0.1075 0.1179

Opt. execution 0.43 s 1.57 s 2.11 s 13.33 s
Speedup 3.16 3.55 2.289 3.018

Improvement factor 181.8 658.2 21.3 25.6

Table 5.4 Impact of locality annotations on dense matrix codes (on 4 nodes).

The good performance of the optimized codes is also visible in the speedup numbers
of these codes on up to 6 nodes, as shown in Figure 5.3. Both exhibit a significant speedup
across all configurations used, with the better overall performance for the SOR code due to
the reasons already discussed above. In addition, both codes perform better on larger matrix
sizes, as can be expected due to the decreased impact of the parallelization overhead.

It should be noted, however, that such a steep increase in performance after applying
appropriate locality annotations is not common among all applications. Only such applica-
tions with regular memory access patterns and data structures like dense matrices are suited
for such a kind of optimization. In addition, the codes presented here are mainly based on
small arithmetic operations on only global data without any computation performed on lo-
cal data, thereby further increasing the potential impact of locality annotations. On the
other hand, applications with heavily irregular and unpredictable memory access distribu-
tions and/or local computations are either no candidates for such static distributions or do
not require them in order to provide sufficient performance.

5.1. Memory Management 77

1

2

3

4

5

6

1 2 3 4 5 6
Number of nodes

S
pe

ed
up

SOR-512
SOR-1024
Gauss-512
Gauss-1024
Ideal

Figure 5.3 Speedup of dense matrix codes using locality annotations.

Type Description

NONE No buffers or caches activated
BUFFERED Activate write buffers or read prefetch buffers
CACHED Activate caches
BOTH Combine the two types above (default)

Table 5.5 Memory coherency types.

Other prerequisites for the use of annotations are that the memory access pattern has
to be known a priori, i.e. before the execution of the application, and the programming
model used by the application has to export this capability to the application programmer.
In the case where one of these prerequisites is not fulfilled, the locality annotations of
the memory management module can obviously not be used. In order to still allow for
some locality optimizations, a dynamically adaptable runtime system is necessary which is
capable of detecting areas with bad locality and removes them by appropriate data and/or
thread migration in cooperation with the underlying SCI Virtual Memory. Such a system
is currently under development within the SMiLE project based on a hardware monitoring
approach [110].

5.1.4 Controlling the Coherency of Global Memory
As mentioned in Chapter 4, the SCI Virtual Memory enables non coherent caching of re-
mote memory with a non–CC NUMA architecture. This, however, does not mean that
remote memory should always be cached; for some regions of global memory, e.g. con-
figuration address space or memory regions with mainly write accesses, it is beneficial to
avoid caching and hence to decrease the amount of necessary consistency enforcing mech-
anisms at programming model or application level.

78 Chapter 5. HAMSTER Management Modules

For this purpose, the memory management module allows the specification of so–called
memory coherency types, i.e. the coherency guarantees that are expected from a certain
piece of memory. Table 5.5 shows the main attributes available for this purpose. Each
of these can be used for both read and write statements. The strongest coherence type
disallows any caching, i.e. the utilization of any processor cache, or buffering, i.e. the
deployment of write and read prefetch buffers as well as potentially available streaming
mechanisms. This coherence type can then be incrementally weakened by enabling either
buffering or caching, or both.

Any of the above choices is implemented within the memory management module in
close cooperation with the SCI-VM by enabling or disabling the appropriate resources in
the system’s hardware. This can range from mechanisms in the network adapter to caching
policies within the CPU. It depends therefore strongly on the capabilities of the underlying
system and can lead to situations in which the requested coherence type can not be provided
by the system, but only a more coherent memory type can be offered to higher layers. One
typical example for such a scenario is the caching for write instructions, which would lead
to write–back caching . In the PC architecture, this causes timing problems on the PCI bus
[101] and leads to a deadlock of the complete system, effectively crashing the machine.

In addition, certain guarantees may not be implementable without any side effects on
the memory coherency of other memory areas which are either already allocated or will be
allocated at a later time. An example for this is the buffering of both reads and writes within
SCI adapters. While the latest adapters allow the usage of such buffering mechanisms on a
per ATT basis and can therefore be specifically tailored to only influence specific memory
regions, older adapters only allow these options to be set globally influencing the whole
global memory within this system.

To allow higher layers control over these two scenarios, an additional argument can
be passed to the memory management module specifying the behavior in these situations.
Table 5.6 lists all options for this argument. In cases where EXACTis used, only memory
allocation requests will be granted and executed which can be handled in a way exactly
adhering to the requested specification and without any global side effects. This can be
weakened by ALLOW_STRONGERor ALLOW_GLOBALin any one of the two directions
or both at the same time using BOTH. In case such a weakening of the memory coherency
is performed by the system, the caller of the allocation routine is informed about this on
return of the successful memory allocation.

Combined, these two additional arguments controlling memory coherency give any
higher layer using them full control over the allocated memory without requiring any ex-
ternal knowledge about the underlying system. The memory management module is aware
of the constraints on the target system and matches them with the requested attributes for
newly allocated memory. This mechanism provides a maximum of comfort with the least
restrictions on the available coherency types.

5.1. Memory Management 79

Type Description

EXACT Only allow exact matches
ALLOW_STRONGER Also include stronger memory coherency types,

but no global side effects
ALLOW_GLOBAL Also allow global side effects while setting

coherency type, but no stronger types
ALLOW_BOTH Both of the above (default case)

Table 5.6 Parameters to control the handling the coherency type request.

5.1.5 Dealing with Static Application Data
Any of the mechanisms discussed above applies only to memory allocated through and
under the control of the SCI Virtual Memory. The memory area reserved for the static
application data, i.e. the data implicitly contained in the binary, is not affected by this and
therefore only available locally on each node. It is solely controlled by the local operating
system instance and allocated by the application loader and/or the dynamic linker. A global
view of this data is therefore not possible with the mechanisms presented so far.

While this is sufficient for many shared memory programming models, especially for
the programming models exposed by most software DSM systems, some programming
models require access to this static application data. The best example for this are stan-
dard thread programming models present in almost all current operating systems. In these
models, all data, static and dynamic, is shared between the individual threads. When im-
plementing such a model on top of HAMSTER, the static memory needs to made available
to any other node.

The HAMSTER memory management module provides the necessary base function-
ality to realize this requirement and therefore opens the HAMSTER system also to those
programming models. It should be noted though, that this functionality is not applied by
default in order to maintain to maximum amount of flexibility. Any programming model
implemented within HAMSTER has the choice on whether static data should be accessible
to other nodes, and if so, how it should be available. For this purpose, two basic schemes
are offered: an implicit and an explicit distribution. Both are explained in more detail
below.

Identifying static application data

Before being able to distribute the static data, it is first necessary to identify the appropriate
memory regions. Hereby, first the actual data part of the application’s memory footprint
needs to be found and then this data part needs to be further subdivided into static data
allocated for the application, i.e. static data from the actual application modules, and data
allocated for the runtime system. Only the former part should be affected by any routine
within the memory management module dealing with static application data, as this is part
of the actual application. The runtime data needs to be kept local and separated on each

80 Chapter 5. HAMSTER Management Modules

Segment
A

Segment
B

Segment
C

Table
of
Segments

Resulting file after link process

Object file 1

Segm.
B

Segm.
A

Table
of
Segments C

Segm.

Table
of
Segments

Segm.
A

Segm.
B

Segm.
C

Object file 2

Figure 5.4 Segments within the file format and linking process.

node at all times, as the application execution is performed on separate operating system
instances and therefore also separated runtime instances, which should not interfere with
each other to ensure a correct program behavior.

The implementation of this identification process is based on the basic executable file
format used in both Linux and Windows NTTM . In both operating systems, any executable
or object file is formed by a series of segments, each with a specific content, e.g. code
or data, and a unique identifier or name. In addition, each file is preceeded by a header
containing a list of all segments within the respective file. In this list, all information
needed to identify and locate the segment within the file is given.

An executable is created during the link process from various binary object modules,
as depicted in Figure 5.4. During this linking process, the segments of all modules with
identical identifier are merged into a single segment. At application load time, this complete
binary is copied into the virtual memory address space of a newly created process. Using
the header information, the data segments can be identified and also exactly located.

In order to further distinguish between static data belonging to the application and the
data belonging to the runtime system, a closer look needs to be taken on the origin of the
data. While the application static data has its sources in the data segments of the application
object modules compiled by the user, the runtime data is added by the linker from separate
runtime modules thereby to creating a complete application. To keep these two sources
apart, a small patch utility has been developed which is capable of marking data segments
of object files by slightly changing their names. This is accomplished by simply modifying
the header containing the list of segments of the respective object file.

By applying this patch tool to any application object and marking each data segment
therein in the same way, a new executable is created with two different sets of data seg-
ments, one marked, and one unmarked, as shown in Figure 5.5. While the latter one now
contains all data of the runtime system which should not be touched by the memory man-
agement module, the former solely contains the static application data available for a further
treatment by HAMSTER.

5.1. Memory Management 81

Linking
Process

Final application binary

Common code segment Runtime Application
Data Data

Application object files

Patch application
Object Files

Runtime object files

Table
of
Segments

Code
Segm.

Data
Segm.

Table
of
Segments

Code
Segm.

Data
Segm.

Table
of
Segments

Code
Segm.

Table
of
Segments

Code
Segm.

Table
of
Segments

Code
Segm.

Data
Segm.

Table
of
Segments

Code
Segm.

Data
Segm.

Table
of
Segments

Code
Segment

Data2
Segment

Data
Segment

Data2
Segm.

Data2
Segm.

Figure 5.5 Linking process after patching the application’s object files.

Providing implicit access to static data

Once the static application data has been identified in the way described above, the mem-
ory management module is capable of distributing it using either an implicit or an explicit
scheme. In the implicit case, the static data is distributed across nodes and then made
available at the original location of the static data. This effectively puts the memory area
containing the static data under the control of the SCI Virtual Memory and thereby shares
it among all nodes. This completes the transparency of the full virtual address space and al-
lows the implementation of programming models relying on such a fully transparent mem-
ory, like the thread models briefly mentioned above5.

The actual distribution is done in a three step process, as depicted in Figure 5.6. First,
a global piece of memory with the same size as the memory area containing the static
application data is allocated using the standard SCI-VM mechanisms. In the second step,
the static application data is copied into the global memory area making it available to any
node. The choice of the node from which the data is copied does not have any influence
since the data is assumed to be the same at application start. In addition, it is also expected
that the routine providing this implicit distribution is called before any changes to the static
application data occurs.

In the third step, the actual mapping of the newly created global memory region into the
original location of the static application data is performed. During this process, the initial
virtual memory mappings are replaced by the mappings pointing to the memory region
created by and under the control of the SCI-VM. Once these mappings, of which some

5More details on the thread programming models can be found in Section 6.4.

82 Chapter 5. HAMSTER Management Modules

backed by
local memory

backed by
local memory

part of the
global memory

part of the
global memory

SCI−VM controlled
global virtual
memory abstraction

2

3 Map

Copy

runtime
data data

application SCI−VM
heap area

runtime
data data

application SCI−VM
heap area

runtime
data

SCI−VM
heap area

runtime
data

SCI−VM
heap area

data
application

data
applicationapplication

data

Allocate
1

Node B

T
im

e

Node A

Figure 5.6 Implementing the implicit access scheme to static application data.

might be remote, are established, the application will access the globally shared copy of
the static application data instead of the initial local version during its further execution.

This approach, however, is connected with some inherent implementation challenges.
During the mapping, the memory management module needs to replace the virtual mem-
ory mappings of the virtual memory area containing the static application data. As this
mapping was initially created by the operating system during the load time of the applica-
tion, conflicts with the operating system can occur. This is especially valid for operating
systems like Windows NTTM , which due to missing access to the source code do not allow
a clean unmap of the virtual memory regions before applying the new mappings. Such an
implementation has therefore proven, despite an implementation as proof of concept, as too
unreliable for extensive experiments.

With an open source operating system like Linux, on the other side, a clean unmapping
of virtual memory previously under the control of the operating system, can be accom-
plished, resulting in a stable system.

Providing explicit access to static data

Besides this implicit distribution, some programming models also require a more explicit
distribution and access semantics to the static data. This means that the separation of the
individual static segments is preserved while still allowing any node access to any other
node’s static data. An example of a programming model relying on this capability is the
put/getmodel discussed in Section 6.5.1. In this model, the virtual address spaces are kept
separate and the user is provided with primitives to copy data to (put) and from (get) any
memory location on the other nodes’ virtual memory6.

The implementation of the explicit scheme is done in a two step process, as depicted
in Figure 5.7. First, all physical page frames backing the static application data on all the
nodes need to be pinned down in order to prevent them from being swapped out. This is

6More details about this programming model are listed in Section 6.5.1

5.2. Consistency Management 83

pinned physical
local memory

pinned physical
local memory

pinned physical
local memory

pinned physical
local memory

Export
Memory

Global
Mapping

SCI−VM controlled
global virtual
memory abstraction

runtime
data data

application SCI−VM
heap area

runtime
data data

application SCI−VM
heap area

runtime
data

SCI−VM
heap area

runtime
data

SCI−VM
heap area

data of D
application

data of C
application

data of B
application

data of A
application

data
applicationapplication

data

Node DNode B

Node A Node C

Figure 5.7 Implementing the explicit access scheme to static application data.

necessary to guarantee a safe and secure access from other nodes via the interconnection
network. Once this is done, the memory area can be mapped via SCI to a newly created
address space segment within the virtual address space controlled by the SCI-VM. This
mapping is done in an all–to–all fashion, making every static memory area of every node
available to any other node. The target mapping addresses are then made available to the
upper layers allowing access to all the static memory areas of the whole system.

In contrast to the implicit scheme, this approach imposes fewer problems with the oper-
ating systems, as mappings initially done by the operating system are not overwritten dur-
ing the mapping process. However, also here a direct access to operating system’s memory
management is necessary to perform the pinning of the physical page frames backing the
application’s static data on each node. Therefore, also the explicit scheme is only available
in Linux since the available source code enables the implementation of this operation.

5.2 Consistency Management
As shown in Chapter 4.6, it is necessary to weaken the memory coherency in order to
achieve acceptable performance. The SCI Virtual Memory therefore offers such capabili-
ties which can be controlled through the memory management module as seen above. This
control at allocation time alone, however, is not sufficient to allow both an efficient and
correct application behavior on weakly coherent memory, as the memory state during the
execution of an application is undefined and therefore most likely leads to an incorrect
execution.

To compensate for this, additional mechanisms have to be provided that enable such
a control through the application or the programming model. Using these mechanisms, a
consistent memory state can be enforced whenever and wherever necessary. This enables
applications to work on a consistent memory whenever required and to tolerate incon-
sistent, but potentially faster memory whenever consistency is not required for a correct

84 Chapter 5. HAMSTER Management Modules

execution. The consistency module within HAMSTER provides such mechanisms suited
for all available coherency types. These are then at the disposal of any higher layer to be
used for the required application and/or programming model consistency management.

5.2.1 State of the Art
Software controlled cache coherence in NUMA architectures has already been investigated
in a few projects. Within Platinum [41] a coherent memory abstraction for a NUMA ar-
chitecture is created using the virtual memory management to detect read or write accesses
causing potential cache inconsistencies in coordination with a global page state informa-
tion. A similar approach is taken in [176] and [126]. Both, however, do not exist for real
systems and are evaluated only using simulation.

A different approach to deal with potential cache inconsistencies has been undertaken
within the Shared Regions project [188], which defines a high–level abstraction to group
and commonly manipulate memory parts. Based on this abstraction, it provides mecha-
nisms to invalidate or flush remote memory regions and uses these mechanisms in coordi-
nation with synchronization primitives to guarantee a safe and reliable memory abstraction
[187]. This approach avoids additional overhead for maintenance and hence represents a
lean and easy–to–implement solution. This basic principle is therefore also used within
this work to enforce a global cache coherency, however, in a more general and flexible
framework independent of any higher–level data or programming abstraction.

5.2.2 Enabling the Control of the SCI-VM Memory System
As already discussed in Chapter 4.6, it is necessary to utilize relaxed consistency models
in order to cope with the missing hardware cache coherence mechanism. They have to be
capable of controlling the various buffers and caches in the system, the source of potential
inconsistencies. The mechanisms necessary for this can roughly be divided into two cate-
gories: mechanisms to ensure that data has been propagated to other nodes and is not still
being held in a local buffer and mechanisms to invalidate potentially stale data forcing the
application to fetch new data from remote locations whenever appropriate.

The first group results in a full flush of all write buffers on the local node. Once called,
the flush operation will block until all transactions currently stored in these buffers have
been completed and the data contained within them has reached its final destination. This
includes both the processor write buffers and those on the network interface. In the case
of the SCI adapters used for the current version of the HAMSTER system, this affects the
stream buffers implemented on the PCI–SCI bridges, as they hold data before their trans-
mission in order to perform an aggregation of write transactions on consecutive addresses.

The second group, the read invalidation, simply invalidates all copies of remote data
present on the local node, guaranteeing that the next read access to a particular memory
location fetches its data from the physical storage of the data and does not shortcut to
potentially outdated local data held in caches or other buffers. Like in the case of the
write flush discussed above, resources on both the processor and the network interface are

5.2. Consistency Management 85

affected; the complete cache hierarchy within a node and any buffer used for read buffering
or prefetching within the SCI interconnection fabric has to be invalidated.

It is important to note that all of these mechanisms have a purely local effect since they
just deal with flushing or invalidating local buffers and caches. None of the routines re-
quire a remote node to be involved and therefore can be used fully asynchronously within
the whole system. In addition, their implementation is quite straightforward and does in-
clude any explicit communication or other form of synchronization. On the downside,
however, this property leads to the fact that these mechanisms alone do not suffice for a
global memory synchronization required for a safe and reliable program execution. For
this purpose they need to be combined with global synchronization mechanisms resulting
in relaxed consistency models, which will be discussed later in this work.

5.2.3 Minimizing the Global Impact
These consistency enforcing mechanisms should be used with great care, because they
affect the whole memory system on the local node and hence have a drastic impact on the
performance of any application. Especially the invalidation of the local caches can affect
the application, as not only the memory locations with stale data are invalidated, but rather
the whole memory range containing remote data. This also leads to the invalidation of still
valid data. This problem is further increased on architectures that do not allow partial cache
invalidations, like the Intel x86 (TM) architecture [99]; there the complete cache, including
the local data, needs to be invalidated on each write flush operation.

Due to these performance implications, it is important to avoid any unnecessary cache
invalidation as far as possible. In this context, unnecessary invalidations can be classified
as those, which do not lead to new data being fetched from remote locations and therefore
invalidate only up–to–date data. In applications which are solely based on the consistency
enforcing mechanisms discussed in this section7 these can be avoided by observing remote
write flushes. Only these indicate that a remote node purposely intended to make its local
writes available and expects its data to be present on all other nodes. Therefore, any cache
invalidation without a prior remote write flush since the last invalidation on the local node
will not produce any new data. It is therefore unnecessary and can be omitted.

To implement this scheme it is necessary to provide a global time stamp identifying
the temporal relation between cache flushes and write invalidations. Using the special
mechanisms of SCI in form of atomic fetch and incrementoperations, such a time stamp
mechanism can easily be implemented based on a global system–wide counter, in the fol-
lowing denoted as Global Activity Counter (GAC). Each read invalidation or write flush is
tagged with such a time stamp by reading this counter followed by an atomic incremen-
tation. Before a cache invalidation, these time stamps are checked to detect unnecessary
invalidations, which are then omitted.

7As opposed to applications or programming models which also utilize several memory coherency types
with additional implicit guarantees.

86 Chapter 5. HAMSTER Management Modules

More precisely, an optimized write flush consists of the following steps:

� Perform actual write flush

� Get new time stamp from the GAC

� Save the time stamp in the global, system–wide variable Last Global Flush (LGF)

A read invalidation uses this information in the following manner to avoid unnecessary
invalidations:

� Check whether there has been a flush since the last invalidations by comparing the
time stamps in LGF and in the node–local variable Last Local Invalidation (LLI)

� If LGF has an earlier time stamp than LLI, the invalidation is unnecessary and can be
omitted

� Get new time stamp from the GACand store it in LLI

� Perform actual read invalidation

An effect of this optimization is that the purely local operations are turned into global
ones by requiring the use and maintenance of global state. The impact of this, however, is
quite low as is visible from the performance numbers discussed later in this section, as only
very few global operations need to be performed. In addition, those can be implemented us-
ing the underlying NUMA architecture and its remote memory access capabilities without
the need to interrupt the execution on any other node. This ensures that the implementa-
tion of the optimization scheme does not lead to a drastically more complex code and/or a
reduced performance.

5.2.4 Introducing Scope
The optimization described above creates an implicit relation between flushes and invalida-
tions. Only invalidations following prior flushes need to be performed. So far, this relates
to any flush within the whole system. This observation can be used to further optimize the
routines of this module. By binding sets of flush and invalidate operations into groups, the
preceeding write flush responsible for triggering an invalidation can be restricted to only
those being in the same group as the invalidation in question.

These groups, which are also known as Consistency Scopes[97], implicitly restrict con-
sistency enforcing mechanisms only to those parts of the global data which is protected by
the consistency operations within the respective group. Read invalidations only guarantee
the visibility of new data from remote nodes which have been flushed to the system within
the same scope. This is sufficient for many application scenarios since read invalidations
are often used to guarantee the visibility of new data in specific regions. In this case, the
invalidation is carried out within the same scope as the flush associated with updates to this

5.2. Consistency Management 87

region of interest, avoiding unnecessary cache invalidations in cases in which no data of
interest has been written by any remote node.

Using this extended scheme, the scoped version of the write flush is performed as fol-
lows:

� Perform actual write flush

� Get new time stamp from the GAC

� Save the time stamp in the global variable LGF, which is distinct for each scope
(LGF–scoped).

A scoped read invalidation then uses this information in the following manner:

� Check whether there has been a flush since the last invalidations by comparing the
time stamps in LGF–scopedand Last Local Invalidation (LLI)

� If LGF–scopedhas an earlier time stamp than LLI, the invalidation is unnecessary
and can be omitted

� Get new time stamp from the GACand store it in LLI

� Perform actual read invalidation

Scopes have to be allocated by the user of this module and can then be supplied to the
consistency enforcing routines as a parameter. However, it has to be possible to disable the
scope optimization to guarantee full flexibility. A compatability to the simpler optimization
scheme discussed above can be achieved by just using a single global scope, which is
provided by the system itself. This leads to the exact same system behavior because the
decision on whether to perform a read invalidation will again be based on the globally last
write flush.

5.2.5 Functionalities of the Module
The complete functionality of the module is shown in Table 5.7. The main routines ex-
ported are the already mentioned read invalidation and write flush operations. In addition,
a separate routine combines these two into a single memory synchronization routine. All
of those routines are based on the idea of scopes introduced above which are passed to the
routines as an argument. The last routine in this module enables the allocation of further
scopes which can then be used with any of the other operations.

In order to ease the use of the scope concept in programming models without consis-
tency scopes, the consistency management module introduces two additional constants (see
also Table 5.8). They allow the specification that no scope should be used, i.e. the no con-
sistency enforcing mechanism is avoided, or that a single global scope has to be applied,
which is based on all consistency operations in the overall system.

88 Chapter 5. HAMSTER Management Modules

API call Description

consMod_syncRead Invalidate all read buffers including caches
(i.e. Acquireoperation)

consMod_syncWrite Flush all write buffers (i.e. Releaseoperation)
consMod_sync Both routines above merged together
consMod_allocScope Allocate a new consistency scope

Table 5.7 API of the consistency management module.

Type Functionality

CONSMOD_NOSCOPE Always perform flush or invalidation
CONSMOD_GLOBAL_SCOPE Perform flush or invalidation if

necessary with respect to last operation
Allocated scopes Perform flush or invalidation if

necessary with respect to last operation
on the same scope

Table 5.8 System defined scopes.

As the memory management module, the consistency module also collects on-line data
to contribute to the overall HAMSTER monitoring interface. It delivers detailed informa-
tion of both the numbers of consistency operations called by the higher layers and their
associated delay times. The concrete information recorded is listed in Table 5.9. It pur-
posely includes only data about the individual consistency mechanisms and no combined
data reflecting the performance of a particular consistency model since the implementation
of such a concrete model is the task of the programming model and should not be restricted
by this module.

Variable Purpose

numAcq Number of calls to consMod_syncRead
timeAcq Sum of time spent in consMod_syncRead
maxAcq Maximal time spent in consMod_syncRead
numAcq Number of calls to consMod_syncWrite
timeAcq Sum of time spent in consMod_syncWrite
maxAcq Maximal time spent in consMod_syncWrite
numFull Number of call to consMod_sync
numScope Number of scopes allocated

Table 5.9 Statistical information collected by the consistency module.

5.2. Consistency Management 89

Operation Execution time Scoped time Overhead

Full enforcement of coherency 481.97 �s 490.47 8
�s 8.35 �s

Invalidate read buffers 470.85 �s 475.36 8
�s 4.48 �s

Flush write buffers 8.60 �s 12.19 �s 3.57 �s

Table 5.10 Cost of consistency enforcing mechanisms (measured on one dual processor
node of the SMiLE cluster).

5.2.6 Low–level Performance
The cost associated with the consistency enforcing routines is shown in Table 5.10. In
the left column, the times for the standard unoptimized versions are listed, in the middle
column the times for the routines together with the global operations necessary to manage
scopes, and in the right column the resulting scope management overhead. The numbers
show that the execution time of the routines is quite low due to their low–level and hardware
oriented implementation. The cost for the write flushing is significantly lower than the cost
for the read invalidation because only resources with a limited capacity, i.e. the processor
write buffers and the SCI stream buffers, are affected. For the read invalidation operation,
on the other side, all caches on the local node (in the case of an SMP node the caches from
all processors) need to be flushed affecting significantly more resources.

It should be noted that the latter routine can in addition incur a slowdown of code
executed after the read invalidation statement as caches and other read buffers have to be
reloaded. This is not included in the actual cost portrayed in the figure. The impact of this
depends on the application and its memory access pattern and can only be evaluated in a
case by case process.

As also can be seen in the table, the overhead associated with the scoped versions of
the routines is very low and just reflects the time needed to compute and store the time
stamps. This has to be seen contrasted to the potentially large performance improvement
by avoiding cache flushes. The concrete benefit, however, can again be only evaluated
based on concrete applications.

5.2.7 Realizing Consistency Models in HAMSTER
The mechanisms introduced above can be used in the realization of a concrete memory
consistency model, either for a specific programming model or for an individual applica-
tion. However, as memory consistency between several nodes or threads is by nature an
issue of global state, routines with only a local effect, as those offered by the HAMSTER
consistency module, are clearly not sufficient for the implementation of a full memory con-
sistency model. They need to be combined with appropriate synchronization constructs
enforcing a time relation between individual invocations of consistency enforcing mecha-
nisms. Together they can then form a complete consistency model.

8The numbers reflect the time needed for an invalidation operation that is not classified as unnecessary
and therefore performed.

90 Chapter 5. HAMSTER Management Modules

This approach is also taken by any DSM system (see related work on DSM systems
in Chapter 4.1). Those, however, mostly statically merge consistency and synchronization
mechanism, essentially hard–wiring a specific consistency model. The HAMSTER frame-
work on the other side, with its intention to provide the ability to implement various dif-
ferent programming models each with a potentially different consistency model, does not
implicitly perform such a merge between consistency and synchronization management.
This is left to the implementation of the programming model on top of the management
modules. A discussion of this, together with a description on how specific consistency
modules are implemented, is included in Chapter 6.3 by means of specific programming
models.

5.3 Synchronization Management
Any programming model based on the shared memory paradigm requires explicit synchro-
nization primitives since the access to the global shared memory, and therefore any com-
munication, is by default not synchronized. This can be seen in contrast to pure message
passing models in which any message represents an implicit synchronization point; further
synchronization is therefore not required in these models.

The synchronization module discussed in this section contains the necessary primitives
to enable this required synchronization. It contains both high–performance implementa-
tions of typical primitives present in many programming models and low–level mecha-
nisms to enable programming models with specific requirements to implement their own
synchronization constructs. This two–sided approach provides the necessary performance
and ease–of–use as well as the required flexibility expected from a system like HAMSTER.

5.3.1 State of the Art
The issues involved in the implementation of this module have to be seen from two different
views. On the one side are the requirements imposed on the functionality of the synchro-
nization module from potential programming models of HAMSTER and on the other side
are the implementation aspects of the individual primitives.

With respect to the former view, the large variety of different programming models
also leads to a large number of different synchronization primitives. Thread APIs normally
include some sort of mutual exclusion in the form of locks and a wait and notification
mechanism. In the case of POSIX threads [219], these constructs are part of the thread
implementation and specification, while the Win32 API separates them from the actual
thread calls and rather defines a system–wide synchronization framework allowing these
mechanisms to act beyond the scope of a single process [155].

Some of the common thread APIs include further synchronization constructs, like the
multiple reader/single writer locks present in the SolarisTM threads [148] or the concept of
monitors [216] available in JavaTM [104]. In addition, many shared memory programming
models offer barriers as an easy–to–use tool to facilitate a synchronized application execu-
tion. Last, but not least, some programming models also rely on flag–based synchroniza-

5.3. Synchronization Management 91

tion, i.e. on synchronization information being propagated simply by updating designated
flag variables.

Regarding the implementation, any current processor architecture includes atomic
read–modify–write primitives. These allow the implementation of efficient locks and other
synchronization constructs on hardware shared memory multiprocessors in a very scalable
manner [232, 150].

In distributed scenarios, more complex protocols have to be developed to compensate
for the missing atomic update operations. In most cases, the only atomic operation avail-
able are load and stores which cause the implementation of synchronization mechanisms,
especially locks, to be quite complex. First solutions for this scenario have been proposed
by Dijkstra [43] and Lamport [130]. Further work has tried to optimize the synchronization
by deploying token–based schemes and/or complex decentralized schemes based on vari-
ous communication topologies. [103] provides a comparison of a few of these approaches.
In addition, quite a bit of work in this direction has recently been done within the DSM–
Threads project [165, 226].

A different approach to provide efficient synchronization to distributed architectures
proposed by [153] is the extension of atomic hardware primitives. Using simulation, this
work describes the opportunities for an efficient implementation of synchronization at the
presence of such global atomic operations and proves their usability.

Most of these primitives are already present in the SCI Standard [92] as special packets
and newer adapter generations also implement some of them in an easy–to–use fashion.
Nevertheless, few projects have focused on utilizing this potential by implementing syn-
chronization concepts for SCI–based systems. Within the prototype system SALMON
[170, 171] at the University of Oslo, a survey of possible implementations of synchroniza-
tion in the contexts of explicit messages and locks for mutual exclusion has been done.
Both are based on simple read and write operations, not exploiting the potentials of the
atomic operations offered by SCI, because those were not yet available in the SCI adapters
at that time. In addition, no barriers have been included in the survey omitting this impor-
tant synchronization mechanism for many programming models.

Within the HPPC–SEA DVSM system [40], which is intended to provide an easy–to–
use interface for SCI–based architectures, locks have been implemented directly based on
SCI’s remote memory mechanisms using a centralized, token–based scheme. Also here,
none of the atomic operations available in SCI have been used and the concept of barriers
is missing.

5.3.2 Functionalities of the Module
The synchronization module encapsulates all synchronization mechanisms available to the
programming models implemented within the HAMSTER framework. This includes both
efficient implementations of typical shared memory synchronization constructs like locks
and barriers, but also additional low-level mechanisms which can be used to implement
further synchronization constructs for certain programming models. The implementation
of this module itself is based on the local operating system interfaces available for syn-

92 Chapter 5. HAMSTER Management Modules

API call Description

syncMod_allocLock Allocate a global lock
syncMod_lock Acquire a global lock
syncMod_unlock Release a global lock
syncMod_allocBarrier Allocate a barrier
syncMod_barrier Perform a barrier over one thread per node
syncMod_activityBarrier Perform a barrier over all global threads
syncMod_fixedBarrier Perform a barrier over a number of threads

specified as a parameter
syncMod_allocCounter Allocate a global counter
syncMod_allocCounterBlock Allocate a block/array of counters
syncMod_incCounter Increment a global counter

and return the old value
syncMod_getCounter Query the value of a global counter
syncMod_setCounter Set the value of a global counter
syncMod_intSetCallback Register interrupt callback
syncMod_intTrigger Trigger a remote interrupt

Table 5.11 API of the synchronization management module.

chronization management and on a low–level access for the direct exploitation of SCI’s
features. It also profits from some configuration mechanisms within the SCI-VM and uses
them for its own configuration and storage of global state.

The core routines provided by this module are listed in Table 5.11. They can be grouped
into four sets: locks, barriers, global counters, and interrupts. The first three groups consist
for one of the appropriate allocation routines and on the other side of routines providing
the actual functionality. The last group, the interrupt routines, does not require an explicit
allocation routine because all interrupts are established automatically during the module
initialization. Therefore, the interrupt interface consists of only two routines: one to register
a callback function and one to trigger a (potentially remote) interrupt.

In the following section, the individual functionalities of these four groups will be intro-
duced, together with implementation details. Also the base performance for the individual
synchronization constructs is presented.

In addition to the actual synchronization constructs, the synchronization management
module also includes a monitoring component designed for on-line collection of statistical
data. The information delivered by this component is shown in Table 5.12. It includes
data about both locks and barriers and, similar to the consistency module, records both the
number of calls to these routines and the time spent within them. The latter information
is of special importance since these times mostly correspond to waiting times while either
acquiring a lock or performing a barrier. A high time during these operations often indicates
a serious performance bottleneck, which should be examined further.

5.3. Synchronization Management 93

Variable Purpose

numLock Number of global lock operations
numUnlock Number of global unlock operations
numLockWait Number of times a thread had to wait during a lock
timeLock Sum of time spent during lock operations
maxLock Maximal time spent during lock operations
numBarrier Number of barriers executed
numBarFirst Number of times a local thread has reached a barrier first
numBarLast Number of times a local thread has reached a barrier last
timeBar Sum of time spent during barrier operations
maxBar Maximal time spent during barrier operations
numCounter Number of global counters allocated
numCountInc Number of incrementations of global counters
numIntOut Number of interrupts generated on local node
numIntIn Number of interrupts triggered on local node
timeIntIn Time spent in interrupt handlers on local node

Table 5.12 Statistical information collected by the synchronization management module.

5.3.3 Implementation Aspects and Performance of Locks
One of the most important synchronization construct for shared memory programming are
locks. They can be used to protect certain code or data regions by only allowing one thread
at a time to acquire a specific lock. All other threads that try to acquire the same lock
at the same time are blocked until the thread holding the lock has released it again. This
provides the basis for the implementation of a mutual exclusion structure as it is often used
to protect data structures from being manipulated by more than one thread at a time. Such a
locking mechanism is provided by the HAMSTER environment through a simple interface.
It consists of three routines: one to allocate a lock, one to acquire a lock, and one to release
it again.

For an efficient implementation of such a locking mechanism on top of SCI, the atomic
transactions provided by SCI can be applied. These transactions can perform read–modify–
write operations on remote memory in an atomic manner without the possibility of races.
In the Dolphin adapter used in this work, one of these transaction types is made available to
the programmer through a special kind of remote memory mapping. When applied, a read
operation through this kind of mapping triggers an atomic fetch and increment operation,
i.e. increments the read memory location and at the same time returns its old value.

Using this atomic operation, a simple ticket scheme can be applied to implement locks
(similar to [150]). Two counters are used for this purpose, one called the ticket and one
called the access counter. When a thread attempts to acquire the lock, it increments the
ticket counter using the atomic operation and gets the old value returned, which is saved as
the ticket for the thread to enter the lock. After this, the thread continuously polls on the
access counter until its value equals the ticket value. If this is the case, the lock is considered

94 Chapter 5. HAMSTER Management Modules

Simple Lock Secure Lock Overhead

Lock time 4.28 �s 5.43 �s 1.15 �s

Table 5.13 Cost of locking operations.

taken by the requesting thread. During the unlock operation, the thread releasing the lock
increments the access counter and therefore grants the next thread access to the lock. This
locking algorithm is not only efficient due to its simple implementation, but also provides
fair access to the lock for any thread since it provides a true FIFO scheduling.

Unfortunately, this algorithm comes with a problem. Due to the current implementation
of the PCI bridges and the SCI adapter cards, the execution of such an atomic increment
operation can fail. This can lead to the loss and then to the repetition of a failing transaction
resulting in an increment by two or more. In this case, which only happens rarely and can
normally only be observed during stress conditions on the SCI network, the lock will get
into a state in which the algorithm considers it taken even though no thread has acquired it.
As a consequence, the application will deadlock.

In order to avoid this problem, a more complex scheme has to be employed that is
secure and can not be harmed by atomic update errors. For this purpose, an additional
reservation buffer with one slot for each potential lock acquiring thread is introduced next
to the two counters. This buffer is then used during the execution of the lock operation to
mark and order requests for the lock.

The actual locking scheme is based on the insecure method described above and also
relies on tickets to be requested by the individual threads. It also relies on the fact that the
atomic increment operation at least always returns a strictly higher value than the originally
stored value, as in case of an error the transaction is carried out twice and only the result
value from the second execution is returned.

When arriving at a lock, the requesting thread first acquires a ticket using an atomic
operation (just as above in the insecure case) and writes the acquired ticket into the reser-
vation buffer. Then the ticket is compared to the access counter and if the two values are
equal, the thread has successfully acquired the lock. If the values are not equal, two things
could have happened: either the value is incorrect due to an error or the value is correct and
the thread really has to wait as the lock is currently taken by another thread. To distinguish
these two cases, the minimal ticket value in the complete reservation buffer is computed
and considered the new access counter. The waiting thread now continuously polls this
minimal value. If no other thread is waiting, this minimal value will equal the own ticket
and the thread can safely acquire the lock. In the other case, in which the lock is taken by a
second thread, the minimal value will show the ticket of the other thread and the acquiring
thread will not be able to continue.

A thread releasing a lock will, besides incrementing the access counter, also erases its
ticket from the reservation buffer and therefore automatically triggers a new minimal ticket
value in this buffer. This unblocks the next waiting thread currently polling on this minimal
value and allows the continuation of its execution.

5.3. Synchronization Management 95

0,00

10,00

20,00

30,00

40,00

50,00

1 2 3 4 5 6

Number of nodes

E
xe

cu
tio

n
tim

e
[µ

s]
Secure lock

Standard lock

Figure 5.8 Comparing the two locking algorithms under contention.

The cost of the two locking algorithms is shown in Table 5.13. The numbers repre-
sent the time needed to do a full lock and unlock cycle together with a simple arithmetic
operation. In both cases the actual locking time is very low and therefore causes only a
small overhead for the application. Due to the more complex algorithm of the secure lock,
the cost of this locking method is slightly higher. The difference, however, is only a little
more than 1 �s. This small impact comes from the fact that in this experiment all locking
operations are carried out by one thread without any lock contention to evaluate the pure
locking overhead. In this case, only very little atomic update errors happen and there is
never any waiting time for acquiring the lock. Hence, in almost all cases, the lock can be
acquired directly without having to poll on the reservation slots thereby resulting in this
small overhead.

The situation changes when locks are used under contention, as is shown in Figure
5.8. In this experiment, a lock–increment–unlock cycle was done concurrently by up to
six nodes with a large number of iterations and the numbers shown are the total execution
times divided by the number of iterations. It shows that the standard method performs sig-
nificantly better, as the secure method in this contention scenario has to frequently fall back
to the slow algorithm of finding the minimal ticket over all reservation slots. Nevertheless,
without the guarantee of a working atomic increment, this overhead has to be taken into
account in order to ensure a correct program execution. Due to this, in the remainder of the
work only the secure version is used within the HAMSTER framework.

The experiments presented so far only discuss locks in scenarios with one process or
thread per node. The results shown in Figure 5.9 complete this picture with experiments
using several processes or threads per node. As the base performance, the graph shows
the data for one thread per node (marked “Single team/thread”). The data points denoted
as “Multi Team” present the performance of the same experiment, i.e. a lock–arithmetic
operation–unlock cycle, for two processes on each node (which are dual processor SMP
nodes). It can be clearly seen that this introduces a significant overhead which can mostly
be attributed to the mutual influence between the two processes on the same node due to

96 Chapter 5. HAMSTER Management Modules

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

1 2 3 4 5 6

Number of nodes

E
xe

cu
tio

n
tim

e
[µ

s]

Single team/thread

Multi Team

Multi Team -1

Multi Thread

Multi Thread -1

Figure 5.9 Lock performance under contention with secure algorithm in different SMP
scenarios.

their global polling for the lock. This observation is further supported by the data shown as
“Multi Team -1” , which presents the data obtained with two processes on N-1 nodes and
only one on the remaining node. These data points are roughly the same as in the “Multi
Team” case with one node less. This indicates that this one extra process, which is located
alone on a node, does not influence the overall performance significantly.

Based on the outcome of these experiments, it is obvious that such a concurrent polling
of two processes on the same node should be avoided in order to decrease this drastic over-
head. In the case of multiple threads, this can be done without much additional coding
complexity by using local operating system locks in addition to the global locks. On lock-
ing, each thread first acquires the local lock and then the global one. This ensures that only
one thread per node actively polls for the same global lock, while any other thread on the
same node competing for the lock is blocked by the operating system trying to acquire the
local lock.

The two lines marked as “Multi Thread” in the graph of Figure 5.9 show the perfor-
mance results for this combination of local and global locks. The overhead is significantly
reduced to a point where the difference between the performance of a lock with a single
or multiple threads per node becomes negligible. Consequently, the performance with one
node being loaded with one thread less also behaves almost identical.

5.3.4 Implementation Aspects and Performance of Barriers
Besides locks, a second very typical shared memory synchronization construct exists: bar-
riers. These can be used to defer the execution of a set of threads until all of them have
reached the same point of execution. This is done by all threads calling the barrier function
which does not return until all threads included in a certain set of threads have called it with
the same parameters. After that, the execution of all threads participating in the barrier can
be resumed.

5.3. Synchronization Management 97

Barriers are often used to organize regular computations in an SPMD style. In these
kind of programming models, all threads of an application execute the same computation
on distinct sets of data. Barriers are used to separate different phases or iterations within a
computation to hold the execution at the same level.

The main parameter of any barrier function is the number of threads which need to be
synchronized. To provide the greatest possible flexibility, the HAMSTER synchronization
module provides three different barrier routines with different ways to specify the number
of threads:

� Standard barrier: Execute a barrier over all nodes with one thread per node. This is
often used to coordinate management tasks which need to be executed on all nodes,
like the distributed allocation of shared memory.

� Activity barrier: The HAMSTER environment maintains a counter for all running
activities or threads. This barrier type is using this counter to synchronize all cur-
rently running activities.

� Fixed barrier: Execute a barrier over the amount of nodes specified as an extra
argument. This routine takes care of all remaining cases in which the number of
threads can not be determined implicitly.

All of these routines are based on the same core consisting of a single routine with the
number of threads to wait for as the argument. Individual front ends are used to compute
this number and call the core routine to execute the actual barrier.

In contrast to the locking scheme described above, it is not helpful to rely on the SCI
atomic transactions for this routine. Due to the natural contention of a barrier, atomic
transactions are likely to fail resulting in an insecure execution. In order to avoid this, an
alternative has been developed that is based purely on standard remote memory operations.
Further, only local polling is deployed to reduce the stress on the PCI–SCI bridge and to
optimize the efficiency of the barrier mechanism. For this purpose, each node allocates
its own small segment of local memory, from now referred to as local synchronization
memory, and then maps these memory segments from all nodes into its own virtual address
space. For each barrier that is being allocated, the synchronization routine reserves an
integer slot for each node in each node’s synchronization memory. On entrance to the
barrier, each thread marks its arrival in the corresponding slot on every node. This is
accomplished by using remote writes through SCI. Once completed, each thread only scans
its local memory until all threads have signaled their arrival in the corresponding slots of
the local synchronization memory. Once all threads have arrived, the barrier is reset and all
threads resume their operation.

Figure 5.10 shows the performance of this barrier algorithm in the same scenarios as al-
ready used for the evaluation of the locks. The data points denoted as “Single team/thread”
show the behavior when executed on up to six nodes with one thread per node. The exe-
cution of a barrier takes under 11 �s and only increases slightly when executed on more
nodes. The algorithm is therefore very scalable with regard to performance, however, at

98 Chapter 5. HAMSTER Management Modules

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 2 3 4 5 6
Number of nodes

E
xe

cu
tio

n
tim

e
[µ

s]

Single team/thread

Multi Team

Multi Team -1

Multi Thread

Multi Thread -1

Figure 5.10 Barrier performance on up to 6 nodes.

the cost of memory and mapping resource requirements on each node being linear in the
number of nodes.

The algorithm in the version above is only suited for one thread of execution in each
process. It needs to be augmented to be able to work in SMP environments. To ensure the
greatest possible efficiency, this is done in a two step process: a local barrier synchronizing
all threads on one node and a global barrier for the inter–node synchronization. The first
thread on each node to reach the barrier executes the global barrier, while any further thread
simply blocks until the main barrier is completed. Before the blocking, the main barrier
thread is informed of the arrival of another thread at the barrier by incrementing a local
barrier counter. After the completion of the barrier, the main barrier thread releases all
registered threads on the same node allowing them to continue their execution.

The two lines in Figure 5.10 marked as “Multi Thread” show the time needed for the
execution of this barrier scheme using either two threads on each node or two threads on
N-1 nodes and one thread on the remaining node. The data indicates that the overhead in
this barrier version required for the registration and unblocking of the additional threads
is initially higher than in the “Multi Team” cases, but that with with rising numbers of
nodes, the increase in time spent for the barrier is again very modest resulting in a more
scalable behavior. In addition, it is worth noting that in case one node is executed with only
one thread, the barrier shows a similar behavior as in the case of one thread (and therefore
also one node) less. The barrier for such a single thread on an additional node is therefore
basically free.

Figure 5.10 also contrasts the performance of barriers with multiple threads per node to
multiple processes per node each with one thread. This data is shown in the graph marked
as “Multi Team” . With a small number of nodes, a barrier in this scenario performs better
than the multithreaded counterpart, while in configurations with larger number of nodes
the situation is reversed. This is likely to be attributed to the fact that the multithreaded
version basically performs a barrier with one thread per node and just has to pay an (almost)
constant overhead for registering and releasing additional threads while in the multi–team

5.4. Task Management 99

Time [�s]

Interrupt trigger 15.17
Interrupt ping–pong =2 94.95

Table 5.14 Execution time of interrupts in HAMSTER.

case each node performs two barriers with active polling leading to a higher overall system
load and therefore to a performance degradation.

5.3.5 Global Counters and Interrupts
The two synchronization constructs described above, locks and barriers, are sufficient for
the implementation of any arbitrary synchronization scheme. However, it can be beneficial
to make further base mechanisms available to both ease and optimize the implementation
of further synchronization constructs.

For this purpose, the synchronization modules exports two further low–level mecha-
nisms, which are based directly on the capabilities of SCI: global counters using the SCI
atomic transactions and (potentially remote) interrupts. Their implementation is therefore
very lean and does not result in additional complexity. While the global counters are sim-
ply an abstraction of the atomic fetch & inc operations which already have been used to
implement the locks, the interrupts are directly based on the interrupt implementation of
the SISCI API [64] provided by Dolphin (see Section 2.3). This API, however, has been
extended for the various software layers within the SMiLE project to support a more effi-
cient interrupt management — the original version, as is currently distributed by Dolphin,
does not support a user–level signaling mechanism; instead, active waiting on incoming
interrupts is required. With the help of the mentioned SMiLE extension, interrupts can be
delivered in a fully asynchronous way. This version is also used for the synchronization
module described here.

Table 5.14 and Figure 5.11 show the performance characteristics of these two mecha-
nisms. In both cases the performance is very good, which reflects their low–level imple-
mentation close to hardware and system software. Interrupts can be triggered on the local
node with an impact of about 15 �s and a remote node is notified in under 100 �s.

With regard to the performance data for the atomic increments, the value for one node
reflects the raw read latency of SCI, which is around 4 �s. With increasing numbers of
nodes and therefore more concurrent processes performing an atomic increment operation,
this latency is slightly increased due to contention on the network. The overall impact,
however, is quite modest.

5.4 Task Management
Besides the services that allow the control over the actual shared memory, additional mech-
anisms to control the task or execution model are required. These are merged into the task

100 Chapter 5. HAMSTER Management Modules

0

2

4

6

8

10

12

1 2 3 4 5 6
Number of nodes/CPUs

T
im

e
pe

r
In

c
[µ

s]

Figure 5.11 Performance of atomic counters under varying numbers of nodes.

module discussed in this section. Its functionality, however, is kept very lean in order to
fulfill the goal of being unbiased towards any specific programming model.

This design choice is especially visible in the fact that the task module purposely does
not provide mechanisms to create and/or control threads. Due to the subtle differences with
regard to syntax and semantics in the thread APIs of the different target operating systems,
the implementation of such a mechanism would either result in an emulation of one thread
API on the other operating system (which would in addition either be very complex or
semantically not complete) or in a subset of common thread functionalities. In both cases
it would nearly be impossible to implement a cluster–wide extension of one of the native
thread APIs.

For this reason, the implementation of thread services is left to the actual programming
model implementation (see also Chapter 6.4). The task module, however, provides support
services needed to guarantee a clean cooperation with the global process abstraction and
its associated teams as described in Chapter 4. This can be used to implement any task
structure that goes beyond the native one of one thread per node exported by the SCI-VM.

5.4.1 State of the Art
Several projects provide a global thread management. Typical examples for this class of
systems are Nexus [56], Chant [73], PM2 [7] , and Mosix [12]. They provide the ability
to create and manage distributed activities or threads and are mostly combined with trans-
parent thread migration mechanisms. Those systems, however, do not include a global
memory abstraction and are therefore not suited for implementing applications using the
shared memory paradigm. They are rather used as runtime systems for higher–level pro-
gramming environments.

5.4.2 Functionalities
The functionality of the task module, which is listed in detail in Table 5.15, can roughly
be split into two groups: routines for the registration of threads and routines available for
thread placement within an SMP. Both are intended to support multithreaded programming

5.4. Task Management 101

API call Description

taskMod_incNumberOfActivities Register a new local thread
taskMod_decNumberOfActivities Deregister a local thread
taskMod_queryNumberOfActivities Query the total number of threads
taskMod_queryNumberOfLocalActivitiesQuery the number of local threads
taskMod_assignToCPU Bind thread to given local CPU
taskMod_assignToNextCPU Bind thread to next local CPU

Table 5.15 API of the task management module.

models that go beyond the simple model on which the SCI-VM is based.
The first group of routines allows user threads to be registered and deregistered with

the HAMSTER framework. This is used to keep track of the total number of activities or
threads on the local node as well as globally. At the beginning of the program execution,
all initial user threads started by the SCI-VM, i.e. one on each node, are already registered.
Any further thread created by the programming model layer needs to be registered by in-
crementing the activity counter. In the same manner, this counter needs to be decremented
in the case of the termination of a thread. In addition, the task management module pro-
vides two routines to query the current number of activities on the local node and in the
total system. This information can then for example be used for load balancing or thread
placement decisions.

The second group of routines allows to optimize the behavior of multithreaded pro-
gramming models when executed on SMP nodes by pinning the execution of threads to
processors. This has the potential to improve the overall system performance as unneces-
sary thrashing in the assignment of threads to processors by the scheduler is eliminated.
The feature to pin threads to processors, however, is not available on all platforms. To still
ensure the portability of programming models, these routines are available on all platforms,
with or without the functionality. As these routines do not directly influence the execution,
but are only used for optimization purposes, this approach provides a portable execution
across platforms.

As with all the other management modules, the task management module also implic-
itly collects some statistical data and thereby contributes to the HAMSTER monitoring
system. However, as the functionality of the module is purposely kept small, the amount
of data which can be collected is also limited. The concrete parameters are listed in Ta-
ble 5.16. In contrast to the data in the other modules, the data for the last two parameters
shown in the table is not accumulated during the runtime of the program, but rather rep-
resent the current status of the system: the number of activities or threads both global
and local which are currently registered in the system (as it can also be queried using
taskMod_queryNumberOfLocalActivitiesand taskMod_queryNumberOfActivities) and the
current system load. These values are retrieved and updated at the time the statistics from
the task module are queried by the user or a higher layer and returned together with the rest
of the statistical data from this module.

102 Chapter 5. HAMSTER Management Modules

Variable Purpose

numAssigned Number of times taskMod_assignToNextCPU
called on local node

numAct Number of global current activities
numLocAct Number of local current activities
locLoad Current load on the local node

Table 5.16 Statistical information collected by the task management module.

5.5 Towards a Global View: The Cluster Control
Module

In contrast to the actual management modules discussed so far, the last module, the cluster
control module, takes a special role. It is not designed and implemented in an orthogonal
way to the other modules, but can rather be seen as a common support layer. It is re-
sponsible for controlling the configuration of the target system and for providing any other
HAMSTER component, from the SCI Virtual Memory to the programming model, with
the necessary information about it.

It also stands in a very close relationship to the task module as both deal with the
organization of activities within the system — the task management module at thread and
the cluster control module at process level.

5.5.1 State of the Art
Due to this close relationship between the cluster control and the task management module,
any work related to the task module mentioned in Chapter 5.4.1 can also be seen as related
to the cluster control module. In addition, the cluster control module in its function to
establish a global machine abstraction is also comparable to the wide area of so called
Single System Image(SSI) systems. These systems aim at hiding the distributed nature of
the underlying hardware from the users by presenting them with a single frontend. The
extent of this abstraction as well as the concrete intention behind it, however, varies greatly
between individual SSI systems.

A few commercial systems have been developed to allow easy system management
and batch processing and therefore feature special software installation and remote control
tools together with a job management system. Examples for this are the Scali Software
Platform (SSP) [190] and the “Raisin” Package by the Company Alinka [238]. These
systems, however, do not include a global resource abstraction for applications since the
behavior of applications on the target system is not influenced.

The latter issue is targeted by distributed operating systems which aim at extending
the services offered by a single operating instance transparently to a distributed system.
Approaches in this direction can be found both in industry, e.g. in Solaris MCTM [121],
and academia, e.g. in the Tornado [59] and the Sprite operating system [173]. They com-

5.5. Towards a Global View: The Cluster Control Module 103

API call Description

clusctrl_getNodeNum Query the rank of the local node
clusctrl_getNodeCount Query the number of nodes in the complete system
clusctrl_getNodeID Query the SCI node ID of a node
clusctrl_getLocalScale Query the maximal concurrency on the local node
clusctrl_getNodeScale Query the maximal concurrency on a particular node
clusctrl_sendMessage Send an asynchronous RPC–like command

Table 5.17 API of the cluster control module.

bine a global thread management with distributed operating system services and therefore
complete the single system abstraction at operating system level.

5.5.2 Functionalities
The core of the functionality contained within the cluster control module is designed to de-
liver extensive information about the system configuration to any other layer. The routines
for this purpose, which are listed in Table 5.17, allow the querying of the number of nodes
involved in the current system and the rank of the local node within the system as well as
the retrieval of the network ID (in this case the SCI ID), which can differ from the rank.
In addition, special routines are provided to query the maximal concurrency on a particular
node. This number, in the following called scale of a node, indicates the maximal num-
ber of concurrent activities suited for the particular node and can be used to indicate SMP
configurations on certain nodes. It should be noted, however, that the scale of a node does
not directly imply the number of running activities, but merely represents a hint for mul-
tithreaded programming models on how many threads can be started on a particular node
without overloading it.

5.5.3 Asynchronous RPC-like Communication Service
Besides these configuration routines, the functionality of this module also includes a simple
messaging mechanism allowing the remote execution of routines. This facility is both
used by the HAMSTER modules themselves and is available for the implementation of
programming models. Even though this mechanism seems contradictory to the shared
memory paradigm of any target programming model, it is often required, or at least useful,
for their implementations as it enables the exchange of small messages for configuration
and/or status update purposes.

The messaging engine in the cluster control module is implemented as an asynchronous,
non–blocking Remote Procedure Call (RPC). Using the routine clusctrl_sendMessage, a
sender can specify the address of a routine on the receiver node that will be executed on
arrival of the message. The system is built for small amounts of payload data which will
be delivered to the target routine as a parameter. This style of communication is simplified
by the fact that any node is required by the SCI-VM to load and execute the same binary.

104 Chapter 5. HAMSTER Management Modules

Therefore, any potential target routine is always available on any node at the same location
and can hence be specified by its address. This omits the need for an elaborate naming
scheme or centralized lookup service.

In its current state, the messaging mechanism is implemented on top of standard sockets
using TCP/IP over Ethernet. This choice was made as this mechanism is normally used only
during the configuration phase of either the management modules or any programming
model. The performance of this mechanism was therefore not a major issue resulting in
the choice of a less complex and more robust implementation. The actual send and receive
mechanism, however, is encapsulated into a single submodule leaving the option for an
easy port.

5.5.4 Control Over the Global Process Abstraction
The exported routines, however, do not cover the complete functionality of the module.
Unlike the other modules discussed so far, it also includes implicit functionalities which are
executed transparent to the other layers. One of the core points of this is the management of
the global process abstraction. Such an abstraction is required to support the global virtual
memory abstraction implemented within the SCI-VM introduced in the previous chapter.

The cluster control module is responsible for establishing the teams used by the SCI-
VM, their coordination, control, and communication. This forms a global environment
which, together with the global memory abstraction, allows to transparently host threads
on any node without significantly influencing or restricting their execution.

This global process abstraction is, however, currently not complete. Especially the area
of I/O is at the moment not covered resulting in the fact that any I/O operation issued by
a thread running within HAMSTER will only be executed on the node local to the calling
thread without any global coordination. In order to overcome this, a transparent forwarding
mechanism for I/O operations in coordination with a global resource management would
be required virtually extending the complete operating system to the cluster environment.
This would have been far beyond the scope of this work, but might prove worthwhile to
pursue in the future.

5.5.5 Startup Control
As already described in Chapter 4.4, an SCI-VM based application is initialized by exe-
cuting the same binary compiled on top of a HAMSTER–based programming model on
all participating nodes. This, however, does not include the correct identification of these
nodes nor the initial establishment of connection between them. These tasks are taken care
of by the cluster control module implicitly at program initialization time and this informa-
tion is then provided to any other component of HAMSTER — including the SCI-VM —
through the interface described above.

The task of node identification and system setup is based on a configuration file which
has to be provided by the user. It is read and evaluated by this module during program
initialization. In order to keep the complexity for the user as low as possible, the syntax is
kept extremely simple and easy–to–use. Two examples for such a file are shown in Figure

5.5. Towards a Global View: The Cluster Control Module 105

#name SCI ID Scale #name SCI ID Scale

smile1 4 2 smile1 4 1
smile2 8 2 smile1 4 1
smile3 12 2 smile2 8 1
smile4 16 2 smile2 8 1
smile5 20 2 smile3 12 1
smile6 24 2 smile3 12 1

smile4 16 1
smile4 16 1
smile5 20 1
smile5 20 1
smile6 24 1
smile6 24 1

Figure 5.12 HAMSTER configuration file for complete SMiLE cluster consisting of 6 dual
SMP nodes in SCI ringlet configuration — left: exploiting SMPs with multiple threads;
right: exploiting SMPs with multiple teams per node.

5.12. It is a plain ASCII text file and contains a line for each node participating in the
global process abstraction (plus arbitrary numbers of comment and empty lines). For each
node three parameters have to be provided: the DNS node name, the network ID (in this
case the SCI ID), and the scale of the particular node.

It is also possible to list nodes several times in the configuration file. In this case,
several teams (equal to the number of listings in the configuration file) are started on the re-
spective node. Each of these teams then behaves like an independent node participating in
the HAMSTER system. An example for this can also be seen in Figure 5.12 which shows
both ways to specify the SMiLE cluster used for all experiments, on the left side using
the scale specifier and on the right side using multiple node entries to specify SMP node
configurations. This second option is introduced to support SMP nodes also for program-
ming models that do not directly exploit multithreading within a team. This extends the
applicability of the HAMSTER system and allows SMP clusters to be used both for true
multithreading programming models as well as programming models designed for only one
thread per team.

In both cases, the order in which the nodes are listed in the configuration file determines
their rank in the system. The top listed node will be assigned the rank zero, the second one
rank one, and so forth. In the case, multiple entries are used for a node, the team started
first on that particular node will receive the lowest rank on that particular node, the second
team the second lowest and so forth until the last thread, which then receives highest rank
in the configuration file for that particular node. The first node in the configuration file will
also receive a special role as a master node during the initialization phase and should be
called last. During later stages this special role will be dropped.

The cluster control module also ensures that all nodes are running before any further

106 Chapter 5. HAMSTER Management Modules

HAMSTER mechanism is invoked. For this purpose, the execution of the application is
handed to the cluster control module at the beginning which blocks the execution until all
nodes listed in the configuration file have started executing and joined the global process
abstraction. This is necessary to guarantee that the complete global process abstraction is
in place and provides the associated functionality before any further code is executed that
relies on this abstraction and might cause fatal errors in the case of its absence.

5.5.6 Clean Termination
Not only the startup process requires special treatment by the cluster control module, but
also the termination of the global process abstraction needs to be considered. In stand–
alone operating systems, a process is normally considered terminated as soon as its last
thread terminates. This semantics has to be extended to the complete cluster, requiring
the teams on all nodes participating in the global process to terminate if (and only if) the
last thread on any node is being terminated. Such an accurate termination policy is of
special importance for the implementation of programming models based on a dynamic
task management, as is given in any thread API.

To implement this scheme, it is not only necessary to have an overview of the total
number of threads currently running within the system, which can be obtained using the
mechanisms of the task management module discussed above, but also to keep teams cur-
rently without user threads alive since their resources are still needed to contribute to the
overall global process and the node still has to be available to potentially host new threads.
This is achieved through additional communication threads created by the cluster control
module, guaranteeing the number of threads per team registered with the operating system
always to be at least one. This ensures that no team will be evicted by the operating system
on any node prematurely.

In the case the activity counter is decreased to zero, no other activity is running within
the whole system and the complete global process has to be terminated. This is done, again
under the control of the cluster control module, by terminating the communication threads
after a global node barrier to ensure a synchronous termination across the cluster. This will
then delete the last thread in each team which results in the termination of the individual
team processes and thereby the complete global process abstraction.

5.6 Summary
In order to fulfill the goal of enabling as many shared memory programming models as pos-
sible or necessary, the HAMSTER framework provides a large number of shared memory
services. These are grouped in independent management modules, each providing a spe-
cific set of services. These modules are implemented in a fully orthogonal manner without
any cross–dependencies ensuring the openness and flexibility of the overall system.

The memory management module contains mechanisms for a flexible NUMA memory
management. It not only facilitates the allocation and management procedures for a global
shared memory, but it also provides an interface giving the programmer control over data

5.6. Summary 107

placement and coherency parameters of newly allocated memory based on optional anno-
tations. In addition, it contains mechanisms for the distribution of static application data
completing the transparency required by some shared memory programming models.

The coherency management modules provide all mechanisms necessary to enforce the
memory consistency needed for a safe and reliable application execution. Together with the
synchronization module, which exports optimized implementations of low–level synchro-
nization constructs such as locks and barriers, it can be used to create relaxed consistency
models. This will be illustrated in more detail in the next chapter.

Besides these core shared memory services, services regarding the task and global pro-
cess management are also necessary to complete the requirements for an implementation of
shared memory programming models. This functionality is encapsulated in the task man-
agement and the cluster control module. The latter one is also responsible for any kind of
global cluster and process management and therefore functions as a central management
component in the overall framework.

Combined, the services exported by the different management modules provide a com-
prehensive infrastructure for the implementation of shared memory programming models.
The issues related to this endeavor will be explained in detail throughout the next chapter.

Chapter 6

Implementing Programming Models
on Top of HAMSTER

The modules described in detail in the last chapter can be used to build almost any shared
memory programming model. The interface available for this purpose is discussed in this
chapter followed by the description of the most important implementation aspects encoun-
tered in different programming models. The chapter is then rounded up by a complete
overview of all existing programming models on top of HAMSTER and a discussion about
their implementation complexity.

6.1 The HAMSTER Interface
The HAMSTER interface forms the connection point between the collection of services
provided by HAMSTER and the programming models using them for their implementation.
This interface, however, is no rigid monolithic block, but should merely be seen as a toolset
collected from several independent parts. From a high–level point of view, this toolset can
be split into two main groups: the core HAMSTER services provided by the modules
introduced in the last chapter and a small set of auxiliary services for additional support.

6.1.1 HAMSTER Services
The main part of the HAMSTER interface is formed by the actual core HAMSTER services
exported through the various management modules discussed in Chapter 5. This collection
of routines allows programmers to implement and control most aspects of shared memory
programming models.

6.1.2 Multiplatform Timing Support
Besides these core services for the actual implementation of shared memory programming
models, the HAMSTER interface provides additional services and functionalities available
to any higher layer. One example of such an add-on service is a timing module providing
platform independent support for timing. This includes both the emulation of routines
typically used on one platform — like times()or gettimeofday()— on any other supported
platform and the implementation of own timing routines based on high precision timing

110 Chapter 6. Implementing Programming Models on Top of HAMSTER

mechanisms available in the underlying architectures.
This timing module further helps to increase portability of both programming models

and applications between different platforms. It eliminates the need to adapt to the vari-
ous different timing mechanisms on the individual platforms which traditionally is a very
tedious task. In addition it forms the basis for easy and fair cross platform performance
studies.

6.1.3 Using the HAMSTER Interface
All services provided by HAMSTER are available as standard C bindings and can be used
by any programming system capable of using such a binding, even though during the course
of this project only standard C or C++ environments (gcc for Linux and Microsoft’s Visual
C++TM for Windows NTTM) have been used. The only prerequisite is that the complete
final binary is static in the sense that the layout of its virtual address space after it has been
loaded by the OS is constant. Only this allows the creation of identical copies of the process
image on several nodes, which is necessary for the SCI-VM and the memory management
module to work properly and to guarantee a fully transparent global memory abstraction.

In order to utilize the services available through the HAMSTER interface, the pro-
gramming model layer has to include the respective header files for the individual modules
containing them. Those are themselves based on a small set of global header files with
system wide type and constant definitions. Together they form the complete basis for the
implementation of any programming model, which then in turn exports its own API to the
final user application.

6.2 A First Model: Single Program – Multiple Data
(SPMD)

The first programming model implemented within the HAMSTER framework is a program-
ming model that implements a straightforward Single Program – Multiple Data or SPMD
model. Its concrete API and usage is explained in Appendix B. In this model a fixed num-
ber of threads equal to the number of nodes in the system is executed. All threads work in
principle on the basis of the same code (Single Program), but each thread has its own part
of the data to work on (Multiple Data). As an exception to this rule special code segments
(normally not as a part of the computational core and mostly dealing with initialization,
post processing, or I/O) might be performed only by a single master thread. The program-
ming model, however, does not enforce the SPMD programming style; nothing prevents
the user from diverting from it and implementing more irregular code constructs, but this
is depreciated and normally requires a significantly higher coding complexity. Therefore,
all codes based on the SPMD discussed in this work stick to this particular programming
style.

During the execution, data regions can be allocated and shared between the nodes.
These regions are normally used to store the application’s working set while support and
management variables are often stored in node local resources like a thread’s stack. The

6.3. Support for Various Consistency Models 111

main synchronization method in this model are barriers since they separate phases during
the program execution and often help to separate the work in distinct iterations and/or
different sections of the data. Locks are only very rarely used, because they contradict the
pure SPMD style due to their nature of mutual exclusion which allows only one thread to
perform work during this execution.

The SPMD model was chosen as the first test programming model for the HAMSTER
system as it has a straightforward and simple task model that does not introduce any further
difficulties for testing and tuning while still allowing a complete evaluation of the memory
management, synchronization, and consistency modules. For the same purpose, it also
exports most of the features of these modules directly to the user. This, however, is done in
a way that allows users to easily ignore advance features relying on default parameters. As
a result, the SPMD model combines both simple and advanced HAMSTER mechanisms
and hence serves as an ideal testing ground for the HAMSTER system, especially for the
lower management and memory abstraction layers.

6.3 Support for Various Consistency Models
In order to fulfill the goal of supporting almost any arbitrary shared memory programming
model, HAMSTER also needs the ability to support the various consistency models present
in other systems. This is especially important when supporting HAMSTER–based APIs of
existing DSM systems since this area of research has produced a large variety of such
models. This section discusses how the mechanisms provided by the HAMSTER modules
can be used to create these consistency models, including an in–depth discussion of the two
popular consistency models Release Consistency (RC)and Scope Consistency (ScC)1.

6.3.1 State of the Art
Relaxed consistency models have been present for a long time in SW–DSM systems, as
already discussed in Chapter 4.1.2. Two prominent examples among them are Release
Consistency [116], implemented in systems like TreadMarks [5], CVM [117], Shasta [189],
and Munin [29], and Scope Consistency, implemented in Brazos [209] and JiaJia [83]. The
main intention for their deployment is their ability to reduce the amount of communication
necessary for the maintenance of the global memory abstraction since the number and size
of updates can be reduced.

The actual performance impact of the different models, however, is strongly dependent
on the target application and its memory access pattern as well as the behavior of the con-
crete consistency protocol implementation. For this reason, few projects aim at providing
the ability to support either several given or even user–defined consistency protocols. In
latter case the respective systems provide a set of basic DSM functionalities and/or a set
of parameters allowing the definition of new protocols. Examples for systems with such

1The abbreviation ScC is used instead of SC to distinguish Scope Consistency from Sequential Consis-
tency.

112 Chapter 6. Implementing Programming Models on Top of HAMSTER

a multiprotocol support are the CVM framework [118], in the ADSM system [160], and
Munin [29, 17].

While the flexibility of these systems is quite comparable with the intentions within
the HAMSTER framework, the inherent restrictions for the different approaches are radi-
cally different. The HAMSTER system draws its restrictions from the underlying hardware
architecture and the memory coherency types realized on it; software implementations of
multiprotocol systems impose restrictions from the selection of exported functionalities
and/or parameters as well as from the underlying base SW-DSM systems.

6.3.2 Combining Consistency and Synchronization
In most DSM systems with relaxed consistency (see Sections 5.2.1 and 4.1), the consistency
management is inherently connected with synchronization constructs. This is especially
valid for constructs guaranteeing a mutual exclusion, like locks. Here, most programming
models combine an Acquireoperation of some kind with a Lockcall and the corresponding
Releasewith the corresponding Unlock. This kind of combination guarantees a consistent
view on any memory accessed only from within critical sections. In addition, barriers are
often combined with a full synchronization of the underlying memory system, i.e. Acquire
and Releasetogether, resulting in a consistent memory between program phases separated
by barriers.

However, by hardcoding this combination of synchronization and consistency control,
the resulting system is bound to one particular relaxed consistency model and therefore
only exhibits a restricted amount of flexibility. While this is tolerable for DSM systems in-
tended for application programmers, it does not suffice for a system like HAMSTER, which
aims at the implementation of arbitrary shared memory programming models. Hence, in
the HAMSTER system, the synchronization module does not include any consistency en-
forcing mechanisms and vice versa, guaranteeing the full orthogonality between these two
modules.

Instead, the connection between synchronization and consistency management is left to
the implementation of the programming model, the layer above the individual management
modules. This has the intended advantage that each programming model can select its own
consistency model and combine the appropriate synchronization mechanisms. In addition,
it opens the possibility for the implementation of application specific consistency models
without much additional cost. In summary, this approach provides a maximum of flexibility
and induces no restrictions to the programming models implemented on top of this system.

6.3.3 Implementing Release Consistency
As a first example of how to connect the mechanisms from the synchronization module
with the consistency management routines, the following section provides a description on
how to implement Release Consistency.

6.3. Support for Various Consistency Models 113

Consistency conditions

When using Release Consistency, all memory operations are divided into synchronizing
and non–synchronizing operations. The first group is further split into so–called Acquire
and Releaseconstructs. The first ones are used to gain permission to access shared data,
while the second ones are used to grant access to shared data to other processes.

Based on this division, Release Consistency is defined using the following three con-
sistency conditions [116]:

1. Before a read or write access is allowed to perform with respect to any other proces-
sor, all previous Acquireaccesses must be performed.

2. Before a Releaseis allowed to perform with respect to any other process, all previous
read and write accesses must be performed.

3. Acquireand Releaseaccesses are sequentially consistent with respect to one another.

Informally, the two operations Acquireand Releaserepresent routines controlling the
visibility of data on remote nodes defining a window of safe access to shared data. They
are therefore enhanced with synchronization semantics which are used to control the task
structure since only this combination enables the control of both data and tasks as required
from an application point of view.

With regards to locks, typically an Acquire is combined with a lock operation, while
a Releaseis combined with a corresponding unlock operation. This ensures that the data
accessed during the critical section always represents the current global state (due to the
Acquire) and that any modification is made available after the critical section is left (due to
the Release).

Implementation

Based on this informal description, it is clearly visible that the Acquireoperation corre-
sponds to the read invalidation described above, as in both cases the data on the local nodes
needs to be updated, i.e. old data needs to be invalidated. On the other side, the Releaseop-
eration can be implemented with a write flush since in both operations the locally modified
data is pushed across the network and therefore made available.

More precisely, the implementation is as follows:

� Aquire

- Perform lock operation
- Perform read invalidation

� Release

- Perform write flush
- Perform unlock operation

This implementation approach satisfies all three conditions stated above and therefore
provides a full Release Consistency implementation.

114 Chapter 6. Implementing Programming Models on Top of HAMSTER

Differences to software implementations

Software implementations distinguish further between Eagerand Lazy Release Consistency
(ERCand LRC respectively) [116]. This difference influences when memory updates are
sent to remote notes — ERC implementations send the information to any other node at
the time of the Releaseoperation, while in LRC implementations the processes receive and
consume them at the time of the Acquirecall.

This difference in implementation also has a subtle influence on the memory consis-
tency model realized by it. While in ERC, all information released by previous Release
operations is available in the whole system before the next Acquireon any node, LRC im-
plementations only guarantee the availability of the information on the node performing
the Aquire.

The HAMSTER–based realization of RC for NUMA architectures presented above can
not be cleanly classified as either ERC or LRC, but rather represents an intermediate so-
lution. Like in ERC, Releaseoperations push their memory update to any other node and
therefore make them available. However, their contents may not be visible immediately
since stale values might still be stored in the processor caches. Even though these are not
invalidated before the next Acquireoperation, sporadic cache evictions caused by cache
line replacements can lead to an earlier deletion of stale values and hence to the visibility
of the new information to the processor.

6.3.4 Implementing Scope Consistency
The Release Consistencymodel described above creates an implicit relation between Re-
leaseand the following Acquiresince any data written before the Releasemust be made
visible after the following Acquire. This relation can be loosened by introducing an explicit
relationship between groups of Acquireand Releaseoperations and restrict the visibility of
data after an Acquireto the data written before a Releasewithin the same group. Hence,
it implicitly decouples the memory updates caused by the Acquireand Releaseoperations
in the different groups and thereby also the memory consistency constraints in the memory
regions which are updated between the respective operations. This creates so called Con-
sistency Scopes, as introduced by [97], without having to specify an explicit association of
data and consistency operations.

Consistency conditions

As this concept of Scope Consistency is just a straightforward extension or generalization
of the Release Consistency already discussed above, its consistency conditions are also
very closely related. The key difference is the introduction of consistency scopes which
can be opened and closed by applications. Any read or write operation is then performed
with respect to any open scope and write operations are assumed to be completed with
respect to a scope on closing this scope. Using these concepts, the consistency conditions
of Scope Consistency can be defined as in [97] (with a session being the interval during
which a consistency scope is open at a given process).

6.3. Support for Various Consistency Models 115

1. Before a new session of a consistency scope is allowed to open at a process P, any
write previously performed with respect to that consistency scope must be performed
with respect to P.

2. A memory access is allowed to perform with respect to a process P only after all
consistency scope sessions previously entered by P (in program order) have been
successfully opened.

Informally, this definition leads to the memory behavior that memory accesses made
during a scope are only guaranteed to be visible after the scope has been closed and also
only within the same scope opened by another process. Any other access is not guaranteed
to be visible. The first rule is responsible for ensuring that updates are properly propagated
after a close and the second rules guarantees that these updates have been completed in
time.

The important consistency enforcing mechanisms in these concepts are the opening and
closing of scopes as these represent the points during a program’s execution in which the
visibility of data changes. Contrasted to Release Consistency, opening a scope is the same
as an Acquire(only restricted to the scope) and closing a scope is the same as a Release
(again restricted to the scope).

Like Release Consistency, this concept has also to be used in conjunction with synchro-
nization mechanisms in order to allow applications a useful assumption about the under-
lying memory behavior. In order to exploit the scope concept to a maximum, each lock is
normally associated with its own scope as it is assumed that each lock is responsible for
the management of a distinct part of the overall data set. During the lock operation the
respective scope is opened, i.e. the scoped Acquire is performed, and during the unlock
operation the scope is closed again, i.e. the scoped Releaseis performed.

Using this inherent connection, the usability of Scope Consistency is drastically in-
creased since an explicit scope management would significantly increase the coding com-
plexity of applications. Experiments [97] have actually shown that most codes written for
Release Consistency can directly be used with Scope Consistency without any code modi-
fication, but at improved performance.

Implementation

A HAMSTER–based implementation of Scope Consistency can be achieved in a straight-
forward manner using the scoped versions of the consistency enforcing mechanisms intro-
duced in Chapter 5.2.4. These have been derived from the general mechanisms which are
used to implement Release Consistency, in the same manner as Scope Consistency has been
derived from Release Consistency. Both exploit the implicit dependency between Acquire
and Releaseoperations and optimize by restricting this dependency to explicit groups, the
so–called scopes.

An implementation of Scope Consistency can therefore be achieved based on the RC
implementation discussed above by replacing the unconditional write flushes and read in-
validations with their scoped counterparts. In addition, a new scope is implicitly allocated

116 Chapter 6. Implementing Programming Models on Top of HAMSTER

and associated with every lock requested by an application. This results in the intended
consistency model, fully compliant with the constraints and their informal interpretation
mentioned above.

Differences to software implementations

Due to the close relation between the implementations of the two consistency models, the
differences to the software implementation of RC also apply to Scope Consistency. In ad-
dition, another difference is introduced by the fact that any read invalidation or write flush
always has a global impact on the overall system whereas pure software implementations
can control which data the consistency operation can be applied to. This leads to earlier
transmissions of data than necessary, however without changing the guarantees of the con-
sistency model. Therefore, this slight difference does not have an impact on applications
using this model.

A second difference between a software and a NUMA–based implementation can also
be seen in how the transition of Release Consistencyto Scope Consistencyaffects the per-
formance of applications. While software implementations use the scope information to
reduce the memory traffic and to defer the communication, NUMA–based systems use
scopes to reduce the number of necessary invalidations resulting in fewer cache misses
during the execution. This difference, however, is transparent for the user.

6.3.5 Experimental Evaluation
An evaluation of these consistency model implementations is rather difficult. For one, no
new models are introduced, but rather given concepts, whose efficiency has been exten-
sively proven before [116, 62, 256, 97], are discussed in a new environment. In addition,
any evaluation based on application performance gives more an indication of the perfor-
mance of the underlying DSM system than of the consistency model. Such a comparison,
besides being unable to provide the evaluation intended, is also very likely to be unfair
since the software DSM systems available for this work use TCP/IP–based communication
with Fast Ethernet, while the communication in the NUMA–based SCI system is performed
directly in hardware without protocol overhead.

In order to still give a first impression with regard to performance, a few low–level
benchmarks are used to help contrast a few key characteristics of the NUMA–based system
using relaxed consistency with their software DSM counterparts. These benchmarks are
synthetic and mimic a few extreme memory access patterns.

In addition, two larger benchmarks from the SPLASH–2 suite [233] are used to iden-
tify the difference between Scopeand Release Consistencyusing the HAMSTER approach.
These experiments show how and to which degree using Scope Consistency affects the ex-
ecution of these applications and allows a first assessment of a performance improvement.

Together, these two sets of experiments give a first insight into the characteristics of
NUMA–based relaxed consistency models and how they behave in contrast to traditional
approaches using software protocols.

6.3. Support for Various Consistency Models 117

Operation SW–DSM NUMA–DSM

Acquire 2.35 �s 471.20 �s

Release 2.45 �s 25.05 �s

Acquire (short write / 4 bytes) 1885 �s 3175 �s

Release (short write / 4 bytes) 25 �s 25 �s

Acquire (long write / 64 Kbytes) 112535 �s 44030 �s

Release (long write / 64 Kbytes) 65 �s 30 �s

Table 6.1 Performance of Acquireand Releaseoperations.

Low–level mechanisms and synthetic benchmarks

This set of experiments concentrates on the low–level performance of the consistency
mechanisms for NUMA architectures contrasted to the performance of the equivalent
mechanisms found in the software DSM systems (in this case the TreadMarks system [5]).

As a first approach, the performance of the actual Acquireand Releaseoperations are
measured. The results can be seen for both the software DSM and the NUMA–based ver-
sion in the upper rows of Table 6.1. They seem to suggest that the software DSM counter-
parts are significantly faster than the NUMA–DSM mechanisms. An explanation for these
numbers can be found in the different implementations: software DSM systems maintain
an implicit access control to the globally shared data in order to be able to detect when data
needs to be propagated to or fetched from a remote memory location. A respective system
therefore can easily detect that this benchmark does not perform any global data access (as
only the execution time for the routine itself is measured) and hence the operations do not
perform any communication. In the NUMA-DSM system, on the other hand, the system
does not have such information, requiring it to always flush or invalidate the respective
buffers, thereby resulting in the times shown.

This picture changes when communication is introduced. The rest of Table 6.1 shows
the time needed to perform lock / write / unlock cycles on 6 nodes. In this scenario, the
software DSM system also shows significant execution times since it has to perform the
data transport during the Acquireoperations. With larger amounts of data, this also leads to
a larger overhead resulting in significantly longer execution times than the NUMA–DSM
counterparts, which only need to flush and invalidate the respective buffers.

This behavior is further detailed in Figure 6.1, which shows the distribution of execu-
tion times for the two operations as well as the actual loop times for various amounts of
data written during the loop. Again these numbers demonstrate the radically different im-
plementations in these two system: the distribution for the software DSM system is rather
independent of the write granularity since the amount of work required for the two major
phases, the actual loop body and the Acquire, linearly depends on the amount of data writ-
ten. The execution time for the loop body is mainly caused by the page faults used by the
DSM system to keep track of the memory state while the time for the Acquire is caused
by the actual communication. In the NUMA–DSM case, on the other side, the global data

118 Chapter 6. Implementing Programming Models on Top of HAMSTER

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6
Data transfered [bytes]

SW-Loop
SW-Rel
SW-Acq

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4 16 64 25
6

10
24

40
96

16
38

4

65
53

6

Data transfered [bytes]

NUMA-Loop
NUMA-Rel
NUMA-Acq

Figure 6.1 Time distribution during Acquire/Write/Releasecycle (SW–DSM left, NUMA–
DSM right).

access during the loop body is executed fully in hardware, keeping the amount of time re-
quired for it extremely low. Due to this, the vast majority of the time spent is during the
Acquire. With rising amount of data to be transfered, the interconnection network and the
local I/O busses become a bottleneck, leading to an increased loop execution time, which
can be seen in the right graph.

It should be noted that in both cases, the execution time spent for the Releaseoperation
is insignificant, however, due to different reasons. The SW–DSM system simply performs
some bookkeeping, a purely local operation without much computational overhead, while
the NUMA–DSM system performs a write flush which only stalls until all data has been
transmitted, again a rather short time due to the low latencies provided by SCI.

The performance experiments above, however, have been skewed by the fact that all
processors actually perform a full lock operation. This generates lock contention resulting
in the fact that a majority of the time spent for the Acquireoperation actually comes from
waiting for a lock. To avoid this influence, the following experiments use a barrier based
approach, in which all processors (again all 6 nodes) access the global memory during an
iteration and the memory consistency is enforced through both a Releasebefore and an Ac-
quire after the barrier. These two operations, however can only be measured together and
combined with the barrier wait time since the TreadMarks system does not offer these op-
erations separately. However, as the barrier wait time is expected to be low (all processors
execute the same amount of code) and the execution time of the Releaseoperation is very
short (as seen above), the time measured still gives a good impression about the Acquire
time.

The graphs in Figure 6.2 show the results of these experiments based on the full exe-
cution time of one iteration, i.e. loop body and barrier time, for a range of different data
sizes. Three different memory access patterns have been tested: read–only, write–only, and
read–write in a consumer–producer like manner.

When comparing the read–write curve with the other two, the data shows that the per-

6.3. Support for Various Consistency Models 119

100

1000

10000

100000

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Data transfered [bytes]

E
xe

cu
ti

on
ti

m
e

[µ
s]

0

500

1000

1500

1 2 4 8 16 32 64 128
Data transfered [bytes]

E
xe

cu
ti

on
ti

m
e

[µ
s]

SW-W SW-R
SW-RW NUMA-W
NUMA-R NUMA-RW

Figure 6.2 Performance under Read, Write, and Read/Writetraffic.

formance of a software DSM system is bound by the behavior caused by writes since those
actually cause communication in such a system. In the read–only scenario, on the other
side, virtually all reads can be performed from replicated copies in local memory and the
performance is only slightly affected by the bookkeeping overhead of the DSM system.
In NUMA–based DSM system, the scenario is radically different: here the performance is
bound by the read performance because these are the operations which trigger the actual
communication in these scenarios, whereas writes can be pipelined by the local network
adapter and therefore do not lead to a drastic overhead.

This different communication behavior also leads to a different distribution between
the time spent during the loop body compared to the time spent during the barrier. This is
shown in Figure 6.3 for the most significant case, the read–write scenario. The software
DSM system spends almost an equal amount of time during each of these two parts and the
time rises roughly linearly with the amount of data transfered. This comes from the fact
that these systems require the bookkeeping during the loop and the actual communication
during the Acquire. NUMA–DSM systems, on the other hand, spend most of their time
during the loop body, which can mostly be related to the latencies caused by remote reads,
while the time needed for the barrier stays almost constant, because the same operations,
i.e. the flush and the invalidations, are always performed.

At the end, it should be noted that all of these experiments just show the raw perfor-
mance of the system under the synthetic conditions of the memory transfer benchmarks.
While this allows a clean insight into the different characteristics, these benchmarks do not
allow an assessment of the different system performances. Many of the beneficial proper-
ties present in most application codes, like spatial and temporal data reuse or a significant
amount of local operations without global data access, are not present in these benchmarks.

120 Chapter 6. Implementing Programming Models on Top of HAMSTER

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Data transfered [bytes]

E
xe

cu
tio

n
tim

e
[µ

s]

SW-Bar

SW-Loop

NUMA-Bar

NUMA-Loop

Figure 6.3 Distribution of work in the Read/Writescenario.

Release vs. Scope Consistency on NUMA systems

In a second set of experiments, the differences between Releaseand Scope Consistency
for NUMA–based architectures is investigated. For this purpose, two applications from
the SPLASH–2 suite [233], namely the RADIX sorting kernel and the WATER N-Squared
molecular dynamics code, are used in combination with a HAMSTER port of the ANL
macros. These two codes both use a rather large number of locks and therefore provide a
suitable basis for an analysis of these two consistency models.

Table 6.2 summarizes the results of this set of experiments. It includes data for both
codes gathered during two runs each: one using Releaseand one using Scope Consistency.
In both cases the number of lock, barrier, and consistency operations are presented for two
areas: the total code (including any operation needed by the NUMA–DSM framework for
its own setup and initialization) and the computational core.

In both codes, the use of Scope Consistencyenables a significant reduction of the num-
ber of Acquireoperations during the execution, mainly during the core phase. Up to 68%
percents of all Acquirescould be avoided and with them the related read invalidation oper-
ations. In both codes, this also leads to an increase in the overall performance.

6.3.6 Applicability
It should be noted that these results show a general direction of the characteristics that
can be expected when using NUMA–based consistency models. The concrete performance
data depends strongly on the properties of the underlying hardware. These can vary greatly
due to different network speeds and latencies as well as due to different optimizations like
streaming, buffering, prefetching, or memory coherency guarantees. The general trend
shown by the experiments above, however, will be the same across all platforms since they
depend on the direct exploitation of the NUMA principle. These results should therefore
be applicable to in general any NUMA–based DSM system.

6.4. Transparent Multithreading on top of HAMSTER 121

RADIX WATER (N-Squared)
Release C. Scope C. Release C. Scope C.

Data set size 262144 keys 1331 molecules

Locks (total) 158 158 663 663
Locks (core) 12 12 89 89
Barriers (total) 330 330 1095 1094
Barriers (core) 24 24 24 24

Acquire (total) 621 615 2295 2183
Acquire (core) 24 18 113 36
Release (total) 621 621 2295 2295
Release (core) 24 24 113 113
Ops saved (total) 6 / 0.97 % 112 / 4.88 %
Ops saved (core) 6 / 25 % 77 / 68.14 %

Execution time 4165 ms 3990 ms 8276 ms 8154 ms
Improvement 4.4 % 1.5 %

Table 6.2 Properties of two applications running with both Releaseand Scope Consistency
(on 4 nodes).

6.4 Transparent Multithreading on top of HAMSTER
The most commonly used shared memory programming models are thread libraries. They
exist as part of the native API of most modern operating systems and are used to both hide
I/O latency and efficiently exploit symmetric multiprocessor (SMP) systems. Especially the
use for the second purpose makes these programming model an interesting target for this
work. By implementing them within the HAMSTER framework in a transparent fashion,
multithreading can be extended from SMP systems to clusters exploiting their increased
scalability.

Currently two different thread APIs have been implemented on top of HAMSTER: the
POSIX thread API for Linux [219] and the Win32 thread API for Windows NT/2000TM

[154]. Both will be explained in more detail below.

6.4.1 State of the Art
Any of the common general purpose operating systems comes with a native thread API.
This includes the two operating systems supported by HAMSTER, namely Windows
NT/2000TM with its Win32 thread API [154] and Linux, which since the kernel version
2.0 includes POSIX compliant threads [219]. These APIs, however, differ in the concrete
semantics making it difficult for porting codes across platforms.

To compensate for this problem, several projects have been initiated to form a portable
thread layer across various platforms. Examples for this kind of system are ACE [191]
developed at the Washington University, St. Louis (MO) and Thread.h++ from Precision
Software [248]. They export a new API with an identical semantics across all supportive

122 Chapter 6. Implementing Programming Models on Top of HAMSTER

platforms and therefore allow a quick and easy porting of applications between platforms.
However, the semantics of this new API differs from any of the platform specific APIs
in order to accommodate the subtle differences, again making the initial port of existing
applications a complex task.

In addition to these thread APIs, which present potential target programming models for
the HAMSTER framework, projects targeting distributed implementations of thread APIs
on top of global memory abstractions are also related to the work discussed in this chap-
ter2. Two examples of this, using opposite approaches, are the DSM–Threads [164] and
the RThreads [46] projects. Both aim at providing a POSIX threads like environment for
distributed computing, but while the DSM–Threads are layered on top of the global virtual
memory abstraction created by a conventional SW–DSM system (see Chapter 4.1) imple-
mented as a pure user–level library, the RThreads approach utilizes a special pre–processor
to identify and implement remote memory accesses. In addition, the RThreads require
some simple user interaction in form of annotations in the intermediate code to complete
the global memory abstraction. While this increases the complexity for the programmer,
it also allows for easy optimizations directly adjusted to the runtime behavior of the target
application.

6.4.2 Global Thread Identification
One of the main issues when providing a global thread abstraction is the creation of a global
name or ID space for the threads and their associated resources. Any identifier has to be
globally unique and must allow the determination of both the node on which the thread or
the resource resides and a reference to the node local resources managed by the operating
system.

In both HAMSTER–based distributed thread systems currently in existence this issue
is resolved in the same way. In both systems, Linux and Windows NT/2000TM , threads
identifiers are 32 bit values handed out by the operating system on their creation. However,
never all of the 32 bits are used allowing the HAMSTER system to convert the upper 8 bits
into a storage for the node identifier the thread resides on (see Figure 6.4). This approach
has the significant advantage that the data structure representing a thread in the respective
original operating system API can be kept, hence avoiding any impact on the actual API.

In order to maintain transparency, the new HAMSTER–based versions of the APIs only
use the extended globalized versions of the thread identifier for any interaction with appli-
cations running on top of them. Any conversion into native operating system identifiers is
done implicitly without any need for a user intervention.

6.4.3 Forwarding Requests to Potentially Remote Threads
The HAMSTER framework with its core, the SCI Virtual Memory, provides all necessary
means and mechanisms to implement a cluster-wide distributed thread library. Most of the

2Distributed threads without a global memory abstraction are more related to the task management module
and are therefore briefly discussed in Chapter 5.4.1.

6.4. Transparent Multithreading on top of HAMSTER 123

Node local thread identifier

Node ID Node local thread identifier

Global thread identifier

Node ID

Not used

Figure 6.4 Adding global information to the thread identifier of both Linux and Windows
NT/2000 (TM).

required functionality, like a global virtual address space, cross–cluster synchronization
operations, and cluster management mechanisms are already present and simply have to be
specialized in order to fulfill the semantic requirements of a distributed thread library.

The main component that still needs to be implemented is a forwarding mechanism
that allows the transparent management of potentially remote threads. Any routine that
has the capability of modifying the state of another thread is intercepted, the location of
the specified thread is determined based on the global identifier introduced above, and the
request is handed on to the node on which the thread is currently executing. Routines that
only affect the own thread, in contrast, are directly executed on the same node resulting in
virtually no overhead.

The only exception from these guidelines is represented by the routines responsible for
spawning of a new thread within the current process (CreateThreadfor the Win32 thread
API and posix_createfor the POSIX counterpart). Here the target node on which the new
thread will be created has to be determined by the routine itself. Before returning to the
user, the respective thread creation routine converts the local thread identifier returned by
the operating system call into a global thread identifier. This new identifier is then returned
to be used for any future reference to the newly created thread.

The location for a new thread is currently decided using a standard round-robin scheme
based on the global activity counter provided by the task module. For the future, a more
flexible and load-adaptive thread placement scheme is envisioned. This will help boost
the performance of applications with inherent large scale parallelism and in performance
heterogenous clusters or non–dedicated environments.

6.4.4 Memory Consistency Model
Even though any thread library is by default intended and normally implemented for CC–
NUMA or UMA systems, they normally do not require a fully coherent memory subsystem.
Often the respective standards specifically include descriptions of the minimal require-
ments, which lead to models similar to Weak Consistency(see Chapter 4.1.2). Examples

124 Chapter 6. Implementing Programming Models on Top of HAMSTER

for this are the POSIX threads [219] or the JavaTM threads [104].
They all specify a set of routines from their API, which upon completing their respective

tasks need to provide a consistent memory state on the node they were called from. These
routines, also called consistency points due to their effect on the local memories, are mostly
routines which provide some kind of global synchronization, like mutex or thread creation
routines. To implement this consistency model, the consistency point routines are enhanced
by both read invalidations and write flushes, resulting in the intended memory consistency
at the respective points of execution.

It should, however, be pointed out that multithreaded applications written for SMPs
or similar tightly coupled architectures might not be implemented according to the spec-
ified memory models. Often they rely on the stronger hardware enforced consistency for
correct execution. When porting such non–compliant applications to a thread library with
a weaker, but still standard compliant, memory model, problems will occur in the form
of races, stale memory regions, and missing update propagations. This can only be fixed
by introducing additional synchronization points into the application transforming it into a
standard compliant code.

One example for such a problem is for example present in some of the SPLASH–2
benchmark codes [233]. These codes were originally intended for a CC–NUMA architec-
ture, namely the FLASH architecture developed at Stanford University [128], but are now
used in various versions as a general shared memory benchmark suite. Within these codes
most accesses to shared data are cleanly protected by mutex or other mechanisms with im-
plicit synchronization points. However, at some rare locations, a few of the applications
poll on a global variable for certain system wide events. This polling is done without any
synchronization construct to avoid the high overhead of such operations. On a cache co-
herent architecture with sequential consistency this approach is feasible and probably the
most efficient ones available. The polling variable will be contained in the first level cache
during the poll loop, hence even eliminating any effect on system wide bus resources. On a
write to this synchronization variable by any processor, the cache coherency controller in-
validates the copy in the cache that is being polled on, triggering a reload at the next access
and hence delivering the new value without the need for any further synchronization. This
means the actual write itself is used as the synchronization point.

In a relaxed consistency model, however, this write does not trigger a remote invalida-
tion of the synchronization variable and therefore does not carry the implicit synchroniza-
tion as in the case of sequential consistency. The polling processor does not see the new
value causing it to continue polling indefinitely. This can only be changed with additional
synchronization constructs being introduced, e.g. by a mutex around any access to the syn-
chronization variable. This, however, has to be done with great care, as the cost of very
fine grain synchronization is very high and may cause, depending on the application and
its behavior, high overheads.

In order to avoid these overheads, several options exist within the HAMSTER frame-
work. These, however, are normally not anymore compliant with the respective thread API
and lead in most cases to new extensions to the programming model. They therefore sac-
rifice full transparency for optimal performance and hence should only be applied as a last

6.4. Transparent Multithreading on top of HAMSTER 125

step of incremental and optional tuning.
One option is to directly add the respective flush and invalidate routines from the consis-

tency module at the locations in the code at which either new values need to be propagated
or stale values could affect the execution. This would avoid the actual synchronization op-
eration and its global impact, while still guaranteeing correct program behavior. The result
could be seen as a new, more efficient application–specific consistency model, adapted to
the special synchronization constructs of the application.

While this option does not involve any major code changes and can be realized by just
adding a few calls to the code, a second option, the allocation of special synchronization
variables in a memory region with higher coherency guarantees, is most likely to involve
more changes. Here the variables have to be specifically allocated and made available to
the application in an ordered fashion. On the other hand, this option is likely to improve
the overall performance, as no additional consistency enforcing mechanism needs to be
applied when accessing the synchronization variable. This reduces the overall impact of
consistency mechanisms as fewer system wide flushes or invalidations are performed.

6.4.5 Extended Synchronization
Besides standard locks used for the implementation of mutexes and critical regions, an
additional very typical part of the synchronization repertoire of most thread APIs are noti-
fication mechanisms. These allow a thread to block and wait for an event to be triggered
by another thread. Despite this common functionality, the actual semantics varies greatly
between the various thread APIs making it difficult for HAMSTER to provide common
services to support this in a platform independent way. The implementation of these notifi-
cation mechanisms is therefore currently not part of the HAMSTER base functionality (or
more specific the synchronization module). They are rather realized by the respective im-
plementations of the transparent thread programming model and are based on the existing
notification services of the OS. This maintains their original OS specific semantics.

Notification services are provided in the POSIX standard [219] in the form of condition
variables. Any thread can use such variables to block awaiting the condition to be set by any
remote thread. This setting of the condition is hereby done using a signal like mechanism,
as is available in any modern UNIX operating system. In the Win32 API [156], a similar
functionality is available in the form of so–called EVENTS. Also here threads can block
until an event is signaled by another thread and any thread can set or reset events.

The main difference between the two models lies in the fact that Win32 events are
persistent, i.e. an event can maintain a set status even if no thread is currently waiting,
whereas POSIX conditional variables are not persistent leading to a signal being lost when
no thread is waiting on it at the time it is sent. In addition, the Win32 event mechanism is
richer as any system resource, including processes, threads, and files, are abstracted events
and can be blocked on awaiting some kind of event associated with this resource (e.g. the
termination of a process). In addition, the Win32 API allows waiting for multiple resources
at the same time in an atomic fashion.

In order to deal with these severe semantic differences, the distributed thread APIs cur-

126 Chapter 6. Implementing Programming Models on Top of HAMSTER

rently existing on top of HAMSTER implement notification using the forwarding mech-
anism discussed above. Each notification variable, independent of whether it is a POSIX
condition variable or a Win32 event, is realized on one of the nodes in a home–based
fashion using the original OS API. Any operation on this notification variable is then sent
to this home node of the variable and executed there. Even though this implementation
scheme causes additional communication overhead, it guarantees the identical semantics
to the original native API and hence a correct program execution.

6.4.6 Available APIs and Limitations
As mentioned above, the HAMSTER framework currently includes distributed thread APIs
for both Windows NT/2000TM Win32 [154] and Linux/POSIX threads [197]. This selection
was made as these two models are predominantly used for existing applications on top
of these target systems. Other APIs, however, like the portable thread layers mentioned
above, could be implemented in a very similar fashion and are expected to exhibit similar
characteristics in both performance and functionality.

Work on the distributed thread APIs was initially done within the SISCI project
[207, 50] already mentioned in Chapter 2.3. Its goal was to create a complete software
infrastructure for SCI–based cluster system consisting of both message passing and shared
memory APIs, the latter part being covered by these thread APIs on top of the HAMSTER
system [192, 194].

The transparency of these two thread APIs is, however, not complete thereby leaving
some differences between the semantics of the native and the HAMSTER based API. One
source for these differences comes from the fact that in addition to these purely thread–
based services, the thread APIs in both operating systems also offer several routines for
the efficient cooperation between several multithreaded processes. These routines are not
included in this work as the SCI-VM solely deals with providing a global memory ab-
straction of a single process. This also restricts any programming model on top of it to be
single process oriented. This restriction, however, is of rather low importance for the exe-
cution of typical multithreaded, computationally intensive applications and therefore does
not impose a major restriction to the overall approach.

A second difference can be found in how the distributed threads treat I/O. As the global
process abstraction created by the SCI-VM and the cluster control module does not include
full I/O transparency, this limitation is also present in the distributed thread APIs. Any
I/O resource allocated by any thread is therefore only visible in the team hosting the par-
ticular thread and can not safely be shared between other threads. This restricts the I/O
patterns used by multithreaded applications on top of HAMSTER mainly to models with
one thread being solely responsible for I/O (typically the initial thread), while all others
function purely as computational threads without any I/O. This model, however, is very
common among multithreaded applications in the area of computationally intensive codes
targeted by this work.

6.4. Transparent Multithreading on top of HAMSTER 127

6.4.7 Performance Evaluation
In order to validate the approach of distributed multithreading as it has been described
above and to highlight some special performance details resulting from the integration of
inter–node shared memory with local multithreading, a few experiments have been con-
ducted using the distributed Win32 thread API. All of them were executed on the same
platform as the other experiments so far, although with the older PCI-SCI adapter card
D310 from Dolphin ICS.

Two different numerical kernels were used: a Successive OverRelaxation (SOR) and
an LU decomposition. Both codes are based on SMP oriented counterparts from various
shared memory benchmark suites and were only slightly modified and adapted to the Win32
thread API. In addition, as the data locality exhibited by the code has a major influence on
the performance, the data placement hints present in the original codes were taken into
account. Due to the flexibility of the utilized HAMSTER framework, this optimization
did not require major code changes, but merely some minor annotation at the memory
allocation points in the code. The relaxed consistency model was applied only through the
implicit mechanisms described above without requiring any code modifications.

The first code that has been examined is the Successive OverRelaxation (SOR) — a
numerical kernel that is used to iteratively solve partial differential equations. This is a
quite simple test code capable of showing the basic performance of the overall system.
The speedup of the application is shown in Figure 6.5 for the two different matrix sizes
1024x1024 and 2048x2048. The results are split into two different lines, one in which each
node was used as a single node with one thread each, and one in which the SMP capabilities
are used by spawning two threads per node. Both curves show good scaling behavior, with
the better scaling properties for the larger data set.

Interesting is that the speedup is higher for the single processor testcase than for the
SMP experiments. Especially worth noting is that the execution of two threads on two
separate nodes on top of the SCI-VM exceeds the performance of two threads running on
top of the native thread API on a single node. This behavior comes from the fact that in
the latter case both processors access the same processor bus and therefore cause more
contention than in the first case, where each processor has its own dedicated processor bus.

This observation can also be seen in more detail in the work decomposition of the exe-
cuted code shown in Figure 6.6. This graph breaks the complete execution time of the code
down into the significant subparts: the actual work (assumed to be the same in all cases),
the shared memory access overhead caused by the HW–DSM and local processor bus con-
tention, the overhead caused by having to enforce consistency in the relaxed consistency
model (measured by the difference to a second, incoherent run), and the barrier wait time.
In the case of two threads per node (left columns) the access overhead is significantly larger
due to bus contention. This also causes the consistency overhead to be higher since also
this operation triggers memory updates. In the single processor case, the access overhead
is much smaller and the time needed to enforce consistency is almost negligible.

The second code that was examined is the LU decomposition, one of the fundamen-
tal algorithms used in computational numerics. It is used to factorize a dense matrix into

128 Chapter 6. Implementing Programming Models on Top of HAMSTER

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of threads

S
pe

ed
up

N=2048

N=1024

Figure 6.5 Speedup of the SOR code with up to 8 threads (4 nodes/8 CPUs).

2000

2500

3000

3500

4000

4500

8 6 4 2 4 3 2 1

Number of threads

E
xe

cu
tio

n
tim

e
[m

s]

Barrier

Cons.

Access
Work

10000

10500

11000

11500

12000

12500

13000

13500

14000

8 6 4 2 4 3 2 1

Number of threads

E
xe

cu
tio

n
tim

e
[m

s]

Barrier

Cons.

Access
Work

Figure 6.6 Work distribution of the SOR code with up to 8 threads (4 nodes/8 CPUs) —
1024x1024 matrix (left) and 2048x2048 matrix (right).

two diagonal matrices. This method can be applied to solve arbitrary systems of linear
equations. The code, which is much more complex than the SOR code, was also executed
on up to four nodes with two processor each and yielded similar results as the SOR code,
which are shown in Figures 6.7 and 6.8. In contrast to the SOR code, however, it was im-
possible to assess the consistency overhead, as an execution without consistency enforcing
mechanisms distorted the execution behavior too much to achieve reasonable results.

Due to the larger complexity of the algorithm and the longer execution time, the results
are less distinct than in the SOR case. However, also here the execution with two threads
per SMP node induces higher access cost and therefore higher overhead. The main perfor-
mance problem in the LU code, however, lies in the application’s scaling properties, as it
can be seen for the small data set on more than 6 processors. From this point on, the barrier
time increases significantly resulting in a lower parallel efficiency, as can be seen in the

6.4. Transparent Multithreading on top of HAMSTER 129

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of threads

S
pe

ed
up

N=2048

N=1024

Figure 6.7 Speedup of the LU code with up to 8 threads (4 nodes/8 CPUs).

0

5000

10000

15000

20000

25000

30000

35000

8 6 4 2 4 3 2 1
Number of threads

E
xe

cu
tio

n
tim

e
[m

s]

Barrier

Access

Work

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

8 6 4 2 4 3 2 1

Number of threads

E
xe

cu
tio

n
tim

e
[m

s]

Barrier

Access

Work

Figure 6.8 Work distribution of the LU code with up to 8 threads (4 nodes/8 CPUs) —
1024x1024 matrix (left) and 2048x2048 matrix (right).

speedup curve. It can be expected that the same can be observed for the larger data set with
more than 8 nodes. This, however, is a limitation of the application rather than one of the
execution environment.

In summary, the experiments show that the distributed thread APIs implemented within
the HAMSTER framework allow the efficient execution of multithreaded applications on
cluster architectures. They extend their scalability beyond the standard dual SMP configu-
rations found in the PC world by taking advantage of both the intra-node SMP capabilities
and the cost effective scaling of commodity clusters without having to sacrifice the easy–
to–use programming model.

130 Chapter 6. Implementing Programming Models on Top of HAMSTER

6.5 Support for Explicit Shared Memory Models
Any programming model discussed so far in this work adheres to the strict definition of
a shared memory programming model set forth in Chapter 2.1.1. They all are based on
a single identical view on the virtual memory transparently provided by the underlying
system. In the case of an implementation within the HAMSTER framework, this is taken
care of by the SCI Virtual Memory or SCI-VM (see Chapter 4).

In addition to those models, however, a few other programming models exist that, while
utilizing principles from the shared memory world, do not exhibit the characteristics of a
transparent access to the global address space. Rather users have to explictly specify such
accesses to remote data within the global shared memory. These models, summarized
under the name “explicit shared memory programming” , can also be implemented within
the HAMSTER framework. However, they require a different implementation strategy than
the systems discussed so far.

6.5.1 The Cray T3D/E Put/Get Programming Interface
One example for such an explicit programming model is the shmemlibrary [98] introduced
by Cray and mainly intended for their T3D/ETM MPPs [235]. This API is by now also
available on most SGI and Cray MPPs and has therefore found its user community. It im-
plements a put/get programming model which allows programmers to access the virtual
address range of any node using explicit read (Get) or write (Put) operations. In addi-
tion, the API provides a comprehensive set of synchronization and collective operations
completing the overall programming model.

The programming interface

As already mentioned above, the shmemprogramming model does not rely on a single
global virtual address space, but rather implements independent address spaces in each
process on each node. These can then be accessed using the special one–sided communica-
tion routines Putand Get(see also Table 6.3) which allow the direct transfer of data to and
from a remote memory location without interrupting the execution on the target node. Us-
ing these routines, both static application data as well as dynamic heap data can be accessed
and modified.

In addition to these transfer routines, the shmem programming model also contains sev-
eral routines for the efficient support of collective operations, which are also listed in Table
6.3. This includes the functionality to broadcast data to all nodes, to collect and concate-
nate data from all nodes, and to perform a data aggregation using a given operation across
a given set of nodes. These operations contain all typical commutative and associative
routines like sum, product, computation of maximum and minimum as well as the logical
operations and, or, and xor.

Both, the collective operations and the transfer routines are available for a broad range
of different types and different transfer lengths. This broadens the API and provides addi-
tional safety for the programmer since it enables explicit type checks.

6.5. Support for Explicit Shared Memory Models 131

Name Description

Put write data into remote memory
Get read data from remote memory

Broadcast broadcast data to all nodes
Collect combine data from all nodes
OP_to_all perform operation OP across all nodes

OP = sum,prod,and,or,xor,max,min

Barrier perform a barrier over a set of threads
Set_lock acquire a global lock
Clear_lock release a global lock

Num_pes query the number of participating nodes
My_pe query the rank of the local node

Table 6.3 Main routines provided by the Shmemprogramming model (names simplified)

The API is completed with the typical lock and barrier routines known from other
shared memory programming models as well as with routines to query the number of nodes
participating and the rank of the local node.

Architectural support on the T3D/E TM

The T3D/ETM systems [235], for which this library was mainly intended, are very much
suited for such a programming approach since their architecture matches this model very
closely and can hence directly exploit its advantages. Its NUMA architecture allows the
direct access to the address space on any remote node and can thereby directly perform any
Putor Getoperation without influencing the remote node. In addition, the T3D/ETM systems
contain special hardware mechanisms for an efficient implementation of global operations
and therefore allow a high–performance implementation of synchronization and collective
operations.

This beneficial match between architecture and programming model has made the
put/get model an important programming model for these architectures. Next to message
passing libraries it has found its place in the overall software infrastructure for NUMA–like
MPPs.

6.5.2 Implementing Put/Get in HAMSTER
This success motivates the investigation on how to implement this explicit shared memory
programming model within the HAMSTER framework. It opens SCI–based clusters to
a new class of applications and allows them to be either used as low–cost alternatives
to large–scale MPPs or as efficient front–end systems for MPPs, which are available for
application development and debugging.

Most of the functionality of the shmeminterface, like the synchronization constructs
or the collective operations, can easily be implemented using the standard mechanisms

132 Chapter 6. Implementing Programming Models on Top of HAMSTER

already introduced. In contrast to the other programming models, however, this implemen-
tation also requires the ability to access memory locations in the virtual address space of
other nodes. This can easily be achieved for newly allocated data since it can be allocated
in a globally visible address space and thereby be made available to any node. Dealing with
the static application data, however, is more complex, as it is by default controlled by the
local operating system instances rather than by the SCI-VM system.

For this purpose, the memory management module offers the explicit distribution of
static data. After applying this type of distribution, the static data of every node is made
globally visible through appropriate additional mappings. Every node can now directly
access this space on any other node and hence perform the required Putand Getoperations.

In contrast to the models discussed so far, which rely on a fully transparent data distri-
bution, put/get models contain implicit descriptions for an optimal distribution. This can
be drawn directly from the semantics of the Put or Get operations, which imply a direc-
tion of transfer. Put operations write to remote locations while Getoperations read remote
data. In both cases, the referenced data has been allocated and is under the control of the
respective remote node. Hence, any data, whether part of the static application data or
newly allocated, should be physically placed on the particular node containing or allocat-
ing the data. This leads to a consistent mapping of the logical location of data seen from
the programmer’s point of view and the physical data layout and thereby to a predictable
application performance. In addition, this programming model, as in general any explicit
shared memory programming model, does not rely on transparent caching since any data
transfer is handled explictly. This allows the use of uncached memory resulting in a higher
write performance due to improved write combining (see also Chapter 4.7).

Both this data placement and memory type selection can easily be achieved with the
data distribution and coherency annotations provided by the HAMSTER memory man-
agement module. Together with the already discussed explicit distribution for static appli-
cation data, the HAMSTER system therefore provides a suitable implementation platform
even for explicit shared memory programming models and thereby proves the wide appli-
cability of this approach.

6.5.3 Performance Aspects
Using the implementation guidelines described above, a subset of the Cray shmemlibrary
has been implemented on top of HAMSTER. It provides the main routines for Put and
Get, as well as most of the synchronization routines and collective operations and therefore
satisfies the requirements of many applications. For this section, the put/get model in its
current state has been evaluated using a few small benchmarks showing the performance
of the put/get and some collective operations.

Figure 6.9 shows the raw bandwidth that has been achieved using the Put and Get
routines. Both exhibit a performance close to the raw performance measured on top of
the SCI-VM (see Chapter 4.7). The performance of the Get routine is directly limited by
the SCI read performance and does not exceed 1 MB/s. The Put bandwidth, however,
profits from the high SCI throughput. Due to the explicit nature of the communication, the

6.6. Implementation Complexity Analysis 133

0

10

20

30

40

50

60

70

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Data transfered [bytes]

B
an

dw
id

th
[M

B
/s

]

Put
Get

Figure 6.9 Put/Get bandwidth.

routine is also capable of exploiting the write combining optimization using explicit write
cache flushes mentioned in Chapter 4.7 and thereby exceeds the default SCI-VM write
performance. Compared to the maximal peak bandwidth (around 85 MB/s), however, the
Put operations infers an overhead due to necessary address translations and a full store
barrier after the communication ensuring the data has fully arrived on the receiver. It could
be expected that with larger data transfer sizes this overhead will be amortized. However,
with transfers longer than a page (4096 bytes) the same write combining anomaly as in the
raw experiments can be observed, limiting the performance on longer transfer to close to
50 MB/s.

The second set of experiments examines the performance of the broadcast mechanism.
It is implemented as a series of consecutive transfers to the target nodes using several Put
operations. This basic implementation scheme is clearly visible in the performance, as it
is shown in Figure 6.10 for both large and small transfer sizes. The time needed for a
broadcast rises both with increasing data transfer sizes and with the rising number of target
nodes. The only exception can be seen for a transfer of 32 bytes, as the SCI protocol [92]
does not contain 32 byte packets and the transfer therefore needs to be split into two 16
byte packets.

Besides broadcasts the shmemlibrary also offers further, more sophisticated global op-
erations, most importantly collective operations across sets of processors. These have been
evaluated using a collective reduction across various numbers of nodes and with a different
number of concurrent global reductions ranging from 1 to 64. The results for this experi-
ment are shown in Figure 6.11. As expected, the execution time for the global reduction is
nearly linear to both number of nodes and the number of reduction operations and ranges
from nearly zero execution time for a local operation on one node to around 1350 �s for
64 reductions with data from 6 nodes.

134 Chapter 6. Implementing Programming Models on Top of HAMSTER

0

20

40

60

80

100

120

140

160

4 8 16 32 64 12
8

25
6

51
2

10
24

Data transfered [bytes]

E
xe

cu
ti

on
ti

m
e

[µ
s]

0

1000

2000

3000

4000

5000

6000

7000

8000

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

Data transfered [bytes]

E
xe

cu
ti

on
ti

m
e

[µ
s]

6 nodes
5 nodes
4 nodes
3 nodes
2 nodes
1 node

Figure 6.10 Broadcast performance with varying numbers of target nodes and data transfer
sizes (small transfer sizes left, large transfer sizes right).

0

200

400

600

800

1000

1200

1400

1600

0 8 16 24 32 40 48 56 64

Number of reduction variables

E
xe

cu
ti

on
ti

m
e

[µ
s]

6
5
4
3
2
1

1 2 3 4 5 6

Number of nodes

64
32
16
8
4
2
1

Figure 6.11 Performance of collective addition across various number of nodes (left) and
using various numbers of reduction variables (right).

Programming Model #Lines #API calls Lines/call Platform

SPMD model 502 23 21.8 NT & Linux
SMP/SPMD model 581 25 23.2 NT & Linux
ANL macros 146 20 7.3 NT & Linux
TreadMarks API 326 13 25.1 NT & Linux
HLRC API3 137 25 5.5 NT & Linux
JiaJia API (subset)3 43 7 6.1 Linux
Dist. POSIX threads 725 51 14.2 Linux
WIN32 threads 988 42 23.5 NT
Cray put/get (shmem) API 505 29 17.4 Linux

Table 6.4 Implementation complexity of programming models using HAMSTER.

6.6. Implementation Complexity Analysis 135

6.6 Implementation Complexity Analysis
As the HAMSTER system was designed with the intention to support a large set of dif-
ferent programming models on top of a single architecture, the system was built in a way
that allows new models to be implemented with low effort. For this purpose the individual
management modules offer a wide range of services, each associated with a large parameter
space. Often the functionality required by the target programming model can therefore be
achieved by specializing a similar service of HAMSTER. Normally only a few specialized
API calls have to be implemented separately, as has been demonstrated in the implementa-
tion discussions in this chapter.

An indication of the complexity of the programming models implemented using the
HAMSTER framework is given in Table 6.4. This list also contains several models,
which have been implemented within HAMSTER, but have not discussed above. This in-
cludes an extended SPMD model capable of running with multiple threads on SMP nodes
(SMP/SPMD), a direct implementation of the ANL macros used in the SPLASH–2 bench-
mark suite [233], and the emulation of APIs from existing software DSM systems like
JiaJia [83] and HLRC [179].

The information presented in the table shows the lines of code necessary to imple-
ment each programming model in relation to the complexity of the programming model
expressed through the number of available API calls. While such a measure is by nature
highly inaccurate, it anyway gives a first impression of the amount of work required for
such an implementation. The table lists most of the programming models currently avail-
able on top of the HAMSTER framework. These programming models differ greatly in
terms of execution model, memory management, transparency, and consistency model.

Despite the clear functional differences, Table 6.4 shows that neither of the program-
ming models required extreme effort to be implemented on top of HAMSTER; on average
not more than 25 lines of code had to be written per API call for most of the programming
models. The most complex example for such a special routine is the forwarding mecha-
nisms present in both thread APIs available on top of HAMSTER (see also Chapter 6.4.3).
This leads to the rather large number of lines necessary to implement these two models,
which, however, is compensated by the large number of routines necessary in these mod-
els, again resulting in a quite low number of lines per API call.

Keeping the necessary effort to create a HAMSTER–based shared memory model at
such a low level, opens the possibility to easily add a large variety of models to the HAM-
STER framework. Only the specifics of the individual model have to be implemented or
deduced from the general mechanisms of HAMSTER through specialization; the actual
core with all its complexity of typical DSM systems stays the same for any programming
model. This approach therefore has the potential to unify the large number of existing
shared memory models on top of a single system with a single core.

3Based on the SPMD programming model.

136 Chapter 6. Implementing Programming Models on Top of HAMSTER

6.7 Visions for Further HAMSTER–based Models
So far the discussion of programming models has concentrated on implementing existing
models on top of the HAMSTER framework. It is, however, also possible to utilize HAM-
STER for the implementation of new programming models or as a runtime system for
higher–level programming abstractions or languages. This will be discussed in more detail
within this section.

6.7.1 Application or Domain Specific Programming Models
The complexity analysis in the previous chapter shows that the HAMSTER approach allows
the implementation of new programming models with very little complexity. This does not
only enable the creation of a large set of existing programming models, but provides the
opportunity to establish new domain or even application specific models at only marginally
extra cost. This opens the possibility for reducing the implementation complexity of the
application itself, by providing special primitives already within the programming model,
to implement low–level optimizations at system level, and to adjust the environment to
special requirements from the ground up. This has the potential to lead to both a higher
efficiency with respect to performance and coding complexity at application level.

The easiest way to reach such an optimized programming model is to start at a given
programming model in principle suited for the intended target application or domain and
extend it. In the simplest case, these extension can export some of the underlying HAM-
STER facilities to the application. Especially promising with respect to potential impact
on performance are hereby services from the area of the memory allocation and distribu-
tion policies as well as the low–level and direct consistency control. The first group gives
applications control over the memory distribution in the system allowing for an adapta-
tion to its implicit data locality properties and memory access patterns, while the second
group enables the creation of application specific consistency models with weaker consis-
tency guarantees as the general ones discussed above. This can help to reduce unnecessary
calls to consistency enforcing invalidations or flushes eliminating their global impact on
the overall application.

One example for such a custom programming model has already been discussed above
in the context of the flag synchronization in multithreaded programs. There, additional
functionality added to the existing API, either in the form of explicit consistency mech-
anisms or through designated, uncached flag variables, have enabled a domain specific
optimization.

This idea can be taken a step further by not only providing a few extra shared memory
services for performance reasons, but also by including task and memory constructs from
an application or typical representatives of application domains. This can go as far as
directly providing a complete task management framework combined with implicit data
management. This would lead to an evolution from a programming model towards a full
runtime system with complete control over the application, but implemented on top of
HAMSTER and using its shared memory as its prime information sharing platform without

6.8. Summary 137

necessarily exporting it directly to the user.
As of now, no such domain specific model has been developed on top of the HAMSTER

environment, as the work so far has concentrated on providing existing programming mod-
els for better code portability and therefore forming a corner stone in the overall software
infrastructure for SCI–based clusters. In addition, the evaluation of the HAMSTER sys-
tem so far required to a large degree the use of special kernels and benchmarks from given
suites in order to expose performance details and to stay comparable with other work.

Only few actual real–world applications have been used within the HAMSTER project
so far. Chapter 7 will list two of them and discuss their performance. Both are from the
field of medical imaging, a very promising field for the utilization of high–performance
computing. These two applications, as well as a few more from the same field that have
not been investigated within HAMSTER yet, exhibit similar properties with respect to I/O
requirements, task structure, and data management and therefore have a good potential to
profit from such a domain specific programming model or system in the future.

6.7.2 HAMSTER as Runtime Backend
Another area of potential target programming models are shared memory programming
languages with implicit memory and task management. Those systems normally rely on
their own compiler, which could be adapted to either produce code for a programming
model available on top of HAMSTER or to directly generate HAMSTER code. This would
result in using the HAMSTER system as a runtime system for the particular programming
system.

Currently two of such shared memory languages have found a significant user commu-
nity, OpenMP [172] and High Performance Fortran (HPF) [236], even though many more
exist especially as research systems. Both OpenMP and HPF are based on a global pro-
cess and memory abstraction and provide explicit pragmas to the user which can be used
to specify sharing and concurrency patterns. However, the fundamental concept of par-
allelism varies greatly between the two — while HPF is geared towards data parallelism
and emphasizes on data distribution primitives along with a simple “owner computes” rule,
OpenMP supports task parallelism based on the master/slave principle. Both approaches,
though, can be implemented on top of HAMSTER due to the flexibility in the task and
memory management modules, opening the possibility for easy ports of both OpenMP and
HPF systems to NUMA enabled architectures, including SCI–based clusters.

6.8 Summary
This chapter has shown that the HAMSTER system is capable of supporting a large variety
of different shared memory programming models with different goals, target application
areas, and characteristics. The basis for any implementation is formed by the HAMSTER
interface, which combines all services exported by the HAMSTER management modules
with additional support mechanisms, such as portable timing.

The available programming models range from distributed thread libraries allowing

138 Chapter 6. Implementing Programming Models on Top of HAMSTER

true multithreading on cluster platforms all the way to explicit shared memory program-
ming models in the form of a put/get library. It also includes APIs from many known
SW–DSM systems providing direct code portability from any of these to HAMSTER–
based platforms. This chapter has also shown that, due to the wide variety and flexibility
of the services offered by the HAMSTER interface, each programming model can be im-
plemented without much effort or complexity. This enables the quick and efficient creation
of many different programming models on top of a single platform and thereby fulfills one
of the main goals behind the overall system, namely the elimination of the major problems
associated with the large number of existing shared memory programming models.

In addition, all programming models built on top of HAMSTER, despite their func-
tional differences, directly rely on the same efficient DSM core, the SCI-VM. Any kind
of shared memory access is directly handled by this core without the need for any fur-
ther intervention by the programming model layer. This guarantees that all programming
models exhibit equal behavior with regard to memory accesses and therefore automatically
provides, in addition to easy code portability to HAMSTER, also performance portabil-
ity between HAMSTER models. This alleviates the programmer of programming models
from the burden of extensive tuning of the management code, as it is typically necessary
with SW–DSM system or protocol implementations.

Chapter 7

Application Performance Evaluation

The evaluation of a complex system like HAMSTER based only on benchmark suites alone,
however, is not enough. It should also include experiments with a few large scale, real–
world codes with a concrete application background. For this purpose, the following sec-
tions present two applications from the field of nuclear medical imaging, more precisely
the Positron Emission Tomography (PET). In this field several computationally challenging
tasks exist which demand parallel processing in order to be solved in a suitable time. Two
of these, the iterative reconstruction of images and their spectral analysis, are introduced
and evaluated below.

Both applications have been developed and are provided by the “Nuklearmedizinische
Klinik and Poliklinik” 1 at the “Klinikum Rechts der Isar” , the university hospital of the
“Technische Universität München” . Within the context of a long–term cooperation with
this institution, these applications have been used in various projects [210, 149, 113], in-
cluding the one presented here.

7.1 The Principle of Positron Emission Tomography
Positron Emission Tomography is a relatively young technique in nuclear medical imaging
and is used in addition to the traditional techniques like Computer Tomography (CT) or
Magnetic Resonance Imaging (MRI) [77]. In contrast to those methods though, PET imag-
ing enables images of the active processes inside a patient’s body by using tracer techniques
while the conventional methods only deliver information mainly about the anatomy. PET
imaging therefore provides valuable functional information about a patient’s metabolism,
perfusion, or receptor density in tissue. The information acquired can be used to detect a
large variety of diseases, including dementia, cancer, and problems in the myocardial flow.

The basic principle of PET is based on positron emitting substances, the so–called
tracers, which are injected into a patients body and then monitored from the outside using a
PET scanner. These tracers are typically derived from substances which play an important
role in the human metabolism. The original substances are then marked or radiolabeled
with positron emitting isotopes. Nevertheless, the tracer substances have the same chemical
properties as their unlabeled counterparts and therefore fully participate in the patient’s
metabolism. Areas of high activity regarding a certain substance will therefore lead to a

1Roughly translated as “clinic for nuclear medicine”

140 Chapter 7. Application Performance Evaluation

180 degree

Tracer
Emitting
Positrons

Positrons
Electron
Collision

Gamma quantum
with 511 keV

Gamma quantum
with 511 keV

Figure 7.1 Positron / Electron annihilation (from [166]).

concentration of the corresponding tracer, which can then be detected. Due to this, PET
enables the visualization of the human metabolism and allows the detection of deficiencies
or malfunctions, which can indicate serious diseases.

For the detection of the tracer within the body, the property of the tracer to emit
positrons is used. These positrons, which have a rather high interaction probability, will
collide with free electrons nearby and the two charges will annihilate themselves leading
to the creation of two gamma quanta (see also Figure 7.1). These quanta now have the
property that they radiate away from the point of the positron / electron collision in exactly
opposite directions, i.e. at an angle of 180 degrees. These quanta can then be detected by a
surrounding PET scanner.

The scheme of such a PET scanner is shown in Figure 7.2. Its main component is a
detector ring, which is capable of recognizing these gamma rays. The scanner hardware
then filters the incoming events for timely coincidences since those have a high likelihood
to belong to the same positron / electron annihilation and therefore indicate the presence of
the original tracer substance at this point in the patient’s body. The exact location, however,
can not be known since only the coincidence line, the line between the two detectors which
have recognized two coincident events, can be observed.

The information of all coincidence lines acquired during one scan is stored in a number
of two dimensional image planes (orthogonal to the patient’s body axis). These image
planes, however, do not represent geometric coordinates, but are based on the angle of
coincidence lines and their distance from the center of the scanner. The results are so–
called Sinogram planes; an example for such a plane is shown 7.3.

The original data represents integral values of the activity distribution and needs to be
converted into volume information representing the underlying real distribution. This is
done in the so–called image reconstruction step. Furthermore time sequences monitoring
the change in activity distribution can be analyzed by e.g. Spectral Analysis resulting in
functional parameter characteristics for the metabolic status of the tissue.

7.1. The Principle of Positron Emission Tomography 141

Figure 7.2 Schematic structure of a PET scanner (from [166]).

Figure 7.3 Typical sinogram as delivered by the PET scanner before reconstruction.

142 Chapter 7. Application Performance Evaluation

Figure 7.4 Reconstructed and post–processed images of a human body, tracer F18 labeled
glucose analog (FDG) (coronal slices, Nuklearmedizin TUM).

7.2 Reconstruction of PET Images
As described above, the first step in the post–processing of medical PET data is its recon-
struction from projection space (sinograms) to image space (voxels). The starting point for
this process are the sinogram data planes acquired during the PET scan. These are trans-
formed during the reconstruction process into a three dimensional voxel set. The result
can then be visualized by creating various two dimensional cuts through the volume, as
shown in Figure 7.4 for a whole body data set, or by using sophisticated volume rendering
algorithms [57, 220, 71]. In both cases the resulting images enable a diagnosis based on
the PET image taken from the patient in treatment, e.g. defining the extent of a tumor or
the number of metastases.

7.2.1 Iterative PET Reconstruction
The traditional way to accomplish the reconstruction of PET images is the so–called Fil-
tered Back Projection (FBP). This method simply projects the acquired sinogram data into
the two dimensional space in a straightforward and direct manner. While this approach can
be implemented without much complexity and has therefore been used in most commercial
systems around the world, it has the distinct disadvantage of a low image quality with many
artefacts, especially in areas with very high tracer concentrations. This can be seen on the
left side of Figure 7.5. In recent years, research has therefore focused on new algorithms
using an iterative approach [132, 54], which produce images of much higher quality.

In these methods, the reconstruction starts with a first approximation of the final image.
Often the result of a FBP is used for this purpose. From this image, the corresponding scan-
ner output (in the projection space) is computed using a forward projection. The resulting
sinogram data is compared with the data acquired from the actual PET scan and the image
approximation is adapted accordingly. This process is repeated until the projected sinogram
data has become sufficiently close to the real data at which time the image approximation
is accepted as the final reconstructed image.

7.2. Reconstruction of PET Images 143

Figure 7.5 Comparing the image quality of FBP (left) and an iterative reconstruction
(right), both with tracer F18 labeled glucose analog (FDG).

These iterative approaches provide a significantly better image quality as can be seen
on the right side of Figure 7.5. Compared to the outcome of the FBP, this image contains
less artefacts and noise and provides new anatomical details not visible before. This im-
proved quality comes from the fact that during the forward projection process additional
information about the scanner, like scanner geometry and background data, can be taken
into account. In addition, this method allows to take the discretization of the acquired data
into account [166].

The drawback of these approaches, however, is their high computational demand stem-
ming from the iterative concept. This renders them unsuitable for current stand–alone
workstations; only parallel processing is able to provide the necessary performance re-
quired for these iterative image reconstruction algorithm to succeed.

7.2.2 Parallel Implementation
The parallelization of this application used in this work is based on the reconstruction appli-
cation developed at the Klinikum Rechts der Isar [166, 211]. It uses a special reconstruction
library called ASPIRE [54] which has been designed and implemented at the University of
Michigan and supports several reconstruction algorithms with different forward projection
and image approximation methods.

This library performs the reconstruction of the PET image independently for each im-
age plane, i.e. each sinogram plane is transformed into an image plane in the final image
and this process is executed for each input image plane. This property can be used for
a straightforward parallelization of this application using an SPMD style. First a master
thread reads the complete input data set into a piece of global memory. Each thread is then
assigned an equal number of planes to reconstruct. For each of these planes, the corre-
sponding thread reads the input data from the global memory, performs the reconstruction

144 Chapter 7. Application Performance Evaluation

Description Whole body

Size 130 Mbyte
Planes 282
Scan Res. 256x192
Image Res. 128x128
Scans 6

Table 7.1 Parameters for the data set used in the experiments.

using the ASPIRE library, and then stores the resulting image plane again in global mem-
ory. After all threads have completed their tasks, the final image is read from the global
memory by the master thread and stored to disk.

The implementation of this concept is done using the SPMD programming model im-
plemented on top of HAMSTER discussed in Chapter 6.2 and Appendix B. In addition,
one slight optimization has been performed regarding the distribution of the input data set
in the global memory. It is distributed in a way that the data for an image plane is mostly
colocated with the thread to which the plane is assigned . As a result, during the I/O phase
the raw data will directly be transfered to the node responsible for its further processing us-
ing the more efficient remote writes, instead of having to rely on read operations during the
reconstruction phase. This optimization is performed using only the locality annotations of
the memory management module by applying a block cyclic data distribution with block
sizes equal to the size of an input plane; no further code changes were necessary.

7.2.3 Performance Discussion
For the evaluation of this application on top of HAMSTER, an example data set containing
the scanned information of a whole human body is used. It was acquired during several
consecutive scans of the different body sections, which are then merged into one full image.
Its complete size and resolution shown in Table 7.1 and some resulting image slices from a
reconstructed volume are shown in Figure 7.6.

The code has been executed on up to 6 nodes with up to 2 threads each. Figure 7.7
shows the results of this experiment in terms of speedup compared to a sequential execution
without HAMSTER. It shows that this code exhibits good scaling properties with a speedup
of more than 5 on 6 nodes with 1 thread each and of more than 8 on 6 nodes with 2 threads
each. In addition, the curves are fairly linear and do only show a slight degradation with
higher numbers of nodes. Due to this, it can be expected that this application will also
scale beyond the 12 CPUs available in the SMiLE system. It can also be observed that
the performance on configurations with one thread per node is slightly better than on those
with two threads (assuming equal number of total threads). This is due to the fact that the
reconstruction algorithm imposes high demands on the system bus leading to a contention
with two compute threads present on one node.

In any case, a significant part of the total overhead is caused by the file I/O required to

7.2. Reconstruction of PET Images 145

Figure 7.6 Reconstructed images — data set whole body (before proper alignment of
neighboring scans and without attenuation correction; the borders between the 6 individual
scans are still visible).

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Number of CPUs

Sp
ee

du
p

1 Proc/Node
2 Proc/Node
1 Proc/Node (no I/O)
2 Proc/Node (no I/O)
Ideal

Figure 7.7 Speedup of the PET image reconstruction on up to 12 CPUs.

deal with the rather large input and output data sets. This phase is currently implemented
in a sequential fashion and hence limits the possible overall speedup [4]. This deficiency,
however, is neither induced by the shared memory programming paradigm nor the HAM-
STER system. Therefore, Figure 7.7 also includes a speedup curve without the impact of
this phase, which allows the separate assessment of the performance within the actual com-
putational phases. It shows that the actual computation exhibits a speedup of close to 10
and therefore excellent scaling capabilities.

For a further in–depth discussion of these results, Figure 7.8 shows the time spent dur-
ing the execution of the application split into the four major phases reconstruction, weights

146 Chapter 7. Application Performance Evaluation

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 2 4 6 8 10 12
Number of CPUs

E
xe

cu
ti

on
ti

m
e

(s
ec

)

I/O

Barrier

Weights

Recon

Figure 7.8 Aggregated execution times for the PET image reconstruction (left: 1
thread/node, right: 2 threads/node).

(a necessary preprocessing step), final barrier to ensure global completion, and file I/O. All
times shown are aggregated across all threads and hence present the complete amount of
work performed during the execution. This data shows that the actual reconstruction phase
is fully scalable across all numbers of nodes, as can be expected due to the independent
computation of the individual planes. In the case of just one thread per node (left side of
the figure), the reconstruction times are even slightly improved due to the increased mem-
ory bandwidth and cache size available in the overall system. In a two thread scenario, on
the other hand, the reconstruction time is burdened with a constant overhead caused by the
memory contention within the SMP nodes. In addition, the computational load is rather
balanced across all nodes resulting in low barrier times.

The actual overheads associated with the code are introduced by the weights and the
I/O phase. In its current version, both are purely sequential and hence the total aggregated
work increases linearly with the number of threads. While this impact can not be avoided
with regard to the weights phase, as this is an integral part of the overall application, the
I/O phase could be further optimized, e.g. by using parallel I/O.

7.3 Spectral Analysis of PET Images
Once this first step of image reconstruction is completed, further analysis steps can be taken
in order to enable a more detailed measurement of physical parameters. One of them is the
spectral analysis of a series of images over time [42, 224]. Again, this is a computationally
quite challenging task requiring the use of parallel processing.

7.3. Spectral Analysis of PET Images 147

Figure 7.9 Sample slice of a human head, representing the impulse response function at 60
min after injection, tracer: dopamin receptor legand C–11 diprenorphin.

7.3.1 Application Description
Spectral Analysis is a new and innovative analysis procedure for PET images first intro-
duced by [42]. It can be used to compute a transitional function, the so–called Impulse
Response Function (IRF), which allows the evaluation of a tracer’s concentration within
the patient’s body over time (e.g. for up to 60 minutes, depending on the tracer). It uses
a series of PET scans taken from the same body part at different times as input together
with a separately measured curve describing the concentration of the tracer in the patients
bloodstream and uses this information to compute the IRF.

Of special importance for a further medical diagnosis based on the acquired information
are the values of the IRF at 1 minute and at 60 minutes as well as an approximation of the
integral of the curve with respect to time. These three values are extracted from the IRF at
the end of the computation for each image point and stored as the final result.

One of the strongholds of this approach is that the IRF is computed for each pixel
independently and hence enables a fine granularity and a high resolution for the resulting
data. Consequently, the computation is performed independently on each series of pixels at
a particular location in the 3D volume over time and also the three resulting IRF values are
again stored as new 3D volumes. Like above, the resulting volumes can be viewed using
volume rendering techniques. An example for this can be seen in Figure 7.9.

7.3.2 Parallel Implementation
Like the PET reconstruction, this code can also be implemented using a data parallel ap-
proach. However, the finer data granularity required by the algorithm enables the splitting
of individual planes, rather than distributing the whole plane as in the PET reconstruction
code. Like above, a master thread is responsible to read the input data for each plane and
to store it in global memory. This data consists of the individually reconstructed image

148 Chapter 7. Application Performance Evaluation

planes from all scans acquired during the study. Each node then works on its own part of
each image plane and reports its contribution in a piece of global memory. This leads to
a finer granularity of the parallelization and hence to a potentially more balanced parallel
execution with respect to system load.

The code used for the following experiments is based on an algorithm developed at
MRC Cyclotron Unit of the Hammersmith Hospital, London and has already been im-
plemented at the Klinikum Rechts der Isar as a shared memory application [224] using
the SW–DSM system TreadMarks [5]. The port to HAMSTER is therefore easily accom-
plished by using the TreadMarks API implemented on top of HAMSTER. The new code
just has to be relinked with this implementation of the TreadMarks API in order to reach a
final executable [199].

Furthermore, in order to maintain the transparency of the underlying TreadMarks API,
no optimizations like locality annotations or custom consistency models have been applied.
The experiments conducted using this code are therefore a good indication of the ability
to easily move an existing application code to the HAMSTER platform by providing the
corresponding programming model.

7.3.3 Performance Discussion
For all measurements a single real–world data set has been used. Its data was acquired by
a sequence of PET scans of a human head over a time period of 25 samples. Each sample
consists of 47 individual slices of 128x128 pixels. The total raw size of the input data
is roughly 38.5 Mbyte. After the computation, three 3D images are written back to disk
consisting again of 47 individual slice images at a resolution of 128x128 pixels. The total
output volume per written image is roughly 1.5 Mbyte.

The code has been evaluated using the same scenarios as with the PET reconstruction
described above. Figure 7.10 shows the resulting speedups over the sequential execution
without HAMSTER. As above, the graph includes data for both the full application and the
computational phases only without the impact of the sequential file I/O. The data shows
good scaling properties with a speedup of more than 8.5 on 12 CPUs for the complete
application. In contrast to the situation above, the performance with one thread per node
is slightly lower than with two threads per node (again assuming the same total number
of threads). This stems from the fact that the Spectral Analysis has only limited memory
bandwidth requirements and hence does not saturate the system bus, even with two threads
per node. Due to its fine grain access granularity, it rather benefits from the low read
latencies of intra–node shared memory which leads to the observed performance benefits.

This is also visible from Figure 7.11, which shows the aggregated execution times
across all participating threads split into the main program phases: the actual work per-
formed during the spectral analysis, which is assumed to be equal across all configura-
tions, the overhead induced by using NUMA-DSM, computed as the difference between
the measured execution time and the actual work, the file I/O phase, and the waiting time
during barriers. The graph shows that the overhead times, which are caused by both im-
plicit NUMA communication and consistency enforcing mechanisms and hence introduced

7.4. Summary 149

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12
Number of CPUs

S
pe

ed
up

1 Proc/Node
2 Proc/Node
1 Proc/Node (no I/O)
2 Proc/Node (no I/O)
Ideal

Figure 7.10 Speedup of the Spectral Analysis on up to 12 CPUs.

through the HAMSTER framework, are generally slightly lower in the cases with two
threads per node.

In addition, the figure shows that the overhead values vary across the different numbers
of nodes which can be attributed to the different memory layouts created by the transparent
memory management of the SCI-VM. This can inherently influence the overall data locality
and thereby also the overall performance.

The two remaining phases, the I/O and the barrier, behave as expected. The first phase,
the aggregated barrier time, is rather low across all configurations due to only little load im-
balances. With raising numbers of nodes, however, this impact increases slightly. The other
phase, the file I/O phase, is executed during a sequential piece of code and its execution
time increases linearly over the number of utilized threads.

7.4 Summary
This chapter has shown the applicability of the HAMSTER framework in a real–world
scenario. Two large scale applications from the area of nuclear medical imaging, the re-
construction of PET images and their spectral analysis, have successfully been ported to
HAMSTER and have exhibited good performance and scalability properties. The perfor-
mance is mainly hindered by external circumstance, most dominant I/O. Both applications
work on large amounts of data resulting in a significant amount of time spent during this
particular phase.

The parallelization processes of these applications have been fundamentally different
and show the two main usage scenarios of HAMSTER. The PET image reconstruction
software has been parallelized from scratch enabling the utilization of a new and adapted
API, in this case the SPMD programming model. This has also allowed the use of special

150 Chapter 7. Application Performance Evaluation

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 2 4 6 8 10 12
Number of CPUs

E
xe

cu
tio

n
tim

e
(s

ec
)

Barrier
I/O
Overhead
Work

Figure 7.11 Aggregated execution times for the Spectral Analysis (left: 1 thread/node,
right: 2 threads/node).

optimization mechanisms provided by HAMSTER which are generally not exposed by
many existing programming models. The spectral analysis application, on the other side,
has already existed as a shared memory application using the TreadMarks [5] system. Its
port to HAMSTER was therefore facilitated by the existence of this particular programming
model on top of HAMSTER and was accomplished by simply recompiling and linking
with the HAMSTER–based API. This shows that the HAMSTER system is capable of
supporting both new and existing APIs on top of a single framework and hence eases both
the parallelization of new applications and the porting of existing shared memory codes.
This was one of the major design goals behind the HAMSTER framework.

These promising results encourage the work on further large scale applications. Poten-
tial targets will be further applications from the area of nuclear medical imaging like image
realignment procedures or statistical image evaluation algorithms as well as applications
from the area of computer graphics, more specifically volume rendering [228]. The latter
application domain poses many problems suitable for a shared memory parallelization, as
large data sets are randomly accessed by the different threads. They can also be combined
with the already discussed medical imaging applications as an additional post–processing
step enabling a high–quality visual presentation of the processed data.

Chapter 8

Conclusions and Outlook

The widespread use of shared memory programming for High Performance Computing
(HPC) is currently hindered by two main factors: the limited scalability of architectures
with hardware support for shared memory and the abundance of existing programming
models. The former issue has sparked research in the area of DSM systems. These de-
ploy complex software mechanisms to create a global memory abstraction in more scalable
NORMA environments. However, they are often inherently connected with performance
problems and, in addition, do not solve the second issue. In contrast, the large amount of
work done in the DSM area has led to the development of a significant number of indepen-
dent systems, each with its own API, thereby further worsening the situation.

In order to fully solve these problems, a comprehensive framework for shared memory
programming on top of loosely coupled systems is required. In addition, architectures
with a limited form of hardware support for shared memory, which does not destroy the
scalability or cost advantages, should be the target for such a framework. This support can
then be used to avoid the typical performance problems of pure software implementations.

A framework fulfilling these criteria, called HAMSTER (Hybrid-dsm based Adaptive
and Modular Shared memory archiTEctuRe), has been designed, implemented, and evalu-
ated within this work. It benefits from the advantages of loosely coupled non–CC–NUMA
architectures, i.e. scalability and cost effectiveness, and exploits their hardware support to
enable the low–complex implementation and efficient use of almost any shared memory
programming model. The complete system is currently targeted towards SCI–based clus-
ters, but its principal concepts are applicable to any other NUMA architecture. It thereby
provides a general approach capable of filling this gap in the overall software infrastructure
for loosely–coupled NUMA–based systems.

The core component of the HAMSTER framework is an efficient Hybrid–DSM system
which is capable of closing the semantic gap between the global physical memory provided
by the underlying architecture and the global virtual memory required for shared memory
programming. It relies directly on the given hardware support for any communication and
combines this with a software component responsible for creating the appropriate memory
mappings as part of a cluster–wide memory management scheme. The finer granularity
of the underlying hardware memory accesses thereby helps to avoid typical problems seen
in SW–DSM systems like false sharing or complex software implementations of differen-
tial update protocols. It therefore allows the full exploitation of the hardware capabilities
present in the underlying architecture.

152 Chapter 8. Conclusions and Outlook

Based on this Hybrid–DSM system, the HAMSTER framework defines and implements
several independent and orthogonal management modules. This includes separate modules
for memory, consistency, synchronization, and task management as well as for the control
of the cluster and the global process abstraction. Each of these modules offers typical
services required by implementations of shared memory programming models. Combined
they form the HAMSTER interface which can then be used to implement the intended
shared memory programming models without much effort.

This capability has been proven through the implementation of a number of selected
shared memory programming models on top of the HAMSTER framework. These models
range from transparently distributed thread models all the way to explicit put/get libraries
and also include various APIs from existing SW–DSM systems with different relaxed con-
sistency models. It therefore covers the complete spectrum of shared memory programming
models and underlines the broad applicability of this approach.

The presented concepts have been evaluated using a large number of different bench-
marks and kernels exhibiting the performance details of the individual components. In ad-
dition, HAMSTER was used as the basis for the implementation or port of two real–world
applications from the area of nuclear medical imaging, more precisely the reconstruction
of PET images and their spectral analysis. These experiments cover both the porting of an
already existing shared memory application using a given DSM API and the paralleliza-
tion of an application from scratch using a new, customized API. In both cases, the system
provided an efficient platform resulting in a very scalable execution.

With the completion of the prototypical implementation and extensive evaluation pre-
sented in this thesis, the work on the HAMSTER system will not be abandoned. It has
sparked many new ideas and offers the potential for further research. Two of the potential
future directions are briefly presented within this chapter, along with a discussion of the
overall system’s applicability to current hardware implementations. The chapter concludes
with a few final remarks on the future potentials of HAMSTER.

8.1 Applicability
The HAMSTER framework in its current state is a fully working prototype system. All
mechanisms are implemented and have been demonstrated in the various experiments
throughout this work. However, the description of the HAMSTER system has also shown
that the current system still has to cope with some shortcomings, especially with regard to
the SCI-VM, as described in Chapter 4.8.

Because of these open issues, the HAMSTER system is at the moment not yet in a state
to serve as the basis of production–type environments. For this, both the operating system
integration and the transparency of the underlying hardware need to be improved. Only
then can a stable and reliable environment required for real–world application scenarios be
achieved.

Despite these problems, however, the HAMSTER framework represents a general and
open multimodel shared memory programming environment for NUMA systems. Its con-
cepts are applicable far beyond its current implementation on top of SCI and can in princi-

8.2. Future Directions 153

ple be ported to any NUMA–type architecture without major changes. It therefore has the
potential to generally enable shared memory programming on the rising class of NUMA–
based systems.

8.2 Future Directions
Besides the removal of the implementation challenges mentioned earlier and the transfor-
mation of the HAMSTER framework into a safe and reliable production environment both
on SCI and on other NUMA architectures, the system offers several opportunities for fur-
ther basic research. The two most promising ones among them are briefly discussed below.

8.2.1 Towards a Cluster–enabled Operating System
Shared memory programming, as defined for this work, is associated with a single global
address space and therefore also requires a global process abstraction. Within HAMSTER,
this abstraction is created by the cluster control module which has the capabilities of merg-
ing the individual teams on each node to a global entity. This forms a suitable environment
for the implementation of shared memory programming models, as it is the goal of this
work.

The global process abstraction, however, is currently not complete. It covers only the
creation of a single global address space enabling the transparent placement and location
independent execution of threads within this global abstraction. Other operating system
services, which are normally also transparently available throughout a process, are not
covered and need to be explicitly considered when porting codes to HAMSTER–based
environments. The most severe among them is the missing transparency of I/O. Due to the
distinct operating system instances, this is still handled node–local.

In order to overcome this deficiency, a transparent, global I/O framework needs to be
developed and coupled with HAMSTER. Such a framework needs to be capable of trans-
parently intercepting I/O operations that are intended for other nodes and forward their
execution to the appropriate target. This greatly reduces the semantic gap between the in-
dividual operating system instances on the different nodes and in fact represents a first step
towards a cluster–aware, global operating system. This turns clusters, normally loosely
coupled with regard to both hardware and software, into single machines with a single op-
erating system instance thereby providing users with an easy–to–comprehend single system
image. Nevertheless, the beneficial properties with regard to scaling and cost efficiency of
the underlying architectures are preserved, making such systems a potentially good trade–
off between scalable hardware and easy–to–use software.

8.2.2 A Tool Environment for On–line Monitoring
The various experiments throughout this work have shown that some applications require
incremental performance tuning in order to show a significant speedup. Specifically the
locality of memory accesses plays an important role in the overall performance. Therefore,

154 Chapter 8. Conclusions and Outlook

the memory management, as it has been described in Chapter 5.1, includes mechanisms to
specify the memory distribution at allocation time using locality annotations. While this
approach has proven to be useful in optimizing applications, it is burdened with two inher-
ent disadvantages: for one, the user has to add the annotations into the codes by hand (often
destroying the full transparency of the underlying programming model) and secondly the
annotations are static and do not allow a dynamic adaptation to irregular memory access
patterns. To avoid these problems, it would be desirable to manage data locality dynami-
cally through an appropriate adaptive runtime system.

Work in this direction has already been started within the SMiLE project with the goal
of developing a comprehensive on–line monitoring infrastructure for shared memory pro-
gramming environments. On the hardware side, a special monitor capable of observing
the memory traffic on the SCI network is under development [78]. The data acquired
through this device will then be fed into a monitoring software stack that is designed to
fit to the HAMSTER structure [111] and is built within OMIS [144], a general–purpose
infrastructure for interoperable on-line monitoring and tool support. From there, data is
made available to sophisticated higher–level tools, like a visualizer or a page and thread
migration mechanism [217, 110].

8.3 Final Remarks
This work has provided a comprehensive overview on how to use shared memory program-
ming in NUMA–based architectures emphasizing the efficient exploitation of the hardware
capabilities present in these architectures. With the introduction of a novel Hybrid–DSM
system and with its proposal for a general, open, and flexible shared memory framework
capable of supporting almost any arbitrary shared memory programming model, it has
opened a new field of research and has sparked new ideas. The list above briefly discusses
some of the major ones among them. Follow–up work in several directions has already
begun and will be continued in the future within the context of the SMiLE project.

However, the success beyond pure research and the applicability of the overall system
is currently severely limited by the missing hardware transparency in the underlying archi-
tecture that can not be compensated in software. This restricts the system to a prototypical
study and also prevents any use of the overall system for a production or commercial use
limiting the impact of this work.

Nevertheless, the results achieved during this work are very promising and show both
the principal feasibility of the concepts presented and the good prospects for their future
use. In order to fully exploit them, however, the system needs to be moved to a more
stable and reliable hardware platform in order to evolve into a mature state. This can mean
both the use of future developments in the area of PC–based SCI clusters leading to error
free hardware implementations or the port of the system presented here to other NUMA
machines not suffering from these problems. Under these circumstances, the HAMSTER
framework has the chance to fully exploit its potentials and to significantly promote shared
memory programming, even for loosely coupled architectures.

Appendix A

The HAMSTER Execution
Environment

The following section provides a brief overview on how to install and use the HAMSTER
framework. The description is based on a binary distribution package containing both the
binary version of the HAMSTER framework, the required tools, and the SPMD program-
ming model in source. This package is available from the SMiLE software repository1.

A.1 System Requirements
The current distribution is only available for Linux clusters. The individual cluster nodes
have to be standard PCs (single or dual processors) and have to be equipped with Intel
Xeon–IITM CPUs or compatible. The latter one is required in order to provide the necessary
capabilities for a cache configuration at page granularity. All nodes have to be connected
with both Ethernet and SCI. For the latter one, currently only the D320 adapter card (Dol-
phin firmware) is tested with the current distribution. The SCI system has to be configured
as either a single ring or via a switch. Torus topologies are not supported.

On the software side, the HAMSTER distribution requires Linux with a 2.2 kernel
(only 2.2.5 is tested, but others might work). It has been developed and tested with a SuSE
6.4 installation, but again others might work. In any case, all nodes must be installed with
exactly the same configuration with respect to installed libraries. In addition, it is beneficial
to provide a cluster–wide shared file system as a basis for the execution of HAMSTER
codes.

Before proceeding with the installation of HAMSTER, the SCI network, the low–level
drivers, and the SISCI API have to be installed, configured, and tested as described by
Dolphin. In addition the binutilspackage needs to be installed in source and compiled.

A.2 HAMSTER Directory Structure
In order to install HAMSTER, the package needs to be extracted using tar. This creates a
new directory containing the following subdirectories:

1http://smile.in.tum.de/software/

156 Appendix A. The HAMSTER Execution Environment

� bin
This directory contains the necessary tools required to run HAMSTER. This includes
the patch tools needed for the identification of the static application data.

� include
This directory contains all include files needed for both the creation of programming
models and for the compilation of applications making direct use of HAMSTER.
This includes any application using the extended timing facilities of HAMSTER.

� kernel
The HAMSTER system is based on a few kernel extensions. These are contained
in this directory together with the required driver for the new memory management
(scivm.o).

� lib
In this directory the actual HAMSTER binaries are stored which need to be linked to
the final applications.

� make
This directory contains a set of makefiles and configuration files easing the compila-
tion process of both programming models and applications.

� model
Here all programming models developed for HAMSTER should be stored. In the
original directory structure, this directory contains a subdirectory for the SPMD
model and its example files.

� sisci
The HAMSTER system requires some extension in the Dolphin drivers. Therefore,
this directory contains a new set of drivers and a new API with these extensions
integrated.

A.3 Installing the HAMSTER Environment
Due to the tight integration with the underlying operating system, the HAMSTER frame-
work requires an extension to the Linux kernel. An appropriate patch together with instruc-
tion on how to apply it is included in the kernelsubdirectory.

As a next step, the SCI driver structure needs to be replaced in order to include the
necessary SCI driver extensions required for the direct ATT management and interrupt
support. For this purpose, the installed SCI drivers and the SISCI API need to be replaced
with the appropriate files in the siscisubdirectory.

Besides the new Dolphin drivers, also a special memory management driver allowing
the system to implement direct page maps needs to be installed. The appropriate binary is
included in the kerneldirectory along with a script which creates the necessary device files
in /dev/scivm.

A.4. Linking Against HAMSTER 157

The installation of the HAMSTER system is completed by adjusting the path informa-
tions in make.base contained in the make directory. More information on this is included
in this file itself.

A.4 Linking Against HAMSTER
Any application running on top of a HAMSTER–based programming model needs to link
against the libraries in the lib directory. In addition, both the SISCI API library and the
binutils library needs to be included in the list of libraries. Any link should by done stati-
cally in order to ensure a consistent data layout across all nodes.

An example on how a programming model is compiled and how a sample application
is compiled and linked is included in the distribution based on the SPMD programming
model. It can be found in the model/spmddirectory. There, the appropriate makefiles can
be found which can be directly used to compile both the SPMD programming model and
the sample application. For this purpose, only make needs to be started without any further
arguments. These makefiles can also be used as the basis for further developments.

A.5 Running Applications
Before starting a HAMSTER–based application, first the cluster configuration needs to be
specified. For this purpose, the user has to create a .hamsterfile in their home directory.
This ASCII file should contain a line for each node to be used for the application. This
text line has to contain the DNS name of the node, the SCI node ID, and the scale of
the node (number of threads suitable for this node), each separated by a space. A sample
configuration file can be found in the HAMSTER main directory.

After this step, the application is ready to run. For this, it has to be started on each
node contained within the configuration file separately. On nodes listed twice within the
configuration file, two copies of the application need to be started. The first node mentioned
in the configuration has the role of a master during the initialization and therefore should be
started last. As soon as all copies of the application have been started, the master initiates
the initial communication between the individual application instances and merges them to
a single global process abstraction.

Appendix B

SPMD: A Sample Programming
Model on Top of HAMSTER

One of the programming models supported by the HAMSTER system is the SPMD (Single
Program Multiple Data) model introduced in Chapter 6.2. As this is one of the leanest and
simplest, it is used here as an example of a HAMSTER programming model. It is also
included in the binary distribution of the HAMSTER system available from the SMiLE
software repository1. The following chapter will introduce the specification of this pro-
gramming model and provide a short guide on how to use it.

B.1 API Description
In the following, the specification of the SPMD API available to the programmer is briefly
described.

Initialization and error control
The programming model uses an automatic initialization that is triggered during the first
call to any routine. At this point any configuration of the individual HAMSTER modules
used by the SPMD programming model is executed implicitly. Therefore, the user is not
required to explicitly ensure proper initialization.

In order to keep this programming model simple and suited for small experiments with
the HAMSTER system, it also contains a very simple error management. None of the
routines report errors, but will rather lead to an abortion of the program. As any potential
error that could be triggered by this programming model is either a fatal error caused by
problems within the HAMSTER system, which would leave the application in a useless
state, or by programming/parameters errors, this simplification in error management does
not significantly restrict the usability of the programming model.

1http://smile.in.tum.de/software/

160 Appendix B. SPMD: A Sample Programming Model on Top of HAMSTER

Global process abstraction control
spmd_getNodeNum

Call: unsigned int spmd_getNodeNum()

This routine returns the rank of the currently running thread within the current global
process abstraction. This number can then be used to control the work or task distribution
or restrict certain tasks, like I/O or application initialization, to only specific threads.

spmd_getNodeCount

Call: unsigned int spmd_getNodeCount()

This routine returns the total number of the currently running threads within the current
global process abstraction. Together with the rank of the local thread, this number can then
be used to control the work or task distribution.

Barrier synchronization
spmd_allocBarrier

Call: int spmd_allocBarrier()

This routine can be used to allocate a barrier. It has to be called by all threads in the
system concurrently. The identifier for the newly allocated barrier is returned as an integer
and can be used in subsequent spmd_barriercalls.

spmd_barrier

Call: void spmd_barrier(int barrierid)

This routine triggers a full barrier of all participating threads within the current global
process abstraction. This means that every thread has to call this routine with the same
argument before any thread is allowed to return from this routine and therefore to continue
execution. This routine has to be passed an argument containing a valid barrier identifier
previously allocated using spmd_allocBarrier. It has to be noted that a barrier includes
both an acquireand a releaseoperation (see Chapter 6.3.3), i.e. the enforcement of full
local consistency. As a barrier call in this programming model involves all threads, it
therefore also guarantees a global fully consistent memory of the complete global process
abstraction.

B.1. API Description 161

Lock synchronization
spmd_allocLock

Call: int spmd_allocLock()

This routine can be used to allocate a lock. It has to be called by all threads in the
system concurrently. The identifier for the newly allocated barrier is returned as an integer
and can be used in subsequent spmd_lockand spmd_unlockcalls.

spmd_lock

Call: void spmd_lock(int lockid)

This routine executes a lock operation. In case the lock is already taken by another
thread, the call does not return until the other thread releases the lock and the current
thread becomes the new owner. The routine has to be passed an argument containing a
valid lock identifier previously allocated using spmd_allocLock. It has to be noted that a
lock includes an Acquireoperation (see Chapter 6.3.3), which when used together with the
corresponding Releaseoperation at unlock time creates a Release Consistency(RC) [116]
model providing a consistent data access under the mutual exclusion of the used lock (see
also Chapter 6.3.3).

spmd_unlock

Call: void spmd_unlock(int lockid)

This routine unlocks a lock held by the local thread making it available again to other,
potentially already waiting threads. The routine has to be passed an argument containing
a valid lock identifier previously allocated using spmd_allocLock. It has to be noted that
an unlock includes a Releaseoperation (see Chapter 5.2), which when used together with
the corresponding Acquireoperation at lock time creates a Release Consistency(RC) [116]
model providing a consistent data access under the mutual exclusion of the used lock (see
also Chapter 6.3.3).

Additional synchronization
spmd_sync

Call: void spmd_sync()

This routine enforces the consistency of the complete local memory by implicitly call-
ing both an Acquireand a Releaseas discussed in Chapter 5.2. Note that this routine only
affects the local memory and does not have a global effect. Note further that the SPMD
programming model discussed here includes an implicit consistency management included
in the barrier and lock routines. Therefore, the use of this routine should normally not be

162 Appendix B. SPMD: A Sample Programming Model on Top of HAMSTER

necessary.

Memory management
spmd_alloc

Call: void* spmd_alloc(int size)

The spmd_allocroutine can be used to allocate new global virtual memory for the
application. The allocation is process is conducted using the default settings for memory
coherency and distribution. This results in a piece of memory with a maximum of memory
optimizations enabled distributed across all nodes at finest possible granularity. It has to be
called by all threads in the system concurrently and returns the same virtual address of the
newly allocated memory to all nodes.

spmd_allocOpt

Call: void* spmd_allocOpt(int size, localitySpec_t *locSpec)

Like the routine above, also this routine allows the allocation of global memory. In
contrast to above, however, the user has the option to specify parameters for guiding the al-
location process. These parameters allow to influence the memory distribution as described
in Chapter 5.1. They can be set through the localitySpec_tstructure, which is passed to the
routine as the second parameter. More information about the individual fields within the
structure and on how to use them can be found in the SPMD header files.

spmd_allocCoh

Call: void* spmd_allocCoh(int size, coherencySpec_t *cohSpec)

Also this routine allows the allocation of global memory, however, with the option to
specify a memory coherency type for the newly allocated memory (using the coheren-
cySpec_tstructure). More information about the individual fields within the structure and
on how to use them can be found in the SPMD header files.

spmd_allocOptCoh

Call: void* spmd_allocOptCoh(int size, localitySpec_t *locSpec,coherencySpec_t
*cohSpec)

This routine combines the memory allocation functionality of the two previous routines
and allows both locality and coherency specifications.

B.2. A Simple Example Code for the SPMD Programming Model 163

spmd_getGlobalMem

Call: unsigned int* spmd_getGlobalMem()

The last routine of the SPMD programming model allows the allocation of global
memory from within the SCI-VM configuration space. This memory is always set to the
highest possible memory coherence type and can serve for simple configuration and com-
munication purposes. Strictly seen, the existence of this routine is not required, as the
spmd_allocOptalso allows the allocation of memory with equal coherence type. Using
this routine, however, no new memory needs to be allocated, as resources already in use
within the SCI-VM are reused.

B.2 A Simple Example Code for the SPMD Program-
ming Model

To help understand the programming model, this Section provides a small example par-
allel program using the SPMD programming model, a simple Successive OverRelaxation
(SOR). This code has already been used in Chapter 5.1.3 and its performance issues have
been discussed there. This source code is also included in the binary distribution of the
HAMSTER software available in the SMiLE software repository at LRR–TUM.

A simple SOR code
A Successive OverRelaxation (SOR) is a common method to solve Partial Differential
Equations (PDE) described by a dense matrix with boundary values. The SOR algorithm
mainly consists of a loop executed a given number of iterations. Within this loop, each
point of the dense matrix is updated once using a certain, PDE and problem specific update
pattern or stencil defining how each node’s new value has to be computed from the values of
its neighboring points. For the code used here, a very simple stencil is used that just updates
each point by the average value of all four direct neighbors. A graphical representation of
this stencil can be seen in Figure B.1 along with its mathematical definition.

The parallelization of this SOR approach is rather straightforward and can be done
using simple domain decomposition. This process is visualized in Figure B.2 from left to
right based on the assumption of a parallelization for two nodes. The left most graphic
shows the dense matrix on which the SOR operates. Then the necessary boundary is added
around the actual data matrix. This matrix can then be split into equal parts according to the
number of nodes, in this example two. Also the newly created subparts are again considered
with their own private boundary allowing each subpart to be computed separately during
one iteration by the same SOR algorithm. Between iterations, a barrier has to be introduced
in order to keep all participating threads within the same iteration.

The right most graphic in the figure shows the overlap of data between the two in-
dependent partitions. This is exactly the data which is used by both threads leading to
communication between the partitions.

164 Appendix B. SPMD: A Sample Programming Model on Top of HAMSTER

i

j

U(i; j) = U(i�1;j)+U(i+1;j)+U(i;j�1)+U(i;j+1)
4:0

Figure B.1 Update pattern for each point in the matrix.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Figure B.2 Data distribution and sharing pattern for the SOR code — from left to right:
initial dense matrix, boundary, splitting the matrix, local boundary, area with implicit com-
munication.

It should be noted that this kind of parallelization does not result in a parallel program
with exactly identical behavior as in the sequential case. In the parallel case the order in
which matrix points are updated does not match the order of the sequential code. This
also leads to different matrix values, as they are based on the values of the neighbors of
which some might have been updated under one scheme, but not under the other. Due to
the numerical properties of the SOR algorithm, however, this does not influence the final
result after a convergence has been reached and is therefore safe to use.

Source code
The following section lists the source code implementing the SOR kernel described above
using the SPMD programming model.

//
//
// EXAMPLE: small SOR example for SPMD programming model
//
// September 2000, Version 1.0, (c) Martin Schulz, LRR-TUM
//
// Usage: Master: example <matrix size> <iterations>
// Slave: example <matrix size> <iterations>

B.2. A Simple Example Code for the SPMD Programming Model 165

//
// Linux version
//
//

#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#include <math.h>

#include <spmd.h>

//
// timing routines
double time_temp;
#define STARTTIME time_temp=getTimer()
#define ENDTIME (getTimer()-time_temp)
double getTimer() {

struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return ((double) tv.tv_usec)+(((double) tv.tv_sec)*1000000.0);

}

//
// Matrix access macro
#define u(x,y) matrix[(x)*(matrix_n+2)+(y)]

//
// Main routine
int main(int argc, char **argv) {

float *matrix;
double timer;
localitySpec_t locOpt;
int matrix_n, iterations, alloc_size;
int number, count, i, j, k, start, end;
int global_barrier;

// Print header
printf("\n\nSPMD example, v1.0\n\n");
printf("(c) Martin Schulz, September 2000\n\n");
if (argc!=3)

{
printf("Usage: example <matrix size> <iterations>\n");
exit(1);

}
matrix_n=atoi(argv[1]);
iterations=atoi(argv[2]);

alloc_size=(matrix_n+2)*(matrix_n+2)*sizeof(float);
printf("Allocation size in bytes: %i\n",alloc_size);
printf("Iterations: %i\n",iterations);
printf("Matrix size: %i\n\n",matrix_n);

// Form here on, the SCI-VM is ready to use, but no global memory
// has yet been allocated
count =spmd_getNodeCount();
number=spmd_getNodeNum();

// compute my work
start = (matrix_n / count) * number + 1;
end = (matrix_n / count) * (number+1) + 1;
if (number==0)

start=1;

166 Appendix B. SPMD: A Sample Programming Model on Top of HAMSTER

if (number==count-1)
end=matrix_n + 1;

printf("\nID %d, Working on rows %d - %d\n\n", number, start, end);

// allocate barrier
global_barrier=spmd_allocBarrier();

// allocate global segment
// locOpt.mode=SCIVM_BLOCKDIST;
// locOpt.node=0;
// matrix=(float*) spmd_allocOpt(alloc_size,&locOpt);
matrix=(float*) spmd_allocOpt(alloc_size,NULL);
spmd_barrier(global_barrier);

// start initialization
if (number==0) {

for (j=0; j<matrix_n+2; j++)
u(0,j)=1.0;

}
for (i=start; i<end; i++) {

u(i,0)=1.0;
for (j=1; j< matrix_n+1; j++)

u(i,j)=0.0;
u(i,matrix_n+1)=-1.0;

}
if (number==count-1) {

for (j=0; j<matrix_n+2; j++)
u(matrix_n+1,j)=-1.0;

}

// start timing
spmd_barrier(global_barrier);
STARTTIME;

// Do SOR
for (k=1; k<iterations; k++) {

// do one SOR step
for (i=start; i<end; i++)

for (j=1; j<matrix_n+1; j++) {
// do SOR for one point
u(i,j) = (u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)) / 4.0;

}
spmd_barrier(global_barrier);

}

// end timing
timer=ENDTIME;
printf("Time elapsed %f ms\n\n",timer/1000.0);

// print result diagonal
if (number==0) {

for (i=0; i<matrix_n+2; i++) {
printf("u(%4d,%4d) = %f\n",i,i,u(i,i));

}
}

printf("\n");

// final barrier
spmd_barrier(global_barrier);

// That’s it
spmd_stop();

}

B.2. A Simple Example Code for the SPMD Programming Model 167

Running the code
After the compilation of the example code and after linking it against the HAMSTER mod-
ules, the code is ready for execution. Appendix A describes the necessary procedure for
this.

The code takes two arguments: first the size of the matrix (an integer number stating the
number of elements in each direction) and the number of iterations, i.e. the number of SOR
steps, to be executed. Note that only with an iteration number greater or equal than half of
the matrix size the code will produce a fully computed dense result matrix. For initial tests,
however, smaller iteration numbers might/should be used.

Sequential counterpart
For comparison, the binary distribution also includes a sequential counterpart of the code
discussed above. It can be used to understand the parallelization process using the SPMD
programming model and also for simple benchmarking and speedup evaluation.

Abbreviations

A
AM Active Messages
ANL Argonne National Laboratory
ANSI American National Standards Institute
APC Asynchronous Procedure Call
API Application Programming Interface
ASCII American Standard Code for Information Interchange
ATT Address Translation Table

C
CC–NUMA Cache–Coherent Non–Uniform Memory Access
CERN Centré Européenne pour la Recherche Nucléaire
CoP Cluster of PCs
CORBA COmmon Request Broker Architecture
COTS Commodity–Of–The–Shelf
CPU Central Processing Unit
CRL C Region Library
CT Computer Tomography
CVM Coherent Virtual Machine

D
DEC Digital Equipment Corporation
DLL Dynamic Link Library
DMA Direct Memory Access
DNS Domain Name Service
DSM Distributed Shared Memory
DUnX Duke University nX2

170 Abbreviations

E
EC Entry Consistency
ECC Error Correction Code
ERC Eager Release Consistency

F
FBP Filtered Back Projection
FIFO First–In First–Out
FLASH Flexible Architecture for SHared memory

G
GAC Global Activity Counter

H
HAMSTER Hybrid dsm–based Adaptive and Modular

Shared memory archiTEctuRe
HP Hewlett Packard
HPC High Performance Computing
HPF High Performance Fortran
HW–DSM HardWare Distributed Shared Memory

I
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
ICS InterConnect Solutions
ISS Interconnect Systems Solutions
IRF Impulse Response Function
IRM Interconnect Resource Manager
IVY Integrated shared Virtual memory at Yale

J
JDK JavaTM Development Kit

Abbreviations 171

L
LAN Local Area Network
LC Link Controller
LGF Last Global Flush
LLI Last Local Invalidation
LRC Lazy Release Consistency

M
MPI Message Passing Interface
MPP Massively Parallel Processor
MRI Magnetic Resonance Imaging
MTRR Memory Type Range Register
MuSE Multithreaded Scheduling Environment

N
NIC Network Interface Card
NORMA NO Remote Memory Access
NoW Network of Workstations
NUMA Non–Uniform Memory Access

O
OS Operating System

P
PC Processor Consistency or Personal Computer
PCI Peripheral Component Interconnect
PDE Partial Differential Equation
PET Positron Emission Tomography
PoP Pile of PCs
POSIX Portable Operating System Interface for uniX
PSB PCI–SCI Bridge chip
PVM Parallel Virtual Machine
PVP Parallel Vector Processor

172 Abbreviations

R
RAL Rutherford Appleton Laboratories
RAM Random Access Memory
RC Release Consistency
RPC Remote Procedure Call

S
S2MP Scalable Symmetric MultiProcessing
SAN System Area Network
SAR Synthetic Aperture Radar
SC Sequential Consistency
SCI Scalable Coherent Interface
SCI-VM SCI Virtual Memory
ScC Scope Consistency
SINTEF Foundation for Scientific and Industrial Research

at the Norwegian Institute of Technology
SISCI Standard software Infrastructure for SCI–based systems
SMiLE Shared Memory in a LAN–like Environment
SMP Symmetric MultiProcessor
SP Service Pack
SPLASH Stanford Parallel Applications for Shared Memory
SPMD Single Program Multiple Data
SSI Single System Image
SSP Scali Software Platform
SOR Successive Over Relaxation
SW–DSM SoftWare Distributed Shared Memory

T
TSO Total Store Order

U
UMA Uniform Memory Access

V
VPM Virtual Parallel Machine

Abbreviations 173

W
WAN Wide Area Network
WC Weak Consistency

Bibliography

[1] G. Acher, W. Karl, and M. Leberecht. PCI-SCI-Protocol Translations: Applying
Microprogrammable Concepts to FPGA. In R.W. Hartenstein and A. Keevallik,
editors, 8th International Workshop on Field Programmable Logic and Applica-
tions, FPL’98, volume 1482 of Lecture Notes in Computer Science, pages 99–108,
Tallinn, Estonia, August 1998. Springer-Verlag.

[2] G. Acher, W. Karl, and M. Leberecht. The TUM PCI/SCI Adapter, chapter 4,
pages 89–101. Volume 1734 of Hellwagner and Reinefeld [75], October 1999.
ISBN 3-540-66696-6.

[3] S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
Rice University ECE Technical Report 9512 and Western Research Laboratory
Research Report 95/7, Department of Electrical and Computer Engineering, Rice
University and Western Research Laboratory, DEC, September 1995.

[4] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the AFIPS Spring Joint Com-
puter Conference, pages 483–485, April 1967.

[5] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of Work-
stations. IEEE Computer, 29(2):18–28, February 1995.

[6] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Software DSM Protocols
that Adapt between Single Writer and Multiple Writer. In In Proceedings of the
International Conference on High Performance Computer Architecture (HPCA),
1997.

[7] G. Antoniu, L. Bouge, and R. Namyst. An Efficient and Transparent Thread Mi-
gration Scheme in the PM2 Runtime System. In J. Rolim et al., editor, Parallel
and Distributed Processing, Proceedings of IPDPS workshops including RTSPP,
volume 1586 of LNCS, pages 496–510. Springer Verlag, Berlin, April 1999.

[8] G. Appollonia, J. Méhaut, R. Namyst, and Y. Denneulin. SCI and distributed
multithreading: the PM2 approach. In H. Hellwagner and A. Reinefeld, editors,

176 Bibliography

Proceedings of SCI-Europe ’98, a conference stream of EMMSEC ’98. Cheshire
Henbury, September 1998. ISBN: 1-901864-02-02.

[9] Dolphin Interconnect Solutions AS. Link Controller 3 (TM) Specification. Olaf
Helsets vei 6, P.O. Box 70, Bogerud, N-0621 Oslo, Norway, September 2000.
Preliminary version 0.84, Available under NDA from Dolphin ICS.

[10] O. Aumage, L. Bougé, A. Denis, J. Méhaut, G. Mercier, R. Namyst, and
L. Prylli. Madeleine II: a Portable and Efficient Communication Library for High–
Performance Cluster Computing. In In Proceedings of the IEEE Conference on
Cluster Computing, Cluster 2000, pages 78–87. IEEE Computer Society, Decem-
ber 2000.

[11] H. Bal, M. Kaashoek, and A. Tanenbaum. Orca: A language for Parallel Pro-
gramming of Distributed Systems. IEEE Transactions on Software Engineering,
18(3):1,42,349, March 1992.

[12] A. Barak, O. La’adan, and A. Shiloh. Scalable Cluster Computing with MOSIX
for LINUX. In In the Proceedings of Linux Expo, Raleigh, NC, pages 95–100,
May 1999.

[13] A. Belias, A. Bogaerts, D. Botterill, J. Dawson, E. Denes, F. Giacomini, R. Hauser,
C. Hortnagel, R. Hughes-Jones, S. Kolya, D. Mercer, R. Middleton, J. Schlereth,
P. Werner, and D. Wickens. SCI Prototyping for the Second Level Trigger System
of the ATLAS Experiment, chapter 23, pages 397–414. Volume 1734 of Hellwagner
and Reinefeld [75], October 1999. ISBN 3-540-66696-6.

[14] A. Belias, A. Bogaerts, D. Botterill, F. Giacomini, R. Hauser, R. Middleton,
P. Werner, and F. Wickens. ATLAS Level–2 Trigger SCI Demonstrator Evaluation
Report. In G. Horn and W. Karl, editors, Proceedings of SCI-Europe 2000, The 3rd
international conference on SCI–based technology and research, pages 101–109.
SINTEF Electronics and Cybernetics, August 2000. ISBN: 82-595-9964-3, Also
available at http://wwwbode.in.tum.de/events/.

[15] A. Belias, A. Bogaerts, D. Botterill, F. Giacomini, R. Middleton, F. Wick-
ens, and P. Werner. Evaluation of a 16–port SCI Switch. In G. Horn and
W. Karl, editors, Proceedings of SCI-Europe 2000, The 3rd international con-
ference on SCI–based technology and research, pages 101–109. SINTEF Elec-
tronics and Cybernetics, August 2000. ISBN: 82-595-9964-3, Also available at
http://wwwbode.in.tum.de/events/.

[16] A. Belias, L. Iftode, and J. Singh. Shared Virtual Memory across SMP Nodes
Using Automatic Update: Protocols and Performance. In Proceedings of the 6th
workshop on Scalable Shared–Memory Multiprocessors, October 1996. Also as
Princeton Technical Report TR-517-96.

Bibliography 177

[17] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed Shared Memory
Based on Type–Specific Memory Coherence. In In Proceedings of Principles and
Practice of Parallel Programming (PPoPP), 1990.

[18] A. Blumrich, R. Alpert, Y. Chen, D. Clark, S. Damianakis, C. Dubnicki, E. Felten,
L. Iftode, K. Li, M. Martonosi, and R. Shillner. Design Choices in the SHRIMP
System: An Emprical Study. In In Proceedings of the International Symposium of
Computer Architecture (ISCA), 1998.

[19] M. Blumrich, R. Alpert, Y. Chen, D. Clark, S. Damianakis, C. Dubnicki, E. Felten,
L. Iftode, K. Li, M. Martonosi, and R. Shillner. Design Choices in the SHRIMP
System: An Empirical Study. In Proceedings of the 25th Annual International
Symposium on Computer Architecture (ISCA), May 1998.

[20] N. Boden, D. Cohen, R. Felderman, J. Seizovic A. Kulawik, C. Seitz, and Wen-
King Su. Myrinet: A Gigabit–per–Second Local Area Network. IEEE Micro,
15(1):29–36, February 1995.

[21] B. Breshad and M. Zekauskas. Midway: Shared Memory Parallel Programming
with Entry Consistency for Distributed Memory Multiprocessors. Technical Re-
port CMU-CS-91-170, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, September 1991.

[22] B. Breshad, M. Zekauskas, and W. Sawdon. The Midway Distributed Shared
Memory System. In In the Proceedings of COMPCON, 1993.

[23] H. Bugge. Affordable Scalability using Multicubes. In H. Hellwagner and
A. Reinefeld, editors, Proceedings of SCI-Europe ’98, a conference stream of
EMMSEC ’98, pages 25–28. Cheshire Henbury, September 1998. ISBN: 1-
901864-02-02.

[24] H. Bugge and P. Husoy. Efficient SAR processing on the Scali System. In In the
proceedings of the 2nd International Workshop on Embedded HPC Systems and
Applications (held in conjunction with IPPS), April 1997.

[25] R. Butenuth and E. Rehling. Armenius: Software für Linux-basierte SCI-Cluster.
In W. Rehm and T. Ungerer, editors, Tagungsband zum 2. Workshop Cluster
Computing, number CSR-99-02 in Chemnitzer Informatik–Berichte, pages 15–24,
March 1999.

[26] R. Buthenuth and H. Heiss. Shared Memory Programming on PC-based SCI Clus-
ters. In H. Hellwagner and A. Reinefeld, editors, Proceedings of SCI-Europe ’98,
a conference stream of EMMSEC ’98, pages 143–148, September 1998. ISBN:
1-901864-02-02.

178 Bibliography

[27] G. Cabillic, G. Muller, and I. Puaut. The Performance of Consistent Checkpoint-
ing in Distributed Shared Memory Systems. In In the Proceedings of the 14th
Symposium on Reliable Distributed Systems, 1995.

[28] G. Cabillic and I. Puaut. Stardust: an environment for parallel programming on
networks of heterogeneous workstations.

[29] J. Carter, J. Bennett, and W. Zwaenepoel. Implementation and Performance of
Munin. In In Proceedings of 13th Symposium on Operating System Principles
(SOSP), pages 152–164, October 1991.

[30] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques for Reducing Consistency–
Related Communication in Distributed Shared Memory Systems. ACM Transac-
tions on Computer Systems, 1995.

[31] R. Chandra, A. Gupta, and J. Hennessy. Cool: An object–based language for
parallel programming. Computer, 27(8):13–26, August 1994.

[32] R. Chandra, A. Gupta, and J. Hennessy. COOL, chapter 6, pages 215–255. In
Wilson and Lu [231], 1996.

[33] K. Chandy and S.Taylor. An Introduction to Parallel Programming. Jones and
Bartlett Publishers, Boston and London, 1992.

[34] A. Charlesworth. STARFIRE: Extending the SMP Envelope. IEEE Micro,
18(1):39–49, February 1998.

[35] Convex Computer Coorperation, Richardson, Texas, USA. Convex Exemplar Ar-
chitecture, 2nd edition, November 1994.

[36] Compaq Computer Corp., Intel Corporation, and Microsoft Corporation. Virtual
Interface Architecture Specification, Version 1.0, December 1997. Available with
NDA via www.viarch.org.

[37] Data General Corporation. Data General’s NUMALiiNE Technol-
ogy: The Foundation for the AV 20000 Server. white paper, 1998.
http://www.dg.com/about/html/numaliine_technology_av20000_f.html.

[38] Intel Corporation. MultiProcessor Specification, Version 1.4, May 1997. Available
from Intel’s developer website.

[39] D. Cortesi and J. Fier. Origin2000 and Onyx2 Performance Tuning and Opti-
mization Guide. Technical Report 007-3430-002, Silicon Graphics, Inc., 1998.
Available at http://techpubs.sgi.com/.

[40] B. Costinescu and A. Lioy. The HPPC–SEA DVSM library. Technical report,
Politehnica University of Bucharest and Politecnico di Torino, November 1998.
This report was written for the HPPC–SEA project.

Bibliography 179

[41] A. Cox and R. Fowler. The implementation of a coherent memory abstraction
on a NUMA multiprocessor: Experiences with PLATINIUM. In In Proceedings
of the 12th Symposium on Operating Systems Principles (SOSP), pages 32–44,
December 1989.

[42] V.J. Cunningham and T. Jones. Spectral analysis of dynamic PET studies. Journal
of Cerebral Blood Flow and Metabolism, 13(1):15–23, January 1993.

[43] W. Dijkstra. Solution to a Problem in Concurrent Programming Control. Commu-
nications of the ACM, 8(9):569, September 1965.

[44] Dolphin Interconnect Solutions, AS. PCI–SCI Bridge Functional Specification,
November 1996.

[45] M. Dormanns. Shared Memory Parallelization of the GROMOS96 Molecular Dy-
namics Code, chapter 22, pages 383–396. Volume 1734 of Hellwagner and Reine-
feld [75], October 1999. ISBN 3-540-66696-6.

[46] B. Dreier, M. Zahn, and T. Ungerer. Parallele und verteilte Programmierung mittels
Pthreads und Rthreads. In W. Rehm, editor, Tagungsband zum 1. Workshop Cluster
Computing, number CSR-97-05 in Chemnitzer Informatik–Berichte, pages 63–85,
November 1997.

[47] M. Dubois, C. Scheurich, and F. Briggs. Memory Access Buffering in Multi-
processors. In In Proceedings of the 13th International Symposium on Computer
Architecture (ISCA), pages 434–442, 1986.

[48] M. Dubois and S. Thakkar, editors. Scalable Shared–Memory Multiprocessors.
Kluwer Academic Publishers, Boston, MA, 1992.

[49] M. Eberl. Realisierung einer DSM–Implementation von Active Messages am
Beispiel eines SCI-gekoppelten Sun Workstation Clusters. Diplomarbeit, Tech-
nische Universität München, 1996.

[50] M. Eberl, H. Hellwagner, B. Herland, and M. Schulz. SISCI — Implementing a
Standard Software Infrastructure on an SCI Cluster. In W. Rehm, editor, Tagungs-
band zum 1. Workshop Cluster Computing, number CSR-97-05 in Chemnitzer
Informatik–Berichte, pages 49–61, November 1997.

[51] M. Eberl, H. Hellwagner, W. Karl, M. Leberecht, and J. Weidendorfer. Fast Com-
munication Libraries on an SCI Cluster. In H. Hellwagner and A. Reinefeld, edi-
tors, Proceedings of SCI-Europe ’98, a conference stream of EMMSEC ’98, pages
165–175. Cheshire Henbury, September 1998. ISBN: 1-901864-02-02.

[52] M. Eberl, W. Karl, C. Trinitis, and A. Blaszczyk. Parallel Computing on PC Clus-
ters — An Alternative to Supercomputers for Industrial Applications. In Pro-
ceedings of the 6th European PVM/MPI Users’ Group Meeting, Barcelona, Spain,
volume 1697 of LNCS, pages 493–498. Springer Verlag, Berlin, September 1999.

180 Bibliography

[53] W. Bolosky et al. NUMA Policies and Their Relation to Memory Architecture.
In In Proceedings of 4th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 1991.

[54] J. Fessler. Aspire 3.0 user’s guide: A sparse iterative reconstruction library.
Technical Report TR–95–293, Communications & Signal Processing Laboratory,
Department of Electrical Engineering and Computer Science, The University of
Michigan Ann Arbor, Michigan 48109-2122, November 2000. Revised version.

[55] M. Fischer and A. Reinefeld. A PVM Implementation for Hetereogeneous SCI
Clusters. In H. Hellwagner and A. Reinefeld, editors, Proceedings of SCI-Europe
’98, a conference stream of EMMSEC ’98, pages 159–164. Cheshire Henbury,
September 1998. ISBN: 1-901864-02-02.

[56] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to Integrating Mul-
tithreading and Communication. Journal of Parallel and Distributed Computing,
40:35–48, 1996.

[57] H. Fuchs, M. Levoy, and S. Pizer. Interactive Visualization of 3D Medical Data.
Computer, 22(3):45–51, August 1989.

[58] M. Galles and E. Williams. Performance optimizations, implementation, and ver-
ification of the SGI Challenge multiprocessor. Technical report, January 1994.

[59] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: Maximinzing Local-
ity and Concurrency in a Shared Memory Multiprocessor Operating System. In In
Proceedings of Operating System Design and Implementation (OSDI), 1999.

[60] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine — A User’s Guide and Tutorial for Networked Parallel
Computing. Scientific and Engineering Computation. MIT Press, 1994.

[61] A. George, W. Phillips, R. Todd, and W. Rosen. Multithreading and Lightweight
Communication Protocol Enhancements for SCI–based SCALE Systems. In Pro-
ceedings of the 7th International SCI Workshop, March 1997.

[62] K. Gharachorloo. Memory Consistency Models for Shared–Memory Multiproces-
sors. PhD thesis, Stanford University, December 1995. Also published as Stanford
University Technical Report CSL-TR-95-685 and WRL research report 95/9.

[63] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, and J. Hennessy. Memory
Consistency and Event Ordering in Scalable Shared–Memory Multiprocessors. In
In Proceedings of the 17th International Symposium on Computer Architecture
(ISCA), June 1990.

Bibliography 181

[64] F. Giacomini, T. Amundsen, A. Bogaerts, R. Hauser, B. Johnson, H. Kohmann,
R. Nordstrøm, and P. Werner. Low–level SCI software functional spec-
ification. Dolphin ICS and CERN, version 2.1.1 edition, March 1999.
Also deliverable D.1.1.1, ESPRIT project 23174 / SISCI, Available from
http://www.dolphinics.no/.

[65] R. Gillett. Memory Channel: An Optimized Cluster Interconnect. IEEE Micro,
16(2):12–18, February 1996.

[66] V. Gonzales, E. Sanchis, and G. Torralba. Multinode Performance Evalua-
tion: experience using the Dolphin 4–port switch. In G. Horn and W. Karl,
editors, Proceedings of SCI-Europe ’99, The 2nd international conference
on SCI–based technology and research, pages 75–81. SINTEF Electronics
and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also available at
http://wwwbode.in.tum.de/events/.

[67] J. Goodman, M. Vernon, and P. Woest. Efficient Synchronization Primitives for
Large–Scale Cache–Coherent Multiprocessors. In In Proceedings of 3rd Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 64–73, 1989.

[68] L. Grabowsky, T. Radke, and W. Rehm. Cluster-MPI – An optimized MPI subset
for configurable cluster systems: SCI connected SMPs as a test case. In W. Rehm,
editor, Tagungsband zum 1. Workshop Cluster Computing, number CSR-97-05 in
Chemnitzer Informatik–Berichte, pages 125–131, November 1997.

[69] R. Grass. Siemens hpcLine — Intel (TM)-basierte hoch–skalierbare Server
für technisch–wissenschaftliche Anwendungen. Siemens AG, Information and
Communication Products, High Performance Computing. Available from
http://www.hpcline.de/.

[70] R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa,
A. Grbic, M. Gusat, R. Ho, O. Krieger, G. Lemieux, K. Loveless, N. Manjikian,
P. McHardy, S. Srbljic, M. Stumm, Z. Vranesic, and Z. Zilic. The NUMAchine
Multiprocessor. In In Proceedings of the International Conferenc on Parallel Pro-
cessing (ICPP), August 2000.

[71] A. Gueziec and R. Hummel. The wrapper algorithm: Surface extraction and sim-
plification. In Proceedings of the IEEE Workshop on Biomedical Image Analysis,
pages 204–213, 1994.

[72] J. Hansen, P. Koch, and E. Jul. A Stream Protocol Implementation for an SCI–
based Cluster of Workstations. In In the Proceedings of the Workshop on Cluster–
based Computing (WCBC) (held in conjunction with ICS), pages 16–20, June
1999.

182 Bibliography

[73] M. Heines, D. Cronk, and P. Mehrotra. On the Design of Chant: A Talking Threads
Package. In Proceedings of Supercomputing 1994, pages 350–359, November
1994.

[74] H. Hellwagner, W. Karl, and M. Leberecht. Enabling a PC Cluster for High Per-
formance Computation. SPEEDUP-Journal, 11(1), 1997.

[75] H. Hellwagner and A. Reinefeld, editors. SCI: Scalable Coherent Interface. Ar-
chitecture and Software for High-Performance Compute Clusters, volume 1734
of LNCS State-of-the-Art Survey. Springer Verlag, October 1999. ISBN 3-540-
66696-6.

[76] H. Hellwagner and J. Weidendorfer. SCI Sockets Library, chapter 11, pages 209–
229. Volume 1734 of Hellwagner and Reinefeld [75], October 1999. ISBN 3-540-
66696-6.

[77] H.-J. Hermann. Nuklearmedizin. Urban und Schwarzenberg, 1998.

[78] R. Hockauf, J. Jeitner, W. Karl, R. Lindhof, M. Schulz, V. Gonzales, E. Sanquis,
and G. Torralba. Design and Implementation Aspects for the SMiLE Hardware
Monitor. In G. Horn and W. Karl, editors, Proceedings of SCI-Europe 2000, The
3rd international conference on SCI–based technology and research, pages 47–55.
SINTEF Electronics and Cybernetics, August 2000. ISBN: 82-595-9964-3, Also
available at http://wwwbode.in.tum.de/events/.

[79] R. Hockauf, W. Karl, M. Leberecht, M. Oberhuber, and M. Wagner. Exploiting
Spatial and Temporal Locality of Accesses: A New Hardware-Based Monitoring
Approach for DSM Systems. In David Pritchard and Jeff Reeve, editors, Euro-
Par’98 Parallel Processing, 4th International Euro-Par Conference, Southampton,
UK, September 1-4, 1998 Proceedings, volume 1470 of Lecture Notes in Computer
Science, pages 206–215, Berlin, September 1998. Springer Verlag.

[80] G. Horn. Scalability of SCI Ringlets, chapter 7, pages 151–166. Volume 1734 of
Hellwagner and Reinefeld [75], October 1999. ISBN 3-540-66696-6.

[81] G. Horn and W. Karl, editors. Proceedings of SCI-Europe 2000, The 3rd in-
ternational conference on SCI–based technology and research. SINTEF Elec-
tronics and Cybernetics, August 2000. ISBN: 82-595-9964-3, Also available at
http://wwwbode.in.tum.de/events/.

[82] R. Horst. TNet: A Reliable System Area Network. IEEE Micro, 15(1):37–45,
February 1995.

[83] W. Hu, W. Shi, and Z. Tang. JiaJia: An SVM System based on a New Cache
Coherence Protocol. In In the Proceedings of High Performance Computing and
Networking (HPCN-Europe), volume 1593 of LNCS, pages 463–472, April 1999.

Bibliography 183

[84] L. Huse, K. Omang, and H. Bugge. ScaFun – A Fundament for Process Commu-
nication. In G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The
2nd international conference on SCI–based technology and research, pages 13–
20. SINTEF Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9,
Also available at http://wwwbode.in.tum.de/events/.

[85] L. Huse, K. Omang, H. Bugge, H. Ry, A. Haugsdal, and E. Rustad. ScaMPI — De-
sign and Implementation, chapter 14, pages 249–261. Volume 1734 of Hellwagner
and Reinefeld [75], October 1999. ISBN 3-540-66696-6.

[86] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability. McGraw-Hill, Inc., 1993.

[87] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. Implementing Active Mes-
sages and Split-C for SCI Clusters and Some Architectural Implications. In Sixth
International Workshop on SCI-based Low-cost/High-performance Computing,
September 1996.

[88] M. Ibel, K. Schauser, C. Scheiman, and M. Weis. High-Performance Cluster Com-
puting Using SCI. In Hot Interconnects V, August 1997.

[89] IBM. The IBM NUMA–Q enterprise server architecture, Solving issues of la-
tency and scalability in multiprocessor systems. Technical report, March 2001.
http://www.sequent.com/whitepapers/numa_arch.html.

[90] IEEE Computer Society. IEEE Std 896–1987: IEEE Standard backplane bus spec-
ification for multiprocessor architectures: Futurebus. The Institute of Electrical
and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA,
July 1988.

[91] IEEE Computer Society. IEEE Std 1496–1993: IEEE Standard for a Chip and
Module Interconnect Bus: SBus. The Institute of Electrical and Electronics Engi-
neers, Inc., 345 East 47th Street, New York, NY 10017, USA, September 1993.

[92] IEEE Computer Society. IEEE Std 1596–1992: IEEE Standard for Scalable Co-
herent Interface. The Institute of Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY 10017, USA, August 1993.

[93] IEEE Computer Society. IEEE Std 896–1994: Information technology — micro-
processor systems — Futurebus+ — Logical protocol specification. The Institute
of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY
10017, USA, April 1994.

[94] IEEE Computer Society. IEEE Std 1394–1995: IEEE Standard for a high perfor-
mance serial bus. The Institute of Electrical and Electronics Engineers, Inc., 345
East 47th Street, New York, NY 10017, USA, August 1996.

184 Bibliography

[95] IEEE Computer Society. IEEE Unapproved Draft 1386 D2.2: Draft Standard
for a Common Mezzanine Card Family: CMC. The Institute of Electrical and
Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017, USA,
April 2000.

[96] L. Iftode and J. Singh. Shared Virtual Memory: Progress and Challenges. Pro-
ceedings of IEEE, 87(3), March 1999.

[97] L. Iftode, J. Singh, and L. Li. Scope Consistency: A Bridge between Release
Consistency and Entry Consistency. Theory of Computer Systems, 31:451–473,
1998.

[98] Cray Inc. SHMEM, in CRAY T3E C and C++ Optimization Guide, chapter 3.
SG–2178 3.0.1, Available at http://www.cray.com/.

[99] Intel Corporation. Intel Architecture Software Developer’s Manual for the Pentiu-
mII, volume 1–3. published on Intel’s developer website, 1998.

[100] A. Itzkovitz, A. Schuster, and L. Shalev. Millipede: a User-Level NT-Based Dis-
tributed Shared Memory System with Thread Migration and Dynamic Run-Time
Optimization of Memory References. In Proceedings of the 1st USENIX Windows
NT Workshop, page 148, August 1997.

[101] B. Johnsen. Write back caching of SCI memory. personal communication with
Dolphin ICS, March 1998.

[102] K. Johnson, M. Kaashoek, and D. Wallach. CRL: High performance all-software
distributed shared memory. In In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP), 1995.

[103] T. Johnson. A Performance Comparison of Fast Distributed Synchronization Al-
gorithms. Technical Report TR98002, Department of CIS, University of Florida,
Gainsville, FL 32611-2024, 1998.

[104] B. Joy, G. Steele, J. Gosling, and G. Bracha. Threads and Locks, in The Java
Language Specification, Second Edition (The Java Series), chapter 17. Addison-
Wesley, 2nd edition, June 2000. ISBN: 0201310082, Online version available at
http://java.sun.com/.

[105] R. LaRowe Jr. and C. Ellis. Experimental Comparison of Memory Management
Policies for NUMA Multiprocessors. ACM Transactions on Computer Systems,
9(4):319–363, November 1991.

[106] W. Karl and G. Horn, editors. Conference Proceedings of SCI–Europe 1999. SIN-
TEF Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also
available at http://wwwbode.in.tum.de/events/.

Bibliography 185

[107] W. Karl, M. Leberecht, and M. Oberhuber. SCI Monitoring Hardware and Soft-
ware: Supporting Performance Evaluation and Debugging, chapter 24, pages 417–
432. Volume 1734 of Hellwagner and Reinefeld [75], October 1999. ISBN 3-540-
66696-6.

[108] W. Karl, M. Leberecht, and M. Schulz. Optimizing Data Locality for SCI–based
PC–Clusters with the SMiLE Monitoring Approach. In Proceedings of Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 169–176, October 1999.

[109] W. Karl, M. Leberecht, and M. Schulz. Supporting Shared Memory and Message
Passing on Clusters of PCs with a SMiLE. In A. Sivasubramaniam and M. Lau-
ria, editors, Proceedings of Workshop on Communication and Architectural Sup-
port for Network based Parallel Computing (CANPC) (held in conjunction with
HPCA), volume 1602 of Lecture Notes in Computer Science (LNCS), pages 196–
210, Berlin, 1999. Springer Verlag.

[110] W. Karl, M. Schulz, and J. Tao. Using the SMiLE Monitoring Infrastructure to
Detect and Lower the Inefficiency of Parallel Applications. In In the Proceedings
of High Performance Computing and Networking (HPCN-Europe), volume 1823
of Lecture Notes in Computer Science, pages 270–279. Springer Verlag, Berlin,
May 2000.

[111] W. Karl, M. Schulz, and J. Trinitis. Multilayer Online-Monitoring for Hybrid DSM
systems on top of PC clusters with a SMiLE. In Proceedings of 11th Int. Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation,
volume 1786 of LNCS, pages 294–308. Spring Verlag, Berlin, March 2000.

[112] W. Karl, M. Schulz, M. Völk, and S. Ziegler. NEPHEW: Applying a Toolset for
the Efficient Deployment of a Medical Image Application on SCI–based clusters.
In A. Bode, T. Ludwig, W.Karl, and R. Wismüller, editors, Euro-Par 2000 —
Parallel Processing, volume 1900 of Lecture Notes of Computer Science (LNCS),
pages 851–860. Springer Verlag, Berlin, September 2000.

[113] W. Karl, M. Schulz, and M. Völk S. Ziegler. Meeting the Computational Demands
of Nuclear Medical Imaging using Commodity Clusters. In Proceedings of the
Internationa Conference on Computational Science (ICCS), May 2001. to appear.

[114] S. Karlsson and M. Brorsson. An Infrastructure for Portable and Efficient Software
DSM. In L. Iftode and P. Keleher, editors, Proceedings of the First International
Workshop on Software Distributed Shared Memory (WSDSM), June 1999. Avail-
able from http://www.cs.umd.edu/˜keleher/wsdsm99/.

[115] S. Kaxiras. Kiloprocessor Extensions to SCI. In In the proceedings of the Interna-
tional Parallal Processing Symposium (IPPS), April 1996.

186 Bibliography

[116] P. Keleher. Lazy Release Consistency for Distributed Shared Memory. PhD thesis,
Rice University, January, 1995.

[117] P. Keleher. CVM: The Coherent Virtual Machine. University of Maryland, cvm
version 1.0 edition, November 1996. http://www.cd.umd.edu/projects/cvm/.

[118] P. Keleher. Symmetry and Performance in Consistency Protocols. In In Proceed-
ings of the International Conference in Supercomputing (ICS), pages 43–50, June
1999.

[119] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. An Evaluation of
Software–Based Release Consistent Protocols. Journal of Parallel and Distributed
Processing, 29, October 1995.

[120] R. Kessler and J. Schwarzmeier. CRAY-T3D: A New Dimension for Cray Re-
search. In Digest of Papers: CompCon Spring ’93, pages 176–182, San Francisco,
CA, February 1993. IEEE, IEEE Computer Society Press, Los Alamitos, CA.

[121] Y. Khalidi, J. Bernabeu, V. Matena, K. Shirriff, and M. Thadani. Solaris MC:
A Multi–Computer OS. Technical Report SMLI TR-95-48, Sun Microsystems
Laboratories, 2550, Garcia Avenue, Mountain View, CA 94043, November 1995.

[122] P. Koch, E. Cecchet, and X. de Pina. Global Management of Coherent Shared
Memory on an SCI Cluster. In H. Hellwagner and A. Reinefeld, editors, Pro-
ceedings of SCI-Europe ’98, a conference stream of EMMSEC ’98, pages 51–57.
Cheshire Henbury, September 1998. ISBN: 1-901864-02-02.

[123] P. Koch, J. Hansen, E. Cecchet, and X. Ronsset de Pina. SciOS: An SCI-based
Software Distributed Shared Memory. In Proceedings of the First International
Workshop on Software Distributed Shared Memory (WSDSM), June 1999. Avail-
able at http://www.cs.umd.edu/˜keleher/wsdsm99/.

[124] R. Koeninger, M. Furtney, and M. Walker. A Shared Memory
MPP from Cray Research. Digital Technical Journal, 6(2), 1994.
http://www.digital.com/info/DTJE01/DTJE01SC.TXT.

[125] L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas, M. Cierniak,
S. Parthasarathy, W. Maira, S. Dwarkadas, and M. Scott. VM–Based Shared
Memory on Low–Latency, Remote–Memory–Access Networks. Technical Re-
port Technical Report No. 643, Department of Computer Science, University of
Rochester and DEC Cambridge Research Lab, November 1996.

[126] L. Kontothanassis and M. Scott. High Performance Software Coherence for Cur-
rent and Future Architectures. Journal for Parallel and Distributed Computing,
1995.

Bibliography 187

[127] C. Kurmann and T. Stricker. A Comparison of Three Gigabit Technologies: SCI,
Myrinet and SGI/Cray T3D, chapter 2, pages 39–68. Volume 1734 of Hellwagner
and Reinefeld [75], October 1999. ISBN 3-540-66696-6.

[128] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and
J. Hennessy. The Stanford FLASH Multiprocessor. In In the Proceedings of the
21st International Symposium on Computer Architecture (ISCA), pages 302–313,
April 1994.

[129] L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, 28(9):241–248, 1979.

[130] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, February 1987.

[131] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server.
In In Proceedings of the 24th International Symposium on Computer Architecture
(ISCA), pages 241–251, June 1997.

[132] R. Leahy and C. Byrne. Recent developments in iterative image reconstruction for
PET and SPECT. IEEE Transactions on Nuclear Sciences, 19:257–260, 2000.

[133] M. Leberecht. An Efficient Runtime System Combining Dataflow, Multithreading,
and Distributed Shared Memory. PhD thesis, Technische Universität München,
April 1999. Published as Volume 14 of the Research Series, LRR–TUM (Arndt
Bode, Editor), Shaker–Verlag, Aachen.

[134] M. Leberecht. The MuSE Runtime System for SCI Clusters: A Flexible Combina-
tion of On–Stack Execution and Work Stealing, chapter 20, pages 349–364. Vol-
ume 1734 of Hellwagner and Reinefeld [75], October 1999. ISBN 3-540-66696-6.

[135] K. Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University, September 1986. Available as TR492.

[136] K. Li. IVY: A shared virtual memory system for parallel computing. In In Pro-
ceedings of the International Conferenc on Parallel Processing (ICPP), volume 2,
pages 94–101, 1989.

[137] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory. Transactions
on Computer Systems, 7(4):321–359, November 1989.

[138] M. Liaaen and H. Kohmann. Dolphin SCI Adapter Cards, chapter 3, pages 71–
87. Volume 1734 of Hellwagner and Reinefeld [75], October 1999. ISBN 3-540-
66696-6.

188 Bibliography

[139] C. Lin and L. Snyder. ZPL: An Array Sublanguage. In In Proceedings of the 6th
Sixth International Workshop on Languages and Compilers for Parallel Comput-
ing, pages 96–114, 1993.

[140] V. Lindenstruth, A. Bogaerts, H. Bugge, M. Davis, D. Gustavson, J. Heidbrink,
H. Hellwagner, B. Herland, D. James, S. Klein, Q. Li, M. Mahalingam, J. Merkey,
W. Mueller, T. Nygaard, H. Richter, D. Roehrich, T. Sheikh, P. Werner, J. Whit-
field, and R. Wipfel. SCI Physical Layer API. In H. Hellwagner and A. Reinefeld,
editors, Proceedings of SCI-Europe ’98, a conference stream of EMMSEC ’98,
pages 137–141. Cheshire Henbury, September 1998. ISBN: 1-901864-02-02.

[141] V. Lindenstruth and D. Gustavson. SCI Physical Layer API, chapter 10, pages
191–208. Volume 1734 of Hellwagner and Reinefeld [75], October 1999. ISBN
3-540-66696-6.

[142] P. Gustad K. Loechsen and O. Toerudbakken. High performance switching and
congestion avoidance in SCI. In G. Horn and W. Karl, editors, Proceedings of SCI-
Europe 2000, The 3rd international conference on SCI–based technology and re-
search, pages 119–126. SINTEF Electronics and Cybernetics, August 2000. ISBN:
82-595-9964-3, Also available at http://wwwbode.in.tum.de/events/.

[143] H. Lu, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Message Passing Versus Dis-
tributed Shared Memory on Networks of Workstations. In Proceedings of Super-
computing ’95, December 1995.

[144] T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitor-
ing Interface Specification (Version 2.0), volume 9 of LRR-TUM Research Report
Series. Shaker Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7.

[145] M. Schulz. Efficient deployment of shared memory models on clusters of PCs
using the SMiLEing HAMSTER approach. In A. Goscinski, H. Ip, W. Jia, and
W. Zhou, editors, Proceedings of the 4th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP), pages 2–14. World Scientific
Publishing, December 2000.

[146] M. Schulz and H. Hellwagner. Extending NT Virtual Memory by SCI–based Hard-
ware DSM. In Proceedings of the USENIX Windows NT Symposium, page 169,
August 1998.

[147] M. Manzke and B. Coghlan. Non-Intrusive Deep Tracing of SCI Interconnect
Traffic. In G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The
2nd international conference on SCI–based technology and research, pages 53–
58. SINTEF Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9,
Also available at http://wwwbode.in.tum.de/events/.

Bibliography 189

[148] R. Marejka. Multi-threaded Programming. Technical report, Solaris 2 Migration
Support Centre, Sun Microsystems Inc., March 1996. Revision B.2, Available
from http://www.sun.com/.

[149] M. May. Vergleich von PVM und CORBA bei der verteilten Berechnung medi-
zinischer Bilddaten. Diplomarbeit, Technische Universität München, 2000.

[150] J. Mellor-Crummey and M. Scott. Algorithms for Scalable Synchronization
on Shared–Memory Multiprocessors. ACM Transactions on Computer Systems,
February 1991.

[151] D. Mentre and T. Priol. NOA: A Shared Virtual Memory over a SCI cluster. In
H. Hellwagner and A. Reinefeld, editors, Proceedings of SCI-Europe ’98, a confer-
ence stream of EMMSEC ’98, pages 43–50. Cheshire Henbury, September 1998.
ISBN: 1-901864-02-02.

[152] Message Passing Interface Forum (MPIF). MPI: A Message-Passing Interface
Standard. Technical Report, University of Tennessee, Knoxville, June 1995.
http://www.mpi-forum.org/.

[153] M. Michael and M. Scott. Scalability of Atomic Primitives on Distributed Shared
Memory Multiprocessors. In In Proceedings of the International Conference on
High Performance Computer Architecture (HPCA), 1995.

[154] Microsoft Cooperation. Microsoft Platform Software Development Kit, chapter
About Processes and Threads. Microsoft, 1997. available with Microsoft’s SDK.

[155] Microsoft Cooperation. Microsoft Platform Software Development Kit, chapter
Synchronization. Microsoft, 1997. available with Microsoft’s SDK.

[156] Microsoft Cooperation. Microsoft Platform Software Development Kit. Microsoft,
1997. available with Microsoft’s SDK.

[157] Sun Microsystems. The Sun Enterprise Cluster Architecture, Technical White Pa-
per. Technical report, 1997. Available at http://www.sun.com/software/cluster/wp-
arch/wp.pdf.

[158] SUN Microsystems. JavaSpaces (TM) Service Specification, Version 1.1, October
2000. Available from http://java.sun.com/.

[159] Inc. MIL 3. OPNET Modeler manuals. 3400 International Drive NW, Washington
DC, 20008, USA, 1989–1997.

[160] L. Monnerat and R. Bianchini. Efficiently Adapting to Sharing Patterns in Soft-
ware DSMs. In In Proceedings of the 4thInternational Symposium on High Per-
formance Computer Architecture (HPCA), February 1998.

190 Bibliography

[161] D. Moosberger. Memory Consistency Models. Technical Report TR 93/11, De-
partment of Computer Science, University of Arizona, Tuscon, AZ 85721, 1993.

[162] C. Morin and I. Puaut. A Survey of Recoverable Distributed Shared Memory
Systems. Technical Report Publication Interne 975, IRISA, Campus Universitaire
de Beaulieu, 35042 Rennes Cédex, France, December 1995.

[163] F. Müller. A Library Implementation of POSIX Threads under UNIX. In Proceed-
ings of USENIX, pages 29–42, January 1993.

[164] F. Müller. Distributed Shared Memory Threads: DSM–Threads, Description of
Work in Progress. In Proceedings of the Workshop on Run–Time Systems for Par-
allel Programming (held in conjunction with IPPS), pages 31–40, April 1997.

[165] F. Müller. Decentralized Synchronization for Multi–threaded DSMs. In L. Iftode
and P. Keleher, editors, Proceedings of the Second International Workshop
on Software Distributed Shared Memory (WSDSM), May 2000. Available at
http://www.cs.rutgers.edu/˜wsdsm00/.

[166] F. Munz. Parallele Rekonstruktion von Volumendaten. Diplomarbeit, Technische
Universität München, 1995.

[167] J. Nieplocha and R. Harrison. Shared Memory NUMA Programming on I–Way.
In In Proceedings of the 5th International Symposium on High Performance Dis-
tributed Computing (HPDC), 1995.

[168] J. Nieplocha, R. Harrison, and R. Littlefield. Global Arrays: A Non–Uniform–
Memory–Access Programming Model For High–Performance Computers. The
Journal of Supercomputing, 10:169–189XS, 1996.

[169] B. Nitzberg and V. LO. Distributed Shared Memory: A Survey of Issues and
Algorithms. IEEE Computer, pages 52–59, August 1991.

[170] K. Omang. Performance Results from SALMON, A Multiprocessor Environment
based on Workstations connected by SCI. Technical Report Research Report 208,
University of Oslo, Department of Informatics, November 1995. ISBN: 82–7368–
120–3.

[171] K. Omang. Synchronization Support in I/O Adapter Based SCI Clusters. In Pro-
ceedings of Workshop on Communication and Architectural Support for Network
based Parallel Computing (CANPC), volume 1199 of Lecture Notes in Computer
Science (LNCS). Springer, Berlin, February 1997.

[172] OpenMP Architecture Review Board. OpenMP C and C++ Application, Program
Interface, Version 1.0, Document Number 004–2229–01 edition, October 1998.
Available from http://www.openmp.org/.

Bibliography 191

[173] J. Ousterhout, A. Cherenson, F. Douglis, M . Nelson, and B. Welch. The Sprite
Network Operating System. IEEE Computer, 21(2):23–36, February 1988.

[174] S. Paas, M. Dormanns, T. Bemmerl, K. Scholtyssik, and S. Lankes. Computing
on a Cluster of PCs: Project Overview and Early Experiences. In W. Rehm, ed-
itor, Tagungsband zum 1. Workshop Cluster Computing, number CSR-97-05 in
Chemnitzer Informatik–Berichte, pages 217–229, November 1997.

[175] D. Patterson and J. Hennessy. Computer Architecture — A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., 2 edition, 1996.

[176] K. Petersen and K. Li. Multiprocessor Cache Coherence Based on Virtual Memory
Support. Journal of Parallel and Distributed Computing, Special Issue Scalable
Shared Memory Multiprocessors, 29, October 1995.

[177] S. Petri, G. Lustig, C. Grewe, R. Hagenau, W. Obelöer, and M. Boosten. Per-
formance Comparison of Different High–Speed Networks with a Uniform Effi-
cient Programming Interface. In G. Horn and W. Karl, editors, Proceedings of
SCI-Europe ’99, The 2nd international conference on SCI–based technology and
research, pages 83–90. SINTEF Electronics and Cybernetics, September 1999.
ISBN: 82-14-00014-9, Also available at http://wwwbode.in.tum.de/events/.

[178] T. Priol, C. René, and G. Alléon. Programming SCI Clusters Using Parallel
CORBA, chapter 19, pages 333–348. Volume 1734 of Hellwagner and Reinefeld
[75], October 1999. ISBN 3-540-66696-6.

[179] M. Rangarajan, S. Divakaran, T. Nguyen, and L. Iftode. Multi–threaded Home–
based LRC Distributed Shared Memory. In In the Proceedings of the 8th Workshop
on Scalable Shared Memory Multiprocessors (held in conjunction with ISCA), May
1999.

[180] E. Rehling. Multithreading for SCI Clusters: Yasmin and the Sthreads Library. In
G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd interna-
tional conference on SCI–based technology and research, pages 27–33. SINTEF
Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also avail-
able at http://wwwbode.in.tum.de/events/.

[181] A. Reinefeld and H. Hellwagner, editors. Proceedings of SCI-Europe ’98, a con-
ference stream of EMMSEC ’98. Cheshire Henbury, September 1998. ISBN: 1-
901864-02-02.

[182] G. Ronneberg and O. Lynse. An OPNET–based Simulation Model of SCI–Nodes.
In G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd inter-
national conference on SCI–based technology and research, pages 131–137. SIN-
TEF Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also
available at http://wwwbode.in.tum.de/events/.

192 Bibliography

[183] G. Ronneberg, O. Lynse, and G. Horn. Evaluation and Suggested Improvements
for the SCI Flow Control. In G. Horn and W. Karl, editors, Proceedings of SCI-
Europe ’99, The 2nd international conference on SCI–based technology and re-
search, pages 101–112. SINTEF Electronics and Cybernetics, September 1999.
ISBN: 82-14-00014-9, Also available at http://wwwbode.in.tum.de/events/.

[184] A. Rubini. Linux Device Drivers. O’Reilly & Associates, Inc., 1 edition, February
1998. ISBN: 1-56592-292-1.

[185] S. Ryan. The design and implementation of a portable driver for shared mem-
ory cluster adapters. Technical Report Research report 255, University of Oslo,
Department of Informatics, December 1997. ISBN 82–7368–177-7.

[186] S. J. Ryan and H. Bryhni. Eliminating the Protocol Stack for Socket Based Com-
munication in Shared Memory Interconnects. In Proc. Int’l. Workshop on Per-
sonal Computer based Networks of Workstations (held in conjunction IPPS’98),
Orlando, Florida, USA, April 1998.

[187] H. Sandhu. Integrating Applications with Cache and Memory Management on a
Shared Memory Multiprocessor. In Proceedings of CASCON, 1992.

[188] H. Sandhu, B. Gamsa, and S. Zhou. The Shared Regions Approach to Software
Cache Coherence on Multiprocessors. In Proceedings of the 1993 ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), May
1993.

[189] D. Scales, K. Gharachorloo, and C. Thekkath. Shasta: A Low Overhead,
Software–Only Approach for Supporting Fine–Grain Shared Memory. Techni-
cal Report WRL Research Report 96/2, Digital Western Research Laboratory, 250
University Avenue, Palo Alto, California 94301, USA, November 1996.

[190] Scali Computer AS. Scali Software Platform — SSP. Olaf Helsets vei
6, Postboks 70, Bogerud, N-0621 Oslo, Norway, June 2000. Available at
http://www.scali.com/.

[191] D. Schmidt. An OO Encapsulation of Lightweight OS Concurrency Mechanisms
in the ACE Toolkit. Technical Report WUCS-95-31, Department of Computer
Science, Washington University, St. Louis, MO, 1995.

[192] M. Schulz. Report on Pthreads design and test suite on SCI/PC/NT cluster. Tech-
nical report, Technische Universität München, May 1998. Deliverable D 4.1.1,
ESPRIT Project 23174 — SISCI.

[193] M. Schulz. SCI-VM: A flexible base for transparent shared memory programming
models on clusters of PCs Martin Schulz. In J. Rolim, F. Müller, and et. al., editors,
Parallel and Distributed Computing / Proceedings of HIPS ’99, volume 1586 of
Lecture Notes in Computer Science, pages 19–33, Berlin, 1999. Springer Verlag.

Bibliography 193

[194] M. Schulz. SISCI Pthreads implementation report. Technical report, Technis-
che Universität München, November 1999. Deliverable D 4.1.4, ESPRIT Project
23174 — SISCI.

[195] M. Schulz. True shared memory programming on SCI-based clusters, chapter 17,
pages 291–311. Volume 1734 of Hellwagner and Reinefeld [75], October 1999.
ISBN 3-540-66696-6.

[196] M. Schulz. Efficient Coherency and Synchronization Management in SCI based
DSM systems. In G. Horn and W. Karl, editors, Proceedings of SCI-Europe 2000,
The 3rd international conference on SCI–based technology and research, pages
31–36. SINTEF Electronics and Cybernetics, August 2000. ISBN: 82-595-9964-
3, Also available at http://wwwbode.in.tum.de/events/.

[197] M. Schulz. Multithreaded Programming of PC clusters. In Proceedings of Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT)
2000, Philadelphia, PA, USA, pages 271–278. IEEE, October 2000.

[198] M. Schulz and W. Karl. Hybrid-DSM: An Efficient Alternative to Pure Software
DSM Systems on NUMA Architectures. In L. Iftode and P. Keleher, editors, Pro-
ceedings of the Second International Workshop on Software Distributed Shared
Memory (WSDSM), May 2000. Available at http://www.cs.rutgers.edu/˜wsdsm00/.

[199] M. Schulz, M. Völk, W. Karl, F. Munz, and S. Ziegler. Running a spectral anal-
ysis code on top of SCI shared memory using the TreadMarks API. In G. Horn
and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd international con-
ference on SCI–based technology and research, pages 35–43. SINTEF Electron-
ics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also available at
http://wwwbode.in.tum.de/events/.

[200] M. Schulz, M. Völk, W. Karl, and S. Ziegler. Effiziente iterative PET-Bild Rekon-
struktion auf einem Cluster von PCs. Journal of Radiationoncology. Biology.
Physics – Abstraktband des gemeinsamen Jahreskongresses der DEGRO, ÖGRO,
DGMP, 176(1), October 2000.

[201] M. Scott. Is s–dsm dead? Keynote talk given at 2nd workshop for Software
Distributed Shared Memory (WSDSM), Santa Fe, NM, USA, May 2000. Slides
available at http://www.cs.rochester.edu/u/scott/interweave/WSDSM.pdf.

[202] S. Scott. A Cache Coherence Mechanism for Scalable Shared–Memory Multipro-
cessors, chapter 18. In Suzuki [214], 1992.

[203] S. Scott, J. Goodman, and K. Vernon. Performance of the SCI Ring. In In the pro-
ceedings of the 19th International Symposium of Computer Architecture (ISCA),
May 1992.

194 Bibliography

[204] D. Siguenza, F. Mora, and A. Sebastiá. SCI Network Simulations with VHDL.
In G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd inter-
national conference on SCI–based technology and research, pages 125–129. SIN-
TEF Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also
available at http://wwwbode.in.tum.de/events/.

[205] P. Sindhu, J. Frailong, and M. Ceklov. Formal Specification of Memory Modules.
In [48].

[206] J. Singh, W. Weber, and A. Gupta. Splash: Stanford parallel applications for
shared–memory. Computer Architecture News, 22(1):5–44, 1992.

[207] SISCI Consortium. Standard Software Infrastructures for SCI-based Parallel Sys-
tems (SISCI). http://www.parallab.uib.no/projects/sisci/, August 1997. Support by
the EU under EP 23174.

[208] B. Skaali, B. Nossum, I. Birkeli, and D. Wormald. SCIview — SCI test, Verifica-
tion, and Monitoring Instrumentation. In G. Horn and W. Karl, editors, Proceed-
ings of SCI-Europe ’99, The 2nd international conference on SCI–based technol-
ogy and research, pages 47–52. SINTEF Electronics and Cybernetics, September
1999. ISBN: 82-14-00014-9, Also available at http://wwwbode.in.tum.de/events/.

[209] E. Speight and J. Bennett. Brazos: A Third Generation DSM System. In Proceed-
ings of the 1st USENIX Windows NT Workshop, pages 95–106, August 1997.

[210] A. Stamatakis. Evaluation of Interoperable Tool Deployment for the Late Develop-
ment Phases of Distributed Object–Oriented Programs. Diplomarbeit, Technische
Universität München, February 2001.

[211] T. Stephan. Erweiterung eines parallelen Rekonstruktionsprogramms von PET–
Volumendaten um Komponenten zur Stapelverarbeitung und Lastverwaltung.
Diplomarbeit, Technische Universität München, May 1997.

[212] R. Stets, D. Chen, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
G. Magklis, S. Parthasarathy, U. Rencuzogullari, and M. Scott. The Implementa-
tion of Cahsmere. Technical report, Department of Computer Science, University
of Rochester, Rochester, NY 14627–0226.

[213] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M. Scott. CASHMERE-2L: Software Coherent Shared Mem-
ory on a Clustered Remote-Write Network. In In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP), October 1997.

[214] N. Suzuki, editor. Shared Memory Multiprocessing. MIT Press, 1992.

Bibliography 195

[215] M. Swanson, L. Stoller, and J. Carter. Making Distributed Shared Memory Simple,
Yet Efficient. In Proceedings of the Workshop on High–Level Programming Mod-
els and Supportive Environments (HIPS) (held in conjunction with IPPS). IEEE,
April 1998.

[216] A. Tanenbaum. Moderne Betriebssysteme. Carl Hanser Verlag & Prentice Hall,
1994.

[217] J. Tao, W. Karl, and M. Schulz. Understanding the Behavior of Shared Mem-
ory Applications Using the SMiLE Monitoring Framework. In G. Horn and
W. Karl, editors, Proceedings of SCI-Europe 2000, The 3rd international con-
ference on SCI–based technology and research, pages 57–62. SINTEF Electron-
ics and Cybernetics, August 2000. ISBN: 82-595-9964-3, Also available at
http://wwwbode.in.tum.de/events/.

[218] H. Taskin, R. Buthenuth, and H. Heiss. SCI for TCP/IP with Linux. In H. Hellwag-
ner and A. Reinefeld, editors, Proceedings of SCI-Europe ’98, a conference stream
of EMMSEC ’98, pages 155–157. Cheshire Henbury, September 1998. ISBN: 1-
901864-02-02.

[219] Technical Committee on Operating Systems and Application Environments of the
IEEE. Portable Operating Systems Interface (POSIX) — Part 1: System Applica-
tion Interface (API), chapter including 1003.1c: Amendment 2: Threads Extension
[C Language]. IEEE, 1995 edition, 1996. ANSI/IEEE Std. 1003.1.

[220] U. Tiede, K. Hoehne, M. Bomans, A. Pommert, M. Riemer, and G. Wiebecke.
Investigation of medical 3d–rendering algorithm. IEEE Computer Graphics &
Applications, pages 41–53, March 1990.

[221] M. Trams and W. Rehm. A new generic and reconfigurable PCI–SCI bridge. In
G. Horn and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd interna-
tional conference on SCI–based technology and research, pages 113–120. SINTEF
Electronics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also avail-
able at http://wwwbode.in.tum.de/events/.

[222] C. Trinitis, M. Eberl, and W. Karl. Numerical Calculation of Electromagnetic
Problems on an SCI Based PC-Cluster. In 2000 International Conference on
Parallel Computing in Electrical Engineering (PAREL EC 2000), pages 166–170,
Washington DC, USA, 2000. IEEE Computer Society.

[223] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating System Support
for Improving Data Locality on CC–NUMA Compute Servers. In In Proceed-
ings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1996.

196 Bibliography

[224] M. Völk. Parallelisierung eines Spektralanalysealgorithmus mittels TreadMarks.
Diplomarbeit, Technische Universität München, February 1999.

[225] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages: a
Mechanism for Integrated Communication and Computation. In Proc. of the 19th
Int’l Symposium on Computer Architecture (ISCA), May 1992.

[226] C. Wagner and F. Müller. Token–Based Read/Write–Locks for Distributed Mutual
Exclusion. In A. Bode, T. Ludwig, W. Karl, and R. Wismüller, editors, Euro–Par
2000, Parallel Processing, volume 1900 of Lecture Notes in Computer Science
(LNCS), pages 1185–1195. Springer Verlag, Berlin, September 2000.

[227] A. Walsch, V. Lindenstruth, and M. Schulz. A 1 MHz Transaction Processor Farm
For High Energy Physics. In G. Horn and W. Karl, editors, Proceedings of SCI-
Europe 2000, The 3rd international conference on SCI–based technology and re-
search, pages 89–99. SINTEF Electronics and Cybernetics, August 2000. ISBN:
82-595-9964-3, Also available at http://wwwbode.in.tum.de/events/.

[228] A. Watt and M. Watt. Advanced Animation and Rendering Techniques. Addison
Wesley, 1992.

[229] J. Weidendorfer. Entwurf und Implementierung einer Socket-Bibliothek für ein
SCI-Netzwerk. Diplomarbeit, Technische Universität München, 1997. Available
at http://wwwbode.in.tum.de/˜weidendo/.

[230] G. Wilson. Linda–Like Systems and Their Implementation. Technical Report
91–13, Edinburgh Parallel Computing Centre, June 1991.

[231] G. Wilson and P. Lu, editors. Parallel Programming using C++. Scientific and
Engineering Computation Series. Massachusetts Institute of Technology, 1996.

[232] P. Woest and J. Goodman. An Analysis of Shared–Memory Synchronization Mech-
anisms, chapter 17. In Suzuki [214], 1992.

[233] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The SPLASH–2 Programs:
Characterization and Methodological Considerations. In Proceedings of the 22nd
International Symposium on Computer Architecture (ISCA), pages 24–36, June
1995.

[234] J. Worringen and T. Bemmerl. MPICH for SCI–Connected Clusters. In G. Horn
and W. Karl, editors, Proceedings of SCI-Europe ’99, The 2nd international con-
ference on SCI–based technology and research, pages 3–11. SINTEF Electron-
ics and Cybernetics, September 1999. ISBN: 82-14-00014-9, Also available at
http://wwwbode.in.tum.de/events/.

[235] WWW:. CRAY T3E Series
. http://www.cray.com/products/systems/crayt3e/, November 1998.

Bibliography 197

[236] WWW:. HPCC - HPF (High Performance Fortran)
. http://hpcc.soton.ac.uk/RandD/hpf/hpf.html, December 1999.

[237] WWW:. Welcome to Giganet
. http://www.giganet.com/, May 1999.

[238] WWW:. ALINKA High Performance Linux Clustering
. http://www.alinka.com/araisin.php3, December 2000.

[239] WWW:. Dolphin Interconnect — Home Page
. http://www.dolphinics.no/, December 2000.

[240] WWW:. Dolphin Interconnect — Research Project Partners
. http://208.179.47.35/resproject.html, December 2000.

[241] WWW:. Interconnect Systems Solutions, Home
. http://www.iss-us.com/, July 2000.

[242] WWW:. NEPHEW Homepage
. http://www.arttic.com/projects/NEPHEW/, January 2000.

[243] WWW:. Peakware — Matra Systems & Information
. http://www.matra-msi.com/ang/savoir_infor_peakware_d.htm, January 2000.

[244] WWW:. RM 600
. http://www.fujitsu-siemens.com/servers/rm/rm_us/rm600e.htm, July 2000.

[245] WWW:. SMiLE: SCI-WG
. http://wwwbode.in.tum.de/Par/arch/smile/sciwg/, January 2000.

[246] WWW:. DIAMANT: (EC IST 1999 12078) — Digital Film Manipulation System
. http://diamant.joanneum.ac.at/, February 2001.

[247] WWW:. Innovative scientific, technological, engineering soultions (Home page of
AEA Technology
. http://www.aeat.com/, February 2001.

[248] WWW:. Precision Software GmbH — Threads.h++
. http://www.precisions.de/de/tp/rogue/cpp/threads/, January 2001.

[249] WWW:. Scali Home Page: Scalable Linux Systems — Affordable Supercomput-
ing — Cluster Technology
. http://www.scali.com/, February 2001.

[250] WWW:. SCILAB Technology AS
. http://www.scilabtech.com/, January 2001.

198 Bibliography

[251] WWW:. Sun Servers (Hardware, SUN Enterprise (TM) servers)
. http://www.sun.com/servers, February 2001.

[252] WWW:. Welcome to CFX — The Fluid Approach to CFD Business Solutions
. http://www.software.aeat.com/cfx/default.asp, February 2001.

[253] WWW:. Welcome to PCI SIG
. http://www.pcisig.com/, February 2001.

[254] M. Zekauskas, W. Sawdon, and B. Bershad. Software Write Detection for a Dis-
tributed Shared Memory. In Proceedings of the First Symposium on Operating
Systems Design and Implementation (OSDI), 1994.

[255] S. Zhou, M. Stumm, K. Li, and D Wortmann. Heterogeneous distributed shared
memory. IEEE Transactions on Parallel and Distributed Systems, 3(5):540–554,
September 1992.

[256] Y. Zhou, L. Iftode, J. Singh, K. Li, B. Toonen, I. Schoinas, M. Hill, and D. Wood.
Relaxed Consistency and Coherence Granularity in DSM Systems: A Performance
Evaluation. In In Proceedings of Principles and Practice of Parallel Programming
(PPoPP), 1997.

Index

A
ABB Research, 25
ACE, 10, 121
Active Messages, 24
activity counter, 36, 85, 101, 106, 123
address space

I/O, 20
physical, 19, 20
SCI, 19, 20, 26, 61
virtual, 2, 9, 10, 20, 41, 50, 52, 54,

80, 97, 110, 130
Address Translation Tables (ATT), 20, 51,

57, 78, 156
ADSM, 46, 112
AEA Technology, 25
aggressive prefetching, 60, 65
Alinka, 102
annotations, 47, 74, 122

coherency, 71, 77, 132, 162
locality, 71, 74–76, 107, 127, 132,

144, 154, 162
parallelization, 11

API
Cluster Control, 103
Consistency management, 88
Memory management, 73
Synchronization management, 92
Task management, 101

applicability, 105, 120, 152, 154
applications

Gaussian elimination, 75
Global array sum, 65
graphics, 150

GROSMOS, 25
LU decomposition, 127
matrix multiplication, 65–67
PET reconstruction, 139, 140, 142,

143, 149
Radix sort, 120
SOR, 75, 127, 163, 172
Spectral Analysis, 139, 140, 146,

149, 150
Synthetic Aperture Radar (SAR), 25
Water N–Squared, 120

Aspire, 143, 144
atomic, 125

counter, 92, 99
fetch & inc, 85, 93, 94, 99
operations (SCI), 50, 91, 93, 99
primitives, 91

B
barrier, 36, 52, 90–92, 96, 106, 107, 111,

112, 118, 146, 160
memory barrier, 62

benchmark, 65, 76, 94, 97, 99, 132, 167
bandwidth, 63, 64
low–level, 89, 116, 117
real–world, 139
synthetic, 117

binary
application, 56, 71, 79, 103, 104, 110
distribution, 155, 159
instrumentation, 47
object module, 80

boot, 14
bottleneck, 14, 92, 118

200 Index

Brazos, 10, 46, 111
broadcast, 130, 133
buffering, 44, 60, 64, 69, 78, 85, 89, 120
bus, 13, 16, 21, 61

bottleneck, 118
bridge, 18
bus–like services, 18
contention, 127, 144
saturation, 148

C
cache

eviction, 114
inconsistencies, 61
invalidation, 84, 85, 87

cache coherency
directory, 18
protocol, 14, 15, 21

cache policy, 61, 78
uncached, 61, 63, 132, 136
write back, 61, 78
write combining, 63, 133
write through, 61, 63

caching of remote memory, 60, 61, 77, 78
callback

interrupt, 92
page fault, 55, 58, 59
swap–out, 55, 58, 59

cancer detection, 139
Cashmere, 10, 49
CC–NUMA, 14, 18, 21, 48, 49, 71, 123,

124, 169
Chant, 100
checkpointing, 48
chipset, 68
classification

consistency models, 43
parallel architectures, 13

cluster
configuration, 34, 65, 127

Cluster of PCs (CoP), 17
collective operation, 130, 131, 133
Common Messaging Layer (CML), 28

compiler, 11, 43, 47, 74, 137
complexity

programming model, 5, 6, 32, 33, 40,
135, 136, 138

Computer Tomography (CT), 139
consistency

conditions, 113, 114
Eager RC (ERC), 44, 114
enforcing mechanism, 34, 62, 77, 84,

85, 89, 112
Entry C. (EC), 46
Home–based LRC (HLRC), 45
Lazy RC (LRC), 45, 114
management, 6, 36, 39
models, 42, 46, 49, 62, 68, 84, 85, 88,

89, 111, 112, 116, 123
Processor C. (PC), 43, 62
relaxed, 42, 49, 50, 59, 62, 68, 116
Release C. (RC), 44, 111, 112
scope, 86, 115
Scope C. (ScC), 45, 111, 114
Sequential C. (SC), 43, 62
Weak C. (WC), 44, 123

Convex, 15, 21, 50
ExemplarTM , 15, 21, 50

COOL, 72
CORBA, 24, 169
Cray, 12, 130, 132

shmem API, put/get, 12, 130, 134
T3D/ETM , 16, 130, 131

CRL, 47, 169
crossbar, 23
CVM, 46, 111, 112, 169
cyclotron, 148

D
Data General, 15, 21

NUMA-LiineTM , 15, 21
data parallel, 11, 137
dataflow, 27
deadlock, 61, 68, 78, 94
DEC, 49, 169
dementia detection, 139

Index 201

detector, 140
DIAMANT, 25
Dijkstra, 91
Distributed Shared Memory (DSM), 10,

17, 31, 41, 44–46, 90, 111
APIs, 5, 134, 138
hardware–support, 48
heterogenous, 47
HW–DSM, 19, 27, 41, 50, 69, 170
Hybrid–DSM, 4, 7, 31, 41, 50, 59, 69
recoverable, 47
SW–DSM, 2, 4, 41, 42, 50, 61, 69,

72, 111, 122, 138, 148, 172
distribution, 54, 73, 144

block, 75
cyclic, 75
data, 1, 46, 75, 132
full, 75
granularity, 46
hint, 36
policy, 52, 72, 136
round–robin, 75

DMA, 22, 26, 169
Dolphin ICS, 21–23, 34, 63, 99
DSB, 44
DSM–Threads, 91, 122
DVSM, 24, 49, 91
Dynamic Link Library (DLL), 58

E
Ethernet, 16, 35, 104, 116, 155
EVENTS, 125
explicit shared memory, 11, 16, 72, 82,

130, 138
extensions, 38

IRM, 57, 156
kernel, 55, 57, 156
operating system, 15, 51, 71
programming model, 124
SISCI, 99, 156
virtual memory, 57

F
false sharing, 3, 49, 50

file header, 80
Filtered Backprojection (FBP), 142, 143
FirewireTM , 18
First–In First–Out (FIFO), 94
FLASH, 15, 72, 124, 170
forwarding mechanism, 104, 123, 126,

135
Futurebus, 18
Futurebus+, 18

G
GAC, 85–87, 170
GigaNet, 17
Global Arrays, 72
global process abstraction, 36, 39, 104,

126, 153, 157, 160
granularity, 117

access, 148
mapping, 20, 49, 51
sharing, 46, 47

H
Hammersmith Hospital, London, 148
HAMSTER, 5, 25, 27, 31

configuration, 104, 157
installation, 156
interface, 37, 109
layers, 36
modules, 36, 71
multi–team, 105
principles, 37
requirements, 155

heap, 73, 130
Hewlett Packard, 15, 21, 50

ExemplarTM , 15, 21, 50
High Performance Computing (HPC), 2,

3
High Performance Fortran, 11, 137

I
IBM, 21, 170

NUMA–QTM , 21
image volume, 142, 144, 147, 148
Impulse Response Function (IRF), 147

202 Index

initialization, 54, 56, 71, 92, 104, 157,
159

Intel, 60, 64, 68
Pentium IITM , 61, 65, 67
XeonTM , 35, 155

Interconnect Resource Manager (IRM),
57, 63, 64

Interconnect Systems Solutions (ISS), 21
interoperability, 57, 154
interrupt, 92, 99

latency, 99
IRIX, 71
IRM, 170
irregular memory access, 76, 154
Ivy, 10, 68, 170

J
JavaTM

JavaTM spaces, 12
JavaTM thread synchronization, 90
JavaTM threads, 10, 124
JDK, 170

JiaJia, 46, 111, 134, 135

K
kernel, 34, 58, 59, 121

driver, 58
extension, 57, 156
mode, 24, 56, 59

Kiloprocessor, 26

L
Lamport, 91
LGF, 86, 87, 171

LGF–scoped, 87
Linda, 12
Link Controller (LC), 21

LC 1, 22
LC 2, 22
LC 3, 21, 22, 68

linker, 47, 79, 80
linking, 80, 81, 157
Linux, 10, 34, 36, 58, 59, 80, 82, 83, 110,

121, 122, 126, 155

LLI, 86, 87, 171
locality, 72, 74, 77, 127, 136, 153

data, 16, 71, 72, 149, 154
hint, 72
spatial, 66
temporal, 66

lock, 36, 46, 90–93, 107, 112, 113, 117,
120, 125, 131, 161

contention, 95
multiple reader/single writer, 90
secure, 94
ticket lock, 93

Lockheed Martin, 21

M
macros

ANL macros, 11, 134, 135
parmacs macros, 11

Madeleine, 24, 49
Magnetic Resonance Imaging (MRI), 139
Mairmaid, 47
makefile, 156, 157
management module, 28, 36, 37, 71, 109,

135
cluster control, 102, 126, 153
consistency, 61, 83, 112
memory, 71, 132, 154
synchronization, 90, 112
task, 99

Medical Image Processing, 139
memory access

histogram, 26
pattern, 26, 27, 45, 46, 63, 67, 72, 73,

111, 118, 136
performance, 63, 132

memory allocation, 51, 52, 54, 71, 73,
162

Memory Channel, 49
Memory Management Unit (MMU), 20,

52
message passing, 1–3, 11, 12, 16, 24, 27,

32, 36, 41, 60
Message Passing Interface (MPI), 2, 16,

Index 203

23, 24, 32
metabolism, 139, 140
Microsoft, 58, 110
Midway, 46, 47
migration, 72

data, 72, 77
page, 50
thread, 72, 77, 100, 154

Millipede, 47
monitoring, 38

cluster, 23
hardware, 26, 27, 77, 154
infrastructure, 153
on–line, 27, 88, 92, 153
post–mortem, 26

MOSIX, 100
MPP, 4, 11, 131, 171
MTRR, 60, 64, 171
multiprocessor specification, 14
multithreading, 32, 46, 101, 103, 121
Munin, 10, 45, 46, 111, 112
MuSE, 27, 171
mutual exclusion, 90, 91, 93, 111, 112,

161
myocardial flow problems, 139
Myrinet, 17

N
NEPHEW, 25
Nexus, 100
NOA, 24, 49
non–CC–NUMA, 16, 77
NORMA, 13, 16–18, 41, 42, 171
notification, 90, 125, 126
NoW, 17, 42, 47, 171
nuclear medical imaging, 25, 139
Nuklearmedizinische Klinik und Polyk-

linik, 139
NUMA, 2–4, 13, 16, 20, 28, 31, 35, 37,

41, 49, 68, 84, 117, 131, 152, 171
NUMA memory management, 71
NUMAchine, 16, 72

O
object–oriented, 24, 47, 72
OMIS, 154
OpenMP, 11, 137
operating system, 14, 15, 24, 31, 42, 47,

48, 50, 71, 80, 96, 102, 104, 106,
122, 153

instances, 4, 79, 80, 153
integration, 4, 53, 55, 57, 152, 156
portability, 32

OPNET, 26
optical link, 21
optimization, 38, 120, 136

incremental, 36, 74
locality, 36, 71, 75, 77, 127
memory, 25, 60, 62, 63, 65, 133

orthogonality, 6, 36, 37, 112

P
packet loss, 68
page, 20, 52, 74, 82, 84

fault, 54, 55, 58, 59, 117
granularity, 25, 45, 46, 49, 50, 53, 57,

58, 155
mappings, 51, 52, 58, 156
page–based, 46, 49
placement, 54, 56
protection, 42
replication, 49
size, 46, 64, 73, 133
table, 52, 64
update protocol, 50

parallel
I/O, 146
programming language, 11, 47, 136,

137
programming paradigms, 1–3, 9, 12,

17, 27
Parallel Virtual Machine (PVM), 2, 16,

24, 28, 32
parallelization, 1, 28, 75, 143, 148, 152,

163
Paroli, 21

204 Index

PCI bus, 21, 51, 60, 64, 68, 78, 171
PCI–SCI bridge

D308, 22, 65
D310, 22, 127
D320, 22, 34, 155
D330, 22
daughter board, 23
SMiLE, 26

PeakWare, 27
PHYSAPI, 23, 24
Pile of PCs (PoP), 17
pinned memory, 20, 21, 50, 82
Platinum, 84
PM2, 24, 100
PMC bus, 21
polling, 93–97, 99, 124
portability

code, 3, 12, 33, 137, 138
performance, 138
programming model, 33, 101

Positron Emission Tomography (PET),
139

principle, 139
reconstruction, 142
scanner, 139, 140
sinogram, 140
spectral analysis, 146

pragma, 137
prefetching, 60, 78, 85, 120
protocol

stack, 17, 24
TCP/IP, 24, 48, 104, 116
UDP/IP, 48

Q
Quarks, 44

R
reservation

buffer, 94
slot, 95

retargetability, 3, 33, 39
RPC, 103, 172
Rthreads, 122

runtime system, 39, 77, 79, 136, 154

S
S2MP, 15, 172
SALMON, 23, 91
SBUS, 20, 21
scalability, 2, 6, 9, 12, 14, 16, 34, 129
Scalable Coherent Interface (SCI), 18

commercial systems, 21
history, 18
mappings, 19, 49, 51, 52, 57
performance, 21, 22, 63
research, 23, 27
Standard, 18, 19

Scali AS, 23–25
Scali software platform (SSP), 23
ScaMPI, 23, 24

scheduling, 94, 101
SCI switch, 18, 21, 22

D515, 22, 34
D535, 22

SCI Virtual Memory (SCI-VM), 25, 28,
36, 41, 73, 81, 84, 101, 104, 132

SCI-VM (dynamic), 54, 59
SCI-VM (static), 52, 58

SCI Working Group (SCI–WG), 23
SciLab, 21
SciOS, 24, 25, 49
Sequent, 21
Serial Express, 18
Serial Plus, 18
ServerNet, 17
SGI, 12, 130

O2000/O3000TM , 15, 48, 50, 72
Power ChallengeTM , 14
Power PathTM , 14

shared memory
deficiencies, 2, 43
definition, 9
explicit, 11, 72, 82, 130
models, 2, 5, 10, 109, 134
services, 6, 31, 33, 36, 37, 39, 109

Shasta, 10, 45, 47, 111

Index 205

Shrimp, 48, 49
Siemens, 21, 23

HPC–LineTM , 23
R600TM , 21

simulation, 26, 72, 84, 91
Single System Image (SSI), 102
SISCI, 23, 25, 126, 172
SISCI API and drivers, 24, 57, 63, 64, 99,

155–157
SMiLE, 25, 27, 28, 35, 39, 77, 154, 172

cluster, 34, 105, 144
monitor, 26, 77
SCI adapter, 26
software, 27, 99
software repository, 163

SMP, 2, 3, 10, 13–17, 21, 36, 89, 95, 96,
98, 100, 101, 103, 105, 121, 124,
127–129, 135, 146, 172

software infrastructure, 2, 23, 27, 57, 126,
137

SolarisTM

Solaris MCTM , 102
threads, 10, 90

Sparc architecture, 14, 44
speculative buffering, 60, 65
SPLASH, 11, 116, 120, 124, 135, 172
SPMD, 97, 110, 111, 143, 159, 172

APIs, 159
model, 110, 111, 134, 135, 144, 149,

155–157, 159
spmd_alloc, 162
spmd_allocBarrier, 160
spmd_allocCoh, 162
spmd_allocLock, 161
spmd_allocOpt, 162
spmd_allocOptCoh, 162
spmd_barrier, 160
spmd_getGlobalMem, 163
spmd_getNodeCount, 160
spmd_getNodeNum, 160
spmd_lock, 161
spmd_sync, 161
spmd_unlock, 161

Sprite, 102
Stardust, 47, 48
State of the Art

consistency models, 84
Distributed Shared Memory (DSM),

41
HAMSTER, 31
memory management, 71
multithreading, 121
NUMA–based consistency models,

111
SCI, 21, 23
single system image, 102
synchronization, 90
task control, 100

static application data, 71, 73, 79, 130
explicit distribution, 82, 132
identification, 79, 156
implicit distribution, 81

statistics
collection, 39
consistency control, 87, 88
interface, 38
memory management, 73, 74
synchronization, 92, 93
task control, 101, 102

stencil, 163
stream buffer, 60, 67, 78, 84, 89, 120
SUN microsystems, 10, 21

EnterpriseTM server, 14, 21
Starfire, 14

SuSE, 34, 155
SVMlib, 24, 49
swapping, 17, 52, 55, 58, 59, 82
Sycomore, 27
synchronization, 9, 10, 50, 85, 90, 111,

112, 123–125, 130, 136
System Area Network (SAN), 17, 23, 39,

48

T
task parallel, 11, 137
task stealing, 27

206 Index

team, 51, 52, 56, 104–106, 126, 153
Tera, 16
termination, 58

application, 36, 106
process, 125
thread, 101

Threadh++, 121
threads

POSIX, 10, 121
Win32, 10, 121

time stamp, 85
timing, 109
tools, 73, 153, 154

patch, 80
visualization, 39, 154

topology
ringlet, 22, 34, 155
switch, 22, 34, 155
torus, 22, 23

Tornado, 72, 102
Total Store Order (TSO), 44
trace, 26, 72
tracer, 139, 140, 147
tracing hardware, 21, 26
transmission errors, 71, 203
transparency, 14, 126, 148

hardware, 67, 152, 154
I/O, 126, 153
memory abstraction, 42, 50, 81

TreadMarks, 10, 45, 111, 117, 134, 148,
150

type conversion, 47

U
UMA, 13–15, 123, 172
user mode, 24, 56

V
variables, 125

condition, 125
management, 110

Virtual Interface Architecture (VIA), 26
Visual Studio, 110
volume rendering, 142, 147, 150

W
Win32 API, 10, 90, 121, 125–127, 134
Windows NT/2000TM , 10, 34, 36, 46, 47,

58, 59, 65, 80, 82, 121, 122, 126

X
x86 architecture, 46, 60, 85

Y
Yasmin, 25, 49

