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Abstract:

The workload that is generated by users of explorative navigational information systems typi-
cally contains characteristic patterns. If these task- respectively user-specific patterns are
known to the system, they can be used to dynamically predict user interactions at runtime.
These predictions enable the usage of predictive caching strategies and speculative execution
strategies.

Online analytical processing (OLAP) systems are database systems that are designed to inter-
actively explore data that is structured according to the multidimensional data model. This
thesis presents an approach (called PROMISE) to represent and acquire information about
navigationa patterns of OLAP systems and to use them in improving dynamic materialization
(caching) strategies. To this end, the thesis contains a formal model to represent behavior of
OLAP users taking into account the navigational and iterative query formulation via a graphi-
cal front-end tool. An according pattern model (based on the combination of different general-
ized Markov models) alows for representing navigational patterns. The PROMISE prediction
algorithm uses these patterns in order to dynamically predict a set of queries at any point dur-
ing a session. The prediction framework is completed by an algorithm that induces and up-
dates the pattern information for the user’s actual behavior online during the system’s opera-
tion. In order to demonstrate the potentials of using prediction results for dynamic system op-
timization, we present two approaches improving the performance of semantic query level
caches in OLAP system: through improved benefit estimation functions that allow more effi-
cient admission and eviction algorithms and by means of speculative execution techniques.
An empirical analysis of the characteristics of user behavior in a rea-world data warehouse
environment and performance measurements using simulated traces with data from a real
world application demonstrate the usefulness of the approach.
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«The most exciting phrase to hear in science,
the one that heralds the most discoveries,
isnot “ Eureka” , but “ That's funny...” .»

-- Isaac Asimov

Chapter 1 Introduction

This thesis describes the PROMISE approach, which stands short for ‘ Predicting User Behav-
ior in Multidimensional Information System Environments. We start off by discussing the
motivation of the approach (Section 1.1) and defining objectives (Section 1.2) for our work.
An outline together with some advice and suggestions on how to read the thesis (Section 1.3)
complete this introductory chapter.

1.1 Motivation

Information is more and more becoming the driving factor of today’ s economy and socid life.
In order to make consistent (business) decisions, analysts need fast and flexible access to
complexly structured information. This demand for interactive ad-hoc analysis of both struc-
tured and unstructured data has led to the development of a large variety of interactive infor-
mation systems based on different paradigms. The World Wide Web (WWW) using the hy-
pertext paradigm is certainly the most well-known system for semi-structured (mostly qualita-
tive) data. Additionaly, all major companies are currently in the process of building large data
warehouses storing large amounts of quantitative data. These warehouses are accessed using
interactive analysis tools (for example, OLAP tools) that allow decision makers to navigation-
ally explore the data relevant to the decision process. Further examples for interactive naviga-
tiona analytical information systems are Digital Libraries, Tourist Information Systems and
certain types of eCommerce applications.

The unifying property of these systems is that access to the data is given in an explorative
and navigational fashion (the user is “surfing” the data). Despite the large volume of the data
that has to be managed by these systems (currently in the range of Giga- or Terabytes) interac-
tive response times are an essential requirement (“responses at the speed of thought”). Per-
formance optimization in interactive explorative systems is more difficult compared to classi-
cal transaction processing systems because the queries of the user (who acts as the dynamic
part of the system) are not known in advance (like in an application that accesses data accord-
ing to a certain algorithm). However, analysis of web navigation paths has shown (e.g.
[HPP+98], [PP99a]) that users of aweb site do not behave completely arbitrary, but that their
behavior exhibits certain patterns mirroring the intention of the user (her analytical task)
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CHAPTER 1 INTRODUCTION

and/or the special peculiarities in the users analysis behavior. It has already been proven (for
example, [ANZ99]) that knowledge about these patterns can be used in order to improve the
performance of information systems by predicting and anticipating the user’s requests. Apart
from these dynamic system optimizations, knowledge about these patterns provides an essen-
tial input for the (re-)design of the applications and their underlying data model (for example,
the structure of the web site or the database schema).

As aready mentioned, exploratory navigational data access is not limited to WWW appli-
cations, but Online Analytical Processing (OLAP) applications also exhibit these characteris-
tics. These systems are often (but not necessarily) used as front-ends to data warehouses.
OLAP database systems have become not only athriving market (volume in 1999: 2.5 Billion
US$ [PCO0Q]) but alarge number of scientific publicationst indicates that OLAP systems have
also become an important and active area of scientific research throughout the last years.
However, the impact of the navigational data access characteristics and the existence of typi-
cal navigational patterns to OLAP-system and -application design has not been addressed so
far. Nevertheless, systematic research on this topic promises substantial performance gains for
OLAP systems. dynamically adapting to the user’s analytical workflow increases the qualita-
tive and quantitative performance of the system. E.g., an improved schema which fits the ana-
lytical requirements better will enable analysis tasks that have not been possible beforehand or
a higher productivity of current analysis tasks. Automatically adapting the user interface to the
user’s current tasks will certainly improve productivity of the overall system. But more impor-
tant — at least for the scope our thesis — are the quantitative performance gains. E.g., anticipat-
ing the user’s next query to the system can dramatically reduce the latency perceived by the
user through application of speculative execution techniques.

Consequently in this thesis, we address the problem of acquiring and exploiting knowledge
about the existence of navigational patterns in the behavior of OLAP system users in order to
improve the OLAP system’s performance. Thereby, our main contributions are to provide a
comprehensive framework that allows for acquiring, representing and exploiting navigational
pattern information in OLAP systems and the systematic discussion of the integration of this
framework into an OLAP cache manager.

As the largest part of this thesis addresses the development and adaptation of techniques
for OLAP systems, Section 1.1.1 gives a brief introduction to the concepts and architectures
of OLAP systems and their terminology. In order to illustrate the typical areas of application
for these systems, Section 1.1.2 introduces the example scenario that we will use throughout
thisthesis. Our approach aims at exploiting characteristics of the OLAP user behavior. To this
end, Section 1.1.3 systematically compiles the most important characteristics of this behavior.
The importance of considering user behavior both for the design of OLAP database systems,
and for OLAP applications is stressed by Section 1.1.4. It discusses the role of user behavior
in the different phases of the OLAP system’s lifecycle.

1.1.1 Architectureof OLAP Tools

Online Analytical Processing (OLAP) tools are designed for the interactive analysis of quanti-
tative data that is relevant for decisions. The idea is to provide the analyst with a graphical
interface that allows for interactively formulating and manipulating queries against a database

1 From 1997 on, al large database conferences (VLDB, SIGMOD, ICDE) have at least one session on OLAP systems and
several sessions on data warehouses. In 1999, the DAWAK conference has been established, focussing exclusively on data
warehouse and OLAP related research. The ‘ Gesellschaft fir Informatik’ (German Society for Informatics) has dedicated
active working groups on the topics of datawarehousing and multidimensional databases since 1996.
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without any programming knowledge. The graphical user interface is chosen because of the
possibility of intuitively formulating queries without profound IT knowledge. However, this
requires that the data is structured according to a schema that naturally reflects the user’s per-
ception of the domain. In order to meet this requirement, OLAP systems present data at the
logical level according to a special data model (multidimensional data model). The reason for
this is that this data model (extensively described in Section 3.1) is well suited to mirror the
inherent structures and analysis of business application domains. Thus, schemata formulated
with respect to this data model are both intuitive to the enduser and expressive enough to al-
low for complex data analysis. This claim has been confirmed by the practical success of to-
day’s OLAP products.

Nevertheless, at the physical level data can be managed using any appropriate data model.
The most popular approaches that are taken by commercial systems (cf. [DSHB98]) are the
usage of the relational data management systems (called ROLAP approach) and array based
multidimensional mechanisms (called MOLAP approach). Research prototypes also propose
the usage of object oriented (for example, [BSH98]) or object-relational (for example,
[ZRT+98]) storage mechanisms. However, the data storage is an interna feature of the OLAP
database that should be entirely hidden from the user (analogously to the physical organization
of data in a relational database e.g., using memory pages or clustering indexes). Therefore,
throughout the thesis, we do not make any assumptions about the internal organization of the
datafacilitating the application of our approach to any current or future OLAP architecture.

OLAP Front-end

Logical Interface: A
Multidimensional *
Data Model
OLAP Engine

y

OLAP Storage
Manager

Metadata
Data (e.g. MD
schema)

Figure 1.1: Terminology and Reference Architecture for OLAP Applications

weIsAs dv10
uonealddy dv10

Figure 1.1 shows the architecture of OLAP systems and clarifies our terminology. As already
mentioned, the OLAP database system exposes a logical multidimensiona data view that can
be used to manipulate and query the data managed by the system. Data manipulation opera-
tions formulated with respect to this logical interface are mapped by the OLAP Engine to the
physical data storage. In this process, it uses metadata (for example, the multidimensiona
schema and its mapping to the physical data structures). The data itself (and the metadata) is
managed by the OLAP storage manager (for example, arelational database system in the case
of a ROLAP architecture). However in an OLAP system, queries to the data are not formulated
using a query language or an API but are interactively constructed using the OLAP front-end
that also visualizes the results of the query. OLAP systems that are configured for a specia
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application domain (by providing a data schema, inserting data into the database, customizing
the interface, predefining reports etc.) are called OLAP Applications.

Current product development and recent research activity in the field of OLAP systems has
been mainly focused on describing the multidimensional data model (cf. Section 3.1) includ-
ing a set of according query formalisms (cf. Section 3.2) on the logical and the conceptual
level, enabling interactive response times for single queries by means of static (especialy
preaggregation) and dynamic view materialization (cf. Section 5.1.1 for a survey of dynamic
approaches and Section 5.3.2 for selected static approaches), indexing (e.g., [MZB99],
[WB9g])) and clustering (e.g., [MRB99], [JLS99b]). However, the analysis of user behavior
and the exploitation of the acquired information has so far been neglected.

1.1.2 Example Scenario: Material Management and Distribution L ogistics

In order to illustrate the concepts throughout this thesis the following scenario of a material
management system will be used. It is based on a combination of three real world case studies
we performed at FORWISS, Knowledge Bases Research Group together with our industrial
partners DaimlerChrylser AG (analysis of diagnosis data for vehicles, [HBD97]), Wacker
Chemie GmbH (distribution logistics) and ESG GmbH (military logistics planning). Of
course, al the company-specific details have been changed or omitted to protect the ‘inno-
cent’ and to keep the complexity of the demonstration scenario manageable.

The material management planning system of our example scenario should be used in
planning the supply of spare parts for different kinds of vehicles (automobiles, trucks etc.). A
consolidated data warehouse contains data about which vehicles are deployed in which geo-
graphic regions, information about repairs of these vehicles (including which parts were ex-
changed, what type of failure occurred, the geographic location of the repair) and what kind of
stock-keeping systems are available in the different regions.

A typical task of alogistic planner in this environment is to determine a distribution and
stock-keeping strategy for a certain geographic region or repair location (for example, how
many parts are kept locally to satisfy anticipated demands). To reach a decision, the human
analyst uses information that is provided by the system concerning which parts fail how often
under which conditions (climate, usage profile etc.). Due to the large number of influencing
factors, no closed model is available to predict the failure characteristics. Therefore, the plan-
ner has to use expert knowledge together with the ‘historic’ data provided by the system to
formulate a hypothesis about the anticipated demand for spare parts. Additionally, factors like
budget, stock capacity, stock keeping strategies, priorities of demands etc. have to be taken
into account to reach the final decision of determining the number of spare parts that should
be kept in stock at a certain location for a certain period of time. Even from this short intro-
duction it should be clear that the analysis process is far from being trivial and cannot be eas-
ily automated. However, the analysis process follows a methodological structure of subtasks.
That means the analyst e.g., first tries to find out, if the geographic region he is planning for
shows any anomalies in the failure characteristics compared to other regions (for example, the
failure characteristics of a desert environment differ from those of an arctic environment). As
a result, he picks one or more geographical regions that are similar to the location he is plan-
ning for. For these regions, the characteristics of previous years, quarters and month are being
analyzed and so on.

This example aready shows some of the characteristics of the user’s interaction with the
OLAP system. The next section systematically compiles the typical properties that are impor-
tant to our approach.
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1.1.3 Characteristics of OLAP User Behavior

The characteristic interaction between the analyst and the OLAP application has severa prop-
erties that are a consequence of the OLAP user interface philosophy and the analytical envi-
ronment in which they are mainly applied:

Session Oriented Exploratory Data Analysis. When working with an OLAP system, the
user typically has a (business) question in mind (e.g, “How many parts for the steering as-
sembly should we keep in stock at repair locations in Germany in order to guarantee the
necessary degree of maintenance service?’). In order to answer this question, the user
formulates a query (for example, “How many parts have been used for repairs of vehicles
at the different locations in Germany during the last year?”), analyzes the results, builds a
hypothesis (for example, “unscheduled repairs of the steering assembly mostly occur after
cold periods.”) and verifies the hypothesis by executing another set of queries. All subse-
guent queries that are executed in order to solve the same analysis task are grouped to a
session. The analysis of areal world decision support environment (see Section 6.1 for de-
tails) has shown that these sessions can contain up to several hundred queries depending
on the complexity of the analysis task.

Interrupted by Cognitive Processes. Due to the exploratory nature of the data analysis
task, the dialog between the user and the system consists of two alternating phases: While
the system processes the query, the user is waiting for the results. The duration of this
processing phase is observed by the user as system latency time (which should of course
be as short as possible). After having received the results, the user has to analyze the re-
sults. This is a cognitive process which takes some time and does not involve any system
interaction. Therefore, from a systems point of view the cognitive process is a ‘black box’
that is not deterministic but predictable. The outcome of this process cannot be directly
perceived by the system. Instead, the system must use the query executed at the end of the
cognitive process as an indication to the outcome of the consideration process. Our em-
pirical study in (cf. Section 6.1) has shown, that the consideration time (duration between
two processing phases) is orders of magnitude larger than the execution time for the next
guery for asignificant part of the queries (85% in the examined environment). This under-
lines the potential for applying speculative materialization techniques.

Navigational, Iterative Query Formulation. According to the basic philosophy of OLAP
systems the user interactively formulates the queries using a graphical front-end. Queries
can be formulated in two different ways. The first aternative is to execute a predefined
query template with a set of parameters that are determined in an ad-hoc way (for exam-
ple, a report showing the total repairs in a geographical region for a year). This option is
typicaly used to start a session or to begin a subtask (for example, finding out if an as-
sembly shows abnormal failure characteristics in a given region). The second alternative
is to iteratively modify the definition of the previous query by applying a set of multidi-
mensional query transformations (e.g., slice, dice , drill-down) that are provided by the
OLAP front-end tool. This process will be described in more detail in Section 3.2.2 (in-
formally) and Section 3.2.4 (formally). The consequence of this iterative query formula-
tion procedure is that the resulting user behavior exhibits strong locality properties.

Task and User Specific Patterns. The sequence of queries for an analysis session mirrors
the procedure that has been deployed by the user in order to solve her analysis task. As
similar problems (for example, determining the stock-keeping strategy for different loca-
tions) will always be solved using the same workflow, sessions of the same user or user
group solving these problems will be similar. Consequently, the query sequences exhibit
patterns that are characteristic for the analysis task and/or the peculiarities of the users ap-
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proach to the problem. Mathematically speaking, this means that the probability for a
guery to occur are mainly dependent on the current state of the analysis process and the
specific user.

Having pointed out the specia characteristics of the data access behavior, the next section will
argue that it is beneficia to address these peculiarities in OLAP application and system de-
sign. It will show that knowledge about user behavior plays a central role throughout the life-
cycle of an OLAP application, although this has so far not been fully realized by the OLAP
community. This assessment is shared for example by [Vas00].

1.1.4 TheRoleof User Behavior in OLAP Applications

The purpose of an OLAP application is to satisfy the user’s analysis requirements. Therefore,
it should be obvious that knowledge about the user’s query behavior is most important during
the whole lifecycle of the OLAP system. Nevertheless, this aspect is underrepresented in cur-
rent research work and in the state-of-the-art practice of designing OLAP applications. There-
fore, this section systematically points out the role of user behavior for the different lifecycle
phases of an OLAP application.

Operation
(Querying and Requirement

Data Maintenance) szis

Logical Design
(Implementation

‘ Independent)

Physical Design
(Implementation decisions)

Implementation

Figure 1.2: The Different Phases of the Iterating Design and Maintenance Cycle of OLAP Applications

Figure 1.2 shows the iterative macro-model for the OLAP application lifecycle ([Sap99]). The
goal of the Requirement Analysis phase is to gather functional requirements for the system. As
the high level requirement towards an OLAP system is the support of the analytical process of
the user(s), the requirement analysis should contain descriptions of typical analytical work-
flowsz. For this purpose a conceptual (implementation independent) description of user behav-
ior is necessary. During the Logical Design phase these requirements have to be transformed
into a logical schema (following the multidimensional data model) for the OLAP database.
This schema must reflect the requirements as the static schema determines which queries can
be executed. Therefore, the design of the logical OLAP schema should be driven by a descrip-
tion of the (anticipated respectively requested) user query behavior and a description of the
interconnections between the dynamic model (user behavior) and the static schema. Further
motivation for a user behavior centric modeling process comes from an observation the author
has made in several real world projects: users usually can state very well which analytical task
they want to perform, but have difficulties understanding the static data schema that is neces-
sary to answer their queries.

2 During later iterations of the design cycle, a description of these workflows can be derived from or compared to a descrip-
tion that is deduced from user behavior observed during the former Operation phases.
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Knowledge about the anticipated user behavior is aso a key input for the subsequent
physical design. During this phase, the logical schema has to be mapped to a specific imple-
mentation (e.g., MOLAP or ROLAP). This includes decisions about physical optimization
techniques (e.g., indexing schemes, physical clustering, materialization strategies, denormali-
zation). Comprehensive research of physical optimization strategies for Data Warehouses and
OLAP systems has been done for specific implementation strategies (relationa e.g.,
[GHR+97] or multidimensional e.g., [FB99]). Irrespective of the approach, all of these solu-
tions require the definition of a typical workload (i.e., a weighted set of queries or query pat-
terns) as input. This workload can be obtained from the statistical analysis of query log files.
However, during the system’s initial design phase, this information is not available and when
redesigning the system, it is unknown, if this data can be extrapolated into the future. This
underlines the necessity to formally capture information about anticipated user behavior dur-
ing early design phases and to formally document these requirements.

But even if static workload characteristics (for example, the relative frequency of aquery in
all sessions) are available, using them does only exploit a small part of the knowledge about
user behavior in OLAP systems. In environments where user behavior exhibits navigational
characteristics, the probability for a query to be executed next is highly dependent on the que-
ries that were executed directly before it. Regularities of this kind are necessary for ap-
proaches that optimize the systems performance at runtime (i.e., during the Operation phase).
We call these kinds of optimization dynamic optimization approaches. Most importantly, dy-
namic materialization techniques (e.g., caching and speculative execution techniques) can
benefit from knowledge about navigational patterns. These techniques require that informa-
tion about user behavior can be made known to the OLAP database system or can be acquired
by the database itself during its operation (requiring a good representation of knowledge about
user behavior patterns and according induction algorithms). Based on this information, the
future user behavior can be predicted and the caching and prefetching strategies can be ad-
justed to optimally support the anticipated workload (for example, prefetching the results of
the predicted query) which results in a substantially improved response time for the user.

Summing up, knowledge about anticipated user behavior can be exploited for OLAP appli-
cation design and for OLAP database system design in a variety of ways. Taking the point of
view of a database system’s engineer, we are mostly interested in the additional opportunities
that open up for dynamic system optimization techniques (caching and prefetching, cf.
Chapter 5). Consequently, we will focus on these issues in this thesis. Additionally, further
ideas about how to incorporate OLAP user behavior modeling into an OLAP application de-
sign methodology can be found in [Sap99], [BSHOQ] and in Section 7.3.1 of thisthesis.

1.2 Objectives

Following the motivation discussed in the previous section, we can now define the high-level
objectives of our approach thus roughly specifying the scope of this thesis. These objectives
are the basis for a detailed specification of the PROMISE framework in Chapter 2 and define
the evaluation criteria for the assessment of our approach in Chapter 7.

The basic assumption is that the behavior of an OLAP user (i.e., the types and sequences of
gueries she executes) is not deterministic but predictable. That means that for each analysis
task the user is performing and for each user, specific patterns of interaction behavior exist.
Therefore, the overall objective of the PROMISE approach isto acquire, adequately represent
and exploit knowledge about these patterns in order to dynamically improve the response time
of OLAP systems. This means that the following issues have to addressed by our approach:
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= Provide an Adequate Representation of Knowledge about Regularities in OLAP User
Behavior

This work will present a formal representation technique for data access patterns that are
caused by the characteristic query behavior of OLAP application users. A prerequisite for
the pattern descriptionsis aformal description of user interactions with OLAP systems (cf.
Section 3.2) taking into account the peculiarities of the graphical front-end component.
The pattern representation should adequately consider the inherent properties of OLAP
user behavior in order to allow precise predictions. Furthermore, it must be flexible
enough to represent different types of patterns on different levels of detail (cf. Section
4.2). In order to alow for an efficient prediction, the pattern information must be repre-
sented in a compact way and be accessible efficiently. This requires appropriate data struc-
tures and algorithms. An additional requirement for the pattern representation is that it
must be possible to maintain the pattern information during the ‘normal’ operation of the
OLAP system.

= Provide an Efficient Prediction Algorithm

The core of the PROMISE framework is the prediction agorithm that computes a set of
probable next interactions based on the pattern information expressed according to the pat-
tern representation and the current context of the user’s session. This prediction algorithm
will be called during system runtime. Therefore, it must be designed in order to execute
efficiently and scale well to growing pattern sets. However, the most important require-
ment is that the prediction algorithm provides a good accuracy i.e., that the queries pre-
dicted by it will be actually executed with a high probability by a user that behaves accord-
ing to the assumed patterns.

= Provide Efficient Algorithms for the Acquisition of Knowledge about User Behavior

An important factor influencing the accuracy of the prediction algorithms is the correct
acquisition of the corresponding patterns. Basically, knowledge about the user behavior
can be acquired using two different strategies: By analyzing the interactions the user per-
formed with the system in the past (ex-post or inductive method). This requires techniques
to analyze interaction logs that have been recorded (system centric approach). It is aso
possible to model the knowledge of domain experts about their analytical workflow (ex-
ante or deductive method). In thisthesis, we will focus on the inductive method, because it
directly influences the architecture of OLAP systems, thus being interesting from a data-
base point of view. We are aiming at learning algorithms that can be carried out online
while the user queries the database.

= Improve Dynamic System Optimization Techniques

Prediction in itself is not useful until its results are applied to improve the system’s per-
formance. As already pointed out, a multitude of enhancements are possible. However we
aready argued that we see the highest potential in the improvement of dynamic materiali-
zation techniques (i.e., caching techniques) which will consequently be the focus of this
thesis. Therefore, we have to provide mechanisms to integrate the prediction algorithm
with current OLAP caching algorithms and discuss extensions to the algorithms that make
use of the predicted results in order to drive eviction decisions and to enable speculative
execution of queries.

= Practically Demonstrate Potentials of the Approach

Of course, the improvements of the PROMISE approach to the OLAP system’s perform-
ance should be quantified. Being a heuristic approach, an analytical proof of the feasibility
(let done the optimality) of the approach is not possible. Therefore, we prove the feasibil-
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ity of the approach by means of empirical evaluations. For every component (i.e., the pre-
diction agorithm, the induction process and the caching algorithms), the evaluation proc-
ess should measure its absolute performance and the influence of varying parameters. In
order to research the impact of different kinds of user behavior on the performance of our
approach, we employ a user ssimulation. The measurements should be carried out on real-
world data.

Apart from these objectives concerning the topics to be discussed, our approach is aso influ-
enced by the following general objectives:

» Clear Separation between Logical and Physical Aspects. As aready mentioned, OLAP
systems can be implemented using different storage techniques (sometimes e.g., referred
to as ROLAP, MOLAP). However, these implementation decisions are hidden from the
user by the logical data model layer of the system. Therefore, any description of user be-
havior (and its patterns) should be independent from the orthogonal physical implementa-
tion strategies. This is especially important for OLAP systems, because many of the earlier
but fundamental publications (mostly pragmatically oriented like e.g., [Inm96]) mixed up
the physical and logical aspects, which has led to alot of confusion, both in the research
and the industrial user community.

= Extensibility and Comparability of the approach. As this is the first approach to apply
prediction and anticipation techniques to OLAP systems, we see our work as the starting
point for a series of research in thisarea. In order to be usable as a solid foundation for this
kind of work, we aim at clearly structuring the problem domain, identifying and formally
describing the most important design decisions. Therefore, we put great emphasis on pro-
viding formalisms to describe the fundamental issues and on explicitly mentioning and
discussing our design decisions and their impacts on the overall approach.

Additionally, we regard it as important that our approach can be compared to similar ap-
proaches in other domains. Therefore, we describe a large part of our approach independ-
ent of the application area of OLAP systems.

= Smooth Integration with current State-of-the-Art Techniques. Significant research work in
OLAP database systems has been done in the past years on different abstraction levels:
physical issues, logical data modeling issues and conceptual methodological issues. Wher-
ever possible, we compare our approach to the work done so far and show possibilities of
integrating our work with existing approaches.

1.3 Outlineand Reader’s Guide

This section describes the outline of the remaining thesis and can be regarded as recommenda-
tions on which parts of the thesis should be read and in what order depending on the readers
interest.

The following Chapter 2 gives a comprehensive overview of the topic area of this thesis
(i.e., prediction of user behavior). It contains a formal specification of the encountered chal-
lenges that have to be addressed by a prediction environment. It is therefore suited for readers
who want to gain a comprehensive overview of the ideas discussed in this thesis. As the pre-
sented framework is independent of its application to OLAP tools, this chapter is aso valu-
able for readers interested in prediction methods for other application areas (for example, pre-
dictive WWW proxy caches).

The topic of Chapter 3 is the theoretical background of OLAP database systems, namely
the data model and the according query formalisms. The proposed formalisms constituting the
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formal foundation for the thesis' core are derived after comparing the most important scien-
tific approaches in this area. Therefore, this chapter is also valuable for readers looking for a
comprehensive overview and assessment of research about multidimensional data models and
guery languages. It can be skipped by readers being familiar with current state-of-the-art
OLAP systems research. However, we recommend at least to read our definition of the multi-
dimensional model (Section 3.1.3) and canonical queries (Section 3.2.3) as these formalisms
keep reappearing throughout the core of the thesis.

Chapter 4 and Chapter 5 constitute the core of this thesis. Chapter 4 describes an OLAP
specific instantiation of the general prefetching framework developed in Chapter 2. This in-
cludes especially the pattern model (which is a combination of different Markov Models) and
the according prediction algorithm. Therefore, it isintended for readers being interested in the
details of our prediction approach and those wanting to implement it.

Chapter 5 discusses the application of the PROMISE/OLAP framework to improve the per-
formance of OLAP caching systems. This section is also of genera relevance to readers who
are interested in the impacts of prediction techniques on semantic query level caching, espe-
cially in the OLAP area. It is suited for persons that are considering the benefits and efforts of
integration prediction into an existing (OLAP) caching system.

As most of the algorithms proposed in this thesis are heuristic, their quality cannot be as-
sessed using an analytical model but has to be proven by an empirical evaluation. Chapter 6
presents our evaluation framework, details the evaluation procedures and presents the results
of both analyzing characteristics of real world user behavior and the performance of our pre-
diction, caching and prefetching agorithms. The results confirm that our techniques enable
substantial speed-ups for OLAP systems. The chapter is of specia interest to readers looking
for apractical evaluation of the PROMISE approach.

Finally, the contributions of the PROMISE approach, a direct comparison with related
work, and possible extensions of the algorithm are discussed in Chapter 7. This chapter also
contains further directions of research and might therefore be suited for scientists considering
research in this area.

Notably, the thesis does not contain a single chapter that surveys the state-of-the-art scien-
tific research and product development. As this thesis deploys, extends and augments tech-
niques that have been developed in different fields of computer science research (e.g., OLAP
systems, prefetching techniques, representation techniques for probabilistic patterns, caching
techniques), we decided to split this survey according to the different areas. Consequently, we
present the respective surveys at the appropriate point in this thesis (i.e., immediately before
we use the techniques respectively before we propose techniques that are superior to current
state-of-the-art practices). Therefore, the discussion of state-of-the-art practices is distributed
across the following chapters:

Multidimensional data model descriptions (Section 3.1)
Query formalisms for multidimensional data (Section 3.2)
Predictive prefetching techniques (Section 4.1)

Caching agorithms for OLAP systems (Section 5.1)

In order to ease reference to formal definitions and symbols, we have included a Glossary at
the end of thisthesis, which lists the most important symbols, definitions and abbreviations.




«If we knew what it was we were doing,
it would not be called research, would it?»
-- Albert Einstein

«An undefined problem has an infinite
number of solutions»
-- Robert A. Humphrey

Chapter 2 The PROMISE Framework —A Bird Eye'sView

The high level goa of the PROMISE approach is to enhance the performance of an OLAP
system using information about patterns in the user’s query behavior. In order to accomplish
this, severa different but interconnected issues have to be discussed. This includes e.g., how
to represent the pattern information, how to obtain and maintain the patterns and how to actu-
aly exploit the pattern information for system optimization (for example, via prefetching and
speculative execution strategies). The purpose of this chapter is to systematically compile and
motivate these issues and their interdependencies. The chapter therefore constitutes a refine-
ment of the problem statement given in chapter 1 and can be regarded as a ‘roadmap’ to the
rest of this thesis. Throughout this chapter, we explicitly introduce assumptions and restric-
tions for the core part of the thesis to ensure a manageable complexity of the solution pre-
sented in this thesis.

The result of this chapter is a functional reference model for the pattern-driven prediction
process. We break down the overall process into a set of different sub-processes that commu-
nicate via well defined interfaces. For each process we describe its functionality and motivate
the main challenges involved in designing this component. Additionally, we specify a data
representation for each interface. The framework assumes a general navigational information
system (e.g., a hypertext application or an OLAP application), thus being independent of the
actual system type (for example, an OLAP system). For each component, we additionally
enumerate the steps that have to be taken to build a system specific (for example, for OLAP
systems) instance of the framework. The core of this thesis (Chapter 4 and Chapter 5) then
develops an OLAP specific instance of this general framework and discusses its application to
predictive prefetching algorithms for OLAP systems.

The reference model does not only define the scope of this thesis but also builds a basis for
discussing the application and adaptation of techniques from other research areas (for exam-
ple, data mining) and for comparing different prediction approaches from different areas of
application (e.g., file systems, Web-based systems, Object-oriented databases, see Section
4.1). Therefore, the PROMISE reference framework constitutes an important contribution of
thisthesis.

Before identifying and describing the different components of the framework, we start by
presenting the most important objectives that drove the framework’s design in order to moti-
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vate our design decisions (Section 2.1). Subsequently, Section 2.2 gives an overview of the
whole framework and describes the relationship between the components. Section 2.3 and 2.4
then describe the interfaces between processes of the framework. Each of the main processes
is then discussed separately in Sections 2.5 to 2.8. The summary presented in Section 2.9 dis-
cusses how we reflected the design goals in the framework design and contains a graphical
roadmap to the Chapters 4 to 6 of the thesis.

2.1 Objectivesand Design Goalsfor the PROMISE Framework

Before presenting the framework itself, we first list the design goals that drove the devel op-
ment of the reference framework for the prediction process:

= Applicability to a broad class of navigational information systems.

Benefiting from patterns in the navigational behavior of the user is not restricted to the
area of OLAP systems. Therefore, the only assumption about the actual information sys-
tem type contained in the design of the PROMISE framework should be that a human user
interacts with the system in a navigational (explorative) fashion. Nevertheless, the frame-
work must provide facilities to add the system type specific requirements when instantiat-
ing the framework for a specific system type (for example, an OLAP system). Addition-
ally, predictive approaches have already been successfully applied to other systems that
are characterized by such a navigational data accesses (e.g., branch prediction for pipe-
lined microprocessor architectures or prefetching for file systems, see Section 4.1 for a
comprehensive overview of application areas). However, a comparative discussion of
these approaches is not easily possible, due to the different system types. The PROMISE
reference framework therefore should be a suitable basis for the comparison of predictive
approaches from different application areas regarding their functionality, algorithms and
scope.

= Facilitate the reuse of existing techniques devel oped in different research areas.

Different aspects of the prediction framework (for example, the induction of navigational
patterns from observed user interactions) have been researched in various other contexts
(for example, data mining algorithms for the analysis of customer behavior). The structure
of the framework should facilitate the reuse, integration and adaptation of these techniques
for the PROMISE approach. That means that the approach should not only be applicable
to a wide range of information systems (previous objective) but benefit from different
techniques which have already been developed or will be developed in future.

= Support a wide range of applications for the prediction results.

Prediction techniques can be applied for different purposes (e.g., to improve cache admis-
sion and eviction algorithms, to enable predictive prefetching strategies, to build adaptive
user interface etc.). Therefore, the structure of our prediction framework itself should not
contain any assumptions about the deployment and further processing of the prediction re-
sults. Although obvioudly, the different areas of application (e.g., predictive prefetching,
clustering strategies, visualization of user behavior, system redesign process) exhibit dif-
ferent requirements regarding the prediction results (e.g., the level of detail, the content of
the prediction and the quality of the predictions). This means that the framework must of-
fer mechanisms (for example, a generic abstraction concept) which can be used to config-
ure an instance of the framework regarding the requirements of the application which uses
the prediction results.
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The above considerations about the design of the PROMISE framework lead to the following
design decisions:

= Modular design.

The framework is composed of independent components that communicate via well de-
fined interfaces. This functional separation of concerns enables the modular instantiation
of the framework by changing the algorithm for a single component and combining differ-
ent algorithms for different components, e.g., combining different pattern induction algo-
rithms with different prediction algorithms.

= Facilitate the usage of patterns on different levels of generalization.

Having in mind a wide range of application areas (see Section 2.8), the PROMISE frame-
work needs to support different levels of abstraction for the patterns and the prediction re-
sults. For example, the conceptual graphical modeling of anticipated user behavior during
system design is necessarily done on a higher level of abstraction than for example obser-
vation of interaction patterns that are necessary to dynamically predict queries at runtime.

Furthermore, different prediction applications require different information. For example,
static tuning techniques (like preaggregation) do not make use of information about the
statistical relationships between subsequent data accesses generated by the user’s naviga
tion. Instead they need information about how often an aggregation is being computed. On
the other hand, dynamic tuning techniques like caching need information about the naviga-
tion characteristics.

These considerations lead to the framework architecture which is described in the following
section.

2.2 A Process-Oriented Overview

The PROMISE framework can be abstractly modeled as a set of communicating processes.
Targeting a generic functional framework, at this point we do not make any assumptions
about the actual algorithms. Instead we formally describe the interfaces between the compo-
nents by specifying data structures for the input and output data. The functional properties of
the components itself are described in an informal way. This conforms to the modular archi-
tecture of the framework enabling the combination of different algorithms for different in-
stances of the framework. The discussion of possible algorithms is the subject of chapters 4
and 5.

Naturally, the core process of the PROMISE framework is the prediction process (cf.
Figure 2.1). This process receives information about the current context of the user’s session.
This may include the user’s name, a session id, the last interactions performed so far during
this session etc. Which information is actually passed to the prediction process is dependent
on the requirements of the prediction algorithm being deployed. The algorithm generates a set
of predictionsi.e., interactions with their according probabilities. The prediction is based on a
prediction model which takes into account the patterns of the user’s behavior. These patterns
are specific for individual users, user groups, user roles or application areas or any combina-
tion. When actually instantiating the framework, it is an important decision for the perform-
ance of the framework whether patterns should be recorded per user or per user group and
how user groups or user roles should be defined. Although, as this decision is specific to the
application domain of the information system, we do not make any assumptions about this
issue right now.
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It isimportant to note that the patterns cannot be ‘hard-wired’ into the prediction algorithm
but are passed as a parameter to the prediction process. Section 2.5 discusses the design of the
prediction process in greater detail. Of course, the patterns themselves have to be formulated
according to a formalism (called pattern model) that can be understood and exploited by the
prediction algorithm (see Section 2.4 for an in depth discussion of pattern models and a clari-
fication of the notion of a pattern for the context of this work).

Applications of the PROMISE framework
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Figure 2.1: A Process Oriented View of the PROMISE Framework

The most common approach to gain information about the patterns that characterize the user’s
behavior with the system is an analysis of the interaction behavior of the user in the past. In
the PROMISE framework, this is being done by the pattern induction process (see Section
2.6) which derives patterns for the interaction behavior from a representation of the user’s past
behavior (also called ex post approach). As we assume a system centric approach (in contrast
to a human centered approach adopted by the user modeling community), the induction proc-
ess works with the representation of the user’s behavior that is being perceived by the infor-
mation system (for example, alog file of the user’ s interactions).

As aready motivated in chapter 1, the patterns that are present in the interaction behavior
of the user are amirror of the inherent structure of the analysis problem the user isworking on
(e.g., searching a document on the WWW or defining a new distribution strategy for spare
parts). Therefore, pattern information can also be deduced from knowledge about the charac-
teristic workflow of the analysis process. This approach is incorporated into the PROMISE
framework through the pattern deduction (modeling) approach (see Section 2.7), where a do-
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main expert specifies the structure of the analysis process in a detailed way, such that patterns
can be easily derived from this description (ex ante approach).

We regard the ex-post and the ex-ante approach as alternative ways of generating patterns.
A well implemented induction process normally derives more significant and valid patterns.
Nevertheless, it assumes that a considerable amount of recorded interactions are available for
induction. In early phases of the system design (for example, when the system is not even im-
plemented) it is therefore inevitable to use the modeling approach.

On the application side, the prediction results can be used for a multitude of purposes (for
example, for predictive caching and prefetching algorithms). But not only prediction results
are beneficial for the information system, but also the patterns themselves. As they contain
information about typical workloads, they can be interpreted in order to drive tuning decisions
or can be used to redesign or evolve the information system. However a deeper coverage of
this ‘side-effect’ is out of the scope of thisthesis.

2.3 Modeling User Interactions

A formal description of the user’s interaction with the information system is important, as
such adescription is necessary to define the following interfaces:

= Theresult of the prediction process describes interactions the user is likely to execute next
according to the prediction model.

= The description of the session context, which is a parameter to the prediction process con-
tains a description of the users interaction in the immediate past.

= Theinput to the pattern induction process is a description of past user interactions.

Furthermore, a formal description of the user’s interactions is aso a prerequisite for the for-
mulation of patterns which are the data structure exchanged between the pattern induction and
the prediction process.

Therefore, the first fundamental step towards predicting the user’s behavior is to formally
model the user’s interactions with the system. We call this model the user interaction model.
Generally speaking, the user’s activity during working with the information system is a con-
tinuous process. However, from the system’s point of view, the cognitive process of the user
is perceived as a discrete sequence of atomic interactions. Taking a system oriented view, we
therefore represent the user’s behavior as discrete atomic interaction events which are per-
ceivable by the information system (e.g., the execution of a multidimensional query or follow-
ing alink within a hypertext environment).

Each atomic interaction event e is characterized by an event type te. Depending on the type
of the event, additional information about the event is recorded. This additional information is
modeled using a set of attributes for each event type t.. The same attribute can be applicable to
different event types. For example, events caused by executing of a multidimensional query
belongs to the event type query execution. Attributes describing this event type are the time
when the event was initiated, a user id of the user initiating the event, a session id and a de-
scription of the query. The execution time and user 1D are attributes shared with other types of
events.

For the class of information systems that we assume for PROMISE (see previous section),
the user works with the system in a session oriented way. In order to mirror this central as-
sumption in the interaction model, it is necessary to group the atomic interaction events to
sessions or composite interaction events. Each session Ses consists of a finite, discrete, line-
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arly ordered sequence of interaction events Ses=<gy,...,e, >2. The linear order is defined by

the point in time when the events were initiated by the user. It is legitimate to assume linear
sessions as we only perceive user initiated events and even if the system processes requestsin
paralel, the requests of a single user starting these processes are till sequentia. Thisis also
true in multi-user environments because every session is executed by a unique single user.
This means that a session constitutes a virtual single user environment. Of course, a single
user can still work in different sessions simultaneously. The order of the events ey,...,e, defines
a logical timescale for the session Ses. Notably, this definition only specifies the syntactical
structure of sessions but consciously leaves the question of how to actually group the events
unanswered. For the abstract definition of the framework and for the design of the algorithms
this is sufficient. However, when actually instantiating the system for a specific system type
and application domain, the decision of how to group single interaction events to sessions is
critical as it may have a large impact on the performance of the system. The reason for thisis
that in the context of PROMISE framework only patterns between interactions in the same
session are being recorded and exploited. The session defines the entity of prediction for the
PROMISE approach. In the ideal case, the definition of a session based on the semantic con-
tent of the session i.e., a session always groups interactions that are semantically linked in the
application domain of the information system (for example, a session lasts as long as a user
visits Web pages that are related to the same topic). However, in the general case, this prohib-
its the automatic recognition of sessions, because a detailed modeling of application semantics
would be necessary. Therefore, in practice often an approximation of this ideal grouping has
to be deployed, using conditions that can be easily evaluated by the system automatically (for
example, interactions belong to the same session, if they occur within a predefined timespan,
or interactions belong to the same session, if they occur between special interactions like a
system login and a logoff). Additionally, some system type-specific limitations have to be
overcome (for example, the statelessness of the HTTP protocol in WWW environments, solu-
tions for this problem have been proposed e.g., in [CMS99] and [ZAN99)).

Depending on the environment, integrity constraints apply to the attributes of atomic inter-
action events (for example, forbidding certain combinations of attribute values) and to ses-
sions forbidding certain sequences of event types (for example, demanding that the start ses-
sion event aways occurs before the terminate session event). These global integrity con-
straints mirror either the special semantics of the information system type (for example, the
WWW domain) or the limitations of the user interface (which e.g., only allows certain interac-
tion sequences). We decided to include these restrictions as an integral part of the user interac-
tion model. This helps to build a better prediction model because an integrity constraint must
be fulfilled for al possible events and sessions. Therefore, these integrity constraints them-
selves can be interpreted as patterns which apply to all sessions and are independent of the
application domain (although they are specific for the system type). Consequently, they can be
used by the prediction agorithm to narrow down the set of candidates for subsequent interac-
tions during the prediction process by sorting out candidates which do not fulfill the global
integrity constraints.

The above considerations about the modeling of the user’ s interaction with the information
system are summarized by the following set of definitions. The schema for events in an
application domain is defined by a user interaction model.

3 we use pointy brackets to denote finite sequences, e.g. Sesi=<s,,s,,55>. To reference the i element s of a sequence S, we
use notational abbreviation Si]
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Definition 2.1 (User Interaction Model)
A user interaction model IM is defined asatuple IM = (T, A, attr, 1) where

= Tisafinite set of event types

= Ais afinite set of attribute names describing events. Each attribute ac A has a domain
dom(a) attached.

= attr : T — 2”is a function mapping each event type to the set of attributes which can be
used to describe events of this type.

= |isasetof integrity constraints defined over the set of events and the set of event se-
quences. .

While the user interaction model defines the structure of the user’'s interactions, the interac-
tions itself are described by ‘instances’ of the user interaction model. The simplest form of an
interaction is an atomic interaction event.

Definition 2.2 (Atomic I nteraction Event, Atomic Event Space)

Let IM = (T, A attr,1) denote an user interaction model. An atomic interaction event e (short

event) for is defined as a tuple e:=(t,,v,), where teT is called the type of e If

attr(te)={a,...,a} denotes the attributes for this type te , then vee X dom(g;) isatuple
i=1,...k

containing the attribute val ues.

The atomic event space for IM is defined as the set of all possible atomic events fulfilling the
integrity constraints and is denoted as Ej. .

For notational convenience, we reference the attribute values of an event e:=(t,,v,)as
e.<attribute name>. E.g., if the attribute name is ‘time’, the corresponding value for the event
eisdenoted as e.time. Additionally, we use the function type: E;u—T, type(e)=t. to denote the
type of an event.

An atomic interaction event represents the finest granularity of events that are perceivable
by the system. These atomic interaction events can be combined to represent sequences of
interactions called sessions or composite interaction events.

Definition 2.3 (Composite I nteraction Event, Composite Event Space)
A valid session (or composite interaction event) Ses in IM =(T, A attr,l) is defined as a
finite sequence Sese Epy .

We denote the set of all composite interaction events that fulfill the integrity constraints de-
fined in the user interaction model as the composite event space Ey of IM. Thus,

ES :={Sese Ewm| Viel :Sesfulfillsi}
*

Aswe will seelater, for the prediction process, the events occurring directly before an event e
are particularly interesting as they can be used to predict the next events. The sequence of the
m events just before an event e are referred to as the session context (of order m) of this event
e. If the session contains less than m events before e, the session context consists of the se-
guence of all eventsthat occurred so far in this session.
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Definition 2.4 (Session Context of an Event)
For a session Ses:=<e,&,,..,6,> the session context of order m for an event e is defined by the
function contnrsfES Em — ETM with

<€_m8&_mils--G_1> die[Ln]:Seqi]=eAi>m
contr%%(e):: <e,...,6_1> if die[Ln]:Seqi]=eAl<i<m
1 else

Notably, we assume that each event e is unique within a session (i.e, that at least the time-
stamp attribute has a different value). Therefore, the session context for an event e is uniquely
defined . .

The following example illustrates these concepts by presenting a very simple interaction
model for the World Wide Web.

Example 2.1: (A SimpleInteraction Model for the WWW)

A very simple interaction model IM v = (T » A » At » L ) d€SCribing a World

Wide Web user model might contain two types of interaction events: the user following alink
from a page or a user choosing an URL from her bookmarks.

»  Twww={follow_link, follow_bookmark}

For both event types it is sensible to record the URL of the destination and the time when the
event was executed. For the follow_link event type also the starting URL can be recorded.

=  A={time, destination_URL, start URL}

w  attryww (follow_link)= { time, start_URL, destination_URL}
attryww (follow_bookmark)= { time, destination URL }

evente, = ( event e, = ( event e,= (
follow_bookmark,  follow_link, (12:01:36, follow_link, (12:02:05,
(11:59:12, pagel) ) pagel,page2) ) page2, page3) )

WWW page 1

Figure 2.2: Visualization of a Sample Session Conforming to the User Interaction Model | My

Figure 2.2 illustrates a sample navigational session. The WWW user starts the session by
choosing a link from the bookmarks which takes him to page 1. From there, he navigates to
page 2 and subsequently to page 3 following links contained in these page. According to the
above user interaction model IMwww;, this session is modeled as the following sequence of
events Seseample=<€1,62,63>. The attribute values for the events are shown in Figure 2.2.

An obvious integrity constraint for valid sessions is that for every event of the type fol-
low_link, the start URL must be equal to the destination URL of the previous event. This con-
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straint is a consequence of the WWW user interface design and is formalized by the following
integrity constraint, which is an e ement of lwww.

VSeE,, .. V<ee >Ej
t,, =follow_link = e, start URL =g, .destination URL

n integrityl:z[

Another integrity constraint for event of the type follow_link is that the destination URL must
be contained as a link in the referring page (i.e., the start URL). This is a consequence of the
hypertext paradigm. In contrast to the previous integrity constraint, this constraint cannot be
checked using only the information provided with the events. Therefore, the following formal-
ization uses an external predicate contains_link(a,b) which indicates that page a contains a
link to page b:

Ve=(te,Vo)€ E te =follow_link =
= integrityy= (e Ve) € Ejpyy “te -
contains_link(estart URL,edestination URL)
Of course, the complete set of integrity constraints contains more integrity constraints regard-
ing the attribute values of atomic events or the events of composite interaction events.

w  lwww = {integrity; integrity,, ...}

*

Summing up, the user interaction model provides a formal description of the interaction the
user can perform with the systems. This means that the first step of a system specific instance
of the framework is the design of a user interaction model. The design of the OLAP specific
interaction model IMgap Will be discussed in Section 3.3.

2.4 Modeling Patternsin User Interactions

The Pattern Model representing the patterns in the user’ s interactions is the central communi-
cation point of the PROMISE reference framework. The pattern induction process as well as
the modeling process both produce results which must conform to the pattern model and the
patterns constitute the primary input for the prediction process. The pattern model formalizes
statistical properties of interaction events and event sequences and is therefore based on the
interaction model described in the previous section.

The pattern model defines how knowledge about regularities in the user’s behavior is being
represented. Therefore, its design directly determines the quality of the prediction results and
the improvements of the system’s performance through the application of the prediction re-
sults. On the other hand, the information about patterns must be stored, maintained and evalu-
ated at runtime. This calls for compact representation techniques and data structures that allow
for an efficient prediction.

The concept of a pattern is of central importance for the rest of this work, and so far our
understanding of this term for the context of PROMISE has not been properly defined. There-
fore, the following Section 2.4.1 discusses a possible general definition of patterns and pattern
schemata independent of the PROMISE framework and the prediction of user interactions,
before we present the two dominant types of patterns relevant to the PROMISE environment
together with aformal definition of a pattern model in Section 2.4.2.
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24.1 WhatisaPatternin General?

The purpose of this section is to clarify our understanding of the term pattern and the associ-
ated terms: pattern representation language and pattern schema independently of the PROM-
ISE framework in a general and abstract way. The recognition and formulation of patterns
plays a role in different research areas (image analysis, knowledge discovery in databases,
machine learning etc.). Consequently, avariety of different definitions for the term pattern has
been introduced. However, it is commonly agreed that a general and precise definition of this
term (like information, knowledge etc.) is not sensible. For the PROMISE approach, we fol-
low the understanding of a pattern that is common in the area of Knowledge Discovery in Da-
tabases (KDD) and formulated e.g., in [FPS+96b], [KZ96].

Let us assume a set of abstract objects C (called facts or cases in the KDD terminology;
e.g., a set of multidimensional query sessions or insurance contracts) for which we want to
formulate patterns. Each object (or case) is described by a certain set of attributes (for exam-
ple, the time when the session started, the user executing the session, the queries executed
during this session or the income of the contractor). A pattern describes a regularity regarding
a subset of objectsin C (e.g., sessions containing a certain query g also contain the queries gx
and g after the query g or insurance contracts that were profitable are owned by persons with
an income of over $105.000).

A pattern should compactly describe objects in an interesting subset of C (for example, all
sessions that contain the query q or al insurance contracts that were profitable). We cal a
formal expression p that intensionally describes such a subset C, c C a pattern. Mathemati-
cally speaking, a pattern p is aformal predicate over the set of objects C that identifies a sub-
set Cp < C of the cases C. The formal language L that is used to represent the patterns is
called the pattern representation language (or pattern representation for short). Notably, the
pattern representation must not only contain a definition of the syntax of the patterns but also
somehow define the semantics (i.e., the interpretation in a certain application domain) of the
pattern expressions that are expressible using the syntactic definitions. Naturally, the choice of
representation language is a very fundamental design decision as it restricts the set of patterns
that can be formulated. This problem will be addressed in the following Section 2.4.2 for the
abstract framework and will be refined in Chapter 4 specifically for OLAP systems.

A single fixed pattern representation still allows for formulating alarge set of different pat-
terns al conforming to the language description. When designing algorithms that require pat-
terns as an input (which we have to do for the PROMISE framework), it is desirable to further
specify restrictions for the set of patternsin order to describe the type of patterns which can be
processed by the algorithm. Therefore, we introduce the notion of a pattern schema which
(analogousdly to a database schema) defines a common structure for a set of patterns. Formally,
a pattern schema is a pattern which contains free variables. A pattern is an instance of a pat-
tern schema, if it can be obtained from the pattern schema by instantiating the free variables
or by binding the free variables using quantifiers.

In order to illustrate these concepts, we can loosely compare a pattern model (pattern repre-
sentation, pattern schema and patterns) to the model of a database. The pattern representation
language of the pattern model corresponds to the data model (for example, the definition of a
relation in the relational model) of the database in the sense that it fundamentally determines
what is expressible in the context of the database/pattern model. A pattern schema corre-
sponds to a database schema (for example, the schema of a relation) as it specifies the com-
mon structure for the data/patterns that are considered valid within the context of the data-
base/pattern model. Algorithms are designed with respect to certain pattern schemata. That
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means that they can work with any set of patterns that contains only instances of the appropri-
ate pattern schema. This analogy also shows that the choice of a pattern representation is a
very global decision while the choice of pattern schemata is algorithm specific. Therefore, the
choice of appropriate pattern schemata for the prediction of OLAP user behavior is subject to
discussion in Chapter 4 where the prediction algorithm for OLAP systems s discussed.

The following definition summarizes this understanding of patterns as instances of pattern
schemata with respect to a certain pattern representation:

Definition 2.5 (Pattern Representation, Pattern Schema, Pattern)

Let L be aformal language which contains predicates to describe subsets of a set of objects C.
An expression p of the language L is called a pattern characterizing a subset C, of C if it de-
scribes the objects in the subset C,in an intensional way*.

If a pattern expression contains free variables or parameters, the expression is called a Pattern
Schema. The language L is called the Pattern Representation Language. .

Example 2.2 (Representing Patter ns and Pattern Schemata Using Rules)

Rules are a popular form of representing patterns. A rule has the form LS=RS, where LS and
RS are predicates of an appropriate formal language. The rule LS=RS has the semantic
meaning that if the interpretation of LS istrue, the interpretation of LS aso holds. Let us con-
sider the example of insurance contracts. Each contract is described by a set of attributes (e.g.,
age of the contractor, income of the contractor, a flag indicating if the contract is profitable).
An interesting pattern characterizing the profitable contractsis:

income > $105.000= profitable="yes

A pattern schema defines the structure for a set of patterns. e.g., the following relatively re-
strictive pattern schema fixes the structure for both sides of the rule and only alows the varia-
tion of the parameter x which defines the limit for the income:

income > x = profitable="yes
Patterns conforming to this schema are income>5000= profitable="yes or income>40.000=
profitable="yes

The following pattern schema allows more freedom for instances, as the attributes for the | eft
and right hand side of the rule are also parameters of the schema.

[attribute-namel] > x = [attribute-name2] =y

Patterns conforming to this schema are income>5000= profitable="yes or age>60= profit-
able="no’ and income>100.000=age=60. Still the schema demands that the left and right
hand side only contain one attribute-name. A pattern schema that allows two attributes to in-
fluence the target attribute thisis the following:

[attributel]>x A [attribute2] >y =[attribute3]=z

*

The goal of defining patterns in the PROMISE context is to build a model which describes the
navigational interaction of the user with the system. Generally, two fundamental approaches
can be distinguished (see e.g., [FPS96b]): the probabilistic approach and the deterministic
approach. A deterministic approach is based on the assumption that the modeled domain (in

4 of course, the term ‘intensional’ is subject to interpretation (reflecting different views of the term pattern). For example

[FPS96] demands that the description “is simpler (in some sense) than the enumeration of all objects of the subset”
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our case the interaction of a user) can be described in a deterministic way. In the context of
our pattern model this means that a pattern is only considered valid (and should therefore be
part of the mode!), if it holds for all possible cases for al time (this corresponds to the defini-
tion of a pattern in Definition 2.5) .

In contrast to this, a probabilistic model allows for uncertainty in the modeling process.
That means, the model contains means to express the uncertainty (usually probabilities). As
the domain we are modeling involves the cognitive process of interactive users (which cannot
be modeled in a deterministic way), we use the probabilistic approach for PROMISE. This
means that all patterns are probabilistic in the sense that they are regarded valid even if they
do not hold for all possible cases in the application domain (for example, even if a person that
has an income of over $105.000 may have an insurance contract which is not profitable). The
pattern described in Definition 2.5 is a deterministic pattern. In order to express a probabilistic
model, every pattern is extended with a probability value, which denotes the certainty that a
new case satisfies the pattern.

Definition 2.6 (Probabilistic Pattern)

Assuming a (deterministic) pattern p, the tuple (p, prob) is called a probabilistic pattern, if
probe [0;1] isthe probability that p holds in an application domain. .

Example 2.3 (Probabilistic Rules)

An example for a probabilistic pattern type are probabilistic rules. A probabilistic ruleis based
on the definition of arule and is atuple (LS=RS, prob), where prob denotes the conditional
probability of predicate RS if LS holds. Thus, prob(LS = RS) = prob(Rq LS). .

2.4.2 Patternsin the PROMISE framework

The previous section gave a very genera definition of a pattern as a predicate describing a
significant subset of a set of objects C. This section takes a closer look at the regularities that
should be described by patterns in the PROMISE framework. The PROMISE interaction
model (see Definition 2.1) defined two types of “objects’: atomic interaction events (de-
scribed by a type and certain attributes) and composite events (Sessions) composed from
atomic interaction events. Therefore, we can basically distinguish two different types of pat-
terns (see also Figure 2.3 for avisualization):

= Sngle-Interaction Patterns describing interdependencies between the attribute values of a
single interaction event. 1.e., the pattern describes how the value of certain attributes influ-
ences the values for other attributes for a single interaction event irrespective of the ses-
sion context. E.g., Multidimensional queries containing restrictions for vehicles of brand
‘BMW'’ often also contain arestriction for ‘Bavaria .

= navigational (or sequential) interaction patterns capture regularities between subsequent
interactions during a session. E.g., query g is often contained in sessions that previously
contained queries i, g2 and gz in this order. A sequential interaction pattern models the
fact that the probabilities for an interaction event to have certain attribute values is de-
pendent on the session context of the event. The session context of an event are the last
events that occurred directly before the event itself (see Definition 2.4). Notably, the
predicate describing the sequential pattern may refer to single attribute values of the events
involved, e.g., describing the influence of an attribute value av;* in event €' on another at-
tribute value avs” in event €.
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single
interaction
pattern
navigational- =(t,(av,,...av,))
(sequential) e’=(t,(av,’,...av,?))
interaction e’=(t,(av’,...av.’))
pattern ‘=(t,(av,’,...av,")

Figure 2.3: Different Types of Interaction Patterns

The patterns contained in the sequence of interaction events are a representation of different
constraints from the information system’s domain:

= Integrity constraints of the interaction model (cf. Definition 2.1): The interaction model
defines a set of integrity constraints (for example, that for afollow link event, alink must
exist between the start and the destination page). This includes restrictions of the user in-
terface design. E.g., if it is known that the system only supports links with a single target,
the interaction model is simpler. These patterns are independent of the application domain
and are known at the design time of the prediction algorithm and the pattern schemata

= Sructure of the analysis process and constrains of the application domain: Constraints of
the application’s domain (such that it is not sensible to analyze a certain combination of
geographic regions and vehicle although it would be allowed by the data model) and the
inherent structure of the analysis process are mirrored as characteristic patterns in user be-
havior. These patterns are not known when designing the prediction algorithm as they are
application domain specific (for example, logistics planning).

Independent of the two basic types (single vs. navigational), PROMISE uses generalized pat-
terns i.e., patterns formulated on a higher level of abstraction. The definition of event types
and their corresponding attributes for an interaction model implicitly defines the finest granu-
larity on which patterns can be defined, because the expression describing the pattern is for-
mulated with respect to the attributes. On the other hand, application domain specific classifi-
cations (see Section 3.1) can be defined for events e.g., by using classifications defined for
single attributes of the event. For example, if the time of occurrenceis an attribute of the event
and is being measured in seconds in the interaction model, a classification hierarchy over the
events can be defined using the hour when the event took place. If the formal language that is
used to define the patterns allows for using classification respectively generalization functions
as part of a predicate, it is possible to formulate so-called generalized or abstract patterns.
E.g., income_class="medium’ = profitable="yes .

Generalization leads to patterns with a higher significance especially in application areas
where the number of possible eventsis large (or even infinite). It is important to note though
that generalized patterns naturally carry less information than detailed patterns. Therefore, the
prediction process can only make generalized predictions from generalized patterns. That
means, the prediction algorithm must use additional models in order to provide the missing
information.

In order to formulate generalized patterns for the PROMISE framework, we have to define
generalizations over atomic and composite events. Mathematically speaking, a generalization
is the definition of a complete partitioning of the set of all events (resp. sessions). Such a par-
titioning defines an equivalency relation o < Ejvx Eym on the set of al atomic (resp. complex)
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events. Depending on the requirements of the prediction application and the prediction ago-
rithm used to implement the prediction process, different generalization strategies are feasible.
Therefore, a domain specific instance of the pattern model defines generalizations for the in-
teraction events. Generalizations can be defined for simple events or for composite events
(sessions). For the scope of the PROMISE framework, we assume that the set of generaliza-
tionsis designed in advance and thus is static for the system. A possible extension of this con-
cept by inducing possible generalizations from the interaction datais discussed in Chapter 7.

The following definition summarizes the above considerations about the components of an
Interaction pattern model, forming the core of the PROMISE framework:

Definition 2.7 (Interaction Pattern Model)

An Interaction Pattern Model (or short pattern model) for an interaction model IM=(T, A, attr,
) isdefined asatuple PMiy =(L, G, S), where

= L defines a first order logical language which contains typed variables for all the event
attributes ac A. L is called the Pattern Representation Language.

» G={0,..., O} isafinite set of generalization (or grouping) functions for events. Each gen-
eralization function g; is defined by an according equivalency relation oicEmxEw.

m S{sy,..., Sn} isaset of pattern schemata formulated using L possibly containing generali-
zation functions of G

The set of patterns which are formulated using L and are instances of a pattern schema se Sis
denoted as Ppy. .
Example 2.4 (A Simple Pattern Model for WWW Interactions)

In this example, we present a pattern model for the interaction model |Mwww introduced in
Example 2.2 that can be used to model regularities between accesses to web pages that often
occur directly after one another in user sessions. Such a pattern model can be used for predict-
ing the page that is likely to be visited directly after a given page. The according pattern model

PM v = (Lo - G » Sww)  CONtAINS an- appropriate pattern representation language
Lwww Which contains

= aset of typed variable symbols for URLs (x and y), a set of variable symbols for simple
interaction events (a and b) and for sessions (Ses) and

= symbolsto formulate first order logical expressions (e.g., ‘=, ‘A’),

= asgpecid relation symbol follows,(a,b) which indicates that event b follows event a within
a look-ahead window of size n in a session S For the rest of this example let

Ses e ETMVWWV denote a session and a,b € E,  denote (atomic) interaction events.

That means, for all Ses e ETMWWW and a,beE,, . therelaion

follows, : Ej, x E, X Ey with

follows, (Ses,a,b) ;= 3JU,V,We ETMWWW :Ses=U cacV oboW AlV|<m.

For example follows, (<abcde>, ‘b, ‘d") evauates to true while follows;(<a,b,c,d,e>, b,
d) evaluatesto false.

A simple pattern schema (from Syww) that characterizes patterns where two pages are visited
directly one after the other is described as follows:
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VSese E a,be E
IMywwww

IMww
adestination_URL = x A follows; (Ses, a,b) = b.destination_URL =y

The pattern schema contains two free variables x and y which can be instantiated by URLSs.
For notational convenience we denote instances of this pattern schema as x—1y. An example
pattern for this schema would be “http://www.forwiss.de” —1“ http://www.forwiss.de/wibas/” .

Another schema that captures patterns where a page is visited within three navigation steps
looks like this:

VSese E a,be E :
IMwww MWW

adestination_URL = x A followsz(Ses, a,b) = b.destination URL =y

Assuming a classification of web pages e.g., into persona homepages, publication pages, pro-
ject pages etc., interaction events can be classified according to the type of their destination
page. This classification of events (which is an element of G) is formally defined by an

equivalency relation clasgz c E xE which is defined by the following expres-

IMywwww IMwwww

sion:
(a,b)e clasgr < type(adestination_URL) = type(b.destination_URL)for a,be Ey,, .\

Using this classification it is possible to define generalized pattern schemata, like the follow-
ing, which captures interdependencies of the type of two subsequently chosen pages (for ex-
ample, that requests for publication pages are followed by requests for personal homepages):

VSese E” abe E
IMywwww

IMww
type(b.destination_URL) = publication page A follows; (Ses,a,b) =
type(a.destination_URL) = homepage

*

The appropriate design of the pattern model (choosing a pattern representation and designing
pattern schemata and generalizations) is the most critical issue when building a domain spe-
cific instance of the PROMISE framework. If the pattern model is too simplistic it may not
allow for capturing the characteristic patterns of the user behavior, no matter how much effort
IS put into designing the prediction and pattern induction process. On the other hand, a highly
complex model (which ensures a good expressiveness) alows for formulating, detecting and
exploiting more sophisticated patterns. Nevertheless, a more complex model also means a
more complex induction and maintenance process and causes higher storage costs. Another
well-known problem that can occur with models that are too complex is overfitting (for ex-
ample, [FPS96b]): If a model allows for representing the patterns on a very fine level, this
leads to models that very accurately represent past data, but |oose predictive accuracy as they
do not generalize at all.

The essential design of the pattern model for OLAP applicationsis detailed in Section 4.3.
There, we discuss an OLAP specific interaction pattern model based on Markov models. We
develop a formalism to represent the patterns and discuss different generalization techniques
and their impact on the prediction process and its applications.

So far, we have described the data models which are necessary to describe the communica
tion between the different processes of the framework. The next step is to take a closer look at




CHAPTER 2 THE PROMISE FRAMEWORK — A BIRD EYE’S VIEW

the dynamic processes themselves and to identify the challenges involved in designing these
components.

2.5 ThePrediction Process— The Core of the PROMISE Framework

The prediction process forms the core of the PROMISE framework. It is initiated and con-
trolled by the process which applies the prediction results in order to improve the information
system performance (called application process for the rest of this section). A predictive cach-
ing process is an example for such an application process. Whenever the application process
needs predictions of future user interactions (for example, when determining if an object
should be evicted from the cache or kept because it is likely to be accessed in the near future),
it starts the prediction process. The prediction process can then access the current session con-
text (or session history) which contains administrative information about the current session
(for example, user name etc.) together with alog of the last m events that occurred during the
session. The session context is described according to the interaction model IM. The number
m of events known to the prediction algorithm is called the look-back window of the predic-
tion process. Additionally, the prediction process needs access to the patterns which are ex-
pressed with respect to an according interaction pattern model PMy.

Notably, the prediction process only evaluates the patterns in order to generate predictions.
The conclusions for the application system are drawn solely by the application process (for
example, whether or not to evict an object from the cache). This separation of concerns allows
a separate discussion of different prediction algorithms without knowledge about the internals
of the application process (for example, a predictive caching process) and vice versa.

The design of prediction algorithms for OLAP interactions based on different pattern inter-
action models is thoroughly discussed in Section 4.3. However the most interesting general
Issues when designing the prediction process include:

= Choice of prediction results. The application process requires that the prediction process
returns the predictions that are most beneficial for the task of the application process.
However, the definition of “benefit” varies for different applications. The definition of
benefit may be based on the probability of the event, e.g., the prediction process can pre-
dict the most likely event or all events which fulfill a minimum probability threshold. An-
other alternative would be that afixed number of most probable events are being returned.
A more complex alternative is the usage of an application-specific cost/benefit-function.
This function, which contains a parameter for the predicted probability is passed to the
prediction algorithm by the application process. The prediction algorithm then returns pre-
dictions with the highest cost/benefit ratio according to this function. E.g., if the applica-
tion process maintains a query level cache, some queries can be re-computed cheaply
while others are very costly to compute. Clearly, it is a good strategy to cache queries that
are costly to re-compute and have a high probability of being executed next. Therefore, the
cost/benefit ratio formulafor this application process would contain the re-computation ef-
fort as costs and the probability of the query being executed in the near future as benefit.
For PROMISE, we discuss the different alternatives and their implication to our algorithm
in Section 4.3.

= Generalization of prediction results. Normally, the prediction process predicts events on
the granularity of the interaction model, but for some applications it might be sufficient re-
spectively advantageous to return generalized predictions. E.g., if a proxy cache in a
WWW environment maintains documents of different types (e.g., images, dynamicaly
generated pages, static pages), for an eviction decision it might be enough to receive a
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prediction about what type of document is likely to be accessed next instead of the actual
document.

= Time Awareness. A time-unaware prediction process assumes a logica timescale where
each unit of time corresponds to the occurrence of an execution event. In contrast to this, a
time-aware prediction aso takes the timing of the anticipated requests into account. This
means that the prediction process does not only produce a probability for a predicted
event, but a probability distribution over time (for example, stating that the event will be
initiated within the next 2 minutes with 40% probability and within 3 minutes with 60%
probability). This information can be provided to the application process as additional in-
formation e.g., to drive a cost based decision. A time aware prediction process implies that
the patterns must contain information about the typical timing of events. Our prediction
algorithm presented in Section 4.3 uses a discrete time model. An extension of the algo-
rithm towards a time aware model is discussed in chapter 7.

The prediction algorithm together with the choice of an accurate interaction pattern model are
the key parameters for the performance of a prediction framework. Being a heuristic approach,
its suitability has to be evaluated empirically by comparing the performance (for example,
accuracy of the prediction) of the framework for different kinds of workloads. For our OLAP
specific instance of the PROMISE framework, this evaluation is performed using a trace-
driven simulation environment which is described in greater detail in Chapter 6, where we
also present and interpret the simulation results. In order to study the influence of different
parameters (e.g., the size of the look-ahead window, the composition of the workload), we
deploy artificially generated interaction traces for the ssmulation.

2.6 Thelnduction Process— From Interactionsto Patterns

The pattern induction process generates the patterns which are essential to the prediction
process. Itsinput isalist of sessions (composite interaction events) that were executed by dif-
ferent users or user groups in the past. The sessions are described according to an Interaction
Model IM. The process produces a set of patterns which are described according to the inter-
action pattern model PM,y (which has to be defined in advance). In other words, the patterns
are instances of the pattern schemata defined in the pattern model and are formulated using
the pattern representation language of PMu. This ensures that the produced patterns can be
directly used as input to the prediction process.

Formally, the pattern induction process is a mapping /from a sequence of composite inter-
action events formulated according to an interaction model IM (which are in turn sequences of
atomic interaction events) to a set of patterns conforming to ainteraction pattern model PM .

IPM|M :<E% )* — Poy

When designing a system type specific instance of the pattern induction process (for exam-
ple, for OLAP systems), the following issues have to be discussed to formulate requirements
regarding the algorithms.

= Degree of human interaction. The induction can be carried out automatically or semi-
automatically with the involvement of an administrator or domain expert who checks the
plausibility and validity of the patterns. A goa of the PROMISE framework is to keep the
additional effort for administrating the predictive information system as low as possible.
Furthermore, in our framework, the fully interactive pattern deduction process already fa-
cilitates the integration of expert knowledge into the overall process. Therefore, an impor-
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tant requirement for the induction process is that it is able to operate without human inter-
vention.

= Incremental vs. Full update techniques. Some induction algorithms need all the interac-
tions perceived so far in order to update the model (full update). In contrast to this, incre-
mental induction algorithms updates the patterns based only on a small set of recent inter-
actions. This enables the agorithm to work online, that means that the pattern information
can be adjusted online every time a user interaction occurs. Considering the large amount
of user interactions that can occur and the fact that maintenance time for information sys-
tems often is a critical factor, for PROMISE, we prefer incremental techniques that main-
tain the patterns online during the user interactions take place.

= Changing user behavior. The patterns in the user’s behavior change over time. E.g., when
the user is dtill inexperienced with the analytical capabilities of the system, other naviga-
tion paths occur. Therefore, the pattern induction mechanism must incorporate mecha
nisms to adjust the set of patterns to this changing behavior. This includes for example the
ability to assign a higher weight to patterns that occurred in recent interactions compared
to patterns present in interactions that occurred less recently.

After having discussed the basic requirements, we now take a look at the impact that these
reguirements have on the reusability of existing algorithms. The induction of different kinds
of patterns from a set of given events is being extensively researched in the Knowledge Dis-
covery in Databases area in the context of Data Mining Algorithms. The PROMISE pattern
induction process constitutes a special case of KDD. Therefore, this section describes the spe-
cial requirements and peculiarities of the PROMISE framework that have to be taken into
account when adapting general data mining and pattern induction algorithms.

A multitude of data mining algorithms have been proposed, but to point out the specia re-
quirements of the PROMISE framework it is sufficient to look at the abstract structure of
these algorithms. In general, the core of the pattern induction agorithm consists of two
phases. parameter search and model search. The parameter search assumes a fixed schemafor
the patterns and finds instances for the parameters of the pattern schema such that the input
data optimally fits the resulting expression. E.g., for the following pattern schema

income>X = profitable = ‘yes

the parameter search phase finds values for X such that the input data is well described by the
resulting rule. Of course, the result is dependent on the method that the algorithm uses to
measure how good a given dataset fits a given pattern (called evaluation strategy in
[FPS96h]). Depending on the definition of the evaluation strategy and the search space for the
parameters, a solution for the parameters can either be obtained in closed form or by a heuris-
tic search algorithm (for example, greedy algorithms). A second phase (called model search)
of the abstract general induction algorithms varies the pattern schemata itself. As the set of
pattern schemata is infinitely large for most of the interesting pattern models, this variation is
usually performed in a heuristic way. After varying the pattern schemata, a new parameter
search is started.

As already pointed out in the previous sections, for the PROMISE framework we assume
that a fixed (system type specific, e.g., OLAP specific) set of pattern schemata is defined at
the design time of the system. These predefined schemata correspond exactly to the set of pat-
tern schemata which can be processed by the prediction agorithm. Therefore, for our frame-
work a pattern induction process does not contain a model search phase but only a parameter
search phase. Additionally, we target a solution, where the optimal parameterization for a pat-
tern schema regarding a set of past interactions can be obtained in closed form such that no
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heuristic search agorithm is needed. This greatly ssmplifies the structure of the induction
process and enables us to fulfill the requirements of an automatic and incremental online algo-
rithm. Section 4.3 presents an incremental weighted relative frequency counting technique.
Possibilities to relax the assumption that pattern schemata are known in advance are discussed
in Section 7.3.3.2.

2.7 TheModeling Process— Deduction of Patterns

Apart from inducting patterns from user interactions observed in the past, it is also feasible to
model anticipated user behavior in advance. This is typically done by domain experts who
know the structure of the domain-specific analysis process (for example, the methodology
used to plan distribution strategies for spare parts). That means that in contrast to the pattern
induction process, the modeling process cannot be fully automated. Therefore, we cannot de-
fine an algorithm for this process. Instead a methodology for this modeling process and its
integration into a conceptual information system modeling methodology has to be discussed.

It is not feasible to demand that the domain expert specifies the analysis process using a
mathematical model (for example, using a rule based mechanism). Instead, an intuitive
graphical notation must be provided for the domain expert to specify the dynamic work char-
acterigtics. Therefore, the PROMISE framework needs a modeling formalism that is intui-
tively understandable by the experts and can easily be transformed into a representation that
can be interpreted by the prediction algorithm. This means, it is necessary to define a graphi-
cal representation of the pattern model and to integrate this graphical model into a design
methodology for the targeted type of information systems (e.g., a hypertext design method like
HMT [SZ00], or a data warehouse design methodology, e.g. [BSHOO], [HH99], [GR99]).

Another positive aspect — besides enabling prediction — of systematically modeling the
user’'s behavior during early phases of the system design process is that these models docu-
ment the user’s requirements in a natural way. Our experience from specifying severa real
world data warehouses with our project partners show that end users can usually describe the
structure of their work very well (for example, as a detailed workflow), but most often have
difficulties defining and understanding static data models that mirror the static nature of their
business. Therefore, instead of first designing the static part of the system (the data model for
the application, e.g., the link structure of a Web site or the multidimensional schema of an
OLAP application), it is possible to design the dynamic model of the information system (i.e.,
the typical user interaction) and later derive the static structures that are necessary to enable
the dynamic usage. In other words, the specification of characteristic navigation patterns can
be used to drive the design process resulting in a design that mirrors the user requirementsin a
more adequate way than the result of a process centered around the static system specification.
This corresponds to the idea of a use-case driven application design ([Jac92)).

The FORWISS BabelFish Design Methodology alows for specifying, generating and
maintaining OLAP applications based on graphical views of an extensible meta-model
([BSHOQ]). The easy extensibility of the meta model makes BabelFish ideally suited for cou-
pling with the PROMISE/OLAP framework (see Section 7.3.1 and [BSHOOQ]). The extensible
meta-model of BabelFish describes al the objects that are necessary to specify and maintain
an OLAP solution. Views of this meta-model are presented to the designers in a graphical
way. Through these views, the designers interactively manipulate the specification of the
OLAP application. [BSHOQ] describes this mechanism in a more detailed way and an integra-
tion of the PROMISE approach with the Babel Fish design methodol ogy.
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2.8 Application of Prediction Results—Materializing the Benefits

As already motivated in chapter 1, the results of the prediction process can be deployed in a
multitude of ways to build adaptable navigational systems. For this thesis, we focus on the
implications of a prediction algorithm for the dynamic caching behavior of a navigational in-
formation system.

In general, caching techniques rely on the assumption that the data access workload (which
is indirectly being generated by the interactive user in our environment) shows simple repeti-
tive patterns. Therefore, results of previous data accesses (or query processing in a database
centered environment) can be stored in a relatively small cache for future references. What
kinds of objects are managed by the cache is strongly dependent on the semantic level on
which caching is performed in the information system architecture. E.g., a low-level cache
which resides close the persistent data storage typically manages objects with little semantic
meaning (for example, pages), while caches which are located closer to the end user (with
respect to the layered system architecture) typically manage semantically richer objects (for
example, query results). These caches are usualy referred to as semantic caches ([DFJ+96]).
An integral part of the PROMISE idea is to use semantics of the application domain (for ex-
ample, mirrored in the data model and typical navigation patterns) for the decisions of the
cache manager. Consequently, we assume a semantic cache that manages objects on a granu-
larity similar to the access granularity of the user (for example, a query level cache). All of the
proposed OLAP specific caches (see Section 5.1) fulfill this property as do e.g., all the WWW
proxy caches.

The improved performance of a system with an integrated cache compared to a system
without caching is mainly a consequence of the fact that cache memory is cheaper to access
than the original data (mostly because it resides on a higher level in the storage hierarchy than
the origina data, e.g., in the server’s main memory instead of the server’s secondary storage).
In systems where the result of a user interaction does not only have to be retrieved but also has
to be computed first (like in any database system), the calculation time can be additionally
shortened by (partly) caching computed results.

The performance of the caching algorithm critically relies on the ability of the cache man-
ager to keep the set of cached data objects (cache content) in such a way that the content en-
ables optimal cost savings regarding data access costs. As cache space is limited, for every
new data object, the cache manager has to decide if it should be placed in the cache (admis-
sion algorithm) and if so, which other object(s) should be removed from the cache in case that
there is not enough room for the new object (eviction algorithm). This decision is driven by an
estimation of the future benefits of a cached object (for example, the cost savings that can be
achieved using this object to answer future data accesses) compared to the cost for maintain-
ing the object in the cache (for example, the space which the object occupies).

The idea of the PROMISE approach is to provide the cache manager with the capability to
use prediction information which is provided by the prediction processin order to improve the
cache benefit. A caching algorithm can principally make use of prediction information for the
following two tasks:

= enhancing the design of admission/eviction agorithms and
= enabling speculative execution (prefetching) strategies.

The following two sections highlight the most important issues of those two application areas
which will be discussed in depth in Chapter 5.
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2.8.1 PredictionsImproving Cache Management

When deciding, if a data object (the content of an object is dependent on the granularity of the
caching algorithm) should be stored in the cache, normally a cost/benefit function is being
evaluated which leverages the incurred costs (cache storage space of the object) and the bene-
fits (potential to speed up future data accesses). If the cost/benefit function is above a certain
threshold, the object is admitted to the cache. When the cache reaches a certain size, new ob-
jects can only be admitted to the cache if existing objects are replaced. The task of the eviction
algorithm is to identify the objects in the cache that are least likely to be beneficial for reacting
to future interactions. Both, the admission and the eviction algorithm need functions to esti-
mate the benefits of a cached object for future data accesses.

The admission and eviction algorithms use assumptions about the locality of future data
accesses to decide which previoudly referenced items should be kept in the cache. Different
forms of locality can be distinguished (actual algorithms can combine different types of local-
ity measures):

= Locality of the access regarding the current cache content. |.e., the cache manager as-
sumes that objects currently being in the cache because they were accessed recently will be
accessed again in the near future. This kind of locality assumption is classically used for
database and processor caches as it optimally models loop like structures (for example, re-
peated execution of similar queries) of programs (a prominent example is the Least Re-
cently Used strategy).

= Locality regarding the data space. If the application domain of the data contains a natural
definition of locality (as for example spatio-tempora data), this locality can be used to
drive the admission and eviction decisions. This means e.g., that objects which are located
‘near’ the last object being accessed are less likely to be evicted.

= Semantic locality. If it is possible define a semantic distance between objects (for exam-
ple, web pages with similar content), this measure can also be used to drive caching deci-
sions. The locality used by the PROMISE approach can be subsumed under this category
as objects which are often accessed consecutively during a session can be defined to have
alargelocality.

It is obvious that both the eviction and the admission agorithms can benefit from a prediction
algorithm that can enumerate likely future interactions (interactions that are semantically near
to the previous interaction) as both need to calculate the potential benefit for future interac-
tions. Let us assume that the prediction algorithm computes the set of the n most likely future
interaction events ey,...,e, together with their respective probabilities py,..., pn. The benefit of a
cached object o for the processing of interaction event e (for example, a query in an OLAP
system) is given by the formula bg(0). The actual formula depends on the granularity of the
caching strategy. The overall potentia benefit B(0) of a cached object o can then be computed
as

B(o)= > b.(0)- p
I<i<n
Of course, the benefit function b(o) is strongly dependent on the type of the information sys-
tem and the caching strategy. A discussion of OLAP system specific predictive admission and
eviction caching algorithmsisincluded in Chapter 5.
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2.8.2 Improving Cache Performance by Enabling Speculative Execution

Prefetching or speculative executions strategies can complement the demand fetching strate-
gies of classical caching algorithms. Classical caching strategies only consider objects that
have been produced by past queries. But under certain circumstances, it is possible to reduce
the latency time perceived by the user if the cache manager can initiate prefetching (respec-
tively speculative execution) requests. In such an environment, the cache manager makes use
of the prediction results to speculatively fetch objects into the cache (during idle times) that
are likely to be beneficia for future data accesses (e.g precomputing the most likely multidi-
mensiona query). Figure 2.4 shows the communication between the user and the information
system and illustrates the effect of an improved response time.

Information Information
User system User system
Response Query ) Response Query
Time Processing g, Time Processing q, té
td ts t!
"1 ° * 1 Prediction t?
Results g, Results g,
Query
Consideration Consideration F;rocessmg 9z
Time Time to
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Response Suery . esulls @,
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Q

Results q,

Non prefetching solution Prefetching solution

Figure 2.4: The Principle of Reducing Response Times by Predictive Prefetching and Caching

A session starts with the user executing an interaction that leads to a querys g, against the in-
formaton system. While the query is being transmitted to the information system, executed,
and the results are sent back to the user, the user waits (this is the latency time perceived by
the user). Afterwards, a cognitive process takes place when the user evaluates the result of the
last query and builds a new hypothesis. For our illustration, we assumed that the systemisidle
during this consideration time (after which the user executes query gy)’. If g2 can be predicted
using information about the session so far (for example, query g;) and information about typi-
cal patterns, the query can be executed during the cognitive process. If the prediction was cor-
rect, the next query can be directly answered from the cache, reducing the response time per-
ceived by the user. If the user executes the query while the speculative execution of the query

5 We use the terms ‘prefetching’ and * speculative execution” synonymously throughout this thesis. For systems that retrieve
datain the form it is stored (for example WWW servers serving static pages), we prefer the term prefetching and for sys-
tems that perform more or less complex computations with the raw data before presenting it to the user, we use the term
speculative execution.

6 The term query is used here in abroad meaning also subsuming e.g. asimple HTTP request against a WWW server.

7 This may sound like an oversimplification, as of course the system might be busy executing queries from other users during
this time. Albeit, the empirical analysis in section 6.1 shows that this assumption is not unrealistic in real life environ-
ments. As long as the system has some idle times, the approach of prefetching can be beneficial.
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is still in process (that means t% <té <t|§ +t(%), the user’s latency time is still shorter com-

pared to the non-prefetching solution by t(z: — t% asthe query is already running when the user

executes it. If the consideration time is even shorter than the prediction time tZ <t3 no speed-
up is achieved. However, our analysis of real world user behavior (see Section 6.1) shows that
for a percentage of over 80% of the queries the true prefetching assumption (i.e., t3 >> té) is
fulfilled (cf. also [Sap0Q]).

Usualy, a system does not operate in a single user mode (as assumed in our illustration)
but has concurrent accesses of different users. Obviously in such an environment, it has to be
ensured that speculative queries are executed in a way that they do not disturb regular queries
that are executed by other users. This can be done by assigning lower priorities to speculative
queries than to regular queries.

In order to achieve areduction of the latency time, the result of the prediction has to be cor-
rect, that means the actual interaction must be equivalent to the predicted interactione. Ideally,
the design of the predictive prefetching system should ensure that the latency time is not in-
creased, if case the prediction iswrong. In order to illustrate this problem, let us consider that
the last prediction was wrong i.e., the actual interaction event (with its associated query q,) is

not equivalent to the predicted interaction event (with the associated query G, ). If the execu-
tion of the speculative query T, is already finished (t3 >t3 +t5) the latency time for query .
is not affected at all. In this case, the system has to decide if the speculative query results

should be kept in the cache. Figure 2.5 illustrates the extended query execution process of the
predictive information system.
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Figure 2.5: Control Flow for the Extended Query Processing Including Speculative Execution

The most critical case is that the speculative data access for query gy is still in progress when
the next query arrives. In this case, the execution has to be aborted before the execution of the
guery g, can begin. Depending on the system type and the nature of the query, this might incur
additional costs which in turn increases the latency time of the user. This effect should be

8 In systems, where the prefetched objects are not dijoint (for example in a database system, where a query can be computed
from the results of a different query), a speed-up is also possible, if parts of the predicted query can be used in the compu-

tation of the actua query.
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avoided as far as possible on the information system side, by exploiting mechanisms to de-
crease the cost of aborting an operation and on the prediction side by avoiding the speculative
execution of unlikely queries. The avoidance of unnecessary queries is also sensible, because
wrong speculative executions also increase the usage of system resources (e.g., network
bandwidth, processor and 1/0 time, cache space).

Summarizing, a speculatively executed query incurs costs (execution time, space for result
storage, usage of system resources) and can result in certain benefits (shorter latency time) if
the prediction is successful. Therefore, it is essentia for the performance of the overal sys-
tem, to decide whether a predicted interaction event is to be speculatively executed or not
based on a comparison of potential costs incurred by a speculative execution (both in execu-
tion time and storage costs of the result) and the potential savings by speculatively executing
the interaction. The following considerations about the design of such a cost/benefit model
should make clear that such amodel is far from being trivial due to the large number of influ-
encing parameters:

= finding an appropriate measure for benefit. The evaluation of the potential benefit of a
query result for future queriesis a difficult problem, as this requires assumptions about the
nature of the future queries. Another problem complicating the design of a benefit measure
is that a precomputed query result cannot be only used to answer the query itself, but also
queries that (partly) contain the precomputed query (see Section 3.2.3 for a more detailed
discussion of the derivability problem). Furthermore, the benefit is also dependent on the
execution time of the query compared to the estimated consideration time of the user. This
measure is in turn requires an accurate cost estimation.

= finding an appropriate cost model. This includes the estimation of the computational costs
of a query using a cost model for the query execution. It is also important to note that a
speculative execution also incurs storage costs for the intermediate result. This is espe-
cially important, as cache space is usually limited and other cached results have to be
evicted from the cache in order to make room for the execution results. Therefore, the
benefits of the evicted results aso have to be accounted for in the cost function.

Summarizing, the influencing parameters for a prefetching decision model include:

= the current cache content
= acost/benefit estimation model
= thecurrent load of the system resources

Figure 2.6 summarizes the coarse structure of the prefetching process and its connection to the
prediction process. The prediction process provides potential queries and predicts their prob-
ability. A cost/benefit estimation algorithm estimates the costs and the benefits of the queries
taking into account the cache content, system load, caching parameters etc. The results are
used by a decision process to decide according to the prefetching strategy if a prefetching re-
guest is being initiated.

The cost/benefit function used by the estimation process is specific for the type of informa-
tion system and the caching algorithm deployed. In Chapter 5, we discuss appropriate
cost/benefit estimations for an OLAP specific caching algorithm and their implications.
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2.9 Summary and Conclusions

This chapter refined the specification of this thesis's topic by describing a comprehensive
framework of communicating processes which are necessary to integrate prediction capabili-
ties into a generic navigational information system. It additionally presented a (semi-)formal
functional definition of the processes and discussed the most important issues that have to be
taken into account when designing a system type specific instance of the framework.

One of the objectives was to design a framework which is generic in the sense that it only
assumes an information system with navigational access capabilities. In particular, it should
be totally independent of OLAP systems and can therefore be applied as a reference model to
compare approaches from different application areas and to discuss the applicability of differ-
ent techniques (for example, Data Mining algorithms). This objective is mirrored in the defi-
nition of an abstract interaction model and an associated abstract pattern model. Another ob-
jective was to support a wide range of applications for the prediction results. This was
achieved by containing abstract generalization functions in the definition of the pattern inter-
action model. These functions hide the details of the application specific functions which have
to be provided when defining a instance of the framework. The possibility to reuse existing
techniques was the last objective in the framework’ s design. This requirement was addressed
by strictly modularizing the framework, such that e.g., existing pattern induction algorithms
can be easily inserted into the framework.

The rest of this thesis presents PROMISE/OLAP, an OLAP specific instance of the
PROMISE framework. Chapter 3 first discusses a selection of the most important issues in
OLAP system design and implementation, containing the basis for the definition and discus-
sion throughout the core of this thesis (Chapter 4 to Chapter 6).

To instantiate the PROMISE framework for OLAP systems (cf. Figure 2.7), it is first nec-
essary to define a user interaction model (see Definition 2.1). The development of this OLAP
specific interaction model is the topic of Chapter 3. As the interaction model describes the
interactive operations a user can perform on data that adhere to a multidimensional schema, it
is based on the formal description of a multidimensional schema (Section 3.1) and the corre-
sponding description of the query formalism (Section 3.2).

The next step is the definition of an Interaction Pattern Model (see Definition 2.5), which
defines a formal pattern representation and a set of pattern schemata and generalization func-
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tions for events (Chapter 4). The OLAP specific pattern model is developed in Section 4.2. It
discusses the representation of patterns in OLAP user behavior as Markov-Models. It aso
presents different generalization mechanisms for OLAP queries. This model is the basis for
the discussion of an OLAP specific prediction algorithms in Section 4.3 and a corresponding
pattern induction algorithm in Section 4.4.

In order to materialize the benefits of the prediction, it has to be integrated e.g., into OLAP
caching algorithms. This idea is the topic of Chapter 5. The prediction results can be used to
improve the admission and eviction strategies and enable introducing active caching strategies
facilitating specul ative execution of OLAP queries.

Predictive OLAP Caching
and Prefetching Process

OLAP Prediction
Process
(Section 4.2)

OLAP Pattern Model
(Section 4.1)

Pattern Induction
Process
(Section 4.3)

OLAP User Interaction Model
(Section 3.3)
OLAP Query Model
(Section 3.2)
Static OLAP Data Model
(Section 3.1)

Figure 2.7: Detailed Overview of the Different Models and Processes of the PROMISE Approach
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Of courseit isimportant to evaluate the performance (e.g., predictive accuracy, improvements
of caching strategies) of the OLAP framework. Being a heuristic approach, we empirically
evaluate the feasibility of the framework in Chapter 6. There, we present an empirical analysis
of real world user behavior and analyze the performance of our algorithms (using different
parameter setups) by means of a user simulation.

The above definition of the PROMISE framework contained several explicitly mentioned
assumptions and restrictions which were necessary design decisions to ensure a managesble
complexity of the solution presented in this thesis. An extension of the framework by relaxing
some of the constraintsis the topic of Chapter 7.




«Man’s mind stretched to a new idea
never goes back to its original dimension.»
-- Oliver Wendell Holmes.

Chapter 3 Modeling and Querying OL AP Databases

The general prediction framework presented in the previous chapter is a solid conceptual and
formal basis to develop instantiations that are specific for certain types of navigational infor-
mation systems. The rest of this thesis will be devoted to the development and application of
such an instantiation that is specific to Online Analytical Processing (short: OLAP) environ-
ments.

The first step in the development of OLAP systems was taken by the industry (e.g., Kenan
IRI?). Nevertheless, soon after the first OLAP products began to be commercially successful in
combination with data warehouse solutions (around 1995), the research community has begun
to adopt this field and discuss the main issues from a scientific point of view. From a database
system engineer’s point of view, the most important distinctive feature of an OLAP system
compared to other database systems (for example, relationa database systems) is that it sup-
ports the multidimensional data model on alogica level. Consequently, al the design deci-
sions discussed in the context of database management systems (e.g., physical data storage
and access structures, query processing and optimization techniques, caching techniques)
should be re-evaluated regarding the special semantics of the multidimensional data model.
As a comprehensive overview of this active field of research is certainly beyond the scope of
this thesis, this chapter especialy focuses on the topics which are of direct importance for
defining the OLAP specific instance of the PROMISE framework.

For our work, a formal definition of the multidimensional data model is fundamental, as
thisin turn is the basis for formalizing queries. Therefore, we define our understanding of the
multidimensional concepts based on a discussion of the main differences between existing
approaches in Section 3.1. The result is the PROMISE/OLAP MD-data model which serves as
aformal foundation throughout this thesis. Section 3.2 deals with the question of how to for-
mulate queries in the presence of a multidimensional data model. A survey of scientific ap-
proaches (Section 3.2.1) and a comparison with real-world OLAP interfaces (Section 3.2.2)
provides the motivation for defining the comprehensive PROMISE/OLAP query model in
Sections 3.2.3 and 3.2.4. The most important distinctive features of the PROMISE query
model are that it takes into account the typical OLAP user interface and that it contains means

9 This product is now owned by Oracle Corp. and marketed under the name Oracle Express Server.

Carsten Sapia: PROMISE — Modeling and Predicting User Behavior for OLAP Applications
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to model iterative query formulation. Therefore, this model constitutes an important contribu-
tion of thisthesis.

3.1 TheMultidimensional OLAP Data M ode€l

The centra characteristic of an OLAP system is the support of the multidimensional data
model on alogical level. The OLEDB for OLAP standard ([Mic98]) that is currently emerging
as the de-facto standard for commercia systems suffers from the lack of formal foundation
(like the OLAP council proposal [OLA98]). Neither the semantics of the data model nor the
guery language (MDX) are formally described. Albeit, aformal definition of the concepts that
form the data model is essential to our work, as the user formulates queries with respect to this
data model and terminology. Thus, a formal interaction model (see Chapter 4) must be based
on a forma understanding of the multidimensional data model. At the time of writing, the
discussion how such a model should look like is still in progress in the scientific community.
This is indicated by the large number of proposals about this topic that have been published
during the last two years (see 3.1.1.5 for a comprehensive overview). Our paper [SBH99]
which has been frequently cited certainly played arole in sparking and structuring this discus-
sion.

In this section, we identify the most important design decisions of the formalization proc-
ess and discuss how existing approaches address these issues. We conclude by defining the
PROMISE/OLAP data model by adopting the concepts from different approaches which are
best suited for our approach.

When using the term multidimensional data model in the context of data analysis applica-
tions (OLAP, scientific and statistical databases etc.), typically two important orthogonal con-
cepts are subsumed:

= Organization of base data according to a multidimensional space: The subject of analysis
(called fact) is typically an event type (for example, a vehicle repair). Each occurrence of
the event is being interpreted as a point in a multidimensional space. The coordinates of
the point are defined by discrete attributes characterizing the event (for example, the time
of the repair).

m Classifications: Classifications (for example, in ataxonomy) are used by domain experts
to structure the application domain. The multidimensional data model contains informa-
tion about these classification schemes. This allows for an elegant definition of operations
which leads to an intuitive query formalism that can be understood by the domain experts.

Therefore, in our opinion the multidimensional data model is not very accurately named and
should be better referred to as the multidimensional data model with classifications
([SBH99]). This is mirrored in the structure of our data model and in the discussion of the
structure of this section. The description of the PROMISE/OLAP data model consists of two
parts. the definition of classifications (Section 3.1.2) and the definition of the multidimen-
siona space (Section 3.1.3). Section 3.1.1 discusses the objective and aternatives of the data
model design. A relational implementation of the data model is the subject of Section 3.1.4.

3.1.1 Consderationsabout the Design

This section systematically compiles the most important design decisions of the data model
design process and classifies the existing approaches according to these decisions. Addition-
aly, we discuss the implications of the different approaches, choose an aternative for PROM-
ISE/OLAP and argue why this alternative is best suited.
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3111 General Considerations

The basic objectives of logical data model design are not specific to the multidimensional data
model. This includes the proper separation of schema and instances for al elements of the
data model (data cubes and classifications) and the independence of data model description
from physical implementation.

A fundamental decision when designing a formal data model is whether to understand the
multidimensional data model as autonomous from the ubiquitous relational model. If this
view is adopted, it means that the data model introduces cubes, dimensions and classifications
as the main entities ([V S99] calls this approach cube oriented) and describes it using common
mathematical concepts. This approach is followed by the vast majority of OLAP data models
(e.g., [CT984a], [AGS97], [Vas9g], [Len98a], [DT97]). Of course, this does not mean that the
concepts are far from the relational model. Actually, most of these approaches aso present a
relational mapping of the model for implementation purposes. In contrast to this, the relation-
aly oriented approaches (e.g., [LW96], [GL97]) define the multidimensional model by spe-
cializing and re-interpreting selected elements of the relational model (for example, interpret-
ing aforeign key relationship as a dimension of the cube).

Conclusion: We choose a cube oriented approach as in our opinion, it is better suited to
describe the user’s perception of the data model on alogical level. This approach allows usto
represent the peculiarities of the multidimensional model without re-interpreting common
relational concepts.

3.1.1.2  Describing the multidimensional space

The multidimensional organization of data is very close to the inherent structure of many
problem domains. Events concerning the subject of analysis (for example, avehicle repair) are
interpreted as points in a multidimensional space. The event is being characterized by a set of
attributes (called event attibutes, e.g., time of the repair, duration of the repair). A subset of
these event attributes are used to determine the coordinate of the corresponding point, e.g., the
time of the repair. As these attributes span the multidimensional space, they are called dimen-
sions®. In practical applications, dimensions possess discrete values, this means the multidi-
mensiona space is partitioned into so-called cells®t. These cells contain values for the remain-
ing event attributes (called measures or measure attributes, e.g., number of repairs). Thisidea
is often visualized using a cube metaphor (Figure 3.1).

Thus, the multidimensional model clearly contains a separation of the event attributes into
coordinates (dimensions, also called qualifying data) and cell content (measures, also called
quantifying data). From the application’s point of view, these two types of event attributes
represent different semantics which is mirrored in the type of operations that are executed on
the different attribute types. Restrictions on dimension attributes are typically used to restrict
which cells are contained in the query result, while measures are used to compute aggregated
values. Albeit, this separation is not necessarily obvious nor static as measures can be con-
verted to dimensions (increasing the number of dimensions) and vice versa.

Thus, the interesting issue of the data model design is how to reflect the separation of
measures and dimensions and the dualism of the concepts. Most of the proposed data models
(see 3.1.1.5) follow the approach first introduced in [AGS97]. The definition of the cube
schema contains a standard partitioning of the attributes into measures and dimensions. To

10 Some approaches call these attributes dimension attributes.
11 However, the approach can also be applied to continuos dimension domains.
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reflect the dualism between measures and dimensions, the corresponding algebra contains
conversion operations that restructure the cube by converting measures to dimensions and vice
versa (for example, caled fold/unfold in [AGS97]). An aternative approach is taken by
strongly relationally oriented approaches (e.g., [GL97], [MRB99]): here, no separation be-
tween measures and dimensions is defined, the partitioning is determined for each query in-
stead (cf. [Mar99]). Another interesting approach can be found in [PJ99], who do not model
the concept of measures but only allow dimensions thus modeling all measures as dimensions.

Number of
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Figure 3.1: Visualizing the Multidimensional Data Space Using the Cube Metaphor

Conclusion: The user’s different semantic perception of measures and dimensions is impor-
tant for the PROMISE/OLAP approach as this difference is being reflected by the query be-
havior of the user. For most cases a standard partitioning of event attributes into dimensions
(qualifying data) and measures (quantifying data) can be given at the system’s design time.
Therefore, we include the information which attributes are mostly treated as measures and
which are mostly deployed as dimensions in the schema of the database.

3.1.1.3 Representing classifications

Independent from any IT support, domain experts structure their application domain using
classifications (e.g., grouping single products to product groups or classifying birds according
to families). Thisis a proven mechanism to reduce the complexity of the domain and to model
domain knowledge. It has been recognized from the beginning [CCS93] that classifications
should be incorporated into the OLAP data model due to their central importance to the ana-
lyst. The user navigates along the classifications when analyzing the data. The system then
automatically computes the data according to the classification level used in the user’ s query.:2

So far, no consensus has been reached in the scientific literature how to incorporate the im-
portant concept of classification hierarchies into the forma data model. Early approaches
([AGS97], [Bau99], [BPT97]) do not explicitly incorporate classifications in their data model.
Instead, [AGS97] provides a combined grouping and aggregation operation in the multidi-
mensiona cube algebra. This function expects a grouping function (i.e., the classification of
dimension elements) as a parameter. That function assigns each element of the corresponding
dimension (for example, ‘Munich’) of the data cube to a parent value (for example, ‘Bava-

2 The strategy whether this computation is being done at query time or in advance (preaggregation) is a physical tuning
parameter of the OLAP database system and should not be part of the data model definition.
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ria’). The set of al parent values forms the domain for the dimension of the result cube. An-
other proposal in this direction is contained in [BPT97] where classifications are modeled as
functional dependencies between relational attributes.

It has been widely recognized ([SBH99], [PJ99], [V S99], [JLV+99]) that this ‘second class
citizen’ -approach — while being very flexible —is not fully suitable for OLAP databases. The
main reason is that the classifications are normally already known at schema design time (in
contrast to query time) and thus should be part of the multidimensional schema. This captures
additional application semantics which is beneficial for a multitude of purposes (e.g., auto-
matic generation of front-end tools, adaptation of clustering strategies ((MRB99], [JLS994q)]),
making query processing more efficient [ABD+99]). Therefore, more recent approaches in-
corporate classifications as ‘first class citizens into their static data model ([CT97],
[DKP+99], [DT97], [Leh98a], [PI99], [Vas98]).

Following the basic considerations about the data model design, each concept of the data
model should have schema (intension) and instances (extension). This means that classifica-
tions should be described on two levels of abstraction: the classification schema (containing
the classification levels) and the classification instance (containing the actual grouping). Sur-
prisingly enough, this issue is only explicitly addressed by a small number of existing data
models, namely [Alb01] and [Leh984d].

The next design issue deals with the expressiveness of a classification. A popular concept
Is a classification hierarchy, where objects are structured using a tree. Each level of the tree
corresponds to a classification criterion (called classification level). Nevertheless, often a sin-
gle hierarchy is not enough to describe a domain. Instead different alternative classification
hierarchies exist, therefore a more expressive classification model allowing alternative classi-
fications with shared classification criteriais introduced by [CT97] and has later been adopted
by [Vas98], [DKP+99] and [PJ99].

What remains is the issue of how to describe the relationship between a classification and a
dimension. The large majority of the approaches (e.g., [CT98a], [Vas98], [Leh98a],
[DKP+99]) model the classification schema as part of the dimension schema. 1.e., the ‘first-
class element is a dimension which contains the classification as a part of the dimension
definition. Some of those approaches include the classification instance into the data model,
some do not. The view of a dimension as a structured concept (while being useful for OLAP
systems) somewhat clashes with the mathematical understanding of the term ‘dimension’ as a
flat, ordered list of elements (mostly an interval of discrete numeric values). Therefore, an
aternative way of incorporating the classification hierarchies into a multidimensional model
is to define the classifications independently from the term dimension ((MRB99)).

Conclusion: For our PROMISE/OLAP approach, it is beneficia to represent classifica
tions in the database schema as the classifications carry alot of application semantics that can
be used in order to predict user behavior. Therefore, we introduce an explicit construct for
classifications in the data model. We support multiple hierarchies with shared levels in order
to allow for expressing complex classification relationships. Additionally, we explicitly dis-
tinguish between the classification schema describing the classification criteriawith their rela
tionships (classification intension) and the classification instance (classification extension).
As we want to preserve the mathematical meaning of a dimension as a flat collection of val-
ues, we introduce the concept of classifications independently from the concept of a dimen-
sion and link the two parts of the data model by requiring that adimension is aso aclassifica
tion level (cf. 3.1.3).
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3.1.14  Extended concepts

The multidimensional OLAP data model is a compromise between expressiveness and sim-
plicity. On the one hand, the data structures and operations should be restricted enough such
that a graphical front-end can be used to intuitively formulate queries without profound
knowledge of the data model. On the other hand, the static model must be expressive enough
to model alarge part of the application domain and the operations should be powerful enough
to formulate different sorts of queries. Of course this gives room to discussing different exten-
sions of the data model.

In [LRT96] the authors show that description and classification attributes constitute two or-
thogonal concepts and that it therefore is not sufficient to represent descriptive attributes to-
gether with classification levels (as being done in al the other approaches). Consequently,
[Leh98a] introduces a feature extended model, where each node of the classification possesses
adistinct set of descriptive attributes that can be used to formulate restrictions. E.g., a video
device is described by the feature ‘video system’ while a washing machine is characterized by
the feature ‘tumbling frequency’ although both nodes belong to the classification level product

group.

[DKP+99] proposes an extension of the cell structures. All of the other data models assume
that the cells of the OLAP data cube only contain atomic data types or record structures built
from these types. In [DKP+99], the authors describe a data model that incorporates nested
data cubes, that means that each cell of the cube can itself be a cube structure (analogously to
the concept of nested relations). While being valuable for design and query purposes, this
concept does not increase the expressiveness of the model as every nested data cube can be
mapped to an equivalent non-nested cube with more dimensions than the nested cube.

The authors of [PJ99] study the requirements of a medical data warehouse project and sug-
gest the following extensions to the multidimensional data model:

= non strict hierarchies, allowing objects to be classified by more than one parent breaking
up the tree structure of the hierarchy. Although similar, this concept is different from the
concept of multiple hierarchies with shared levels, where aternative paths exist on the
schemalevel.

= many to many relationships between fact and dimension, alowing that a fact (for exam-
ple, patient treatment) may be associated with more than one element of a dimension (for
example, several diagnoses).

= different granularity for base data. The characterization of a fact (for example, patient
treatment) may not always be recorded on the base granularity level (for example, explicit
diagnosis), but on a higher level (for example, diagnosis group) for some occurrences of a
fact.

While these extensions are useful in modeling the semantics of real world applications (most
of these restrictions were also encountered during our industrial projects), it remains unclear
how the extended expressiveness can be incorporated into an OLAP front-end. Summarizabil-
ity isavery useful property for OLAP models. [LS97] discusses the conditions that have to be
fulfilled in order to ensure summarizability. Non strict hierarchies, many to many relation-
ships and different base granularities violate these conditions as they may lead to double
counting. In [PJ99] it remains open how these problems can be solved.
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Conclusion: We consciously do not incorporate these extended concepts into our PROM-
ISE/OLAP data model as they unnecessarily complicate the data model, introducing problems
which are irrelevant to the focus of our work.

3115 Overview
Rela- Schema/ Multiple | Schema/ - o
Aporoach tional/ | Instances| Classifi- | hierarchies | Instances Cliis;:'/ca' %{i%lfng/
PP Cube (Data cations (shared (Classifi- Dimension | in Datz':\
Oriented | Space) levels) cations) 9
Albrecht [AlbO1] Cube Yes firg-class | Yes(No) | Yes(Yes)| combined static
Agrawal second-
Gupta, Sarawagi Cube No class -- - -- static
[AGS97]
second-

Baumann [Bau99] Cube No class -- - -- static
Blaschka [Bla0Q] Cube Yes first-class | Yes(Yes) Yes combined static
Cabibbo/Torlone , T . .
[CT97], [CT984] Cube Yes first-class | Yes(Yes) implicit | combined static
Datta/ . T . .
Thomas [DT97] Cube No first-class | Yes(No) implicit | combined static
Gyssens/
L akshmanan Relational Yes first-class | Yes(No) implicit -- static
[GL97]
L ehner [Leh98a] Cube Yes first-class No explicit | combined static
Li/Wang [LW96] | Relational Yes first-class | Yes(No) implicit - dynamic
Markl, Ramsak, . . S .
Bayer [MRB99)] Relational Yes first-class No implicit separated dynamic
Peder sen/ . . S . only dimen-
Jensen [PJ99] Relational Yes first-class | Yes(Yes) implicit | combined Sons
Vassiliadis[Vas98] Cube No first-class | Yes(Yes) | implicit | combined static
PROMISE/OLAP Cube Yes first-class | Yes(Yes) explicit separated static

Table 3.1: A comparison of existing OLAP data models with the PROMISE/OLAP data model

Table 3.1 summarizes the comparison of the most important data models with the PROM-
ISE/OLAP data models with respect to the criteria discussed in the previous sections. It lists
the following criteria:

= The column Relational/Cube oriented states whether the model relies on the relational

model or not (see 3.1.1.1).

The column Schema/Instances (Data Space) lists if the approach explicitly distinguishes
between schema and instances when describing the data space (see 3.1.1.1).

The column Classifications indicates the treatment of classifications by the respective ap-
proach, distinguishing first-class and second-class strategies (see 3.1.1.3).

The column Multiple Hierarchies (Shared Levels) investigates if an approach supports
multiple hierarchies and if these multiple hierarchies can share levels. (see 3.1.1.3).

The column Schema/lnstances (Classifications) indicates if the approach explicitly distin-
guishes between schema and instances when describing the classifications (see 3.1.1.3).

The column Classification/Dimension indicates the relationship between a dimension and
the classification (see 3.1.1.3). The value ‘combined’ shows that the definition of a classi-
fication is incorporated into the dimension definition thus violating the mathematical no-
tion of adimension.
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= The column Quantifying/Qualifying data states how the approach handles the partitioning
of attributes into dimensions and measure attributes. The value ‘static’ means that a dis-
tinction is fixed at schema design time. While ‘dynamic’ indicates that the distinction is
being made at query time (see 3.1.1.2).

3.1.2 Modeling Classifications

Having motivated the design decisions, the following two sections develop the formal defini-
tion of the PROMISE/OLAP data model. According to the two aspects of the model (muilti-
dimensiona data space and classifications), we first formalize classification structures in this
section and then define the multidimensional structuresin the next section (3.1.3).

The multidimensional OLAP data model is primarily targeted towards statistical data
analysis. As already motivated, the concept of classifications plays an important role for this
application area. Basically, a classification on a set of objects defines a grouping of objects
with the same characteristics (building equivalency classes). The grouping is done according
to a classification criterion (for example, the geographic location of cities). A complex classi-
fication typically contains different levels of classification (grouping cities by region, regions
by country and countries by continents). Thus, a classification level represents a classification
criterion.

Definition 3.1 (Classification Level, Classification Node)

A classification level | is a finite set of objects from a domain dom(l). An object xel is
called classification node of level I. .

Each node x of a classification level is additionally described by a set of descriptive attributes.
Classical multidimensional approaches require that all nodes of a classification level possess
the same description attributes. [LRT96] argues that this in not expressive enough for some
real world applications and consequently [Leh98a] introduces an extended multidimensional
data model which offers a special ‘feature’ element to overcome this restriction. Nevertheless,
for the scope of this thesis, we assume that the set of descriptive attributes is the same for al
nodes of a classification level. Therefore, we denote the set of descriptive attributes of alevel
| as A(l). Furthermore, we assume that each node implicitly possesses a unique object identi-
fier (OID or label) which is used to refer to the node instead of using the descriptive attributes
for reference purposes.

Example 3.1 (Classification L evel)

In our material management example (see Section 1.1.2), the analyst wants to analyze data
according to geographic regions. Therefore, we introduce a classification level geogr. region
with the domain dom(geogr. region) = { Bavaria, ‘USA East’, ‘USA West',.....} . Another clas-
sification level may be the part of a vehicle. Such a classification level part could include the
descriptive attributes A(part)={ part#, price, weight, description} . .

These classification levels are used to build the more complex classification schema. A classi-
fication schema represents the information, which classification levels are related and which
are not. This information is modeled as a classification relationship between the levels of the
classification schema. A classification relationship between level a and level b has the seman-
tic meaning that the criterion being represented by level b (for example, geographic region)
constitutes a classification of the criterion corresponding to level a (for example, city).

Thus, a classification schemais a graph structure with levels as nodes and classification re-
lationships as edges. Albeit, some structural restrictions to the general graph structure have to
be fulfilled in order to preserve the semantics of a classification:
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= The classification relationship must be reflexive as each level can be (trivialy) classified
according to itself.

= The classification relationship is transitive as the concatenation of two classification
groupings (for example, city by geogr. region and geogr. region by country) defines a new
classification (‘city’ by ‘country’).

= The classification relationship is antisymmetric as alevel a cannot be a classification for b
if bisaclassification for a.

These considerations are summarized by the following formal definition:
Definition 3.2 (Classification Schema)
A classification schema ¥ is defined astuple ¥ = (L, ,class, ) with

m Ly ={l4,...1} isaset containing the k distinct classification levels of the classification.

m classy ¢ LyxLy defines the classification relationship between different levels. The rela-
tion class must fulfill the following properties:

(hedassy Ve Ly )
(|1,|2)€ Class{. /\(|2,|3)€ class\P :>(|1,|3)E ClaSS\P V|1,|2,|3€ L‘P (2)
(|1,|2)€C|aSSLP :>(|2,|1)€ Classq; V|1,|2E LlIJ (3)

*

For notational convenience, we introduce the function L(Y¥) that maps a classification schema
to the set of levels contained in the classification schemai.e., L(WY) =Ly .

It is obvious that the relation classy defines a partial order on the set of classification levels
Ly as it is reflexive (1), transitive (2) and antisymmetric (3). Therefore, instead of
(I1,12)e classy we use the notational abbreviation |; <y I, (reading: “l1 can be classified accord-
ing to 1,.”). Also as convenient shorthand, we introduce the relations <y and >y as follows®:

(1> lp) e (2=sg ) Alp =13
1<y l2) = (1 1) Aly =13
For specifying (and visualizing) a classification schema, it is sufficient to specify the base

relation class\?, of classy . The base relation is the minimal relation class\'f’, that produces
class when the reflexive transitive closure operation is applied. |.e.,

(classB)” =classy A classh cx Wx with (Xc Ly XLy) A (x* :classq;)

As a classification schema is a special case of a graph structure with classification levels as
nodes and classification relationships as edges, it can be easily visualized. Figure 3.2 shows an
extract of the classification schema for our running scenario. It uses a rectangle to represent
each level and edges to depict the classification relationship. With aview to greater clarity, we

omit the reflexive and transitive edges thus only visualizing the base relation class .

Example 3.2 (Classification Schema)

13 Notably, the greater than (>) relationship is not the complement of the less or equal than (<) relationship, because < is not

total.
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The sample classification schema W, = (Ly,, ,Classye, ) depicted in Figure 3.2 looks as fol-
lows:
Ly, = { customer, geogr. region, country, location, climatic region,

type of repair unit, part, part group, assembly, day, month, week, year}

class\'f,EX ={ (customer, geogr. region), (geogr. region, country),

(location, geogr. region), (location, climatic region),
(location, type of repair unit), (day, month), (day, week), (month, year),
(week, year), (part, part group), (part, assembly) } .

|assemb|y| |partgroup| | month | | week |
A A A

| country |

A

- climatic type of
geogr. region region repair unit

f A

Figure 3.2: A Sample Classification Schema

Notably, as we do not demand that classy has to be a tota order, we allow the classification
schema not to be fully connected (see example) and to contain aternative paths. These paths
are deployed by the user for interactive navigation purposes and for the system to dynamically
aggregate data to the level being requested.

Definition 3.3 (Classification Schema Path)
Assuming a classification schema ¥ = (Ly, classy ) , each sequence P=1,,...,I, of levelswith
li e Ly;1<i<z is caled a classification schema path (or short classification path) if and
only if the following condition isfulfilled: (I;,lj;1) € class\';)’, Vi<i<z. .

Example 3.3 (Classification Schema Path)

The following sequences are valid classification paths for our above example (cf. Figure 3.2):
P, = day, month, year

P, = location, geogr. region, country

P3; = geogr. region, country

while the following sequenceis not avalid classification path:

P, = location, month .
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Each classification schema path P defines atotal order on the levelsin P thus defining a spe-
cial case of aclassification schema: a classification hierarchy. A useful property of a classifi-
cation hierarchy is that its instance (see below) has the form of a balanced tree+. The left hand
side of Figure 3.3 shows a sample for such a classification hierarchy schema. Every classifica-
tion schema defines a set of classification hierarchies (all valid classification paths).

Sometimes, it is convenient not to refer to the domain dom(l) of asingle classification level
[, but to the union of the domains of the levels of awhole classification schema. Therefore, for
notational convenience, we extend the definition of the dom-function to a classification
schema.

Definition 3.4 (Domain of a Classification schema)

For a classification schema Y =(Ly,classy), we define the domain dom(¥) as fol-
lows: dom(¥) = (Jdom(l). .

leLy
Example 3.4 (Domain of a Classification schema)
The domain of the example schema dom(‘V'ex) contains the elements of al levelsin Ly_ i.e,
dom(Wex)={'1/1/2000', ‘1/2/2000',..., ‘Jan 2000', ‘ Feb 2000',..., ‘2000",...,"Munich’ ,...)
*

The classification schema defines constraints for the classification instance. The instance of a
classification level is defined by the set of nodes of that level. In order to describe the instance
of the classification relationship between two levels a and b, we use a grouping function
group,p that maps each element of level a to the parent element in level b.

Definition 3.5 (Classification I nstance)

The instances |y of a classification schema ¥ = (L ,class, ) are described by a set of base
grouping functions:

|y ={group|1’|2 dom(l;) —>dom(|2)‘ Viq,loe Ly A(lg,l0) e cIassE;) }

Example 3.5: (Classification I nstance)

A possible instance for the running example contains a grouping function mapping locations
to geographic regions, as a direct classification relationship exists between those levels (cf.
Figure 3.2). This function groupiocation, geogr. region Maps €ach single location to the parent region.
Some example mappings include:

9roupiocation, geogr. region(' Munich’) = ‘Bavaria
groupiocation, geogr. region(’ Frankfurt’) = “Hessen’ .

A visualization of the principle of the grouping function can be seen in Figure 3.3. For the
special case of classification hierarchies, the instances defined by the grouping functions form
the structure of a balanced tree (see Figure 3.3, right hand side).

14 this does not constitute a restriction for real world applications, as unbalanced hierarchies can be balanced by introducing

additional virtual classification nodes.
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Hierarchy Schema Hierarchy Instance

Germany

‘ Country ‘

T

‘ Geographic Region ‘

Bavaria Hessen

‘ Location ‘

Figure 3.3: Schema and Instance of a Classification Hierarchy Defined by a Classification Schema Path

A more general grouping function gs; for arbitrary levels sit € Ly can be derived from the set
of base grouping functions |y if adimension schema path s,l,,...,I,,t exists that starts at level
sand ends at level t (that means if s can be classified according to t or formally if s<,, t). The
function groups; is then computed as the concatenation of the base functions along the classi-

fication path: groupg; = groupg), o group,,, °...ogroup,, . o group, ;.

Example 3.6 (Grouping Function)

For example the grouping function for classifying locations according to countries is com-
puted by the concatenation of the grouping from location to geographic region and from geo-
graphic region to country. Thus,

group)ocation, country = 9rOUP|ocation, geogr. region © 9"OUP geogr . region, country

*

In order to ensure the summarizability property ([LS97]), we demand that the following con-
dition must be fulfilled by the instance: If multiple paths py,p. from level sto level t existina
classification schema, the grouping functions must be defined such that the grouping function
groupp, using the levels of path p; and the grouping function group Py using the levels of

path p, produce the same results for al nodes of s.

The concept of a classification schema that was introduced so far is independent of the data
actually stored in amultidimensional database. It constitutes an instrument to model semantic
relationships in the analyst’ s application domain (material management in our example). Nev-
ertheless, the actual datain an OLAP database is stored on a certain base level of granularity.
This level is defined by the granularity with which the events of interest (for example, repairs)
are recorded (for example, daily). It is not possible to classify the data on this base level ac-
cording to levels which cannot be reached by a classification path. For example, data cannot
be analyzed on alevel that is smaller than the base granularity. If repairs are recorded on the
level of geographic regions, it isimpossible to analyze repairs according to the location as the
information which location performed the repair is not available.

To reflect these considerations in our data model, we introduce a specialization of a classi-
fication schema which is called classification lattice (we will later show that this structure
really possesses the properties of alattice). It is defined by choosing a base level (the level on
which the data is being recorded, e.g., location). The classification lattice contains the sub-
graph that is defined by the base level (cf. Figure 3.4). The intention behind this definition is
to identify all the levels that can be used to classify data on the base level. Additionaly, we
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add a special classification level <base level>.all (for example, geogr. region.all) to the clas-
sification lattice. This special element is larger (according to <y) than any other level. It con-
tains only one node labeled ‘all <base level>" (for example, al geogr. regions). The purpose
of thislevel isto enable the grouping of all nodes of the base level to one single node.

The following definition formally defines the construction of the classification lattice for
using an arbitrary classification level from a given classification schema asits base level.

Definition 3.6 (Classification L attice)

For a classification schema ¥ = (L, ,class,) and alevel le Ly, we define the classification
|attice ‘I’|I = (L} ,class;,) asfollows (I iscalled base level of the lattice).

= Ly =fdacLy al<, aju{<I>all'}

= classy c Li x L, with: dassy = (classy n(Ly xLy))uia'<l > all')ae Ly}

locations. all | €= special ‘all’-level

,_ff_

i region repair unit
f classification lattice
F...
base level

Figure 3.4: A Classification Lattice Constructed from the Sample Classification Schema Shown in Figure 3.2

Example 3.7 (Classification L attice)

For the classification schema ¥ = (L, ,class,, ) defined in the above example (see Figure 3.2),
the base level ‘location’ defines the following classification lattice: ‘P|| =(Ly,classy). A
visualization of the lattice is shown in Figure 3.4 shaded in gray.

= Ly ={ location, geogr. region, climatic region, type of repair unit, country, al locations }

n class(}'?: { (location, geogr. region), (location, climatic region),
(location, type of repair unit), (geogr. region, country),
(country, al locations), (climatic region, al locations),
(type of repair unit, al locations) } .

So far, we have defined the classification lattice and shown how to construct it from a classifi-
cation schema but not yet proven that the structure really possesses the formal properties of a
lattice.

Theorem 3.1 (Validity of Classification L attice)
Every classification lattice ‘P|base:(Lip,cIassi,,)defined on the classification schema
Y =(Ly,classy ) hasthefollowing properties:
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= (IL,D)eclassy Vlel'y (@)
= (I1,)edassy A(l,,l5)e dass, = (I,,l;) e classl, Vi, l,,le L )
= (I,1,) edassy = (I,,l;) ¢ class, VIl e L with |, =1, (3)
= Twolevelsl e L}, and |, e L, have aleast upper bound (LUB) 4
= Twolevesl, e Ly and |, € L}, have agreatest lower bound (GLB) (5)

Proof 3.1 (Validity of Classification L attice)

The full formal proof is omitted here and can be found in Appendix A. Basicaly, the proof for
properties (1)-(3) consists of two parts. First we prove that the conditions hold for all levels
le Ly \{'l.all'} = Ly N Ly because the properties are fulfilled by the origina classification

schema . The second part of the proof shows that the construction of the lattice ensures that
the properties are preserved by adding the special level |.all.

The proof for properties (4) and (5) makes use of the fact that by definition l.all is an upper
bound as all other levels are smaller and that the base level | defines a lower bound as is by
definition smaller than all other levels. As the set of levelsis finite, this implies the existence
of aLUB, respectively a GLB. .

Conditions (1)-(3) of Theorem 3.1 are just the conditions demanded for a classification
schema showing that a classification lattice is a special case of a classification schema. There-
fore, the following corrolar allows us to transfer all the definitions (schema path, instances,
domain) for classification schematato classification lattices.

Corrolar 3.2 (Classification Latticeis a Special Case of a Classification Schema)
Every classification lattice is a classification schema. .
Proof 3.2 (Classification Latticeis a Special Case of a Classification Schema)

Because of Theorem 3.1, the conditions (1),(2) and (3) are fulfilled for a classification lattice.
Therefore, it isavalid classification schema according to Definition 3.2. .

One of the noteworthy consequences from the above corrolar is that we can aso use the defi-
nition of instances (Definition 3.5) for a classification lattice. Notably, al grouping functions
Os1.a1 from an arbitrary level sin the lattice to the special level |.all produce the value “all” for
every node of s. Thus, gs;.ai(X)=all for al xes.

3.1.3 Putting Things Together: The Multidimensional Database Schema

A multidimensional cubeisthelogical unit of data storage in an OLAP system (corresponding
to arelation in arelational database). A cube corresponds to the subject of analysis — called
fact (for example, arepair of avehicle). According to the separation of qualifying and quanti-
fying data, the schema of an n-dimensional cube consists of two components:

= aset of n dimensions that span the multidimensional space (the edges according to the
cube metaphor) and

= aset of measures that describe the event of interest (the structure of the content of the cube
cells according to the cube metaphor).

Therefore, a multidimensiona cube schemais defined as follows:
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Definition 3.7 (Multidimensional Cube Schema)

An n-dimensional cube schema C conforming to a classification schema ¥ = (L, ,classy)is
defined asatuple C,, =(Dy,M), where

s Dy =(dy,...,dy)e (Ly )" isalist of classification levelss called the dimensions of C.
The nodes of d; are called the dimension members of d.
= M=(my,...,my) is a set of names called the measure names. Each m has a domain
dom(m) attached to it. .
For notational convenience, the set of dimensions and measures for a cube schema are or-
dered. Without restricting the expressiveness of our approach, we assume that the dimensions
are ordered in an arbitrary but unique way (for example, using the lexicographic order of the
dimension names). We only use the position of a dimension or measure for identification pur-
poses. Nevertheless, in order to make our examples more readable, we additionally assign a
name to each dimension by which it is referenced in the text (instead of using the ordinal
number). This name is put in front of the dimension, when defining the dimension, like repair
time in the following example:

Example 3.8 (M ultidimensional Cube Schema)

Two example cubes conforming to the classification schema W, defined in the previous sec-
tion are:

Crep= ( (repair time: day, repair location: location, repaired part: part),
{ # of repairs, # of persons} )

Cse=(  (servicetime: month, service location: location),
{duration} ) .

Each dimension d has a dual function. On the one hand, a dimension spans the multidimen-
siona space that is used to organize the data points and on the other hand, each dimension
corresponds to exactly one classification level in the classification schema. Therefore, each

dimension d defines a classification lattice lI’|d . This classification lattice contains all the lev-
els that can be used to classify the corresponding dimension d during the analysis. It aso de-
fines al possible navigation paths that the user can follow during an interactive analysis.

Notably, we explicitly allow two or more dimensions to share the same classification path
i.e., di< d; for i#] resp. the same classification level. Thisis semantically meaningful, as differ-
ent dimensions may share the same domain. E.g. one dimension modeling the order entrance
(level day) and the other modeling the order delivery (also level day).

Analogously to the definition of instances for the classification, we also give a definition of a
cube instance as a function that maps the cube coordinates to measure tuples.

Definition 3.8 (Instance of a Cube)
The instance of a Cube with schema C,, = ({d,,...,d.},{m,...,m})is defined by a function
lc with | :dom(d;)x...xdom(dy) — (dom(my)x...x dom(my)).

The set of al possible cube instances (i.e., different mapping functions) for a given cube
schemais denoted as =c. .

15 For aset S, we use the notation S"to denote n-tuples build from elements of the set.
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Notably, we do not demand the instance function to be total, that means that for some tuples
ce dom(d;)x...xdom(d,), the value of I¢ isundefineds (for example, because a vehicle of a

certain type was not repaired at a certain location using a certain part). Using the cube meta-
phor, this corresponds to an empty cell. If we look at a single dimension, it is interesting to
note, which of the dimension members reference only empty cells (for example, a day on
which repairs took place irrespective of the location and the part). We call the set of dimen-
sion members which at least reference one filled cell as the active domain of a dimension with
respect to a cube instance.

Definition 3.9 (Active Dimension Domain)

For the instance of a Cube with schema Cy =({d4,...,dy},M), the active domain actdom(d;)
of dimension d; (1<i<n) is defined as follows:

actdom(d; ) :={xe dom(d;) |EICE dom(dp) x...x{x}x...xdom(d,): l1c(c) =L}

Example 3.9 (Instance of a Cube, Active Dimension Domain)

For the cube Cre, defined in Example 3.8, the function I¢ has the following signature:

| . : dom(day) x dom(location) x dom(part) — (dom(#of repairs) x dom(#of persons))u{L}.
A sample value for the function I¢ is:

lc(‘ 1/5/2000', ‘Munich’, *S-013') = (2, 5) indicating that in *Munich’ on the first of May 2000
2 repairs were performed exchanging part * S-013'. 5 persons were involved in the repairs.

This means that ‘Munich’ is part of the active domain actdom(Crepair_jocation) Of dimension re-
pair location. .

Of course, a multidimensional database may contain more than one cube and several cubes
may share dimensions or classification paths (like the cubes in our example). To this end, a
multidimensiona database schema contains a common classification schema and a finite set
of cube schemata that conform to this classification schema. The classification schema defines
the inter-cube relationships in the database. Thus, formally an MD database schema is defined
asfollows:

Definition 3.10 (MD database schema)
A multidimensional database schema Q isdefined asatuple Q = (¥, y) where

m W ={Ly, classy} isaclassification schemaand

m % =(Cy,..., Cp) isfinite set of cube schemata, each conforming to ¥ i.e., the dimensions of
C; aretaken from L. .

This algebraic description of a multidimensional schema is useful for defining queries and
guery patterns but is not very helpful to visualize the schema. Therefore, graphical notations
for the visualization and interactive design of multidimensiona database schemata have been
proposed. Throughout this thesis, we use a dlight variation of the ME/R Notation ([SBH+99])
which has been co-developed by the author and which is the basis of the BabelFish design

16 This phenomenon is referred to as sparsity of the data cube and is very important for the efficient storage of the data cube,
as most practically occurring data cubes are extremely sparsely populated (under 1% of the possible cells actually contain a
value).
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framework ([BSHOQ]). Figure 3.5 shows the elements used by the ME/R notation to visualize
the different concepts.

relationship name dimension name
T= level name fact name (optional) (optional)
descrpe ([ ({ - ° 7
attributes measures
e Classification Granularity
Classification Level Fact Relationship Relationship

Figure 3.5: The Graphical Elements of the ME/R Notation

Example 3.10 (M D Database Schema)

A multidimensiona database schema can be constructed from the sample classification (see
Example 3.2) and the sample cubes defined in Example 3.8. The result is the MD database
schema Qex= (Wex, { Cren, Csr}) Which isvisualized in Figure 3.6. .

service

duration

[
4

|E location P—DIE geogr. regionb—b"& country |
o

type of

AN
. A2 R
is N 4 p .
contained 4 = repair unit
T= assembly in . ¢
. g
“s l"
~

part = repair
part# . -
description IR # of repairs
weight # of persons
T= partgroup price

belongs to

Figure 3.6: A Visualization of the Sample Multidimensional Database Schema (ME/R Notation)

3.1.4 A Relational View

Considering the vast amount of research effort, product and application development that has
been spent on relational database systems, it is no surprise that many OLAP systems are being
implemented as additional layers on top of relational database technology (the popular term
for these systems is ROLAP systems). Therefore, it is necessary to define arelational view of
the multidimensional data structures.r” We will use this mapping throughout the thesis to clar-
ify our concepts defined on a multidimensional level by showing the consequences for a pos-
sible relational implementation.

The basic concept of a multidimensional data cube can be mapped in a very natural way,
using the dualism between a relation and the multidimensional space [Mar99]. By far more
interesting is the mapping of classification schemata to a relational schema. The most widely
used pragmatic approach to map multidimensional schemata is the star schema approach. Itis
mainly used for its structural simplicity. The base cube is being mapped to afact table which
contains the measures of the cube as attributes and an attribute for each dimension. The classi-

17 Besides the mapping of the data models on a logical level, it is of course important to provide an efficient physical data

organization for the relational view. Considerations about this can e.g. be found in [MRB99].
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fication lattice for each dimension is being mapped to a table (a dimension table) which con-
tains an attribute for each classification level contained in the lattice and the attributes of these
levels. A foreign key constraint relates the fact table and the different dimension tabless.
Naturally, this view violates the normalization constraints, as the attributes of the dimension
table that correspond to classification levels being related by a classification relationship are
by definition functionally dependent (semantics of the classification relation).

Definition 3.11 (Relational view of a Cube schema)

For the n-dimensional cube schema C,, = (D,, ={d,,...,d.},M ={m,,...,m.}) conforming to

the classification schema ¥, the relationa view is defined as a set of table schemata
R(Cy)={ dty,...,dt,, f} wherew

= dtf c I1 dom(lp)x [ ]dom(a)

| pe(LC¥] ¢){d; al}) ac All )

defines the schema for the i-th dimension table which contains the levels of the classifica-
tion lattice | 4 (except the special attribute all) and their descriptive attributes.

= f cdom(dy)x...xdom(d,)xdom(my)x...xdom(my ) defining the schema for the fact

table which contains the measures as attributes and a foreign key to each of the dimension
tables. .

Example 3.11 (Relational View of a Cube Schema)

For the cube C,¢, defined in Example 3.8, the relational view R(C;qp) results in the following
relational schema (the attribute names can be chosen arbitrarily, the underlined attributes build
the primary key of the relation):

dt;= time (day: dom(day), month: dom(month), week: dom(week), year: dom(year))

dt,=repair_location ( location: dom(location), geogr. region: dom(geogr. region),
climatic region: dom(climatic region), country: dom(country),
type of repair unit: dom(type of repair unit) )

dts= part (part: dom(part), part#: string, weight: number, price: currency, description: string )

f= ( repar date: dom(time), repair location: dom(location), repaired part: dom(part),
#repairs. dom(#repairs), #persons. dom(#persons) )

The star schemaiis depicted in Figure 3.7 i

Of course, other relational views for the cube schema exist, e.g., the snowflake schema being
anormalization of the star schema but we do not cover these in detail here as the star schema
suffices to demonstrate the relational implementation of our concepts.

Being a view (i.e.,, a mapping), the star schema looses semantic information contained in
the multidimensional model. To clarify this claim, we exemplarily discuss the representation
of classification information. The classification relationships of the classification schemata are
not explicitly contained in the star schema definition. As they are one to many relationships
between the attributes of the corresponding levels (for example, between city and geogr. re-

18 When actually implementing the relational view, surrogate keys are being used for the foreign key relationships for reasons
of efficiency.
19 The symbol IT is used to denote the cross-product of several factors.
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gion), they are transformed to functional dependencies (FD) of attributes in the dimension
tables. Thisis problematic because:

= The FDs cannot be derived from the relational schema nor isit sensible to induce the FDs
from the data contained in the database. Therefore, this application semantic is lost unless
recorded in further tables.»

= As functional dependencies are a more general concept than classification, other func-
tional dependencies may exist that do not necessarily imply a classification relationship.
E.g., between price and turnover.

Repair Time

Repaired Part

1 part
: ; part group
Vehicle Repair assembly
day part#
location pri(_:e
: : part welgh_t _
Repair Location description
location # repairs

geogr. region # persons
climatic region
country

type of repair unit

Figure 3.7: The Relational View (Starschema) of the Sample Cube Ciq,

As a consequence, the mapping from a multidimensional schema to the star schema cannot be
bijective. This is a further motivation to base our user model on the conceptual multidimen-
sional level. Nevertheless, we use the relationa view throughout the thesis to illustrate a pos-
sible realization of our concepts using arelational database system.

3.2 Querying OLAP Databases

The most important interactions of users in the context of the PROMISE/OLAP framework
are those that produce a query that has to be computed by the OLAP database system. Such a
guery corresponds to an atomic interaction event described in Section 2.3. Therefore, aformal
specification of a single OLAP query against a given multidimensional schema is needed for
our approach. The design of such aformalism taking into account the current state of product
development and research is the topic of this section.

The emerging industry standard for communication between OLAP front-end tools and
OLAP database systems is the OLEDB for OLAP standard which has been introduced by Mi-
crosoft ([Mic98]). It includes the specification of a query language especially tailored to the
multidimensiona data model, called MDX (multidimensional expression language). Being an
emerging industry standard with alarge impact on the commercial OLAP community, MDX
was of course considered as a basis for PROMISE/OLAP. However, it turned out to be un-
suited for PROMISE/OLAP because of the following reasons.

= lack of formalization. MDX lacks a formalism (for example, an algebra) resolving ambi-
guitiesin the current ‘prose’ definition of the of the query language semantics.

= weaknesses in the design. Being a pragmatic approach, the MDX language mixes aspects
of data manipulation with data presentation elements. In our opinion, these two aspects are

20 Commercial OLAP products overcome this problem by keeping special tables as an extension of the system catalog, where
the additional semantic information is stored.
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orthogonal and therefore, the result presentation of the data (for example, which data is
displayed as columns) should not be part of the query language.

= no GUI. Until now, no intuitive user interface exploiting anything near the expressiveness
of MDX has been introduced.

Although not being suited as a basis for our approach, we recognize the great practical rele-
vance of MDX. Therefore, we will make use of MDX to illustrate our concepts in examples
wherever appropriate.

Most of the multidimensional data model specifications surveyed in the previous section
also propose according query formalisms. Consequently, this section starts by providing a
classification of these scientific approaches and discussing their suitability for PROM-
ISE/OLAP (Section 3.2.1). As aready pointed out, OLAP queries in real world environments
are formulated using a graphical front end which naturally restricts the classes of queries that
can be executed and has a large impact on the types of patterns (the pattern schemata) which
occur in user sessions. As OLAP interfaces, their structure, and their impact on the class of
formulated queries have not yet been systematically treated in the research community, we
compare the interactive query interfaces of different leading OLAP products and derive an
abstract description of an OLAP user interface (Section 3.2.2).

By presenting a definition of the class of queries considered for PROMISE/OLAP together
with a canonical description formalism, Section 3.2.3 constitutes our synthesis of the theoreti-
cally oriented approaches and the practically oriented approaches. A discussion of the as-
sumed restrictions and their impact on the expressiveness of the query model is the topic of
Section 3.2.5 which also gives instructions on how to implement the canonical OLAP queries
using SQL and MDX language.

Before looking at the approaches, the following list summarizes the most important re-
quirements of the PROMISE/OLAP framework regarding the OLAP query formalism. It
therefore defines the criteria we use for evaluating the suitability of techniques proposed by
product vendors and the scientific community throughout this section.

= Formal Semantics. The semantics of the query specification must be formally described.
Most importantly, the result of the query regarding a given schema and its extensions (in-
stances) must be specified.

= Descriptive Formalism. Although having well defined operational semantics, the descrip-
tion of a query itself should not contain details about the operations which are necessary
by the database system to compute the query. The aspect of efficiently evaluating a query
is orthogonal to the goal of predicting the structure of the next query (see next item).
Therefore, we are looking for ahigh level descriptive formalism.

= Canonical Form. The PROMISE/OLAP predictions are based on the assumption that que-
ries with similar semantics occur at characteristic phases of the analysis process. The se-
mantics of a query description are defined by the result it produces on an arbitrary exten-
sion of the cube schema. If aformalism alows more than one (especially infinitely many)
ways of formulating semantically equivalent queries, it is important for our approach that
all these queries can be easily normalized to a canonical form which is used to represent
the class of semantically equivalent queries during the prediction and prefetching process.

= Navigational User Behavior. The formalism must not only contain means to specify single
gueries but also to formulate sequences of queries that are the result of applying multidi-
mensional query transformation (for example, ‘rotating’ the results of a previous query).




SECTION 3.2 QUERYING OLAP DATABASES

= Nature of the User Interface. It is essentia that the PROMISE/OLAP query formalism
takes the structure of the user interface into account. One reason for this requirement is
that the class of possible queries is being restricted by the structure of the user interface
which should be mirrored in the formalism. Another reason is that the user interface de-
fines the possible navigational query transformations that are used to formulate sequences
of interdependent queries. Therefore, it heavily influences the type of patterns occurring in
guery behavior.

We evaluate each class of approaches according to these criteria. The evaluation can be found
at the end of the corresponding section. Table 3.2 shows the qualitative scoring model used in
evaluating the approaches according to the criteria.

++ criterion excellently fulfilled according to our requirements

+ criterion is fulfilled but not to the extent envisioned in our set
of requirements

- criterion isonly partialy fulfilled

-- fulfillment of this criterion is not achieved or can only be
fulfilled using complex workarounds

Table 3.2: Scoring Modéel to Evaluate Query Approaches according to their Suitability for PROMISE/OLAP

3.2.1 Formal Approaches

As described in the previous section, the discussion about the static part (defining the data
structure) for the multidimensional data model is still in progress. Consequently, no com-
monly agreed description of queries in the presence of a multidimensional schema is avail-
able. Although the details of the different proposals naturally differ because of the different
descriptions of the underlying data structures, they can be classified according to the following
categories.

= algebraic approaches that specify single queries as a sequence of algebraic operations (cf.
3.2.1.1).

= logic based approaches that use description logics to specify aquery as alogical predicate
which characterizes the properties of the query result (cf. 3.2.1.2).

= graphical approaches that derive a query specification from a graphical formalism (cf.
3.2.1.3).

A detailed discussion of these different classes of approaches can be found in the following
three sections. We restrain from covering each individual approach in detail (please refer to
the corresponding survey papers [SBH99] or [V S99] or to the appropriate original papers) as
thisis not necessary to evaluate their suitability for this work.

3211  Algebraic approach

The basic idea of the algebraic approaches is to define a set of operators working on the static
data structures defined by the data model. A query is described by a sequence of operations
together with the according parameters thus providing a quite procedural description of a

query.
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In the multidimensional case these operations manipulate the multidimensional data struc-
tures defined by the data model i.e., instances of cubes (e.g., adding or removing dimensions
or aggregating base data to a higher granularity). Each operator takes one or more instances of
amultidimensional cube together with further parameters (for example, aggregation functions,
predicates) and produces another cube instance. Notably, these algebraic operations must not
be confused with the interactions the user performs (for example, drilling down) between two
gueries using the OLAP interface. While an algebraic operation specifies how the result of a
single query can be derived from the set of basic structures stored in a database, an interaction
defines how the next query is derived from the previous onez.

An interpreter for the execution of queries represented in this algebraic way can be straight-
forwardly implemented by providing an implementation of each of the basic operations. Al-
beit, the semantically same query can be expressed using alarge number of different (possibly
infinitely many) algebraic expressions. This alows for using algebraic transformations rules
in order to optimize the execution of the query. Generally, the algebraic representation of a
query is best suited for processing the query internally in the database (in our case OLAP)
system and for discussing query optimization iSsues.

Anaogousdly to the static data model part, an OLAP agebra can be based on an existing al-
gebra (for example, the relational algebra) by adding new operators and extending existing
operators or can be designed from scratch. The answer to the question which of these ap-
proaches should be taken is linked with the basic decision if the multidimensional data model
is regarded as independent from the relational model. The most prominent and one of the ear-
liest approaches to formulate queries referring to multidimensional structures in the relational
data model is the Cube operator proposed by Gray et. a. [GCB+97]. This operator is a gener-
aization of the relational group-by operator and has been integrated into the SQL Server 7.0
and IMB DB/2 products. Other extensions of the relational algebra have been proposed by
[GL97] and [LW96]. As argued before, the independence of the multidimensional data model
on alogical level is afundamental assumption of the PROMISE/OLAP approach. Therefore,
for the rest of this evaluation, we only take native multidimensional query formalisms into
account.

The query language (or algebra) is specified by giving a (minimal) set of operations that
manipulate the static data structures provided by the data model. The approaches ([AGS97],
[DTI7], [LW9IT7], [GLI7], [Vas98]) mainly differ in the set of operations being defined. The
proposed operations can be broadly classified according to the following categories:

= Restructuring operations encompass all operations that change the structure of the cube.
These operations can be further categorized by their functionality:

= resolve dualism between dimensions and measures. When introducing the multidi-
mensional data model in 3.1, we already remarked that dimensions and measures are
dual conceptsin the sense that the same data entity can be regarded as adimension or a
measure depending on the query context. Data models that statically partition data into
dimensions and measures therefore provide operations to override this decision for the
scope of a query, thus allowing dimensions to be used as measures in a query and vice
versa,

= change cube granularity. This class of operations changes the cube granularity accord-
ing to the classification schema. Notably, only the approach of Vassiliadis ([Vas98])

21 However, the result of an interaction can well be a query specification that is being extended with an additional algebraic
operator.
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contains an operation to increase the granularity of a cube (corresponding to a drill-
down operation), while al other approaches only allow for grouping elements to a
higher classification level. Some approaches (for example, [AGS97]) implicitly as-
sume the execution of an aggregation operation (manipulating the cell values) together
with the granularity change while other approaches model this as an autonomous op-
eration (see cell manipulations below) thus assuming bag semantics for cell values in
intermediate query results.

= Dimensional restrictions are operations that remove dimension members (and the corre-
sponding cells) from the cube thus not changing the cube schema but reducing the active
domain of a cube instance. The condition when members are to be removed from the cube
can either be formulated according to the classification structure (for example, only keep-
ing the days of the year 1998) or more generally by any other predicate defined on the do-
main of the dimension (for example, removing dates larger than 1/6/1998).

= Join operations take two cubes as parameters and produce a single cube. The cubes must
share a set of common dimensions. Different semantics for the join can be defined analo-
gously to the inner- and outer-join semantics defined for the relational model. [BG00] and
[Alb01] contains a more detailed discussion of different multidimensional join semantics.

= Cell manipulations do neither change the dimensionality of the cube nor the active domain
of its dimensions but change the cell values. These functions include simple scalar opera-
tions (for example, multiplying every cell value to a constant) but also aggregations that
map a set of valuesto asingle value.

= Data model specific operations subsume all the operations that are necessary to reflect the
extended concepts of the data model (see Section 3.1.1.4). Thisincludes e.g., operations to
navigate nested cubes in a nested data model ([DKP+99]) or operations to manipulate the
result with respect to features ([Leh98d]).

The approaches of [AGS97], [GL97], [DT97] and [V as98] additionally describe a mapping of
their operations to the relational algebra with aggregation functions ((OOM87]). Thisimplies
that the relational algebra with aggregations is at least as expressive as these approaches. Al-
though, to the best of our knowledge, no substantial research has been done so far on the exact
expressiveness of OLAP query formalisms.

To give an impression of how a query is formulated using an algebraic approach, we use
the algebraic approach defined by [AGS97] as an illustrative example:

Example 3.12 (The Algebraic Approach of Agrawal et. al. as a Case Study)

The basic data structure (called MD Cube) of the approach is an n-dimensional array. Each of
the dimensionsis aflat collection of values that are being used to address the cells of the cube.
Each cube cell has the structure of a k-tuple (k>0) which contains the cell values (we call this
tuple the measure tuple). Thus, a cube instance (the approach does not distinguish between
schema and instances) can be defined as a 3 tuple C=(D,Ec, N), where

= D isaset of dimension names (each dimension has a corresponding domain).

m Ecisatota function mapping the coordinates (cross product of the dimensions domains)
to ameasure tuple or to the specia value‘ 1’ denoting an empty cell.

= Nisalist of measure names that are used to label the elements of the measure tuples.

2 For the special case k=0 each cell is aboolean value.
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Notably, the model does not contain any information about the classification schema. The
repair data cube introduced in Example 3.8 could be expressed using this model in the follow-

ing way:
C=(repair date, repair location, repaired part, Ec, (# of repairs, # of persons))

The following operations are proposed to manipulate MD cubes:

= pull, push: These operations are used to achieve the symmetrical treatment of cell values
(measures) and dimension members. Push inserts the values of a dimension as a new
component into the measure tuple thus resulting in a cube with (k+1)-tuples as cells.
Pull(i) adds an additional dimension to the cube which contains the values of the i-th ele-
ment of the measure tuple as dimension members.

= destroy dimension: This operation reduces the dimensionality of the cube by one. It re-
moves a dimension from the cube. The operation requires that the dimension only contains
one member.

= restriction: This operator evaluates a predicate P for a given dimension D; and removes
the elements of D; which do not satisfy the predicate from the dimension, thus reducing
the size of the cube but not its dimensionality.

= join: The join operation combines two cubes (of dimensionality m and n) which share k
dimensions. It produces an n+m-k dimensional cube. The “join-partners’ in each of the
shared dimensions are determined by user-defined functions. Additionaly, an element
combining function has to be given that is applied to all measure values that get mapped to
the same cell of the resulting cube. The combining function can e.g., be used to aggregate
the cell values of the cube.

The authors also define the operator merge, which is not atomic in the sense that it can be ex-
pressed by using the self-join operator with a special function. This operator can be used to
express aggregation operations.

A possible specification for the query which is described by the following “prose” text is
given below: “Give me the cumulated number of repairs split up by month for locations in
Bavaria during the year 1999.”

destroy dim (

merge (
restrict (
restrict( C, £, ( day>year ) (day) = 1999),
frwp (location—geogr.region) (location)=Bavaria ),
{ [repair time, £, (day—month)], [repaired part, feonsel}: Esum)

repaired part)

Figure 3.8: Sample Query Using the Algebraic Approach of [ AGS97]

The functions f,.yp(<level 1>—<level2>) are the mapping functions for the grouping of dimen-
sion elements and must be accordingly defined and provided at query time. They are not part
of the database schema. The function fgm IS @ user defined function calculating the sum and
feonst FEtUrns a constant value irrespective of the input value.

The restrict operation removes all cells from the cube that do not belong to the year 1999 and
to the geographic region Bavaria. The merge operation aggregates the data to the requested
result granularity (using the summation function provided as a parameter) for those dimen-
sions that are not queried at the lowest granularity level (dimension repair time to month and
dimension repaired part to all parts). Because all values of the repaired part dimension are
grouped to one value, a constant can be used as the grouping function. The destroy dimension
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function removes the repaired part dimension from the query result. This can be done because
the dimension only contains one element after the previous merge operation. .

Evaluation for PROMISE/OLAP:

Generally, algebraic approaches allow for a very precise definition of the semantics of a query,
by formally describing the operational semantics of each basic operation. However, the rather
procedural style of the algebraic query specification conflicts with our requirement of a de-
scriptive formalism. The most important advantage of algebraic approaches when designing
guery optimizers for database systems, namely the existence of transformations that preserve
the semantics of a query turns out to be the largest disadvantage for our purpose. Designing a
canonical form from an algebraic expression is complicated and the transformation of a query
to the canonical form can become time consuming. Being targeted at a database-internal rep-
resentation of queries, algebraic approaches do not (and should not) take the user interface
structure and the behavior of the user into account. The only multidimensional approach that
offers a concept for dealing with navigational user behavior is the approach of P. Vassiliadis
[Vas98], where the author proposes to store the base granularity of the cube for al intermedi-
ate results of an OLAP session such that drill-down operations (that request data on a finer
granularity than the current intermediate results) can be efficiently formulated and evaluated
by the system. Table 3.3 summarizes the evaluation results.

Suitability for PROM | SE/OL AP: Algebraic approaches

semantics descriptiveness canonical form navigation user interface
++ - -

Table 3.3: Schematic Evaluation of Algebraic Approaches according to their Suitability for PROMISE/OLAP

3.21.2 Logic Based approach

The logic based approaches use descriptive logic formalisms to specify queries. That means
that a query is specified as a predicate over a set of data structures. The set of syntactically
correct (well-formed) formulas is usually described by a logical calculus. This approach is
more descriptive than the algebraic approach because properties of the result are described by
the query expression rather than giving a procedural description of how to compute the re-
sults. Therefore, alogic based approach is suited as a basis for defining descriptive query lan-
guages and discussing the expressiveness of such languages.

Regarding the large set of multidimensional algebras described in the last section, it is sur-
prising that only a very small number of approaches tackle the problem of designing a query
language for OLAP database systems using description logics ([CT98a],[HMR97]).

The formalism presented in [HMR97] is an extension of the well established DATALOG
language. Each cell of the data cube is regarded as a DATALOG fact and typical structural
manipulations and aggregation operations are modeled as logical rules. The paper defines
model-theoretic semantics and an equivalent fixpoint semantics for the extensions. The au-
thors also derive an intuitive evaluation schema for multidimensional query expressions.

The approach of Cabbibo and Torlone [CT97], [CT984] is based on a calculus for f-tables.
An f-table is the data structure representing a data cube. The calculus contains scalar functions
and aggregate functions as well as the grouping functions of the classification schema (called
roll-up functions in the terminology of the approach).
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Example 3.13 (The Logical Approach of Cabbibo and Torlone as a Case Study)

The central data structure of the approach ([CT97]) is an f-table which can be compared to a
relational table with the difference that an f-table possesses two distinct types of columns:
dimension columns and measure columns. The domain for the dimension columns is defined
by a dimension which is a structured entity consisting of the classification schema and in-
stance. The f-table schema for our example would look like the following:

REPAIR[repair time: day, repair location: location, repaired part: part]
—[ # of repairs: numeric , # of persons: numeric]

Figure 3.9 shows a possible representation of a query using the REPAIR f-table: “Give me the
cumulated number of repairs split up by month for locations in Bavaria during the year 1999.”

query = (geogr.region, month: r | r =
sum(day, location: num | dnum,p (
[num,p] = REPAIR[day, location, part]

A month=R-UPg4,, """ (day)

A geogr.region =R-UPjcation®
A R-UPponen’ %" (month) =1999
A geogr.region = ’‘Bavaria’)

eogr. region

(location) ) )

W JO0O Ul WNRE

Figure 3.9: Sample Query Using the Logic-Based Approach of [ CT97]

The query specifies the result as an f-table with two dimensions named geogr. region and
month and a single result measure r (line 1). The aggregation of the base data to the required
granularity is specified by the aggregation function sum (line 2-6). It specifies an aggregation
of the base data from days to month (line 5) and from location to geogr. region (line 6). Asno
condition is given for part, al data in this dimension is aggregated. Notably, the variables
month and geogr. region are bound by the definition of the result f-table (line 1). The restric-
tions of the repair time dimension and the geographic region are specified by lines7and 8. ¢

Evaluation for PROMISE/OLAP

The above mentioned logical approaches both offer well defined semantics of the query re-
sults with respect to the underlying data model. The main advantage of alogic based approach
is that alogical predicate provides a very descriptive way of formulating queries. Thisis the
reason why these approaches are very suited to serve as a foundation for declarative query
languages (like e.g CQL [BL97]). However, the problem of defining a canonical form for
logical expressionsit is at least as difficult as the design of an algorithm that determinesif two
distinct logical expressions have the same semantics. Although none of the approaches ad-
dresses this problem, it is likely that a solution is NP-hard (the query equivalence problem has
been proven to be NP-complete for SQL queries [SKN89]).

The most important drawback of the logic based approaches in the context of the PROM-
ISE/OLAP framework is that they do not take the user interface structure into account. Model -
ing iterative query specification (due to navigational user behavior) could be done by formu-
lating the next query using the expression of the previous query as a sub-expression. However,
none of the approaches has tackled this problem so far.
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Suitability for PROM | SE/OLAP: Logical approaches

semantics descriptiveness canonical form navigation user interface

++ ++

Table 3.4: Schematic Evaluation of Logic-Based Approaches according to their Suitability for PROMISE/OLAP

3.21.3  Graphical approaches

The driving idea behind the graphical approaches to query language design is to bridge the
gap between the domain expert’s requirement for an intuitive way of querying a database and
the database system needing a precisely defined query specification. These approaches argue
that a graphical representation of the multidimensional database schema can be intuitively
understood by the end user and be used in formulating queries. Therefore, both graphical solu-
tions for OLAP systems that have been proposed ([GMR98],[CT98b]) use a graph-based
visualization of the multidimensional database schema (comparable to our graphica ME/R
notation).

Golfarelli et. a. introduce a visualization of a multidimensional schema for conceptual de-
sign purposes [GMR98]. The proposed model is caled DF-model and represents a cube
schema as a labeled graph. The interesting part of the approach regarding query specification
Is the possibility to mark nodes of the graph that represent classification levels. A mark indi-
cates that this level is often used by analysts to formulate queries. However, this approach is
mainly targeted at defining typical query workloads (that can be regarded as patterns) during
system design, rather than the specification of individual queries or query sessions.

The graphical approach of Cabbibo and Torlone [CT98b] is especially designed to enable
the user to incrementally formulate a query starting form a visualization of the logical multi-
dimensiona schema. A so called f-table constitutes the basic data structure of the underlying
data model. Comparing the data model to the PROMISE/OLAP data model, it is noteworthy
that the definition of an f-table schema combines the notions of a cube schema definition and
the corresponding classification schema in the PROMISE/OLAP approach. An f-table in-
stance however corresponds to the understanding of a cube instance in PROMISE/OLAP. The
graphical query language relies on the visualization of an f-table schema as a labeled graph
with different node types representing f-table names, dimensions?, classification levels, and
descriptions for classification levels. A query is specified as a sequence of f-graphs Gy,...,Gm,
where Gy is a representation of the database schema and Gy, is a representation of the query
result. The sequence is called s-graph. The intermediate steps are generated by a user that in-
teractively marks nodes (indicating the result granularity respectively the result measures),
labels edges (indicating the aggregation functions to be used) and nodes (specifying restriction
predicates) or inserts edges (to combine data from different f-tables). The semantics of the
query are formally defined by an algorithm that derives a mapping function from the source f-
table instances to the resulting f-table. This mapping can be computed stepwise from consecu-
tive steps of the s-graph.

Evaluation for PROMISE/OLAP

Deriving an algebraic description of a query from the s-graph specification alows for a pre-
cise definition of the semantics of a query. However, the approach of [CT98b] only defines

23 Notably, in [CT97] the understanding of a dimension comprises the classification structure consisting of the classification
levels. Therefore, a dimension is represented as a hyper-node in the graph which contains the classification levels as sub-

nodes.
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the manipulation operations to the graphical structure and the mapping process to the alge-
braic representation in an informal way.

The main idea of iteratively transforming and manipulating the source schema until the
schema of the query is obtained (like proposed in [CT98b]), comes very close to our under-
standing of the navigational query formulation being exploited for the predictive PROM-
ISE/OLAP approach. However, it is problematic to provide the user with a representation of
the (rather abstract) database schema, as the user often does not understand the static structure
of the schema. Due to this observation, real-world OLAP tools (see next section) do not pre-
sent the schema but the result of the last query to the user who then manipulates the represen-
tation of the results rather than the schema.

Another, more serious problem for our approach is that a formulation of a canonical query
form isvery difficult given the fact that a query is specified as a sequence of |abeled graphs.

Suitability for PROM I SE/OL AP: Graphical approaches

semantics descriptiveness canonical form navigation user interface

+ + - ++ +

Table 3.5: Schematic Evaluation of Graphical Approaches According to their Suitability for PROMISE/OLAP

3.2.2 TheStructureof Interactive OLAP Query Interfaces

The issue of how to formulate a query has not only been addressed by researchers but also by
product vendors who implement graphical interfaces to their products. One of the basic phi-
losophies of an OLAP tool is that the user can formulate queries without any programming
skills. Therefore, the user interface component of the OLAP tool provides the user with a
graphica representation of the multidimensional database schema which is used to interac-
tively formulate queries. No standard exists for the layout and functionality of the user inter-
face such that the operations and interactions necessary to formulate a given query are natu-
raly very tool specific. Thisis problematic for our approach as we need to base the PROM-
ISE/OLAP approach on a general description in order not to restrict its applicability. How-
ever, a deeper anaysis of the different products shows that the underlying functionality which
is relevant for the OLAP database is similar for all these tools despite of their different front-
end layouts.

Consequently, in this section we develop a model for an OLAP user interface abstracting
from the peculiarities of different products and thus hiding them to our approach. The result-
ing abstract user interface definition is based on an analysis of the most important OLAP sys-
tems that were compared in [DSV+97] and were used by the author for the implementation of
several real-world projects. As illustrative examples for this work we use the systems Oracle
Express, Cognos PowerPlay and Informix MetaCube». Not all of the described elements can
be found in every product nor are all special features of products covered. The purpose of this
description is to provide the reader with an impression of the typical operations that can be
executed in an OLAP system and their implications for the design of a query representation
formalism.

24 These tools were chosen to represent the widest possible variety of different architectural philosophies, including a client
based OLAP product (PowerPlay), a full-fledged multidimensional database server (Express) and an OLAP implementa-
tion based on arelationa database system (MetaCube). For a more detailed comparison see also [DSHB99].
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In OLAP interfaces, the result visualization is closaly linked to the formulation of queries
as the user directly manipulates the result visualization in order to retrieve new data. There-
fore, before describing how interactive query formulation takes place using the abstract OLAP
interface, it is necessary to briefly describe the visualization of multidimensional query results
i.e., multidimensional cube instances. Each cube instance is visualized by the tools using a so-
called MD presentation. Depending on the needs of the user and the characteristics of the
data, this presentation can be performed in a multitude of ways (e.g., as cross-tables, 2D/3D
bar charts, pie charts or even as 3D renderings). We are not interested in the actual type of the
visualization, as it does not influence the query that has to be executed in order to retrieve the
data from the database. Therefore, we use the term multidimensional presentation (short MD
presentation) to subsume al the different forms of visualizing multidimensional data.

Each type of MD presentation has a fixed maximum number of data dimensions that can be
visualized (e.g., 1 dimension for 2D bar chartss, 2 dimensions for a cross table or a 3D bar
chart or 3 dimensions for a 3D rendering)®. If the data stored in the database is of a higher
dimensionality than the number of dimension allowed by the presentation, the result of a
query must be reduced in dimensionality.

One way to decrease the dimensionality of a cube stored in a database during a query isto
restrict a dimension (for example, repair location) to a single element (for example, Germany)
and then to remove the dimension from the cube (the corresponding algebraic operations have
been described in the previous section). Of course, the user needs to know the restriction ele-
ment in order to correctly interpret the results (for example, to know that the presented figures
only apply to Germany). These dimensions (called selection dimensions of the query) are not
directly contained in the MD presentation (for example, the cross table) but are represented
elsewhere in the interface. E.g., Oracle Express and Informix MetaCube visualize the corre-
sponding elements next to the table in the upper left corner (see Figure 3.14 and Figure 3.15)
while Cognos PowerPlay uses a dimension bar on top of the MD presentation to show the
current restriction elements for the different dimensions (see e.g., Figure 3.11).

The remaining dimensions (called result dimensions of the query) span the multidimen-
sional space which is being visualized by the MD presentation. If there are still more result
dimensions than the maximum number of dimensions allowed for an MD presentation type,
the dimensionality has to be artificialy reduced e.g., by building the cross product of the ele-
ments of two or more dimensions and visualizing the result along one of the dimensions of the
MD view (for example, along the axis of atable). All the parameters that are necessary to dis-
play the MD presentation apart from the actual raw data (e.g., the mapping of result dimen-
sions to display axes, color schemata, diagram type, diagram specific information) are called
the configuration of the MD presentation.

Example 3.14 (M ultidimensional Presentation)

In order to demonstrate the concepts of OLAP user interfaces and queries, we use an extended
version of the repair cube schema example which was first introduced in Example 3.8. As
shown in Figure 3.10 it contains five dimensions (vehicle, day, location, part and type of re-
pair) and three measures (# of repairs, duration of repairs, # of persons). The cube schemafor
the example looks as follows:

25 Notably, one display dimension is used to visualize the measure val ues.
% Of course, more than one dimension of the query result can be mapped to a single dimension e.g., by building the cross
product of the elements of two or more dimensions and visualizing the result along one of the dimensions of the MD view.




CHAPTER 3 MODELING AND QUERYING OLAP DATABASES

C.= ( ( repaired vehicle: vehicle,
repair time: day,
repair location: location,
repaired part: part
type of repair:: type of repair ),
(#repairs, duration, #persons) )

i type of
vehicle
ehic repair unit
A geogr. region
vehicle month
group
A location
R
repair is contained in bl
# of repairs
dfuration
- # of persons
type of repair
yp P / part

scheduled?

part.group
belongs to

Figure 3.10: An Extended Version of the Repair Cube Schema

For this example query, the user restricts the repair time to the year 1998 and the repaired
vehicle to the vehicle class ‘Cars and chooses to see the results split up according to the
countries (dimension repair location) and the vehicle group (dimension repaired vehicle).
Figure 3.11 shows how Cognos PowerPlay 6.5 visualizes the results of such a query. The di-
mension bar above the result visualization shows the different dimensions of the multidimen-
sional database schema and restrictions that have been made to reduce the set of classification
nodes being used to calculate the query result.

‘ dimension bar (with result restrictions) ‘

* PowerPlay - [PPlay1 of DISS_EXAMPLE (Explorer]] [_[O] <]
E File Edit ‘iiew Inset Explore Format Toals ‘window Help 18] x|
D i il Tt bl ] |
L = ar=r |
= [F oiFeers

e ——— =amr T ands USA UK Japan Repair Location
Audi 518 230 172 187 231 1438
BWWY 426 140 121 188 153 1028
Chrysler 142 55 63 42 46 353
Ford 418 147 148 evs 141 1031
Mazda 409 181 W?Nb 144 173 1081
Mercedes 538 Jé“a‘ “2 215 190 1394
Renault 381 "‘c“ 107 113 84 791
WY 444 140 160 145 149 1038
Cars 3376 1226 1184 1211 1167 8164

For Help, press F1. \ y

‘ results of the previous query

Figure 3.11: The Structure of the Cognos PowerPlay 6.5 Interface
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In our example, the dimension repair time has been restricted to the year 1998 (leftmost en-
try on dimension bar), while e.g., the repair location is not restricted (second entry from the
left). The rightmost entry on the dimension bar indicates which measure is being displayed by
the visualization (in this case the number of repairs). Figure 3.12 shows a different visualiza-
tion of the same query results using a 3D bar chart. .

A comparison of the MD presentation used by PowerPlay, Oracle Express (see Figure
3.13), and Informix MetaCube (see Figure 3.14) shows that the main differences between the
user interfaces merely concern the layout but not the underlying functionality. It also shows
that the distinction between selection dimensions and result dimensions and the concept of
restricting the base data using a single node of the classification isinherent to all the products.

+ PowerPlay - [PPlay1 of DISS_EXAMPLE (Explorer]]

45 File Edit View Inseit Esplore Fomat Tools Window Help =15 =]

Dl(RIS|®o| & (e o[22 o ozl ] ]|
5 [1238) [ oo oo [pat] (o) mopmr e ) [ s ]

Mr of Repairs

o
[
ﬁﬁl
? P Japan

USA
Netherlands
Audi Germany

B13 [AudiGemany] A

Figure 3.12: A 3D Bar Chart as an Example for an MD Presentation

An important feature of common OLAP interfaces is that the iterative specification of queries
is done directly using the result visualization. The philosophy behind this interface design is
that the user should not be aware of the database in the background and should concentrate on
the data exploration task without having to change the interface for analyzing data or formu-
lating/refining the queries. After starting a session, the system displays the results of a prede-
fined query (or a default query). The user can then interactively manipulate the MD presenta-
tion by applying certain transformations to the presentation. The transformations that can be
directly handled by the front-end component (for example, swapping the axes of a diagram)
are carried out immediately, while changes that require new data from the database trigger a
new query which is automatically generated by the front-end tool and passed to the OLAP
processor.

Typical transformations are the exchange of result and selection dimensions using e.g., a
‘drag and drop’ mechanism (called rotate or pivot transformation) or changing the granularity
of the displayed result e.g., by double-clicking a classification node which should be split up
using the next lower level (called drill-down resp. roll-up operation). The type of transforma-
tion being available is again tool specific. Some of the tools offer very ‘fine-grained’ trans-
formations thus requiring the user to perform several operations to achieve the desired effect
while some tools offer more complex operations (for example, the simultaneous drill down in
two dimensions by double clicking atable cell in the MD presentation) that can be regarded as
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agrouping of several simple interactions. Some tools automatically execute a new query after
each transformation (single transformation execution model) while other tools offer the user
the possibility to explicitly execute the next query after having performed all the necessary
transformations (multiple transformation execution model). Typically, tools that can offer bet-
ter response time due to their storage architecture (for example, because they use a native mul-
tidimensional database engine) prefer the single transformation execution model, while those
tools with longer response times (for example, OLAP tools based on relational storage) tend
to prefer the multiple transformation execution model.

‘ Selection Dimensions (Time and Customer) ‘
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Figure 3.13: The User Interface of Oracle Express 6.2

Conclusions for PROMISE/OLAP: The relevant part of the actual user interface for
PROMISE/OLAP is the MD presentation as it is deployed by the user to indirectly interact
with the database. The actua queries are being generated from the configuration of the MD
presentation. This means that each configuration of the MD presentation uniquely corresponds
to a (canonical) database query. However, the configuration of an MD presentation contains
more details (e.g., type, layout information) that are not relevant for the generation of the da-
tabase query. Consequently, instead of describing the user’s interactions in terms of the user
interface, for PROMISE/OLAP we represent the user’s interactions as canonical OLAP que-
ries (corresponding to a class of MD presentation configurations). Section 3.2.3 formally de-
fines the PROMISE/OLAP canonica query based on the understanding of an MD presenta-
tion presented here. On the user interface level, the interactive part of the user’s behavior is
represented as changes to the configuration of the MD presentation. Albeit, for our approach
we are only interested in changes that transform the corresponding (canonical) query. There-
fore, in Section 3.2.4, we define a set of transformations that modify canonical OLAP queries
and use these transformations throughout the thesis to abstractly represent the user’s interac-
tive behavior.
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Figure 3.14: The User Interface of Informix MetaCube 4.2

3.2.3 ThePROMISE/OLAP Model for Canonical Queries

As argued in the previous sections, for the PROMISE/OLAP approach, a canonical descrip-
tive representation of queries is necessary that takes into account the restrictions of the typical
user interface (MD presentation). This section defines a canonical query form which we use
throughout the rest of this thesis to formulate single queries against the OLAP database sys-
tem. The design of the canonical query is guided by the structure of the abstract OLAP inter-
face described in the previous section.

By means of this interface, the user interactively defines a canonical query by selecting a
set of interesting measures, called the result measures (for example, number of repairs). The
user further specifies a specific area of interest by restricting the set of dimension members for
some dimensions of the cube schema Cy and by determining the granularity (i.e., the classifi-
cation level) on which he wants to have the result data displayed. The restriction predicate for
the base data (i.e., the data stored in the granularity given in the schema definition) is implic-
itly formulated using the classification lattice of the dimension. The user picks a restriction
element from any level of this classification lattice for each dimension that should be re-
stricted. E.g., the user can restrict the repair time dimension to days in the year 1999, by
choosing the restriction element *1999" which belongs to the classification level year. For the
dimensions which are not restricted by the user, we assume the special <dimen-
sion_name>.all element as the restriction element. The level to which the restriction element
belongs is called the restriction level of the query for the corresponding dimension. The set of
restriction elements uniquely identifies a sub-cube of the original data cube. The necessary
aggregations of base data are specified by giving a result granularity for each dimension. The
result granularity is defined by picking a level (called result level or result granularity) from
the classification lattice of each dimension of the cube. In order to ensure a meaningful result,
the result granularity must be finer than the restriction level with respect to the classification
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lattice. This especially implies that a classification path exists in the classification for each
dimension lattice from the result granularity to the restriction level. For example it is not
meaningful to select al years containing the month ‘ January’.

Example 3.15 (Defining a Canonical Query)

Figure 3.15 visualizes the selections and aggregations defined by a canonica query for an ab-
stract two dimensional data space. Each of the dimensions (dimension one left hand side, di-
mension two at the bottom) has a simple hierarchy defined over their members, which consists
of three levels: L11,L12 and Ly 3 for dimension one respectively L, 1,L22,L23 for dimension
two. The restriction element r;="I" for dimension 1 (left hand side) is specified on level L; 1
while the restriction for dimension two is formulated with respect to level Ly (r="A’). This
defines a rectangular area of the data space which is used to calculate the resultz. The struc-
ture of the result is defined by the result granularity for each dimension, which is depicted by a
dotted line in Figure 3.15. For dimension 1 (left) the result granularity isLi, while Ly isthe
result granularity for dimension 2. The structure of the query result is shown in the right bot-
tom corner.
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Figure 3.15: Visualization the Effects of a Canonical OLAP Query

Notably, for dimension 2 in our example, the restriction level equals the result level. Thus this
Isaselection dimension, while dimension 1 isaresult dimension of the query. .

The following definition formalizes our informal definition of a canonical OLAP query. The
semantics (i.e., the results of the query) are described in Definition 3.13.

27 Of course, in aworking OLAP system, the result can also be derived from precomputed aggregates. At this point, we do
not take preaggregation into account as this is a form of interna system tuning and should not be part of the descriptive
query formulation.
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Definition 3.12 (Canonical OLAP Query):
For an n-dimensional cube schema Cy = ({d;,...,d},M¢) with the corresponding classifi-

caion schema W =(Ly,classy), a canonical query qc is defined as a tuple
qC:(Mq,Rq,Gq)Where

= Mg cMc istheresult measure set.

= Ry=(ryr,....,ry) with rj e dom(d;),1<i<n. Ryiscaled the restriction vector of gc. The
elementsr; of R, are called restriction level of the respective dimension d..

= Gg=(91,92,---,9n) Wwith gje L(‘{’|O|i ). G is caled the granularity vector of gc. The
elements g; of G are called result level or result granularity of the respective dimension
di.

In order for qc to be well-formed the result granularity has to be smaller or equal than the re-

striction level, formally:

Vie{l..,nt:gi <y (WF)
We call the set of all well-formed queries against a given cube schema Cy the canonical query
space of this cube schemaand denoteit as O, . .

Notably, the condition for well-formed canonical queries also implies that the classification
schema contains a path that contains both, the level of the restriction element, and the result
granularity. For any given cube schema, the set of well-formed canonical queries is finite as
the number of restriction elements for each dimension, the number of classifications levelsin
the classification schema and the number of measures is finite. The cardinality of this set has
the following upper bound (which assumes that all possible queries are well-formed):

M| |MC| n n
Oc,|< Z( . J .[{‘dom(‘ﬂ . )‘. Hl

2| ] L(‘P| . j‘

number of distinct result number of distinct number of distinct
measure sets restriction vectors result granularity vectors

However, the exact number of well-formed queries is smaller than this upper bound because
of the condition for well-formed queries (WF). For the storage estimation of the prediction
models in the following chapter, we need a more precise approximation of the size of this set.
The exact number depends on the distribution of the classification nodes across the levels of
the classification lattice in each dimension and on the number of classification schema paths
in the classification lattices of the different dimensions. Let cpaths(*|e,) denote the set of all
maximal classification schema paths for the classification lattice W|e, i.€., al paths that con-
nect the LUB (the cube dimension) with the GLB (the level <dimension>.all). Each path con-
sists of alinearly ordered list of classification levels py,...,pn. Then the number of well-formed
canonical queries can be better approximated by the formula shown in Figure 3.16 that takes
the structure of the dimension lattices into account (see Example 3.16 and Figure 3.17 for an
application of thisformula).
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Figure 3.16: Estimating the Number of Well-formed Queries for a Cube Schema

Example 3.16 (Canonical OLAP Query):

An example query against the extended vehicle repair cube introduced in Example 3.14 might
be “Give me the number of repairs for the year ‘1999’ and the ‘steering’ assembly split up by
the geographic regions of ‘Germany’”. The corresponding canonical OLAP query has the fol-

lowing form:
qexample = ( {#repairs} ’
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

Figure 3.17 contains a calculation of the number of possible restriction/granularity combina-
tions that fulfill the condition (WF) for the example schema (according to the formula shown
in Figure 3.16). For this 5-dimensional schema, the number of possible combinations is
3,9-10". Consequently, the number of possible well-formed canonical OLAP queries is 7
times higher (number of possible measure combinations that can be selected), thus 2,7+10"3. «

So far, we have only formally described the syntax of a canonical OLAP query and have
stated the semantics of the query only informally. The following definition formalizes the re-
sult of acanonical OLAP query.

Definition 3.13 (Semantics of a Canonical OLAP Query)
Let us assume an n-dimensional cube schema C,, = ({d,,...,d.},M.) conforming to the clas-

sification schema ¥ = (L,,,class, ) and an instance I of the cube schema Cy. The result of a
canonical query qc(lc) is again a multidimensiona cube instance |I’c. However, the result in-

stance is defined over a transformed cube schema C'y. The transformed cube schema C’y and
instance I’ are defined as follows:
u C"{-’:({gli"ﬂgn}’MC)

I IC' (Xl,...,Xn) =

aggr({(y= (Y1 Yn)s Tc (¥)) | roupy, jeves(r ) (i) = Ti Agroupg, g, (¥i) = X })

where aggr is the n-dimensiona aggregation function which computes the aggregation value
using the default aggregation functions for the respective measure/dimension combinations. ¢
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dimension/classification level | | cardinality of | restriction/granularity combina-
level domains tions

repaired vehicle

vehicle 500

vehicle group 50

vehicle class 4

vehicle.al 1

1*4+4* 3+50* 2+500=616

type of repair

type of repair 2

type of repair.all 1

1¥2+2%1=4

repair time

day 1461

month 48

year 4

day.all 1

1*4+4* 3+48* 2+1461=1573

repair location

location 500

geogr. region 50

country 30

type of repair unit 3

location.all 1

1*3+500+50* 2+3* 2+1* 1=610

repaired part

part 1000 1000

assembly 300 300

part.group 30 30

part.all 1 1

1000+300* 2+30* 2+1* 4=1664

all dimensions 616*4* 1573*610* 1664=3.9* 10"

Figure 3.17: Calculating an Upper Bound for the Number of Well-Formed Canonical Queries

3.24 Modeling Iterative Query Specification

As demonstrated in 3.2.2, the user works with the OLAP tool in an interactive way. An MD
presentation visualizes the results of the last query and the user can formulate the next query
by performing transformations to the last query definition. Nevertheless, the user does not
directly manipulate the query definition (which is hidden by the front-end component) but he
mani pulates the configuration of the MD presentation which is then trandated to a new query
definition. The purpose of this section isto develop aformal model that is capable of describ-
ing the user’ s interaction with the OLAP front-end tool on the appropriate level of abstraction.
Following the above argumentation, we describe the transformation on the level of canonical
gueries rather than on the MD presentation level. To this end, we introduce a set of query
transformations that modify the canonical OLAP query corresponding to the current MD pres-
entation configuration. Each query transformation operation thus describes a whole class of
MD presentation manipulations (the actual presentation manipulations which belong to this
class, e.g., clicking and dragging are of course dependent on the actual tool implementation).
Thus, the transformation operations can be used to abstractly describe the users interaction
independent of the actual implementation details of the front-end.
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Formally, an OLAP query transformation operation (short query transformation) is a func-
tion 7:0©., — O, which transforms a canonical query g to a modified canonical query (q).

Notably, these query transformations must not be confused with the operations of the alge-
braic approaches covered in Section 3.2.1.1. While the algebraic operations are used to specify
the semantics of a single query (they operate on cube instances), query transformations de-
scribe the correspondence between two subsequent queries (operating on canonical queries).
The query transformations are not designed with the goal of elegant formalization or imple-
mentation but should describe intuitive user interactions mirrored in the structure of the com-
mon user interfaces of current OLAP tools. Therefore, the set of transformation operations
together with the definition of a canonical OLAP query constitutes the definition of the ab-
stract OLAP user interface.

When introducing the interactive query interface of different OLAP tools in Section 3.2.1,
we pointed out that the distinction between result dimensions (that are used to build the MD
representation) and selection dimensions (that are restricted to a single element and thus not
part of the MD presentation) is central to the user interface. Thisis mirrored in different types
of transformations that can be performed for the different types of dimensions, resp. in differ-
ent semantics of the same transformation depending on the type of dimension. Formally, the
selection and result dimensions of a query are defined as follows:

Definition 3.14 (Selection Dimension, Result Dimension)

For a canonicad OLAP query qC:(M,(r ,...,rn),(gl,...,gn)) over a cube schema
C, =({d,,...,d },M_), we define the set of selection dimensions o(q) asfollows:

o(a) =1 di|level () = g; .
A dimension which is not a selection dimension is called result dimension. .
Example 3.17 (Selection Dimension, Result Dimension)

Regarding the query Qexample introduced in Example 3.16, the dimensions repaired vehicle(l),
repair time(2), repaired part(4) and repair type(5) are selection dimensions, as the restriction
element resides on the level of the result granularity. The dimension repair location(3) is a
result dimension of Ceample, 8s the restriction element Germany belongs to the classification
level country.

Qe 1= ( {#repairs},
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

o(gexample) = { repaired vehicle, repair time, repaired part, repair type}

*

The actual layout of the MD presentation isirrelevant for our database centered approach as it
has no impact on the query that is necessary to retrieve the data from the database. E.g., for a
table, it isirrelevant if the members of a result dimensions are used to label the rows or col-
umns of the table. Also the type of the MD presentation (e.g., table, bar chart) is not impor-
tant. Therefore, we refer to the abstract structure and granularity of the MD presentation for
describing the possible operations (thus omitting user interactions that only change the layout
of the presentation). The structure of the MD presentation is defined by the partitioning of the
dimensions of the cube into result and selection dimensions.
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Definition 3.15 (MD Presentation Structure and MD presentation Granularity)

The presentation structure presstruct(qc) of a multidimensional query gc against an n-
dimensional cube schema C,, =({d,,...,d },M.) is defined as the n-tuple presstruct(qc):=

(sély,...,seln) with
1_d
sel, =4 for €o(@ forie[1;n]
0 else

The presentation granularity presgrang of gc is defined as the vector of granularities of the
result dimensions presgran(gc):=(grany,...,gran,) with

di ¢ o(q)

gran; ::{%i for forie[1;n]

Example 3.18 (MD Presentation Structure and Granularity)

For the query geample (Example 3.16), the presentation structure and granularities are defined
asfollows:

presstruct(Cexample)=(1,1,0,1,1)
presgran(Qeample)=(0,0,geogr . region,0,0) .

For transformations that change the restriction elements of a query or the result granularity of
aquery, the user interactively has to choose a new restriction element respectively granularity.
Following the navigational paradigm of OLAP user interface, the new restriction element or
granularity is not arbitrarily chosen from the set of al possible elements or levels, but ‘rela-
tively’ to the currently selected element (the relation is defined by the classification instance
respectively classification lattice). Depending on the actual transformation, the user can pick
the ancestors of a classification element, the descendants or the siblings. The following defi-
nitions define these terms for classification instances (see Figure 3.18 for avisualization in the
case of asimple hierarchy).

Definition 3.16 (Ancestor and Descendants of Classification Nodes)
The set of ancestors for the classification node m according to a classification instance Iy of a
classification lattice ‘P|d = (L, ,class, ) isdefined as follows:

ancestorsy,‘d (m) :={ae dom(l) |I € Ly Alevel(m) <y | A group|evel(m), (m)= a}
Analogoudly, the set of descendants for a classification node mis defined as follows:
descendantsy | (M) =1xe dom(l) || € Ly Al <y level(m) A group; jevei(m (X) =My
*

Some of the transformations require the user to pick a classification element as an argument to
the transformation operation. Again, due to the navigational paradigm, not any arbitrary clas-
sification node can be picked for such a transformation, but only those classification nodes
which are currently being displayed by the MD presentation. This set of nodesis called the set
of active dimension nodes for each dimension and is defined by the last canonical query as
follows (see Figure 3.19 for avisualization):
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f ancestors(m)

\ descendants(m)

Figure 3.18: The set of Ancestors and Descendantsin a Smple Hierarchy

Definition 3.17 (Active Classification Nodes)

For a canonical OLAP query qc :(M ,(rl,...,rn),(gl,...,gn)), we define the set of active
classification nodes a(:tivedk (qc) of dimension di with respect to query gc as follows:

activey, (dc) =1 m|me dom(gy) A Groupg, jevelr, ) (M) = ri |

restriction element r,

result
granularity g,

AN

| A R R Homd
WATAYAYAYAvAvAVAY

active classification members

Figure 3.19: Visualizing the Set of Active Classification Nodes Regarding a Query

The following subsections contain the definition of four atomic (slice, rotate-selection, rotate-
result, change-focus) and two composite query transformations (drill-down and roll-up). Ad-
ditionaly, we show that the set of atomic transformations is complete in the sense that it can
be used to interactively specify every canonical query definition starting from an arbitrary ca-
nonical query. We motivate the criteria for our choice of transformations and briefly sketch
how the actual user interface operation for each transformation could look like in an actual
GUI implementation.

3241  ChangingtheRestriction Criterion: Slice Transformation

The dlice transformation changes the restriction value for a dimension dy of a query g. The
dlice transformation is defined such that the application of this transformation does not change
the presentation granularity and structure of g. Following the navigational paradigm for query
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formulation, the new restriction element cannot be arbitrarily chosen from the domain of the
classification lattice. Instead, the choice (the set of candidate restriction elements) is restricted
to the siblings of the current restriction element ry, the descendants of r and the ancestors of
k-

If the dimension dk to which a slice transformation is applied is aresult dimension (i.e., the
restriction level is greater than the result level), the choice of candidate restriction elements
must be further restricted to classification nodes which reside on alevel of granularity that is
larger than the result granularity defined for this dimension. Otherwise, the dimension would
either become a selection dimension (in case that the new restriction element is from the result
granularity level) thus changing the presentation structure, or violate the condition for well-
formed canonical query if the new restriction element would be of alower granularity than the
result granularity.

If dimension diis a selection dimension of the query q, the result granularity of this dimen-
sion has to be automatically adjusted to the granularity of the new restriction element if this
element is from alevel which is not equal to the current restriction level. Otherwise, the query
would either not be well-formed anymore or become a result dimension, thus violating the
prerequisite that the slice operation does not change the presentation structure.

These considerations lead to the following definition of a slice transformation.
Definition 3.18 (Slice Transfor mation)
Let 0c :(M N (P ),(gl,...,gn)) be a query over an n-dimensional cube schema
Cy =({d,,....d },M_). Let rpay€ dom(‘l’|dk) be a classification node from the classifica-
tion lattice defined by dimension dx (1<k<n). The dlice transformation slicey, . (dc.)
with respect to dimension dyx and classification node rqy is defined as follows:

siceg, r. ., (@c)=(M,(r,....,1). (91, .., 9n))

=k level i=knad
r'= {r”"‘” for  and gi':z{ e
r K : else

The new restriction element rne, Must be a sibling, an ancestor or a descendant of the current
restriction element according to one of the a hierarchies defined by the classification lattice of
thedimensioni.e.,

= I, € dom(level(r,))wancestors(r, ) w descendants(r, ) (S1)
Additionally, the following condition has to be fulfilled

= dxeo(qc) = level (Mnew) ¥ level (gk) (S2)

*

28 Most of the tools (for example Cognos PowerPlay) even restrict the choice further by demanding that the new restriction
eement is an immediate descendent of the current restriction element, i.e. it is a descendent from the next lower level of

granularity (for example the 12 month of 1999 if 1999 is the current restriction element).
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Example 3.19 (Slice Transfor mation)
Let us assume that the last query was the query Qecample introduced in Example 3.16.

qexample ‘= ( {#repairs} ’
( all vehicles, 1999, Germany , Steering, all types),
( vehicle.all , year, geogr. region, assembly, type.all) )
If the user isinterested to investigate the figures of the previous year, he executes a dlice trans-
formation on the time dimension. As the new restriction el ement 1998 is from the same level
asthe current restriction element 1999, the granularity has not to be adjusted.

slice (Qapre) = ( {#irepairs},

repair time, 1998

( all vehicles, 1998, Germany , Steering, all types),

( vehicle.all , year, geogr. region, assembly, type.all ) )
If the user chooses a new restriction element e.g., May 1999 for the selection dimension time,
the result granularity is automatically adjusted to the level month.

Slicerepair time, may 99 (qexample) = {#repalrs} '

all vehicles, may 99, Germany , Steering, all types),
( vehicle.all , month , geogr. region, assembly, type.all ) )
A dlicein aresult dimension occurs for example if the user chooses to analyze the geographic

regions of the USA.

Slicerepair location, USA (qexam le) = ( {#repalrs} !

( all vehicles, 1999, USA , Steering, all types),

( vehicle.all , year, geogr. region, assembly, type.all ) )
Albelt, eg., the classification element ‘Bavaria belonging to the classification level geogr.
region cannot be used as a parameter to the slice transformation together with query Qecample
because it violates condition (S2).

slice = undefined

repair location, Bavaria (qexample)

3.24.2  Changing the Presentation Structure: Rotate Transformation

The dlice transformation presented in the previous section does not change the presentation
structure of the query i.e., the partitioning of dimensions into selection and result dimensions.
The rotate transformation® is designed in order to perform this change. For a given dimension
dx, it changes the status from result dimension to selection dimension and vice versa.

If a selection dimension is transformed into a result dimension, the restriction element re-
mains unchanged, but the user has to give a new result granularity®, which is a level smaller
than the restriction level. The opposite rotation (from result dimension to selection dimension)
does not need this additional parameter, as the result granularity is automatically set to the
restriction level in order to make the dimension a selection dimension. Due to the different
signature, the following definition formalizes two transformations rotate-result which rotates
aresult dimension to a selection dimension and the inverse operation rotate-sel ection:

Definition 3.19 (Rotate Query Transfor mations)

For a canonical query gc =(M,R,(01,....0n)) againgt an n-dimensional cube schema
Cy =({d,.....d.},M¢), the rotate query transformations rotate-resulty ~ and

2 This transformation is named rotate, as the hyper plane in the multidimensional data space which is defined by the query, is
being rotated.

30 Commercia tools (e.g.. Cognos PowerPlay, Oracle Express) often automatically use the next lower level as the new result
granularity.
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rotate-selectionko for dimension d¢ (ke[1;n]) and classification level le' ¥ are defined as
follows:

level(r, ) for i=k

rotate- resultq, (qc):=(M,R.(g1,...,gn)) with gil::{ g i 2k

In order to apply the rotate result operation, the dimension dy has to be a result dimension
with respect to query qci.e., d, ¢ o(q.) -

I .
rotate- selectiong, | (dc)=(M,R.(g1....,gn)) with g '::{g for .
i

In order to apply the rotate-selection operation, the following conditions have to be fulfilled:

= the dimension di to which the transformation is applied has to be a selection dimension
with respect to query qci.e., d, € o(q.) . (R1)

= a path from the target level |; to the current level of restriction gk must exist in the
classification lattice of dimension dki.e., It <y Ok (R2)

*

Example 3.20 (Rotate Query Transfor mation)

Let us assume that the last query was the query Qecample introduced given in Example 3.16.

Dot = ( {#repairs},
( all vehicles, 1999, Germany , steering, all types),
( vehicle.all , year, geogr. region, assembly, type.all) )

If the user wants to analyze the development of repair figures regarding the parameters repair
location and time of the repair (on the level of month), she might perform the following trans-
formation that makes the time dimension a result dimension.

qrotate =

rOtate-SeleCtionrepalr time, month (qexample) = ( {#repairs} !
( all vehicles, 1999 , Germany , steering, all types),
( vehicle.all , month, geogr. region, assembly, type.all ) )
If the analysis should be restricted to the variation of repairs over time irrespective of the geo-
graphic region, arotate-result transformation can be applied to the result of the previous trans-
formation:

rOtate- resultrepalr location (qrotate) = ( { #repairs } !
( all vehicles, 1999 , Germany , steering, all types),
( vehicle.all , month, country , assembly, type.all ) )

3.24.3 Analyzing Different Measures. Focus Change Transfor mation

All transformations presented so far were designed to manipulate the result granularity and the
restriction elements leaving the set of result measures unchanged. The focus change operation
completes our set of transformations by changing the set of measures being analyzed in the
result. Each application of the change-focus transformation adds or removes a measure from
the set of result measures. More than one measure can be added/removed by applying a se-
guence of change-focus transformations.
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Definition 3.20 (Change Focus Transfor mation)

For a canonical OLAP query gqc =(M,RG) against an n-dimensional cube schema
Cy =(Dc.Mc), the query transformation change-focusny,, . for meastre Menange€ Mc

is defined as follows:

M U Mchange for Mehange € M

change-focusy,. - (dc)=(M",R,G) with M ::{M ~Mehange else

Example 3.21 (Change Focus Transfor mation)

Let us once again assume that the last query was the query Qeample introduced given in
Example 3.16.
Qe = ( {#repairs},
( all vehicles, 1999, Germany , Steering, all types),
( vehicle.all , year, geogr. region , assembly, type.all ) )
If the user decides to additionally analyze the cumulated duration of the repairs, she trans-
forms the query by applying a change focus operation to the measure duration.

change-focus,, ... (q.....) = ( {#repairs, duration},
( all vehicles, 1999 , Germany , steering, all types),
( vehicle.all , month, country , assembly, type.all ) )

3.24.4  Changing the presentation granularity: Drill-down/Roll-up Transformation

The transformations presented so far are atomic in the sense that none of the transformations
can be expressed as a combination of the other transformations. In contrast to that, the two
transformations that will be presented in the following section are not atomic as they can be
expressed as a combination of rotate and slice transformations using a special set of parame-
ters. However, these transformations are of great importance to OLAP front-ends and are
therefore included in our set of transformations. The purpose of these operations is to directly
change the presentation granularity of the query (i.e., the granularity of the result dimensions)
without changing the presentation structure.

Both the drill-down transformation and the roll up-transformation can only be applied to
result dimensions of the cube. We define two distinct transformations instead of one com-
bined transformation for drilling and rolling in order to reflect the different parameters of
these operations (see below).

A drill down transformation increases the level of detail for a dimension k in a query q.
The drill-down is specified by choosing a drill-down element rnq, (the drilling element) and a
target level gnew. The drill-down element is picked from the set of active classification nodes
of aresult dimension® (for example, the element *1999'). The target level determines the new
granularity for the dimension k. The new granularity must be smaller than the current granu-
larity according to the classification schema. This means that a path from gney to gk must exist
in the classification lattice of the dimension k.

31 The restriction of the choice of elements only to active elements is a consequence of the interface design decision, that the
user picks the next restriction element from the axis labels being currently displayed.
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Definition 3.21 (Drill-down Transfor mation)

For a canonical OLAP query g :(M ,(rl,...,rn),(gl,...,gn)) against an n-dimensional cube

schema C, =({d,,...,d,},M), the drill-down transformation drillg_, . o  using the

classification lattice ‘P|dk = (L ,class,) of dimension dk (ke [1;n]) is defined as follows:

drillg, vy Grey (AC) = (M N (P 4 ),(gi,...,gﬁ)) with r, € dom(‘l‘|dk)and Oran € Ly

ri'::{ @il for' T and gi'::{g“a” for Jke[Ln]
r i zk i =k

The following conditions have to be met:
= dyg e o(qe), that means di isaresult dimension. (D1)

= Tgril € activey, (ac) i.e., the drill-down element rqqi is from the currently active set of

classification nodes (see Definition 3.17). (D2)
= Onew<y|q, Ok I.e., the target level must be smaller than the current granularity and thus, a

path (called drill-down path) must exist in the classification lattice ‘P|dk from the target

level gnew to the current granularity g. (D3)
L 2

Example 3.22 (Drill-down Transformation)

The query introduced in Example 3.16 lists all the geographic regions of Germany (e.g., Bava-
ria, Hamburg) on the result dimension repair location. If the user isinterested in the distribu-
tion of repairs across the locations in Bavaria, she can apply the following drill-down query
transformation to Qexample:

Arill . eciion, seans LOCAtion (a,.,..) = ( {#repairs},

( all vehicles, 1999, Bavaria , steering, all types),
( vehicle.all , year, location, assembly, type.all ) )
*

The roll-up transformation can be seen as the complementary transformation of the drill-
down operation. Here, the user decreases the level of detail for aresult dimension along a spe-
cific classification path. The roll-up transformation is specified by giving a new granularity for
aresult dimension. The classification lattice of the respective dimension must contain a path
from the current granularity to the target level. As long as the new target level is smaller than
the level on which the restriction is formulated, the restriction element does not change.

Albeit, if the new result granularity is not smaller than the current restriction level, a new
restriction element has to be determined automatically in order to preserve the presentation
structure. In this case, the new restriction element must be chosen in a way such that it is a
parent of al currently active classification nodes2. The rationale behind this requirement is,
that if the user performs a roll-up transformation, he expects to see an abstraction of all the
elements he currently sees (active classification nodes of the current query). This also ensures
that the result of a subsequent drill-down transformation does at least contain the currently
visible classification nodes.

32 Notably such an element always exists, asthe ‘al’ element fulfills this condition for any set of active classification nodes.
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new restriction
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Figure 3.20: Re-computing the Restriction Element after Roll-up Transformation

Additionally, the size of the set of active classification nodes should be kept as minimal as
possible in order to be easily handled by the user. Therefore, the new restriction level should
be as low as possible with respect to the classification lattice. If the current restriction level,
the new result granularity and the old result granularity are al from the same classification
schema path p, the new restriction element is computed as the parent of the current restriction
element on the level which is “directly above' ( fathery(gnew) ) the new result granularity (see
Figure 3.20). As the current restriction element ry is an ancestor of the currently active classi-
fication nodes me activedk (g) by definition, the new restriction element r’y being an ancestor

of the current restriction element also fulfills this condition.

A specia case occurs if the current restriction level and the new granularity level are from
different dimension paths. This means that the data in the new query is being classified ac-
cording to a criterion which is incompatible with the current criteria. In this case, the new re-
striction element isset to ‘all’.

Following these considerations it becomes clear, that the specia level <dimension
name>.all should not be allowed as a parameter to the roll-up transformation. For a granularity
of ‘all’ no new restriction element from a higher level can be found and therefore, the respec-
tive dimension automatically becomes a selection dimension of the transformed query. As the
roll-up transformation should not change the presentation structure, we do not allow the all-
level as an argument to the roll-up transformation. However, an aggregation of the data to the
all level is easily possible using the rotate operation (see Section 3.2.4.2).

Definition 3.22 (Roll-up Query Transfor mation)

For a canonical OLAP query g =(M ,(rl,...,rn),(gl,...,gn)) against an n-dimensional cube
schema C,, =({d,....,d,},M_), the roll-up query transformation roll—upg, 4 . (dc) using

the classification lattice lI’|dk =(L,,class,) of dimension dy is defined as follows:

roII—updk,gneN(qC):z (M,(rl',..-,fﬁ ),(giw-,gﬁ))

i =k
gi'::{gnew for and
of i Kk
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I I 2KV Onew <p|dy level (ry)
[} =1 90U evel (r ), father,, (gney ) (i) TO I =KAlevel(r) <pig, Onew
dy all else

where fathery(gnew) denotes the father of the new granularity level gnew according to the classi-
fication schema path through the lattice ‘P| 4 that is defined by the restriction level level(r;)
|

and the result granularity g;.

The following conditions have to be fulfilled:

= digeo(qe) i.e, dgisaresult dimension. (RU1)

" Opnew€ L(‘P|gk)—{dk.all,gk} i.e.,, the new result granularity is a level which is larger

than the current granularity according to the classification lattice defined by d¢ and the
specia level dg.all isnot allowed as an argument. (RU2)

*

Example 3.23 (Roll-up Query Transfor mation)
Let us assume that the last query executed was the query qqrii introduced in Example 3.22.

qdrill = ( {#repairs} ’
( all vehicles, 1999, Bavaria , steering, all types),
( vehicle.all , year, location, assembly, type.all ) )
If the user chooses to change the granularity of the results in the repair location from location

to geogr. region, she performs the following query transformation:

r011 -uprepalr location, geogr. region (qdrlll) = ( {#repairs} ’
( all vehicles, 1999, Germany , steering, all types),

( vehicle.all , year, geogr. region, assembly, type.all ) )
The restriction element of the resulting query is automatically adjusted to the element ‘ Ger-
many’ because country isthe level directly above geogr. region and ‘ Germany’ is the parent of
‘Bavarid .

If the user chooses instead to perform a roll-up transformation to gqry that changes the
granularity in the repair location dimension from location to type of repair unit, the result
looks as follows:

r011-uprepair location, geogr. region (qdrill) = {#repairs} ’
( all vehicles, 1999, locations.all , Steering, all types),

( vehicle.all , year, type of repair unit, assembly, type.all ) )
The restriction element for the resulting query is being set to locations.all, because the levels
location (old result granularity), type of repair unit (new result granularity) and geogr. region
(old restriction level) are not from the same classification path. .

3.245  Completeness of the Transformations

In order to show that the definition of transformation operations is justified, we show that the
set of query transformations is complete w.r.t. the definition of a canonical OLAP query. That
means for each pair of canonical OLAP queries (01, O), it is possible to find afinite sequence
of transformation operations 1s,..., Tk that transforms query q; to gz i.e., t10,... o w(01)= Qe.

We split the proof into two parts. first we show, that starting from the specia query
0o = (@,(dll,...,dl),(dy.al,...,d,.al)) every well-formed query g can be produced by a se-
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quence of transformations Ty (Lemma 3.3). The second part shows that starting from any arbi-

trary query q, the default query go can be generated (Lemma 3.4) by a transformation sequence
'Tq . This means that for any pair of arbitrary queries g; and ¢, the transformation sequence

Ta,.q, ='Iqu 0Ty, transforms g, to gz (Theorem 3.5)=,

Lemma 3.3 (Generation of Canonical Queries)

For every (well-formed) canonical query q=((my,...,m,),(r,...,1),(91....,9,)) there exists
a finite sequence of transformation operations Ty such that the result of applying T to the

query go = (@, (all,....all),(dy.all,...,dn.all)) isequal togi.e., Tq(do) =0. .

Proof 3.3 (Generation of Canonical Queries)

We start from the query qp = (@, (@l,...,al),(dydl,...,d,.al)) and want to obtain the well-
formed query q:=((my,...,m,),(f,....fn).(91.....9n)) asthe result of a sequence Ty of trans-
formation operationsi.e., Tq(dp) =q. In order to prove the existence of T, we give an algo-
rithm that constructs such a transformation sequence and prove its correctness.

Let us assume that the set Xy:={ 11,..., ¥} contains the indexes of the result dimensionsi.e.,
reXqied 7€ o(q). The constructed transformation sequence Ty(q) has the following

form:
Tq=tmo...otmy o tgjo...otgp o trpo...otry
%/_J \—ﬂf_—J
=TMq_ =TGq =TRq
transformations  transformations  transformations
to adjust M to adjust G for toadjust R
result dimensions
of g
with

tm = change- focus, for 1<i<z=|M|,
tgj = rotaIe-seIectionde 9y, for 1< j< p=n-|o(q)|,

tr =dliceg, (1) for 1<k<n

Simple application of Definition 3.20 shows that the first part of the transformation sequence
TMq produces a query q which contains the required result measures i.e,

TMq(do) = =(M, (@ll,....al),(dy all,...,dnal)).

The application of the second part of the transformation sequence TG to g’ produces a query
q":=TGq(d") . TGy changes the result granularity of query q’ such that for all result dimen-

sions of g, the result granularity of q”is equal to the result granularity of . The preconditions
to apply the rotate-selection operation (cf. Definition 3.19) are trivialy fulfilled, as dl the di-
mensions dy,...,d, are al selection dimensions of queryq’, i.e dies(q’). Applying Definition
3.19, tothe query q" resultsin the following query:

33 Usually, T is not the shortest sequence satisfying the demanded property.
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P r e e Jdidl o dieo(@)
TGq(@)=q"=(M,(al,...,al),(91....,gn)) with g ={ " for ,1<i<n (1)
a ( i) "l d; ¢ o(a)
From (1), it is obvious that q”has the same selection (and result dimensions as q) i.e.,
o(@)=0(q"). 2

The third part of the transformation sequence TR, adjusts the restriction elements for al di-
mensions by applying according slice operations to al dimensions. Due to the definition of
the dlice operation (cf. Definition 3.18), it automatically adjusts the result granularity for se-
lection dimensions of g. First, we have to check if the preconditions for the application of the
slice operations (S1 and S2 in Definition 3.18) are fulfilled. (S1), demanding that the new
restriction element is an ancestor, descendant or sibling of the current restriction element is
fulfilled because every node of the classification lattice is by definition an ancestor of the all
element (which is the current restriction element). (S2) demands that for al result dimensions
of the query to which transformations are applied (q”in this case), the level of the new restric-
tion element must be greater than the result granularity for this dimension. Thus, we have to
provethat d; ¢ o(q") = level(r;) < g .

Because of (1) and (2) the following implication holds for every ie[1,n]:

@ 6) )
di¢o(q)=>d ¢ o(q)=g; =9 (3)

Additionally, because q is well-formed (cf. Definition 3.12) and d; ¢ o(q"), the following
condition holds: level (r;) < g; . Therefore d; ¢ o(q") = level (r;) < g (P2) isfulfilled.
The application of Definition 3.18 to the query q”yields the following result (query q”):

level (r d;
TRy(@)=0"=(M,(5,....)).(07.....gm)) with gi,,:{evgfr) for d;zzgg

To prove the correctness of Ty we have to show that q”'=Tq (qp) is equal to g. From (4) we

(4)

can directly see that the set of result measures and the restriction elements of g and q” are
equal. The equality of the result granularity vector is a direct result of applying (2) and (3) to

(4):
»_|level(r) . dieo(Q)
g = for . Therefore, T4(dp) =9 g.ed
! { 9 di ¢ o(q) o
Lemma 3.4 (Reduction of any Canonical Query)
For every (well-formed) canonical query q=((my,...,m,),(r1,...,1),(91...,9,)) there exists
afinite sequence of transformation operations 'Tq such that the application of 'Tq to q produces
the query qo = (@, (al....,all),(dyal.....dy.all)) i.e, Tq(q)=0p. .

Proof 3.4 (Reduction of any Canonical Query)

The proof of this Lemma follows the same structure like Proof 3.3 i.e,, in order to prove the
existence of 'ITq, we give an algorithm that constructs such a transformation sequence and

prove its correctness.




CHAPTER 3 MODELING AND QUERYING OLAP DATABASES

Let us assume that the list Xq=(1...., p) contains the indexes of the result dimensionsii.e.,
reXqied Pa: o(g). The constructed transformation sequence Ty(q) has the following

form:
Ty=tmo...otm o tryo..otry o tgjo...otgp
R —
=TMq =TRq =TGq
transformations  transformations  transformations
toadjust M toadjust R to adjust G for the
selection dimensions
of q
with

tm =change focusy, for 1<i<z=|M|,
try :slicedk,dk_a” for 1<k<n,
tgj =rotate_resulty for 1<j<p= n—|o(q)
j

The proof follows the same schema as the Proof 3.3. For each of the three parts of the trans-
formation segquence, it has to be shown that the preconditions for applying the transformations
are met and then the result of the transformation can be easily obtained from the definition of
the appropriate transformations. For reasons of brevity, we omit the full technical proof. The
first part of the transformation sequence TMy removes all the result measures from g. The
purpose of the second part of the transformation sequence TR is to set the selection element
to the all element for all dimensions. Due to the semantics of the rotation transformation, the
result granularity for all selection levelsis automatically adjusted to the all-level. The remain-
ing adjustment of the result granularity for the result dimensions of q is performed by TG, the
last part of the sequence. .

Theorem 3.5 (Completeness of Query Transfor mations)

For every pair (01,02) of arbitrary well-formed canonical queries exists a finite sequence of
transformation operations qu, a, such that Tquz (m) =0z

Proof 3.5 (Completeness of Query Transfor mations)

A transformation sequence T_Oll with T_Oll (m)=0qp exists according to Lemma 3.3. Analo-
gously a transformation sequence Tg, with Tg, (go0) = g, exists according to Lemma 3.4. This
implies that the transformation sequence T%Qz =Ty o Tqp exists and has the following prop-

ey Tg.q, () =Tg, (fch(ch)): Tg, (90)= a2 gede

Notably, the above proofs did not require the drill-down and roll-up transformations to con-
struct the transformation sequence. This shows that these transformations are not necessary to
ensure the completeness of the set of transformations. This is a consequence of these trans-
formations are not being atomic in the sense that they can both be expressed as a combination
of the rotate and dlice operations:

drilly (g = rotate—resultyoslicey o rotate-selectiong g
rolly g = rotate—resulty o slicey , o rotate-selectiong g

(r isautomatically computed, cf. Definition 3.22)
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However, these transformations have stricter preconditions than the combination of the pre-
conditions of the rotate and dlice transformations (for example, the new restriction element for
the drill-down operation must be from the active set of classification nodes, cf. Definition
3.21). We chose to include these transformations in our set of basic transformations, as these
operations play a dominant role in present user interfaces and in the discussion of OLAP func-
tionality throughout the research literature.

3.25 Considerationsabout the Expressiveness

When designing the query model we had the goal to be expressive enough to capture al the
gueries that can be formulated using the abstract graphical user interface (MD presentation)
described in Section 3.2.2. On the other hand, the model should be as compact as possible.
Therefore, our definition of a canonical OLAP query (Definition 3.12) contains the following
implicit assumptions, which will be discussed according to their impact on the expressiveness
of our formalism:

= Sngle Cube Instance. We assume that a query is always formulated with respect to one
multidimensional cube instance. Especially, a query does not refer to severa cube in-
stances with different schemata. However, keeping in mind that our goa is not an easily
executable definition but a conceptual description of the user’s interests, thisis not a criti-
cal restriction: queries that require the combination (for example, join) of different cube
instances can be modeled by assuming a single cube which contains the requested combi-
nation of dimensions and measures (for example, being implemented using a view mecha-
nism). The complex query can then be rewritten to a canonical OLAP query referring to
this cube.

» Restriction Exclusively via Classification. All restriction predicates are formulated with
respect to the classification schema. |.e., we assume that the predicates used to restrict the
different dimensions only contain conditions on classification levels (for example, year =
1998'). However, this does not really restrict the expressiveness of our approach, as we
can assume that all the attributes used for restriction are modeled as classification levelsin
aternative hierarchies. E.g., if the user wants to restrict the time dimension to all ‘mon-
days’, she can define a hierarchy on days which contains the necessary groupings of days
according to weekdays.

= Default Aggregation Functions. The aggregation of a cube to higher granularity according
to one dimension involves two steps: the grouping of elements of this dimension accord-
ing to the target granularity (which isimplicitly defined by the classification instance) and
the computation of the aggregated value using the multi-set of values produced by the
grouping step. The grouping step is defined by the grouping functions contained in the
classification schema instance.

= No cross measure calculations. The only calculation concerning measures that is sup-
ported by our query model is the aggregation (see previous remark) of measures to a
higher level of classification. More complex calculations that e.g., use different measure
values to derive a new measure value (for example, multiplying repair duration with Nr of
persons to get the total amount of work for a repair) can be modeled as canonical queries
against a cube schema which contains the calculated value as a measure. Therefore, this
restriction does not critically influence the expressiveness of our approach.

In summary, none of the assumed simplifications constitutes any severe restrictions concern-
ing the expressiveness of our approach. The class of canonical queries modeled by the
PROMISE/OLAP approach is at least as expressive as the class of queries considered by the
OLAP caching approaches ([ABD+99] and [ GCB+97]; see Section 5.1 for more details about
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the caching approaches). It also corresponds to the class of queries that can be generated by
commercialy available tools (e.g., Cognos PowerPlay [Cog99], Oracle Express [Ora98] and
Informix MetaCube [Inf98]).

Having discussed the assumptions and restrictions of the design of canonical queries, the
following sections practically illustrates the expressiveness of the resulting class of canonical
gueries. To this end, we give SQL and MDX templates that can be used to implement canoni-
cal queries in OLAP databases. Assuming a star-schema representation of the multidimen-
sional model using the relational view proposed in 3.1.4, a canonical OLAP query corre-
sponds the SQL-Query template (called “ star-join template”) shown in Figure 3.21.

SELECT gy, ...,9,, aggr(m,), ..., aggr (my)
FROM FactName, Dim;, ..., Dim,
WHERE level(r;) = r, AND ... AND level(r,) = r,
AND Dim; d;=FactName.d; AND ... AND Dim, d,=FactName.d,
GROUP BY g;,...,9,

Figure 3.21: The SQL Template Corresponding to a Canonical OLAP Query

Obvioudly, this query template is not optimized as some of the grouping attributes g;,...,gn are
already being restricted to a single element by the conditions of the WHERE clause (these are
the selection dimensions of the query).

The design of the MDX query language([Mic98]) does not distinguish between the specifi-
cation of the data that is to be retrieved and the presentation of the data. Instead, an MDX
query also contains a specification for the layout of the result data (for example, if a result
dimension is used to label columns or rows). Our definition of a canonical OLAP query con-
scioudly does not contain any information about the layout of the data as this should not be
relevant to the query processing in the database. Consequently, for defining the MDX tem-
plate (see Figure 3.22), we have to assume a standard layout which contains the requested
measures as columns and the cross join of all result dimension members as rows. Addition-
aly, we assume that the different measures are modeled as members of a specia dimension
with the named Measures (this conforms to the recommendations in [Mic98]).

SELECT
{ [Measures].[m], [Measures].[m,]l,..., [Measures].[m]} on columns
{ CROSSJOIN(
descendants ([d,]. [r;], [di]. [9:]1) },
descendants ([d,]. [r,], [dy]. [9.]1)},

descendants ([d,]. [r.], [d.]. [9.]) },

)}
on rows,
from [Cube Namel]

Figure 3.22: A Possible Trandation of a Canonical OLAP Query to MDX

Having defined and discussed the class of queries and the transformation operations that can
be performed by the user, we can now define the OLAP specific user interaction model for the
PROMISE/OLAP framework.
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3.3 ThePROMISE/OLAP Interaction Model for OLAP Applications

This section constitutes a condensed summary of the observations presented throughout this
chapter by defining a user interaction model for PROMISE/OLAP. As described in Definition
2.1, the User Interaction Model describes the simple and composite interaction event types
and aformal representation of the information characterizing these types on the detailed level.

The user’s interactions with the OLAP front-end tool can be modeled using two dual ap-
proaches. Thefirst view is to describe the interaction as a sequence of canonical queries which
comes very close to the perception of a session by the OLAP database system (query based
view). In this case, an atomic interaction event is the execution of a canonical OLAP query. A
session is represented as a sequence of canonical OLAP queries. The second orthogonal pos-
sibility is to describe the atomic interactions as query transformations as defined in Section
3.2.4 (transformation based view). A composite interaction event (session) would then be
described by an event that causes the execution of a canonical query and a sequence of trans-
formation operations transforming this query. Depending on the type of transformation execu-
tion model (single vs. multiple), the model also contains atomic events that indicate the exe-
cution of the current query by the database system (event type update data). Figure 3.23 visu-
alizes the two dual ways of representing information about OLAP sessions.®

% Sl o7 Qs

fran,  tran, tran, fran, fran, fran, tran, fran, tfran,

Navigational OLAP query session

execute () execute(q,) execute(q,)  execute(q,)

Query oriented view

(o refresh data

fran,  tran, tran, fran,  fran, tfran, tran, fran, tfran,

Transformation oriented view

Figure 3.23: Two Dual Ways to Represent Information about User Interactions with an OLAP System

The transformation based view is a specialization of the query based view in the sense that the
query based representation can be uniquely derived from the transformation based representa-
tion. For a sequence of transformations between two refresh data events, it is possible to
compute the canonical query after each transformation using the definition of the transforma-
tion operations given in Section 3.2.4. The other way around, it is not possible to reconstruct
the transformation based sequence from the query based sequence, as generaly an infinite
number of transformation sequences exist that transform a query g to a query .. However, it
is always possible to find a semantically equivalent transformation based sequence for each
guery based sequence. Starting from a sequence of canonical queries, it is possible to find a

3 Notably, this dual view is not a unique characteristic of the OLAP domain, but is common to al application domains,
where the result of a navigation step can be uniquely identified. E.g., taking the WWW interaction presented in Chapter 2,
it would be possible to either record the follow_link events (like described in Example 2.1) or the pages visited (identified

by the respective URLS).
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sequence of transformations for each pair of consecutive queries (see Theorem 3.5). The con-
catenation of these sequences (with the corresponding refresh data events) yields a corre-
sponding transformation-based session.

Generally speaking, the query based view on sessions is more suited to model the behavior
of systems following a multi transformation execution model while the transformation based
view is better suited to a single transformation execution model. However, a deeper discus-
sion of the usability of the approaches can be found in the next chapter.

Both models are suitable as a basis for defining an interaction pattern model for OLAP sys-
tems. Moreover, as different types of generalization (abstraction) are possible for the different
models, both models lead to patterns that are not only syntactically different but also semanti-
cally different. For example, a transformation based model can yield patterns containing in-
formation about which types of transformations are often executed close to each other in
OLAP sessions, like that a roll-up transformation is very likely to occur after three consecu-
tive drill-down transformations. Such a pattern cannot be directly induced from a description
of the interactions formulated according to the query based view. A more detailed discussion
under which circumstance the dual models should be used will be given in Chapter 4, which
develops the pattern model for PROMISE/OLAP. The following two sections formally define
both views of OLAP interactions starting with the query based view in Section 3.3.1.

3.3.1 TheQuery Based OLAP Interaction Model

As elaborated in the previous section, the central entity of description for the query based
OLAP interaction model (QBIM) is a canonical OLAP query as described in Definition 3.12.
The canonical OLAP query is an attribute of events of the type execute-query.

In order to explicitly represent the information when a session was started (for example by
logging into the system or by opening a briefing book), the model also contains the event
types start-session and end-session. As already discussed in Section 3.2.5, we assume that all
gueries of a session are executed using the same data cube instance. Therefore, it is sufficient
to record the cube instance name and the user_id information as an attribute of the start ses-
sion event. For every event irrespective of the type, we additionally record the attribute execu-
tion time. Further attributes could be added to this list, but these attributes are sufficient for
the purpose of improving the caching strategies of OLAP systems that we have in mind. These
considerations lead to the following definition of the Query Based OLAP User Interaction
Model:

Definition 3.23 (Query Based OLAP User Interaction Model)

In accordance with the general definition of a user interaction model (see Definition 2.1), the
query based OLAP User Interaction Model IM o ap IS defined as follows:

IMoLap = (ToLap: AoLap altrop ap: loLap) With

m  ToLap = { start-session, end-session, execute-query}
m  Aoap ={user-ID, timestamp, query, cube instance} , where
= user-ID is a system specific way of identifying the user (for example a login name)
which is unique for every user.
= timestamp is atime value that indicates the time when the event was initiated. It can be
expressed with respect to any appropriate unique timescale (e.g system time, time

elapsed since system startup etc.). This attribute can be used to uniquely identify an
event.
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= cubeinstance isthe name of the cube instance that is queried during a session.
= query is an attribute that contains a specification of a canonical OLAP query as pre-
sented in Definition 3.12.

= attro ap:ToLap = 270LAP s afunction mapping event typesto their attributes:
attro_ap(start-session)={ user _|ID, timestamp, cube instance}
attr o, ap(end-session)={ timestamp}
attr o ap(execute query)={ timestamp, query}

= loLap CONtains the integrity constraints that have to be fulfilled by any event and session

conforming to the interaction model®*. This includes the following conditions:

= the first event of a session is the start-session event, and no other start-session event
occursinasession, i.e

m VS=<g,...,Sn > €[2m]:type(s)) = start —session A type(s; ) # Sstart —session

= thelast event of a session is the end-session event and no other end-session event oc-
cursin asession

m VS=<§g,...,Sy > i€ [Lm-1]:type(Sy,) = end —session A type(s;) # end —session

= each canonical query is well-formed (cf. Definition 3.12) with respect to the schema
Cy of the cube instance and the classification lattice ¥ of the multidimensional data-
base. *

The following example demonstrates how a sample session is modeled using this interaction
model:

Example 3.24 (Eventsin the Query Based OLAP User Interaction Model)

Let us assume, that Repairs is a cube instance of the n-dimensional cube schema Ciepair (iNtro-
duced in Example 3.14). The following session <ej,e;,63,64,65> consisting of three queries
against the OLAP server is an example for a composite event conforming to the query based
interaction model IMg_ap. The events e; through es are examples for atomic event in this
model.

€;
€3

(Start_Session, 6/27/2000 10:39.21, (JohnDoe, Repairs) )
(execute query, (6/27/2000 10:41.25,
( {# of repairs},

( all vehicles, all dates, Germany , Steering, all types ),
( vehicle.all , year , geogr. region, assembly, type.all ))))
e; = (execute query, (6/27/2000 10:44.41,
( {# of repairs},
( all vehicles , 1999 , Bavaria , all parts, all types ),
( vehicle.all , month, geogr. region, assembly , type.all ))))
e, = (execute query, (6/27/2000 10:52.03,
( {# of repairs},
( all vehicles , 1998, Bavaria , all parts, all types ),
( vehicle.all , month, geogr. region, assembly , type.all ) ) )
e; = (End_Session, (6/27/2000 10:52.03) )

3.3.2 TheTransformation Based OL AP Interaction M odel

The transformation based interaction model (TBIM) can be formulated as an extension of the
query based model described in the previous section, as the TBIM requires the same event

35 See Section 2.3 for details about the notation of sessions.
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types, attributes and integrity constraints like the QBIM. The TBIM contains additional infor-
mation about the transformation operations, that we performed in order to produce the next
guery, this makes additional event types (transform query and update data) necessary. The
transform query event additionally needs an attribute that describes the transformation type
and its parameters. Thisleads to the following definition:

Definition 3.24 (Transformation Based OL AP User Interaction Model)

Extending the query based OLAP user interaction model (Definition 3.23), the transformation
based OLAP User Interaction Model IM g ap/7 IS defined as follows:

IMoLapT = (ToLaPT - AoLAPTaltToL apT loLaPT) Where

»  ToLapt = ToLap U {transform query, update data}
m  AoLapt = AoLap U { transformation}, where

= transformation is an attribute that contains the type of the query transformation and the
parameters of a query transformation.

= attiop aprr  ToLapT — 27CL4PT with attrgy aprr (1) = altro ap(t)  Vte Topap and:
attr o apr(update data)={ timestamp}
attroapr(query transfor mation)={ timestamp, query transformation}

=  The set of integrity constraints o apr for the transformation based model is a superset of
the set of integrity constraints for the query based model o ap. Thus loiapcCloLapr. Addi-
tionally, the following integrity constraints have to be fulfilled:
For every query transformation event e, the preconditions detailed in Definition 3.18-
Definition 3.22 have to fulfilled by the input query of this event i.e., the query to which the
transformation has to be applied. The input query is determined as follows: Let us regard a
session <ey,...,en> and an event e (ke {1,...,m}) of type transform query. The input query of
event g is defined as the application of all query transformation events that occurred since the
last execute query event. Formally, the last execute query event before e ise where

ie{l...,k} A type(g ) = executequery A—3l e {i +1,...,k—1} : type(q ) = executequery

Let T=<t,...t> be the sequence of indexes of events that lie between g and & and are
of type transform query i.e., T={t| te {i+1,...,k-1} A type(e)= transform query}. The
input query g for the event g is then defined as

=6, transformatione...o &, transformation(g .query)

= For single transformation execution systems, each transform query event must be im-
mediately followed by an event of type update data.

Example 3.25 (Eventsin the Transfor mation Based OL AP User Interaction M odel)

A possible description of the example session presented in Example 3.24 using the transfor-
mation based model looks like this:
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€1
€2

(Start_Session, 6/27/2000 10:39.21, (JohnDoe, Repairs) )
(execute query, (6/27/2000 10:41.25,

( {# of repairs},
( all vehicles, all dates, Germany , Steering, all types ),
( vehicle.all , year , geogr. region, assembly, type.all ))))
(transform query, (6/27/2000 10:44.41,
(drill, repair time, 1999, month) )
(update data, (6/27/2000 10:44.41)
(
(
(
(

()
w
Il

€4
€5

transform query, (6/27/2000 10:44.41,
slice , repair time, 1998) )

update data, (6/27/2000 10:44.41)

End Session, (6/27/2000 10:52.03) )

€6
€7

3.4 Summary and Conclusions

This chapter established a solid formal basis for the discussion of OLAP systems throughout
thisthesis. This was achieved by formally describing

= the multidimensiona data model which is central to OLAP systems (Section 3.1),
= aquery formalism for multidimensional data (canonical queries, Section 3.2.3) and

= the user’s interactions with an abstract OLAP front-end tool (query transformations, Sec-
tion 3.2.4).

These results were prerequisites for the definition of a comprehensive user interaction model
(Section 3.3) which constitutes the fundamental formalism for the thesis's core.

The design of the PROMISE/OLAP MD data model was the result of carefully discussing
and evaluating recent research efforts in this dynamic area of research. Due to the large diver-
sity of proposed multidimensional data models, we chose to follow a* best-of-breed’” approach
and defined a comprehensive data model adapting the concepts from different proposed data
models that are most suited for PROMISE/OLAP. The resulting data model serves as aformal
basis for the rest of this thesis. Nevertheless, this contribution is also valuable beyond the
scope of this thesis as it defines a comprehensive native multidimensional data model, which
incorporates a powerful classification model while preserving the mathematical definition of a
dimension. Another distinctive feature of our model is the explicit modeling of interrelation-
ships between different data cubes in a database schema.

A survey of the most important MD query specification techniques from science and prac-
tice showed that the scientific approaches so far are mainly oriented towards defining a basis
for query optimization at a system level. In particular, the approaches lack to address that que-
ries are formulated using a graphical user interface in an interactive way. Therefore, none of
the formalisms turned out to be well suited for PROMISE/OLAP. Consequently, Section 3.2.3
presented the descriptive definition of a canonical OLAP query. An analysis of different user
interfaces of commercial OLAP products revealed that the structure of the user interface and
the MD presentation vary between different tools and vendors. However, the basic underlying
functionality for interactive query definitions are equivalent. This leads to the definition of a
set of query transformations (Section 3.2.4) which are suited to describe sessions of iteratively
specified OLAP queries (composite interaction events according to the abstract framework
presented in Section 2.3). This model hides the actual user interface implementation, and
therefore constitutes a high level description of the interactive functionality of an OLAP tool
that is relevant to the underlying OLAP database. As such, this model is an important contri-
bution not only in the context of thisthesis.




CHAPTER 3 MODELING AND QUERYING OLAP DATABASES

Finally, the formulation of two OLAP user interaction models in Section 3.3 forms the
guintessence of this chapter. Both OLAP user interaction models have been formalized in
conformance with the abstract user interaction event model of the PROMISE/OLAP frame-
work specified in Section 2.3. One model is designed based on the canonical query description
and models a session as the sequence of queries executed against the database system (query
based interaction model - QBIM). A refinement of this model, the transaction based interac-
tion (TBIM) model describes sessions as a sequence of query transformations. Therefore, the
TBIM is characterized by a greater level of detail. Both models will be used in this thesis to
describe user interactions (as a foundation for the pattern model in chapter 4 and in order to
describe a metric space for queries in chapter 5). However, the description of OLAP interac-
tions as sequences of events enables the application of a large set of sequence analysis tech-
niques to OLAP sessions.

The next step according to the PROMISE/OLAP roadmap (cf. Figure 2.7) is the definition
of the pattern model (pattern representation language, generalization functions and pattern
schemata). The next chapter will be devoted to the development of this model and the interre-
lated issue of how to design the prediction process. In this context it will rely heavily on the
user interaction model that was developed in this chapter.




«lt isthe theory that decides
what can be observed. »
-- Albert Einstein

Chapter 4 Pattern-based Prediction of OLAP Query Behavior

The previous chapter prepared the foundations for the PROMISE/OLAP framework instantia-
tion by defining the user interaction model for OLAP systems i.e., formally describing the
user’s interactions on the most detailed level. This description is suited to describe recent user
interactions (interaction logs), the current session context (interactions the user performed
during the current session so far) and the results of the prediction algorithms (which interac-
tions are expected next). What is still missing in order to describe the prediction algorithm is
an appropriate formalism to model patterns in OLAP user behavior. Therefore, this chapter is
devoted to the presentation of the core of the PROMISE/OLAP framework: the pattern model
and the prediction agorithm.

Predicting user behavior in OLAP environments is a unique approach. Therefore in order
to motivate our approach, we first briefly survey the most important approaches to modeling
and predicting navigational user behavior that have been developed in other application do-
mains (Section 4.1). Subsequently, we will present our solution for the OLAP specific pattern
interaction model in Section 4.2. Being a central component of our pattern model, this aso
includes the discussion of feasible event generalizations. Based on this model, Section 4.3
presents a corresponding prediction algorithm and discusses issues of implementing this algo-
rithm. Section 4.4 discusses how patterns conforming to the defined pattern schemata can be
automatically induced from user interactions observed in the past, thus completing the
PROMISE/OLAP framework. An exemplary application of the prediction framework to
OLAP caching strategies can be found in Chapter 5 and a practical evaluation of the algorithm
and its applications will be presented in Chapter 6.

4.1 Approachesto Model and Predict Navigational Access

The idea of applying prediction techniques to the query behavior of OLAP system usersis a
novel contribution of this thesis. However, prediction of future data accesses has aready been
proposed and studied in a variety of different environments that all share the characteristic of
navigational data access patterns. The following list gives an overview of the most important
domains where prediction has been successfully applied so far.

= Pipelined Microprocessors. The performance of microprocessors with deep processing
pipelines can be increased by speculative execution. This technique requires a prediction

Carsten Sapia: PROMISE — Modeling and Predicting User Behavior for OLAP Applications
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of branch targets based on the typical behavior of a program that was observed in the past
(for example caused by loop-like control structures).

= Operating Systems. The file access of programs (for example compilers) exhibits certain
regularities leading to a navigational data access. Knowledge about these patterns can be
exploited by the operation system e.g., in order to do prefetching of files into the operating
system buffer ([GA94], [GA96], [KL9IE]).

= Database Buffer Management. Database management systems transport data from secon-
dary storage to the main memory using a certain granularity (for example a disk page). As
data accesses caused by single queries, or by a set of queries typically exhibit certain lo-
calities (for example with respect to the current buffer content), the system performance
can be increased by caching pages that have a high probability of being referenced in the
near future. The probability is typically heuristically approximated based on measures col-
lected in the recent past (for example reference frequency counts) like in virtual memory
systems. However, it has been shown (for example [CKV93]) that the cache miss rate can
be reduced by predicting page accesses and prefetching these pages into the cache.

= Object Database Caches. The object oriented data model explicitly models relationships
between objects. These relationships are naturally deployed to access the objectsin a navi-
gational fashion. Anticipation of navigation steps based on typical properties of these ac-
cesses can enabl e prefetching techniques for object caches ([PZ91]).

= Distributed Hypertext Applications (for example WMA\). Hypertexts are inherently de-
signed to be accessed using navigational techniques (following hyperlinks). Being interac-
tive applications they have a potential of benefiting from anticipating user behavior. An-
ticipation of user behavior can be used to improve proxy cache design and to presend
documentsto the client ([Bes96],[BC96], [PM96], [FCL+99], [ZAN99]).

= Digital Libraries. Large collections of digital documents typically make use of tertiary
storage systems for cost reasons. These media are characterized by a high latency which
can be masked from the user by using predictive migration of documents to secondary
storage based on probability models for co-accessing certain documents ([KW98]).

Although these approaches are from different domains, they all have in common that they
dynamically build a prediction model from the perceived sequences of data accesses which are
then used to predict future accesses. The main difference between the different approaches are
the entities of prediction (i.e., which events are observed to induce patterns), the underlying
formalism (pattern model) used to represent the observed patterns, and the prediction tech-
nigque used.

Table 4.1 contains a comparison of the most prominent approaches according to these cri-
teria:

= Entity of Prediction: Depending on the area of application, the approaches observe data
access events at different levels of granularity (e.g., web documents, files, database pages).
The common characteristic of these entities is that their number is limited within the ap-
plication domain of the prediction algorithm (e.g., the number of pagesin a database or the
number of web pages maintained by a web server) and that the content of the objects are
digoint in the sense that typically an access to a specific entity (for example a web page)
cannot be satisfied using a distinct object (for example another web page).

= Pattern Representation: Almost all of the approaches are based on a variation of Markov
models. This basic formalism (described in greater detail in Section 4.2.2.1) builds a data
structure that can be used to determine the probability of the next data access based on a
lookback window of the last m>0 accesses observed.
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The different approaches vary the size of the lookback window, some deploy a combina-
tion of several models with different lookback window sizes (also called prefix depth). A
very interesting approach ([CKV93]) is to adapt techniques from the area of data compres-
sion (which are al'so based on Markov model formalisms) for prediction. The rationale be-
hind this approach is that data compressors typically operate by postulating (either implic-
itly or explicitly) a dynamic probability distribution on the data to be compressed. Data
expected with high probability are encoded with few bits, and unexpected data with many
bits. Thus, if a data compressor successfully compresses the data, then its probability dis-
tribution on the data must be realistic and can be used for effective prediction.

Other approaches adapt the Markov model formalism by changing the |ook-ahead window
size (also called search depth) to a number larger than one (for example [Bes96]) or by in-
troducing timing information ([KW98]).

[PZ9]] is the only approach that does not use Markov models as the underlying formal-
ism, but instead deploys neural net techniques (nearest neighbor associative memory) in
order to build a prediction model. However, this approach suffers from the common draw-
backs of neural net approaches (for example that it is not possible to assess what charac-
teristics have been learned by the algorithm).

Prediction Technique. All algorithms deploy a data structure that stores a probability for
possible predictions based on the last observed data accesses. However, the approaches
vary in how they pick the candidates that should be considered by the prediction applica-
tion (for example the prefetching process). The ssimplest technique is to choose the k>0
most probable candidates. However, some techniques use a threshold technique, consider-
ing al candidates that have a probability above a certain threshold as valid predictions.
Consequently, the result of the prediction is a set of variable size (possibly empty). Ap-
proaches that apply different separate data structures (for example Markov models of dif-
ferent order) for predictions apply decision mechanisms choosing results from possibly
contradicting candidates produced by the different models.

Approach | Application | Entity of Prediction Pattern Representation Prediction
Domain Technique
[Bes9g], WWW Web Document access Dependency graph Threshold
[BC96] (1-st order Markov model)
[CKV93] | Buffer Man- | Database Page access Level-Ziv encoder (LZ) Top k probabilies
agement set of Markov models with different (giving prefer-
order (PPM), ence to results of
1-st order Markov model (FOM) higher order
predictions)
[FCL+99] WWWwW Web Document access | set of Markov models with different Threshold
order (PPM)
[GAY], Operating File access Dependency graph All (ordered by
[GA96] Systems (1-st order Markov model) average link
distance)
[KL96] Operating File access Set of Markov models with different | Top k Probabili-
Systems order (PPM) ties
[KW9g] Digital Li- Digital Document Time aware Markov Model Dynamic
braries Threshold
[PMO6] WWW Web document access Dependency graph Threshold
(1-st order Markov model)
[PZz91] O0oDB Object access Neura Net (Associative Memory) Top probability
[ZAN99] www web document access Different Markov Models Top Probability

Table 4.1: An overview of different applications of prediction techniques
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Comparing these application areas to OLAP systems, it is obvious that both share the charac-
teristic of navigational data access patterns. Nevertheless, in contrast to file systems the access
patterns of OLAP systems are mainly generated by users rather than programs. OODBMS,
Hypertext applications and OLAP systems all posses a data model which is directly being
used for navigational access (relationships, links and dimension hierarchies). If these ap-
proaches would be transferred to the OLAP domain, the entity of prediction would be a user
interaction which corresponds to a multidimensional query. This shows two fundamental dif-
ferences of OLAP systems compared with the other application areas:

= The number of prediction entities (queries) in any given context is considerably larger than
in other domains (for example the number of filesin a system).

= Different predicted objects (i.e., queries) are not digoint in the sense, that results of a new
guery can be computed using several of the cached objects or parts thereof. The decision if
a query can be derived from another query is called the containment or subsumption prob-
lem. Recently, this problem has been generalized to the set derivability problem
(JAGL+99]) for algorithms that are using parts of the different objects to answer a query.
However, the derivability property does not influence the prediction process described in
this chapter, but will play an important role in Chapter 5.

Summarizing this survey of prediction approaches, it can be concluded that a consensus exists
that Markov models are suitable as the base formalism for modeling navigational accesses.
The main reasons for this are the ssimplicity of the model, the possibility to effectively com-
pute predictions and the proven accuracy in many application areas. The characteristics of the
application domains that have so far been target for prediction, mainly the navigational access
aong structures contained in the respective metamodels (e.g., links, jump instructions) are
similar to the structures found with OLAP applications. However, OLAP applications differ
from these in that the number of events that can be predicted is larger and that the predicted
objects are not independent. Therefore, the PROMISE pattern model described in the next
section will use generalizations to deal with these peculiarities of the OLAP environment.

4.2 ThePROMISE Pattern Model for Interacting with OLAP Systems

The pattern model is of central importance to the prediction process as it determines which
kinds of patterns can be represented and thus can be exploited to improve the system’s per-
formance. In order to reflect the importance of the design decisions involved in developing the
pattern model, we start by discussing these principal design decision in Section 4.2.1. As our
pattern representation language is based on Markov models, this formalism will be introduced
in Section 4.2.2. We show that it is well suited to represent navigational behavior but that the
naive modeling of OLAP interactions using Markov models does not produce satisfactory
results. These findings provide the motivation for discussing different generalization tech-
niques for OLAP queriesin Section 4.2.3 as a solution to this problem.

4.2.1 General Considerationsabout the OLAP Pattern Model Design
The pattern model refers to the information about interactions that the user can perform de-
scribed according to the user interaction model. However, in the previous chapter, we intro-
duced two different interaction models mirroring different levels of detail in the observation
of user behavior (query based model and the extended transformation based model). Both
models share the following assumption concerning atomic events (queries):

= the class of possible queries is restricted to canonical queries as the user queries the data-
base using a graphical formalism instead of a declarative query language.
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The transaction based model additionally assumes the following integrity constraint concern-
ing composite events (sessions):

= the navigational facilities provided by the OLAP user interface (i.e., the set of supported
transformations and the query execution model) restrict the set of successor interactions.

At firgt, it might seem desirable to base the pattern model on the semantically richer model
which includes additional information about the transformations (Transaction Based Interac-
tion Model - TBIM). Such a detailed model would allow predictions on afiner level of granu-
larity (on the granularity of transformations). However, in the context of the PROMISE/OLAP
framework, we are only interested in the prediction of interactions that lead to a query against
the database system. That means, we could only make use of these fine-grained predictionsin
the case that we assume a single query execution model (i.e., that a transformation aways
corresponds to a new query execution).

In order not to restrict the applicability of the PROMISE/OLAP pattern model to certain
classes of OLAP front-end tools and applications that possess specific navigational capabili-
ties, we decided not to make any assumptions about the OLAP user interface except that the
class of queries supported by the interface are exactly the class of canonical queries®. Thus,
the definition of the pattern schemata is based on the query based interaction model (cf. Sec-
tion 3.3.1). The consequence of this design decision is that the approach can be applied to all
systems generating sequences of multidimensional OLAP queries, irrespective of the front-
end design. In particular, this makes the approach independent of the set of transformations
and the query execution model that are actually provided by the OLAP front-end tool.

However, an important requirement for our pattern model is that the actual limitations of
the deployed OLAP tool can be expressed as patterns (instead of being ‘hard wired’ into the
pattern schemata). This enables the prediction system to ‘learn’ these peculiarities during the
training phase using induction techniques. For example, if an OLAP tool is employed that
imposes additional integrity constraints, like that the new restriction element must be an an-
cestor or a descendant of the current element, this should be learned by the model and no
guery sequences must be predicted that violate this integrity constraint.

Although the information about transformations does not influence the design of the pat-
tern model, it is not useless,. It will play an important part, when designing heuristics for the
eviction and admission algorithms of caches discussed in Section 5.2.2. We will then exploit
the strong locality of query behavior according to a distance metric defined on the query space
by the transformations (queries that can be generated from the last query by applying a small
number of transformation have a high probability of being referenced soon).

Thus, the definition of the pattern model and the according prediction algorithm use the
guery based interaction model as a foundation. This means that the patterns will describe
regularities between the attribute values of events defined in this model. However, we will
only use the query attribute to formulate the patterns. The other attributes are handled as fol-
lows:

= Information about the user (User_ID): We assume that a distinct set of patterns is main-
tained for every user or user group, respectively. This means that the User_ID attribute is

36 The gpplication of our approach to front-ends allowing more expressive query formalisms is possible. In this case, for each
query g, the system has to compute the minimal canonical query " that subsumes the origina query q before passing it to

the prediction or induction process.
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used to identify the relevant set of patterns (called prediction profile) before starting the
prediction or induction process.

= Information about the accessed cube (Cube Instance): Each cube is characteristic for a
specific task the user is performing. Therefore, we maintain distinct prediction profiles for
every cube. Thus, analogously to the user information, the value of this attribute is used to
determine the relevant prediction profile prior to the induction or prediction process. As
all queriesin aprofile access the same cube it is not sensible to use this attribute in pattern
schemata.

= Timing information (Timestamp): Assuming that events are generated strictly sequential
during a session, this means two events in a session never have the same timestamp. This
implies that all eventsin a session are distinct. The reason for including the timing infor-
mation in the interaction model is that the user interaction model should not impose any
restrictions on the types of patterns by omitting information that is easily available for e.g.,
interaction log files of al commercia systems. However, the prediction process presented
here will not use the timing information (it assumes a logical timescae; cf. Section 2.5).
Therefore, for this chapter we ignore the timing information and only use the sequence in-
formation (i.e., the order of eventsin a session).

Conseguently, the next section is devoted to developing a pattern model for user sessions ex-
pressed according to the query based interaction model.

4.2.2 Modeling Patternsin OLAP User Behavior using Markov-Models

OLAP user behavior is strongly navigational. Consequently, the emphasis of PROM-
ISE/OLAP is on navigational interaction patterns (cf. 2.4.2). This means that we are exploit-
ing statistical dependencies of the next event (query) on the previous events (queries). Thus,
assuming a look-back window size of m, we regard a sequence of m successive events in a
Session: e.m,...,&-1. The pattern should capture the dependency of the event g following this
sequence in the session depending on the events in the sequence. Patterns of this type are
called (probabilistic) sequentia rules. Often, the following notation is used to refer to prob-
abilistic sequential rules:

(e.l.v-'!em — em+1, P), Where

ee E\v are events according to the interaction model IM (ie{1,...,,+1}) and p denotes the
probability of thisrule.

For the PROMISE/OLAP approach, we represent a set of such rules describing statistical
interrel ationships between subsequent events by means of Markov models. Therefore, Section
4.2.2.1 briefly introduces the formalism of discrete time Markov models and shows that it is
equivalent to a set of probabilistic sequential rules. Based on this general description, Section
4.2.2.2 discusses the issues involved in representing OLAP user behavior by means of Markov
models.

4221  Discrete TimeMarkov Models

This subsection introduces the formalism of Discrete Time Markov Models (DTMMs) (for
example [How60]). This presentation is independent of the OLAP domain or the PROMISE
approach in genera and forms the basis for discussing its application to OLAP user interac-
tion patterns in Section 4.2.2.2.

DTMMs have been deployed in different areas of application in order to model probabilis-
tic navigational user behavior and to build prediction agorithms (cf. Section 4.1). DTMMs
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represent a dynamic system (in our case the user’'s analysis process) as a finite set of states
S ={s,...,.}. At each discrete point t of the logical timescale (in our case defined by the dis-
crete points in time at which the user initiates the interactions), the systems possesses exactly
one active state that is denoted as se S. Between two discrete points in time, e.g., (t-1) and t
the system autonomously changes its active state from s™'e Sto se S. In contrast to finite state
automata that use a transition function that deterministically depends on an input character,
the transition in Markov models is probabilistic. This means that the probability that a specific
state s becomes the next active state is determined by a transition probability function p that
maps a potential successor state se S to a probability value. This value is interpreted as the
probability that the state s will be the next active state i.e., s=s. The characteristic and central
assumption of Markov models is that this probability is only dependent on a fixed number of
states m (called the order of the DTMM) that have been visited directly before the point t (i.e.,
the states s, §72, ™). Thus, the probabilistic transition function p: SxS"—[0,1] is denoted as
follows:

p(st (g2 St—m))

These basic considerations are mirrored in the following definition of aDTMM:
Definition 4.1 (Discrete Time Markov Mode!)
A Discrete Time Markov Model (DTMM) is defined as atuple DTMM=(m, S P) where

= meN is anumber indicating the size of the lookback window (called the order of the
Markov Model)

= Sdenotes afinite set of states and

= P: SxS">[0;1] denotes the probability function for state transitions. Py(S, Si,...,Sn) gives
the conditional probability for a state transition into state s under the condition that the last
states visited were s;,...,Sm. .

Example 4.1 (Discrete Time Markov M odel)

A simple order 1-Markov model with two states is defined by the tuple: M=(1,{ A,B}, P), with
the following values for P:SxS:; P(A,A)=0.4; P(A,B)=0.7; P(B,A)=0.6 and P(B,B)=0.3 .

The value of the parameter m (order of the DTMM) defines the size of the “memory” of the
model i.e., how many previous states are used to determine the probability for the next state.
Finding the right value for the parameter is an optimization problem that has to be solved
separately for every domain and application specifically considering the trade-off between the
costs of maintaining a larger model and the benefits of increased accuracy of the predictions.
Furthermore, it has to be considered that higher order Markov models need a longer session
prefix to operate properly. That means that the sessions must have a minimal length and pre-
diction is not possible during the first m queries of a session. The value reflects the maximum
(average) number of previous results that a user takes into account when deciding about the
next interaction. E.g., in the web domain, this corresponds to the number of last visited pages
used to choose the next link. Chapter 6 contains results of experiments with different values
for Markov models in the area of OLAP predictions. They confirm that for the OLAP domain,
order values 1 or 2 already deliver good predictions. This corresponds to findings in the area
of web access analysis (for example [NZA99]), where extensive analysis of logfiles has
shown, that a context of maximally 2 is sufficient.

Order-1 Markov models have the advantage that they are isomorphic to labeled graph
structures and can thus be elegantly visualized using Markov Diagrams (see Figure 4.1).
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These diagrams represent states as nodes and possible transitions as edges labeled with the
corresponding probability value of the transition function p. Thus, for presentation reasons, all
the examples throughout this thesis will use Markov models of order 1. However, our algo-
rithms will be able to deal with higher level models as well. The development of agorithms
for higher order Markov models is eased by the fact that any order-m model can be repre-
sented by an order-1 model which has more states. The following theorem proofs this conven-
ient property that allows us to consider only order-1 Markov models for the design of the base
algorithms.

p(s.Is”)

p(s|s,”)

p(s/]s.”)

p(s/]s.”)

Figure 4.1: A Smple Markov Diagram

Theorem 4.1 (Equivalence of Order-m and Order-1 Markov Models)

Each order-m Markov model DTMM=(m, S, P,) can be simulated by an equivalent order 1
Markov model DTMM’=(1,S,R) . .

Proof 4.1 (Equivalence of Order-m and Order-1 Markov Models)

The idea of the proof is to give a construction method for an oder-1 Markov model
DTMM’= (LS, R) that usesalarger state space.

The basic idea of constructing the order-1 model from the order-m model is that the new or-
der-1 Markov model contains all m-tuples over the original set of states S as states:

g=gm

The probabilities for the transition function from state s=(s,...,Sn) to state t=(ty,...,tm;) is de-
fined as follows:

P(tm, (Sts---,Sm)) for S =tj_qwithie [2;m]

P(s.H) :{ 0 else

*

In Chapter 2 we used rules as an example to represent patterns and pattern schemata. The fol-
lowing theorem shows that Markov models exactly represent a set of probabilistic rules that
follow afixed schema. This allows us to use both formalizations interchangeably.

Theorem 4.2 (Equivalence of Markov M odels and Sequential Rules)

Any Markov model can alternatively be represented as a set of probabilistic sequential rules
over sequences of states S that have the following schemas”:

(S1,.--1Sm —1 S,p) with 57,se S and pe[0;1]

37 The follows symbol has been defined in Example 2.2.
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Proof 4.2 (Equivalence of Order-m and Sequential Rules)

Let R be the set of rules, then the corresponding Markov model DTMMg=(m, S p) is defined
asfollows:

r=(Sg,....Sy =15 Pr)e Re p(s,(sy,....Sm) = Py

*

Conseguently, we can use the sequential rule representation interchangeably with the Markov
model representation. For visualization and implementation purposes, it is more convenient to
use the Markov model representation, while we will use the rule representation to formally
define the pattern schemata. The following section discusses how Markov models can be ap-
plied to the PROMISE/OLAP approach.

4222  Modeling Patternsin OLAP User Behavior Using Markov-Models

When constructing a Markov model to base the prediction process on, it is necessary to give a
construction method for the state space (i.e., defining the set of states and their semantic inter-
pretation according to the interaction model) and a definition of the transition semantics. The
construction of the state space for the Markov model M involves the definition of a mapping
function state from events according to the Interaction Model 1M to the state space Sate of the
Markov model. In order to be useful for prediction purposes, this mapping should be designed
such that it is bijective. This becomes clear when looking at the prediction procedure: the
transition function of the Markov model is used to predict a set of probable next states (see
4.3.1 for more details). Then a prediction of interaction events is derived by applying the in-
verse of the state mapping state™,

The standard way (cf. e.g., [ZAN99]) of designing the mapping for navigational user be-
havior to Markov models is to represent every possible interaction event as a state in the
Markov model. E.g., for a world wide web navigation, this would correspond to mapping
every page p (identified by its URL) to a state of the model state(p) and to represent each
navigation from page p; to page p, as a transition between state(p;) and state(p,). Figure 4.2
visualizes this standard mapping approach.

f./ . '

Markov Model State s Séquence of
State Transitions

Events , : Markov Model States
session Ses 1
'
1
2 ;= 3
f<_'2 @ ® 1 [ @
1
@) HH ! | /-.————>1". 4
S I ® ' . S
g - 8
H =
1 (@]
1 o
1 @
1

/\
/ o

event/state |

mapping
query q q=s

Figure 4.2: Standard Approach of Representing Atomic and Composite Events in Markov Models

The following definition summarizes the formalism that is needed to build the mapping be-
tween an interaction model and a Markov model.
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Definition 4.2 (Markov Models Representing an I nteraction model)
Let M =(m, S P) be aMarkov model (according to Definition 4.1) and IM be a user interac-
tion model (according to Definition 2.1) with the according set of events E,, . M iscdled a

representation of IM if a mapping function state v can be defined with the following proper-
ties:

= statewm: E; —»Sand
= statewm isbijective

The mapping function statey v is called the event/state mapping function. It defines an
equivalency relation =y in the following way:

e=)\ S:o state(e)=s
L 2

Using the mapping function state it is possible to find the corresponding Markov model state
for every event of a session Ses. This means that a session (which is a sequence of events) can
be represented as a sequence of state transitions of the Markov model (respectively a sequence
of Markov model states) by mapping each event of the sequence to the corresponding state.
The resulting sequence is caled the state sequence of a session and is formally described by
the following definition:

Definition 4.3 (State Sequence of a Session)
Let M =(m,S, p) beaMarkov model representing a user interaction model IM. Additionally,

let statemm: Ej), —S denote the corresponding event/state mapping function. The state se-
guence stateseqw (Ses) for a session Ses=<ey,...,&> is defined as follows:

stateseq (Ses) =< y,...,S¢ > With § = tateyyy v (§) for ie[LK]
*

Applying the standard mapping procedure described above to the query based OLAP interac-
tion model would result in a Markov model with a distinct state state(q) for each canonical
guery q representing an execute query event (additionally, two special states represent the start
session and end session event). A transition between two states state(q;) and state(qy) repre-
senting events of type execute query corresponds to the execution of query g directly after q;
in asession. A transition from the special start session state to state state(q;) means that q; is
the first query of a session. Analogously, a transition from state(q;) to the end session event
represents the fact that q; is the last query of the session. However, this smple approach has
severe technical and conceptual drawbacks:

= Generalized patterns cannot be exploited: The fine grained approach only predicts mere
repetitive patterns that consist of exactly the same queries. In other words, the system is
unableto ‘learn’ generalized patterns. An example for a generalized pattern is that the user
typically analyzes the previous year after analyzing the current year irrespective of the rest
of the query. Using the fine grained approach, this high-level pattern is represented as rela
tively high probabilities on alarge number of transitions in the Markov model (transitions
between all states that correspond to queries which contain subsequent years as restric-
tions). If a query only differs in some detail (for example the restriction element in one
dimension) from the queries which have been used to train the Markov model, no predic-
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tion is possible. This is a clear drawback in OLAP applications where e.g., the same se-
guence of query templates are being executed with different parameters (cf. Section 4.2.3).

= Large Sate Space: Although the set of all possible canonical queries against a given mul-
tidimensional schema is finite, it is still large enough to be prohibitive. In Example 3.16,
we computed the number of well-formed OLAP queries to be in the magnitude of 10™.
That means that the cardinality of the query space is still orders of magnitude larger than
e.g., the number of documents of aWWW site. An extremely large state space implies two
kinds of problems:

= Sorage and maintenance costs for such alarge model are prohibitively high. In order
to enable an efficient prediction process, the Markov model should target a size such
that it fits into main memory. Additionally, when regarding caching as an application
for prefetching, the space occupied by the prediction model takes away valuable cache
space. This makes a representation desirable that is as compact as possible.

= A large number of states leads to a large set of potential successor states for a single
state which in turn decreases the probability of the transitions. Therefore, this model is
not only very costly to maintain but also not very predictive.

Our solution to these problems is using Markov models which are based on generalizations of
the interactions (canonical OLAP queries). That means instead of using the individual queries
to build the state space of the Markov model, we use a generalization to build a generalized
Markov model. Generalization reduces the number of states in the model thus increasing its
maintainability and its predictiveness.

However, a Markov model with a generalized search space can only be used to make gen-
eralized predictions. |.e., the result is not a query, but a set of queries (all members of the re-
spective equivalency class). Therefore, it is necessary to combine a set of prediction models
that can be used to predict all the details of aquery. In order for the combined prediction to be
accurate, the different generalization criteriawhich are used to build the different models have
to be independent of each other.

Following this approach, the central issue throughout Section 4.2.3 will be the identifica-
tion of independent generalizations for OLAP queries which are suited to be combined in a
prediction of future query behavior.

4.2.3 Generalizing OLAP Queries

The solution sketched in the previous section relies on a generalization of events. In our inter-
action model, we distinguish between three types of events (start session, end session, execute
query) with different attributes. A definition of a generalization function is based on the at-
tributes of the events and thus has to distinguish between the different types of events. How-
ever, as we decided to disregard the timing and the user information (see Section 4.2.1),
events of type start session and end session do not possess any attributes. Therefore, the gen-
eralizations of these events are not very interesting, as all the events of the same type are gen-
eralized to a single generalized event. Therefore, in this section, we only discuss the generali-
zation of events of the type execute query which are characterized by their canonical query.
The defined classifications regarding canonical queries can be easily generalized to events
(see Section 4.2.4).

To this end, this section discusses different possibilities for generalizing canonica OLAP
queries and argues why they are likely to produce sensible (and significant) generalized pat-
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terns. Thus, we have to find criteria according to which canonical OLAP queries can be gen-
eraizeds.

A generalization of an OLAP query g according to a generalization criterion g is defined by
an equivalency relation on the set of canonical OLAP queries og Oc, XO¢, (see Figure

4.3). The classes of o4 are called query prototypes and the set of all query prototypes accord-
ing to g is denoted as the generalized query space 4 (@CT) . 0 defines a valid generaliza-
tionif o4 (@cq,) totally partitions the canonical query space ©, i.e., every canonica query
belongs to exactly one equivalence class (prototype). This uniquely determined equivalence
class for a query q is denoted as the prototype of the query @4 (q) .This means that a gener-
dization can aternatively be defined by giving atotal function. g4 :0¢c, g (GC\{J ) that

maps each query to its prototype. Figure 4.3 visualizes the principle of generalizing canonical
gueries and clarifies the terminology. We will give examples for two different generalizations
in Section 4.2.3.1 and 4.2.3.1.
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Figure 4.3: Overview of the PROMISE Pattern Model Approach

Of course, different ways of partitioning the canonical query space are possible (depending on
what detail information is omitted). PROMISE/OLAP uses two heuristic partitioning meth-
ods, which are the result of an analysis of typical user behavior in OLAP environments. In
order to understand why we chose exactly the generalizations for OLAP queries which will be
described in the following sections, we first have to describe the typical workflow of an ana-
lytical OLAP session from the user’ s point of view (deploying the user’ s terminology):

38 Notably, the generalization is a special case of classification as described in 3.1.2.
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OLAP sessions usually start with a predefined report (from a database point of view, this
corresponds to a template for a canonical query). It specifies the set of result measures, the
MD presentation structure of the canonical query (i.e., the partitioning of dimensions into re-
sult dimensions and selection dimensions) and the result granularity for all dimensions. For
example the definition of the report named * Repairs by geographic Regions' could specify that
repair location is the result dimension (one-dimensional result), that results are classified ac-
cording to geographic regions, years and assemblies — not restricting the repair type and the
vehicles. Report templates do not have to be predefined but can be obtained from other report
templates by applying transformation operations. The restriction elements can be regarded as
parameters to the report definition. The report definition usually contains default values for
the parameters, but when opening the report, the user can change (some of) these values. A
report layout is characteristic for the subtask a user is currently solving as part of the analytical
workflow. The structure of the query contains information about which correlation a user is
investigating at the moment he executes the query. For example, during the first phase of the
analysis the logistics expert is looking for irregularities of failures within different geographi-
cal regions. This means she compares the failure rate of different assemblies in the different
regions. During this phase she will not restrict e.g., the type of failure. The restrictions will
aways be on the level ‘year’ etc. Depending on the actual analysis task, the user executes
these structurally equivalent queries with different parameters (for example for the current
year and the geographic region for which an operation is being planned). Thus, patternsin the
analytical workflow of the user are mirrored in the structure (i.e., which measures are dis-
played, which are the result dimensions and what is the result granularity) of the queries. This
is the reason why we introduce a generalization in Section 4.2.3.1 which is based on the MD
presentation structure.

variation of variation of parameters
parameters e.g. 1997‘, e.g. Germany, Bavaria,
1998, ,1999° ,Hamburg’
Choose
parameters

E.g. All Locations’,
,1998', ,Steering’

Report Template 1 Report Template 2
(e.g. repair characteristics (e.g.comparison of
of different assemblies in sheduled vs. unsheduled
different climatic regions) repairs)

——J Navigations changing values

------- P Navigations changing presentation structure

Figure 4.4: Macro-Structure of the Analysis Workflow

A second type of patterns concerns the change of report parameters (restriction elements of
the canonical queries) which are not captured by the structural changes. Typically, the analyst
chooses a set of parameters (e.g., the year 1999 and the steering assembly) and looks at a se-
ries of reports (often called a briefing book) before changing/revising the set of parameters
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and executing the series of reports again. Additionally, it is common to change single parame-
ters for one report, thus executing the same business report with different sets of parameters.
Figure 4.4 visualizes the change of parametersin relation to changes of the structure.

The parameter changes (restriction element changes) exhibit regularities that are independ-
ent of the structure of the reports. These value-based patterns mirror the fact that the analyst
often accesses values of a dimension in a certain order which may be problem specific. E.g.,
the analyst may start with restricting values to the current year and the successively analyze
the years in descending order (last year, the year before last year etc.). Such an order may not
always be linear. For example, in a geographic dimension, the user may start the analysis with
her own region and then analyze the adjoining regions. In order to describe these value-based
patterns between successive queries, we will define a value-based generalization in Section
4.2.3.2.

4231 Generalization based on the MD Presentation Structure

As argued in the previous section, generalizations based on the MD presentation structure and
granularity (called structural patterns) mirror the fact that each stage of the analysis process
has a set of characteristic views on the data. The user’sinterest is mirrored in the result meas-
ures, the result granularities, as well asin the MD presentation structure. This leads to the fol-
lowing definition of the structural generalization.

Definition 4.4 (Structural Generalization, Structural Query Prototype):

Assuming a cube schema Cy = ({dy,...,dy),M¢), the set of structural query prototypes
#sruct (Oc,, ) is defined as follows:

n
Psruct(Ocy, )= 2Y¢ x[IL(¥|d) x {og"

setsof =1 ,  presentation
measures granu|ar|ty structure
vectors

The structural generalization of a canonical query g. = (M . Rq,Gq) is defined by the function
#sruct 1 Ocy — Psruct (G)C\P) mapping the canonical query g to its structural prototype

Paruct (Ac)
Pstruct (0) = (M q:Cq: preSStrUCt(Q))

The corresponding equivalency relation oigyycc GC‘I’ x@c\y is defined as:

Atruct (QL QZ) = Pstruct (QZL) = P struct (QZ)

*

The number of structural query prototypes (i.e., the number of equivalency classes defined and
thus the maximum number of states in the Markov model) can be computed by the following
formula:

L) 2
! number of distinct

‘MC‘ |MC| n
|SOStruct(C\P)|: Z( , ] : H

i— \ ! i=1

number of distinct result number of distinct selection/result dimension
: combinations
measure sets granularity vectors
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Example 4.2 (Structural Query Prototype)

The query gexample introduced in Example 3.16 and the query g, have the same structural proto-
type. Thus, they belong to the same equivalency class with respect to the structural generaliza-
tion. Notably, Oeample @nd 0. do not only differ in that they deploy different restriction ele-
ments, but for the dimension repair location(3), the restriction elements are also from different
classification levels.

Qoo t= ( {#repairs},
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )
q,:= ( {#repairs},

( all vehicles , 2000, all locations, steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

For both queries, dimensions 1, 2, 4, and 5 are selection dimensions (restriction on the same
level of granularity as the result). Therefore, the structural query prototype contains the pres-
entation structure (1,1,0,1,1).
sgstruct (qexample) = pstruct (qz)
( { #repairs},

( vehicle.all , year, geogr. region, assembly, type.all ),
( 111101111) )

The total number of possible structural query prototypes for our example schema (Example
3.14) computes to:

90s(Cy)|= (3+3+1)-(4-2-4.54)-32= 143360=1,4*10°
*

The figures computed in the previous example show that when constructing a Markov model
using the structural generaization, the cardinality of the state space is reduced to an order that
can be easiliy managed. This is especidly true, as in practice, the number of states that are
actualy visited isalot smaller than this theoretical maximum.

In order to illustrate Markov models using structural prototypes as states, we introduce a
graphical representation for structural query prototypes. The graphical notation is shown in
Figure 4.5. The top part of the oval contains the result measures of the prototype, while the
left part contains the chosen result granularity for dimensions that are selection dimensions
(selection levels). The granularities for the dimensions acting as result dimensions in g are
shown on the right side of the oval. The icons are introduced to improve the readability of the
notation. They abstractly depict atable presenting the results of the query. The parts where the
respective query results (selection levels, result levels, result measures) are located are shaded
in gray (for example the icon for measures has a gray area where the measures are visualized
in atable). Dimensions which have a result granularity of ‘al’ must be selection dimensions
(because no higher level of restriction exists). Therefore, in order to further increase the read-
ability of the graphical notation, we omit selection dimensions that are restricted on the *al’
level in the visualization.
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= =
Selection Result
Levels Levels

Structural Query
Prototype

Pstruct (0)

Figure 4.5: Graphical Representation of a Sructural Query Prototype

4232 Value-based Generalization

As argued before, changes in the restriction values of queries are considered largely independ-
ent from the structure of the report as they are mirroring a certain order in the user’s percep-
tion of the concepts in the dimension. Furthermore, we assume that the navigational patterns
occurring among the members of the different dimensions are independent (this ssmplification
does not restrict the generality of our approach, as dependent dimensions can be combined for
pattern recognition purposes). Therefore, we define a distinct value-based generalization for
each dimension, resulting in n different value-based generalizations of a canonical query for
an n-dimensiona data model. The classes of the generalized query space are defined by the set
of possible restriction elements for the dimension. Consequently, the prototype is represented
by the restriction value itself. The following definition summarizes these considerations:

Definition 4.5 (Value-based Query Prototype):
The generalized query space for the value-based generalization regarding dimension d; is de-
fined as follows:

Pva,i(©c,, ) = dom(‘¥|d;)

The value-based generalization of a canonical query q=(M,(rq,...,ry),G) is given by the
function 4 i :Oc,, — Pval,i(Oc, ) defined asfollows

Pva i (@) =T,
*

The number of possible value-based prototypes can be easily obtained by the number of clas-
sification nodes in the domain of the classification lattice of the different dimensions. Thus,

Pvai(©c, ) |=| dom(l )|

The actual order of magnitude for the domain is largely dependent on the application domain
and will in most cases be largely dominated by the number of classification nodes on the low-
est level of the hierarchy. The number of generalized states (restriction values) that are actu-
aly visited by atypical user are usualy considerably smaller than the number of all restriction
elements (for example restrictions on the lowest level of granularity are seldom for large di-
mensions).
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Example 4.3 (Value-Based Query Prototype)
Let us once again consider the example query shown below:

qexample = ( {#repairs} ’
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

As the value-based prototype (the equivalence class) is simply represented by the restriction
value, the value-based prototypes according to the repair time and repair location dimension
are defined as follows:

$2Vval,repair ti me(Qexample) =1999

§Val,repair location (Jexample) = Germany *

Having defined the two types of generalization (structural vs. value-based) in this section, the
next section can give the full pattern interaction model (pattern representation, generalization
functions and pattern schemata) and present the Markov models which are based on these
generalizations and which will be evaluated by the prediction process.

4.2.4 Wrapping Up: The PROMISE/OLAP Interaction Pattern M odel

The previous sections presented the formalisms we use for representing navigational patterns
(Markov models or probabilistic sequential rules) and the generalizations. This section com-
pletes these considerations by formulating the pattern interaction model conforming to
Definition 2.7 and summarizing the basic assumptions for the model design. We will also
present an abstract data structure that is being used to represent instances of the pattern model
during the prediction process. We call it a prediction profile as it characterizes the individual
user, auser group, a certain task or the combination (cf. [Sap99]).

So far, the generalizations only considered canonical queries (cf. Section 4.2.3) and are
therefore only suited to process event of type ‘execute query . However, the definitions of
guery generalizations according to a criterion g (in our case structural or value-based) can be
easily extended to all events of the interaction model by adding two special elements *start
session’ and ‘end session’ to the according prototype space g4 (@C\y ) and by ‘overloading’

the generalization functions in the following way:

£ 4(equery) etype = execute- query
gog(e): start session for etype=start-sesson with ee E\y/0Lap
end session etype=end-session

Asargued in Section 4.2.3, the most important assumption of our approach is the following:

= (Assumption 1) Patterns concerning the MD presentation structure are independent of
patterns concerning the restriction values for OLAP queries (i.e., the probability that the
next query has a certain structural prototype, is not dependent on the current restriction
elements).

This behavior can be captured by patterns that determine the structural prototype of the next
event depending on the last m (being the size of the look-back window) structural event proto-
types. These patterns expose the following schema where @,...,9m;1€ @siruct (©c,, ) ae

the free variables of the pattern schema:
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C .
VSe E/oLap <€ 8mi1 >C SA (PS1)*
Psiruct (€1) =01 A ... APstruct (Em) = Pm = Pstruct (Bm+1) = Pm+1

In order to represent the instances of this pattern schema, we use a Markov model (called
Sructural Prediction Model). The state space of this Sructural Prediction Model (spm) con-
tains one state for each element of the generalized event space according to the structural gen-
eralization (see Definition 4.4 i.e., a separate state for each structural event prototype). A tran-
sition from state( 1) to state( 2) is labeled with the probability that an event e; with proto-
type 1= snua(€) is followed by an event e with prototype .= sruc(€). Figure 4.6
shows an extract of a structural prediction model for the example scenario.

pick another 80%
year or assembly
(60%) pick geographic 23

o1 [ #of repairs region (30%) fF #ofrepairs

I=E rem = quarter (= assembly
year geogr. region geogr. region )
en
assembly revise decision Wession

(5%)
veri
10% unexpectefé' 100% 5% 95% Q
value
N 0,
f repairs 5%

@#-of repairs = #o

= iEE i quarter [
assembly | geogr. region geogr. region part
month
2 94

Figure 4.6: A Sructural Prediction Model

start
session 84%

As argued in 4.2.3.2, for our model of patterns concerning the restriction elements of subse-
guent queries in the user’ s sessions, we make the following additional assumption:

= (Assumption 2) Patterns for changes in the restriction values in the different dimensions
are independent of each other (i.e., the probability of selecting e.g., ‘1999 after ‘1998’ is
not dependent on the current restriction e.g., in the location dimension).

Consequently, we model separate patterns for each dimension. All of these patterns are in-
stances of the following pattern schema (v, .. .,Vm+1€ dom(¥ d; ) and i€ [1;n] are the variables

of the pattern schema):

C .
VSe E/oLap <€ 8mi1 >C SA
val i (B) =ViA...APval i (Bm) =Vm AVm+1 #Vm = @val i (Bmt1) =Vm+1

To represent the instances of these pattern schemata during the prediction process, we use a
separate Markov Model (called Value-Based Prediction Model; vom) for each dimension d;.
This model contains information about typical navigation paths in a dimension. It contains a
state for each member of the domain of the dimension’s classification lattice and a transition
from state a to state b represents a sequence of queries <q,p> where q was restricted by a and
p was restricted by b. Figure 4.7 shows two sample Vaue-Based Prediction Model for the

(PS2)

39 Notably, we use the universal quantor V in the formula. However, as we assume a probabilistic domain mode! (see section
2.4.2), we do not demand that all sessions fulfill the pattern but attach a probability to each pattern that the patterns holds
for a session satisfying the conditions stated in the pattern.
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repair location dimension. Of course, it is possible to use different look-back window sizes
(Markov Models) orders for the different value-based prediction models as well as for the
structural prediction model.

Notably, the navigational paradigm of the front-end tool typically restricts the possible se-
guences of restriction values. E.g., some operations only allow ancestors or descendents to be
chosen as the new restriction element. These restrictions influence the value-based prediction
model, as certain state transitions are not possible and their probability will therefore always
be zero. However, according to our basic design decisions (cf. Section 4.2.1), we do not in-
corporate these restrictions into our design of the value-based prediction model as this would
mean that the formalism only works for front-ends enforcing these restrictions. Instead, these
peculiarities are learned during the induction process (for example because certain sequences
never occur). If an OLAP tool follows the navigational paradigm described in 3.2.4, the classi-
fication schema structure will be mirrored in the value-based model, because navigation
among classification nodes on the same level or between classification nodes and their parents
will have asignificantly higher transition probability.

Germany

40%

1998 709 1999 4194 2000

South
239 North

10%

Munich  Erlangen Passau Jan ‘98  Fep '98 Mar ‘98
Figure 4.7: Two Value Prediction Models (VPMs) for Repair Location (left) and Repair Time(right)

The structural prediction model and the value-based prediction model contain enough infor-
mation to predict a complete canonical query. However, it is important to note that the struc-
tural prediction model and the value-based prediction model are not completely orthogonal.
The first restriction that links both models is the condition that all queries have to be well
formed (i.e., the restriction level must be greater or equal than the result granularity according
to the classification schema). The second integrity constraint concerning both modelsisthat a
structural prototype contains information about which dimension is a selection dimension and
which dimension is a result dimension (we chose to include this information in the structural
generaization as it is an important indicator of the user’s current interest and thus character-
izes the current phase of the analytical workflow.). Thisimplies that for the selection dimen-
sions, the restriction element must be from the level determined by the result granularity. This
means that if a dimension is predicted to be a selection dimension according to the structural
prediction model, the selection model must only predict classification nodes from the same
level. These interdependencies can be exploited during the prediction process to limit the set
of candidate restriction elements.
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In order to increase the accuracy of the prediction and to better capture the typical nature of
OLAP sessions, we introduce an additional assumption. Assumption 2 states that the value of
a changed restriction element is independent of the structure of the last queries. However, the
analysis of typical OLAP sessions (cf. Section 4.2.3) suggests that the probability for a dimen-
sion to change its restriction value (at all) between two subsequent queriesis highly dependent
on the structural context (i.e., the structural prototype of the last m queries):

= (Assumption 3) The probability which of the dimensions changes the restriction element
between two queries is dependent on the structural session context.

The argument in favor of this assumption is that the user typically does not vary all the pa-
rameters (restriction elements) of a query at the same time, but uses a structured methodology
varying only a small number of influencing parameters at time. The set of varied parametersis
dependent on the phase of the analytical workflow (which is being represented in PROMISE
by the structural query prototypes). E.g., when analyzing, if a geographic region exhibits time-
independent characteristic repair and failure patterns (characterized by a report showing the
number of repairs for different geographic regions), the analyst typically varies the restriction
in the time dimension. However, during a later phase of the analysis process, when sheis try-
ing to find out, if the repair characteristics of an assembly differ from other assemblies, the
varying parameter will be the geographic region.

Thus, the schema for patterns that capture regularities according to assumption 3 looks like
this ($1.....60m € Psiruct (Oc,, ) andie[1;n] are the free variables of the schema):

VSe Eﬁ/l /OLAP - ELr--1€ms1 C© SA
Psruct (€) =01 A AP sruct (Bm+1) = Pm+1 = Pval i (€m) # #val i (Emi1)

Pattern instances of this schema cannot be directly represented as Markov models. However,
if the ‘look-back window’ for parameter changes is chosen such that it is as long as the look-
back window of the structural prediction, it is possible to extend the Markov model represent-
ing the structural prediction model: For every transition of the Markov model, we record the
probability of a restriction change for every dimension. The probabilistic change vector
<ps,...,pn> contains the probabilities p; that dimension d; changes the restriction element
(ie{1,...,n}). Figure 4.8 visualizes an example of such a probabilistic change vector for a
look-back windows size of 1. The vector (shaded gray) is attached to a transition of the
Markov Model (from state( go1) to state( ¢21)). The probability that the restriction element for
dimension 2 (repair time) changes between two subsequent queries that both have a structure
corresponding to state( 1) is 98%. This information is used to further restrict the set of can-
didate restriction values for the dimension during the prediction process (see next section).

(PS3)

Notably, some of the change probabilities can be directly derived from the last structura
prototype £ sruci(em) of the look-back window and the predicted prototype £ sruct(€m+1) if em
and ey, ae of type execute-query. Dimensions which are selection dimensions of
Om:=€m.query and of gm+1:=en+1.query and which are restricted on the *all’ level (these are the
dimensions which are omitted in the graphical representation) automatically have a change
probability of O because this level has only one element by definition. If adimension is a se-
lection dimension and the granularity (the selection level) changes between two queries, the
restriction element must have changed too. Therefore, the change probability is automatically
100%.
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repaired repair type of
vehicle location  repair
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time part
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Figure 4.8: A Probabilistic Change Vector

The following definition summarizes the design of the pattern interaction model, which we
use to formally describe regularities in user behavior throughout this thesis. According to
Definition 2.7 this includes the definition of a pattern representation language (we use the rule
based formalism, see above), the generalization expressions used in the definition of patterns
(i.e., the function Q that computes the query sequence of a session, the function computing the
structural query prototype g s @nd the functions computing the value-based prototype
g¢va, for the different dimensions) and the pattern schemata (PS1-3, see above). All pattern
schemata contain the maximum length of the look-back window as a parameter. As aready
mentioned, these are tuning parameters that have to be determined specifically for each do-
main. In order to allow for determining the window sizes at runtime, we formulate the interac-
tion model such that the look-back window sizes are parameters to the definition. Asit is pos-
sible to use different look-back window sizes for the different pattern types (structural and
each value-based), thisresultsin n+1 parameters (Mgyryct, Mval, - Mval, )-

Definition 4.6 (PROMISE/OL AP User Interaction Model)

The PROMISE/OLAP Interaction Pattern Model based on the interaction model [MgoLap IS
defined as PMiwjoLap =(LoLar, GoLap, PSoLap), Where

= the pattern representation language Lo ap contains first-order logical expressions with dif-
ferent sorts of typed variables for canonical queries, events and sessions.

= The set of generalization functions Goap contains the functions computing the structural
and the value-based prototype g snua (cf. Definition 4.4)andgova; (Definition 4.5)
generalizing atomic events. Thus GoLap ={ § siructs §2va 1:---» §van }-

= The set of pattern schemata contains the three pattern schemata introduced above (PS 1-3),
Thus, PSoap= {

C .
VSE ElM/OLAP .<q_,...,en"3ruct+1 >C S/\
Pstruct (81) =921 A - A@struct Cmsruct) = £ Marue — 82 Struct (emStruct )= Mstruct +1
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C .

VSe BiyjoLap L 8myy 41 >C SAVmy 41 #F Vinyy ;A

Val,i (1) =V1i A Aval i (em,a” )=Vm = Pval i (em\,au +1) =Vmyy ;+1
C .

VSe B joLap tBL - Bmge +1 & SA

§ Sruct (e)=@1A...A §Sruct (emStruct +1)= @mgrud +1
= val i (emgmct ) # $Val (eeruct +1)

}

The parameter mgyy: denotes the size of the look-back window for the structural prediction,
and the parameter m,, (i€[1;n]) denote the size of the look-back window for the value-based

prediction for dimension d.. .

As argued before, we represent the pattern instances of the above model as Markov models
which are passed as arguments to the prediction process. The following definition defines the
data structure we use to represent the prediction information according to the above pattern
model (called Prediction Profile).

Definition 4.7 (Prediction Profile):

A Prediction Profile for an n-dimensional cube schema Cy is defined as a 3-tuple
@ (Matryct s (Myal, +- - Myal, )) = (SPMVPM, @) where

= SpM= Mgyt tate(@ gruct (Ocy, ), Ppm) is @ Markov model of order mgiuet. The state

space is constructed from the structural query prototype space £ qryct (GC‘P) . Ppmisthe

transition probability function that represents the probabilistic pattern information (i.e., the
conditional possibility of a transition). The model is caled the structural prediction
model.

= VPM =(vpmy,...,vpmy) is aset of n Markov models (one for each dimension d; of the
cube schema). Each vpm = (m\,a|i , State(@v 4 | (G)C\P ), P

vpm
model of order my, d - The state space is constructed from the value-based prototype space

) withie[1;n] isaMarkov

#val i (Oc,, ) of dimension di. It is called the value change prediction model for dimen-

sion d;. Pvpm IS the transition probability function computing the conditional transition
probabilities.

= o (sate(pmne (©c, )™t 5[0g" s a function that assigns a probabilistic
change vector to every transition of the structural prediction model spm.

Example 4.4 (Prediction Profile)

Let us assume that all the look-back window sizes of the structural and the value change pre-
diction modelsare chosentobe li.e,

Msruct = Myal, =+ = Myal, =1
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This means, we can use Markov diagrams to visualize the different prediction models. In our
example, the structural prediction model contains the structural prototypes of queries against
the example cube Crepair:

spm= (1, state(9 gryct (Oc ), Pspm)

Figure 4.6 shows an extract from a possible structural prediction model. The transition prob-
ability from state( g01) to state( o3) is0.3. Therefore,

Pspm(State( §3), state( §01))=0.3

This transition corresponds to the following pattern that is an instance of the pattern schema
(PS2):

repair

VSe ES, oLap < T 02 > Q(S) A@sruc (1) = 01 = Psruct (G2) = 93

Value change prediction models for the repair time dimension (d;) and the repair location
dimension (ds) are shown in Figure 4.7. They contain states that represent classification nodes
of the classification lattice for the corresponding dimensions.

vpmy, = (1, state(dom("¥ | pcation)) Pvpmz )

The transition probability from state(1999) to state(2000) is 0.41. Therefore,
Pvpm2 (state(2000), state(1999)) = 0.41
In contrast to the spm, the value change prediction models do not contain transitions from a

state to itself, as they are only determined to predict changes of values (see definition of ac-
cording pattern schema PS2).

The probabilistic change vectors are stored with the transitions of the structural prediction
model. Figure 4.8 depicts a sample probabilistic change vector @ for the transition from
state( 1) to state( 1) of the structural prediction model shown in Figure 4.6. The probability
that the restriction element for dimension 2 (repair time) changes between two subsequent
gueries that both have a structure corresponding to state(g01) is 98%. .

Prediction Profiles can either be built by domain experts during a conceptual modeling proc-
ess or can be induced from query log files that contain the queries that were executed in the
past (cf. Section 4.4). The next section discusses the design of a prediction algorithm that is
based on the pattern model introduced in this section.

4.3 ThePrediction Algorithm

Having defined our pattern interaction model using Markov models as the pattern representa-
tion language with the according generalization functions, this section can now present the
prediction algorithm based on this representation of patterns. First, Section 4.3.1 presents a
general prediction algorithm predicting state transitions in Markov models. Based on this gen-
era agorithm, Section 4.3.2 introduces the PROMISE/OLAP prediction algorithm for pre-
dicting OLAP queries using a set of interconnected Markov models for the prediction.

431 A General Prediction Algorithm Using Markov Models

Designing a prediction algorithm based on a discrete time Markov model of order-m
DTMM=(m, S P) israther straightforward. At any point during a session, the context vector
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C=(s™, ...,s) containing the last m states that have been visited has to be recorded. Thisis
being passed to the prediction process together with the Markov model M. Using the probabil-
istic transition function P, a set of candidate states can be computed, by finding all successor
states that have a probability of greater than zero.

As aready pointed out in Section 2.5, different applications of the prediction process have
different requirements on how to choose the relevant predictions from the set of possible suc-
cessor states. In order to reflect a large variety of applications and to keep this description as
general as possible, we assume the following abstract evaluation procedure: first, each pre-
dicted state is assigned a score which reflects its relevance for the application. Of course, this
value is mainly based on the predicted probability for this state to be the next active state.
However, other application-specific cost and benefit factors can be taken into account. This
means, that a single prediction is characterized by a tuple (s, sc), where se Sis the state and
sceR# is its application-specific score. The second step consists of choosing the result set
(i.e, the predictions that will be returned to the calling application) from the set of candidate
predictions. Again, this procedure can be highly dependent on the characteristics of the appli-
cation. E.g., an application might only need the k>0 best scoring predictions, all predictions
with a score above a certain threshold, or as many best scoring predictions such that an addi-
tional constraint is fulfilled (for example that the results of the predicted queriesfit into alim-
ited cache space or that the predicted queries can be executed within a given timeframe based
on a cost-model).

In the design of the prediction algorithm, we mirror this two-step evaluation process by
means of two application-specific functions that are passed as parameters to the prediction
algorithm:

= ascoring function f :Sx[0;]] — R. This function f(s,p) computes the benefit score of a
predicted state from information about the successor state s itself and its predicted prob-
ability p. The ssimplest case of such a function is the PrRoB function that returns the pre-
dicted probability of the state as the score. Thus, PROB(S,p)=p,

= an evaluation function e2®®) 2R that determines which predictions (tuples of state
and score) should be returned to the application. Common general-purpose examples for
such afunction are:

m TOPy: thisfunction chooses the N>0 states with the highest scoring value. Thus,
ce TOPy (cset) := ce cset /\}[ci € cset| Cj.prob=>c. prob}‘ <N

m  THRESHOLD; this function chooses states which have a score of at least t. Thus,
ce THRESHOLD (cset) := ce cset Ac.prob >t

Both functions have to be provided by the application and are treated by our abstract algo-
rithm as ‘black-boxes' in the sense that we do not make any additional assumptions besides
the signature of these functions. However, we will discuss later how knowledge about proper-
ties of these functions can be used for improving actual implementations of the algorithm.

40 R denotes the set of real numbers.
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01 struct MarkovPrediction

02 state: MarkovState;

03 score: Score;

04 }

05

06 function Predict Markov( MarkovModel M,

07 SessionContext C,

08 ScoringFunction £,

09 EvaluationFunction e ): setof (Prediction)
10

11 // precondition: context C contains at least m states,

12 // where m is the order of the Markov Model M

13 PRECONDITION ( length(C) >= M.order )

14 declare TempResultSet: setof (MarkovState); // empty set for results
15 declare Candidate: Prediction

16 TempResultSet =

17 forall seM.S where ( M.p(s, tail(C, M.order)) > 0) do

18 {

19 Candidate.state = s

20 Candidate.score = f(s,M.p(s,C)) // evaluate scoring function
21 TempResultSet = TempResultSet U {Candidate}

22 }

23 return e (TempResultSet) ;

24 '}

Figure 4.9 Pseudo Code for the General Markov Model Prediction

Figure 4.9 contains the according generic prediction algorithms as pseudo-code. The first step
of the algorithm is to determine the set of potential successor states (line 17) for the current
context i.e., the states that have a transition probability greater than zero. For each of these
states, the scoring function has to be evaluated. The probability of the corresponding transition
Is passed to the scoring function as a parameter (line 20). The prediction consisting of the state
itself and its score is added to the temporary result set (line 21). After processing each candi-
date successor, the evaluation function determines which predictions are contained in the re-
sult set that is being returned to the calling application (line 23).

This agorithm is the basis for defining the OLAP query prediction algorithm in the next
sections. Considerations about the implementation and optimization of the agorithm, espe-
cialy the data structures involved and an analysis of the runtime complexity can be found in
Section 4.3.3.

4.3.2 TheOLAP Query Prediction Algorithm

This section describes the prediction algorithm for predicting a set of OLAP queries using a
combination of different Markov models. The parameters to the agorithm (cf. Figure 4.10)
are

= theprediction profile @ (mg, (mv1 e My )) (asdescribed in the previous section),

= the current session context C=Q.nm,..., Gi.1. These are the last m queries of the session in ca-
nonical form, where mis the largest order of the Markov models contained in the predic-
tion profile, thus m=max(ms,m,, ,....m, ),

= ascoring function f :O¢, x[0;1]— R that is passed to the agorithm by the application

and which evaluates the relevance of a predicted query q for the application depending on
the probability of the prediction p,
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= an evaluation function that chooses the query predictions that are returned to the calling
application from the set of candidate queries.

Notably, the OLAP prediction agorithm has the same interface as the general prediction algo-
rithm for a single Markov model introduced in the previous section. Therefore, it hides all the
details of the pattern model (the design decisions to use Markov models, the generalizations
and the specific pattern schemata). This complies with our objective to keep the PROMISE
framework modular in order to be able to exchange the pattern model without affecting the
applications.

Internally, the algorithm uses the different prediction models contained in the prediction
profile and combines their results. Basically, the agorithm calls the prediction method for
each of the models of the prediction profile. Each of these models produces a set of predic-
tions (called partial result set) that are then combined by the agorithm to the result set that
contains predictions for complete canonical OLAP queries. Without any restrictions, the car-
dinality of the result set is the product of the cardinalities of the partial result sets and can con-
tain alot of predictions with very low probabilities. Although the algorithm exploits integrity
constraints between the models (see above) to restrict the predictions to well-formed queries,
this set can still be quite large. The scoring and the evaluation function passed to the OLAP
prediction process as parameters are designed to reduce the overall result scoring and eval uat-
ing predictions of complete canonical queries. This means that they cannot be directly used to
restrict the set of predictions for the generalized models.

Therefore, we internally use a threshold method based on the transition probabilities to re-
strict the cardinality of the partial result sets. The appropriate threshold t is an internal parame-
ter to the algorithm and states the minimum probability that a partial prediction must fulfill in
order to be considered for the combination process. A threshold of O means that al of the par-
tial predictions are used. In Chapter 6, we will empirically evaluate the impact of this parame-
ter on the performance of the algorithm.

The initialization phase of the algorithm (line 17-19 in Figure 4.10) computes the gener-
alizations for the queries contained in the context C as these will be needed as parameters for
predictions using the different prediction models. Line 17 computes the structural generaliza-
tion for every query and line 18 computes the value-based generalizations for the queries of
the context for each dimension. Additionally, the candidate set (variable cand_set) containing
candidates for predictionsisinitialized to the empty set (line 19).

According to our observation that the query structure mirrors the macro structure of the
analysis process, the first prediction phase of the algorithm predicts candidates for the struc-
ture of the next query using the structural prediction model ®.spm (line 22). The structural
generaization of the context (s_cont) is used as input to the basic prediction algorithm. The
results are scored by their probability (function ProB) and all candidates that have a score
(probability) above a certain THRESHOLD t (a parameter of the algorithm) are added to the set
of structural candidates (variable s_cand).

The structural query prototypes predicted by the first phase contain information about the
granularity vector G and the result measures M of the next query. What is missing is informa-
tion about the restriction vector R. Consequently, the second prediction phase of the algo-
rithm augments the structural predictions with predictions about restriction elements in order
to generate complete canonical queries. This phase is executed separately for each prediction
s prethat is contained in the set of structural predictions s_cand (cf. line 23). The structural
prediction s pre contains a predicted structural prototype (s pre.state) and its probability
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score (s_pre.prob). Using the predicted structural prototype (s _pre.state) together with the
structural context (i.e., the structural prototypes of the last mgyet Queries; variable s _cont), it
is possible to determine the probabilistic change vector (a; line 24).

00 struct QueryPrediction ({

01 query: canonical query;

02 sSCc: score;

03 }

04

05 PredictOLAPQuery( Context C, // ¢ contains last m queries
06 Profile ®, // prediction profile (Definition 4.7)
07 Scoring function £,

08 Evaluation function e): set of (Query Prediction)
09 {

10

07 declare cand set: set of (QueryPrediction)

08 declare s_cont: structural prototypell.. (®P.mg)]

09 declare v_cont: value prototypel[l..n] [1..max(P.m, ;)]

10 declare s _cand: set of (structural predictions)

11 declare v_cand: set of (value predictions) [1..n]

12 declare @: probability[1l..N]

13 declare query: CanonicalQuery

14 declare prob: probability

15

16 // generalize contexts

17 S_Cont[i] = pstruct(c[i])i 1 <1< Mgt ruct

18 v_cont [J] [i] = @va1,5(Cli]); 1 €41 < my, ; 1 £ 3 <n

19 cand set =

20 B

21 // predict candidates for query structure

22 s _cand := Predict Markov( ®.spm, s _cont, PROB, THRESHOLD;)
23 for each (s pre € s _cand)

24 o := ®.0( (s_cont), s pre.state)

25 v_cand[j] = O; 1<3j<n

26 for each dimension d; do {

27 if (w[i]l 2 t) |

28 if s pre.state.X[i] == TRUE { // d; is selection dimension ?
29 v_cand[i] = Predict Markov(®.vpm;, v_cont[i],

30 PROB, LEVEL—THRESHOLDLSimﬁ'mﬁtag[ﬂ)
31 else

32 v_cand[i] = Predict Markov(®.vpm;, v _cont[i],

33 PROB, RESULT-THRESHOLD:,s pre.state.G[i])
34 } -
35 }

36 if ((1-wl[i]) = t)

37 v_cand[i] = v_cand[i] U {(v_cont[i] [1], 1-w[i])}
38 }

39 for each (v € Ilv_cand[i]) do {

40 query.M = s pre.state.M

41 query.G = s pre.state.G

42 query.R[1i] = v[i] .value ; 1<i<n

43 prob = s pre.score * [[v[i].score;

44 cand set = cand set U {(query, f(query,prob))}

45

46 } // for each s pre

47 return e( cand set );

48 }

Figure 4.10 Pseudo Code of the Prediction Algorithm
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As the value change patterns of different dimensions are considered to be independent (cf.
assumption 2 above), the restriction elements are predicted separately for each dimension of
the cube schema (cf. line 26; the predicted restriction values for dimension d; are stored in the
variable v_cand[i]). The decision which method is used to predict the restriction value is de-
pendent on the value of the probabilistic change vector for the corresponding dimension. If
this value is above the threshold t (cf. line 27), the algorithm assumes that the restriction value
has a good chance of changing. This means that the value-based prediction model is used to
determine a set of candidate values. However, using the integrity constraint between the struc-
tural and the value-based model, it is possible to restrict the number of candidate states that
have to be considered by the value-based prediction in the following way (cf. line 28):

= For aselection dimension die 6(q), the restriction element must be from the same level as
the predicted result granularity g; (cf. case 1 in Figure 4.11). Consequently, we parameter-
ize (cf. line 29/30) the generic Markov prediction algorithm with the evaluation function
LEVEL-THRESHOLD ¢, that is defined as follows:

ce LEVEL —~THRESHOLD | (cset) :<»=ce cset AcC.prob >t Alevel (c.state) =1

= For aresult dimension diz 6(q), it must be from alevel which is greater than the level of
the element according to the classification lattice of the dimension (cf. case 2 in Figure
4.11). Thisintegrity constraint is reflected in the evaluation function RESULT-THRESHOLD ¢
which is defined as follows (cf. line 32/33):

ce RESULT —THRESHOLDy | (cset) <= ce cset A c.prob >t Alevel (c.state) >y |

candidate set

current
restriction

current
restriction

predicted granularity = candidate set predicted granularity

case 1: selection dimension case 2: result dimension
Figure 4.11: Redtricting the Set of Candidate Successors using the Structural Prototype Information

The change vector contains the predicted probability that the according restriction element
changes. That means that the predicted probability for the restriction element not to changeis
computed as (1-value of the value change vector). If this value is (also) above the threshold t
(line 36), the algorithm (also) adds the current restriction e ement to the candidate set with the
corresponding probability. Notably, it is possible that both a changed element and the original
element are added to the set of candidate restrictions. E.g., if the threshold is set to 0.3 and the
value of the probabilistic change vector is 0.4, both the change probability (0.4) and the prob-
ability for an unchanged value (0.6) are above the threshold.
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After the value prediction has been done for al dimensions the algorithm starts the combi-
nation phase. A complete canonical query is constructed for every element of the cross prod-
uct of the value-based partial prediction sets (cf. line 39). The result measures and the result
granularity are copied from the structural prediction (cf. line 40/41) while the restriction value
is copied from the corresponding value prediction (cf. line 42). The probability of the predic-
tion is computed as the product of the prediction probabilities (line 43) and then the candidate
set is passed to the application defined scoring function and added to the candidate set (line
44).

After performing these steps for all elements of the structural candidate set, the algorithm
passes the candidate set to the evaluation function and subsequently returns it to the calling
application.

Example 4.5 (Prediction Algorithm)

For reasons of simplicity let us assume that all Markov models are of order 1 and that the
scoring function is PROB (probability as score). Additionally, the threshold parameter should
be set to t=0.4. The last query that was executed by the user (the current session context C)
should be query f-1:=Qexample-

CI1) = Q= ( {#repairs},
( all vehicles , 1999, Germany , steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

First, the structural (cf. Example 4.2) and value-based prototype of this query is computed
(line 17/18).

s_cont[l] = pstruct(qexample)= 601
( {# of repairs},
( vehicle.all , year, geogr. region, assembly, type.all ),
(1,1,0,1,1) )
v_cont = [ all vehicles , 1999, Germany , steering, all types ]

The structural context s cont is used for the prediction of candidates for the query structure
using the spm shown in Figure 4.6. The current context corresponds to state(g1). Conse-
guently, the structural prediction returns only one prototype that satisfies the threshold (with a
score of 60%). This means after executing line 22, s_cand has one el ement:

s cand ={ (., 0.6) }

This means that the next query is predicted to have the same prototype than the last. The next
step of the algorithm isto predict all the restriction elements for the different dimensions. For
this purpose, the agorithm looks up the probabilistic change vector for the sequence
<state( 1), state( 21)> (line 24). In our example the change vector is (cf. Figure 4.8):

(., ¢.)= (0, 0.98, 0.1, 0.3, 0)
For dimension 1 (repaired vehicle), 3 (repaired location), 4 (repaired part) and 5 (repair
type) the change probability is below the threshold t=0.4, this means that the algorithm does
not query the value change prediction models (skipping lines 28-35) and assumes no change at

al (cf. line 36) adding the restriction element of the previous query to v_cand (line 37). This
resultsin the following partial result sets with one element each:

v_cand[1] ={(al vehicles, 1)}; v_cand[3] = {(Germany, 0.9)};
v_cand[4] = {(steering, 0.7)}; v_cand[5] = { (all types,1)}

For dimension 2 (repair time), the change probability is above the threshold t (line 27) and
therefore, the corresponding value-based model (Figure 4.7, right hand side) is used for pre-
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diction. As dimension 2 is predicted to be aresult dimension, the set of candidates can be re-
stricted to the level ‘year’ (line 29/30). The prediction returns two candidates that satisfy the
threshold and the condition that they are from the level ‘year’:

v_cand[2] = { (1998, 0.55), (2000, 0.41)}

Then, the combination phase constructs the candidate query by computing the cross product of
al value candidate setsv_cand[i] (ie[1;5]). This set contains two elements:

[Iv_cand[i] = {
( all vehicles , 1998, Germany , Steering, all types )
( all vehicles , 2000, Germany , steering, all types ),
}

Each element of this set is combined with the structural prototype g1 This results in the fol-
lowing two queries:

q,:= ( {#repairs},
( all vehicles , 1998, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )
q,:= ( {#repairs},
( all vehicles , 2000, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

*

This section completely specified the OLAP prediction algorithm for the PROMISE/OLAP
framework. The next section will discuss issues in the implementation of the agorithm and
will analyze the runtime complexity.

4.3.3 Runtime Complexity and I mplementation | ssues

This section discusses the most important considerations of the implementation on a genera
level. A more technical description of the implementation we used for the evaluation of the
approach can be found in Chapter 6 or [ Sch01].

A central issue of the implementation is which data structure is used in order to represent a
Markov model. When discussing the data structure in the following section, we assume that
the Markov model is of order one. Nevertheless, our design can easily be applied to Markov
models with orders larger than one, as we can use the transformation introduced in Theorem
4.1 to transform an order-m model to an order-1 model.

Mathematically speaking, an order-1 Markov model is isomorphic to alabeled graph struc-
ture (the isomorphism maps states to nodes and transitions with a probability larger than O to
edges). Therefore, central implementation decisions can be classified into decisions about the
representation of nodes and decisions about the representation of edges (the adjacency matrix
of the graph).

The first design decision concerns the representation of nodes and the access structure used
to satisfy associative retrievals of states. For each node, we have to store the state information
I.e., the attributes of the event which is being represented by the state. For example in the
structural model, the result measures, the result granularities, and the selection vector have to
be stored. In order to reduce the storage requirements for this information, the state informa-
tion can be represented using a bitstring. As we assume that the multidimensional schema is
static, we can assign a unique id to every classification level in a classification lattice. Analo-
gously, every member of the domain of the lattice and every measureis assigned an id. There-
fore, the storage space in bits needed to represent the state information for the structural
model is:
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n
: i _
1= number of bits to represent the ?g?bgnP{LZ
number of bitsto represent the result measures €p

result granularity vector selection vector

For our example schema introduced in Example 3.16, this results in 17 bits to store the state
information for a structural state. The storage requirement for a state of the value-based model

IS.
sizeof(s):[logztdorr(‘ﬂ . m [bits]

The largest classification lattice (in terms of size of the size of the domain) in our exampleis
the repaired part dimension with 1664 members, which would require 11 bits for the storage
of astate. These results imply that it should be easily possible to maintain the whole modelsin
main memory.

Having defined the representation for a single node, this section compiles some require-
ments regarding the data structure used to maintain and query the set of nodes. Although the
set of all nodes of a Markov model is finite and known in advance, it is desirable to store only
those states in the model that have actually been visited for reasons of space utilization. This
means that the set of nodes dynamically grows (and maybe shrinks due to the aging process
that discards states from the model if they have not been visited for along time, cf. 4.4). Dur-
ing the prediction phase, two types of accessto set of nodes occur:

m associative search operations that retrieve the node which represents the current session
context (a session context uniquely corresponds to a single node in the order-1 model).

= nhavigational access finding the successors of a given node. However, thistype of accessis
processed on the data structure used to represent the edges (see below).

According to our above analysis, the main requirements towards the data structure are that the
structure is suited for main memory, alows efficient retrieval of single items of the set by
means of afully qualified reference (point-query) and that it allows the dynamic insertion and
deletion of items. Therefore, favoring the access time requirements over maintenance times,
we choose a hash table data structure to store the set of nodes. Hash tables allow for retrieval
of elements in constant time in the best case. However, due to collisions (several elements
being mapped to the same hash key) the performance can degrade to a retrieval performance
linear in the number of elements stored in the hash table. Nevertheless, the ideal case (no col-
lisions) can be redistically assumed if sufficient space is allocated for the hash table and an
effective hashing function is chosen. In our case the maximum number of states stored in the
model can be computed in advance. Additionally, the number of states currently stored in the
model can be determined when the model is loaded into main memory at system startup time.
Thisimplies that a reasonable size for the hash table can be chosen. The hashing function can
be based on the binary representation of states (see above). In the (unlikely) case that almost
al states of amodel have actually been visited, the binary state representation can serve as the
hash key guaranteeing no collisions. Therefore, for our theoretical performance analysis, we
will assume that a node can be retrieved in linear time from the hash table. Our measurements
in Chapter 6 will confirm that thisis arealistic assumption.

Alternatively, it would be possible to trade access times for improved maintenance charac-
teristics by using a dynamic tree structure (for example a B*-tree) to organize the set of nodes.
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This would result in logarithmic retrieval times (best and worst case) but would guarantee
better mai ntenance and storage utilization characteristics.

successor

hash-key | state list

sorted by descending probability

106 | s, | P(sis)[S: | o> [ P(sils)[S: |
107 | s, | P(sds)|[S: | 1> [p(silsa)[S: |

state -
record transition
record

Figure 4.12: Data Structure Used to Sore a Markov Model

The second design decision is how to represent the adjacency matrix of the graph. We choose
to use the adjacency list approach instead of fully materializing the matrix, as we assume that
the adjacency matrix of the graph is extremely sparsely populated. This means that we store a
list of references to potential successor states (with the respective transition probability) with
every node. We will show later that it is beneficial to keep the list sorted by probability.
Figure 4.12 summarizes the considerations about the data structure design presenting the
structure of the hash table that organizes the states and the list of transitions stored for every
state.

Having outlined the data structure storing the Markov model, we can now perform a first
analysis of the runtime complexity of the prediction algorithm. Before analyzing the OLAP
prediction algorithm it makes sense to analyze the underlying Markov prediction algorithm.
However, a precise analysis of the runtime complexity for the generic algorithm is not possi-
ble, as it can be largely influenced by the complexity of the ‘black-box’ functions. Neverthe-
less, we discuss the influencing factors in order to identify optimization potentials for an im-
plementation. The runtime complexity isinfluenced by:

= the runtime complexity of the scoring and evaluation functions. Most of the functions used
in practice have a constant complexity as they merely consist of evaluating a simple score
formula. Thus, for this discussion, we assume a constant factor. However, this function is
evaluated for every potential successor. Therefore, the overall complexity of the scoring
phaseis linear in the number of considered potential successor states.

= the method used to find the state that corresponds to the current session context and from
there to determine the potential successor states (functionally described in line 16). We de-
signed our data structure (see above) such that it allows the retrieval of the current state
with constant complexity and the retrieval of each successor state also with constant effort
(following the link to the next list element and retrieving the according state information).
Thus, this step is also linear in the number of considered successor states.

A straightforward coding of this functional specification of the prediction agorithm requires
to always consider all possible successors of a state. This leads to a worst case performance
that islinear in the number of states of the Markov Model, as theoretically, each state (includ-
ing the state s itself) can be potential successors of the current state s. Although, the average
case complexity will be alot better as the transition matrix of the Markov modelsis extremely
sparsely popul ated.
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For practical implementations however, certain properties of the scoring and evaluation
function are known and can be used to greatly reduce (especially the worst-case) complexity
of the algorithm: Typica scoring and evaluation functions are monotonous in the following
sense: A scoring function is called monotonous if alarger probability value automatically en-
sures alarger scorei.e.,

pL> P2 = (s, p) > f(s2,P2) Vs,5€S.

An evauation function is called monotonous if for every prediction that is not contained in the
result set, no query with a lower score exists that is in the result set. Formally, for two candi-
date predictions, the evaluation function e must fulfill the following property:

Vprey, pre; € Cand :
prep = (s, Pu) A prep =(sp, P2) A preg e e(Cand) A pp < pp = pre; ¢ e(Cand)

Both, the ToPy and the THRESHOL D function satisfy the monotony property. If both the scoring
function and the evaluation function are monotonous, we can pipeline the scoring and the
evaluation phase of the algorithm in the following way. Instead of computing all the score
values first and then starting the evaluation process, it is possible to compute the score of a
successor and immediately start the evaluation with a set of only one element. The algorithm
terminates if the first prediction is rejected by the evaluation function (due to the monotony
properties). Consequently, only those successors have to be regarded that are actually returned
to the calling application. Thisresults in acomplexity that is linear in the size of the result set.

These results can be transferred to the complete OLAP prediction algorithm. It calls the ba-
sic prediction algorithm once with the structural model and then n-times for every structural
prototype returned by the structural prediction. The structural prediction uses PROB and
THRESHOLD as scoring respectively evaluation function. Therefore, the complexity of this call
IS guaranteed to be linear in the size of the result set s cand. Additionally, the maximum
number of successor states that satisfy the threshold t is bounded by |/t | as the sum of all

transition probabilities of a state is aways less or equal to 1. However, for the value predic-
tions, the specia threshold functions used with the value-based prediction models do not sat-
isfy the monotony property defined above such that the best case performance (linear in the
size of the result set) cannot be guaranteed for the value-based prediction as the additional
restriction of the successors (using their level) cannot be exploited. Nevertheless, the process-
ing of candidate successors during the prediction process (when traversing the list) can still be
stopped, when the probability value of a transition drops below the threshold t. This again
leads to aworst case complexity of |_]/tj. Thus, the runtime complexity for the OLAP predic-

tion algorithm (worst-case) is.

W) o+ W) oo ) )=yl
runtime sizeof number of complexity of

complexity  structural  dimensions y5jye based prediction
for structural  result set
prediction  (maximum)

This shows that the runtime complexity of the algorithm is constant in the number of states
of the Markov model, linear in the number of dimensions (that are considered as static in our
case) and quadratic in the number of possible successor states.

An analysis of the complexity of typical maintenance tasks can be found in the next section
which covers the creation and maintenance of OLAP Markov models.
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4.4 1Inducing Interaction Patternsfrom OL AP Interaction L ogs

The previous sections assumed that a prediction profile consisting of n+1 (where n is the di-
mensionality of the cube schema) Markov models exists before the prediction process starts.
As already mentioned, such a profile can be generated by induction from former interactions
or deduced (i.e., modeled) by experts. This section covers the induction of prediction profiles
from a history of OLAP queries observed in the past (in machine learning, this step is called
training phase). We assume that the sequence past contains all the sessions of the user or user
group for which the profile should be built. The sequence is formulated according to the query
based interaction model. That means, it contains a list of sessions observed in the past. Once
again, we describe the algorithm for an order-1 model without restricting the generality of the
presented approach due to the transformation presented in Theorem 4.1.

The induction algorithm is based on a simple frequency counting technique. The central as-
sumption is that if the training set is large enough, the relative frequency for transitions as-
ymptotically approaches the actual probability. Abstractly speaking, the algorithm simulates
state transitions of the Markov model according to the sessions contained in the log file. For
each transition from state s; to s,, a count variable F(s,s,) records how often a transforma-

tion is being taken. The probability of atransition from s; to s, is then computed as:

F(s1,$)
> F(s1,9)

=S

p(s2|s1) =

The denominator of the above quotient is equal to the absolute frequency F(s;) of s; occur-
ring in a session Sese past.

S15,5:5:5,5;

Figure 4.13: Soring Relative Frequency Counts with the Markov Model

The main advantage of this algorithm is that the frequency counts can easily be incrementally
maintained online during the operation of the system with a very small overhead. For every
transition and every state of the Markov model a count variable has to be stored. The transi-
tion variables F(s;,sy) are incremented when the corresponding transition is taken by the
model (cf. Figure 4.13). The count for the state is updated every time the state becomes active.
The probability for atransition can then be determined by computing the following quotient:

F(s1,%2)
F(s1)

Therefore, instead of storing the probability with the data structure described above, the fre-
guency count variables can be stored and the probability can be computed ‘on the fly’.

p(s2|s1) =

Another important requirement motivated in Section 2.5 was that the model should detect
changes in user behavior over time and adapt itself to these changes. In this context, the prob-
lem with the relative frequency counting technigque presented so far is that the weight for each
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interaction is equal irrespective of the time of the occurrence of the event. This means that if a
model has been trained with alarge set of data, the frequency counts are quite large and newly
arriving transaction can only marginally change the behavior of the model. This conflicts with
the assumption that transactions perceived in the near past better represent the current behav-
ior of the user. A possible solution to this problem is to use a sliding window technique that
only takes the last t>0 interactions into account when computing the transition probabilities.
Additionally, a weighting function w: N—[0;1] can be used, where w(At) computes the
weight for events with an age of At. Different aging functions can be used to represent linear,
exponentia or logarithmic aging. The drawback of this solution is that the frequency counts
cannot be incrementally maintained and that it requires storing the full history of t interactions
(note that t must be sufficiently large in order to fulfill the assumption that the relative fre-
guencies found in the sliding window adequately approximate the probabilities). Additionaly,
the probabilities have to be recomputed after every step of the logical timescale (because the
age of the interactions changes).

As this *accurate’ approach is obviously not feasible, we use an approximation using k>0
age classes. Instead of using the actual age of the interaction event to determine the aging, we
partition the sliding window (i.e., the logical timescale) into k<<t intervals of equal size (No-
tably, for k=t, the approach is equal to the aging described above). Thus, an aging class A; is
defined as the following interval on the logical timescae:

_ri-Leian. L ic [0k
A =i k,(|+1) k]' whereie[0;k-1]

Additionally, the weight function is generalized in a way that w(i) computes the weight for all
events of age classie[0;k-1]. An examples for a weighting function are w(i) = il , but alter-
i+

1

native weighting strategies are possible, e.g., w; = —
(i+2

Let F' (s) denote the absolute frequency of state se S occurring in sessions contained in past

within the age-class i€ {0,...,k-1}. Analogoudly, F! (s1,Sp) denotes the absolute frequency of

<§,5> occurring is past sessions within the age class i€{0,...,k-1}. Thus, the probability
function that takes the age classes and the weighting function into account is the following:

k-1 .
2. W) F'(s1,%)
p(s218) =" 5——
> w(i)-F'(s)

i=0

The advantage of the model is that it can be maintained incrementally, without storing the
history of interaction events by storing a vector of k frequency counts in the Markov model.
During the system’s operation, only the count of age class O is being incremented. After k
events, the counts for the age classes are shifted (cf. Figure 4.14) such that F°=0 and F= F*
(ie[1;k-1]). This can be done during a reorganization phase. However, if such a phase is not
possible, this update can be performed using a ‘lazy’ evaluation strategy, by additionally stor-
ing alogical timestamp for every frequency vector. If afrequency count vector is accessed it
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can be determined, if the information is up to date by comparing the timestamp to the current
logical timestamp. If it is not current it can be updated before accessing it.

| 98 [236[318
FO Fl F2
aging process
(k=3)
|_0[98 [236
FO Fl FZ

Figure 4.14: Aging the Relative Freguency Counts Using 3 Age Classes

In order to avoid storing a large number of transitions with marginal transition probabilities, it
Is also possible to deploy a garbage collection agorithm periodically that removes transitions
with probabilities below a certain probability and subsequently removing states that are not
referenced anymore. The garbage collection can aso be done online during the aging process.

01 procedure UpdateFrequencyCount ( SessionContext C,

02 MarkovState successor,

03 MarkovModel M)

04 |

05 declare sr: StateRecord

06 declare tr: TransitionRecord

07 sr = findSessionContext (M,C) // hash table lookup

08 if (not found(sr))

09 sr = insert (M, C) // insertation in hash table

10 sr.F[0] = sr.F[0]+1 //increase frequency count

11 tr = findSuccessorState (sr.succesors,successor) // list traversal
12 if (not found(tr))

13 tr = insertAtTail (sr.succesors, successor) // end of the list
14 tr.F[0]l=tr.F[0]+1 // increase frequency count

15 findNewInsertationPoint () // reverse traversal of the list

18 }

Figure 4.15: Pseudo Code for Updating the Frequency Count

The algorithm described so far is independent of the OLAP approach and can be applied to
any Markov model. When training the Markov models in a PROMISE/OLAP prediction pro-
file, some peculiarities have to be taken into account. First, the according generalization func-
tions have to be applied to the query descriptions characterizing the events (this is being done
by the state mapping function). Additionally, the value change vector records the probabilities
that a value changes between subsequent states of the structural model. Therefore, it can be
updated using an equivalent technique as described here (athough the change vectors are not
represented as a Markov model). Another consequence is that the value prediction models do
not need to store the information for transitions from a state to itself. Thus, only subsequences
with changing restriction values need to be used to train the value prediction model.

In order to analyze the complexity of keeping the model up to date with the data structure
proposed in the previous section, Figure 4.15 sketches the agorithm that updates the fre-
guency count for a given session context C and the actually chosen successor state. First, the
entry for the current session context (state record) has to be found (cf. line 7). This corre-
sponds to a hash table lookup (constant complexity). If the state is not found, it has to be in-
serted (also constant complexity, line 9). Then, the frequency count for age class O of this state
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(the current context) must be increased (cf. line 10). In the next step, the transition record tr
for the successor state has to be found (cf. line 11). This corresponds to a traversal of the list
of successor states which can be of linear complexity in the worst case (if the state is not
found). In case the successor state is not in the list of successors for the current context, it has
to be inserted at the end of the list. In any case, the frequency count of the transition record
(age class 0) has to be increased by one. This increases its weighted transition probability and
therefore, it might be necessary, to change the records position in the ordered list. As the
probability is always decreased, the new position can be found by traversing the list back-
wards from the current record. In the worst case this also takes a complexity linear to the
length of the list. Thus, the overall runtime complexity of updating a frequency count is linear
in the number of successor states for the current context.

4.5 Summary and Discussion

This chapter constitutes the core of this thesis as it presented the pattern model and the ac-
cording prediction process for OLAP queries. The design of this model required several de-
sign decisions that have been thoroughly discussed throughout the previous sections. Our ba-
sic design decision was to base the pattern model on the query based interaction model disre-
garding information about query transformations for the design of the pattern model. That
means, the model does not ‘hard-wire' any integrity constraints concerning two subsequent
OLAP queries (for example requiring that they are similar because they were produced by a
limited number of operations) into the pattern schema design. This makes our approach inde-
pendent of the actual navigational capabilities supported by the actual user interface. How-
ever, restrictions in the navigational behavior imposed by the actual user interface are
‘learned’ by the system during the training phase because they can be expressed as pattern
instances. E.g., if afront-end tool with a single execution model only allows the new restric-
tion element of a slice transformation to be from the same level of granularity than the current
restriction, this tool-imposed integrity constraint will be automatically mirrored in the patterns
that are generated by the induction process in a way that the value-based Markov model only
contains transitions between values of the same levels.

The pattern instances are represented using the formalism of Markov models. We showed
that a standard mapping of OLAP user behavior to a Markov model is bound to fail because of
the large state space and the non existent abstraction (‘learning’) abilities of this approach.
Our solution to the problem is the combined usage of generalized patterns for the prediction.
As an example, we introduced two generalizations of canonical OLAP queries: structural and
value-based. The definition of these generalizations has been deduced from an analysis of the
typical user interface and its query transformations and by analyzing analysis typical proce-
dures. Therefore, it is heuristic and bases on the following assumptions:

1. Patterns concerning the MD presentation structure are independent of patterns concern-
ing the restriction values for OLAP queries.

2. Patterns for changes in the restriction values in the different dimensions ar e independent
of each other.

3. The probability which of the dimensions changes the restriction element between two que-
riesis dependent on the structural session context.

The practical evaluation (cf. Chapter 6) will show that this generalization works very well in
typical OLAP environments. An alternative way of deriving generalizations would be the
analysis of a considerably large number of interactions (for example using clustering algo-
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rithms). However, this means that the prediction process that must support a variable class of
pattern schemata (using different generalizations). The challenges involved in designing such
an algorithm are discussed in greater detail in Section 7.3.3.2.

Assumption two is a direct consequence of the assumption that the dimensions of a multi-
dimensiona schema are independent of each other. In case that this assumption is not met for
apractical model, it is possible to combine the k dependent dimension in one value-based pre-
diction model. The states of this combined model would then represent k-tuples of values.

The prediction algorithm presented in Section 4.3 combines n+1 (one structural and n
value-based) Markov models for the prediction of a set of possible queries. The most impor-
tant requirement for the specification of the algorithm itself was to keep it as generic as pos-
sible to support alarge variety of applications for the prediction results. This requirement was
fulfilled by using two black-box functions in the specification of the algorithm. This general-
ity constituted the largest challenge for finding an efficient implementation of the algorithmic
specification. The typical accesses of a prediction algorithm can be efficiently handled using a
combination of a hash-table and ordered linked lists to represent the Markov models. We aso
presented an optimization of the prediction algorithm for a class of parameter functions that
satisfy a monotony property. In this case, the complexity of the algorithm is linear in the size
of the predicted query set.

Section 4.4 presented an algorithm to induce a prediction profile from past user behavior.
Using an incremental frequency counting technique, the algorithm allows for maintaining the
profiles online during the query processing with aminimal runtime and storage overhead. Ad-
ditionally, the algorithm supports dynamic aging in order to give a higher weight to more re-
cently observed query behavior.

In summary, the prediction and the induction algorithm provide an efficient framework for
analyzing and predicting OLAP queries for different applications. As an example of such an
application, the next chapter will discuss the impact of the availability of the prediction of
future user behavior on the design of OLAP caching agorithms.
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«Destiny is not a matter of chance,
itisa matter of choice;

it isnot a thing to be waited for,

it isathing to be achieved.»

-- William Jennings Bryan

«| have seen the future and
it'slike the present, only longer.»
-- Dan Quisenberry.

Chapter 5 Predictive Caching for OLAP Systems

The previous chapter described an algorithm that is capable of predicting a set of queries that
are likely to be executed in the near future. However, the prediction itself does not improve
the system’ s performance but has to be applied in order to be useful. When looking at the ap-
plications of prediction results in related application areas (Section 4.1), we pointed out that
the predominant application of prediction information is the class of prefetching techniques
(which includes precalculation, presending and speculative execution). However, in order to
store the prefetched results until they are (hopefully) actually requested, an intermediate stor-
age (a cache) is necessary. Most of the approaches consider a separate cache for the prefetch-
ing results. However, in rea systems the prefetching cache competes with the traditional
cache management for resources (mainly main memory). Therefore, we find it essential to
regard prefetching and caching in an integrated way (as also proposed in [CFK+95]). Addi-
tionally, caching algorithms can also benefit from predictions when making eviction and ad-
mission decisions. Thus, the presence of a prediction algorithm influences the caching strategy
in two orthogonal ways (cf. Section 2.8):

= the objective of anideal caching strategy is to store exactly the set of objects that offer the
largest cost savings in processing future queries taking into account a space constraint for
the maximum cache size. Eviction (and admission) algorithms dynamically adapt the
cache content such that this objective is fulfilled. This requires an anticipation of the fu-
ture reference probability for cached objects. Obvioudly, the prediction algorithm can pro-
vide thisinformation thus augmenting or replacing the traditional heuristic approximations
(for example LRU).

= traditional caches are passive in that they only consider objects that have been produced by
past queries. An accurate prediction of user behavior enables the cache manager to
autonomoudly initiate query processing (active cache). We call this technique predictive
prefetching.

Anaogously to the organization of the previous chapters, we start by surveying current state-
of-the-art OLAP caching system approaches (Section 5.1). As our approach seeks to augment
and improve existing caching strategies instead of replacing existing approaches (classified in
Section 5.1.1), our proposal is based on an abstract definition of a query-level cache manage-
ment system which we describe in Section 5.1.2. This model is general enough to subsume all
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the current caching approaches such that our approach can be easily combined with each of
these approaches. Then, a separate section is devoted to each of the two different applications:
Section 5.2 discusses the design of admission and eviction algorithms that take predictions
into account and Section 5.3 describes a prefetching algorithm for OLAP caches using the
prediction information. We summarize the results in Section 5.4.

5.1 Semantic Caching for OLAP Systems

5.1.1 Survey of OLAP Specific Caching Approaches

The most successful approach to improve the query performance in the presence of very large
raw data sets is to introduce redundancy in the form of materialized views (for example
preaggregations). A lot of work has been done in the area of static materialization (e.g.,
[HRU96], [GHR+97], [BPT97], [Gup97], [YKL9I7], [TS97], [SDJ+96]4). These approaches
are called static because they assume that the query workload is known in advance and that
the choice which views should be materialized is performed at predefined times and is not
changed during the operation of the system. These approaches can marginally benefit from the
PROMISE approach as the static workload description (which query is executed how often)
can be derived from the pattern models. However, these approaches cannot benefit from the
conditional reference probabilities (depending on the current session context) provided by
PROMISE as they cannot dynamically adjust the set of materialized views.

Regarding these limitations, it is no surprise that recently several dynamic materialization
techniques (caching techniques) for OLAP systems have been discussed (e.g., [SSV96],
[SSV99], [DRS+98], [ABD+99], [DNOQ]). These techniques can fully benefit from applying
results of the PROMISE prediction process. As the specia focus of this chapter is to discuss
these enhancements, the rest of this section compiles and compares the fundamental ideas of
these dynamic caching techniques tailored specifically to the peculiarities of OLAP systems.

The unifying idea of specialized OLAP caches is to use semantics of the multidimensional
data model (for example information about hierarchies and multidimensional transformations)
in order to drive caching decisions. This implies that the cached objects are described on the
semantic level of a query (query level cache). This results in several important differences in
comparison with caching techniques applied in the area of (database) buffer management (for
example [SSV96]):

= Cached objects. In buffer management, the number of pages is finite and thus each page
can be described either by alogical number or by a physical address. However, the set of
gueriesisinfinite in general and different descriptions of semantically equal queries exist.
This means that each caching strategy must define a canonical query form (cf. discussion
in Section 3.2) that can be used to describe the cached objects.

= Different size of cached objects. As the cached object is a query result, the memory needed
to store the object can largely differ for each object. In OLAP environments, the size even
varies in several orders of magnitude. This means that a newly arriving object might well
evict several other objects from the cache. This influences the eviction decisions and
makes an admission algorithm necessary that evaluates whether a query result should be
admitted to the cache by taking into account the benefit of the evicted objects ([SSV96)).

= Different re-computation costs. In buffer management, the costs of computing (loading) a
page are constant for all pages. However, for a query level cache, each query has a differ-

4IA very comprehensive overview of materialization techniques can be found in [Leh98b].
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ent cost. Thus, every cached object has a different cost saving potentia (i.e., the cost that
can be saved by using the cached object instead of computing it from raw data).

= Query rewriting problem. In buffer management, the pages that are necessary to answer
the query (according to the optimized execution plan) can be uniquely identified. Thisis
not the case in query level caches, where each cached object represents a materialized
view of the base data. These views are redundant in the sense that certain queries can be
computed from different sets of views (often at different cost). This requires a query re-
writing component that translates incoming queries using the cached objects (in an opti-
mal way) and the base data. The query rewriting strategy largely influences the eviction
strategy.

Not surprisingly, the current approaches mainly differ in how they address the above men-

tioned peculiarities (the description of cached objects respectively the class of queries being

supported, the design of admission and eviction algorithms, the query rewriting strategy and

the incorporating classification semantics). Table 5.1 compares the different approaches (de-

scribed in more detail in the next paragraphs) by these criteria.

The first approach to using dynamic query-level caching in warehouse environments is the
WATCHMAN approach ([SSV96], [SSV99]). The class of queries considered by the ap-
proach are star-join queries with an additional HAVING clause. Incoming queries are rewritten
(split) into two queries: a data cube ([GCB+97]) query (called base query) and a query that
computes the answer to the original query using the results of the base query (called dice
query). The cache maintains complete result sets of both slice and base queries. Additionally
to the cache content, a specia data structure (called query containment graph) is maintained
that records the derivability of queries. This containment graph is used for query subsumption
testing. The subsumption test for the base queries (data cube queries) makes use of the deriv-
ability of different data cube queries (lattice structure). A query can benefit from the cache if
either the split query is subsumed by a cached split query or if the base query can be derived
from a cached data cube query according to the data cube lattice. Cache admission and re-
placement decisions are driven by an overall profit metric of the cache content which takes
into account the execution cost of a query, the storage cost, reference frequency of the query
(approximating the future benefit of a query) and the cost of updating the cache content in
case that the raw data changes (cache coherence) and the frequency of changes to the raw data.

The most advanced caching schemaiis currently developed as part of the Cube Star project
(for example [ABD+99]). The class of queries considered by this approach is defined by so
called multidimensional objects (MOs) which can express hyper-rectangles of the MD space®
on different levels of granularity (this corresponds to a star join query in the relational case).
All objects managed by the cache are also MOs. The distinctive feature of this approach is
that it does not only use one cached object to answer the incoming query (thus demanding a
total containment) but also considers combinations of several cached objects and queries to
the base data. Therefore, it requires a complex query rewriting algorithm (called patch work-
ing, [Leh98Db]). As the problem in NP-hard, the project uses a greedy algorithm to determine
the optimal (with respect to a cost model) rewriting for a query in the presence of a set of
cached MOs.

The CubeStar cache replacement strategy uses the following factors to assess the benefit of
an object: The weighted relative reference density of a cached result describes the number of
accesses to an object within a period of time taking into account that only part of an object is
used to satisfy the incoming queries. The costs of re-computing an object form the cache con-

2 An MO is equally expressive as our notion of acanonical query.
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tent and the raw data can be determined by the patch working algorithm. The absolute benefit
of an object describes the cost saving of accessing a query from the cache instead of comput-
ing it from raw data (this measurement is independent of the current cache content). Addition-
aly, the degree of relationship between the cached object and the last query is measured by
the number of query transformations that are necessary to transform the current query to the
cached query. This approach is a distinguishing feature of the CubeStar caching approach and
issimilar to our ideas of using a distance metric based on the query transformation definitions.
All these measures are combined and divided by the size of the cached object to determine its
score for eviction purposes.

[DRS+98] combines the ideas of a query level cache and the advantages of a fixed caching
granule. Like the CubeStar approach it aims at using a combination of several cached objects
to answer an incoming query. However, the approach does not cache query results but por-
tions of the multidimensiona space (called chunks) of predefined regular size (a smilar ap-
proach is described e.g., in [Fur99]). This makes query rewriting more efficient and avoids the
disadvantage of redundant data in the cache. Notably, the chunks require different storage
space depending on the sparsity of the data. For each incoming star join-query, an agorithm
determines the chunks that are present in the cache and the chunks which have to be computed
from the raw data. The cache replacement agorithm is a variation of the CLOCK agorithm
that incorporates a benefit function taking into account the cost of re-computing the chunk
from the base data.

Approach Cached Ob- Class of Query Rewriting/ Admission/Eviction
jects Queries Derivability Criteria
WATCHMAN | Query results | Starjoin query | Query Split (dice | cost/benefit function taking into ac-
([Ssv9g], with HAV- query / datacube | count:
[SSV99]) ING clause query) m  sizeof result
Total containment of | m  cost of re-computation
query withcached |m cost of maintenance (frequency of
result or total con- change)
tainment of base | m  benefit (reference rate since object
query. isin cache)
CubeStar Query results | MO (corre- Patch Working ®  weighted relative reference density
([ABD+99], spondsto m  degree of relationship
[AGL+99], Starjoin m  cost of re-computation
[Leh9o8b]) Query) = absolute benefit
m  Size
Chunk Cache | Chunk of MD Starjoin I ntersection Variation of CLOCK algorithm incorpo-
(IDRS+98] | Space (regular Query rating: _
[DNOG]) hyper rectan- m  cost of recomputation
gles) m  sizeof the chunk

Table 5.1: Comparison of different OLAP caching techniques

Despite their different solutions to the caching problem, these approaches have severa proper-
tiesin common. All of the algorithms use a benefit estimation for cached objects (for eviction
and admission purposes). The main problem in computing the anticipated benefit for a cached
object is that the future workload is not known. The agorithms therefore approximate the
future benefit of an object by its reference count since it is stored in the cache. However, this
technique only works for objects which have been in the cache for a certain amount of time, as
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for newly arriving objects, no reference count is being maintained®. Another drawback of this
estimation is that it does not take the current session context into account (i.e., the last queries
actually executed) as it only considers a globa reference count. Additionally, this heuristic
only works for repetitive patterns (for example loops) and hot spots. Regarding the fetching
strategy, all of the presented OLAP caching approaches assume a demand fetching strategy
thus only considering objects that have been produced by recent queries.

As the results are till too new to judge their practical impact, it is essential to design our
approach in a way that it can be combined with any of these caching techniques. All of the
proposed algorithms show a great potential for improvement by speculative execution tech-
niques (predictive prefetching strategies) as the current algorithms exclusively deploy demand
fetching strategies and all of them use benefit estimations. Instead of extending a selected al-
gorithm, in the next section, we will design an abstract model of a query level OLAP cache
and will base our approach on this abstract model. In this way, we ensure the adaptability of
our techniquesto all the proposed a gorithms.

5.1.2 An Abstract Model for Multidimensional Query Result Caches

This section describes an abstract process and data flow model for a query level cache in an
OLAP system. The model is designed in a way, that the caching approaches presented in the
previous section can be regarded as instances of the abstract framework. Thus, al of the
PROMISE extensions described with respect to the abstract model can be applied to all of the
caching approaches.

Optimization Parameters
v

Query Rewriting
Process

Incoming Query
_—

Base Data
Queries

Cache
Queries

T~

Raw and Statically
Materialized Data

Query

Cache Contents
Processor

Query
Results

Admission
Process
Benefit Admitted
Estimations v Query Results
Benegtr(ljfcsetlsnslatlon _ Eviction
Benefit Process
Estimations

L

Figure5.1: The Functional Architecture (Data Flow) of a Query Level Cache Management System

43 The approach of [SSV96] tries to overcome this problem by maintaining reference information of objects that have already
been evicted from the cache. Thisis a pragmatic approach of building access pattern information however not taking into
account navigational user behavior.
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Figure 5.1 shows the outline of the abstract caching framework. We start by describing the
cache content (right hand side) i.e., the objects managed by the cache. As we have described
in the previous section, all OLAP caches assume a query level cache. This means that the
cache manages results of multidimensional queries#. As the query formalism is closed, a
query result is formally also a cube instance (cf. Definition 3.13)*. Therefore, the cache man-
ages tuples of canonical query descriptions and their according cube instances.

Definition 5.1 (OLAP Cache Object, OL AP Cache Content)
An OLAP cache object y is defined as atuple y=(q, p), where

m (e Oc isthe description of acanonical OLAP query

= peZ(C)isamultidimensiona cube instance containing the results of the query qc
The content I'={y1,..., Y} of an OLAP cacheisaset of OLAP cache objectsy; (ie[1;K]). .

For our approach, we assume a query level cache which has a limited size MAxSizE. That
means that the sum of the size of all cached objects must be smaller than the maximum cache
size at al times. The size needed to store a cached aobject (g, p) is mainly determined by the
size of the result p (see Section 5.1.3 for a calculation of the result of acanonical query).

The main task of the cache management framework is to reduce query execution times by
using cached results to answer incoming queries. Therefore, for the description of the algo-
rithms it is essential to define when a cached object can be used to answer a query. The ssim-
plest case (which all more complicated algorithms are based on) is total containment (or sub-
sumption#). If a canonical OLAP query can be fully answered using a cached object, we say
that the cached query result subsumes the query result (or short the cached query subsumes the

query).

Query g \”n.“’Granularity (Level 3/Level 3)

e.g. year/country

/ Granularity (Level 2/Level 2)
> €.g. month/geogr. region

Granularity (Level 1/Level 1)
7 e.g. day/location

Query gl

Result of
Query

Dimension 1
(e.g. repair date)

Figure 5.2: Subsubsumption of Queriesin the Presence of Hierarchies

4 Notably, the cached objects must not necessarily exactly correspond to queries that have been executed by the user, but
may be the result of arewriting process (see below).

4 Although those query result cube instances use the same dimensions (classification levels from the classification lattice),
their active domains may differ due to restrictions contained in the query.

46 We deploy the terms query subsumption and query containment synonymously in this thesis.
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In order to have this property, a cached query result gc must have a finer or equal level of
granularity (according to the classification lattice) than the incoming query g in each dimen-
sion. Otherwise, no aggregation of the cached data to the required granularity would be possi-
ble because no classification schema path exists. Additionally, it must contain at least al of
the measures of the incoming query. The third property demands that the hyper-rectangles
implicitly defined by the restriction elements on the base cube must fully overlap. Otherwise
(in the case of a partia overlap), values would be missing from the aggregation leading to
wrong aggregation results. Figure 5.2 visualizes a two-dimensional case where query qc (re-
sult granularity for both dimensions is level 2, e.g., month and geogr. region) subsumes a
query g (result granularity for both dimensions is defined on level 3, e.g., year and country).
Vividly, the subsumption can be tested by ‘projecting’ the query box of the subsumed query to

the result granularities of the subsuming query (depicted as q| Qe in Figure 5.2) and testing

both query boxes for geometric containment. A formal definition of q| do will be given in

Section 5.1.3.2. The following definition uses these properties to define the subsumption rela-
tionship between queries:

Definition 5.2 (OLAP Query Subsumption)

A (cached) query qc ={Mc.(rcy.---.fcp)(9cy--»Oc,)} Subsumes a canonical query
q={M,(r,...,r),(91,...,95)} if and only if the following conditions are fulfilled:

= McooM

= gcij<w 0 Vie[ln]

= activey (dc) 2{xe dom(gc, ) | x e descendantsy ()} Vie[Ln]«

We express query subsumption using the relation symbol subsumes. Ocx0¢ and write gc sub-
Sumes g. .

Example 5.1 (OLAP Query Subsumption)
Let us once again regard our example query Qexample-

Dot = ( {#repairs},
( all vehicles , 1999, Germany , steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

If the cache contains the results of the following query ¢i, we can completely derive the re-
sults of Qexample from the results of ¢, thus g subsuMes Qexample-

q,:= ( {#repairs, duration},
( all vehicles, all times, all locations, steering, all types ),
( vehicle class, month , geogr. region, assembly, type.all ) )

The subsumption can be checked using the three properties given in Definition 5.2: g, con-
tains a superset of the measures of Qexample Additionally, the classification level determining
the result granularity for Oeample IS larger or equal than g, for al of the dimensions. Finaly, the
data areas implicitly defined by the classification | attice instances (hierarchies) and the restric-
tion elements overlap in the required way. E.g., in the repair time dimension (2), the active set
of classification nodes contains all months for al of the years contained in the cube instance
thus:

47 The active set of classification nodes for alevel is defined in Definition 3.17. Notably, if only one hierarchy is defined for
adimension, it is sufficient to check if the restriction elements of q are identical or descendants of the restriction el ements
of gc. However in the general case the containment must be tested on the set of active classification nodes like stated in the
condition.
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acti Verepair time(01)={ Jan95, Feb95,...,Dez00}

The set of classification nodes on the result granularity of g, (Month) that are selected by the
restriction element ‘1999 contains al the months of 1999 (Jan99, Feb99,...,Dec99) whichis
asubset of activereir time(d1)-

However, the following query g, does not subsume gexample ECaUse condition 3 is violated as
the set of active classification nodes in dimension repaired vehicle (1) of g, only contains the
element ‘ Truck’, while Qexample WOUld Need the values for al vehicle classes.

q,:= ( {#repairs, duration},
( trucks , all times, all locations, steering, all types ),
( vehicle class, month , geogr. region, assembly, type.all ) )

*

The cache manager is responsible that the performance gains achieved by exploiting query
subsumption are maximized. It consists of different communicating processes (cf. Figure 5.1)
which are functionally described in the next sections. The algorithms used to readlize these
components differ in the different approaches and are influenced by the actual caching strat-
egy.

Notably, as we assume a read-only environment, where updates take place in a very con-
trolled way, we do not address the problem of cache coherence here. Besides, al the standard
algorithms for coherence can also be applied in the OLAP cache environment.

The user formulates queries (the incoming queries in Figure 5.1) with respect to the objects
of the database (in our case the multidimensional cube instances). The task of the query re-
writing process is to transform (rewrite) these incoming queries to a set of queries that are
semantically equivalent to the origina query. l.e., that the result of the rewritten queries can
be combined to compute the results of the original query. Thusin the general case, the rewrit-
ing algorithm generates a set of queries that are executed separately and a special combination
guery that combines their results to the result of the origina query. In the special case of an
OLAP tool, the combination of the results can be done by performing a union operation of the
results. Formally, each query result is a cube instance. The union |, of a set of cube instances
{I1,....1} that al have the same n-dimensiona cube schema C (with dimensions d,...,d,) isa
cube instance with the same schema containing all the cells of the original cubes. Formally:

Ij (%,.-..%q)  forx € actdom,j(dj) Vie[Ln]

with xe dom(d,
n dse Xe (ch)

08500~
The rewriting is performed such that each of the rewritten queries can be evaluated only using
either a cached object (i.e., cached query results) or a database object (i.e., cube instances or
statically materialized views). This alows the cache manager to make use of results even if

none of the cached objects completely subsumes the rewritten query. Thus, the query rewrit-
ing process can be functionally described by a function rewrite with the following signature:

: ) )
rewrite: ©¢,, x2" ¥ — 27

H—_’
oﬁ"ri nal cache set of rewritten
9 contents queries

query
The rewritten queries of an original query gc against a cube schema C have the following
properties:

= the combinaion (union) of the results of al rewritten queries is equal to the result of the
original query for al possible cube instances I ¢ of a cube schemaC. Thus,
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Uar(lc)=ac(lic) Vic
g, erewrite(q,I)

= each of the rewritten queries can be evaluated using either a single cached object or asin-
gle database object. Thus the set of rewritten queries can be partitioned into two sets:
cachequeries containing all the queries that can be satisfied from the cache and basedata-
queries containing al the queries that require base data for their computation. Formally,
the sets are defined as follows (where I" denotes the current cache content):

cachequeriesr-(q) = {qr € rewrite(q,I’) | 3y =(de,p) e I': qc subsumesq; }
basedataqueriesr-(q) := rewrite(q,I") — cachequeriesr-(Q)

In general, the rewriting process involves the generation of all semantically equivalent rewrit-
ings (which might be infinitely many) and a selection of the optimal rewriting with respect to
an appropriate cost model and according optimization parameters that are passed to the algo-
rithm. Both the cost model and the generation of rewritings is dependent on the deployed al-
gorithm (we will give an example for acost model in Section 5.1.3).

In order to illustrate the concept of the rewriting process, let us assume that the cache man-
ager implements a total containment strategy. This means that the query is either rewritten
completely to a cached object or evaluated from the base data. In this case, the rewriting proc-
ess performs a subsumption test for al of the cached objects and either returns the complete
guery as a cache query or as a base data query (in this case the output set always consist of a
single query). In the case of more a complex agorithm (for example the patch working algo-
rithm [Leh98b]), the original query is subdivided into regions such that each region can be
derived from a cached object or from base data (in this case, the rewriting algorithm actually
returns a set of queriesthat are different from the original query).

In any case, the output of the rewriting (partitioned into cache and base data queries) is then
passed to the query processing process. This process is normally part of the database system
and is responsible for scheduling, optimizing and executing the queries. If the query rewriting
process returns a set of queries, the query processor must also assemble the final result from
the individual results. The query processor also decides which of the base data queries should
be evaluated on the raw data (finest granularity) or which should be answered using statically
materialized views.

Each query result that is produced by the query processor is passed to the admission proc-
ess that decides whether the result should be stored in the cache. This involves an estimation
of the benefit of the object for future queries. As future queries are not known in advance, the
benefit has to be approximated using a sophisticated benefit estimation process. The details of
the estimation process are largely dependent on the actual caching strategy (for example using
weighted access frequencies, see Section 5.1.1 for a comparison of strategies). The admission
process compares the computed benefit with the costs incurred in storing the object (e.g., tak-
ing into account the cache size needed for storage or the benefit of the objects that have to be
evicted). If the admission process decides that the object should be added to the cache, the
object is passed to the eviction process, which has to decide which of the objects are to be
evicted from the cache (if the space in the cache is not large enough to hold the new object).
Of course, the eviction decision is again based on a benefit estimation, this time concerning
objectsin the cache. Those objects that have the least benefit are evicted from the cache.

All of the processes in the caching framework rely on functions estimating the costs for
executing queries and storing queries. These estimations are typically based on a cost model
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combined with statistics about the data (if the system employs a cost based optimizer, large
parts of this functionality can be re-used). In our abstract framework, we represent this cost
model component by the function executioncosts; 2°—R that assigns execution costs to a set
of multidimensional OLAP queries. Additionally, we assume a function storagecosts. ©—R,
that computes the costs of storing the results of a query. The actual implementation of these
functions depends on the OLAP system and its physical implementation strategy. As we do
not assume any properties for these functions, any existing estimation function can be inte-
grated with the described approach. However, in order to make our approach self-contained,
we propose a simple cost model for the processing of canonical OLAP queries in Section
5.13.

Having defined this abstract functional model of the cache manager, we can now discuss
how this system can be extended by the PROMISE/OLAP prediction framework. Section 5.2
discusses extensions to the Admission/Eviction process, while Section 5.3 will focus on pre-
dictive prefetching.

5.1.3 A Cost Model for Execution and Storage of Canonical OLAP Queries

As described in the previous section, many cost and benefit measures used in the caching pro-
cess to drive decisions (for example eviction decisions) are based on the estimation of the
storage cost of a canonical query result and on the execution costs of a canonical query result.
We already pointed out that an accurate function must always take into account the specifics
of the actual physical implementation (e.g., indexing, clustering, network situations). Signifi-
cant research has already been done in this field for the different variations of multidimen-
sional database implementations. However, our emphasis is not on researching the different
physical implementation strategies for OLAP tools. Therefore, the next sections present a cost
model that does not take implementati on-specific aspects into account.

It isimportant to note that the only purpose of this model is to illustrate the concepts in our
examples. Especidly, it is not meant to be used in a real-world implementation nor does it
claim to reflect the actual costs in area world system. However, as our framework does not
make any assumptions about the properties of the cost estimation function, any existing more
sophisticated cost functions provided by areal system (for example provided by a query opti-
mizer) can be used in implementations of the framework.

5131  Storage Costs

Storage costs of a query result are determined by the amount of memory that is needed to store
the result in the cache®. Like base data, cached results (and statically preaggregated views)
can be stored using an array-like data structure or a table-like structure (a set of occupied
cells). In terms of storage utilization, the array approach is better suited for dense data while
the set of cells approach is better suited to sparsely populated result sets. It is also possible to
use a hybrid approach for different partitions of the data cube. However, the different ap-
proaches lead to different formulas for the size of the data that has to be processed.

For the array data structure the full data space has to be materialized (regardless of the
number of occupied cells). This leads to the following storage requirements for the results of a
query qc = (Mq,(rl,...,rn),(gl,...,gn)), where sizeof(M,) denotes the space needed to store

the result measures (size of result cell content):

48 As the purpose of cost estimations is the relative comparison of different processing plans, virtual units are used for the
cost estimation. In our examples we use the unit of bytes for storage costs.
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n
storagecostsyray (0) = [ | |descendants(r; ) ~ dom(g; )| sizeof (M q)
i=1

For a set based approach, the size of a query result is determined by the number of cells that
arefilled. This size can easily be computed for objects that are already in the cache, but hasto
be estimated for queries that are to be prefetched. If we assume that the data is uniformly dis-
tributed, we can approximate the size of the set of cells by using a sparsity factor. Notably this
sparsity factor varies for each combination of granularities. It is therefore denoted as a func-
tion of G. It is defined as the number of filled cells divided by the total number of cells:

{xe dom(gy) x...xdom(gy) |Ic(¥) =L}

n
[ Tldom(gs)
i=1

sparsity, _ (G) =

Therefore, the storage size of the result of query gc = (Mq,(rl,...,rn),(gl,...,gn)) using the
cell-set method is

storagecostSe () =

n
| [|descendants(r; ) ~dom(g; )|- sparsity, . (G)- (sizeof (M ) +sizeof (coordinate))
i=1
where sizeof(M,) denotes storage space for a tuple of result measures and sizeof(coordinate)
denotes the storage space for a coordinate in the n-dimensional cube®

This estimation assumes uniformly distributed data. The quality of the estimation can be addi-
tionally enhanced by using multidimensional histograms (e.g [FM00]). Advanced systems use
compression techniques to reduce the amount of storage needed for the results. However, de-
pending on the compression technique deployed, an estimation of the result size becomes dif-
ficult.

Example 5.2 (Storage Cost for OLAP Query)
Let us consider the query Qeample iNtroduced in Example 3.16.

Dot = ( {#repairs},
( all vehicles , 1999, Germany , steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

Additionally, we assume that each of the measure values requires 4 bytes of storage and that
Germany is divided into 14 geographical regions. Then the storage requirements for the array
based approach are calculated as follows:

storagecostsyrray (dexample) =1:1-14-1-.1- 4 =56
sizeof (M)
[bytes]
If we assume that the coordinate for each of the 5 dimensions is represented as a 4 byte value,
a coordinate requires 20 bytes of storage. Let us additionally assume a sparsity factor of
sparsity(Gq)=0.3 (which seems redlistic as the result granularity is defined on very high levels
in al dimensions; on lower levels, the sparsity will be severa orders of magnitude smaller),
the corrsponding storage requirements for the set-based storage are as follows:

4 The storage space for a coordinate is dependent on the encoding and the cardinality of the domain of the lowest classifica-
tion level.
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storagecostSggt (Jexample) =1-1:14-1-1- Qg : gf + EQ =100.8
sparsity(Gq) sizeof (M)  sizeof (coordinate)

5132 Execution Costs

After the rewriting process, each of the rewritten queries g can be evaluated using either a
single cached object, a single cube instance from the database or a single statically material-
ized view. This source object of the query can itself be represented as a canonical query
Asource = (M sources Rsources Gsource ) ®- If the source object is a base cube I with schema C

that is stored in the multidimensional database, we denote the query that reads the whole cube
as q(l¢) . For our cost model, we estimate the execution costs of aquery q= (M qRq ,Gq) by

the size of the data that has to be processed i.e., the size of the data that has to be read from
the cached object, cube instance or statically materialized view. This corresponds to the result
size of the following query, that extracts the data using the granularity of the query source:

:(Mq!Rq!GSource)

Additionally, data in an OLAP system is held on different levels of a complex storage
hierarchy (for example in the OLAP storage manager’s disk and in cache memory). The
components of this hierarchy exhibit different characteristics regarding data access and data
transfer times. We reflect this in our model, by introducing an access factor for each
component in the architecture that stores data (We assign afactor of 1 to cache accesses). This
is a simplification of real systems as the size of data that can be retrieved from a component
(for example the storage manager) in a given timeframe is influenced by alot of other factors
that differ from component to component. E.g., the ‘reading performance’ of a relationa
database system using index structures is additionally influenced by the selectivity of the
guery. However as aready mentioned, our cost model does not aim at mirroring these
technology specific influences as it is only intended for illustrative purposes in our examples.
For implementations of our framework more sophisticated models can easily be deployed.
Considering the above, the estimation function for the execution cost is defined as follows:

|QSOurce

executioncostsc (q) = storagecosts(q | ) - accessfactore

The definition of execution costs can easily be extended to sets of queries by summing up the
execution costs of the individual queries contained in the set.

Example 5.3 (Execution Cost)
The execution cost of Qexample 8gainst the raw data stored in the instance Irepajr of the cube

schema Creair (Cf. Example 3.16) is estimated by calculating the size of the result of the fol-
lowing query:

Derarpre | I (I,0pni) 2= ( {#repairs},
( all vehicles, 1999, Germany , steering, all types ),
( vehicle , day, location, part , repair type) )

To calculate the size of the result, we need to know the selectivity of the restriction elements
regarding the base classification level which is defined by the fan-out of the hierarchy trees.
E.g., the number of daysin 1999 is 365 and the number of partsin the steering assembly is 20.
We additionally assume a sparsity factor of 10° and a set based storage of the raw data. We

50 Of course, we assume that Osource SUDSUMES g (Which is e.g. guaranteed by the rewriting algorithm).
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assign an access factor of 100 to the storage manager, assuming that it take 100 times longer
to retrieve data from the storage manger that from the main memory cache. The size of data
that needs to be processed is calculated as follows:

executioncostsc, . (Gexample) =

1000 -365- 500 -20- 2 -10°%. 24 . 100 =1.752.10’
—_— = _-— —— =~ —

vehicle time location part type sparsity sizeof  access
factor coordinate/ factor
measures

Calculating the same query based on the results of a subsuming query g, stored in the cache
(main memory) in array format leads to the following cost estimation:

q,:= ( {#repairs, duration},
( all vehicles, all times, all locations, steering, all types ),
( vehicle class, month , geogr. region, assembly, type.all ) )

executioncostscql (Gexample) = 4 -12- 14 - 1-1- 1 =672

vehicle time location part type access
factor

This demonstrates that the overall benefit of the query level cache (in the order of 10°in this
example) has two sources. (1) faster media access due to data storage in a higher part of the
storae hierarchy (10? in this example) and (2) the reduced size of data that has to be read and
aggregated (10° in this example). .

5.2 Predictive Admission and Eviction Strategies

The functional reference architecture of our caching framework (cf. Figure 5.1) shows that the
admission and the eviction agorithm both heavily rely on an estimation of the benefit of an
object for future queries. This benefit is then compared to the costs that are incurred by keep-
ing/admitting the object. Which cost factors or (for example the recomputation costs of an
object) are considered is dependent on the caching strategy. As the costs for storing and re-
trieving a query are independent of the anticipated workload, all techniques proposed for cost
estimation can still be applied. Therefore in this section, we concentrate on estimating solely
the benefit of an object. Current approaches make benefit estimations based on statistics gath-
ered since that point in time when the cache became operational (for example the reference
rate of a cached object). Most importantly, the agorithms do not explicitly make use of the
information about the session context (i.e., which queries were executed last)®. This sections
presents two different approaches to use information about the current session context in order
to improve the benefit estimation:

= based on the PROMISE prediction (Section 5.2.1): As already motivated, a prediction of
the workload based on the current session context can be used for improving the benefit
estimations. Figure 5.3 shows the integration of the PROMISE prediction algorithm into
the general caching framework (Added, respectively altered components are shaded in
gray). The prediction algorithm sends the set of predicted queries (the anticipated work-
load) to the benefit estimation process such that it can be used by the admission and the
eviction process. We describe this approach in Section 5.2.1.

51 Caching agorithms use implicit information about the timing of the last access to an object (for example using reference
densities) but the do not use relationships between a cached object and the object requested last, if these objects are dis-
tinct.
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= based on information about the navigational capabilities of the OLAP front-end: The
benefit of an object can also be measured using information about the last query and the
interactions (query transformations) that can be executed using the OLAP front-end. We
describe the approach in Section 5.2.2 although it is not strictly related to prediction be-
cause it has so far been neglected by the OLAP caching algorithms (with the exception of
[ABD+99]) and nicely matches the PROMISE objective that aims at making use of
knowledge about the user interface.

Optimization Parameters
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Process
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query
rewritings
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Figure 5.3: Extending the Caching Framework by Predictive Admission and Eviction

Naturally, both methods to measure the benefit can be combined with other ‘classical’ benefit
measures like the aged number of references. The purpose of a mixed benefit approximation
strategy is to better represent a mixture of workloads in user behavior. The typical way isto
use a linear combination of the different benefit measures. The parameters of the linear-
combination can be used to weigh the influence of the different benefit estimation methods.

5.21 A Predictive Benefit Model

This section describes an approach to measure the benefit of an object with respect to the
workload predicted by the prediction process. Generaly speaking, the benefit of an object for
aworkload of queries can be measured by the cost savings that can be achieved using the ob-
ject to answer the queries of the workload. Although the exact future workload is not known,
a prediction algorithm can offer a probabilistic hypothesis about which set of queriesis likely
to be executed next. The benefit of objects can thus be measured with respect to these predic-
tions.

In order to assess the benefit of an object (qc,p) that is contained in the cache (for the pur-
pose of finding eviction candidates) for an anticipated query g, we measure the cost savings
that can be achieved by using the object for answering the query g. When calculating these
cost savings, the rest of the cache content must be taken into account because the cache might
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contain further results from which g can be derived that will be used if (qc,p) is not cached
anymore. The benefit for a workload (weighted set of queries) is calculated as the sum re-
specting the weights (probabilities) of the queries. Thisis mirrored in the following definition:

Definition 5.3 (Probabilistic Benefit of an OL AP Cache Object)

Let I" denote an OLAP cache content (i.e., a set of materialized query results). The benefit
benefitr of a cached object (qcp)eT for the execution of a query q is defined as the cost sav-
ings of caching gc compared to not caching gc. Thus:

benefit- (¢, q) := executioncosts(rewrite(q, I' — (q¢ , 2)) ) — executioncosts(rewrite(q, I'))

Calculating the probabilistic benefit of a query qc for a predicted set of queries P=((qy,...,0k),
(Wy,...,Wy)) is done by summing up the weighted benefits for each query in the set:

k
Zwi -benefitr-(dc, q;)
benefit-(qe , P) ==L

k
> w
i=1
*

Notably, this benefit definition takes into account other objects in the cache that subsume the
guery result. This is done by comparing the cost of execution based on the query rewriting
using the original cache content and the cache content without the query result (gc,p). In the
extreme case, this can result in a benefit value of zero although the query q can be derived
from (qc,p). Additionally, it isimportant to note that the benefit of all cached objects dynami-
cally changes with the currently anticipated workload (which is dependent on the current ses-
sion context). This requires the re-evaluation of the benefit directly before any admis-
sion/eviction decision.

Example 5.4 (Probabilistic Benefit of an OL AP Cache Object)

Let us assume that the cache contains results for queries q; and . (see below). Thus, the
cache content is defined as T'={ (1, C1),(02,C2)} with

q,:= ( {#repairs, duration},
( all vehicles , all times, all locations, steering, all types ),
( vehicle class , month , geogr. region, assembly, type.all ))
q,:= ( {#repairs },
( all vehicles , all times, all locations, steering, routine ),
( vehicle class , month , geogr. region, assembly, type ) )

The prediction algorithm has predicted the following workload P={(Gexample,0.7)} containing
only Qgeample @ @ prediction for the next query with a probability (weight) of 0.7. In order to
evict a query result form the cache, the eviction algorithm evaluates the probabilistic benefit
of the cached objects for the predicted workload. The following example details the benefit
calcuclation for ¢z. The benefit value is computed by comparing the execution costs of Cexample
with and without the results of g, in the cache:

Lo 1= {#repairs},
( all vehicles , 1999, Germany , steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )
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benefit (o, Uexampl e)
= executi oncosts(re\Nrite(qexamp|e,{ (92,Co)})— executioncosts(rewrite(qexamp|e, I

Let us assume a rewriting algorithm that uses parts of the cached results (like the patch
working algorithm [Leh98Db]). If the results of ¢, are not contained in the cache, gexample Can be
evaluated from a combination of the results of g, and a query to the raw data. Thus the
rewriting algorithm returns the following queries: rewrite(deample, { (02,C2)})={ 03,04} with

q,:= ( {#repairs},
( all vehicles , 1999, Germany , Steering, routine ),
( vehicle.all , year, geogr. region, assembly, type ) )
q,:= ( {#repairs},
( all vehicles , 1999, Germany , Steering, critical ),
( vehicle.all , year, geogr. region, assembly, type ) )

As (s is subsumed by g, (which is contained in the cache) and g4 has to be evaluated using
raw data, the execution cost of the rewritten query set are computed as follows®:

executioncosts(rewrite(dexampled (d2,C2)})) =
executioncosts(d3|C;) + executioncosts(dly|Crepair ) = 672+ 8760000

The execution cost of Oeample USiNG the cached results of g, have aready been calculated in
Example 5.3 as 672. Therefore, the benefit measure of g is

benefit (0, dexample ) = 8760672~ 672 = 8.76-10°

The benefit of g, in this example is 0, as the rewriting of Qexample Will contain queries that are
evaluated against results of g as long as the results of g; (that subsumes Qexampe) are
containted in the cache. This demonstrates that the benefit measure is not only dependent on
the predicted workload but also on the current cache contents. The consegence would be that
the results of g, will probably be evicted first. However, the actual eviction decision must also
consider the storage costs incured by the cached object.

*

For the admission algorithm, it is important to compute the additional benefit of an object.
This benefit is measured analogously by considering the costs savings that can be achieved by
adding the object to the cache.

Definition 5.4 (Additional Probabilistic Benefit)

Let I" denote an OLAP cache content (i.e., a set of materialized query results). The benefit
benefity of a cached object (g,p)e T for the execution of a query q is defined as the cost sav-
ings of caching gc compared to not caching gc. Thus:

addbenefit- (g, ) := executioncosts(rewrite(q, T) ) — executioncosts(rewrite(q, ' U (0., 2)))

52 The execution costs of g, are half the execution costs of Cexample (Cf. Example 5.3) because the queries only differ in the
repair type dimension which has two elements (critical and routing). Query g, reads only half of the elements (critical)
compared to Qexampie- FOr the rest of the examples in this chapter, we will omit the details of the benefit calculations and
only present the results thus leaving the calculation as an exercise to the interested reader.
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Calculating the additional probabilistic benefit of a query gc for a predicted set of queries
P=((qy,...,0k), (Wy,...,Wy)) is done by summing up the weighted benefits for each query in the
Set:

k
ZWi -addbenefitr(ac, q;)
addbenefit (gc, P) ==L

*

This formula implies that the additional benefit of a query result is zero if it is aready con-
tained in the cache. Notably, this benefit measure consciously does not consider the space
limitations for the cache. That meansthat the benefit of an object isindependent from the fact
whether the free cache space is large enough to hold the object or if other objects have to be
evicted. Taking this into account is the task of the cache admission algorithm, that typically
compares the benefit of cached objects with the cost incurred when caching the object. The
cost measure should mirror the fact that objects have to be evicted from the cache in order to
make room for the newly arriving object=.

Both benefit measures described in this section can be used to enhance the admission and
eviction algorithms of OLAP query level caches. They constitute the link between the predic-
tion algorithm and the cache manager. Although this approach itself already improves the per-
formance of OLAP caches (see Chapter 6), prefetching techniques can additionally improve
the caching performance. However, we will show in Section 5.3 that the prefetching algorithm
can make use of the benefit definitions given above.

5.2.2 A Transformation Based Benefit M odel

While the previous section described a method of measuring the benefit of objects for the an-
ticipated workload by predicting the workload, this section describes an aternative benefit
measure for cached OLAP objects based on knowledge about the interactive capabilities of
the OLAP front-end. As described in 3.2.4, OLAP interfaces offer a fixed set of query trans-
formations that are used to derive the next query from the previous one. Therefore, queries
that can be produced with a smaller number of query transformations from the last query seen
can have a higher probability of being executed next. This approach can be combined with the
predictive approach and other techniques or can be used alone.

In order to evauate the benefit of cached objects, we define a metric space for queries
which is based on the definition of query transformations. The distance measure for two que-
res gi, gz in this query transformation space is defined as the minimum number of transfor-
mations that is needed to transform g, into g.. We can then assume that the query behavior
exhibits locality properties regarding this space. Consequently, the benefit of a cached object
is defined inversely to the distance of the cached object from the last executed query.

Definition 5.5 (Transfor mation Distance between Two OLAP Queries)

Let T denote a complete (cf. Theorem 3.5) set of query transformations. The set of minimal
transformation sequences MINT(q1,02) With respect to T that transform a canonical OLAP
guery gx1€ Oc into gpe O is defined as follows:

53 For example the approach of [SSV96] only admits objects to the cache if the benefit of the object is larger than the benefit
of the objects that have to be evicted.
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MINT (0p,00) = {te T t(cy) =ap A—3t'e T (b=t At'(q) =0 Alt< |t|) }

The transformation distance |q1—q2|T between two canonical OLAP queries g; and g, with

respect to T is defined as the length of the minimal sequence of transformation operations that
transforms q; into gp.

o~ 2|7 =[t]:te MINT (qy,02)

Example 5.5 (Transfor mation Distance Between OL AP Queries)

To calculate the transformation distance between the queries Qecample 8Nd Gyrans, We have to find
the shortest sequence that transforms Gexample iNtO Crans.

qexample = ( {#repairs} ’
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )
qtrans:= ( {#repa‘irs} ’
( all vehicles, 1999 , USA , Steering, all types),

( vehicle.all , month, geogr. region, assembly, type.all ) )

The following sequence of transformations applied t0 Qexampe Produces the query Ggans. It
should be obvious, that no shorter sequence (one transformation) exists.

(rotate-sel ectionyepair timemonth o SliCE)(Qexample)= Grans

Therefore, the transformation distance of the two queries ‘qexampm - qtranS‘T is2. .

Without providing a formal proof, we remark that for our set of transformations presented in
3.2.4 the shortest transformation sequence can be computed efficiently. As each transforma-
tion only affects one dimension (or the set of measures), the length of the sequence can be
computed dimension-wise. Although using a distinct set of transformations, [ABD+99] pre-
sents performance measurements that show that the transformation based benefit measure-
ment can greatly improve the caching performance in the presence of typical OLAP work-
loads.

5.3 Predictive Prefetching for OLAP Caches

The purpose of this section is to extend the abstract caching system presented in Section 5.1.2
by a component that allows for speculatively executing OLAP queries based on the results of
the prediction process. Figure 5.4 shows the necessary extensions and communication links
that are necessary for extending the general caching framework. Our proposed solution makes
use of the extensions already introduced in the previous section. The added/modified compo-
nents are shaded in gray.
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Figure 5.4: Data Flow in a Caching System Extended for Predictive Prefetching
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5.3.1 ThePredictive Prefetching Algorithm

At any point during a session (typically after finishing the processing of the last query), the
prefetching process (cf. Figure 5.5) starts the prediction process that computes a set of antici-
pated gqueries based on the current session context (line 6). Based on this set of predictions,
the prefetching process must decide what data should be actually prefetched and in which or-
der it should be prefetched. Due to the subsumption (respectively derivability) property of
guery results, it is not necessarily optimal to speculatively execute the exact queries from the
predicted set of queries in order to speed up the query processing. Depending on the actual
rewriting strategy, it might be more beneficial to fetch sub- or supersets of the predicted que-
ries. Additionally, it might be more cost efficient to prefetch partial results that are of potential
benefit for several queries of the anticipated workload. This means the prefetching agorithm
must first determine a set of prefetching candidates (line 7) that have the highest cost/benefit
ratio. We will discuss the influencing factors of the benefit measure for the prefetching proc-
essin Section 5.3.2.2. However, it should be obvious now that the cost saving potential for the
predicted workload is an influencing factor. This means that the prediction agorithm can
make use of the predictive benefit estimation process (cf. Figure 5.4) that has been described
in Section 5.2.1 (see data flow diagram, Figure 5.4). The candidates are then processed in or-
der of descending benefit values (line 9) as long as the next query has not been executed (i.e.,
during the consideration time, cf. line 10)
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01 procedure Prefetching( SessionContext C,

02 MarkovModel M)

03 {

04 declare workload: set of (OLAP query prediction)
05 declare candidates: set of (OLAP query)

06 workload = PredictOLAPQuery (C, M)

07 candidates = GeneratePrefetchingCandidates( workload )
08 sort candidates by PrefetchingBenefit ()

09 while (!NextQuery())

10 get next g in candidates

11 if Admission (g) = TRUE

12 QueryProcessing (g, SPECULATIVE)

13 end while

14}

Figure 5.5: Pseudo Code for the Prefetching Algorithm

For each candidate, it isimportant to decide if it should actually be prefetched. The reason for
thisis that a prefetching request uses system resources (query processing time, network band-
width but also cache storage place). It is obvious that a very aggressive prefetching strategy
does not only cost large amounts of system resources (network bandwidth, CPU time) but is
aso likely to nullify the caching strategy by evicting large amounts of cached objects to make
room for the prefetched objects. In our cache model, we assume that the query processing sys-
tem can handle requests that are marked as speculative in away that they are only processed if
the system is idle (for example by assigning a lower priority to speculative execution re-
guests). Therefore, for the prefetching decision, we only consider the caching relevant cost
factors (e.g., size of result and benefit of evicted cache objects). Deciding whether an object
can increase the overall benefit of the cache (depending on the caching strategy) is the task of
the admission process. Thus, each candidate is presented to the admission algorithm (line 11).
If the admission process returns a positive result, the candidate is passed to the query process-
ing as a speculative query (line 12). After the execution, the speculative query result is in-
serted into the cache by the query processor (calling the admission algorithm before the execu-
tion ensures that the result will actually be admitted).

This coarse description of the prefetching process shows that in addition to the extensions
already described Section 5.2, we have to design a benefit measure PredictionBenefit (cf. line
8) and an algorithm that generates the best prefetching candidates according to this measure
function (function GeneratePrefetchingCandidates, cf. line 7). In the next section we will
show, that this problem can be reduced to the general view selection problem and is therefore
too complex to be solved online. Consequently, we will discuss heuristic approaches to this
problem.

5.3.2 Generating and Evaluating Prefetching Candidates

This section will discuss the problem of selecting optimal prefetching candidates. This prob-
lem is astep in the overall prefetching algorithm discussed in the previous section. In Section
5.3.2.1, we will show that this problem can be formalized as a variation of the view selection
problem and conclude that an analytical solution to the problem is far too complex for online
computation. When presenting the prefetching agorithm in the previous section, we already
motivated that an evaluation function is necessary to determine the order in which the pre-
fetching requests should be executed. Therefore, we suggest severa heuristic construction
methods for the candidate set in 5.3.2.3. These heuristics aim at producing candidates that are
good (optimality cannot be guaranteed due to the heuristic approach) with respect to a pre-
fetching benefit measure. This means that the benefit measure has to be defined before dis-
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cussing the heuristics. Therefore Section 5.3.2.2 presents a benefit measure that evaluates
candidates produced by the candidate generation process. This measure is used to determine
the order in which the prefetching requests are passed to the admission algorithm (cf. Figure
5.5; line 8). The combination of the heuristic candidate generation and the application of the
benefit measure areillustrated in the comprehensive examplein Section 5.3.3.

5321 Problem Formalization

The problem of determining an optimal set of prefetching candidates is a special case of the
view selection problem with additional constraints. For the relational case, the view selection
problem (e.g., [TS98], [SDN98]) is defined as follows. For a given workload (a set of rela-
tional queries and corresponding weights) and a given set of base relations, a set of views has
to be constructed such that the execution costs for a rewritten workload exploiting the materi-
alized views and the base relations are minimized. Additionally, the set of materialized views
must fulfill a space constraint (i.e., the space available for materialization is limited by S.
The problem in its general form has been proven to be computationally intractable [SDN9§].
Severa heuristic solutions have been proposed for this problem (e.g., [HRU96], [SDN98])
giving solutions for restricted types of view definitions (for example only considering SPJ
views) and using greedy algorithms to traverse the search space. However al these algorithms
are too complex to be performed online (as needed for dynamic caching decisions) as their
execution time may last for several hours or even days in realistic scenarios.

We are aiming at minimizing the execution costs of the anticipated probabilistic workload
by changing the current cache content T" (set of currently materialized views) to I'". The execu-
tion costs of the probabilistic workload P (predicted queries and their weights) using the
(modified) cache content I'” are defined as follows:

executioncostsp/(P) = (executioncosts (rewrite(qj, 7)) - wi ) (OPT)
ie[LK]

The optimization algorithm should find a cache content I'™” such that these costs are minimized
taking into account the following constraints. I'” must not exceed the maximum cache space,
thus:

[T <MAXSIZE (C1)

An additional important and interesting peculiarity of our prefetching environment is that the
sequence of the materialization and the time needed for the materialization is important as
only views which are materialized before the execution of the next user query can be ex-
ploited for query speed-up. That means that the following constraint has to be satisfied:

executioncosts(I” —I') < ConsTime (C2

where ConsTime denotes the consideration time between the last and the next query. As this
time is not known in advance (and also not predicted by our time-unaware prediction process),
it is not possible to use a deterministic analytical model to find the optimal prefetching set, but
a statistical model has to be deployed. In this model ConsTime is modeled as a random vari-
able. In general, the distribution (respectively the probability density function) of this variable
Is not known in advance which additionally increases the complexity of the problem.

54 The problem has been speciaized in different ways introducing additional constraints, for example that the set of material-
ized views should be self-maintainable or that the maintenance cost of the views should be aso minimized.
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5.3.2.2 Evaluating the Prefetching Benefit of OLAP Queries

The previous section formally described the candidate generation problem. The conclusion
was that an analytically optimal solution is not feasible. Therefore, we will use a heuristic
algorithm to solve the problem. In order to decrease the complexity of the algorithm, we solve
the problem using two steps: a heuristic candidate generation algorithm that transforms the
gueries of the workload in a heuristic way and an evaluation step, that evaluates the trans-
formed workload (i.e., the prefetching candidates) using a special benefit function. Candidates
with a high evaluation score will be prefetched first. Before discussing the candidate genera-
tion procedure in the next section, we first have to derive a measure for evaluating the benefit
of generated candidates. This measure is used to order the generated candidates because the
most promising candidates should be processed first.

First of all, ‘good’ candidates must have a high additional benefit (a high potential of re-
ducing the cost in executing several queries of the anticipated workload) as this is the main
optimization goal (OPT).

Constraint (C1) of the prefetching candidate selection problem formulation (cf. 5.3.2.1) fa
vors small result sets. However, our strategy is to propagate decisions involving estimations of
the storage costs to the cache admission algorithm. This may lead to the generation of subop-
timal intermediate prefetching candidates. However, these candidates will be pruned by the
cache admission algorithm before they are executed. The advantage of this approach is that we
can fully reuse the existing admission algorithm and therefore benefit from all progress made
in this area. Additionally, the separation of concerns ensure that our algorithm can be easily
integrated will all caching approaches. This means that our benefit measure must not take
(C1) into account.

Because of constraint (C2) the benefit measure should favor results that are fast to compute
(having a high probability of being available before the end of the consideration time). As the
prediction model is not time-aware (i.e., no predictions about the actual time of the next re-
guest are available), we can only use the monotony of the probability density function, assum-
ing that a query that can be executed quicker has a higher probability of being materialized
before the next event. Therefore, we define the prefetching benefit of a query as the quotient
of the additional benefit of caching the query result divided by the execution costs of the query
(used to estimate the execution time).

Definition 5.6 (Prefetching Benefit of OLAP Query)

Let I" denote an OLAP cache content and gpe ©c a canonical OLAP query. The prefetching
benefit prefetch-benefitr of query g, regarding a set of predictions P=((qy,...,0k), (Wi,...,Wk))
is defined as:

addbenefitr(qp, P)
executioncosts(dp)

prefetch — benefitr(qp, P) =

Example 5.6 (Prefetching Benefit)

Let us assume that the prediction process generated the following predictive workload
P={(q1,02), (0.5,0.45)} and that the rewriting algorithm cannot find a rewriting of either gexam-
ple OF Q2 using cached objects (for example because the cache is empty). Both queries only
differ in the restriction elements of the repair time and repair type dimension. Figure 5.6
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shows a projection of the query rectangles that is defined by both queries to the classification
levels year and type.

q,:= ( {#repairs},
( all vehicles , 1999, Germany , Steering, all types ),
( vehicle.all , year, geogr. region, assembly, type ) )
q,:= ( {#repairs},
( all vehicles , all times, Germany , Steering, routine ),
( vehicle.all , time.all , geogr. region, assembly, type ) )

year

1997 1998 1999 2000

routine

critical

Figure 5.6: A Projection of the Query Rectangles Implicitly Defined by g; and g, on the level type/year

The prefetching benefit for the query g; can be calculated as follows: the additional benefit of
0. for executing q; is (g has the same execution cost as Qexample, 8 both queries only differ in
the result granularity of dimension repair type and the result granularity does not influence
our estimation of execution costs, cf. Example 5.3 and Example 5.2):

addbenefit(oy, q1) = 1.752:107 - 112 = 1.7519828-10'~1.75-10’

However, the results of gecample Can also be partially used to answer g, (cf. Figure 5.6). Assum-
ing that the rewriting algorithm can fully exploit this relationship, the additional benefit of
Oexample fOr 0 is calculated as follows (the exact calculation are omitted here):

executi oncostscrepajr (9p) = 3.5-107

executi oncostscrepair (rewrite(gy.{y}) = 2.628-107 +56

addbenefit(qy, q) =0.8719944-10" ~ 0.87-10"
Thus, the additional benefit of the results of g; computes to:

. . 7 . . 7
addbenefity-(cy, P) = 0.5-1.75-10" +0.45-0.87-10 _133.107
0.95
The execution cost of quagainst raw data (cube Cyepair) are 1.75-10". Therefore, the prefetching

benefit of q; is:

.
prefetchbenefit-(qp, P) = 133100 =0.76

1.75-107
The according prefetching benefit of g, (detailed computation omited here) is.

7
prefetchbenefit- (g, P) = % =0.61
3.5-10
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This means that even though the additional benefit of g, for the predicted workload P is larger
than the additional benefit of q;, the prefetcing process will opt to first prefetch results of g,
as the execution costs for g, are overproportianally larger than the additional benefit.

5323 Heuristic Candidate Gener ations M ethods

This section discusses possibilities to generate prefetching candidates i.e., queries that should
be executed in order to optimize the cache content. The aim of this step in the overal pre-
fetching process (cf. Figure 5.5) isto produce a sorted list of queries that have a high prefetch-
ing benefit (as defined in the previous section). We will discuss the following heuristic strate-
giesfor the candidate generation process:

= Considering the original queries of the predicted workload

= Considering super-queries for queries with similar values

= Considering common sub-queries for queries with similar structure

= Using the rewriting process to enhance the candidate generation process

In Section 5.3.3, we will show the (combined) application of these strategies using an exam-
ple.

Considering workload queries. Probably the most straightforward approach is to use each
original query of the workload as a prefetching candidate. This coarse grained approach has
the advantage that it can realize the optimal cost savings if one of the predictions is 100% ac-
curate as this query can then be answered directly from the cache. However, this strategy may
lead to prefetching very large query results and it does not take into account common subex-
pressions of the queries in the workload. Thus, the strategy is best suited for situations, where
the predicted workload is either small (i.e., the number of queries is low) or heterogeneous
(i.e.,, no common subexpressions) and the consideration time is large compared to the execu-
tion times of the predicted queries.

Considering super-queries. A typica situation when using the PROMISE/OLAP approach
Is that the set of predicted queries contains several similar queries that e.g., only differ in the
restriction element of one dimension. These similar queries are predicted when the value-
based prediction model contains two successor states with comparable probability values (for
example the previous and the next year). In these situations, it is a good idea to consider pre-
fetching one query that subsumes all these similar queries. We call this query the super-query
of the set. It can be constructed from the individual queries in the following way (cf. Figure
5.7 for avisualization of the process): the result measure set of the super-query is obtained by
using the union of the individual result sets. The new result granularity for each of the dimen-
sions must be chosen such that any of the result granularities of the origina queries can be
aggregated from this level. Additionally, the *super-granularity’ should be as ‘coarse’ as pos-
sible to reduce the size of the query result. Therefore, the super-granularity is chosen as the
greatest lower bound for all original granularities in the dimension’s classification latticess.
Finaly, the new restriction element is chosen such that it is a parent to al the original restric-
tion elements. Again, if more than one element is possible, we chose the element on the
smallest possible classification level in order to reduce the size of the query result. This con-
struction process for the super-query leads to the following formal definition:

5 In the specia case of a single hierarchy this is the smallest result granularity of al the queries in the set for which the
super-query should be computed.
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Figure 5.7: Visualization of the Super-query for a Set of Two Queries Q={qy,0}

Definition 5.7 (Super-Query for a Set of Canonical OLAP Queries)
Let Q={qy,...,.a} with g :(Mi,(gi,l,...,gi,n),(riyl,...,ri,n)) denote a set of k canonical
OLAP queries (ie[1;K]). The super-query super (Q) of Q is defined as follows:

super (Q)=(Ms, (s 1.+ Gs,n)s (511 Ts,n) With

= Mg= U M; being the result query measure set of the super-query,
ie[Lk]
k
= gsj =GLByyq J{gi,j} | VielLK] being the result granularity for dimensioni and
j=1
= rg; being the classification node of the super query for dimension i that fulfills the follow-
ing conditions:

s, € ﬂ(ancestors(ri,j)u{ri,j})/\
jelzn]
—argie ((ancestors(r j)uin j}):level (r§;) <y level(rs;)  Vie[LK]
jelzn]

Example 5.7 (Super Query for a Set of OLAP Queries)

Let us assume that we want to compute the super-queries for the query set { Jexample, Qexample2}
with

oo 1= ( {#repairs},
( all vehicles , 1999, Germany , steering, all types ),
( vehicle.all , year, geogr. region, assembly, type.all ) )

=( {#repairs, duration },
all vehicles , Jan 1999, Germany , steering, all types ),
( vehicle.all , month, geogr. region, assembly, type.all ) )

qexampl e2 :

56 Notably, such an element always exists, as the specia member ‘al’ is ancestor of al elementsin the domain of the lattice
by definition.
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Both queries only differ in the result set and the granularity and restriction element in the time
dimension. The granularity of the super-query is month as both granularities are from the same
classification schema path and month is smaller than year. The restriction element of the su-
per-query is the element 1999, as this is the common parent of 1999 and Jan 1999.

super ({durer Dopunpren)) 1= ({#repairs, duration},

( all vehicles , 1999, all locations, steering, all types ),

( vehicle class, month , geogr. region, assembly, type.all ) )
common ({ Q. per Topren}) 1= ({#repairs},

( all vehicles , Jan 1999, all locations, steering, all types ),

( vehicle class, month , geogr. region, assembly, type.all ) )

*

The super-query has the useful property that it subsumes all the queries of the query set. This
property is formulated by the following theorem:

Theorem 5.1 (Subsumption of Super Query)

Every member of a set of canonical OLAP queries Q is subsumed by the super-query for this
query set super(Q). Thus,

super(Q) subsumesq VgeQ

Proof 5.1 (Subsumption of Super Query)

The full proof can be found in Appendix A and is a direct consequence of the construction of
the super-query (Definition 5.7). .

The rational for considering the super-query in addition to (or instead of) the original queries
Is that it is likely to have a high benefit value as it subsumes all the queries of the sub-
workload (see definition of benefit). Additionally, our assumption, that the query execution
costs are proportional to the number of cells selected on the base data does not always hold in
real systems. The reason for thisis that queries with a high selectivity can benefit from special
access structures (for example a multidimensional index structure, cf. [MZB99]) while queries
with a low selectivity require that the base data (for example the fact table) must be entirely
read which results in query execution costs that are only marginally dependent on the number
of tuples reads if the selectivity drops below a certain threshold. Consequently, fetching a
larger portion of the data only increases the execution costs by a small amount while the bene-
fit increase is considerable. These effects are properly reflected by our prefetching benefit
measure that was presented in Section 5.3.2.2. However if the workload is too heterogeneous,
the super queries can become costly to store because the query result size quickly grows. In
this case, super queries should be rejected by the cache admission algorithm. This is why we
call the admission algorithm prior to executing the query (cf. Figure 5.5).

Considering common sub-queries. A subset of the predicted workload might be similar in
the sense that they all address a common portion of the data. We call the query that retrieves
these common data sets the common sub-query for a query subset. Thisis the query (with the
largest result set) that can be used in answering al queries in the subset. The common sub-
guery can be constructed from a set of queriesin the following way (cf. Figure 5.8): The result
set of the common sub-query is chosen to be the intersection of al result measure sets of the
individual queries. The results granularity of the common sub-query is determined in the same
way as the result granularity of the super-query (as the greatest lower bound of the individual

570f course, the aggregation process (CPU-bound) is still more expensive for larger data volumes.
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result granularities in the classification lattice), because it must be possible to aggregate (par-
tial) results of al queries from thislevel. The restriction element for each dimension is chosen
such that the query rectangle implicitly defined by the restriction vector on the chosen result
granularity (of the sub-query) is completely contained in every query rectangle (on this granu-
larity) of all queriesin the set. As the results of the common sub-query should be as large as
possible (because this increases their benefit for the predicted workload), we chose the restric-
tion element on the largest possible level®. In contrast to the super-query, it is not always pos-
sible to find a common sub-query for a set of queries. If the set of result measures is empty or
if no restriction element can be found that fulfills the above mentioned properties, the com-
mon sub-query is undefined.
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Figure 5.8: Visualizing the Common Sub-Query of Two Canonical Queries q; and g,

These considerations lead to the following definition of acommon sub-query:
Definition 5.8 (Common Sub-Query of a Set of Canonical OLAP Queries)

Let Q={qu,....qd With ¢ =(M;,(Gi1,-» i n)s (5 1,--.Ti n)) denote a set of k canonical
OLAP queries (ie[1;K]). The common sub-query common(Q) of Q is defined as follows:

common(Q)=(Mc¢.(dc1.---.9c.n)-(fc 1 fen))

= Mc= ﬂ M; being the result query measure set of the common sub-query,
i€[LK]
k
= dc,i=GLBy|q, ([{gi,j} | VielLk] being theresult granularity for dimension i and
j=1

%8 |n the case of a simple hierarchy, the restriction element of the common sub-query is the smallest restriction element if all
restriction elements are from the same path in the hierarchy tree (classification instance). If no path exists where that con-
tains dl restriction elements, the common sub-query is empty.
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= r¢; ischosen such that the following condition holds:
((descendantsi(rc ) U{rc,i}) ndom(gc )<

() (descendants(r;, ;) U{r, ;} ndom(ge,)) Vie[LK]
jelLn]

Common sub-queries typically occur in the PROMISE/OLAP framework if the structural pre-
diction model contains several successors with comparable probabilities. In this case, it is use-
ful to add common sub-queries of these sub-workloads to the set of prefetching candidates.
All (sub-)workload queries can benefit from the common sub-expression (assuming that the
rewriting algorithm can make use of partial results) and the execution costs of these queries
are smaller than the execution costs of the original queries. This is especially useful in situa-
tions where the consideration times are short compared to the execution times of queries con-
tained in the workload or where the set of predictionsisrelatively large. However, sub-queries
are only useful if the rewriting algorithm can make use of the partial containment (for exam-
ple the patch working algorithm).

Using the rewriting process. All of the candidate generation methods discussed so far do
not consider the cache content. However, the prefetching benefit of a candidate decreases if it
‘overlaps with an object in the cache. That means if the candidate can be rewritten using the
current cache content to answer part of the query, prefetching the complete candidate is not
necessary. Instead only those parts should be considered as prefetching candidates that have to
be evaluated against raw data. Therefore, the candidate list generation process can use the
rewriting process to increase the benefit of the candidates. In this case, al candidates are
passed to the rewriting algorithm and are replaced by the resulting set of base data queries.

Of course, al of these strategies can be combined by sequentialy applying them to the
candidate set (starting with the original set of predicted queries). The comprehensive example
presented in the next section illustrates the combination of the above heuristic strategies. It
additionally demonstrates the combination of the candidate generation with the evaluation and
admission process.

5.3.3 A Comprehensive Example

The following example illustrates the prefetching process using a simple example scenario
that is an extension of the examples presented so far.

Example 5.8 (Prefetching Algorithm)

Let us assume that the prediction process generated the following predictive workload
P={ (dexample:02), (0.5,0.45)} and that the cache contains the results of a single query gs. The
rewriting algorithm cannot find a rewriting of either Qeample OF 02 using cached objects (for
example because the cache is empty).

Gunei= ( {#repairs},

( all vehicles , 1999, Germany , steering, all types ),

( vehicle.all , year, geogr. region, assembly, type ) )
q,:= ( {#repairs},

( all vehicles , all times, Germany , steering, routine ),

( vehicle.all , time.all , geogr. region, assembly, type ) )
q,:= ( {#repairs},

( all vehicles , 1999, Germany , steering, critical ),

( vehicle.all , year, geogr. region, assembly, type ) )
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This configuration is shown in Figure 5.9.

year

1997 1998 1999 2000

routine

critical

.3

Figure 5.9: Visualization of the Cache Content (gs) and the Predicted Workload (qy,05)

The first step of the prefetching process after calculating the predicted workload P isto gener-
ate a set of prefetching candidates. If we assume that this process uses al of the techniques
proposed above except the rewriting method (i.e., basic queries, super and common-sub-
queries), the candidate set contains 4 queries: {01, 02, Ocommons Osuper} » WheEre geommon denotes
the common sub-query of g; and ¢, and dsyper the respective super-query.

Doomen:= ( {#repairs},
( all vehicles , 1999, Germany , Steering, routine ),
( vehicle.all , year , geogr. region, assembly, type ) )
Qe :=  ( {#repairs},
( all vehicles , all times, Germany , steering, all types ),
( vehicle.all , year , geogr. region, assembly , type ) )

The next step is to compute the prefetching benefits. Table 5.2 shows the computed prefetch-
ing benefits and storage costs for all queries of the candidate set. Please note, that the
prefetching benefit of g; is lower than in Example 5.6. This is an effect of the cache content
(gs can be used to partially answer o).

Query Additional Benefit Execution Costs Prefetching Storage Benefit/
q addbenefitr(q) executioncosts(q) Benefit costs Storage

prefetch- (Array) Cost

benefit{q)

th 0.87-10’ 1.7510’ 0.50 112 7.7.10°
7 2.12-10’ 3510’ 0.61 224 9.4.10
CJoommon 1.70-10’ 0.875-10’ 1.49 56 30.4-10*
Clsuper 2.58-10" 7.10 0.37 448 5.7-10°

Table 5.2: Benefit and Cost Measures for the List of Prefetching Candidates

This evaluation shows that decommon has the highest prefetching benefit and will therefore be
processed first. 1.€., Qecommon IS passed to the admission algorithm to make sure that the pre-
fetched result will be admitted to the cache before speculatively executing Jeommon. Although,
the actual implementation of the admission is dependent on the caching approach, it will usu-
ally compute the storage requirements for the results of the query (see Table 5.2; column 5) to
check whether the cache has enough room for the result and if not which objects have to be
evicted. The eviction decision is driven by comparing the benefit/cost ratio of the new object
(see Table 5.2; column 6) with the benefit/cost ratio of the cached results (Table 5.3 computes
thisratio for gz which is stored in the cache).

Notably, the eviction of objects from the cache can influence the benefit values of the pre-
fetching candidates. This effect is not addressed in our heuristic agorithm. This simplification
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is justified, as we assume that the cache is large enough, so that the objects can be evicted
from the cache that have no effect on the benefit of the prefetching candidates (i.e., a benefit
value of 0).

Cached Query | Probabilistic Storagecosts (Array) | Benefit/Cost
Benefit
s 0.46-10’ 56 8.2.10°

Table 5.3: Evaluations of the Costs and Benefit of the Cache Content

54 Summary and Conclusions

This chapter thoroughly discussed the impact of the PROMISE/OLAP algorithms to OLAP
caching systems. Therefore, it completes the core of this thesis by demonstrating the useful-
ness of the prediction approach for an important exemplary application.

Our starting point was the observation, that caching strategies can apply predictions of fu-
ture queries in two ways:. in order to improve eviction and admission strategies through pre-
dictive benefit estimations and for speculative execution of queries. A comparison of existing
caching approaches has shown that all OLAP caches apply a query level cache which is a
variation of the idea of semantic caches ([DFJ+96]). The main differences of the algorithms
are thelr approach to the query rewriting problem and to estimating the benefit of objects (for
admission and eviction decisions).

A main objective of the PROMISE extensions is that the approach should be applicable with
al the currently proposed OLAP caching solutions. To this end, we developed an abstract
caching model which subsumes all the approaches discussed in 5.1.1. This model is not only
useful for the discussion of our approach but can serve as a general framework for the com-
parison of query-level caching approaches beyond the scope of thisthesis (for example for the
combining different caching approaches). An elegant integration of our extensions, reusing
components of the algorithms and other extensions, indicates the quality of the modular de-
sign. A model for the comparison of costs for different execution plans using cached objects
completed the description of the abstract PROMISE caching framework. However, due to the
modular nature of the framework, it can be easily integrated and extended with systems that
aready deploy highly sophisticated estimation mechanisms (for example cost based optimiz-
ers of database systems).

The first extension proposed in Section 5.2 was to use the predictions in order to estimate
the benefit of cached objects. To this end, we introduced two benefit measures that are based
on the predicted workload and discussed an additional method to increase benefit estimations
by using knowledge about OLAP user interface transformations. The common innovative fea-
ture of both methods is the usage of dynamic information about the session context for benefit
estimation. However, both benefit estimation methods can be combined with each other and
further traditional methods of benefit estimation.

The second extension (Section 5.3) discussed the usage of speculative execution techniques
based on the predicted workload. We algorithmically described the integration of the exten-
sion into the caching framework and concluded that a prefetching candidate generation proc-
ess incorporating a special prefetching benefit measure has to be designed. We formalized the
prefetching problem as a variation of the view selection problem and proposed different heu-
ristic methods for its solution. Notably, we based the definition of the prefetching benefit
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measure upon the benefit estimation functions presented in Section 5.2. In this way, the effort
for implementing the extensions can be reduced.

Although we described the extension of the caching framework specifically for OLAP sys-
tems, the results of this chapter can be applied in a much wider area. Semantic query level
caches have aso been discussed for relational database systems ([DFJ+96]). Our general
framework and algorithms do not rely on any assumptions about the definition of query sub-
sumption and the rewriting process. Therefore, the functional cache description framework,
the predictive benefit measures, the definition of the prefetching candidate generation problem
and its heuristic solutions can be regarded as a foundation for systematically researching the
combination of prefetching techniques with query level caches in database systems in general.
This means that our results can be applied to a much wider context.

At this point, the description of agorithms, formalisms and techniques covered by this the-
sisis complete. The rest of this thesis will be devoted to the empirical evaluation of the algo-
rithms using a trace-driven environment (Chapter 6) and the discussion of possible extensions
(Chapter 7).
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«A theory is something nobody believes,

except the person who madeit.

An experiment is something everybody believes,
except the person who made it.»

-- Albert Einstein, attributed

«In theory, thereis no difference
between theory and practice.

In practice, however, thereis.»
-- Unknown

Chapter 6 Empiric Evaluation of Prefetching Techniques

This chapter is devoted to the practical evaluation of the framework that has been described in
the core of the thesis. The design of the pattern model and the prediction and caching algo-
rithms in the previous chapters are heuristic in the sense that they are based on certain as-
sumptions about the behavior of the user and the OLAP data. Therefore, a performance
evaluation of the framework has to be done empirically.

In order to show that our basic assumptions about the characteristics of OLAP systems can
be found in real-world applications, we present an analysis of OLAP behavior characteristics
found in areal OLAP environment in the Section 6.1. For the performance measurements of
the PROMISE/OLAP approach, we use a simulation of user behavior based on a real data
warehouse schema measured against real-world data warehouse data. The architecture of the
evauation framework and the description of the ssmulation scenario is detailed in Section 6.2.
The results of the measurements are presented in Section 6.3. Finally, Section 6.4 summarized
the results and draws conclusions.

6.1 Empiric Study: Characteristics of OLAP User Behavior

Our approach is based on the assumption that the system workload posses the following char-
acteristics:

= Session Oriented Navigational Behavior. Sessions consist of a number of consecutive
gueries. These sessions must have a sufficient length in order for prediction to work effec-
tively. Additionally, longer sessions are an indicator for navigational user behavior charac-
teristics.

= Sufficient time for prefetching. Additionally, the time between two queries must be long
enough such that a significant percentage of the next query can be prefetched (computed)
during this period. The pure prefetching assumption ([CKV93]) postulates that the time
between two requests is long enough to precompute the whole query.

To show that these two prerequisites can be found with typical OLAP workloads, we analyzed
the query interactions of a productive OLAP system. The system being analyzed is an SAP
BW® system supporting the distribution logistics of the material management division in a
large chemical company in Germany. The interaction behavior of 18 users was monitored over
a two-month period including 260 sessions containing 3150 queries.
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The log file contains an entry for every query the user executes using his OLAP front-end.
For each query the starting time and the execution time are being logged. It further contains
information about the logon and logoff procedures of an user. A session is defined as all the
gueries that are issued by a single user between logging into the system and logging off the
system.
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Figure 6.1: Cumulative Distributions of Consideration Time and Number of Queries per Session

The hypothesis that OLAP users work in an explorative navigational way is confirmed by an
analysis of the number of queries (cf. multidimensiona operations) an user executes per ses-
sion. Figure 6.1 shows the cumulative frequency distribution of the number of queries per
session. Although the system is mainly used for static reporting purposes, only 11% of all the
sessions consist of executing a single query (simple reporting). Some sessions contain more
than 100 queries. 63,8% of the queries contain 5 or more navigation steps. The median for the
number of navigation stepsis 9.

Rapid
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Start
Queries
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Potentially
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85%

Figure 6.2: Percentage of Queries for which the Pure Prefetching Assumption is Fulfilled

In order for speculative materialization to be successful, the time between two subsequent
navigation steps (the user’s consideration time) must be relatively long compared to the exe-
cution time. An analysis of the log files reveals that 7% of the queries cannot benefit from
prefetching because they are the first query in a session (as sessions typically start with a pre-
defined report, they are likely to benefit from traditional caching). For only 8% of the queries,
the pure prefetching assumption (consideration time larger than execution time) was not ful-
filled. This means that it is fulfilled for 85% of the queries (cf. Figure 6.2). A further analysis
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showed, that consideration time in most of the cases was orders of magnitude longer than the
execution time of the next query.

An analysis of the distribution of consideration times can be seen in Figure 6.3. It plots the
cumulative frequency distribution of the consideration time (time spent between two naviga-
tion steps). The median of the distribution is 121 seconds. Over 81% of the queries have a
consideration time of more than 10 seconds and 70% have a consideration time of more than
45 seconds. Additionally, it can be seen that the consideration time follows a logarithmic dis-
tribution.
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Figure 6.3: Cumulative Frequency Distribution for Consideration Times

Thus, these observations confirm that our basic assumptions about the navigational behavior
and the consideration times of OLAP users can actually be found in real world systems.

6.2 The PROMISE/OLAP Evaluation Environment

The purpose of this section is to describe the software architecture of the evaluation environ-
ment (Section 6.2.1), the structures of the data (Section 6.2.2), and the user ssmulation (Sec-
tion 6.2.3) that were used in the performance measurements.

6.2.1 Architecture

This section briefly describes the architecture of the system that we used in our performance
measurement experiments. A more detailed description of the component’s design and im-
plementation including the object-oriented model for the MD schema and the OLAP engine
can be found in [ SchO1].

The PROMISE/OLAP prototype evaluation environment (cf. Figure 6.4) consists of the fol-
lowing components:

= User Smulation(Trace Generator). This component simulates the behavior of a user ac-
cording to a user model. This model can be parameterized by a set of ssmulation parame-
ters. By varying them different types of users can be simulated. Section 6.2.3 describes the
generation process and its parameters in more detail. The output of the generator compo-
nent is a user trace file that contains a description of the sessions including the according
consideration times. This output consists of a training set with a predefined number of
sessions that are used to train the model prior to the measurements and an evaluation set
that is used for performance measurements. This trace file is the only communication be-
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tween the simulation and the measurement environment. Especially, the user profile used
for ssmulation purposes is not known to the measurement environment. The MD schema,
which is needed for the query generation (and the OLAP engine, see below) is stored in a
filethat isread at system startup time.

Simulation Environment Evaluation Environment

Evaluation
Trace
S'muslg['on MCeasurement _,[=] Latency
Simulation (Tracle (lBJen:arator) omponent = | Times
Parameters :
H
q User H
Model « »| PROMISE/OLAP
MD Prototype
1 Schema — Cache
Training Cache | »|= | Performance
Trace — o
> »  Prediction »|= | Prediction
= | Performance

| 1

Base Database
System

Raw Warehouse
Data (Star-Schema)

Figure 6.4: The Architecture of the PROMISE/OLAP Evaluation Environment

= Measurement Component. This component is a simulation of the front-end component and
the user. It uses the query trace file generated by the generator component to execute que-
ries according to this specification and measures the result times. It communicates with
the PROMISE/OLAP prototype using a simple interface allowing for the execution of ca
nonical OLAP queries.

= PROMISE/OLAP Prototype. This component is a prototypical implementation of an
OLAP engine which includes the PROMISE/OLAP extensions. It contains an implemen-
tation of a general caching system (see Section 5.1.2) with according measurement facili-
ties. The caching strategies used in the evaluation are detailed in Section 6.3.3. The rewrit-
ten queries that have to be evaluated against raw data are translated to SQL and send to the
base database system.

= Base Database System. The base database system takes the role of the storage manager in
the OLAP reference architecture, processing incoming queries. For the measurements, we
used the relational database system MS SQL Server Version 7.0. However, in order to
study the interrelationships of multidimensiona indexing techniques with our approach,
we aso performed selected measurements using the Transbase Hypercube product which
offers UB-tree indexing (cf. Section 6.3.3.5).

All custom-made components of the framework (most importantly the PROMISE/OLAP pro-
totype) are designed using the object-oriented paradigm and coded in C++. The code was
compiled using MS Visua C++ 6.0. Physically, the components are distributed using a two-
tier architecture, where the base database system runs on a dedicated server. Consequently, the
PROMISE prototype and the measurement component run on a separate machine. The server
machineis atwo processor machine equipped with two Intel Pentium 111 400 MHz processors,
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768 MB of RAM running Microsoft Windows NT Server 4.0. The client machine is equipped
with an Intel Pentium I11 500 MHz processor, 256 MB of RAM, and running Microsoft Win-
dows NT Workstation 4.0.

6.2.2 Test Data Schema and Volumes

The evaluation uses a real-world scenario. The data is an extract from areal-world data ware-
house of a large German market research company. It contains data about the sales of non-
food products in different stores. The cube schema (cf. Figure 6.5) has three dimensions:
Product, Time and Segment. Each of the dimensions is structured in a hierarchical way. The
numbers shown in the diagram denote the cardinality of the domain of the classifications lev-
els.
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Figure 6.5: The Multidimensional Schema of the Data Used for the PROMISE Evaluation

The data is physically stored in a relationa star schema with one fact and three dimension
tables. The size of the fact table is 42 million tuples which corresponds to 2.3 GB of raw data.
The foreign keys between the fact table and the dimension tables are realized using compound
surrogates that take into account the structure of the classification hierarchy ((MRB99]). The
fact table is indexed using a compound clustering index over the surrogates of Product, Seg-
ment and Time.

6.2.3 Simulating Dynamic User Behavior

Instead of using real users in the system evaluation, we use a simulation generating user inter-
action traces to drive the evaluation process. This allows us to influence the user behavior and
vary different parameters (e.g., session length, number of random queries) in a controlled way.
This is very helpful in studying the impact of different kinds of workload characteristics on
the PROMISE techniques. The simulation is based on a set of Markov models that is similar
in structure to the models used in the prediction. Note however, that the actual models used
for the generation are not known to the PROMISE evaluation framework. Instead, the evalua-
tion framework builds its own model from the training and evaluation traces. Simulation state
transitions in a Markov model works similar to the prediction algorithm: Starting with the
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current state, the system randomly picks a successor state taking into account the respective
transition probabilities. Analogously to the prediction process, the simulation process is
driven by the structural prediction model. Figure 6.6 shows the structural prediction model
(including the according change vectors) that is used in the simulations. It models a typical
briefing book scenario. States 1, 2 and 3 correspond to the pages (predefined reports) of the
briefing book that are normally processed sequentially. Therefore, transition probabilities ac-
cording to the sequence of the reports (state 1 — state 2, state 2 — state 3) are higher than
the probability for traversals in the opposite direction. When looking at a report, the analyst
typically changes one of the selection parameters. This is mirrored by transitions from the
according state to itself. The change vector has a strong preference for changing restriction
values in a specific dimension. E.g., when analyzing the report represented by state 1, the 4-
Month Period is typically changed. Another interactive possibility is to perform a drill-down
operation in order to investigate a single value. This behavior is represented by states 4 and 5.
The transition from state 3 to state 1 models the fact that the analyst restart the process to per-
form his analytical task again.
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Figure 6.6: The Sructural Prediction Model Used for the User Smulation
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The value-based models for the smulation are generated automatically from the hierarchical
structure of the nodes in the classification lattice of the dimensions. They contain transitions
from each node to its siblings and to its parent and the first of its children. For example, the
node ‘1999 contains transitions to ‘1998, ‘2000’, Time.all and ‘Jan99’). This models the
navigational changing of restriction elements along the hierarchical structures (cf., section
3.3.2). Additionally, the ssmulation environment automatically adjusts the value-based ssimula-
tion models, if transitions in the structural model require value-changes that are not contained
in the current model. The structure- and value-based simulation models are the most important
parameters to the simulation process. Additionally, the following parameters can be varied:

» Parameters for Consideration Time Generation: For each query, the smulation generates
a random consideration time that will be used by the measurement component in order to
simulate the timing of the query execution. The simulation supports different distributions
(Gaussian, Logarithmic, Exponential) which are used to determine this consideration time.
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The parameters of the according distribution (e.g. expectation and standard-deviation) are
passed as a parameter to the simulation component.

= Number of Sessions and Session Length: The number of sessions generated by the simula-
tor is a fixed number passed as a parameter, The session length is randomly determined
according to a random distribution function. Analogously to the random generation of
consideration times, the distribution parameters for the session length are parameters of
the simulation process.

= Random Query Probability: In order to reflect the fact that the user will not always follow
the pattern defined in the profile, we introduce a random query probability parameter that
can be set for the simulation. It gives the probability that the simulator generates arandom
query instead of using the pattern profile. The random query is generated based on the last
guery in the session randomly choosing a multidimensional query transformation (cf. sec-
tion 3.3.2) and its parameters.

The generated queries together with the timing information are written to a file which can be
read by the measurement component. The following section presents selected results of meas-
urements with different parameter sets for the simulation and the prediction and caching ago-
rithm.

6.3 Measurement Results

The overall performance of the system that is observed by the user is a combination of the
performances of the different components of the PROMISE framework and their interaction.
In order to enable a detailed analysis it is necessary to separately measure the performance of
the different components with respect to different influencing factors. Therefore, we start by
testing the runtime performance of the prediction and induction algorithm (Section 6.3.1) un-
der different parameters. Then, we evaluate the accuracy of the isolated prediction algorithm
(Section 6.3.2). Finally, we measure the combined performance of the prediction and caching
algorithms with and without specul ative execution (Section 6.3.3).

Primarily, it is interesting to evaluate the absolute performance of the respective compo-
nent to prove the practical feasibility of the PROMISE concepts. Additionally, we investigate
the impact of varying parameter settings on the performance in order to prove the applicability
of the approach to different environments and to identify the main influences on the perform-
ance. We can distinguish two types of parameters. the parameters of the user simulation proc-
ess (cf. previous section) mirror different types of workload characteristics. They are external
parameters to the PROMISE approach, as they cannot be influenced in a real world applica-
tion environment. We perform experiments with different external parameter settings in order
to evaluate how well our approach performs under varying sorts of user behavior. Addition-
aly, the PROMISE framework and the caching algorithms also have a set of internal parame-
ters. These can be changed in a running system (for example by the system administrator).
The goa of experiments with different internal parameter settings is to verify our theoretical
considerations and to gain insights into the impact of these parameters on the overall perform-
ance. Using these results, it is possible to give hints and heuristics on finding the optimal pa-
rameters settings. The internal parameters of PROMISE prediction algorithm are:

m Prediction Threshold. The central parameter of the PROMISE prediction algorithm is the
prediction threshold that determines which of the Markov model successor states are con-
sidered for building the result set. For our experiments, we assume that the same threshold
is used for both, structural- and value-based prediction. The theoretical range of the
threshold is ]0;1]. However, in our experiments, we will only use the reduced range
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[0.1;0.7] as smaller thresholds lead to unrealistically large result sets and higher thresholds
produce empty result set for most of the predictions.

m  Order of the Markov Models. We used Markov models of order 1 in all examples and a-
gorithm descriptions throughout the thesis. However, the prototype implementation sup-
ports higher order models making use of the transformation described in Theorem 4.1. It
also allows for using different orders for structural and value-based models. In our ex-
periments, we used models of order 1 and 2. Thus, four different combinations were
measured: 1/1 (structural model of order 1; value-based models of order 1), 2/1, 1/2 and
2/2.

= Number of Queries used for Training. The PROMISE agorithm dynamically builds and
adapts the pattern information by training the Markov models with the observed interac-
tions. The quality of the predictions is dependent on the number of sessions that are used
to train the model. Therefore, we varied the size of the training-set form from O queries
(empty model) to 10.000 queries.

Additionally, to these PROMISE parameters, the caching algorithm has the following parame-
ters:

= Maximum Cache Sze. The cache of our prototype implementation uses array structures to
store the cached data. For our experiments, we varied the size of the cache between 100
KB and 2 MB.

= Fetching Strategy. In order to compare our solution to the state-of-the-art techniques, we
performed experiments with demand fetching strategies and speculative fetching strate-
gies.

Of course the parameter space is far too large to alow for exhaustive experiments using al

parameter combinations. Besides, not al combinations are sensible for all measurements. The

following Table 6.1 gives an overview of the parameters and measurements that we performed

and the results that will be presented in the next sections.

Execution Performance
(Section 6.3.1)

Execution Time Prediction
Execution Time Training

Threshold Value
Markov Model Order

Accuracy of the Predic-
tion
(Section 6.3.2)

Prediction Hit Rate Next
Query

Avg. Size of Prediction Set
Avg. Probability of Predic-
tions

Threshold Value (6.3.2.1)

Markov Model Order(6.3.2.2)
Number of Training Sessions
(6.3.2.3)

Rate of Random Queries (6.3.2.4)

Performance of the
Caching Algorithm
(Section 6.3.3)

Cache Hit Rate
Latency Time Reduction

Threshold Value (6.3.3.1)
Maximum Cache Size (6.3.3.2)
Consideration Time (6.3.3.3)

Rate of Random Queries (6.3.3.4)

Table 6.1: Measures Values and Varied Parameters for the Evaluation Experiments

6.3.1 Runtime Performance of the Prediction and Training-Algorithm

In the PROMISE framework, both prediction and training processes are carried out online
during the ‘normal’ operation of the system. Therefore, it was an important design goa of
these agorithms that they can be executed in a very short time and that the execution time is
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stable against changes of the parameters. Therefore in this section, we measure the absolute
times for the execution of the prediction and the training algorithm in order to ensure that the
OLAP system performance will not be affected by this additional overhead.

Additionally, we investigate the scalability of the algorithms by measuring the performance
under different parameter sets. The theoretical analysisin Section 4.3 concluded that the pre-
diction performance is influenced by the dimensionality of the model and the prediction
threshold. The prediction threshold determines the worst case complexity of the basic Markov
prediction (for one Markov model) and also determines the number of times, the prediction
algorithm will be called for each of the prediction models. Therefore, we measured the predic-
tion performance for different threshold values. The training performance behaves independ-
ent of the threshold variation.

It is important for the scalability of the algorithm, that its performance is constant in the
size of the Markov model and in the order of the Markov model. To show that this claim
holds in a practica implementation, we measured the performance for predictions with
Markov models of different orders. A higher order model automatically has alarger number of
states (the number of states grows exponentially with the order), thus it is not necessary to
vary the size of the models.

The results of these experiments are shown in Figure 6.7 for the prediction algorithm (a)
and the training algorithm (b). We used a training set of 100 session with 100 queries each to
train the model. Then for another 100 sessions with 100 queries, the prediction was per-
formed. The diagrams plot the average execution times for the algorithms under these condi-
tions. The horizontal axis shows the different values for the threshold parameter, while the
different lines in the diagram represent measurements with different Markov model orders (for
example 2/1 stands for order 2 for the structural prediction and order 1 for the value-based
prediction).

(a) Execution Time for Prediction Algorithm (b) Execution Time for Training Algorithm
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Figure 6.7: Execution Times for the Prediction and Training Algorithms

The first observation concerning the absolute range of the execution times shows that execu-
tion times in our setup (Intel Pentium® 111, 500 MHz Processor) are between 0.45 ms and 0.3
ms for the prediction and around 0.2 ms for the training. This means that the prediction during
the query processing will not slow down the overall system’ s performance.

The measurements also confirm that the prediction performance grows with decreasing
threshold. The reason is that a smaller threshold increases the average result set size for the
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structural prediction (cf. Figure 6.8 (b)). As for each structural prediction, a value-based pre-
diction has to be performed, the average result set size for the overall prediction grows line-
arly with the size of the set.

Not surprisingly, the measurements (cf. Figure 6.7 (b)) show that training performance is
independent of the prediction threshold, as transition information is updated irrespective of
the threshold value. Another theoretical observation that is confirmed by the measurement is
that execution times of both prediction and training algorithm behave constant in the model
size and state space size (higher order models have a much larger state space size). This be-
havior is a consequence of organizing the state space as a hash table and ensures that the pre-
diction algorithm scales well to larger models with alarger number of states.

6.3.2 Accuracy of the Prediction

The accuracy of the predictions provided by the prediction agorithm is a critical factor for the
performance of the overall system. The number of correct predictions limits the number of
cases in which the caching algorithm can make use of the results. Therefore, in this section,
we analyze the accuracy of the prediction/training framework without the caching framework.
To this end, we executed 100 sessions with 100 queries each (10000 queries). After each
guery, we predicted the set of probable next queries using the prediction agorithm. We then
compared the next query contained in the trace file with the set of predicted queries, classify-
ing it as a prediction hit when the actual query isin the set of predictions. We use the predic-
tion hit rate as an indicator for the quality of the prediction accuracy.

However, a good prediction hit-rate may be achieved by producing a large set of queries,
each with asmall predicted probability. A large size of the result set can nullify the benefit of
alarge hit accuracy for the application because this algorithm has to process alarge amount of
predictions. For example, the speculative execution algorithm has to prefetch all the candi-
dates in order to be sure that the hit rate of the prediction algorithm is also achieved by the
caching agorithm. Therefore we additionally measure the average number of predictions con-
tained in the prediction result and their average probability. This gives further indications
about the behavior of the prediction algorithm.

Our experiments investigated how these measures are affected by changes in the prediction
threshold (Section 6.3.2.2), the Markov model order (Section 6.3.2.2), the size of the training
set (Section 6.3.2.3) and the rate of random queries (Section 6.3.2.4).

6.3.2.1  Impact of the Prediction Threshold

The most important parameter for the performance of the algorithms is the prediction thresh-
old. Figure 6.8 shows the results of a measurement with atraining set of 100 sessions training
and a Markov model order of 1 for both structural and value-based prediction. For athreshold
value of 0.1, the prediction hit rate (diagram a) is above 85%. It decreases to about 55% for
medium threshold values (0.3 to 0.5) and further decreases to below 30% for high threshold
values.

When examining the average size of the set of queries that are predicted (diagram b), it can
be observed that the set size decreases rapidly for threshold values under 0.3 from 5 queries to
1 query. It is aso obvious (diagram a) that the average probability of the predicted queries
increases with higher thresholds as expected. That means that low threshold parameters pro-
duce large sets of predictions with a lower average predicted probability, while high thresh-
olds produce very small sets of predictions with high significance.
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Figure 6.8: Behavior of the Prediction Algorithm under Different Threshold Parameters

All measure values show a constant behavior between 0.3 and 0.5. This can be explained
by examining the distribution of the transition probabilities of the different prediction models
after the training phase. Figure 6.9 plots histograms for the structural prediction model (SPM)
and the value-based prediction models (VPMs) for the different dimensions. It is obvious that
al the distributions have peaks around 0.2 and 0.7 but only a small number of transition prob-
abilitiesliein therange [0.3;0.5].
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Figure 6.9: Distribution of the Transition Probabilities for the Different Prediction Models

The ideal choice of the prediction threshold is of course dependent on the application of the
prediction results (for example speculative execution). It is a tradeoff between a high predic-
tion hit rate (for low threshold values) and a small set of highly probable predictions (high
threshold). The ideal point depends mainly on the ability of the application to handle large
result sets because the number of results increases overproportionally compared to the hit rate
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with shrinking thresholds. In section 6.3.3, we will analyze the impact of different thresholds
for speculative cache environments.

However, a valuable mean to determine the correct setting is the anaysis of the transition
probability distributions. That way, the administrator can choose an appropriate threshold. An
interesting topic for future research would be to develop techniques that dynamically adjust
the threshold parameter to model by automatically analyzing the histograms.

6.3.22  Impact of Markov Model Order

The order of the Markov models deployed in the PROMISE prediction, represent the number
of previous queries that are taken into account when predicting the next possible query (look-
back window size). It can be independently chosen for the structural and the value-based
model. However, a higher order increases the number of transitions that have to be managed
by the system. In order to examine the impact of using different orders for Markov models
within the PROMISE approach, we performed measurements with orders 1 and 2 for both
structural and value-based models (yielding in 4 combinations). The experiments used a train-
ing set size of 100 sessions.

Figure 6.10 contains the measurement results for the three key performance metrics: pre-
diction hit rate (a), predicted probability (b) and prediction set size (c). Thefirst observation is
that the increase in Markov model order does not have a significant impact on the properties
of the prediction agorithm. However, as we used an order-1 model for user simulation pur-
poses, this was not to be expected. Higher order models perform dlightly better for high pre-
diction thresholds.
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Figure 6.10: The Impact of Choosing Different Markov Model Orders
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Figure 6.11 shows the frequency distributions for the transition probabilities of the order 2
models. By comparing these diagrams to Figure 6.9, it can be observed, that the peaks of the
distribution are at the same probability values, which explains the similar behavior of the or-
der 1 and order 2 models.

The conclusion for practical applications of the PROMISE framework is, that the ideal or-
der can be determined by (manually or automatically) comparing the distributions for different
orders and choosing the highest order that still leads to significant changes in the distribution.
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Figure 6.11: Histograms of the Transition Probabilities for Order 2 Models

6.3.2.3  Impact of Training

In order to evaluate the performance gained by training the model with sessions observed in
the past, we measured the prediction hit rate after a varying number of training sessions. Dur-
ing normal operations, the model is constantly trained with every arriving query. However, to
analyze the impact of different training set sizes on the prediction accuracy, we disabled this
feature. This means that the model is only trained using the training set and remains un-
changed throughout the whol e eval uation phase.

Figure 6.12 summarizes the results of these experiments for 100 experimental sessions.
Diagram (a)-(c) plots the average prediction hit rate measured after a varying number of train-
ing sessions for different threshold values. The different lines in diagrams represent different
Markov model orders. As expected, the hit rate without training is O as no predictions can be
performed. However, the hit rate quickly grows to the maximum rate. A performance within
90% of the maximum performance is already achieved after 25 sessions of training (2500 que-
ries). Notably, systems with a higher threshold value reach this stable state earlier than sys-
tems with a low threshold. This is a consequence of the frequency counting algorithm: The
high prediction hit rate of low threshold systems stems from the fact that they also consider
transitions with low probabilities. However, these transitions are rarely traversed which re-
quires alarger set of training queriesin order to contain enough traversals of these transitions.
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Figure 6.12: Prediction Accuracy for Different Training Sizes, Threshold Values and Model Orders

Additionally, effects of training are more stable for threshold 0.4 than for 0.1 and 0.6 which is
mirrored by a smoother curve in Figure 6.12 (b) compared to (a) and (c). Again, we can ex-
plain this effect by considering the frequency distribution of the prediction models in Figure
6.9 and Figure 6.11. All the models exhibit transitions with a probability of around 0.1 and the
SPM and the VPM for dimension Segment shows peaks around 0.6. Consequently, in early
phases, single queries can change the relative frequency on away such that atransitionisor is
not considered by the according threshold. Transitions that have alow traversal frequency are
especially effected by this, as they show a high variance in early phases of the process because
each increase in the frequency counter has large effects on the transition probability. However,
these transitions are contained in the results set of systems with alow threshold value, which
leads to a more dynamic performance behavior in early phases for these thresholds.

Comparing the learning speed of systems with different Markov model order, it is con-
firmed that Models with higher order need more training compared to order-1 models. Thisis
a conseguence of the higher number of state transitions that require more training before the
relative frequencies counts adjust to the actual transition probabilities.

Figure 6.12 (d) summarizes the combined influence of training sessions and threshold pa-
rameter for models of order 1. The conclusion of these experiments is that the prediction
models adjust quickly to the user behavior, already offering reasonable performance after a10
to 15 sessions of training.
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6.3.24  Impact of Random User Behavior

All query simulations that were used so far, were generated solely on the basis of the simula-
tion profile described in Section 6.2.3. However, in real world environments, not 100% of the
user queries follow the structure of the analytical workflow. Instead a certain percentage of the
gueries exhibits random characteristics. In order to evaluate the performance of our algorithms
in the presence of such mixed workloads, we performed experiments with different random
query rates (RQR). Section 6.2.3 describes the procedure of generating the mixed workloads.

For the experiments, we varied the rate of random queries between 0% (no random queries)
to 60%. Additionally, we varied the threshold between 0.1 and 0.7. Figure 6.13 shows the
results of measuring the prediction accuracy and the size of the predicted set for different
combinations of these parameters. Figure 6.13 (a) shows the variation of the prediction hit
rate under different RQR settings. As expected, it decreases with increasing RQR. However,
for low random RQRs this decrease is linear. Surprisingly, the hit rate starts to dightly in-
crease respectively the rate of decrease gets smaller. This point is reached earlier for low
threshold values. We will explain the effect in the next paragraph when analyzing the size of
the predicted sets. The important result of this experiment is that using prediction techniques
still yields acceptable hit rates (over 60%) for random query rates of over 50%.
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Figure 6.13: Prediction Performance for Different Rates of Random User Behavior

Figure 6.13 (b) shows the effect of random queries on the characteristic behavior of the pre-
diction hit rate in depending on the threshold. For increasing random query rates, the curve
gets ‘smoother’, as the probability distributions of the models also contain values for the ran-
dom queries leading to a more uniform distribution. Figure 6.13 (c) summarizes the combined
effects of different thresholds and different random query rates.
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Figure 6.13 (d) shows another interesting effect of random queries. This figure plots the
average size of the prediction set against a logarithmic scale. For low rates of random queries,
the set size stays stable or dightly decreases, but from a certain point on, the size dramatically
increases. The increase is especialy large for low thresholds (therefore we used the logarith-
mic scale). Additionally, it can be observed that the random query rate from which on the set
sizeincreasesis lower for lower threshold values. The decrease of the set size that is expected,
as training the model with the random queries introduces new states and transitions into the
model, which decreases the transition probabilities the rest of the transitions. This means that
especialy for high thresholds, the set of transitions added to the result set decreases. However
if the rate of random queries increases, the newly introduced transitions reach probabilities
that are above the threshold. This means that the states corresponding to random queries itself
are added to the result sets, which in turn increases the set size. Lower threshold values are
more prone to this effect. This effect isin turn responsible for the improvement of the predic-
tion hit rate mentioned above, as at this point, random queries are being correctly predicted.
For example, when observing the prediction hit rate for threshold 0.1 in diagram (a), it slight
increases for a random query rate of 25%. This is exactly the point from which on the predic-
tion set size increases (cf. diagram (d)).

6.3.3 Performance of the Predictive Caching Framework

This section analyzes the performance of the integrated framework consisting of the PROM-
ISE prediction framework and the speculative execution techniques making use of the predic-
tions as described in Section 5.3. As an indicator for the performance of the caching system,
we measure the cache hit rate and the maximum and average reduction in latency times ob-
served by the user. For the cache hit rate, we distinguish between exact hits (i.e., the addressed
guery is aready contained in the cache) and subsuming hits (i.e., a query is in the cache from
which the addressed query can be derived).

The cache implementation for these experiments uses atotal containment rewriting strategy
using our subsumption definition (cf. Definition 5.2). 1.e., the rewriting process checks if the
user query is subsumed by a cached object. If this is the case, the query is directly answered
from the cache, otherwise the original query is passed to the query executor. The according
cache admission algorithm tests if a newly arriving query result fits into the cache at al (com-
paring its size to the maximum cache size) and if aquery is already contained in the cache that
subsumes the newly arriving query. In the latter case, the query result is not admitted to the
cache. The eviction algorithm uses a last recently used (LRU) strategy to evict as many ob-
jects as need to make room for the inserted object. The prefetching algorithm uses the pre-
dicted set of queries as prefetching candidates and deploys the benefit estimation introduced
in Definition 5.6 in order to determine the sequence of prefetching requests. The admission
algorithm is called prior to executing the prefetch request (cf. Section 5.3.1). The cache is
flushed between sessions. This simulates the fact that the base data is being updated between
sessions or that the time period between sessionsis large.

The performance of the integrated framework is dependent on the internal parameters of
the prediction algorithm as discussed in the previous sections (threshold, Markov model order,
Number of training sessions). Additionally, the maximum size of the cache and the considera-
tion times of the user have an impact on the performance. In order to study the influence of
these factors in an isolated fashion, we performed three series of experiments. Section 6.3.3.1
describes measurements with unlimited cache size and unlimited consideration time and
therefore alows for statements about the maximum performance under idealized conditions.
Section 6.3.3.2 describes experiments with limited cache size thus investigating the impact of
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different cache sizes on the performance. Section 6.3.3.3 additionally introduces constraints
on the consideration time. Section 6.3.3.4 investigates the effect of random user behavior. In
Section 6.3.3.5, we briefly investigate the effects of combining the speculative execution
strategies with conventional tuning mechanisms by measuring against a database using a mul-
tidimensional clustering index.

6.3.3.1 Unlimited Cache Size/ Unlimited Consideration Time

This section presents experiments where the cache size and the consideration time were not
limited. That means, the speculative execution component prefetches all results that are pro-
duced by the prediction agorithm and all results are added to the cache (unless, a subsuming
result is already in the cache, which is tested by the admission agorithm). No queries are
evicted from the cache during a session. This setting can be used to assess the performance of
the agorithm under optimal conditions and to determine the maximum performance increases
that are possible.

Figure 6.14 shows the cache hit rate of the caching agorithm with speculative execution
strategy. The models were trained with 100 sessions and the model order is 1 for structure-
and value-based prediction model. The results show average figures for 100 sessions (i.e.
10.000 queries).
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Figure 6.14: Absolute and Relative (Compared to Demand Fetching) Increases Caching Hit Rates

Diagram (@) confirms that the cache hit rate behaves similar to the prediction hit rate (cf.
Figure 6.8). Comparing the exact cache hit rate and the subsuming cache hit rate shows that
the caching performance is mainly influenced by exact hits due to prediction. The additional
improvement of combining the speculative techniques with subsumption testing is about 10%
for all threshold values. Diagram (b) compares the performance of the speculative execution
strategy with atraditional demand fetching strategy that is employed by current OLAP caching
systems. Although this strategy also considers query subsumption, it performs badly in our
environments (cache hit rate is only 33%%). This is a consequence of the navigational work-
load that contains only very little repetitive patterns on the query leve (i.e. the same query is
scarcely executed twice during a session). The diagram plots the quotient of the PROMISE
cache hit rate and the demand cache hit rate. Using PROMISE techniques, the cache hit rate

%9 Thisfigure is not shown in the diagram.
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can be increased by afactor of 4.5. Even for medium threshold values, the PROMISE caching
algorithms still outperforms the traditional demand fetching algorithm by afactor of 2.

The decrease of average latency times perceived by the user is even larger, as the meas-
urements results that are depicted in Figure 6.15 show. The diagrams compare the average
latency time using the demand fetching algorithm and the PROMISE algorithm. Diagram (a)
shows the absolute values, while (b) plots their quotient showing the speed-up that can be
achieved by the PROMISE algorithm. The maximum speed-up factor is 6.3, but medium
thresholds still offer performance increases of factor 2.5. Notably, the maximum speed-up for
single queries is orders of magnitude higher, as answering a query from the cache instead of
answering it from the database typically yields performance increases of factorsin the order of
100.

(a) Average Latency Times (b) Relative Speedup
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Figure 6.15: Latency Time Reductions Perceived by the User

In order to analyze, how redlistic these achievements are in practice, we also measured the
needed cache size and the time needed for prefetching all queries. Figure 6.16 (a) shows the
cache size needed by the unlimited speculative algorithm compared to the demand fetching
algorithm under different threshold values. For a threshold value of 0.1, the necessary cache
space is increased by a factor of 4.57. However, with growing threshold, the cache size
quickly approaches the size of the demand fetching cache. For a threshold value of 0.3, the
increase in cache size is only 1%. This means that with 1% of additional cache space, a dou-
bling of the cache hit rate and a decrease of the latency time by factor 2.5 is possible using
specul ative execution.

Figure 6.16 (b) shows the average time that was used to prefetch the predicted query results
for one query. This gives an indication how much consideration time is needed by the system
to achieve the maximum speed-up. For a threshold parameter of 0.1, the average prefetching
timeis 19.08 seconds. A comparison of this figure to the average query execution time for the
whole workload (8 seconds) shows that the prefetching time falls bel ow the execution time for
threshold values over 0.2. Additionally, it is interesting to note that the average prefetching
timeis of the same order as the query execution time.
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Figure 6.16: Comparison of Cache Size and Consideration Time Requirements

Figure 6.16 (c) shows the maximum time required for speculative execution. Analogously to
the average time, this time decreases with increasing thresholds. Additionally, it is important
to note that the maximum time is approximately 100 times higher than the average time. This
indicates that only a small number of queries produce prediction sets that need very high pre-
fetching times. Therefore, we can assume that the cache performance will decrease gently
when introducing consideration time limits. Our measurements in Section 6.3.3.3 confirm this
assumption.

While this section investigated the maximum speed-up that can be achieved by the system,
the next sections will systematically investigate the behavior of the framework in the presence
of different constraints. The next section starts by examining the impact of different cache
Sizes.

6.3.3.2 Limited Cache Size/Unlimited Consideration Time

This section investigates the performance of the integrated prediction/caching framework with
constraints in the maximum available cache size. The god is to investigates the loss in cache
performance compared to the ideal case presented in the last section, if the available cache
size is limited. Additionally, we examine the behavior of the PROMISE agorithm compared
to the demand fetching algorithm under these conditions. To this end, we performed experi-
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ments with different maximum cache sizes ranging from 100 Kb to 2 MB. Cache eviction is
performed used a traditional last recently used (LRU) strategy for both the speculative and the
demand fetching strategy.

(a) Cache Hit Rate (b) Average Latency Time Reduction
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Figure 6.17: Impact of Different Maximum Cache Sizes

The results of this measurement are plotted in Figure 6.17. Diagram (a) shows the cache hit
rate for different threshold and cache sizes. As expected, the cache hit rate decreases with de-
creasing cache sizes. However, the hit rate is already within 95% of the optimal rate for cache
sizes of over 250 KB and within 99% of the optimal rate for cache sizes over 1 MB. Both
speculative execution and demand cache performance degrades for very small cache sizes
under 0.5 MB. However, the speculative execution agorithms still clearly outperform the de-
mand fetching algorithm.

Figure 6.17 (b) plots the relative speed-up of the latency time compared to the demand
fetching algorithm. This shows that the effects of decreasing cache size are more severe for
the speculative agorithm, the speed-up facto is still up to 3 for cache sizes of 100 KB, quickly
increasing to speed-ups of over 6 for cache sizes of over 0.5 MB. Additionally, it can be ob-
served that small increases in the cache hit rate have considerable effects on the latency time
reduction. This is because increased cache size alows for prefetching larger query results.
These queries are typically more expensive to compute. Therefore, caching these queries
overproportionally decreases the latency time in the case of a cache hit.

The average size of a query result for our simulated workload is 51 KB. Thus, with a
maximum cache size of about 10 times the average result size, it is possible to achieve cache
hit rates of nearly 90% and latency reductions of over factor 5.

6.3.3.3 Limited Cache Size/L imited Consideration Time

The previous section already researched the effects of reduced cache sizes showing that near
optimal performance can aready be achieved with caches of redlistic size (in the order of 1
MB). However, these experiments still assumed that the time between two queries is long
enough to prefetch all predicted queries. The purpose of this section is to drop this assumption
and to investigate the behavior of the algorithm in the presence of limited consideration times.
To this end, we performed experiments with consideration times of 10, 20, 60 and 120 sec-
onds. The prefetching order of the candidates is determined by the prefetching benefit meas-
ure defined in Definition 5.6. After the predefined consideration time, the execution of the
speculative query is aborted. However, in case that the currently executed speculative query is
equal to the actual next query, the execution is continued.
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Figure 6.18: Varying Performance of the Caching Algorithm for Different Consideration Times

Figure 6.18 summarizes the results of our measurements. Diagram (a) and (b) show measure-
ments of the cache hit rate and the relative speed-up for a cache size of 1 MB and diagram (c)
and (d) show the same measurements for a cache size of 100 KB. As expected, the effective-
ness of the PROMISE approach is better for longer consideration times, as more speculative
results can be materialized. For a consideration time of 120 seconds, the cache hit rate is
within 97% of the optimal cache hit rate for the respective cache size (cf. Figure 6.17) for all
threshold values. However, for a consideration time of 20 seconds, the cache hit rate is till
over 90% of the maximum value for al threshold values. For consideration times of 10 sec-
onds, the values are within 80% of the optimum and still considerably better than the demand
fetching algorithm. Qualitatively, these observations also apply to the reduction factor for la-
tency times. We perceived an latency reduction factor of over 4.5 (1 MB cache, 120 seconds
consideration time and Threshold 0.1). But also for small consideration times (20 seconds),
latency can still be reduced by afactor of 2.

Of course, the absolute value for the consideration times are dependent on the actual envi-
ronment. However, the quotient of consideration time and average query execution time is a
measurement for the average number of queries that can be prefetched during a consideration
phase. The average query execution time for our workload and environment is 8 seconds. This
means that with a consideration time in the same order, the latency time can be reduced by a
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factor of 1.5 with a cache hit rate of 80%. With a consideration time that is 7 times as large as
the average query execution time, speed-ups of afactor of 3 are possible (using a cache size of
1 MB).

6.3.34  Impact of Random User Behavior

The goal of this section is to experimentally investigate the behavior of the caching algorithms
for different rates of random user behavior. We have already analyzed the impact of the exis-
tence of a random component in the user’s behavior on the prediction hit rate (cf. Section
6.3.2.4). It can be expected that the cache hit rate behaves analogously to the prediction hit
rate. However, the prediction hit rate only considers hits, where the next query is equal to the
predicted query. In contrast to this, a cache hit is achieved if the predicted query is actualy
executed by the user while the results of the speculative prefetching are still in the cache (the
exact amount of time is dependent on the cache size and the eviction strategy). Thus, we ex-
pect that the cache hit rate will not decrease as fast as the prediction hit rate in the presence of
random user behavior.

Figure 6.19 (a) shows the results of the experiment conforming this expectation. It plots the
cache hit rate for a cache size of 1 MB. For arandom query rate of 0%, the prediction hit rate
and the cache hit rate are equivalent (cf. Figure 6.13). However, e.g. for arandom query rate
of 20%, the cache hit rate is 74% (threshold 0.1) while the prediction hit rate is 67%. The in-
crease in prediction hit rate due to the increased prediction set size starting from 30% (thresh-
old 0.1) can aso be observed in both diagram (a) and (b). Figure 6.19 (b) shows the same
measurements for a cache size of 0.1 MB. This shows that extremely small caches are more
prune to random user behavior, as the random queries and their predictions evict prefetched
result sets before they can are actually referenced by the user. In other words, the effective
lookback window size for which the cache can keep the results is decreased.

The speculative strategy still perform significantly better than the demand fetching strategy
(especialy for lower threshold values). The cache hit rate achieved by the different strategies
converge for high random query rates.

(a) Cache Hit Ratio (Cache Size 1 MB) (b) Cache Hit Ratio (Cache Size 0.1 MB)
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Figure 6.19: Cache Hit Rates in the Presence of Random User Behavior
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6.3.3.5  Combining Speculative Execution and Multidimensional Indexing

Different approaches have been proposed to speed up query processing in OLAP systems.
Multidimensional indexing has been prove to effectively reduce response times in OLAP en-
vironments ((MRB99]). In order to evaluate the effects of combining the PROMISE approach
with these techniques, we modified our evaluation environment using the UB-tree, a multidi-
mensiona clustering index, to organize the base data. To this end, we replaced the SQL
Server database management system by the Transbase Hypercube system that implements the
UB tree in its kernel. This results in a decrease of the average query execution time for our
workload from 8 seconds to 1.4 seconds.

(a) Cache Hit Ratio (Cache size 1 MB) (b) Relative Speedup (Cache Size 1IMB)
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Figure 6.20: Impact of Better Query Performance through a Multidimensional Clustering Index

This reduced query execution time allows for prefetching more queries during the same con-
sideration time. This can be observed in Figure 6.20, which shows the same measurements
that were presented in Section 6.3.3.3 (limited cache size/ limited consideration time). By
comparing this figure to Figure 6.18, it is obvious that the increase in latency time reduction is
much faster in this environment. This means the PROMISE algorithm already delivers much
better performance for the same consideration times. In this environment, speed-ups of over
factor 7 compared to the demand fetching algorithm. Notably this speed-up is achieved addi-
tionally to the speed-up of approximately factor 5 that stems from using the multidimensional
clustering indexing technique. Thus, speculative execution techniques and other performance
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tuning tools that decrease the execution time of queries are not in conflict but can be applied
in a combined way and additionally offer symbiotic effects.

6.4 Summary and Conclusions

This section described our empirical studies concerning OLAP system user behavior and the
performance of the PROMISE framework and its application to OLAP caches. We started by
analyzing the workload characteristics of a real-world data warehouse system (Section 6.1).
The most important result confirmed the basic assumptions of our approach:

= User behavior in OLAP systems shows navigational characteristics. A considerably large
part of the sessions contain over 50 queries.

= The consideration time between two queriesis long enough for speculative materialization
techniques to be beneficia. Over 80% of the examined queries satisfied the pure prefetch-
ing assumption.

Additionally, we evaluated the performance of the PROMISE framework under varying

conditions. To this end, we used an experimental framework using data from a real-world

warehouse. The behavior of the user is generated by a simulation component that was

designed according to the findings of our user behavior analysis (Section 6.2.3) and allows for

generating workload with different characteristics. The most important observations were:

= The absolute runtime performance of the agorithms for prediction and training are very
low (under 1 ms) thus allowing for online training and prediction.

= The runtimes of the prediction algorithm are independent of the size of the Markov model
and its order. The influencing factor for the runtime of the prediction agorithm is the
threshold parameter that determines the size of the result set. This confirms the good scal-
ability of the approach.

=  We observed a prediction accuracy of over 90% for low threshold values. For mid-range
threshold values, the accuracy is till in the range of 60%. This high accuracy allows pre-
diction applications (like speculative materialization techniques) to improve the perform-
ance of OLAP systems.

= The cache hit rate of an OLAP cache can be increased by a factor of up to 3.75 by using
speculative execution techniques based on the PROMISE predictions. The latency time
perceived by the user can be reduced by a factor of up to 6.5.

= The performance is already nearly optimal for low cache sizes. In our experiments, we
achieved results with 99% of the optimum for a maximum cache size of 1 MB (which cor-
responds the storage requirements of 20 average size queriesin our environment).

= A critical factor for the performance of the speculative execution strategies is the length of
the user’s consideration time. Our measurements achieved average speed-up factors of
over 2 (1 MB cache size, threshold 0.1) even for small consideration times of 20 seconds
(which is about 2.5 times the average query execution time in our environment) . Nearly
optimal average speed-ups are already achieved for consideration times starting with 60
seconds, which seemsrealistic in an analytical environment.

= The PROMISE technigques can also be applied to workloads that contain a certain amount
of random query behavior. For example, for workloads containing 25% random queries, a
cache hit rate of 73% percent could be achieved, which corresponds to an increase of fac-
tor 2.4 compared to state-of-the art demand fetching techniques.
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= A combination of tuning methods decreasing the average query execution time (e.g. mul-
tidimensional indexing) and the PROMISE framework leads to a higher effectiveness of

the approach for smaller consideration times.

Thus, our measurements with the prototype implementation strongly indicate the practical
usability and effectiveness of our algorithms in achieving significant performance gains for
different typical classes of OLAP workloads.
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When | amworking on a problem

| never think about beauty.

| only think about how to solve the problem.

But when | have finished,

if the solution is not beautiful, | know it iswrong.
-- Buckminster Fuller

Do not go where the path may lead,
go instead where there is no path and leave a trail.
-- Ralph Waldo Emerson

Chapter 7 Discussion and Conclusions

This chapter concludes the thesis by critically assessing and discussing the PROMISE ap-
proach. To this end in Section 7.1, we first compile the contributions of the approach and
compare them to the objectives defined in Section 1.2. A discussion of similarities, differ-
ences, and interrelationships of our approach compared to work done in related fields (Section
7.2) constitutes a conclusion to the observations regarding state-of-the-art practices presented
in the different chapters of this thesis. Section 7.3 will discuss extensions of the PROMISE
approach and thus point to interesting areas of future research that can benefit from the fun-
damental work done in this thesis. Section 7.4 contains some speculations about the impact of
our research work on OLAP product devel opment.

7.1 Contributions

This section summarizes the most significant contributions of this thesis and compares them
to the objectives defended in Section 1.2.

= General Prediction Framework

We modeled and formally described the structure of aframework that uses patterns in user
behavior to dynamically predict future user behavior (cf. Chapter 2). The framework con-
sists of different communicating processes. This includes a formal definition of the data
structures (namely the general user interaction and user interaction pattern model) used for
communication and the functional description of the processes and the issues involved in
the design of these processes. This framework description is not only the basis for system-
atically applying the framework to the OLAP application area, but can be used to compare
our approach with other approaches thus satisfying our general objective of having a gen-
eral approach and achieving comparability to related work.

= Comprehensive Model for Patterns OLAP User Behavior
We provided a comprehensive formal description of the multidimensiona model which
constitutes a best-of-breed combination of previously proposed data model descriptions.
This description of the static part of an OLAP system is augmented by a description of dy-
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namic OLAP user behavior. Compared to other existing approaches, our user behavior
model incorporates the special role of the graphical OLAP user interface. Thisis mirrored
in a declarative canonical query form that describes an isolated interaction with the sys-
tem. The navigational aspect of iteratively formulating queries is mirrored by the defini-
tion of a set of query transformations that iteratively transform queries thus resulting in
navigational sequences. These query transformations are explicitly distinct from the opera-
tions used to algebraically formulate a query. Thisis a distinctive feature of our approach
remedying shortcomings of existing approachesin this area.

However, the description of user behavior is not presented for its own sake, but builds the
toolkit for describing navigationa patterns in OLAP user behavior using sequential prob-
abilistic rules defined on OLAP sessions. We solved the problem of a prohibitively high
number of rules due to the large number of possible canonical OLAP queries by applying
generalization techniques. To this end, we introduced two orthogonal generalizations for
canonical OLAP queries (structure and value-based) that mirror the peculiarities of typical
OLAP analysis processes. Each set of generalized patterns can be efficiently represented
as a Markov model. Considering both, the peculiarities of the OLAP analysis process in-
cluding the graphical iterative query formulation and the prerequisites for an efficient in-
duction and prediction process, this pattern model is one of the central contributions of
thisthesis.

Efficient Prediction Algorithm for OLAP Queries

Based on our pattern model, we presented an algorithm that can predict the next interac-
tions from the current session context. We also proposed a data structure representing
Markov modelsin away such that the execution of the prediction agorithm is efficient. A
theoretical performance analysis shows that the execution time of the algorithm islinear in
the size of the predicted result set which can be influenced by a threshold parameter
passed to the algorithm. Practical measurements have not only confirmed these theoretical
results but have also shown that the absolute execution time of the algorithm is short
enough (around 1 ms) to execute it without even marginaly affecting the performance of
the overall system. The practical evaluation has aso confirmed that the prediction accu-
racy of the algorithm is high enough (up to 80% in our experiments) such that significant
performance improvements are possible using the prediction results.

Efficient Algorithm for the Acquisition of Knowledge about User Behavior

The presented PROMISE framework incorporates an induction process that enables the
system to dynamically acquire (learn) patterns from the actual user behavior being per-
celved by the system. We presented a frequency counting technique for updating Markov
models from a sequence of user interactions. A theoretical performance analysis and prac-
tical measurements has shown, that the training of the model can be done online during
the classical query processing using the last interaction performed by the user. The pre-
sented induction algorithm additionally considers k (k>1) age classes to reflect changes of
user behavior in the model.

Methods to |mprove Dynamic OLAP Materialization Srategies Techniques by Prediction

One of the central objectives of this work was the demonstration that prediction results
can be used to improve the performance of an OLAP system. We chose to concentrate on
the impact of predictions on the performance of dynamic materialization strategies (OLAP
system caching). To this end, we proposed two extensions to existing OLAP query-level
caching systems:
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e improvement of the benefit estimations needed for admission and eviction decisions
by considering the benefit for the predicted workload.

e improvement of the cache hit rate by using speculative materialization’s based on the
set of predicted queries.

The specification and usage of an abstract caching framework allows for combining both
extensions with all existing OLAP caching schemes and analytical models for cost estima-
tion. A prototype implementation has shown, that both techniques can significantly im-
prove the cache hit rate of OLAP systems. Our measurements have shown cache hit rates
of over 90%, which is 375% of the cache hit rate of a traditional LRU demand fetching
cache. The average latency time of the user could be reduced up to a factor 6.5. However,
the systematical description of integrating prefetching techniques into semantic query-
level caching systems is not restricted to OLAP caches. Therefore, formally described
problems and the proposed solutions apply to query-level cachesin general. Therefore, the
discussion of predictive materialization strategies is one of the central contributions of the
thesis.

7.2 Interrelationship with Related Work

To the best of our knowledge, the approach of modeling query sequences and predicting query
behavior is unique in the area of OLAP and Data Warehousing. Therefore, we cannot directly
compare our work to other approaches following the same methodology. Instead, this section
will discuss the similarities and differences with selected approaches that also aim at reducing
the latency time in interactive information systems and especially OLAP systems. This section
Is a conclusion of the more detailed survey of state-of-the-art techniques presented at the be-
ginning of Chapters 3to 5.

7.2.1 Predictive Prefetching for the WWW and Other Domains

In Section 4.1, we compared different approaches predicting navigational user behavior in
different application domains (for example WWW based systems) with the goal of decreasing
the overall system’s latency time by prefetching, presending and speculative execution. The
methodologies applied by these approaches were a model for the development of the PROM-
ISE and PROMISE/OLAP framework. Therefore, our approach is similar in using frequency
techniques for pattern induction. However, we have extended this approach by aging tech-
nigues in order to take into account changing user behavior. Another similarity is the usage of
Markov models as the base formalism for our pattern model. The main differences between
the PROMISE approach and the discussed predictive prefetching techniques are due to the
following special requirements of OLAP user behavior:

= Ascaculated in Section 3.2.3, the number of different canonical OLAP queries against a
simple example cube is in the magnitude of 10" which is significantly higher than the
number of prediction entities in other areas (for example the number of pages for a web
server or the number of pagesin a database). This means that the Markov models —in con-
trast to other application areas — cannot be described on the finest granularity of data ac-
cess (i.e., a query, see Section 4.2.2.2). Additionally, the typical anaytical workflow in
OLAP system produces patterns on a generalized level rather than on the query level. This
is an additional argument not to build pattern models on the most detailed level. Conse-
guently, we proposed using different generalizations for OLAP queries (i.e., a structural
and a value-based) and use a set of Markov models each representing generalized patterns

193



CHAPTER 7 DISCUSSION AND CONCLUSIONS

according to the different generalization procedures. The result of the overal prediction is
assembled from the results of the generalized predictions.

= Adjusting OLAP caches to incorporate predictions is significantly more complicated than
in other application domains (for example a file buffer). This is a consequence of the de-
rivability relation between the cached objects (query results can be computed from other
results). This requires that the cache manager employs a complex rewriting process. The
conseguence for the predictive materialization strategy is that the interrelationships of pre-
fetching candidates with already cached objects have to be considered. Our approach ad-
dresses this by giving benefit estimation functions incorporating the effects of rewriting
queries using derivability (cf. 5.3.2.2). Additionally, the derivability property allows for
substantially more flexible prefetching strategies because the algorithm is not restricted to
only prefetching predicted results. It can instead choose from the large set of queries from
which the predicted query can be (partially) derived. We reflect this in our framework by
including an explicit candidate generation step and giving heuristic solution strategies (cf.
Section 5.3.2.3).

7.2.2 OLAP Caching Approaches

The solutions described in Chapter 5 are extensions of current OLAP caching algorithms. The
following two sections summarize the similarities and differences of our approach compared
to the two most prominent OLAP caching approaches: the WATCHMAN Project (Section
7.2.2.2) and the Cube Star Project (Section 7.2.2.1).

7.22.1  TheCubeStar Project

In our opinion, the caching agorithms developed in the Cube Star Project (e.g., [Leh98b],
[ABD+99], [LAHOQ]) at the University of Erlangen-Nuremburg are currently the most ad-
vanced techniques regarding OLAP caching. They deploy a sophisticated rewriting strategy
that answers the query from a set of cached objects and queries to the raw data. The caching
granularity are multidimensional objects (so called MOs) that are produced by queries to the
database system. Consequently, a query can be described by an MO respectively a tree with
MOs at its leafs for more complex queries.

The definition of our data model and terminology has benefited from numerous discussions
with members of the Cube Star group. Thus not surprisingly, our basic query formalism (a
canonical query) is of comparable expressiveness as the MOs. However, the Cube Star pro-
jects put great emphasis on the support of so called features (an extension of the multidimen-
sional model) which we do not consider in our model (cf. Section 3.1.1.4 for a more detailed
discussion).

Another similarity shared by the PROMISE and the CubeStar approach is the idea of using
the iterative nature of query formulation (i.e., the transformation operations) for improving the
cache eviction decisions (cf. Section 5.2.2). CubeStar also measures the similarity of queries
by the number of transformations (respectively operations in the CubeStar terminology) that
are needed to transform one to the other. However, our definition of transformations differsin
that it takes into account operations that are supported by current graphical front-ends. The
measurements proving the feasibility of the Cube Star approach also rely on the smulation of
interactive user behavior ((ABD+99]). However, the CubeStar simulation is based on asingle
Markov model where each transition corresponds to a multidimensional query transformation
(e.g., dice, drill-down). The corresponding parameters are randomly generated. This means
that the CubeStar model mirrors patterns like e.g., that after a drill-down, a slice operation is
carried out with probability of 80%. If we apply our reference framework to this approach,
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this can be regarded as a generalization for queries building equivalency classes by omitting
the parameters to the operations. However, the resulting model in not suited for prediction (it
is not intended for this purpose) and does not take any domain specific user behavior into ac-
count nor doesit consider the induction of patterns.

Naturally, the main difference between the PROMISE and the CubeStar approach is that
the CubeStar cache deploys a strict demand fetching strategy not taking into account any
Speculative materialization techniques. Additionally, as no prediction algorithm is integrated
into the caching engine, the benefit estimation has to rely on the reference density, the re-
computation cost of an object and the distance to the last query of the workload. Therefore,
the CubeStar approach could benefit from an integration of the PROMISE concepts.

7222 TheWATCHMAN Project

The WATCHMAN approach (cf. [SSV96],[SSV99], Section 5.1) caches query results and
uses a splitting algorithm combined with atotal containment strategy for query rewriting. The
most interesting features of the approach regarding PROMISE are the consequent usage of
cost/benefit metrics for cache admission and eviction decisions that also take into account
storage costs and recomputation costs. This approach has influenced our design of the PROM-
ISE cost/benefit metrics which can be seen in a similarity of the benefit definitions. However,
our benefit definition has been significantly extended to take the predictions for the current
session context into account.

In contrast to the driving ideas of PROMISE, the WATCHMAN approach does not con-
sider typical properties of OLAP query formulation (graphical tools) and analysis process
(navigational patterns). The benefit measures are solely based on arelative frequency count of
past access weighted by the time passed since the last access. This leads to difficulties in esti-
mating the benefit of newly arriving objects as stated in ([SSV96]). Additionally, the em-
ployed strategy is exclusively demand fetching.

7.2.3 Relationsto Physical Tuning Approaches

Being targeted at decreasing the latency time perceived by the user, the PROMISE approach
indirectly competes with physical tuning techniques that aim at decreasing query execution
times which aso leads to shorter latency times. Therefore, this section discusses bilateral in-
fluences when combining these techniques with the PROMISE approach.

7231  Static Materialization Techniques

Incorporating static materialization techniques with the PROMISE/OLAP caching approach
does not involve any changes to the basic approach. This is because the rewriting process of a
system with statically materialized views already considers these views when rewriting an
incoming query. Additionally, the execution cost model must consider the shorter evaluation
time of a base data query against a materialized view compared to execution against base data.
Our cost model takes this effect into account as the amount of data cells to be read from the
preaggregated view is smaller, thus the estimated execution time will also be smaller. Such a
combination naturally has an effect on effectiveness of the PROMISE approach: Average exe-
cution costs of queries that cannot be satisfied from the cache are decreased. On the one hand,
this means that the potential benefit in latency time reduction by using cached results is de-
creased. However, this effect applies to dynamic materialization techniques in general. On the
other hand, the speculative execution benefits from a reduced average execution times of
speculative queries. Thisin turn will increase the cache hit rate as alarger number of specula
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tive execution request can be completed during the consideration time thus increasing the
probability for a cache hit.

The other way around, algorithms for determining the set of statically materialized views
can benefit from the pattern information gathered by the PROMISE framework, as the
Markov models can be used to calculate a workload characteristic that is needed as an input to
the view selection algorithms.

7.23.2  Special Indexing techniques

Multidimensional data clustering in combination with multidimensional access techniques
(for example [MRB99]), bitmap indexes (for example [WB98]) and foreign column indexes
(for example [INf96]) speed up the query processing by reducing the costs of the join or in-
creasing the efficiency of the tuple selection. Again, this speeds up the cost of executing que-
ries on raw data, thus decreasing the potential for reductions in latency time through prefetch-
ing. However not only the user’s actual queries profit from these techniques, but aso the
speculatively executed queries. This means that in an environment, where consideration times
are quite small compared to the executions times of the queries, it is possible to increase the
cache hit rates and to decrease the latency times by combining indexing and speculative exe-
cution. We have practicaly investigates this effect in Section 6.3.3.5. For example, for con-
sideration times of 20 seconds, the speed up achieved by the PROMISE approach is doubled
additionally to the speed-up that is achieved by applying the multidimensional indexing tech-
nique.

Thus, we conclude that the PROMISE approach is not in conflict with these tuning ap-
proaches. In contrary, symbiotically effects can be achieved. Therefore, predictive prefetching
techniques should become an common instrument in the administrator’s tuning-toolbox for
advanced OLAP system.

7.3 Extending the PROMISE/OL AP approach

Being the first step into a new research area, the range of topics covered in this thesis cannot
be exhaustive and leaves plenty of room for further research and improvements. This section
compiles some directions for extensions of our approach that we believe to be interesting and
challenging but which could not be addressed in the scope of this work. Wherever possible,
we will outline ideas on how the presented issues could be approached.

7.3.1 Impact on the OLAP Application Design Process

In the motivation in Section 1.1, we showed that the characteristics of user behavior are not
only interesting for OLAP system design as demonstrated in Chapter 5 and Chapter 6 but also
deserve more attention when designing OLAP applications. In fact, the starting point for the
PROMISE research work came from experiences in applying and developing a methodology
for OLAP application design.

Currently, OLAP application and data warehouse design is mainly concerned with design-
ing a static multidimensional schema representing the application domain (data warehouse
design additionally involves designing mapping and transformations from the operational base
data sources to this schema). However, in early phases of the development process, when this
schema is still unclear, it is beneficial to model the workflow of the analyst (together with a
domain expert). This approach has severa advantages:
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= Asend users tend to understand the dynamic workflow better than the static data model, a
model adequately representing the universe of discourse can be found faster respectively
the model’ s quality can be improved.

= A first version of the static data model (the logical OLAP database schema) can be derived
from a description of the workflow, because these workflows contain the granul arities that
the user is referring to and the necessary measures.

= Design decisions during the physical design can benefit from information about the dy-
namic user behavior. E.g., denormalization or vertical fragmentation decisions require in-
formation about which datais often accessed together.

This means that an integration of the PROMISE pattern model into an OLAP system design
methodology seems promising. We already presented graphical representations mechanisms
for the PROMISE patterns which can be used as part of a graphical modeling notation. Espe-
cially the structure based prediction model can be used to interactively specify the analytical
workflow of the user for a scenario (see [Sap99]).

The following section sketches how the PROMISE approach can be integrated into a de-
sign methodology for Data Warehouse and OLAP Design. The core of the Babel Fish approach
([BSHOQ], [BSH99], [Bla00], [SBH+99]), to which the author significantly contributed, is a
comprehensive object-oriented model of a data warehouse containing all the details that are
necessary to specify a data ware-house (e.g., the data cube names, a description of their di-
mensions, the classification hierarchies, a description of the data sources, the tool-specific
database schema). We refer to the object oriented schema of the warehouse model as ware-
house metamodel (for example containing a class dimension). Such a metamodel is far too
complex to use it for modeling purposes or graphical representations. Therefore, we follow
the view based approach which has aready been successfully deployed for Object Oriented
Software Engineering tools. |.e., we defined certain subsets (views) of the warehouse model as
part of the BabelFish method design. The designer indirectly manipulates the warehouse
model through graphical visualizations of these views. Each view represents a certain aspect
of the warehouse design, e.g.

= static data model view describing the conceptual schema of the warehouse (i.e., a multi-
dimensional model of the data that originate from the business processes). It is visualized
using the ME/R notation (cf. [SBH+99]).

= functional view specifying the functional interrelationship between data (e.g., transforma-
tions from source to target or how to compute complex derived measures).

= data source view describing the static structure of the data sources and their inter-
relationship to the static warehouse modeli.e, a specification of the data transformation
and loading process.

A graphical view definition consists of two components: a query defined with respect to the
metamodel selecting a part of the warehouse model (for example selecting all the conceptual
measures, dimensions, cubes, and their relationships) and the specification of how to actually
display the selected parts (for example stating that a dimension level should be represented as
a node in the view graph and depicted as a rectangle which is labeled with the name of the
level, cf. [HSBOQ]).

The model can be easily extended by adding classes and relationships to the metamodel
and defining according views. In order to allow for modeling dynamic user behavior, a new
view (caled dynamic view) would have to be introduced. The graphical representation is
equivalent to the graphical representation of the structural prediction model.
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The metamodel concept allows for expressing complex integrity constraints and relation-
ships between objects taking part in different views. Furthermore, a single object of the ware-
house model can participate in different views (possibly as node, edge or label). Conse-
guently, interrelationships between the different aspects of warehouse design can be formu-
lated in an elegant way. E.g., objects of the class classification level are part of the static data
model view and the new dynamic data model view. Whenever a modeler creates a new di-
mension level (for example by adding a node to the ME/R representation of the static data
model view), this dimension level is automatically available in the dynamic system view for
the description of user query behavior. This can also be used to enforce inter- and intra-view
consistency. E.g., if a new dimension level is being added in the dynamic system view as a
part of areport, it is automatically also available in the static system view. An integrity con-
straint defined for the static view states that every dimension level must be connected to a
fact. Thus, when checking the consistency of the static view, the system can automatically
remind the modeler to update the static view.

Of course afull integration into the methodol ogy would also have an impact on the process
model of the development process introducing phases where user behavior is modeled.

7.3.2 Extensionsto the Predictive Caching Techniques

An issue that has not been addressed in this thesis is the analysis of the prefetching perform-
ance of the approach in multi-user environments. For our measurements, we have assumed
that the user can use all the resources of the system at atime. This assumption is not unrealis-
tic for data warehouse architectures, where e.g., a small number of analysts access a topic-
oriented data mart. However, when looking at information systems that are used by a large
number of users (for example accessing the system via Internet), it is interesting to research
extensions to the current framework.

One of the effects of concurrent data accesses is that the idle times of the system that are
used by speculative execution techniques are decreased. This will consequently decrease the
average number of prefetching candidates that can be processed during the user’s considera-
tion time which will lead to a decreasing latency reduction for the user. On the other hand,
sharing the cache between different users can potentially increase the benefit of cached ob-
jects, as these objects can be used in answering several queries from different users.

Therefore, it is scientifically interesting to systematically study of the effects of concurrent
data access on the speculative execution strategies, both theoretically and empiricaly. A pos-
sible consequence might be that the benefit estimation function would have to be extended in
order to take concurrent sessions on a shared cache into account.

7.3.3 Improving the Prediction and Induction Process

Currently, the prediction and induction process relies on a set of assumptions concerning the
pattern model i.e., especialy on the assumption that patterns are represented as Discrete Time
Markov Models, that all patterns are sequential patterns (relating a session context to the next
query) and on the properties of the structural and the value-based generalization function as
described in Chapter 4. For the PROMISE approach it was necessary to fix these design deci-
sions before designing the prediction process. However, interesting research directions arise
from dropping some of these assumptions and discussing the impact to the overall framework.
The following section exemplarily discuss some of these topics.
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7.3.3.1 Using Variationsof Markov Models

Severa variations and extensions of Markov models have been proposed. We chose to repre-
sent our patterns using Discrete Time Markov Models (DTMMs). However, for future work it
IS interesting to incorporate more sophisticated variations of Markov models. To give an im-
pression, which extensions are likely to be scientifically challenging, we will shortly discuss
the impact of Continuous Time Markov Models ([Nel95],[Tij94]) and Hidden Markov Models
(for example [Rab89]) on the PROMISE approach.

So far, we have assumed a discrete time model, that means that the system changes its state
at predefined times. Aslong as we use a logical timescale where the logical units of time are
defined by the user interactions, this constitutes no restriction. Nevertheless, for the prefetch-
ing process, it might be interesting to make predictions about the length of the consideration
time. This can be achieved by a Continuous Time Markov Model (CTMM). This model as-
sumes that the time value that the system stays in one state follows the same statistical distri-
bution (usually an exponential distribution) for all states. Nevertheless, the parameters for the
distribution can be varied for each state transition. In the domain of navigational information
systems, this models the fact that the duration of the cognitive process of the user is typically
dependent on the results of the last interaction. For the Markov model this means that for each
state of the model, the individual parameters of the distribution have to be stored. The concept
of CTMMs has already been successfully applied in the field of large Multimedia Digital Li-
braries ([KW98]). This extended model does not only have an impact on the prediction algo-
rithm, but also on the induction and prefetching algorithm. The implications for the specula-
tive execution are interesting because the component picking prefetching candidates would
have additional statistical information about the probability that a prefetching candidate can
actually be fully prefetched. This factor could be incorporated into the benefit estimation.

Hidden Markov Models are typically applied in speech recognition ([Rab89]) and computa-
tional biology ([KBM+94]). They extend the classical Markov model by assuming that not all
states (and thus state transitions) of the system can be observed from outside the system. This
nicely models the situation in interactive analysis environments, where the state of the user’s
analysis process can change without the user executing a query that is perceivable by the sys-
tem. Mathematically, thisis achieved by defining a set of states and a set of observation sym-
bols. When the system is in a specific state, there is a certain possibility that an observation
symbol (in our case corresponding to a query) is generated. This probability is given by a
probability distribution that is defined for each state. Although these models model the nature
of the analytical process more adequately, they have some challenging problems in their ap-
plication for prediction arising from the fact that observations and states do not directly corre-
spond: The training of Hidden Markov Models is considerably more complicated compared to
DTMMs as the training sequence is a sequence of observations that can possibly be generated
by alarge set of state transition sequences and it is not directly obvious how the parameters of
the system have to be adjusted. The same problem arises when predicting the next observation
based on the current session context (this is also a sequence of operations). Additionally, the
prediction process will be more complex, as a larger set of possible transitions and observa-
tion generations must be tested. Therefore, an adaptation of the PROMISE/OLAP framework
using Hidden Markov Models seems to be an interesting scientific challenge.

7.3.3.2 Using Variable Generalizations and Pattern Schemata

For the PROMISE approach we have defined two generalizations for canonical queries. The
design of these generalizations was heuristic and guided by a thorough analysis of the charac-
teristics of the OLAP analysis process. However, it is possible that better generalizations exist
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for specific application areas and also for al applications areas. Currently, a change to the
generalizations influences the structure of the OLAP specific prediction algorithm that has to
combine the prediction results of the different models. However, the underlying pattern induc-
tion and partial prediction algorithms are independent of the generalizations, as their states
correspond to events that have already been generalized. An interesting and at the same time
scientifically challenging work would be to extend the prediction algorithm in a way, that it
can be parameterized with different generalizations and their interrelationships. This would
e.g., alow for the domain specific adjustment of generalizations.

In the extreme case this would mean that generalizations are automatically generated and
modified by the system. Clustering agorithms from the area of knowledge discovery in data-
bases could be adapted such that they dynamically build and modify equivalency classes based
on an analysis of the previous sessions observed. The criteria for building clusters would be a
measurement for the adequacy of the resulting pattern model. Designing such a clustering
algorithm is another significant challenge.

Of course, afurther extension would be to drop the assumption that all patterns are sequen-
tial patterns. For example, restriction values for one dimension may influence the probabilities
for the restriction values in another dimension of the same query (described as simple interac-
tion patterns in Section 2.4.2). An incorporation of additional respectively different pattern
schemata into the framework does require changes to the prediction algorithm. These changes
also affect the basic Markov model algorithms if the pattern formulated according to the new
pattern schemata cannot be represented as Markov models. The ultimate goal would be the
design of a prediction algorithm that is fully generic and can be parameterized with the pattern
schemata. This would require that patterns are e.g., described as logical rules and that the pre-
diction algorithm uses an inference mechanism.

7.4 Concluding Remarks

This thesis started with the premise that prediction techniques for navigational data access can
be applied to predict the query behavior for users of OLAP systems. Our theoretical analysis
of the problem has shown, that the OLAP area exhibits certain properties (mainly the number
of different queries and the query subsumption problem) that makes prediction as well as the
application of prediction results significantly more complicated than e.g., in hypertext envi-
ronments. On the other hand, limitations of OLAP domain compared to database systems in
genera (semantically rich multidimensional data model containing classification semantics,
graphical query formulation and thus a limited class of queries with locality properties) can be
exploited such that prediction still makes sense. Our theoretical and practical evaluations have
proven that the PROMISE approach makes sense, in environments where the user behavior
exhibits navigational characteristics. However, it's probably still a long way until parts of
these techniques will really have an impact on OLAP products.

When starting our work (in the beginning of 1997) a strong discussion was going on in the
scientific community (and aso in the commercia community), if the logical multidimensional
data model should be regarded as a full-fledged data model of its own. At this time, industry
was well ahead of scientific research in this point as OLAP products were already sold on a
large scale, while the research community did not perceive the MD model as a significant
topic. Meanwhile, a consensus has been reached in both communities that the MD paradigm
can be applied on the conceptual, logical and physical layer, for application areas that exhibit
multidimensional characteristics. Thus, we believe that the MD model will take its place as an
aternative to relational and object-oriented techniques and that a broader understanding of the
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peculiarities of OLAP modeling will emerge. Currently, it can be observed, that the technical
innovations of OLAP vendors (who formerly were ahead of research) are getting scarce. On
the other hand, a large body of research work has been done based on the MD model that has
not been incorporated into products yet. Thus, the research community has meanwhile re-
gained theinitiative in the OLAP field.

Personal discussions with representatives of OLAP system vendors and consultants in this
field have shown that currently, there is only a small awareness of the potential benefits of
addressing user behavior in OLAP system design. However, we are optimistic that the neces-
sity will be recognized by the industry in the near future. The main two reasons for this are:

= OLAP system vendors are extending their classical market (management information sys-
tems) and are offering their base technology for entering the market for web portals and
eCommerce solutions. This means that the MD data model will in future not be restricted
to business analysis modeling, but will be applied for a broader range of applications. In
these areas, even more applications for knowledge about user behavior will be possible.
E.g., the classification of users according to their typical navigation paths requires mecha-
nisms to induce and represent these patterns.

= A paradigm shift for decision makers from analyzing static reports to interactively analyz-
ing data online can already be perceived and will certainly be increased in future. The
main driving factor for this process are that a larger availability of OLAP tools in company
increases the awareness for the potentials of this technology. The second factor is that the
willingness to use modern information technology in management is highly increasing
with new generations of mangers.

In retrospective, we regard this thesis as a first step towards incorporating user behavior into
the design of interactive information systems. We hope, that this work will form the nucleus
for further research in this innovative area of research that will eventually lead to innovations
in products.
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«"Inventive man" has invented nothing -- nothing "from scratch."

If he has produced a machine that in motion overcomes the law of gravity,
he learned the essential s from the observation of birds.»

-- Dorothy Thompson (1894-1961)

"The Courage To Be Happy," 1957

«When you steal from one author, it’s plagiarism,
if you steal from many, it'sresearch.»
-- Wilson Mizner
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Appendix A: Detailed Proofsfor Theorems

Theorem 3.1 (Validity of Classification L attice)
Every Classification Lattice ‘P|base:(L(l,,cIass’{,)defined on the classification schema
Y =(Ly ,classy ) hasthefollowing properties:

« (Ihedass, Viel' )
o (Iply)edass, A(l,ls)e dassy = (Iy,l;)e dass, Vi1, lse L, @
= (I1,) edass, = (I,.,) e class,  Vl,,l,e Ly with I, 1, €)

= Twolevelsl e L, and |, e L, have aleast upper bound (LUB)

= Twolevelsl, e Ly and |, e L} have agreatest lower bound (GLB)
Proof:

The genera idea for proofs (1-3) is to prove the required property for classification levels
which are in the lattice as well as in the classification schema, thus, le Ly N L’y by showing
that the construction of the lattice did not harm the appropriate property (which is fulfilled in
the classification schema by definition). Additionally, the property has to be proven for the
specia level l.all.

Prerequisite (P): W=(Ly,classy) is a valid classification schema, therefore classy defines a
partial order on Ly.

(1) Thisconditionisfulfilled for le Ly N L'y because of (P) and for |=I.all because of the con-
struction of class: | < l.al V le L'y

(2) This condition isfulfilled for |4, |5, Ise Ly N Ly because of (P). If I3=l.all, the implication
isautomatically fulfilled because every level |, can be classified according to |.all. If either
l; or |, are equal to l.all, it can be automatically concluded that Is=l.all asl.all is the only
level that can be classified according to |.all.

(3) This condition isfulfilled for |4, I, € Ly NL"y because of (P). If 1; = l.all the left side of the
implication always evaluates to false as no |, # |.all according to which the all level can be
classified. This means that the implication is aways true. If |, = |.all, the right side of the
implication always evaluates to true. Therefore, the implication is aso always fulfilled.

(4) By definition l.all is an upper bound for every I;, ljas| < l.all V le L'y. That means that
the set of upper bounds for any [;, I; always contains the level |.all which is also an upper
bound for all members of the set of upper bounds. Consequently, a (unique) least upper
bound can be found in the set.

(5) The base level base of the lattice W|pase IS by definition alower bound for any combination
l1,l,e L'y of levels as | < l.all. With argumentation analogous to case (4), a greatest lower
bound can be found.
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APPENDIX A: DETAILED PROOFS FOR THEOREMS

Theorem 5.1 (Subsumption of Super Query)

Every member of a set of canonical OLAP queries Q is subsumed by the super-query for this
query set super(Q). Thus,

super(Q) subsumesq VgeQ

Pr oof:

Let us assume the Q={qu,...,0x} is aset of canonica OLAP queries and that each of the que-
riesin Q hasthe following form (ie [1;K]):

6 =(Mi.(Qi 2 Gin), (1 20,11 )
The elements of super(Q) are denotes as follows:
super(Q) =(Ms, (Ms,(gsy.-- 9s,n):(fs 1,5 n))

In order prove that the required super(Q) subsumes g holds for al g;, we have to prove, that
the following three conditions are fulfilled (Definition 5.2) for all ie [1;K]

= Ms2oM; 1)
= OsjSy 0i,j Vielin] 2)
= activey (super(Q)) 2{xe dom(gs j) | x € descendants(r; )} Vje[Ln] ©)

The proof for (1) is a simple consequence of the definition of super(Q). According to
Definition 5.7, Ms id defined as follows:

Ms= [JM; = MgoM;
ie[Lk]
Property (2) can also be directly concluded from the definition of gs; in Definition 5.7 and the
definition of the greatest lower bound:

k
gS,j:GLB\}/di[U{gi,j}] = Os,jSy 0i,j Vie[Ln]
i—1

According to Definition 3.17, the left side of the set inequation (3) can be transformed as fol-
lows:

activeg (super(Q) = | m| me dom(gs j) A 9roUPg evel(r;) (M =Ts, ||

which can be transformed to the following statement using the definition of the descendants
function in Definition 3.16:

activeg; (super(Q)) = { m| me dom(gs j) A descendants(rg | )} M
According to Definition 5.7, the following condition holds for rg;:

rsie [lancestors(r; ;) ufr }) (I
jelLn]
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Using the definition of the descendants function, we can conclude the following from this
condition

(I1) = descendants(rg, j) o descendants(r; ) (1
This means that we can further transform (1) in the following way:

(.,(1) = activeg; (super(Q)) = { m| me dom(gs j) A d@cendants(ri,j)} g.ed

*
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Appendix C: Glossary

Term Description Symbol(s) | Definition
Briefing book Severa OLAP report templates definitions can be
combined to a briefing book, which is a set (mostly
ordered in as a linear sequence) of predefined reports. - --
The composition of a briefing book corresponds to the
workflow of the analysis process.
Benefit
Prefetching - Benefit of prefetching a —canonical OLAP query qin efetch.bendit
the presence of a predicted workload P and an or (C -Pjn "' | Definition 5.6
—OLAP cache contents T’ 4
Probabilistic -, Additional benefit of adding an —OLAP cache object
additional (g,p) to the —OLAP cache contents T" for answering a| addbenefitr(q,P) | Definition 5.4
predicted workload P.
Probabilistic - Anticipated benefit of an —OLAP cache object (qg,p)
aready contained in the —OLAP cache contents T for |  benefitr(q,P) | Définition 5.3
answering a predicted workload P.
Canonical OLAP
- Query Canonical form of a query against an OLAP system i
considering the capabilities of the OLAP —»GUI q Definition 3.12
- Query Space The set of al well-formed canonical queries that can e) -
be formulated according to an —MD cube schema Co Definition 3.12
Classification
- Instance Instance of a classification schema containing the
—grouping functions mapping classification nodes to Iy Definition 3.5
its parent node
- Lattice Subgraph of thg .—>classf|qat|‘0n :xhema defined by a v Definition 3.6
base level containing a special ‘all’ level.
- Leve Represents a classflc:?\t!on_ criterion (e.g. vehicle | Definition 3.1
group). Part of a —classification schema
- Level Domain Set of.—>cla$|f|cat|on nodes that belong to the —clas- dom() Definition 3.1
sification level
- Node Member of a —classification level domain X Definition 3.1
- Schema Graph of —classification levels containing informa- I
tion about the classification relationships. ¥ Definition 3.2
- SchemaDomain | Union of the —classification level domains for all A
levels belonging to the schema dom(*) Definition 3.4
- Schema Path Path in the —classification schema (resp. — classifi-
cation lattice) defining a hierarchy of —classification cpath Definition 3.3

levels
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Term Description Symbol(s) | Definition
Concatenation of | ao b :=b(a(x)) _
functions °
Domain

Active —classification nodes of a dimension that reference at I
Dimension- least one occupied cell in an —MD cube instance actdom(d) | Definition 3.9
Dimension Part of the -MD cube schema. Each dimension is
chosen from the set of —classification levels con- d Definition 3.7
tained in the —classification schema
Selection - set of dimensions in a —canonical OLAP query q,
where the level of the restriction element is equal to o(0) Definition 3.14
the result granularity.
Result - dlmensqns that are not —selection dimensions of a _ Definition 3.14
—canonical OLAP query
Event
- atomic- In the context of the PROMISE/OLAP approach, an
atomic interaction event is the execution of a —ca-
nonical OLAP query by the user. This query may be eq Definition 2.2
predefined or derived from the results of the previous
query.
- composite A composite event is a sequence of atomic events. In
the context of the PROMISE/OLAP approach, a com- Ses Definition 2.3
posite interaction event is a session.
- /state mapping | A bijective function mapping each event to the state of -, Definition 4.2
a—Markov model M
Grouping function | Function mapping elements of a —classification level rou -
domain to another domain that classifies this level groiPyiz | Definition 35
GUI Graphical User Interface - -
Markov M odel Data structure used in PROMISE to represent a set of
probabilistic sequential rules. Central part of the DTMM Definition 4.1
—prediction profile
- order Number of previously visited states that is taken into
account by the transition probability function of the m Definition 4.1
Markov model.
MD Cube
- instance The instance of an —MD cube schema C. Function A
. . Ic Definition 3.8
mapping the coordinatesto cell values
-instance space | Set of al cube instances for a given —MD cube = Definition 3.8
schema C
- schema Description of the structure of a multidimensional
cube containing the measure set and the dimension Cy Definition 3.7

description
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Distance

to transform the —canonical OLAP query g,

Term Description Symbol(s) | Definition
MD presentation | Graphical visualization method used to phrase a —ca-
nonical OLAP query g and to present the results of g
- granularity Represents the |n.forma.t|on which granularity is chosen presgran, Definition 3.15
for the —result dimensions of g
- structure Represents the information which of the dimensions
are chosen as —result dimensions or —selection di- |  presstruct; | Definition 3.15
mensions
MDX M ultidimensional Expressions. The query language of 3 B
the —OLEDB for OLAP standard
OLAP --
- application The application build on top of an —OLAP system.
An OLAP application is specified by configuring the Fiqure 1.1
OLAP system (for example defining a multidimen- g '
sional schema)
- session a sequence of —canonical OLAP queries executed by
the same user.sc?lvmg an analytlgal t.ask. U$d as the Ses Definition 2.3
scope of prediction. A —composite interaction event
in the OLAP —user interaction model
- system The software system which is used to build an )
—OLAP application Figure 1.1
OLAP Cache
- contents Set of cache objects contained in an OLAP cache r Definition 5.1
- object Description of an object managed by an OLAP cache.
A combination of a —canonical OLAP query and an Definition 5.1
—MD cube instance describing the results of the v '
query.
OLAP Query Definition 5.2
- Prototype Generdlization of a —canonical OLAP query. In 1% - .
PROMISE we distinguish between structure- and s Bg:g::gg jg
value-based prototypes. Pval,i '
Subquery, Largest common query that can be used in answering —
common all —canonical OLAP queries contained in the set Q common(Q) | Definition 5.8
- Subsumption Relationship between —canonical OLAP queries. If
query gsubsumes g, this means that g, can be an- | subsumes(q,,q,) | Definition 5.2
swered from the results of q;.
Superquery Smallest —canonical OLAP query that can —sub- A
sumes all queries contained in the set Q super(Q) Definition 5.7
- Transformation | Function mapping a —canonical OLAP query to an- Definition
other canonical OLAP query. Abstractly describes the (Q) 3.18-Definition
interaction of the user with the OLAP —GUI. 3.22
- Transformation | Minimum number of transformation operations needed Io1-pl Definition 5.5

OLEDB for OLAP

Interface proposed by Microsoft to define and access
multidimensionally structured data. See [Mic98].
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APPENDIX C: GLOSSARY

Term Description Symbol(s) | Definition
Pattern
- Instance Formal intensional description of a subset of interest-
ing objects. In the case of PROMISE/OLAP thisis a P Definition 2.5
description of properties of -OLAP sessions
probabilistic - A —pattern instance with a probability value -- Definition 2.6
- Representation | Formal Langugge used to describe —pattern schemata L Definition 2.5
and —pattern instances
- Schema Expron of the'—>pattern representation language _ Definition 2.5
containing free variables
Prediction Central data structure used to represent —patterns in
Profile the PROMISE/OLAP framework and to predict —ca-
nonical OLAP queries. For an n-dimensiona —MD ® I
cube schema, it consists of n+1 Markov models. One Cy Definition 4.7
model uses — structural query prototypes, while n
models use —value-based-query prototypes.
PROMISE Predicting User Behavior in Multidimensional Infor-
mation System Environments. The name of the ap- - --
proach presented in thisthesis ©
Real numbers The infinite set of all real numbers R -
Session Context The sequence of m —>a/§nts that_ occurred directly cont nssg Definition 2.4
before an interaction event in a session Ses.
State Sequence The sequence of —Markov model states that is pro-
duced by mapping each —event of a session Sesto a I
state of the Markov model M using the —event/state stateseqy(Ses) | Definition 4.3
mapping.
User Interaction
- Model A metamodel for designing description formalisms for
interactions between users and interactive navigational IM Definition 2.1
information systems. Consists of —event types, attrib- '
utes and integrity constraints.
- Pattern Model A metamodel for the description of pattern representa-
tions. Bases on an —interaction model 1M, the pattern
model contains —patterns, —pattern schemata and PMu Definition 2.7

generalization functions for the —events of the inter-
action model IM.
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