
On the Mechanized Validation of In�nite-State and

Parameterized Reactive and Mobile Systems

Christine R�ockl

Lehrstuhl f�ur Informatik VII

der Technischen Universit�at M�unchen

On the Mechanized Validation of In�nite-State and

Parameterized Reactive and Mobile Systems

Christine R�ockl

Vollst�andiger Abdruck der von der Fakult�at f�ur Informatik der Technischen Universit�at M�unchen
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow Ph.D.

Pr�ufer der Dissertation: 1. Univ.-Prof. Dr. Javier Esparza

2. Univ.-Prof. Dr. Dr. h.c. Wilfried Brauer

3. Prof. Davide Sangiorgi, INRIA Sophia-Antipolis/Frankreich

Die Dissertation wurde am 06.11.2000 bei der Technischen Universit�at M�unchen eingereicht
und durch die Fakult�at f�ur Informatik am 02.02.2001 angenommen.

Abstract

The growing inuence of telecommunication-systems in all areas has brought with it the need
for elaborate and reliable software running on concurrent and, in particular, dynamically chang-
ing systems. With the development of such systems becoming ever more complex, the out-
line and development of mechanized and mechanizable veri�cation-techniques is indispensable.
This overall goal can be divided into three tasks: (1) outline of a framework in which (2)
complex systems can be analysed, and the (3) design and implementation of eÆcient proof-
techniques. It is certainly beyond the scope of a thesis to provide an integrated framework
dealing with these questions within one environment. This work therefore concentrates on
dominant aspects of each of the three tasks in separate discussions. A major result of the
thesis is that the approaches outlined for each of the three questions obviously �t together, so
that they can be used as a basis for the development of an integrated framework. Often an
automatic veri�cation of larger hardware- and software-applications is impossible, because the
systems are too large or even in�nite. This thesis focusses on in�nite-state and parameterized
systems, and builds tool-support on interactive theorem-proving. Further, it concentrates on
the validation of correct implementations by exploiting behavioural reasoning. It demonstrates
how to apply various techniques to tackle proofs about in�nite-state and parameterized systems
with large descriptions, discusses the support that theorem-provers can o�er, and presents a
foundational platform for reasoning about mobile systems in a general-purpose theorem-prover.

Several design-decisions have to be taken. This thesis uses process-algebra as a framework,
in particular CCS for the description and analysis of in�nite-state reactive systems, and the
�-calculus for the discussion of mobile and higher-order systems. For a validation, it applies
observation-equivalence, exploiting a range of proof-techniques that have been developed for
the two calculi. The contributions of the thesis with respect to the three veri�cation-tasks are
as follows.

(1) A formalization of the �-calculus in Isabelle/HOL is presented. It uses a shallow embed-
ding, in which �-conversions and �-reductions on names bound by input and restriction are
dealt with by a �-calculus provided by Isabelle. A shallow embedding has the advantage that
substitutions do not have to be de�ned and applied in a semantic analysis of the processes,
like in a deep embedding; implementing substitutions in theorem-provers usually is a tedious
task and prone to errors. On the other hand, syntax-analysis in shallow embeddings is in-
tricate, because structural induction fails; further, exotic terms arise from an application of
operators that do not belong to the �-calculus, in de�nitions of the continuations of an input
or restriction. This thesis discusses how to mimic structural induction by rule-induction over
a well-formedness predicate on processes which simultaneously rules out exotic terms. It dis-
cusses proof-techniques based on instantiations and re-abstractions of functions over processes,

vi

and uses them to derive vital syntactic properties of the �-calculus. Finally, it proves that the
shallow embedding is fully adequate with respect to a straightforward deep embedding.

(2) The use of the �-calculus to give semantics to higher-order imperative concurrent languages
is studied. The thesis presents a translation of Concurrent Idealized Algol (CIA) into the �-
calculus, which integrates previous encodings of imperative and concurrent features into CCS,
and such of functional elements into the �-calculus. It is proved by exhibiting an operational
correspondence that the encoding is sound with respect to a straightforward small-step opera-
tional semantics of CIA employing a bisimulation-based operational congruence. The argument
makes extensive use of proof-techniques such as bisimulation up to expansion and contextual
reasoning. The encoding is then applied to validate classical benchmark laws and examples
for CIA via a translation into the �-calculus. Further, the thesis presents a correctness-proof
for a more involved example employing procedures of higher order. This example emphasizes
that the translation of programs from a higher-order syntax (CIA) into a �rst-order syntax
(�-calculus) allows for a validation of examples that cannot be treated otherwise. Yet, even in
the �-calculus an application of involved proof-techniques|in particular, bisimulations up to
expansion and context|is indispensable.

(3) A report on the mechanization in Isabelle/HOL of bisimulation-proofs for in�nite-state and
parameterized systems is given. The proofs follow a direct approach by exhibiting relations
and proving that they are bisimulations, or bisimulations up to expansion. This methodology
is obviously well-suited for a mechanization, because it consists of two clearly separated parts:
the conceptually diÆcult part is to set up the relation, whereas the proof that it is indeed a
bisimulation falls into a potentially large number of simple and often uniform steps. The �rst
part has to be performed by the user, while the second part can be carried out in interaction
with the tool. The prover automatically deals with all aspects of bookkeeping, and is usually
able to deal with simple cases fully automatically. Complex cases require an intervention by
the user; yet, as usually most cases are similar, this task can be alleviated by designing suitable
proof-procedures. The thesis discusses the mechanization of bisimulation-proofs on case-studies
from hardware-veri�cation using CCS as a semantic model: an in�nite-state version of the
Alternating-Bit-Protocol is validated, as well as a speci�cation of the Sliding-Window-Protocol;
further, proofs of Write-Invalidate Memory-Cache-Coherence are discussed, one employing a
standard bisimulation, and the other applying a bisimulation up to expansion.

Contents

Contents vii

1 Introduction 1

2 Preliminaries 5
2.1 CCS . 6

2.1.1 Syntax and Semantics . 6
2.1.2 Value-Passing CCS . 8
2.1.3 Observation-Equivalence . 10

2.2 The �-Calculus . 14
2.2.1 Syntax and Semantics . 15
2.2.2 Bisimilarity . 18
2.2.3 Type-Systems . 19

2.3 General-Purpose Theorem-Proving . 20
2.3.1 Isabelle/HOL . 21
2.3.2 Representing Languages with Binders 29

3 Formalizing the �-Calculus in HOAS 35
3.1 Formal Syntax . 36

3.1.1 A First-Order Syntax . 37
3.1.2 A Higher-Order Syntax . 46

3.2 Deriving Syntactic Properties . 50
3.2.1 Monotonicity . 51
3.2.2 Extensionality of Contexts . 52
3.2.3 �-Expansion . 53

3.3 Adequacy . 57
3.3.1 The Encoding-Function . 58
3.3.2 The Decoding-Function . 59
3.3.3 Proving Adequacy . 59

3.4 Discussion . 60

4 Encoding Algol in the �-calculus 63
4.1 Concurrent Idealized Algol . 64

4.1.1 CIA-fawaitg . 66
4.1.2 Full CIA . 67
4.1.3 Observational Congruence . 70

4.2 Encoding Concurrent Idealized Algol . 71

vii

viii CONTENTS

4.2.1 Encoding CIA-fawaitg . 72
4.2.2 Encoding Full CIA . 78

4.3 Laws and Examples . 83
4.3.1 Veri�cation of a Higher-Order Bu�er 85

4.4 Discussion . 88

5 Mechanized Validation of In�nite-State Systems 91
5.1 Observation-Equivalence wrt. L . 93

5.1.1 Faulty Channels . 94
5.1.2 The Alternating Bit Protocol . 95

5.2 Compositionality . 98
5.2.1 A Sliding-Window Protocol . 99

5.3 Up-To Techniques . 102
5.3.1 Write-Invalidate Cache-Coherence . 103

5.4 Discussion . 108

6 Conclusion and Future Work 111

Bibliography 115

Index 121

Acknowledgements

During the last four years, many people have inuenced my life and work. First of all, I
would like to thank my supervisors, Javier Esparza and Davide Sangiorgi, for accompanying
this thesis. Many of the ideas discussed in this work are due to them. Their insistence on
clarity and precision have made a great impression on me, and have certainly inuenced the
development and presentation of this thesis. They have given me enduring support, and have
taken my occasional stubbornness with patience. Further, I would like to express my gratitude
to my head of chair, Wilfried Brauer, for creating an inspiring atmosphere in which I was
able to dare my �rst steps into research and teaching without having to bother about material
questions. I have always marvelled at his devotion and knowledge, and feel grateful for having
him as a teacher and mentor.

Many thanks to the following people for inspiring discussions and suggestions: Paul Attie,
Jo�elle Despeyroux, Daniel Hirschko�, Anna Ingolfsdottir, Kedar Namjoshi, Tobias Nipkow,
and Carlos Puchol. I have especially enjoyed the joint exploration of the mysteries of logic with
Daniel. Thanks to my colleagues, Markus Holzer, Astrid Kiehn, Barbara K�onig, Tony Kucera,
Angelika Mader, J�urgen Menden, Stephan Melzer, Leonor Prensa-Nieto, Stefan R�omer, Peter
Rossmanith, Claus Schr�oter, Stefan Schwoon, and Frank Wallner, for a lot of fun and fruitful
discussions.

I would like to thank my family for their prevailing support and comprehension, even if some
of my decisions must have been hard to swallow for them. It is a good feeling to know that
they stand by my side without compromise. Many thanks also to my friends for giving me
a brilliant time. I am particularly happy to know Christine Duus, Monika Federle, Sandra
Hischier, Sybille Rummler, and Axel Ziganki.

Chapter 1

Introduction

The growing inuence of telecommunication-systems has brought with it the need for elabo-
rate, exible, and reliable software running on parallel, distributed, and dynamically changing
systems. With the design of these systems becoming ever more complex, highly involved
description-techniques have emanated: programming-languages combine imperative, object-
oriented, and functional features with concurrency. Programs written in them are usually
large and produce an in�nite number of states. Tool-supported veri�cation of these sophis-
ticated systems is indispensable, yet automatic techniques are often not applicable due to
state-explosion or undecidability problems. It is therefore necessary to design interactive tech-
niques that are general enough for the analysis of in�nite-state and parameterized reactive
and mobile systems, but are practically applicable o�ering an intuitive style of reasoning and
a maximal degree of automation. The outline and implementation of a complete framework
is certainly beyond the scope of a thesis, but should be considered as a milestone for future
research. The work at hand represents a �rst step towards this direction by addressing three
dominant questions behind this objective. A main result of this thesis is that the techniques
we have chosen and discuss in more or less separate investigations, obviously �t together in a
natural way; we are therefore con�dent that the material discussed and developed in this work
can serve as the basis of an integrated framework.

Issues in validation The three questions are as follows. (1) A language for the description
of systems has to be provided by a veri�cation-platform. We choose the interactive theorem-
prover Isabelle/HOL [Pau94, Pau93] as the foundation of a mechanization, and implement the
�-calculus [MPW92, Mil99] in it. Our choice of Isabelle/HOL is motivated by the fact that it
o�ers a human-style way of reasoning, which is essential in interactive proofs. In particular,
Isabelle/HOL allows for a de�nition and application of concrete syntax which considerably
enhances readability, and o�ers a range of proof-strategies including induction, case-analysis,
as well as tactics dealing with `obvious' cases fully automatically. Further, it contains large
databases with prede�ned data-structures and theorems derived for them. For instance, we
make extensive use of the theories concerning sets and lists. Our choice of the �-calculus is
motivated by its simplicity and expressive power: it has a �rst-order syntax, because in com-
munications references are exchanged instead of entire processes; nevertheless it can describe
higher-order systems, modelling functions by using references. This simplicity certainly comes
for a price: structural information, such as local distribution, is completely lost. On the other
hand, it is exactly this simplicity which makes e�ective proofs possible, and allows us to derive

1

2 CHAPTER 1. INTRODUCTION

a syntactic framework within Isabelle/HOL. (2) In order to derive proofs about systems, they
have to be translated into the description-language provided by the veri�cation-framework.
Writing programs directly in description-languages like the �-calculus is tedious; for larger
applications, where structural information is essential to maintain the code, it is completely
illusive. On the other hand, verifying programs in higher-order languages is hardly possible. In
fact, for higher-order languages with local variables it is even unclear how to de�ne practically
applicable criteria for telling that two program-phrases are equivalent. For this purpose, one
usually considers the phrases within all possible contexts. This certainly yields a means of
telling apart phrases by exhibiting a distinguishing context; to obtain an e�ective validation-
methodology, on the other hand, one has to be able to dispose of the universal quanti�cation
over the contexts. We explore a compromise, proposing to write programs in a high-level lan-
guage and to translate them into a description-language afterwards in order to allow for their
validation. As a description-language, we choose the �-calculus again. We investigate its appli-
cability by giving a �-calculus semantics to Concurrent Idealized Algol (CIA) [Rey81, Bro96].
Our choice of CIA is due to the fact that it combines imperative, functional, and concurrent
features in an elegant way, and has been the object of extensive study. Because CIA has a
higher-order syntax|it contains a call-by-name �-calculus|proofs of program-equivalences are
hard, and are further aggravated by the concept of local and global variables. A translation
into the �-caluclus allows us to derive proofs of program-equivalences that would otherwise
not be possible. Our approach is in line with work on giving game-semantics to sequential
Idealized Algol [AM96a, AM99], translating program-phrases into a syntactically simple op-
erational model in order to exploit the proof-techniques developed for it. (3) In our proofs
that two programs or systems are equivalent, we follow an operational approach, employing
observation-equivalence [Par80, Mil89]. In order to show that an implementation matches its
speci�cation, we exhibit a relation and prove that it is a bisimulation. This approach is popular
in process-algebra, and has been particularly applied and analysed in the context of CCS and
the �-calculus. Bisimulation-proofs are universally applicable to systems with �nite and in�-
nite state-spaces alike, and are well-suited for a mechanization in interactive theorem-provers.
A bisimulation-proof can be divided into two parts: the �rst part is to exhibit a relation con-
taining as a pair the system and its speci�cation, and is conceptually diÆcult; the second part
is to check for each pair (P;Q) in the relation that Q can simulate every step P

��! P 0 of P
by a sequence of steps Q

��! : : :
��! ��! ��! : : :

��! Q0 (where the � -steps denote internal
activities) such that (P 0; Q0) is again in the relation, and vice versa. The second part usually
amounts to a tedious case-study, and often many of the cases are similar. In a mechanized
proof of observation-equivalence, the user sets up a relation and then derives in interaction
with the theorem-prover that it is a bisimulation. The theorem-prover completely keeps track
of the bookkeeping, telling the user the bisimulation-obligations that still have to be proved.
Further, it can usually deal with the simple cases fully automatically, and the user can specify
proof-procedures for the more complex cases in order to exploit similarities in the derivations
of matching sequences of steps. As a consequence, the bisimulation-proof is not only machine-
checked but can be easier to deal with than a related proof on paper. We mechanize a number
of case-studies in Isabelle/HOL using CCS in order to describe both implementations and
speci�cations of in�nite-state and parameterized reactive systems; similar proofs for mobile
systems in the �-calculus can be formalized analogously.

3

In�nity This thesis focusses on the validation of in�nite-state systems. There are several
potential sources of in�nity. (1) Programs employ data of an in�nite type. In some cases, one
can abstract from these data and obtain �nite descriptions that can be treated by fully auto-
matic techniques, but especially higher-order programs often involve complex data-structures
that are essential for their semantics, and therefore have to be taken into account. (2) Often
programs have the ability to fork processes. There is no general means of telling a priori how
many of these tasks will be created during a run, and usually programs are even assumed to
fork arbitrarily many of them. Such programs have to be considered as structurally in�nite.
In this case, it is impossible to obtain a �nite abstraction. (3) Further, a system can consist of
an unspeci�ed but �nite number of components. Such a parameterization is often considered
even harder to treat than data-in�nity or structural in�nity, or simply an in�nite number of
(uniform) components executing in parallel. The reason is that one has to keep track of a �nite
yet unspeci�ed number of components.

We consider in�nite-state systems of all three kinds, investigating into bisimulation-tech-
niques for them. Data-in�nity turns out to be the easiest case. Also, parameterization can be
treated surprisingly well: the parameter becomes part of the relation, and a bismulation-proof
considers an unspeci�ed relationRn from the family

S
nRn ranging over all parameters n. The

hardest case with respect to proofs of observation-equivalence is structural in�nity. Reasoning
about systems with the capability of forking processes usually involves proof-techniques like
bisimulations up to expansion and contextual reasoning. The former to abstract from internal
administrative activities such as the rearrangement of components, or garbage-collection; the
latter can be used to deal with the forked components if they are similar for both processes to
be compared. Structural in�nity is a major issue in higher-order languages like CIA.

Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we present preliminary material, on which this
work is based. In particular, we give an introduction to CCS, the �-calculus, and interactive
theorem-proving in Isabelle/HOL, with emphasis on the formalization of CCS and the �-
calculus. In Chapter 3, we discuss in greater detail the issue of embedding the �-calculus in
Isabelle/HOL. We provide an embedding which frees the user from an explicit treatment of
binders by using higher-order abstract syntax. In Chapter 4, we present a translation of CIA
into the �-calculus, and use it to validate benchmark laws and examples as well as a more
complex examples involving procedures of higher order. In Chapter 5, we present a number of
case-studies on the mechanization of proofs of observation-equivalence in Isabelle/HOL using
CCS. Chapter 6 concludes with an evaluation of the material presented in this thesis and gives
directions for future work.

Chapter 3 A formalization of the �-calculus in Isabelle/HOL is presented. It uses a shallow
embedding, in which �-conversions and �-reductions on names bound by input and restriction
are dealt with by a �-calculus provided by Isabelle. A shallow embedding has the advantage
that substitutions do not have to be de�ned and applied in a semantic analysis of the pro-
cesses, like in a deep embedding; implementing substitutions in theorem-provers usually is a
tedious task and prone to errors. On the other hand, syntax-analysis in shallow embeddings is
intricate, because structural induction fails; further, exotic terms arise from an application of
operators that do not belong to the �-calculus, in de�nitions of the continuations of an input

4 CHAPTER 1. INTRODUCTION

or restriction. This thesis discusses how to mimic structural induction by rule-induction over
a well-formedness predicate on processes which simultaneously rules out exotic terms. It dis-
cusses proof-techniques based on instantiations and re-abstractions of functions over processes,
and uses them to derive vital syntactic properties of the �-calculus. Finally, it proves that the
shallow embedding is fully adequate with respect to a straightforward deep embedding.

Chapter 4 The use of the �-calculus to give semantics to higher-order imperative concurrent
languages is studied. The thesis presents a translation of Concurrent Idealized Algol (CIA)
into the �-calculus, which integrates previous encodings of imperative and concurrent features
into CCS, and such of functional elements into the �-calculus. It is proved by exhibiting
an operational correspondence that the encoding is sound with respect to a straightforward
small-step operational semantics of CIA employing a bisimulation-based operational congru-
ence. The argument makes extensive use of proof-techniques such as bisimulation up to expan-
sion and contextual reasoning. The encoding is then applied to validate classical benchmark
laws and examples for CIA via a translation into the �-calculus. Further, the thesis presents
a correctness-proof for a more involved example employing procedures of higher order. This
example emphasizes that the translation of programs from a higher-order syntax (CIA) into a
�rst-order syntax (�-calculus) allows for a validation of examples that cannot be treated oth-
erwise. Yet, even in the �-calculus an application of involved proof-techniques|in particular,
bisimulations up to expansion and context|is indispensable.

Chapter 5 A report on the mechanization in Isabelle/HOL of bisimulation-proofs for in�nite-
state and parameterized systems is given. The proofs follow a direct approach by exhibiting
relations and proving that they are bisimulations, or bisimulations up to expansion. This
methodology is obviously well-suited for a mechanization, because it consists of two clearly
separated parts: the conceptually diÆcult part is to set up the relation, whereas the proof that
it is indeed a bisimulation falls into a potentially large number of simple and often uniform
steps. The �rst part has to be performed by the user, while the second part can be carried out
in interaction with the tool. The prover automatically deals with all aspects of bookkeeping,
and is usually able to deal with simple cases fully automatically. Complex cases require an
intervention by the user; yet, as usually most cases are similar, this task can be alleviated by
designing suitable proof-procedures. The thesis discusses the mechanization of bisimulation-
proofs on case-studies from hardware-veri�cation using CCS as a semantic model: an in�nite-
state version of the Alternating-Bit-Protocol is validated, as well as a speci�cation of the
Sliding-Window-Protocol; further, proofs of Write-Invalidate Memory-Cache-Coherence are
discussed, one employing a standard bisimulation, and the other applying a bisimulation up
to expansion.

Accompanying Material

Much of the material presented in this thesis is formalized in Isabelle/HOL. The proof-scripts
are available at http://www7.in.tum.de/~roeckl/thesis/. Some results of this thesis are
discussed in [RHB00, RS99, R�oc99, RE99, R�oc00, RE00].

Chapter 2

Preliminaries

Classical process algebras like CCS, ACP, or CSP [Mil89, BW90, Hoa85] model static systems,
where the topology of the systems does not change during execution. The classical notions of
CCS and ACP abstract from data, and have been the basis for a large �eld of foundational
studies. These have led to a broad theory, covering both the operational|transition systems,
behavioural equivalences and preorders|and the algebraical|algebraic rules, syntactic trans-
formations of process-terms|approaches. Extensions of CCS and ACP, as well as the original
notion of CSP, are equipped with the possibility to handle data, and have been successfully
applied in the modelling and veri�cation of reactive systems in concurrent frameworks. In
particular, they are a standard model in hardware veri�cation.

With the introduction of mobile telecommunication, the need arose for a model of dynamic,
or mobile, systems, where the topology, that is the binding structure, changes during execution.
For this purpose, Milner, Parrow, and Walker, proposed the �-calculus [MPW92, Mil99], which
extends the process agebra CCS with a concept of references to processes that can be passed
around so to make previously unknown components accessible. This concept gives the �-
calculus the potential to model software systems as well. It has been proved in early works
already to be a faithful model of higher-order languages like the �-calculus [Chu40, Bar81],
see [Mil92b], or object-oriented languages [Wal95].

CCS and the �-calculus can be fruitfully applied in the validation of hardware and software.
A popular approach is to model both implementation and speci�cation of a system in terms
of processes and to apply observation-equivalence [Par80, Mil89] to show that they behave in
accordance with one another. For larger systems, tool-support is indispensable; in the case of
in�nite-state systems we propose the use of interactive theorem-provers. In this chapter, we
introduce background material for the thesis. Section 2.1 introduces CCS, and describes in
terms of an example how to show in an operational argument that two systems are observation-
equivalent. In Section 2.2, we present the �-calculus and describe how bisimulations for it
can be made coarser by applying type-systems. The use of type-systems in the �-calculus
is common: bisimulations are often too discriminating, because the calculus abstracts from
structural information; type-systems help to restore it. Section 2.3 describes general-purpose
theorem-proving, demonstrating the application of Isabelle/HOL in the context of process-
algebra. In particular, we discuss the use of higher-order abstract syntax (HOAS) in the
formalization of languages with binders.

5

6 CHAPTER 2. PRELIMINARIES

P ::= 0 Inaction
j �:P Pre�x, where � 2 Act
j PnL Restriction, over a set of labels L � L
j P [f] Relabelling, with f : L ! L such that f(�a) = f(a)
j P + P Nondeterministic Choice
j P jP Parallel Composition

j A Agent, speci�ed in an agent de�nition A
def
= P

Table 2.1: Syntax of CCS. The set Pccs of CCS-processes is built on a constant for inaction,
0, by applying pre�xing, restriction, choice, and parallel composition. In�nite behaviour can
be obtained from agent de�nitions in which the denominator A occurs on the right-hand side

of the de�ning equation A
def
= P .

2.1 CCS

The Calculus of Communicating Systems (CCS) was introduced by Milner as a foundational
model of nondeterministic and concurrent systems [Mil89]. In its pure form, CCS completely
abstracts from any form of data, hence the usual synchronous point-to-point communication
between two processes reduces to their synchronization. In value-passing CCS, processes ex-
change data in a communication; nevertheless, the theory can be adapted from that of pure
CCS.

2.1.1 Syntax and Semantics

The Calculus of Communicating Systems centres on the synchronization of processes running
in parallel. Consider two processes �a:P and a:Q; the �rst can perform an output on a channel a,
continuing with the behaviour of P afterwards, whereas the second can perform a corresponding
input on a, continuing like Q. This is formally expressed in terms of labelled transitions

�a:P
�a�! P and a:Q

a�! Q. When run in parallel, the two processes thus have the possibility
to communicate on channel a, producing the invisible action � in the transition �a:P j a:Q ��!
P jQ.

Names, labels, actions Let N be a countably in�nite set of channels, or names, ranged
over by a; b; : : : . An output on a name a is denoted by marking it with a bar, yielding �a.
For an input, the names are generally used in their pure form. Often, �a is referred to as the
complement or co-name of a, and the resulting set of co-names N is ranged over by �a;�b; : : : .
It is assumed that N \N = ;. Further, for the sake of symmetry, complementation is usually
assumed to be idempotent; that is, ��a = a. The set of visible labels uni�es names and co-names,

L def
= N [N , and is ranged over by l; m; : : : . Together with the invisible (or, silent) action � ,

the labels yield the set of actions, Act def
= L [f�g. We use �; �; : : : to range over Act.

Constants and combinators The set Pccs of CCS-processes is built on a constant 0 for
inaction that cannot exhibit any kind of behaviour, by the following operators: a pre�x process
�:P behaves like P after an execution of the action �; a restriction PnL can be used to force

2.1. CCS 7

�:P
��! P

C1 P
��! P 0 �; �� 62 L

PnL ��! P 0nL C2 P
��! P 0

P +Q
��! P 0 C3a

P
��! P 0

P
f [�]�! P 0

C4

P
��! P 0

P jQ ��! P 0 jQ C5a P
l�! P 0 Q

�l�! Q0

P jQ ��! P 0 jQ0 C6 P
��! P 0 A

def
= P

A
��! P 0 C7

Table 2.2: Operational Semantics of CCS. The labelled transition-system for Pccs is the
least set of triples P

��! P 0 described by the rules C1{C7. Rules C3b and C5b are symmetric
versions of C3a and C5a, so we omit them here. In rule C7, we use l 2 L to range over all
kinds of labels, that is, for both names and co-names In Rule C4, we extend f to Act by
postulating f(�) = � .

that certain channels can only be used in internal synchronizations; a relabelling P [f] renames
channels by means of a function f with f(�a) = f(a); the choice process P + Q can choose
between behaving like P or like Q; the composed processes P jQ run in parallel; �nally, agents

A
def
= P allow for the modularization of a process-descriptions and for the introduction of

in�nite behaviour. Table 2.1 shows a formal description of the syntax of CCS.

Operational semantics We follow an operational approach, describing the behaviour of
Pccs in terms of labelled transition-rules, rather than giving rules for process-transformation,
as it is usual in the algebraic, or syntactical, approach. A transition P

��! P 0 is a triple,
where P and P 0 are processes describing the states before and after the transition, and the
action � Table 2.2 de�nes a labelled transition-system for CCS, in terms of an inductive set
of rules; that is, in terms of a least �xpoint. This means that the rules completely describe
the behaviour of Pccs; that is, if a transition P

��! P 0 cannot be derived for a process P , the
process cannot perform it. As a consequence, the introduction-rules C1{C7 in Table 2.2 yield
a corresponding elimination-rule performing case-injection, that is, telling for a transition how
it must have been derived.

Note that interleaving semantics like that of CCS interpret parallelism as a form of non-
determinism: given a transition of a parallel composition P jQ ��! R, it either stems from a
transition of P or Q, or from a communication between them, with R = P 0 jQ0 for suitable
derivatives P 0 and Q0.

Consider again the processes �a:P and a:Q. Their transitions �a:P
�a�! P and a:Q

a�! Q
are derivable directly from the axiom C1. Further, a simple|however tedious|case-injection
yields that no other transition is possible, because none of the transition-rules would apply.
The synchronization �a:P j a:Q ��! P jQ can �nally be derived by an application of rule C5
for communication.

Weak transitions Strong transitions P
��! P 0 give equal relevance to each step of a system;

the operational semantics as given by rules C1{C7 in Table 2.2 is small-step, so to capture
nondeterminism in the behaviour of the processes. Weak transitions P

�
=) P 0 abstract from

internal communications and silent pre�xes, because often one is interested in the observable
behaviour rather than considering every step a system makes. For example, consider a sequence
of transitions P

��! P1
��! P2

a�! P3
��! P4

��! P 0; if we are not interested in the number

8 CHAPTER 2. PRELIMINARIES

of silent steps occurring before and after the a-transition, we can reduce it to P
a

=) P 0.
Formally, let P

�
=) P 0 be de�ned by Kleene's star P (

��!)�P 0. Further, for every � 2 Act,
the transition P

�
=) P 0 abbreviates the chain P

�
=) P1

��! P2
�

=) P 0. As a notational

convention, we further write P
�̂

=) P 0 to denote P
�

=) P for visible � 2 �, and P
�

=) P 0 for
� = � . From this de�nition, we can derive weak transition laws, such as the following:

P
�

=) P
Cw1

P
��! P 0

P
�

=) P 0 Cw2a
P

��! P 0

P
�̂

=) P 0
Cw2b

P
�

=) P1
�

=) P2
�

=) P 0

P
�

=) P 0 Cw3

Proving them is a standard exercise in induction on the length of the weak transitions in the
premises of the laws.

Further, there exist weak versions of all rules in Table 2.2. Versions in which � is replaced
by �̂ exist as well, except for rules C3a and C3b concerning choice. The reason is that they
are not monotonic; for instance, in order to derive P +Q

�
=) P 0 from P

�
=) P 0, at least one

action does have to take place, in order to eliminate Q, and this cannot be guaranteed by a
weak �-transition.

2.1.2 Value-Passing CCS

In value-passing CCS (VP), labels in � are considered to contain values of some type such as
integers or booleans, or parameters for which values can be introduced. An output-label �a(~v)
is interpreted to send a list of values ~v = v1; : : : ; vn along a channel a. An input-label a(~x),
on the other hand, is able to receive a list of values ~v along channel a; the list ~x determines
formal parameters for which ~v can be introduced. We call a the subject, and ~v respectively ~x
the objects of the labels.

Early and late transitions As a concrete example, consider the processes �a(3; tt; 7):P and
a(x; y; z):Q. In a communication, the �rst process transmits the values 3, tt, and 7, to the
second, yielding a transition,

�a(3; tt; 7):P j a(x; y; z):Q ��! P jQf3=x; tt=y; 7=zg:
Adopting an early view on input, according to which input-labels are immediately instantiated
in a transition, we can say that it is based on the two transitions,

�a(3; tt; 7):P
�a(3; tt; 7)�! P and a(x; y; z):Q

a(3; tt; 7)�! Qf3=x; tt=y; 7=zg:
This contrasts late semantics, where instantiations are delayed until an actual communication
happens. There, the communication from above would be derived applying substitution only
together with the rule for communication, from the two transitions,

�a(3; tt; 7):P
�a(3; tt; 7)�! P and a(x; y; z):Q

a(x; y; z)�! Q:

Remark: We consider an early semantics for value-passing CCS more natural than a late
one. The reason is that in VP there is a clear distinction between values and variables used as
formal parameters in the continuation Q of an input pre�x a(~x):Q. To illustrate this with an
example, a transition,

a(~x):Q
a(~x)�! Q; (in contrast to an early transition a(~x):Q

a(~v)�! Qf~v=~xg)

2.1. CCS 9

always yields an open term as a derivative; that is, a term containing variables ~x that are not
bound by an input-pre�x. We shall see later that in the �-calculus, a late semantics is as
natural as an early one, because there is no nominal distinction between names and variables;
see Section 2.2.1 for more details.

Operational semantics A labelled transition-system in early style for VP can be obtained
from that for pure CCS in Table 2.2 by slightly modifying rules C1 and C2 as follows:

�:P
��! P

C1a
�a(~v):P

�a(~v)�! P
C1b

a(~x):P
a(~v)�! Pf~v=~xg

C1c

P
��! P 0

PnN ��! P 0nN C2a
P

�a(~v)�! P 0 a 62 N

PnN �a(~v)�! P 0nN
C2b

P
a(~v)�! P 0 a 62 N

PnN a(~v)�! P 0nN
C2c

Remark: As there is a clear distinction between input and output in VP, we can assume in
Rules C2b and C2c that restriction is performed over sets of channels.

As for Rule C6 concerning communication, we consider a(~v) and �a(~v) to complement one
another. In an early semantics, the rule can thus be used without modi�cation.

Mapping VP to CCS Reducing VP to pure CCS is usually not easy, because the values
often belong to in�nite types, or the length of the object-vectors are not limited. If they are,
however, each instantiation a(~v) of an input-pre�x a(~x) can be considered as a name, and each
corresponding output-pre�x �a(~v) can be regarded as the respective co-name. With V the type
of the values, an input-pre�x a(~x):Q can then be written as a nondeterministic choice over
all possible instantiations; that is,

P
~v2~V Qf~v=~xg. Similarly, the sets of labels belonging to a

restriction have to be modi�ed by adding adequate objects to the channels they contain. In
this case, the theory of pure CCS can be directly transferred to VP. Note that VP over an
in�nite type of values yields a labelled transition-system with in�nite branching, which makes
a �nite axiomatization impossible.

Modelling Systems In practice, one often does not write down systems in terms of process-
terms, but provides transition-rules describing their behaviour together with rulesC2{C7 from
Table 2.2. As an example, consider the systems (P1(0) jC())nfcg and (P2(0) jC())nfcg, con-
sisting of producers P1 and P2, and a consumer C. The producers send consecutive natural
numbers to the consumer C on a channel c, which is made private to the two parallel compo-
nents by a restriction. We assume P1 to work correctly, but P2 and C to be faulty: from time to
time, they spontaneously loose values in a silent transition. The behaviour of the components
can be described operationally as follows:

P1(i)
�c(i)�! P1(i + 1); i � 0 P2(i)

�c(i)�! P2(i + 1); i � 0

P2(i)
��! P2(i + 1); i � 0

C(s)
c(x)�! C(sx)

C(xs)
�a(x)�! C(s)

C(s1xs2)
��! C(s1s2)

Remark: The two producers can easily be modelled in terms of (in�nite families of) recursive

agents P1(i)
def
= �c(i):P1(i + 1) and P2(i)

def
= �c(i):P2(i + 1) + �:P2(i + 1) as well. Giving a

monolithic de�nition of the consumer is a bit clumsier, because its behaviour is determined by
the structure of the list of values it manipulates.

10 CHAPTER 2. PRELIMINARIES

�

�

�

�

�

�

� �̂# +

Table 2.3: Observation-Equivalence: Weak bisimilarity, or observation equivalence, con-
tains pairs of systems that are capable of simulating the behaviour of one another. Its def-
inition consists of a transitional|an action performed by one process has to be simulated
by the other|and a closure|the derivatives have to belong to the relation|part. A formal
description is given in De�nition 2.1.

In�nity The two systems are in�nite-state, that is, they yield transition graphs with an
in�nite number of nodes. In�nity can have various sources. (1) Process P1, for example,
employs values of an in�nite type, and so does P2; we therefore call them data-in�nite. The

consumer need not necessarily do so; it can as well be attached to a producer P3
def
= �c(0):P3,

for instance. (2) Yet, the consumer has the potential to store as many values as it likes; it is
therefore structurally in�nite. Another example|from pure CCS|of structural in�nity is the

agent A
def
= a:0 j �:A, adding a component a:0 with each silent transition. (3) A third source

of in�nity is parameterization, where a system can consist of one, �ve, or even seven-hundred,
copies of a component; the actual number is then usually replaced by an abstract parameter
n. As an example, consider (P1(0) j : : : jP1(0) jC())nfcg, where the number n of producers
clearly determines the behaviour of the system: of each number i 2 IN , at most n copies will
be delivered to the environment; that is, as many as there are copies of P1 in the system.

2.1.3 Observation-Equivalence

Interleaving semantics of concurrent systems are characterized by a branching behaviour of the
systems, which should be taken into account by suitable notions of equivalence. A standard
example for the weaknesses of language equivalence in CCS are the processes a:(b:0 + c:0) and
a:b:0 + a:c:0, both producing the language f�; a; ab; acg. Nevertheless, the �rst process only
decides after the a-transition whether to perform a b or a c, whereas the second one has to decide
immediately. Bisimulation-equivalences have been introduced by Park and Milner in order to
capture exactly the branching aspects in the behaviour of concurrent systems [Par80, Mil89].

Weak bisimilarity, or observation-equivalence, is the bisimulation-equivalence that is most
suitable for the comparison of concrete systems modelled in CCS, because it abstracts over
silent transitions, nevertheless without discarding the branching branching aspects in the be-
haviour of the systems. Like other notions of bisimilarity, it is de�ned as a relation � over
pairs of processes which can simulate single actions of one another (transitional part) yielding
derivatives which are again in the relation (closure part). This is illustrated by the diagram in
Table 2.3. A bisimulation proof thus reduces to making the diagram commute. Recall from
Section 2.1.1 above that �̂ denotes � for visible � 2 L, and � for � = � .

Definition 2.1 (Observation Equivalence) A relationR � Pccs�Pccs is a weak bisim-
ulation, if for all PRQ and all � 2 Act, the following holds:
(i) if P

��! P 0, then there exists some Q0 such that Q
�̂

=) Q0 and P 0RQ0;

2.1. CCS 11

(ii) if Q
��! Q0, then there exists some P 0 such that P

�̂
=) P 0 and P 0RQ0.

Observation equivalence is de�ned as the union of all weak bisimulations; that is, � def
=SfR jR is a weak bisimulationg. Hence, P � Q if there exists a weak bisimulation con-

taining (P;Q).

Compositionality An interesting property of observation-equivalence is that it is a congru-
ence with respect to parallel composition, and restriction; that is, P � Q implies P jR � Q jR
and PnL � QnL, for arbitrary R 2 Pccs and L � L. This means that a veri�cation of sys-
tems based on observation-equivalence is compositional: properties of systems can easily be
derived from suitable properties of their speci�cations. We discuss this topic in more detail in
Chapter 5.

In pure CCS, it is further a congruence with respect to pre�x; that is, P � Q implies
�:P � �:Q, for all � 2 Act. In value-passing CCS, compositionality can be fully assumed
for silent and output-pre�xes; for input-pre�xes over open terms, it further has to be assumed
that two open terms are bisimilar if they are bisimilar with respect to all instantiations.

Remark: With the clear distinction between open and closed terms in VP (see also Sec-
tion 2.1.2), this universal quanti�cation naturally yields compositionality also for input-pre�xes.
By contrast, the fact that this distinction is less clear in the �-calculus, necessitates an addi-
tional reasoning about substitutions.

Comparing systems Bisimulation-equivalences immediately yield a semantically oriented
methodology for proving that two systems are bisimilar: it suÆces to exhibit a suitable relation
containing the two systems as a pair and prove that it is a bisimulation. An alternative
approach is syntactically oriented: applying algebraic rules, one transforms one system into
the other. Often, the algebraic approach is considered to be more elegant, because it reasons
fully on a syntactic level. On the other hand, it severely su�ers from the state-explosion
problem: during a transformation, parallel compositions are unfolded into summations (that
is, choice), which yields a term of exponential size in the number of parallel compositions. The
problem is that it is a single term that explodes. By contrast, in a semantical proof, it is the
number of proof obligations that explodes; as each of them can easily be treated separately,
the (modularized) proof can be kept manageable.

As an example, consider again the systems (P1(0) jC())nfcg and (P2(0) jC())nfcg from the
previous section. We would like to establish that lossiness on part of the producer does not
matter to the environment if the consumer looses values as well. In order to show that the
systems are observation-equivalent, we prove that the relation,

Rpc
def
= f ((P1(i) jC(s))nfcg; (P2(i) jC(s))nfcg) j i 2 IN ^ s 2 INn ^ n � 0 g

is a weak bisimulation. Clearly, Rpc contains the two systems as a pair. Considering a pair
(P1(i) jC(s))nfcgRpc (P2(i) jC(s))nfcg, we have to examine all possible transitions of the two
components, with respect to the transition as well as closure part:

� P1 produces a value, in a transition (P1(i) jC(s))nfcg ��! (P1(i+1) jC(si))nfcg. Clearly,
P2 can do the same, yielding (P2(i) jC(s))nfcg ��! (P2(i + 1) jC(si))nfcg. Obviously,
the resulting derivatives again yield a pair in Rpc.

12 CHAPTER 2. PRELIMINARIES

� P2 produces a value, in a transition (P2(i) jC(s))nfcg ��! (P2(i + 1) jC(si))nfcg. This
case is fully symmetrical.

� P2 looses a value, yielding (P2(i) jC(s))nfcg ��! (P2(i + 1) jC(s))nfcg. In this case,
P1 can make use of the lossiness of C, by sending a value to the consumer so that
it can be disposed of there; hence, (P1(i) jC(s))nfcg ��! (P1(i + 1) jC(si))nfcg ��!
(P1(i + 1) jC(s))nfcg. Obviously, the resulting derivatives again yield a pair in Rpc.
In this case, we have exploited the possibility of choosing the weak transition of the
answering process, by constructing a convenient sequence of transitions.

� C delivers a value, yielding (P1(i) jC(ks))nfcg �a(k)�! (P1(i) jC(s))nfcg on the one hand,

and (P2(i) jC(ks))nfcg �a(k)�! (P2(i) jC(s))nfcg on the other. Clearly, the resulting deriva-
tives again yield a pair in Rpc.

� C looses a value, yielding (P1(i) jC(s1ks2))nfcg ��! (P1(i) jC(s1ss))nfcg on the one
hand, and (P2(i) jC(s1ks2))nfcg ��! (P2(i) jC(s1ss))nfcg on the other. Clearly, the
resulting derivatives again yield a pair in Rpc.

Re�nements The attentive reader will have noticed that Rpc contains more pairs than are
actually reachable for the systems, because it does not further specify the list s stored in C. In
order merely to prove (P1(0) jC())nfcg � (P2(0) jC())nfcg, this imprecision does not matter,
yet even simpli�es the bisimulation-proof. A more precise bisimulation can be obtained by
re�ning the relation Rpc, that is, by adding more conditions the pairs in the relation have to
ful�ll. The resulting relation R0

pc then is a proper subset of the original relation:

R0
pc

def
= f ((P1(i) jC(s))nfcg; (P2(i) jC(s))nfcg) j i 2 IN ^ s 2 INn ^ n � 0 ^

s(n) < i ^
8j: 0 � j < n) s(j) < s(j + 1) g

Like Rpc above, R0
pc is a weak bisimulation. The proof is similar, yet in each obligation, the

additional monotonicity-properties for s have to be considered. As a result, monotonicity of the
objects of the visible transitions of the systems can be inferred directly from the bisimulation-
relation.

Showing inequivalence Bisimulation-equivalences are determined by an alternation of a
universal|for all PRQ and all � 2 Act|and an existential|there exists some Q0/P 0|parts.
As a result, a bisimulation proof can be considered as a game between an attacker who wants
to prove that two given systems are not bisimilar suitably choosing from the universal part,
and a defender trying to maintain that the systems are bisimilar selecting adequate answers
from the existential part. If two systems are not bisimilar, there exists a �nite winning strategy
for the attacker; see [Ste97] for a discussion.

The method of exhibiting a bisimulation-relation is rather suited for validating that two
systems are equivalent. The construction of a bisimulation is usually an incremental process:
one starts with a kernel of the relation and adds pairs of processes until all states of the systems
and all their transitions are considered by the relation. In the case where two systems are not
bisimilar, one occasionally ends up with a pair that does not produce matching transitions.
From such a pair one usually can reconstruct the cause of the failure, and correct the systems

2.1. CCS 13

accordingly or prove their inequivalence by designing, from the setup of the relation, a proof-
strategy for the above attacker.

Expansion Like above, we use �̂ to denote � for visible actions � 2 �, and � for � = � . Recall
that P

�
=) P 0 means that P performs arbitrarily many|including zero|silent transitions in

order to become P 0. In analogy, we de�ne P
��! P 0 as a transition of zero or one step; that

is, either P 0 = P or P
��! P 0.

We are now ready to re�ne observation-equivalence by considering eÆciency in the be-
haviour of the processes. Intuitively, a process P expands a process Q, written P � Q, if
P � Q but P needs less silent steps to execute than Q [AKH92].

Definition 2.2 (Expansion) A relation R � Pccs�Pccs is an expansion-relation, if for all
PRQ and all � 2 Act, the following holds:

(i) if P
��! P 0, then there exists some Q0 such that Q

�̂�! Q0 and P 0RQ0;

(ii) if Q
��! Q0, then there exists some P 0 such that P

�
=) P 0 and P 0RQ0.

Expansion is de�ned as the union of all expansion relations; that is, � def
=

SfR jR is an
expansion relationg. Hence, P � Q if there exists an expansion-relation containing (P;Q).

Consider again (P1(0) jC())nfcg and (P2(0) jC())nfcg from Section 2.1.2. In the proof that the
two systems are bisimilar, we have made use of the fact that the �rst system can compensate
for P2 loosing values by sending values to C and dispose of them there. All other transitions are
mapped one-by-one. This suggests that Rpc is not only a weak bisimulation, but an expansion
establishing (P1(0) jC())nfcg � (P2(0) jC())nfcg.

Proof-techniques Recall from above that observation equivalence is compositional. This can
be exploited in bisimulation-proofs of large compound systems. Consider an abstract system
(P jQ)nL with a speci�cation S. Assume further that the process P is very large, but that
it is observation-equivalent to a much smaller process P 0. The congruence-results for parallel
composition and restriction allow us to conclude that (P jQ)nL � S provided (P 0 jQ)nL � S.
Proving the second condition is clearly much easier, because with P 0 being much smaller than
P , less proof-obligations have to be considered.

Besides compositionality, there exists a technique to reduce the size of the relation|and
hence the number of proof-obligations to examine|by considering a subset R of a weak bisim-
ulation only. In that case, closure|that is, the condition P 0RQ0 from De�nition 2.1|is proved
up to a suitable notion of equivalence or preorder. An adequate preorder supporting observa-
tion equivalence is expansion, as de�ned above.

Definition 2.3 (Bisimulation up to Expansion) A relation R � Pccs � Pccs is a weak
bisimulation up to expansion, if for all PRQ and all � 2 Act, the following holds:

(i) if P
��! P 0, then there exist some P 00; Q0; Q00 such that Q

�̂
=) Q0 and P 0 � P 00RQ00 � Q0;

(ii) if Q
��! Q0, then there exist some P 0 such that P

�̂
=) P 0 and P 0 � P 00RQ00 � Q0.

14 CHAPTER 2. PRELIMINARIES

It is a standard exercise to show that two processes P and Q are observation equivalent if there
exists a bisimulation up to expansion containing (P;Q).

The up to proof technique was introduced by Milner in [Mil89], and has been further
investigated by Milner and Sangiorgi in [SM92, San95]. Expansion is a progressing relation,
that is, processes become `smaller' by its application [San95]. The use of expansion instead of
observation-equivalence in up-to proofs is necessitated by the fact that observation-equivalence
itself does not progress, that is, it does not necessarily force processes to act. This is precarious
when applying it in up-to proofs, as pointed out in [San95]. As an example, consider the relation

R6�
def
= f(�:a:0; 0)g

which is a bisimulation up to observation equivalence, although obviously �:a:0 6� 0. This
counterexample was established independently by Sangiorgi, Sj�odin, and Jonsson.

2.2 The �-Calculus

The �-calculus [MPW92, Mil99] is a value-passing language based on CCS, and is particularly
characterized by the fact that in its basic form subject and objects of an input or output are
all of the same type, N for names. This implies that a name received in a communication can
be used as a subject later on; like channel x in the following example:

!(ay:�yc:0) j �ax:xz:P ��! !(ay:�yc:0) j �xc:0 j xz:P ��! !(ay:�yc:0) j 0 jPfc=zg:
Process !(ay:�yc:0) can be considered as a simple procedure, which upon each call along its
`address' a with a `return channel' y, delivers a copy of a constant name c on y. The other
process, �ax:xz:P , asks the procedure to return its result along a channel x, possibly to make
use of it later on. In order to ensure that the result is indeed returned to the caller|and not to
some interfering process running in parallel|the �-calculus allows the client to send a private,
that is, restricted, name to the procedure:

!(ay:�yc:0) j (�x)(�ax:xz:P) ��! (�x)(!(ay:�yc:0) j �xc:0 j xz:P);
which yields by �-equivalence,

�� !(ay:�yc:0) j (�x)(�xc:0 j xz:P) ��! !(ay:�yc:0) j (�x)(0 jPfc=zg):
In this example, the scope of the local variable x is extended from the client to an instance of
the procedure during execution. This mobility|that is, the fact that the binding structure of
a process can change during its execution|is due to the syntactic simplicity of the �-calculus,
by not making any distinction between channels and values sent along them.

Descriptive Power It is exactly this simplicity which yields the descriptive power of the
�-calculus. As indicated by the above example, the �-calculus can model procedure calls, even
with private parameters, such as local variables. In fact, as we will discuss in Chapter 4,
the �-calculus is a faithful model of concurrent imperative programming languages of higher
order, such as Concurrent Algol. Further, as pointed out soon after the introduction of the �-
calculus [MPW92] already, mobility suÆces to describe higher-order processes [Tho90, San92,
Ama93, San96a] and functions [Mil92b, San96a]. The work in Chapter 4 especially builds on
the results for higher-order functions.

2.2. THE �-CALCULUS 15

P ::= 0 Inaction
j �:P Pre�x, where � 2 Act
j (�~x)P Restriction, over a �nite list of names ~x � N
j P + P Nondeterministic Choice
j P jP Parallel Composition
j [a = b]P Matching, with names a; b 2 N
j [a 6= b]P Mismatching, with names a; b 2 N
j !P Replication

Table 2.4: Syntax of the �-Calculus. The set P of �-calculus processes is built on a con-
stant for inaction, 0, by applying pre�xing, restriction, choice, parallel composition, matching,
mismatching, and replication.

2.2.1 Syntax and Semantics

In this section, we consider a polyadic �-calculus, in which objects are tuples of names. The
monadic calculus, in which every object consists of a single name, can be considered as a special
case. In fact, polyadicity does not add any expressive power; that is, the polyadic �-calculus
can be expressed in terms of the monadic one [Yos96, QW98].

Names, labels, actions As for CCS, we consider a countably in�nite set N of names,
ranged over by a; b; x; y; : : : . For a better distinction of names that are free in a process and
those that are bound, we use a; b; : : : for the former, and x; y; : : : for the latter. The set L
of visible labels contains inputs a(~x) and free outputs �a~b. We refer to a as the subject of the
labels, and to ~x and ~b as their objects. Actions in Act are given by labels and the invisible
(or, silent) action � , and are ranged over by �; �; : : : . Besides, there is a bound output (�~x)�a~b
used on transition arrows, telling that those names in ~b that also occur in ~x, are private.

In the monadic �-calculus, every object tuple is of length one; that is, the labels are of the
form �ab for free output, and ax for input (sometimes, also a(x)). A bound output (�x)�ax is
often written as �a(x), in analogy to input.

Constants and combinators The set P of �-calculus processes is built on a constant 0 for
inaction that cannot exhibit any kind of behaviour, by the following operators: a pre�x process
�:P behaves like P after an execution of the action �; a restriction (�~x)P can be used to make
certain names local or private; the choice process P + Q can choose between behaving like P
or like Q; the composed processes P jQ run in parallel; matching [a = b]P and mismatching
[a 6= b]P implement a conditional on the equality of names; �nally, the replicated process !P
behaves like an arbitrary number of copies of P put in parallel. Table 2.4 shows a formal
description of the syntax of the �-calculus.

The �-calculus is particularly characterized by its two binders input and restriction. Es-
pecially restriction is responsible for the structure of a process, by creating objects which can
communicate on private channels, and can make previously private channels available to other
processes as well.

Free and bound names Free and bound names are a predominant issue in the �-calculus.

16 CHAPTER 2. PRELIMINARIES

fn(0)
def
= ;

fn(�:P)
def
= fn(P)

fn(�a~b:P)
def
= fa;~bg [fn(P)

fn(a~x:P)
def
= fag [(fn(P)� f~xg)

fn((�~x)P)
def
= fn(P)� f~xg

fn(P +Q)
def
= fn(P) [fn(Q)

fn(P jQ) def
= fn(P) [fn(Q)

fn(!P)
def
= fn(P)

bn(0)
def
= ;

bn(�:P)
def
= bn(P)

bn(�a~b:P)
def
= bn(P)

bn(a~x:P)
def
= bn(P) [f~xg

bn((�~x)P)
def
= bn(P) [f~xg

bn(P +Q)
def
= bn(P) [bn(Q)

bn(P jQ) def
= bn(P) [bn(Q)

bn(!P)
def
= bn(P)

Table 2.5: Free and Bound Names: Input and restriction bind free names in the continu-
ations of the processes. Therefore, ~x in the respective rules is subtracted from the free names
and added to the bound names. Also, object and subjects from an output pre�x are added to
the free but not to the bound names. All other rules correspond.

Input-pre�x and restriction act as binders. Therefore, the names in their scope are bound;
all other names are free. Free and bound names of a process can be computed by standard
primitively recursive functions fn and bn, respectively; see Table 2.5 for a de�nition. There
are two ways of de�ning whether a name is fresh. The more radical way is to require that it
does not occur among the names of a process; a more relaxed condition only requires that it
does not occur among the free names. The two formulations are equivalent, because bound
names are subject to �-conversion. In formalizations it is often convenient to choose names
according to the �rst de�nition, because it does not necessitate capture-avoiding substitutions
when instantiating a process with the fresh name.

When deriving transitions, it is essential to make a clear distinction between free and bound
names. Consider the procedure !ay:�yc:0 and an instance (�x)(�ax:xz:�zb:0) of the caller, yielding
the following sequence of transitions:

!ay:�yc:0 j (�x)(�ax:xz:�zb:0) ��! ��! !ay:�yc:0 j (�x)(0 j �cb:0) �cb�! !ay:�yc:0 j (�x)(0 j 0):
Now, suppose x = c which so far we have implicitely assumed not to be the case. Then �-
equivalence would no longer allow us to release the procedure from the restriction introduced
by the call, and the �nal visible output-transition, �cb, could never take place, because of the
subject being local:

!ay:�yc:0 j (�c)(�ax:xz:�zb:0) ��! ��! (�c)(!ay:�yc:0 j 0 j �cb:0) ?�! :

In contrast to CHOCS [Tho90], where this kind of dynamic binding is used particularly in order
to exploit these above e�ects, the �-calculus adheres to a static binding, where �-conversion
takes care that previously free names do not become bound by a restriction stemming from a
communication like the above procedure-call.

�-equivalence We assume the usual notion of �-equivalence, ��. This allows us to rename
bound names in order to avoid capture of free parameters by an extended restriction, as it has
happened in the above example. Further, we implicitely assume �-reduction.

2.2. THE �-CALCULUS 17

�:P
��! P

P1a
�a~b:P

�a~b�! P
P1b

f~bg \ bn(P) = ;
a~x:P

a~b�! Pf~b=~xg
P1c

P
��! P 0 f~xg \ fn(�) = ;
(�~x)P

��! (�~x)P 0 P2a
P

�a(~b)�! P 0 f~xg � f~bg
(�~x)P

(�~x)�a~b�! P 0
P2b P

��! P 0

P +Q
��! P 0 P3a

P
��! P 0 bn(�) \ fn(Q) = ;

P jQ ��! P 0 jQ P4a
P

(�~x)�a~b�! P 0 Q
a~b�! Q0 f~xg \ fn(Q) = ;

P jQ ��! (�~x)(P 0 jQ0)
P5a

P
��! P 0 a = b

[a = b]P
��! P 0 P6

P
��! P 0 a 6= b

[a 6= b]P
��! P 0 P7

!P jP ��! P 0

!P
��! P 0 P8 P �� P

00 P 00 ��! P 0

P
��! P 0 P9

Table 2.6: Operational Semantics of the polyadic �-Calculus. The labelled transition-
system for P is the least set of triples P

��! P 0 described by the rules P1{P9. Rules P3b{P5b
are symmetric versions of P3a{P5a, so we omit them here.

Operational semantics The behaviour of a process is determined by the names contained
in its description, and by the fact whether they are free (or, global) or bound (or, private).
As for CCS, we follow an operational approach, describing the behaviour of P in terms of
labelled transition-rules. An alternative solution often applied is a reduction-semantics where
only silent transitions are considered (as reductions), and the rest is dealt with by structural
congruence, reminiscient of an algebraic treatment of process terms. A fully algebraic approach
is rarely applied, because there is no complete algebraic description of any of the usual notions of
bisimilarity for the �-calculus so far. Again, the labelled transition-system is de�ned inductively
employing transitions of the form P

��! P 0, see Table 2.6. In contrast to the transition-system
for CCS, the distinction between free and bound names plays a vital role. For instance, in
Rule P4a concerning parallel composition, it is explicitely required that in P

��! P 0, the local
names of P emitted in � do not coincide with the free names of Q put in parallel. This happens
in order to guarantee static binding, preventing capturing of free names, as discussed in the
above example.

Early and late transitions The operational semantics as de�ned in Table 2.6 is early; that
is, the objects received in an input are instantiated immediately. Alternatively, people often
consider late semantics, in which an instantiation is delayed until a corresponding output. In
a late labelled transition-system, the substitution would then occur in Rules P5a and P5b
instead of Rule P1c, yielding (we omit Rule P5b0 which is a symmetric version of Rule P5a0),

a~x:P
a~x�! P

P1c'
P

(�~x)�a~b�! P 0 Q
a~y�! Q0 f~xg \ fn(Q) = ; f~bg \ bn(Q) = ;
P jQ ��! (�~x)(P 0 jQ0f~b=~yg) P5a'

Weak transitions We derive weak transitions P
�

=) P 0 for the �-calculus exactly like those
for CCS: the transition P

�
=) P 0 is de�ned by an arbitrarily large number of silent steps,

P (
��!)�P 0, and for every �, the transition P

�
=) P 0 abbreviates P �

=) P1
��! P2

�
=) P 0.

Again, �̂ denotes � for outputs or inputs, and � for � = � .

18 CHAPTER 2. PRELIMINARIES

With this de�nition, we can derive rules Cw1{Cw3 from Section 2.1.1 about CCS, also
for weak transitions of the �-calculus:

P
�

=) P
Cw1

P
��! P 0

P
�

=) P 0 Cw2a
P

��! P 0

P
�̂

=) P 0
Cw2b

P
�

=) P1
�

=) P2
�

=) P 0

P
�

=) P 0 Cw3

2.2.2 Bisimilarity

Bisimilarity is the predominant notion of behavioural equivalence for the �-calculus. Consid-
ering an early notion of the calculus, we de�ne weak bisimilarity as follows:

Definition 2.4 (Weak Bisimilarity) A relation R � P �P is a weak bisimulation, if for
all PRQ and all �, the following holds:

(i) if P
��! P 0, then there exists Q0 such that Q

�̂
=) Q0 and P 0RQ0.

(ii) if Q
��! Q0, then there exists P 0 such that P

�̂
=) P 0 and P 0RQ0.

Weak bisimilarity for the �-calculus is de�ned as the union of all weak bisimulations; that is,

��
def
=

SfR jR is a weak bisimulationg. Hence, P �� Q if there exists a weak bisimulation
containing (P;Q).

Early, late, and open semantics The order of the quanti�ers in the de�nition of a bisimi-
larity determines the discriminating power of the equivalence. For the �-calculus, three notions
have been studied: early, late, and open bisimilarities. Early bisimilarity is the coarsest of the
three notions, because for each input object, a di�erent answering derivative can be chosen. By
contrast, late bisimilarity requires one derivative to be instantiated with all possible objects.
Open bisimilarity [San96b] is even more discriminating, employing closing substitutions on the
processes in the relation. See [Qua99] for a survey.

Expansion The notion of expansion is even more important for the �-calculus than it is for
CCS already, because a lot of bisimilarity proofs employ `up to'-techniques, and in particular
such based on the expansion-preorder.

Definition 2.5 (Expansion) A relation R � P�P is an expansion relation, if for all PRQ
and all �, the following holds:

(i) if P
��! P 0, then there exists Q0 such that Q

�̂�! Q0 and P 0RQ0.

(ii) if Q
��! Q0, then there exists P 0 such that P

�
=) P 0 and P 0RQ0.

Like for CCS, expansion for the �-calculus is de�ned as the union of all expansion relations;

that is, ��
def
=

SfR jR is a weak bisimulationg. Hence, P �� Q if there exists an expansion
relation containing (P;Q).

2.2. THE �-CALCULUS 19

Proof techniques Like in CCS, one can exploit compositionality of weak bisimilarity with
respect to parallel composition and restriction. Also, even if not complete, algebraic laws can
be fruitfully applied for various purposes, such as,

P jQ �� Q jP; P j (Q jR) �� (P jQ) jR; rearrangement of processes

P j 0 �� P; (�~x)P �� P if f~xg \ fn(P) = ;, garbage collection

(�~x)(P jQ) �� (�~x)P jQ if f~xg \ fn(Q) = ;. contraction of restriction

Further, as well like in CCS, expansion can be made use of to reduce the size of the bisimulation
relation in an `up to'-proof.

Definition 2.6 (Bisimilation up to Expansion) A relation R � P �P is a weak bisim-
ulation up to expansion, if for all PRQ and all �, the following holds:

(i) if P
��! P 0, then there exist P 00; Q0; Q00 such that Q

�̂
=) Q0 and P 0 �� P

00RQ00 �� Q
0.

(ii) if Q
��! Q0, then there exist P 0; P 00; Q00 such that P

�̂
=) P 0 and P 0 �� P

00RQ00 �� Q
0.

In Chapter 4, we make extensive use of bisimilarity proof-techniques, when proving equivalences
of Algol-phrases via a translation into the �-calculus.

2.2.3 Type-Systems

The fact that the �-calculus employs only two primitives, makes it a role model for mobile
systems, similar to the �-calculus for sequential computations. Like for the �-calculus, this
generality through simplicity comes with a price to pay: structural information about the
systems is completely lost. For instance, (1) it is not clear for a channel a priori, how many
names can be sent along it, giving rise to process-terms of the form �ab:0 j a(x; y):P , where
the pre�xes of the sender and receiver have di�erent arities. Or, (2) there can be a need for
implicit conventions that certain processes can only read from certain channels, but never write
to them. Or, (3) one might like to use certain names to express integer-values, for instance.
Or, as a �nal example, (4) one might assume that certain channels expire after being used a
number of times.

These and other requirements can be regarded as properties determining subsets of P
which satisfy them. A popoular approach to computing these subsets is the use of static
typing: typable processes belong to the desired set, all others are excluded. In this section, we
briey review type systems proposed for each of the above requirements.

Remark: Note that by reducing the number of processes, type-systems decrease the number
of contexts as well. As a result, equivalences become coarser, simply because certain contexts
distinguishing between two processes are among those that are eliminated.

Sorting A basic type-system for the polyadic �-calculus was proposed by Milner [Mil91], in
order to prevent that the arities of the pre�xes of a sender and a receiver di�er in a commu-
nication, as in our above example, �ab:0 j a(x; y):P . According to Milner's sorting, each name
a is assigned a type (or, sort) of the form l [t1; : : : ; tn] giving the arity n and types ti of the
values that a carries in a message. The rules for composing processes say that P and Q can
be joined as P +Q or P jQ if they yield corresponding types for all their free names.

20 CHAPTER 2. PRELIMINARIES

In our example, name a in �ab:0 has the sort l [tb], given that tb is the type of b. On
the other hand, it has sort l [tx; ty] in a(x; y):P , with tx and ty being the types of x and y,
respectively. At this point, the sorting tells us that �ab:0 and a(x; y):P cannot match, with
a being of contradicting sorts l [tb] and l [tx; ty]; hence �ab:0 j a(x; y):P is not typable and,
therefore, does not belong to the admitted set of processes.

I/O-types This type-system can be further re�ned, for instance, by adding information that
in a certain typing-context, a certain name may only be used for reading or writing (or both), as
proposed by Odersky [Ode95], and Pierce and Sangiorgi [PS96]. A channel of type " [t1; : : : ; tn]
may be used to emit values of types t1; : : : ; tn, whereas a channel of type # [t1; : : : ; tn] may
receive tuples of type t1; : : : ; tn; a channel of type l [t1; : : : ; tn] may be used for both.

As an example, consider �ab:0 with type " [tb] for name a, as well as a process P . If P can be
consistently typed with a being of type " [tb] or l [tb], then the process �ab:0 j ax:P is well-typed
for a of type l [tb], and belongs to the set of admissible processes; otherwise, it does not.

I/O-types are particularly useful when modelling programming languages with state. Due
to Milner [Mil89], a variable x can be modelled by a register of the form,

Regx[v]
def
= inxv:Regx[v] + outxw:Regx[w];

where we use agent-notation for the sake of readability; it can be encoded in terms of replication,
however, see [Mil91].

Assume a global variable x|or, Regx|to be accessed by a program inxy:P ; that is, we
have Regx[v] j inxy:P . Without introducing the I/O-types from above, it is not clear that the
program has to askRegx for its value; it could equally well receive a value from the context. An
I/O-typing giving read-capability only to inx in both program and context, prevents exactly
this circumvention of Regx. We make use of this type-system in Chapter 4, where we model
Concurrent Idealized Algol in the �-calculus. There, we apply registers of exactly the above
form to keep track of the states of programs; we will see that there exist programs which
necessitate intermediate registers between programs and contexts.

Types for values As pointed out in [Mil91, PS96], basic types of values like booleans or
integers can be encoded in the �-calculus. For a simpler usage, it is often convenient to assign
to certain names the functionality of a value, in a further simple re�nement of the I/O-typing.

Linearity Sometimes, one might wish to express that a name a may only be used a certain
number of times, for instance, to model locks preventing a group of processes from entering a
critical section unless it is free. A type-system solving this problem using linear channels was
proposed by Kobayashi, Pierce, and Turner [KPT99].

In Chapter 4, we use a locking-mechanism to implement blocking of the context during
the execution of a dedicated await-command: whenever the context wants to access a global
variable, it has to acquire a lock; the subsequent read- or write-operation is then endowed with
a linear type so to be used only once.

2.3 General-Purpose Theorem-Proving

Theorem-provers implement logical frameworks, for example, simple type theory [Chu40] like
HOL and Isabelle/HOL, the calculus of inductive constructions [Wer94] like Coq, or the LF

2.3. GENERAL-PURPOSE THEOREM-PROVING 21

logical framework [HHP93] like Elf and its successor Twelf. These environments allow the user
to de�ne new objects and deduce proofs about them, either interactively or fully automatically.

General-purpose theorem-provers aim at providing platforms for human-style reasoning
which are as general as possible, and therefore apply powerful logics. It is an explicit goal of
these tools to o�er the user human-style strategies for reasoning. As a consequence, the user
can formulate de�nitions and proofs in a natural way, but cannot expect full automation and
eÆciency in the deduction of proofs. Some of the most inuential general-purpose interactive
theorem-provers are Coq [BBC+99], HOL [GM93], Isabelle [Pau94], and PVS [SOR93].

Special-purpose theorem-provers are usually based on �rst-order deduction-systems, and
derive proofs fully automatically. This does not mean, however, that the user can insert an
arbitrary problem; instead, he/she has to prepare a series of small proof-steps which the prover
can solve automatically, and then combine them in a �nal theorem. Often the order in which
the single proofs are arranged plays a vital role for a successful completion of the whole proof.
This necessitates a good understanding of the underlying proof-system on part of the user.
Special-purpose theorem-provers are usually designed to infer proofs eÆciently, and to tackle
even large proofs. One area of application is hardware veri�cation; for instance, the AMD5K86
has been veri�ed in the Boyer-Moore prover ACL2 [KMM00b, KMM00a], see [BKM96].

More recently, higher-order logical frameworks have gained more importance, for example,
ELF [Pfe89] and its successor Twelf [PS99], or �Prolog [NM98]. These frameworks are espe-
cially designed for the formalization of languages with binders, such as high-level programming
languages. By delegating the treatment of bound variables to the prover, they save the user
the from e�ort of implementing and applying substitutions for �-conversion and �-reduction.

2.3.1 Isabelle/HOL

We use the interactive theorem-prover Isabelle [Pau94] in its instantiation for higher-order
logic [Pau93]. The environment is similar to the HOL system [GM93]; both are extensions of
Church's simple type theory [Chu40] adding, for instance, polymorphism and type-classes. In
this section, we give an overview of the main features of Isabelle/HOL, and show how they can
be applied in the analysis of processes.

Genericity Isabelle [Pau94] is designed as a generic theorem-prover, and therefore clearly
distinguishes between its meta-level and object-level. The meta-level can be thought of as
the `hardware' of the prover: it consists of an intentionally small kernel based on intuition-
istic higher-order logic, and is provided by the implementors. Upon it, on the object-level,
object-logics [Pau93] can be formally derived in terms of de�nitions and proofs. Isabelle then
guarantees for the correctness of this `software', modulo the correctness of the small kernel.
The intention behind this generic approach is to guarantee both a maximum of exibility and
a maximal degree of correctness.

Isabelle's object-logics Various object-logics come with the distribution of Isabelle [Pau93],
such as �rst-order logic, (Isabelle/FOL), constructive type theory (Isabelle/CTT), or higher-
order logic (Isabelle/HOL). We use higher-order logic (HOL), because it allows for a human-
style way of reasoning, and it already provides a range of datatypes like sets or lists, and
results proved about them. Further, a range of powerful proof-procedures have been designed
for Isabelle/HOL.

22 CHAPTER 2. PRELIMINARIES

The object-logic HOL is implemented in terms of a set of theories, which are brought
together in Main.thy. When applying Isabelle/HOL, users normally include this main theory
as a basis for further extensions.

Theories The user can introduce theories on top of an object-logic, de�ning new objects
and deriving proofs. As an example, assume a formalization of the �nite subset of pure CCS
without relabelling (see Section 2.1.1), with processes of the form,

P ::= 0 j �:P j PnL j P + P j P jP:

Our formalization consists of three theories: one de�ning the syntax (CCS Syntax), one giving
the semantics (CCS Semantic), and one introducing observation equivalence (CCS Equiv). Each
of the theories consists of two parts: in a CCS xxx.thy-�le, we give the basic de�nitions of
syntax and semantics, whereas in a CCS xxx.ML-�le, we derive corresponding theorems. The
proof-scripts are available at http://www7.in.tum.de/~roeckl/thesis/tiny/.

De�ning theories Consider the theory-�le CCS Syntax.thy, as depicted in Table 2.7. In its
header, the theory Main is included in order to access the full functionality of Isabelle/HOL. The
datatype-de�nitions for labels ('a labels), actions ('a actions), and processes ('a procs)
consist of a BNF-like notation equipped with the types of the single components. The types
are parameterized over 'a denoting the set of names, and for which arbitrary types can be
instantiated later. This allows us to defer the decision about a concrete set of names. The
datatype-de�nitions consist of a BNF-like notation augmented with the types of the arguments:
a pre�xed process �:P , for example, takes an action � and a process P as arguments, and
is therefore of type ('a actions) � ('a procs) ! ('a procs). Datatype-de�nitions in
Isabelle/HOL automatically yield principles for structural induction and case-distinction. We
make use of related principles in large style in Chapter 3, where we formalize the syntax of the
�-calculus.

Isabelle allows the user to give a concrete syntax to datatypes. In CCS Syntax.thy, we do
so for the processes. For an action pre�x �:P , we can then write [alpha].P instead of Prefix
alpha P; similarly for the other constructs. Isabelle takes care of correct translations between
concrete ([alpha].P) and abstract (Prefix alpha P) syntax automatically. Note that this
feature of Isabelle considerably enhances readability, especially in large proofs.

Modularity Larger theories in Isabelle should be modularized into several sub-theories; in
our case, we have split the formalization into three parts. The theory CCS Semantic, for
instance, builds on the theory-�le CCS Syntax.thy|which it includes in its header|and im-
plements a labelled transition-system for 'a procs; see Table 2.8. In the �rst part of the
�le, we declare constants for strong and weak transitions (consts), and specify a concrete
syntax for them (syntax and translations). Then, in a second part, we de�ne the strong
transition-rules (inductive StTrans) and give rules for the derivation of weak transitions.

Inductive sets We specify the transition-system for CCS by giving a set of introduction-
rules and declaring it to be inductive. Note that the rules in Table 2.8 are simple transcriptions
of the corresponding rules in Table 2.2. As pointed out in Section 2.1.1, inductiveness means
that the set of transitions consists exactly of those triples P

��! P 0 that can be derived from

2.3. GENERAL-PURPOSE THEOREM-PROVING 23

CCS_Syntax = Main +

datatype

'a labels = nm 'a

| conm 'a

datatype

'a actions = tau

| va ('a labels)

datatype

'a procs =

Nil (".0" 115)

| Prefix ('a actions) ('a procs) ("[_]._" [120,110] 110)

| Restriction ('a procs) (('a labels) set) ("_.[_]" [100,120] 100)

| Choice ('a procs) ('a procs) (infixl ".+" 80)

| Composition ('a procs) ('a procs) (infixl ".|" 90)

constdefs

compl :: "'a labels => 'a labels"

"compl l == case l of nm a => nm a | conm a => conm a"

end

Table 2.7: Formalizing the Syntax of CCS: We implement the syntax of the �nite subset
of pure CCS in a theory CCS Syntax.thy. Labels, actions, and processes are formalized in
datatype-de�nitions, which automatically yield principles for structural induction and case-
distinction. For example, Isabelle can automatically deduce that a visible action (that is, a
label) cannot equal the silent action � . We use the symmetric function compl to determine the
complement of a label.

24 CHAPTER 2. PRELIMINARIES

CCS_Semantic = CCS_Syntax +

consts

StTrans :: "('a procs * 'a actions * 'a procs) set"

WkTrans :: "('a procs * 'a actions * 'a procs) set"

WkEps :: "('a procs * 'a procs) set"

...

syntax

"@StTrans" :: ['a procs, 'a actions, 'a procs] => bool

("_/ -(_)->/ (7_)" [80, 0, 80] 70)

...

translations

"P -alpha-> P'" == "(P, alpha, P') : StTrans"

...

inductive StTrans

intrs

C1 "[alpha].P -alpha-> P"

C2a "P -tau-> P' ==> P.[L] -tau-> P'.[L]"

C2b "[| P -va l-> P' ; l ~: L ; compl l ~: L |] ==> P.[L] -va l-> P'.[L]"

C3a "P -alpha-> P' ==> P .+ Q -alpha-> P'"

C3b "Q -alpha-> Q' ==> P .+ Q -alpha-> Q'"

C4a "P -alpha-> P' ==> P .| Q -alpha-> P' .| Q"

C4b "Q -alpha-> Q' ==> P .| Q -alpha-> P .| Q'"

C5 "[| P -va l-> P' ; Q -va (compl l)-> Q' |] ==> P .| Q -alpha-> P' .| Q'"

defs

WkEps_def "WkEps == {(P, P') . P -tau-> P'}^*"

WkTrans_def "WkTrans == {(P, alpha, P') . EX P1 P2. \

\ P =eps=> P1 & P1 -alpha-> P2 & P2 =eps=> P'}"

...

end

Table 2.8: Formalizing the Semantic of CCS: A labelled transition-system is formalized
in terms of an inductive set of rules for StTrans. A concrete syntax allows us to use arrow-
notation. Weak transitions are derived according to the usual de�nition applying Kleene's star
on silent transitions; see Section 2.1.1.

2.3. GENERAL-PURPOSE THEOREM-PROVING 25

the set of transition-rules. From this de�nition, Isabelle automatically computes corresponding
principles for rule-induction and case-exhaustion that can be applied in subsequent proofs.

Deriving theorems As mentioned above, a theory usually consists of two parts: in a .thy-
�le, objects are de�ned, whereas in a corresponding .ML-�le, theorems are derived for these
objects. The �le itself contains the proof-scripts specifying the interaction with Isabelle during
a proof. As an example, consider the proof-scripts in Table 2.9, in which we derive laws Cw1{
Cw3 from Section 2.1.1. They are collected in a CCS Semantic.ML-�le, from which Isabelle
automatically concludes that they belong to the theory CCS Semantic; hence it loads them
together with CCS Semantic.thy.

As a typical example, consider the proof of law Cw2b, stating that every strong transition
gives rise to a corresponding weak transition with a hat (recall that �̂ = � if � is visible, and
�̂ = �):

Goal "P -alpha-> P' ==> P =^alpha=> P'";

by (case_tac "alpha" 1);

by (auto_tac (claset() addIs [Cw1a,Cw2a],

simpset() addsimps [WHTrans_def]));

qed "Cw2b";

The derivation consists of three parts: �rst, the goal is stated in concrete syntax (Goal); then
the proof is derived applying Isabelle's tactics (by); and, once it is completed, the goal is stored
in Isabelle's database as a theorem (qed) called Cw2b. The proof itself is derived interactively
with Isabelle in a backward-resolution style. After stating the goal,

> Goal "P -alpha-> P' ==> P =^alpha=> P'";

Level 0 (1 subgoal)

P -alpha-> P' =) P =^alpha=> P'
1. P -alpha-> P' =) P =^alpha=> P'
val it = [] : thm list,

we ask Isabelle to make a case-distinction on action alpha, whether it is silent (tau), or is a
visible action consisting of a label (va labels), which yields two respective subgoals:

> by (case_tac "alpha" 1);

Level 1 (2 subgoals)

P -alpha-> P' =) P =^alpha=> P'
1. [[P -alpha-> P' ; alpha = tau]] =) P =^alpha=> P'
2.

V
labels. [[P -alpha-> P' ; alpha = va labels]] =) P =^alpha=> P'

val it = () : unit,

Isabelle is able to prove both of them fully automatically, by one application of its automatic
tactic auto tac:

> by (auto_tac (claset() addIs [Cw1a,Cw2a],

simpset() addsimps [WHTrans_def]));

Level 2

P -alpha-> P' =) P =^alpha=> P'
No subgoals!

val it = () : unit,

26 CHAPTER 2. PRELIMINARIES

Goal "P =eps=> P";

by (simp_tac (simpset() addsimps [WkEps_def]) 1);

qed "Cw1";

Goal "P -tau-> P' ==> P =eps=> P'";

by (auto_tac (claset() addIs [r_into_rtrancl],

simpset() addsimps [WkEps_def]));

qed "Cw1a";

Goal "P -alpha-> P' ==> P =alpha=> P'";

by (auto_tac (claset() addSIs [Cw1], simpset() addsimps [WkTrans_def]));

qed "Cw2a";

Goal "P -alpha-> P' ==> P =^alpha=> P'";

by (case_tac "alpha" 1);

by (auto_tac (claset() addIs [Cw1a,Cw2a],

simpset() addsimps [WHTrans_def]));

qed "Cw2b";

Goalw [WkEps_def] "[| P =eps=> P1 ; P1 =eps=> P' |] ==> P =eps=> P'";

by (dtac rtrancl_trans 1);

by (Auto_tac);

qed "Cw3a";

Goal "P =tau=> P' ==> P =eps=> P'";

by (auto_tac (claset() addSDs [Cw1a] addIs [Cw3a],

simpset() addsimps [WkTrans_def]));

qed "Cw3b";

Goal "[| P =eps=> P1 ; P1 =alpha=> P2 ; P2 =eps=> P' |] ==> P =alpha=> P'";

by (auto_tac (claset() addSIs [Cw3a],

simpset() addsimps [WkTrans_def]));

qed "Cw3";

Table 2.9: Semantic Results about CCS: Results about strong and weak transitions are
derived. Most of them follow easily from the de�nitions in CCS Semantic.thy by applying an
automatic tactic. In particular, we prove laws Cw1{Cw3 from Section 2.1.1.

2.3. GENERAL-PURPOSE THEOREM-PROVING 27

constdefs

is_WkB :: "('a procs * 'a procs) set => bool"

"is_WkB R == ALL P Q alpha P' Q' . (P, Q) : R --> \

\ (P -alpha-> P' --> (EX Q' . Q =^alpha=> Q' & (P', Q') : R)) & \

\ (Q -alpha-> Q' --> (EX P' . P =^alpha=> P' & (P', Q') : R))"

WkB :: "('a procs * 'a procs) set"

"WkB == Union {R . is_WkB R}"

Table 2.10: Formalizing Observation-Equivalence: We de�ne the question whether a
relation is a bisimulation in terms of a predicate is WkB. Observation-equivalence, WkB, is then
formalized as the union over all relations satisfying is WkB.

The tactic employs the prede�ned sets claset() and simpset(), the former containing clas-
sical rules of the form [[P1; : : : ;Pn]] =) P for n � 0 and the latter containing equations for
algebraic transformations. Both can be augmented by the user. In our example, we add Cw1a

and Cw2a (see Table 2.9) to claset(), and WHTrans def (weak transitions with a hat) to
simpset(). With no subgoal being left over, we can store the theorem in Isabelle's database:

> qed "Cw2b";

val Cw2b = "P -alpha-> P' =) P =^alpha=> P'" : thm

val it = () : unit

In the proof, we have equipped auto tac with the theorems Cw1a and Cw2a derived previously|
see Table 2.9 for their proofs|as well as with the de�nition of transitions with a hat.

Predicates We specify the question whether a relation is a bisimulation or not, in terms
of a predicate is WkB; see Table 2.10 for a formalization. The two proof-obligations can be
formalized in a natural way. According to De�niton 2.1, observation-equivalence is the union
of all bisimulations, which we can express in Isabelle by using the Union-constructor from its
theory for sets, Set.thy.

Tactics and tacticals Isabelle o�ers two principal kinds of tactics: classical tactics based on
resolution, and algebraic tactics applying term-rewriting. Classical tactics, like resolve tac

for backward-resolution or forward tac for forward-resolution, re�ne subgoals by unifying
them with speci�ed parts of a de�nition or theorem. Algebraic tactics, like simp tac, try
to solve subgoals by replacing expressions within them by simpler ones. They operate with
theorems that do not have premises; or, if they have, only very simple ones. Note that in
Isabelle there is no distinction between de�nitions and theorems concerning their application
in proofs. As an example of the use of forward tac, consider the proof that observation-
equivalence is a bisimulation (Theorem WkB is WkB in Table 2.11). There, two subgoals result
from an application of the de�nition of observation-equivalence, one for P making a transition
in (P;Q) 2 R, and the other for Q; we will see below how they can be suitably derived in
Isabelle/HOL. The one for P is of the following form:

1: [[(P;Q) 2 R ; is WkB R ; P
��! P 0]]

=) 9Q0: Q �̂
=) Q0 ^ (9X:is WkB X ^ (P 0; Q0) 2 X)

28 CHAPTER 2. PRELIMINARIES

Goalw [is_WkB_def]

"ALL P Q alpha P' Q' . (P, Q) : R --> \

\ (P -alpha-> P' --> (EX Q' . Q =^alpha=> Q' & (P', Q') : R)) & \

\ (Q -alpha-> Q' --> (EX P' . P =^alpha=> P' & (P', Q') : R)) \

\ ==> is_WkB R";

by (Fast_tac 1);

qed "is_WkB_I";

Goalw [is_WkB_def] "is_WkB R ==> \

\ ALL P Q alpha P' Q' . (P, Q) : R --> \

\ (P -alpha-> P' --> (EX Q' . Q =^alpha=> Q' & (P', Q') : R)) & \

\ (Q -alpha-> Q' --> (EX P' . P =^alpha=> P' & (P', Q') : R))";

by (Fast_tac 1);

qed "is_WkB_D";

Goal "[| is_WkB R ; (P, Q) : R ; P -alpha-> P' |] \

\ ==> EX Q' . Q =^alpha=> Q' & (P', Q') : R";

by (auto_tac (claset() addSDs [is_WkB_D], simpset()));

qed "is_WkB_D1";

Goal "[| is_WkB R ; (P, Q) : R ; Q -alpha-> Q' |] \

\ ==> EX P' . P =^alpha=> P' & (P', Q') : R";

by (auto_tac (claset() addSDs [is_WkB_D], simpset()));

qed "is_WkB_D2";

Goalw [WkB_def] "is_WkB WkB";

by (auto_tac (claset() addSIs [is_WkB_I], simpset()));

by ((forward_tac [is_WkB_D1] 1) THEN (REPEAT (atac 1)));

by ((forward_tac [is_WkB_D2] 2) THEN (REPEAT (atac 2)));

by (Auto_tac);

qed "WkB_is_WkB";

Table 2.11: Results about Observation-Equivalence: We derive introduction- and
destruction-rules for weak bisimulations, by applying Isabelle's automatic tactics. Finally, we
prove that observation-equivalence is itself a bisimulation (WkB is WkB). Here, we explicitely
apply Isabelle's classical tactic forward tac.

2.3. GENERAL-PURPOSE THEOREM-PROVING 29

stating that for arbitrary pairs (P;Q) 2 R such that R is a weak bisimulation and P
��! P 0

(premises), there exists a suitable Q0 such that Q
�̂

=) Q0 and (P 0; Q0) 2 X for some weak
bisimulation X. Note that Isabelle/HOL does not require X to coincide with R. The ex-
istential quanti�cation stems from the union over all weak bisimulations in the de�nition of
observation-equivalence; compare De�nition 2.1. By applying the destruction-rule is WkB D1

from Table 2.11, mapping P and Q to the process-identi�ers there, we obtain a suiting transi-
tion of Q such that even (P 0; Q0) 2 R:

1: [[(P;Q) 2 R ; is WkB R ; P
��! P 0 ; 9Q0: Q

�̂
=) Q0 ^ (P 0; Q0) 2 R]]

=) 9Q0: Q
�̂

=) Q0 ^ (9X: is WkB X ^ (P 0; Q0) 2 X)

The suitable instantiations of the premises (P, Q) : R and P -alpha-> P' can be removed
by assumption, using assume tac|or atac for short|repeatedly. The respective part of the
interaction with Isabelle is as follows (for the sake of readability, we use sugared notation):

1: [[(P;Q) 2 R ; is WkB R ; P
��! P 0]]

=) 9Q0: Q
�̂

=) Q0 ^ (9X:is WkB X ^ (P 0; Q0) 2 X)
: : :

> by ((forward tac [is WkB D1] 1) THEN (REPEAT (atac 1)));

1: [[(P;Q) 2 R ; is WkB R ; P
��! P 0 ; 9Q0: Q �̂

=) Q0 ^ (P 0; Q0) 2 R]]

=) 9Q0: Q
�̂

=) Q0 ^ (9X: is WkB X ^ (P 0; Q0) 2 X)
: : :

In the above proof-step, we have combined two tactics by using Isabelle's tacticals. With these
basic operators, the user can build more elaborate tactics from already existing ones. Isabelle's
automatic tactics are an example of such elaborate constructions. In Chapters 3 and 5, we
make particular use of auto tac and force tac, which both combine classical and algebraic
reasoning. To return to our example, we apply auto tac both to unfold the de�nition of
observation-equivalence in the �rst proof step and to instantiate identi�er X with R in the last
one. As is obvious from Tables 2.9 and 2.11, the automatic tactics apply prede�ned classical
(claset()) and algebraic (simpset()) sets of rules. The classical set claset() contains
introduction and elimination rules; the latter are a special formulation of destruction rules.
The simpli�cation set simpset() contains equations to be used in algebraic transformations.
The two sets can be augmented by the user by inserting or deleting speci�ed rules. The set
claset() addSIs [is WkB D1] in our above example, for instance, augments the classical set
with the destruction-rule is WkB D1.

2.3.2 Representing Languages with Binders

In the previous section, we have presented a formalization of �nitary pure CCS in Isabelle/HOL.
More elaborate languages, such as the �-calculus, usually employ binders; that is, some of their
operators abstract over a part of the continuation. In the �-calculus, there are two binders:
input ax:P and restriction (�x)P . Generally, languages with binders can be represented either
in �rst-order syntax or higher-order (abstract) syntax (HOAS). First-order syntax is the classical

30 CHAPTER 2. PRELIMINARIES

First-order syntax

Pf ::= 0 Inaction P
j �ab:Pf Output Pre�x N �! N �! P �! P
j ab:Pf Input Pre�x N �! N �! P �! P
j Pf jPf Parallel Composition P �! P �! P

Higher-order syntax

Ph ::= 0 Inaction P
j �ab:Ph Output Pre�x N �! N �! P �! P
j ab:fP (b) Input Pre�x N �! (N �! P) �! P
j Ph jPh Parallel Composition P �! P �! P

Table 2.12: First-order and higher-order syntax. We consider a small fragment P of the
�-calculus. Communication-channels and values are identi�ed as names of type N . The two
syntaxes di�er with respect to the input-pre�x which is de�ned over two names and a process
in �rst-order, but one name and a function from names to processes in higher-order syntax.

way: In the de�nition of a datatype T with a BNF equation T ::= : : : , the arguments on the
right-hand side employ only T and previously de�ned types. In a �rst-order syntax for the
�-calculus, an input ab:P is represented by two objects of type N for names and an object
of type P. In higher-order syntax, the continuations of binders are represented by functions,
and bound names are therefore arguments of these functions. In a higher-order syntax for the
�-calculus, an input is therefore represented by one object of type N and an object of type
N ! P.

As an example, let us consider a fragment P of a �-calculus-style language, with inaction,
output, input, and parallel composition:

P ::= 0 j �ab:P j ab:P j P jP:
A �rst-order and a higher-order syntax for this calculus are given in Table 2.12. As a constant,
inaction implements a type P in both representations, output yields N ! N ! P ! P, and
parallel composition yields P ! P ! P. The di�erence occurs for input, where �rst-order
syntax yields N ! N ! P ! P like output, and higher-order syntax yields N ! (N !
P) ! P. In abuse of notation, we write ab:P and ab:fP (b), where P corresponds to fP (b).
The parameter b is bound by a �-abstraction over fP .

Instantiating processes Consider the process �ab:P j ax:Q, where the �rst process intends
to send b to the second one along a in a communication,

�ab:P j ax:Q ��! P j Qfb=xg:
The process Qfb=xg originates from Q by replacing every occurrence of x with b. This instan-
tiation can be interpreted as a capture-avoiding substitution or as a �-reduction. In arguments
about the �-calculus, it is often not clear|and is of no importance, anyway|which of the two
techniques is used to implement instantiations. Substitutions are used in �rst-order syntax,
wheras �-reduction is applied in HOAS.

2.3. GENERAL-PURPOSE THEOREM-PROVING 31

In the sequel, we use a;b; : : : to represent names in �rst-order syntax and free names in
higher-order syntax, and x; y; : : : for bound names in higher-order syntax. Further, we use a
function fQ to represent Q in higher-order syntax. In �rst- and higher-order syntax, the above
communication is therefore implemented by,

�ab:P j ax:Q ��! P j Qfb=xg and �ab:P j ax:fQ(x) ��! P j fQ(b);
respectively. Now, suppose that Q = cb:Q0, employing another input on b to make it local
within Q0 in �rst-order syntax. In this case, the communication does not yield one but at least
two substitutions,

�ab:P j ax:cb:Q0 ��! P j cb0:Q0fb0=bgfb=xg;
�rst renaming the b bound by restriction into some fresh b0, before introducing the received
name b into the process. Using the functional representation fQ of Q, on the other hand, we
obtain a process abstraction fQ = �x: cb:ffQ0(b; x), in which the variable b is a priori distinct
from any other name, hence also from b, according to the functional mechanism.

�ab:P j ax:(�b)ffQ(b; x) ��! P j (�b)ffQ(b;b):
Of course, in this second variant, �-conversion and �-reduction are not completely absent,
only the user does not have to care for them, because they are made transparent by the
underlying functional mechanism that implements them. This delegation is particularly useful
when dealing with large processes containing a vast number of binders, so a manual treatment
of them can be avoided this way. Note that the formalization of capture-avoiding substitutions
in theorem-provers is intricate, and errors are likely. Further, substitutions in �rst-order syntax
make a semantic analysis of processes hard.

Structural induction On the other hand, �rst-order syntax provides structural induction
whereas higher-order syntax does not by itself. The reason for this lack of induction in HOAS
is the use of functions to represent continuations of binders, whereas induction requires �rst-
order objects. Structural induction is important in structural syntax-analysis, which is again
important in the derivation of principles underlying a semantic analysis. It is a prevailing issue
to develop suitable induction-principles for HOAS and use them in syntax-analysis. Chapter 3
is devoted to this problem. There we introduce inductive predicates inspired by [DH94, DFH95]
describing the class of processes we are interested in, and use the rule-induction o�ered by these
predicates to mimic structural induction.

Deep and shallow embeddings General-purpose theorem-provers distinguish between a
meta-level and an object-level. While the meta-level is provided by the implementation and
is|apart from one exception that we discuss below|not accessible to the user, new objects are
de�ned and proofs are derived on the object-level. Isabelle implements a �-calculus on its meta-
level, using a deBruijn-mechanism [deB72] for the treatment of its variables. Free variables in
this calculus, x;y; : : : , are also called object-variables, and bound variables, x; y; : : : , are called
meta-variables. This �-calculus on Isabelle's meta-level has recently been made available for
use on the object-logic HOL [BW99]. This little exception from the usual encapsulation of
the meta-level allows users to apply functions in datatype-de�nitions, giving way to a direct
implementation of HOAS.

32 CHAPTER 2. PRELIMINARIES

axclass inf_class < term

inf_class "EX (f::nat=>'a). inj f"

datatype

'a procs = Null (".0" 115)

| Out 'a 'a ('a procs) ("_<_>._" [120, 0, 110] 110)

| In 'a "'a => ('a procs)" ("_[_]._" [120, 0, 110] 110)

| Par ('a procs) ('a procs) (infixl ".|" 90)

Table 2.13: A Shallow Embedding: We implement our example calculus P in Isabelle/HOL.
By using the axiomatic type-class inf class, we make sure that only types can be used for
names in processes which are at least countably in�nite.

Theorem-provers like Isabelle or Coq o�er two alternative ways of formalizing languages
with binders: besides a deep embedding residing fully within the object-level, there is the
possibility of giving a shallow embedding residing within the object-level but using the binding-
mechanism of the meta-level. First-order syntax is always formalized in a deep embedding,
whereas higher-order syntax can be modelled in both deep and a shallow embeddings: according
to the �rst variant, a �-calculus is formalized in a deep embedding in order to provide the
functional mechanism for HOAS, whereas according to the second variant, the �-calculus from
the meta-level is employed. Table 2.13 shows a formalization of P in a shallow embedding in
Isabelle/HOL.

Exotic terms A general problem of shallow embeddings is the presence of exotic terms if
there are operators on the object-level that can be used in fuction-de�nitions, such as condi-
tionals. As an example, consider the functions from names to processes,

fE = �x: if a = x then 0 else ab:0;
fW = �x: ab:0:

The function fW can be considered as well-formed or valid, because it is derived entirely from
the syntactic description of the language in Table 2.12. The process-abstraction fE, on the
other hand, is an exotic term, because it contains a conditional expression which is not part
of the syntax of the language. Correspondingly, the process bx:fW (x) is well-formed, whereas
bx:fE(x) is not.

Higher-order frameworks The distinction between well-formed (that is, valid) and exotic
(that is, invalid) terms is important when reasoning about processes in HOAS. The reason is
that certain structural properties that obviously hold for well-formed processes, are inconsistent
for exotic terms. Such properties naturally have to be stated as hypothetical judgements of
the form `if t is a well-formed term, then property P holds for t'. In our formalization in
Chapter 3, we use this technique on the object-level by introducing well-formedness predicates.
As a consequence, semantic reasoning always involves a treatment of syntactic well-formedness
assumptions.

To facilitate proofs for the users, well-formedness assumptions are part of the meta-level
of specialized higher-order frameworks, such as Elf [Pfe89] and its successor Twelf [PS99], or

2.3. GENERAL-PURPOSE THEOREM-PROVING 33

�Prolog [NM98]. Under certain circumstances, also Coq [BBC+99] can be used as such [HMS00].
These frameworks possess meta-logics but o�er virtually no object-logics, so that in a formal-
ization there are no constructors except for those given explicitely by the user in syntax-
declarations. As a consequence, there is no means of de�ning exotic terms. Yet, neither of
these environments allows for structural syntax-analysis, lacking structural induction. How-
ever, there are recent attempts to add structural induction to Twelf [DPS97].

Datatypes As usual in programming-language theory, the structure of a process can be
described in terms of a process-tree: the leaves are marked with a name or with the inaction
process, and inner nodes are marked with an operator. The �rst-order process �ab:0 j ax:�xc:0
and its higher-order counterpart �ab:0 j ax:�xc:0, for instance, yield trees,

par

�� AA
out
����
ab 0

in
@@ HH
H

a x out
�� AA
x c 0

par

�� AA
out
����
ab 0

in(x)
@@ HH
H

a x out
�� AA
x c 0

where the right subtree of the higher-order process is essentially a function from names to
process-trees. The tree-like structure is directly derivable from the datatype-de�nitions, and
the abstraction in the subtrees of the shallow embedding stems from the functions from names
to processes in the datatype de�nitions for binders.

We exploit the recursiveness of the datatype-de�nitions when setting up functions for the
processes, such as the computation of the free names or the depth of binders. In the shallow
embedding, suitable instantiations have to be chosen for the contiuations of binders. For exam-
ple, when computing the free names, we use a universal quanti�cation over all instantiations,
whereas for the depth of binders, we content ourselves with a single instantiation.

Chapter 3

Formalizing the �-Calculus in HOAS

In Chapter 2, we have introduced the �-calculus as a model for mobile systems [MPW92, Mil99].
As a value-passing calculus with global and local names, it is particularly characterized by its
binders input and restriction; with both constructors operating on names, processes can change
their topological structure during execution. In this chapter, we develop a straightforward
deep and a shallow embedding of the calculus in Isabelle/HOL (Section 3.1). We show how to
remedy the two typical problems of higher-order abstract syntax|lack of structural induction
and appearance of exotic terms|by means of well-formedness predicates. Then, we discuss
induction-techniques for the resulting hypothetical judgements, and use them in the derivation
of the theory of contexts for the �-calculus (Section 3.2). Finally, we show within Isabelle/HOL
that the shallow embedding is fully adequate with respect to our deep embedding (Section 3.3).
We do not develop the deep embedding further than up to �-equivalence and normalization,
omitting full �-reduction or �-conversion, because we concentrate on the shallow embedding,
and use the deep one only for the adequacy proof.

From a �-calculus point of view, the formalization presented in this chapter provides a
platform for the semantic study of the calculus in Isabelle/HOL in which the user is freed
from the manual application of substitutions when deriving transitions or bisimulation-proofs.
From a logical point of view, the formalization is an exercise in syntax-analysis in HOAS. Well-
formedness assumptions that theorem-provers like Elf [Pfe89] or �Prolog [NM98] hide on their
meta-level, are available on the object-level of our formalization. This enables us in particular
to mechanize proofs about HOAS, like the derivations of the theory of contexts and adequacy,
which have to be performed on paper for these frameworks. Using inductive well-formedness
predicates, we replace usual structural induction|which does not work in HOAS|by rule-
induction. From a theorem-proving point of view, this chapter describes a case-study in giving
shallow embeddings to languages with binders.

Proof-techniques for HOAS Higher-order abstract syntax does not provide suitable prin-
ciples for structural induction, hence does not directly allow to derive meta-theoretical results
based on syntax-analysis. Despeyroux, Felty, and Hirschowitz propose to mimic structural in-
duction by rule-induction over a predicate describing the desired set of terms [DH94, DFH95],
but do not further investigate into concrete applications. We adapt their idea to the �-calculus,
and present proof-strategies for this kind of induction. In Section 3.2.2, we employ both
induction-hypotheses yielded for the binders in well-formed process-abstractions (see Table 3.12
in Section 3.1.2) instantiating one of them with a fresh name. Then, in Sections 3.2.3 and 3.3.3,

35

36 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

we use coercion from meta-names to fresh object-names and back, in order to prevent that
meta-variables be involved in the comparison of names. All the proofs applying coercion are
constructive and follow the same scheme. We give a transformation-function employing two
lists xs and ys: the list ys supplies fresh object-names y with which we replace meta-names y
in the continuations of binders; xs keeps track of these instantiations, so that y can be restored
whenever y is encountered.

Remark: All material presented in this chapter has been formalized in Isabelle/HOL; the
proof-scripts are available at http://www7.in.tum.de/~roeckl/PI/syntax.shtml. The for-
mal derivation of the theory of contexts is presented in a technical report [RHB00].

3.1 Formal Syntax

In the semantic description of languages with binders, instantiation of placeholders and re-
naming to avoid capture are essential. There are two basic ways to encode these operations,
depending on the syntactic approach. In a classical �rst-order syntax, substitutions ful�ll
this purpose, whereas a higher-order (abstract) syntax (HOAS) employs �-reduction and �-
conversion of an underlying �-calculus. This distinction is independent of theorem-proving
tools. When formalizing a �rst-order syntax one always obtains a deep embedding, whereas
HOAS can be formalized in both deep and shallow embeddings. Due to the necessity of a
substitution-function, the formalization and application of �rst-order syntax is usually tedious
and prone to errors. On the other hand, �rst-order syntax allows the user to access free
and bound variables alike, and provides him/her with a structural induction-principle. In
higher-order syntax, the user does not have to de�ne substitutions to implement instantiation
and capture-avoiding renaming, but loses structural induction, because the continuations of
binders are functions into rather than objects from the datatype. As an example, consider
the �-calculus process ax:�bx:0 emitting along channel b a name received via channel a; the
name x acts as a placeholder for the name that the continuation of the process delivers. In
�rst-order syntax, it is represented by ax:�bx:0, endowing all names with an equal status. In
higher-order syntax, the representation is ax:�bx:0, to be read as taking a name a and a func-
tion �x: �bx:0. Here, a and b are ordinary names, whereas x is a bound variable from the
underlying �-calculus.

Names In process algebra, the setN of names is usually assumed to be countably in�nite; see
also Chapter 2. This is particularly important for the �-calculus, where the semantic analysis
relies on an arbitrarily large amount of fresh names. The process !(�b)�ab:0, for example,
continuously produces fresh names b to emit them over channel a; recall from Section 2.2 that
the `bang'-operator ! denotes replication. In a context such as (�a)(!(�b)�ab:0 j !ab0:�cb0:0), where
the received names are not necessarily discarded, a fresh name may have to be chosen for every
output produced by the process. Intuitively, a name is fresh if it does not occur among the
free (alternatively, free and bound) names of a process; see Section 2.2.

Like in Section 2.3.2, we use a;b; : : : to range over object-level names (or, object-names for
short) and a; b; : : : for the meta-level names (or, meta-names). Recall from Section 2.3.2 that
in a shallow embedding, meta-names and object-names cannot be confused; in its negative
formulation, this means that they even cannot be compared. Yet, comparison is necessary in

3.1. FORMAL SYNTAX 37

P ::= 0 P ::= 0 Inaction
j �:P j �:P Silent Pre�x
j �ab:P j �ab:P Output Pre�x
j ab:P j ax:fP (x) Input Pre�x
j (�x)P j (�x)fP (x) Restriction
j P +Q j P +Q Choice
j P jQ j P jQ Parallel Composition
j [a = b]P j [a = b]P Matching
j [a 6= b]P j [a 6= b]P Mismatching
j !P j !P Replication

Table 3.1: Deep and shallow embeddings of the �-calculus. In a deep embedding,
input and restriction combine names and processes, and do not involve functions, whereas in a
shallow embedding, input and restriction are considered as binders of the underlying functional
mechanism, and hence take process-abstractions as arguments.

syntactic transformations on the object-level, such as substitutions, implemented by condition-
als if then else . Applied to some meta-variable x in the scope of a binder, this yields an
expression �x: if a = x then e1 else e2. Although a and x are usually meant to be distinct, the
evaluation of the expression depends on which value will be inserted for x (even if it will never
be instantiated). In Section 3.1.2, we discuss how syntactic transformations can be performed
nevertheless, using a coercion-technique �rst instantiating meta-names with fresh object-names
and reabstracting over them after the comparison.

In the following two sections, we introduce a deep (Section 3.1.1) and a shallow (Section 3.1.2)
embedding of the �-calculus. In the shallow embedding, we replace structural induction, which
the deep embedding yields naturally, by rule-induction over a well-formedness predicate.

Remark: In both sections, we reason on the level of a �rst-order syntax Pfo and a higher-
order syntax Pho, respectively. The formalizations are straightforward implementations of the
syntaxes in Isabelle/HOL, and therefore the mechanized proofs can be considered as proof-
checked versions of the corresponding arguments on the level of Pfo and Pho.

3.1.1 A First-Order Syntax

In this section, we develop a straightforward deep embedding of the �-calculus. It is a di-
rect formalization of the set of �rst-order processes Pfo as described by the left-hand recursive
datatype in Table 3.1, which in turn is a one-to-one image of the monadic �-calculus; see
the de�nition of P in Section 2.2. Every constructor in this syntax applies purely �rst-order
arguments, even the binders input and restriction. The input operator ab:P , for example, is
of type (N ! N ! Pfo)! Pfo, taking two names and a process as arguments and delivering a
process. Therefore, all names occuring in a process P 2 Pfo are object-variables. The de�nition
of Pfo naturally yields structural induction, and Isabelle/HOL automatically computes the cor-
responding principles. A somewhat tricky part of the formalization is the implementation of a
suitable notion of substitution. This general problem of deep embeddings becomes particularly

38 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

dbfo(0)
def
= 0

dbfo(�:P)
def
= dbfo(P)

dbfo(�ab:P)
def
= dbfo(P)

dbfo(ab:P)
def
= 1 + dbfo(P)

dbfo((�b)P)
def
= 1 + dbfo(P)

dbfo(P +Q)
def
= max(dbfo(P); dbfo(Q))

dbfo(P jQ) def
= max(dbfo(P); dbfo(Q))

dbfo([a = b]P)
def
= dbfo(P)

dbfo([a 6= b]P)
def
= dbfo(P)

dbfo(!P)
def
= dbfo(P)

Table 3.2: Depth of binders in �rst-order processes. The function dbfo computes the
depth of binders for �rst-order processes. The information is necessary for the creation of a
suÆciently large supply of fresh names.

tedious for languages with a large number of operators, because there has to be an instance of
the substitution-function for each of them. In this section, we use a very simplistic notion of
substitution which works properly only in a limited range of application; for instance, it may
deliver wrong results in an �-conversion. This suÆces for our purpose, however, because we
are merely interested in the normalization of processes and in proving �-equivalence.

In the sequel, we introduce the substitution-function and use it to de�ne normalization of
processes and �-equivalence upon Pfo. A normalization-function replaces bound names in a
process by fresh names, and hence avoids the multiple use of a name in di�erent binders along
a path in the process-tree; �-equivalence identi�es processes which are equal except for their
bound names, for instance a process P and its normalization P 0. In Section 3.3, we show that
the transformation of a �rst-order process P to a higher-order process and back amounts to a
normalized process P 0, hence P and P 0 are �-equivalent.

Counting Binders A usual strategy for proving that two processes are �-equivalent is to
compare their process-trees, instantiating the continuations of binders with fresh names, hence
abstracting from the bound names of the processes. The processes ab:P and a0b0:P 0 can be
considered �-equivalent, for instance, if a = a0, and Pfc=bg and P 0fc=b0g are �-equivalent
for a fresh c. In theorem-proving, it is often convenient to produce a supply of fresh names a
priori. The necessary size of such a supply depends on the number of binders along the paths
in the process-tree. It can be determined by static analysis employing a recursive function
dbfo, as de�ned in Table 3.2. Whenever the function encounters a binder, it is incremented by
one; for instance, dbfo(ab:P) = 1+dbfo(P). For branching combinators, the function naturally
takes the maximum; for example, dbfo(P jQ) = max(dbfo(P); dbfo(Q)).

Free, bound, and fresh names As mentioned above, there is an obvious one-to-one corre-
spondence between the monadic �-calculus and Pfo. The functions computing free and bound
names can therefore be directly adapted from Section 2.2.1, see Table 3.3. For instance, the
free names of a process ab:P are computed from the free names of P by �rst removing b and
consecutively adding a, yielding fnfo(ab:P) = fag [(fnfo(P) � fbg). In our formalization in
Isabelle/HOL, we use the pre-de�ned function insert to add a to fnfo(P) � fbg. The set
of names of a process P is simply de�ned as the union of free and bound names, that is,
nfo(P) = fnfo(P) [bnfo(P). We consider a name to be fresh in a process if it occurs neither
among its free nor its bound names. An alternative notion of freshness might allow bound

3.1. FORMAL SYNTAX 39

fnfo(0)
def
= ;

fnfo(�:P)
def
= fnfo(P)

fnfo(�ab:P)
def
= fa;bg [fnfo(P)

fnfo(ab:P)
def
= fag [(fnfo(P)� fbg)

fnfo((�b)P)
def
= fnfo(P)� fbg

fnfo(P +Q)
def
= fnfo(P) [fnfo(Q)

fnfo(P jQ) def
= fnfo(P) [fnfo(Q)

fnfo([a = b]P)
def
= fa;bg [fnfo(P)

fnfo([a 6= b]P)
def
= fa;bg [fnfo(P)

fnfo(!P)
def
= fnfo(P)

nfo(P)
def
= fnfo(P) [bnfo(P)

bnfo(0)
def
= ;

bnfo(�:P)
def
= bnfo(P)

bnfo(�ab:P)
def
= bnfo(P)

bnfo(ab:P)
def
= fbg [bnfo(P)

bnfo((�b)P)
def
= fbg [bnfo(P)

bnfo(P +Q)
def
= bnfo(P) [bnfo(Q)

bnfo(P jQ) def
= bnfo(P) [bnfo(Q)

bnfo([a = b]P)
def
= bnfo(P)

bnfo([a 6= b]P)
def
= bnfo(P)

bnfo(!P)
def
= bnfo(P)

Table 3.3: Free, bound, and fresh names of �rst-order processes. A name is free in
a process if it is not in the scope of an input pre�x or a restriction, otherwise it is bound. A
name is fresh for a process P if it is neither free nor bound in P .

names as well; yet, we are interested in �-conversion-free substitutions, hence the stricter
condition.

Substitution We de�ne only a basic notion of substitution which does not prevent name-
capturing by �-conversion, but works as intended in case the substitute is fresh or equal to the
substituent. It is based on a conditional rewriting names,

afc=dg def
= if a = d then c else a;

and is de�ned primitively recursively on the level of processes. We use Pfc=dg for a syntax:
P is a process, c is the substitute, and d is the substituent; Table 3.4 contains the whole set of
de�ning rules. The interesting part is the de�nition of substitution for processes with binders,
that is, (ab:P)fc=dg and ((�b)P)fc=dg. Consider the de�ning equations for inaction, output,
and input:

0fc=dg def
= 0

(�ab:P)fc=dg def
= afc=dgbfc=dg:Pfc=dg

(ab:P)fc=dg def
= if b = d then afc=dgb:P else afc=dgb:Pfc=dg

The de�nitions for inaction and output are straightforward: the one does not contain names
anyway, and the other replaces the names and recursively applies the substitution to its con-
tinuation. The de�nition of (ab:P)fc=dg is more intricate. Clearly, the subject a is replaced
as usual. For the object b two cases can be considered: (1) if it is equal to the substituent
d, it follows that d cannot occur free in P and does not have to be replaced there, hence the
substitution can stop; (2) if it is di�erent from d, it is left unchanged, and the substitution
is applied regularly to the continuation, where certainly b will never be replaced by c. We
formalize the above de�ning equations as follows:

40 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

0fc=dg def
= 0

(�:P)fc=dg def
= �:Pfc=dg

(�ab:P)fc=dg def
= afc=dgbfc=dg:Pfc=dg

(ab:P)fc=dg def
= if b = d then afc=dgb:P else afc=dgb:Pfc=dg

((�x)P)fc=dg def
= if x = d then (�x)P else (�x)Pfc=dg

(P +Q)fc=dg def
= Pfc=dg+Qfc=dg

(P jQ)fc=dg def
= Pfc=dg jQfc=dg

([a = b]P)fc=dg def
= [afc=dg = bfc=dg]Pfc=dg

([a 6= b]P)fc=dg def
= [afc=dg 6= bfc=dg]Pfc=dg

(!P)fc=dg def
= !Pfc=dg

Table 3.4: Substitution of names in processes. The function f = g implements a basic
notion of substitution which works correctly for fresh substitutes. It suÆces to de�ne �-
equivalence (see Table 3.5) and normal-forms (see Table 3.7).

fosubst (foNull) c d = foNull

fosubst (foTau P) c d = foTau (fosubst P c d)

fosubst (foOut a b P) c d = foOut (fonsubst a c d) (fonsubst b c d)

(fosubst P c d)

fosubst (foIn a b P) c d = if b=d then foIn (fonsubst a c d) b P

else foIn (fonsubst a c d) b (fosubst P c d)

As an example for the name-capturing that can be caused by the function, consider ab:�ac:0
with b 62 fa; cg, and suppose that c is to be replaced by b. Applying f = g, we obtain,

(ab:�ac:0)fb=cg = ab:(�ac:0)fb=cg because a 6= c and b 6= c
= ab:�ab:(0)fb=cg because a 6= c
= ab:�ab:0:

After the transformation, the output-object is suddenly bound by the input-pre�x. The result-
ing process is certainly not �-equivalent to the original process. Ideally, the b bound by the
input-pre�x should be converted into a fresh name b0 before substituting b for c in the contin-
uation. The problem is that such an �-conversion necessitates a notion of substitution, which
we are currently trying to de�ne. However, the function works well if the substitute is fresh.
As a consequence, it suÆces for our purpose of introducing normalization and �-equivalence.
In general, it further yields a notion of capture-avoiding substitution if a normalization is per-
formed before each regular substitution. As we have seen above, a suitable supply of fresh
names can be obtained from static analysis.

We write Pfc1=d1; : : : ; cn=dng for a sequence of substitutions Pfcn=dng : : :fc1=d1g. Note
that the order of the substitutions is reversed; that is, the argument fcn=dng is applied �rst,
and fc1=d1g is applied last. In our formalization, we implement Pfc1=d1; : : : ; cn=dng in terms
of a primitively recursive function folsubst as follows:

folsubst P [] = P

folsubst P (x#xs) = fosubst (folsubst P xs) (fst x) (snd x)

3.1. FORMAL SYNTAX 41

0 =� 0 �0
P =� P

0

�:P =� �:P
0 �1

P =� P
0

�ab:P =� �ab0:P 0 �2

Pfc=bg =� P
0fc=bg0 c 62 nfo(P)� fbg c 62 nfo(P

0)� fb0g
ab:P =� ab

0:P 0 �3

Pfc=bg =� P
0fc=bg0 c 62 nfo(P)� fbg c 62 nfo(P

0)� fb0g
(�b)P =� (�b0)P 0 �4

P =� P
0 Q =� Q

0

P +Q =� P
0 +Q0 �5

P =� P
0 Q =� Q

0

P jQ =� P
0 jQ0 �6

P =� P
0

[a = b]P =� [a = b]P 0 �7
P =� P

0

[a 6= b]P =� [a 6= b]P 0 �8
P =� P

0

!P =� !P 0 �1

Table 3.5: �-equivalence for �rst-order processes. We de�ne �-equivalence as an inductive
binary predicate on Pfo.

The list xs in folsubst P xs denotes fc1=d1; : : : ; cn=dng. Later, in an (alternative) imple-
mentation of normalization, xs represents a simple list of pairs to be used by a transformation-
function; see below.

�-equivalence Intuitively, two processes are �-equivalent if they di�er only in their bound
names, such as ab:�ab:0 and ac:�ac:0. We implement �-equivalence on Pfo in terms of an
inductive binary predicate =�; Table 3.5 shows the de�ning axiom and rules. Obviously,
syntactic equality is strictly included. Rules �3 and �4 for input and restriction abstract from
the bound names by comparing instantiations of the continuations with respect to a fresh
name. According to this de�nition, clearly ab:�ab:0 =� ac:�ac:0.

As an example, consider Rule �2: two output-processes �ab:P and �a0b0:P 0, are considered
�-equivalent if a = a0 and b = b0, and also their continuations P and P 0 are �-equivalent. The
�rst two conditions can be encoded implicitely:

P =� P
0

�ab:P =� �ab:P 0 �2

Again, the interesting cases are input and restriction. In order to abstract from the bound
names, the continuations are instantiated with a fresh name before comparison. To be precise,
a name c chosen for comparing the continuations of ab:P and ab0:P 0 is allowed to equal b or
b0, depending on whether it is fresh in the other process:

Pfc=bg =� P
0fc=bg0 c 62 nfo(P)� fbg c 62 nfo(P

0)� fb0g
ab:P =� ab

0:P 0 �3

We adopt this more liberal attitude towards freshness with regard to the adequacy-proof in
Section 3.3. The reason is that there we want to identify normalized processes with their
originals. In the proof of �-equivalence, we use the bound name of the normal-form in order
to instantiate both normalized and original process. According to the rules for input and
restriction, �3 and �4, this is possible if the name used in the normalization is fresh in the
original process. Note that this liberalization does not a�ect the correctness of the de�nition.

42 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

0 =ys
� 0

�00
P =ys

� P 0

�:P =ys
� �:P 0 �01

P =ys
� P 0

�ab:P =ys
� �ab:P 0 �02

Pfhd(ys)=bg =tl(ys)
� P 0fhd(ys)=b0g

ab:P =ys
� ab0:P 0 �03

Pfhd(ys)=bg =tl(ys)
� P 0fhd(ys)=b0g

(�b)P =ys
� (�b0)P 0 �04

P =ys
� P 0 Q =ys

� Q0

P +Q =ys
� P 0 +Q0 �05

P =ys
� P 0 Q =ys

� Q0

P jQ =ys
� P 0 jQ0 �06

P =ys
� P 0

[a = b]P =ys
� [a = b]P 0 �07

P =ys
� P 0

[a 6= b]P =ys
� [a 6= b]P 0 �08

P =ys
� P 0

!P =ys
� !P 0 �9

Table 3.6: An alternative �-equivalence predicate for �rst-order processes. Names
from a list ys are used to instantiate bound variables. It can be shown that if ys provides
a suÆcient amount of distinct fresh names, P =ys

� P 0 implies P =� P 0. The easier to use
predicate =ys

� can thus be used as a proof tool for =� .

If either b or b0 equals c (or maybe even both), no substitution will take place in the a�ected
process, hence no name-capturing can occur. In case of inequality, the freshness-condition has
to be ful�lled, anyway.

Mechanizing proofs of �-equivalence As we have seen, the rules �3 and �4 for input and
restriction employ fresh names to instantiate to continuations of the two binders. These fresh
names are chosen dynamically when needed. An alternative way of de�ning �-equivalence,
which is closer to an implementation, is to compute a list of fresh names a priori by static
analysis based on dbfo and nfo. In Table 3.6, we de�ne this implementation =ys

� of =� ,
where ys is the list of names used to instantiate continuations of binders. The de�ning rules
for =ys

� are identical to those for =� except for Rules �03 and �04: there the �rst element
of ys is used without caring for freshness. As an example, the rules for output-pre�x and
input-pre�x are (where the latter has reduced to a simpler form),

P =ys
� P 0

�ab:P =ys
� �ab:P 0 �

0
2

Pfhd(ys)=bg =tl(ys)
� P 0fhd(ys)=b0g

ab:P =ys
� ab0:P 0 �03

Of course, =ys
� does not exactly specify =� : for example, ac:�ab:0 =

[b]
� ad:�ad:0, although

the two processes are obviously not �-equivalent (indeed, they are rejected by =�). However,
for suitable ys, we can prove that P =ys

� P 0 implies P =� P
0.

Lemma 3.1 Let P; P 0 2 Pfo, and let ys 2 N n be a list of names such that (1) n is greater than
or equal to dbfo(P), (2) ys does not contain duplicates, (3) all names in ys are fresh to both P
and P 0. Then, P =ys

� P 0 implies P =� P
0.

Proof: By rule-induction over P =ys
� P 0. The proof is a straightforward case-analysis using

monotonicity properties of free and bound names with respect to substitutions. In particular,
we apply that nfo(Pfc=dg) � fcg [nfo(P), which follows by structural induction on P . The
proof has been formalized in Isabelle/HOL, and consists of about �fty lines of code. 2

3.1. FORMAL SYNTAX 43

[[0]]ysnm
def
= 0

[[�:P]]ysnm
def
= �:[[P]]ysnm

[[�ab:P]]ysnm
def
= �ab:[[P]]ysnm

[[ab:P]]ysnm
def
= a hd(ys):[[Pfhd(ys)=bg]]tl(ys)nm

[[(�b)P]]ysnm
def
= (�hd(ys))[[Pfhd(ys)=bg]]tl(ys)nm

[[P +Q]]ysnm
def
= [[P]]ysnm + [[Q]]ysnm

[[P jQ]]ysnm def
= [[P]]ysnm j [[Q]]ysnm

[[[a = b]P]]ysnm
def
= [a = b][[P]]ysnm

[[[a 6= b]P]]ysnm
def
= [a 6= b][[P]]ysnm

[[!P]]ysnm
def
= ![[P]]ysnm

Table 3.7: Normalization of �rst-order processes. The function [[]]ysnm computes normal-
ized process in which all bound names are replaced by names from ys. If ys supplies suÆciently
many distinct names, the normalized and the original processes are �-equivalent.

Normalization In our adequacy proof for higher-order with respect to �rst-order syntax, we
use a normal-form which speci�es the transformation of a �rst-order process when translated
into a higher-order process and back. In this normal-form, all names occurring in binders
along a path through a process-tree are distinct. Notice that for higher-order processes, we
need not|and cannot|de�ne a notion of normalization, because there the bound names are
handled entirely by the meta-level, and are therefore not accessible on the object-level. As an
example, consider the process ab:�ab:(�b)�ab:0. It has a process tree with exactly one path,
along which name b is bound twice: once by the input-pre�x ab in the �rst output-pre�x �ab,
and a second time by the restriction-operator (�b) in the second. This process is clearly not
in normal-form.

Our normalization-function [[]]ysnm is parameterized over a list of names ys, such as we have
encountered it in the mechanized version of �-equivalence already. Also here, we leave it
to static analysis to determine a suitable ys. Table 3.7 shows the de�ning equations of the
recursive function. Consider the de�ning rules for output, input, and parallel composition,

[[�ab:P]]ysnm
def
= �ab:[[P]]ysnm

[[ab:P]]ysnm
def
= a hd(ys):[[Pfhd(ys)=bg]]tl(ys)nm

[[P jQ]]ysnm def
= [[P]]ysnm j [[Q]]ysnm

Output-pre�x and parallel composition are treated in the usual compositional style. When
encountering an input pre�x, [[]]ysnm replaces the object b with the �rst element of ys and
further substitutes it for every occurrence of b in the continuation before continuing with the
normalization. With a list [c;d] of fresh names, we obtain for our example,

[[ab:�ab:(�b)�ab:0]]
[c;d]
nm = ac:[[�ac:(�b)�ab:0]]

[d]
nm substitute c for b in continuation

= ac:�ac:[[(�b)�ab:0]]
[d]
nm

= ac:�ac:(�d)[[�ad:0]]
[]
nm substitute d for b in continuation

= ac:�ac:(�d)�ad:[[0]]
[]
nm

= ac:�ac:(�d)�ad:0

In analogy to =ys
� , this normalization depends on ys being a list with a suÆcient amount of

distinct fresh names. With this condition being ful�lled, the normalized process is �-equivalent
to the original, such as in our example: ab:�ab:(�b)�ab:0 =� ac:�ac:(�d)�ad:0. Note that for the
two binders, c and d can be chosen as `fresh' names, because they do not occur in the �rst

44 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

process and only occur in the respective binders of the second; similarly, b could have been
chosen, because it does not occur in the second process.

Lemma 3.2 Let P 2 Pfo and ys 2 N n such that (1) dbfo(P) � n, (2) the names in P and ys
are distinct, and (3) ys does not contain duplicates. Then, [[P]]ysnm =� P .

Proof: By induction on the structure of P . In fact, we prove a stronger result:

Let P 2 Pfo. For all xs 2 (N�N)m and ys 2 N n such that dbfo(P) � n, the names
in ys are distinct from those in P and xs, and ys does not contain duplicates, it
holds that [[Pfxsg]]ysnm =� Pfxsg.

This strengthening is necessary, because whenever a binder is encountered, a substitution is
applied according to the de�nitions of [[]]ysnm (see Table 3.7) and =� (see Table 3.5). As these
substitutions cannot be eliminated, they have to be taken into account a priori. 2

Remark: The proof of Lemma 3.2 relies on the liberal de�nition of Rules �3 and �4. Recall
that they do not require absolute freshness of the substitute but allow for a reuse of the name
referred to by the binder.

Note that there is a close correspondence between [[]]ysnm and =ys
� . For our example, this

means ab:�ab:(�b)�ab:0 =
[c;d]
� ac:�ac:(�d)�ad:0. In general, [[P]]ysnm =ys

� P for every ys, because
of the similar derivations (see Tables 3.6 and 3.7). This can be proved in Isabelle/HOL almost
automatically, applying induction and one of its automatic tactics.

Remark: The function [[]]ysnm is not primitively recursive, because it applies a substitution
to the continuations of binders before a recursive application. Therefore, the formalization in
Isabelle/HOL requires a measure to guarantee monotonicity. We use the size of a process-term,
adding a lemma that substitutions do not change the size of a process.

Mechanizing the derivation of normal-forms Our normalization [[]]ysnm applies a substi-
tution whenever it encounters a binder. This means that parts of the processes are transformed
several times, by di�erent substitutions. Here we give an alternative characterization [[]]

(xs;ys)
nm ,

which traverses the process-tree only once, in a top-down manner. Like [[]]ysnm, it uses ys as a
supply of fresh names. Unlike it, however, it does not only treat bound names, but transforms
every free name it encounters according to an auxiliary list xs. As a result, it simultaneously
applies substitution and normalization, and yields a primitively recursive function.

A complete de�nition of [[]]
(xs;ys)
nm is given in Table 3.8. As an example, consider the case

of an input-pre�x ab:P . In the corresponding de�ning equation, �rst a is treated according to
xs, then b is replaced by the �rst name in ys, and the pair (hd(ys);b) is added to xs to be
used in the normalization of the continuation. This results in the following rule:

[[ab:P]]
(xs;ys)
nm

def
= [[a]]xsnm hd(ys):[[P]]

((hd(ys);b)xs;tl(ys))
nm

For a name a, the function [[]]xsnm searches xs for the �rst occurrence of a, and then substitutes
the name going along with a in xs for a. If a does not occur in xs, it is left unchanged:

[[a]]
[]
nm

def
= a

[[a]]
(c;b)xs
nm

def
= if a = b then c else [[a]]xsnm

3.1. FORMAL SYNTAX 45

[[0]]
(xs;ys)
nm

def
= 0

[[�:P]]
(xs;ys)
nm

def
= �:[[P]]

(xs;ys)
nm

[[�ab:P]]
(xs;ys)
nm

def
= [[a]]xsnm[[b]]

xs
nm:[[P]]

(xs;ys)
nm

[[ab:P]]
(xs;ys)
nm

def
= [[a]]xsnm hd(ys):[[P]]

((hd(ys);b)xs;tl(ys))
nm

[[(�b)P]]
(xs;ys)
nm

def
= (�hd(ys))[[P]]

((hd(ys);b)xs;tl(ys))
nm

[[P +Q]]
(xs;ys)
nm

def
= [[P]]

(xs;ys)
nm + [[Q]]

(xs;ys)
nm

[[P jQ]](xs;ys)nm
def
= [[P]]

(xs;ys)
nm j [[Q]](xs;ys)nm

[[[a = b]P]](xs;ys)nm
def
= [[[a]]xsnm = [[b]]xsnm][[P]]

(xs;ys)
nm

[[[a 6= b]P]]
(xs;ys)
nm

def
= [[[a]]xsnm 6= [[b]]xsnm][[P]]

(xs;ys)
nm

[[!P]]
(xs;ys)
nm

def
= ![[P]]

(xs;ys)
nm

Table 3.8: An alternative derivation of normal-forms. Instead of substituting the fresh
names for the bound names immediately, we add them as pairs to an auxiliary list xs, and
treat every name that we encounter along the continuation according to xs.

As a consequence, every b in a process P which is in the scope of a binder, is replaced by the
appropriate name from ys; names a that are free are left unchanged. It is essential to use the
�rst tuple for the concerned name, because it refers to the current binder. To illustrate this,
consider the normalization of the process ab:�ab:(�b)�ab:0 with a supply of fresh names [c;d]:

[[ab:�ab:(�b)�ab:0]]
([];[c;d])
nm = [[a]]

[]
nmc:[[�ab:(�b)�ab:0]]

([(c;b)];[d])
nm

= ac:[[a]]
[(c;b)]
nm [[b]]

[(c;b)]
nm :[[(�b)�ab:0]]

([(c;b)];[d])
nm

= ac:�ac:(�d)[[�ab:0]]
([(d;b);(c;b)];[])
nm

= ac:�ac:(�d)[[a]]
[(d;b);(c;b)]
nm [[b]]

[(d;b);(c;b)]
nm :[[0]]

([(d;b);(c;b)];[])
nm

= ac:�ac:(�d)�ad:0

The resulting process is in normal-form, and indeed coincides with what one would obtain when
applying [[]]ysnm to it. In general, we can show that for a suitable ys, the two normalizations
yield syntactically equal results.

Lemma 3.3 Let P 2 Pfo and let ys 2 N n be a list of names such that (1) the length of ys is
greater than or equal to the depth of binders of P , (2) ys does not contain duplicates, and (3)

all names in ys are fresh to P . Then, [[P]]ysnm = [[P]]
([];ys)
nm .

Proof: By induction on the structure of P . In fact, we prove a stronger result:

For all xs = [(x1;y1); : : : ; (xm;ym)] 2 (N � N)m and ys 2 N n such that (1) the
length of ys is greater than or equal to the depth of binders of P , (2) [y1; : : : ;ym]
and ys do not contain duplicates, (3) no names in fst(xs) = [x1; : : : ;xm] and ys
coincide with names in snd(xs), and (4) the names in fst(xs) and ys are fresh to

P . Then, [[Pfx1=y1; : : : ;xm=ymg]]ysnm = [[P]]
(xs;ys)
nm .

This strengthening is necessary, because every occurrence of a binder yields an additional
substitution in the �rst normalization, and augments xs in the second. It is obvious that the

46 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

dbcho(0)
def
= 0

dbcho(�:P)
def
= dbcho(P)

dbcho(�ab:P)
def
= dbcho(P)

dbcho(ab:fP)
def
= 1 + dbcho(fP b)

dbcho((�b)fP b)
def
= 1 + dbcho(fPc)

dbcho(P +Q)
def
= max(dbcho(P); db

c

ho(Q))

dbcho(P jQ) def
= max(dbcho(P); db

c

ho(Q))

dbcho([a = b]P)
def
= dbcho(P)

dbcho([a 6= b]P)
def
= dbcho(P)

dbcho(!P)
def
= dbcho(P)

Table 3.9: Depth of binders in higher-order processes. The function dbho computes the
depth of binders for higher-order processes. The information is necessary in order to supply
suÆciently many fresh names.

substitution Pfx1=y1; : : : ;xm=ymg corresponds exactly to xs. In fact, in the formalization
in Isabelle/HOL, there is virtually no distinction between them, because the substitution is
formalized as a list of type (N �N)m as well.

Using the �rst normalization, the older occurrence of b is eliminated from the substitution,
whereas in the second it is not. This is not so bad, however, because the second occurrence of
b in xs does not matter anyway, and hence can be removed too without causing harm. The
induction yields a tedious but straightforward case-analysis, and has been fully formalized in
Isabelle/HOL. 2

3.1.2 A Higher-Order Syntax

Let Pho be the set of processes described by the datatype in the right-hand grammar of Ta-
ble 3.1. The syntax contains a higher-order representation of the �-calculus. The input-
operator, for example, is of type (N ! (N ! Pho)) ! Pho, taking a name and a function
from names to processes as arguments in order to yield a process. Therefore, both object- and
meta-variables can occur in a process P 2 Pho. As pointed out in Chapter 2 already, higher-
order syntax faces two main problems: (1) it gives rise to exotic terms, and (2) it does not
provide suitable induction-principles. In this section, we discuss how to extract those terms
modelling the �-calculus, and how to obtain an adequate induction principle simultaneously.
We pick the well-formed, or valid, terms from Pho by means of an inductive predicate, in order
to obtain a set Pwf

ho of well-formed processes. In addition, we apply a set Pwfa
ho of well-formed

process-abstractions. The sets can equivalently be described in terms of predicates Wfp and
Wfpa. In Section 3.3, we give a formalized proof that Pwf

ho corresponds to Pfo, and hence is an
adequate implementation of P.

In the sequel, we present de�nitions of functions that are important in syntax analysis.
Note that in contrast to �rst-order syntax, we do not have access to the bound names, because
they are represented by meta-variables, hence cannot|and need not|de�ne a notion of bound
names.

Counting Binders The function dbho computes the maximal number of binders along each
path of process-trees of higher-order processes, analogously to dbfo for �rst-order processes.
Again, the value is incremented whenever a binder is encountered, and the subtree with the
greater number is considered for choice and parallel composition. An auxiliary name c is

3.1. FORMAL SYNTAX 47

Free names of higher-order processes:

fn(0)
def
= ;

fn(�:P)
def
= fn(P)

fn(�ab:P)
def
= fa;bg [fn(P)

fn(ax:fP (x))
def
= fag [fna(fP)

fn((�x)fP)
def
= fna(fP)

fn(P +Q)
def
= fn(P) [fn(Q)

fn(P jQ) def
= fn(P) [fn(Q)

fn([a = b]P)
def
= fa;bg [fn(P)

fn([a 6= b]P)
def
= fa;bg [fn(P)

fn(!P)
def
= fn(P)

Free names of higher-order process abstractions:

fna(fP)
def
= f a j 8b: a 2 fn(fP (b)) g

fnaa(ffP)
def
= f a j 8b: a 2 fna(ffP (b)) g

Table 3.10: Free Names of Higher-Order Processes: The free names of higher-order
processes and process abstractions are computed by a primitively recursive function fn and
a derived function fna, using each other mutually. We say that a name is free in a process
abstraction, if it is free in all its instantiations.

used to instantiate the process abstractions in the continuations of input-pre�x and restric-
tion. For well-formed higher-order processes, that is, for processes corresponding to �rst-
order processes, the result covers indeed the depth of binders. For exotic terms, it may de-
pend on the parameter c what number is computed. As an example, consider the process

P
def
= ax:if x = c then (�y)�ay:0 else 0. Then dbcho(P) = 2, whereas dbdho(P) = 1 for every

d 6= c. This is not so bad, however, because we apply dbho only in proofs about well-formed
processes.

Free and Fresh Names. We compute the set of free names of higher-order processes in terms
of a primitively recursive function fn, which is similar to the standard solution for �rst-order
processes. The interesting part of the de�nition are the treatment of the process abstractions
in the continuations of input-pre�x and restriction:

fn(ax:fP (x))
def
= fag [fna(fP)

fn((�x)fP)
def
= fna(fP)

We capture these cases by means of an auxiliary function fna, adding a name if it occurs in all
instantiations of the process-abstraction:

fna(fP)
def
= f a j 8b: a 2 fn(fP (b)) g:

For higher-order representations of �-calculus processes, that is, for terms in Pwf
ho , the function

fn indeed computes the same set of names as fnfo does for the corresponding representation in
Pfo. We need not|and cannot|compute the bound names of higher-order processes, because
these are part of the meta-level of the theorem-prover.

We call a name fresh in a process or process-abstraction, if it does not occur among its free
names. This notion of freshness is di�erent from the one we employ for �rst-order processes,

48 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

Wfp(0)
W0

Wfp(P)
Wfp(�:P)

W1
Wfp(P)

Wfp(�ab:P)
W2

Wfpa(fP)
Wfp(ab:fP (b))

W3

Wfpa(fP)
Wfp((�b)fP (b))

W4
Wfp(P) Wfp(Q)

Wfp(P +Q)
W5

Wfp(P) Wfp(Q)
Wfp(P jQ) W6

Wfp(P)
Wfp([a = b]P)

W7
Wfp(P)

Wfp([a 6= b]P)
W8

Wfp(P)
Wfp(�:P)

W9

Table 3.11: Well-formed higher-order processes. The set Pwf
ho is de�ned in terms of an

inductive predicateWfp, which makes use of a similar predicate,Wfpa for well-formed process
abstractions over one argument, see Table 3.12.

where we have required that a fresh name must not occur among the bound names either.

fresh(a; P)
def
= a 62 fn(P)

fresha(a; fP)
def
= a 62 fna(fP)

freshaa(a; ffP)
def
= a 62 fnaa(ffP)

The following results about free and fresh names can easily be derived.

Lemma 3.4 Let P 2 Pho and fP 2 Pa
ho. Then:

(a) The sets of free names fn(P) and fna(fP) are �nite.

(b) There is a name which is fresh for fn(P); there is a name which is fresh for fna(fP).

(c) For every n 2 IN , there is a set fa1; : : : ; ang of (distinct) names which are fresh in fn(P);
similarly for fna(fP).

Proof: (a) By induction on P employing that fna is de�ned in terms of a univarsal quanti�ca-
tion. Item (b) is as a direct consequence of (a) by referring to the existence of countably many
names. Item (c) as a corollary of (b) referring to the observation that adding an element to a
�nite set again yields a �nite set. 2

Well-Formedness As pointed out in Chapter 2, the set of higher-order processes Pho con-
tains exotic terms due to the strength of the logical framework o�ered by Isabelle/HOL. We ex-
tract the well-formed processes Pwf

ho and process-abstractions Pwfa
ho by means of a two-layer pred-

icate, whereWfp covers the processes and is based onWfpa dealing with process-abstractions,
following an idea of Despeyroux, Felty, and Hirschowitz [DFH95]. As process-abstractions em-
ploy names-abstractions, that is, functions from names to processes, we de�ne an auxiliary
predicate Wfna allowing only for constant and identity functions:

Wfna(�x: x)
Wn0

Wfna(�x: a)
Wn1

We de�ne bothWfp andWfpa inductively, from which Isabelle/HOL automatically computes
principles for induction and case-injection. A complete formal description of the rules is given
in Tables 3.11 and 3.12. Intuitively, a process in Pho is well-formed if it is extensionally equal

3.1. FORMAL SYNTAX 49

Wfpa(�x: 0)
Wa0

Wfpa(fP)
Wfpa(�x: �:fP (x))

Wa1
Wfna(fa) Wfna(fb) Wfpa(fP)

Wfpa(fa(x)fb(x):fP (x))
Wa2

8b:Wfpa(�b: ffP (b; b)) 8b:Wfpa(�x: ffP (x;b))
Wfpa(�x: ab:ffP (x; b))

Wa3

8b:Wfpa(�b: ffP (b; b)) 8b:Wfpa(�x: ffP (x;b))
Wfpa(�x: (�b)ffP (x; b))

Wa4

Wfpa(fP) Wfpa(fQ)
Wfpa(�x: fP (x) + fQ(x))

Wa5
Wfpa(fP) Wfpa(fQ)
Wfpa(�x: fP (x) j fQ(x)) Wa6

Wfna(fa) Wfna(fb) Wfpa(fP)
Wfpa(�x: [fa(x) = fb(x)]fP (x))

Wa7
Wfna(fa) Wfna(fb) Wfpa(fP)
Wfpa(�x: [fa(x) 6= fb(x)]fP (x))

Wa8

Wfpa(fP)
Wfpa(�x: !fP)

Wa9

Table 3.12: Well-formed higher-order process abstractions. The set Pwfa
ho is de�ned in

terms of an inductive predicate Wfpa, the description of which is self-contained; that is, no
further predicate is necessary for the de�nition.

to a higher-order representation of a process in P. The process bx:fW (x) from Section 2.3.2 is
certainly well-formed, whereas bx:fE(x) is not. Recall that

fE = �x: if a = x then 0 else ab:0
fW = �x: ab:0

The predicate Wfpa for process-abstractions over one name is particularly interesting in that
it does not rely on a further predicate for process-abstractions over two names (and so forth).
Instead, its de�nition is self-contained, requiring for the continuations of binders only that
they are well-formed in both arguments. For the input-pre�x, for instance, we hence obtain:
�x: fa(x)b:ffP (x; b) is well-formed, if fa is a well-formed names abstraction, and for all b, the
instantiations �x: ffP (b; x) and �x: ffP (x;b) are well-formed. We thus obtain two versions of
the input rule for Wfp and Wfpa:

Wfpa(fP)
Wfp(ab:fP (b))

W3
8b:Wfpa(�b: ffP (b; b)) 8b:Wfpa(�x: ffP (x;b))

Wfpa(�x: ab:ffP (x; b))
Wa3

The rules concerning the restriction-operator are de�ned analogously. The rules for the other
operators are de�ned compositionally, in a standard way.

To conclude this section, we state some basic results for well-formed processes and process-
abstractions. They state that every instantiation of well-formed process-abstractions yields a
well-formed process, that a name that does not occur in a process-abstraction does not occur
in instantiations with di�erent names, and that it does not matter which name to use when
computing the depth of binders.

Lemma 3.5 Let P 2 Pwf
ho be a well-formed process, and fP 2 Pwfa

ho be a well-formed process
abstraction. Then the following properties hold:

(a) For every name a, the process fP (a) is well-formed.

50 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

(b) If a name a is fresh in fP and a 6= b, then a is fresh in fP (b) as well; that is, fresha(a; fP)
implies fresh(a; fP (b)).

(c) The auxiliary name for counting the binders does not matter; that is, dbcho(P) = dbc
0

ho(P)
and dbcho(fP (b)) = dbc

0

ho(fP (b
0)), for arbitrary b;b0; c; c0 2 N .

Proof: By induction on Pwf
ho and Pwfa

ho , using the automatic tactics of the theorem-prover. 2

In the following two sections, we use the well-formedness predicates Wfp and Wfpa �rst to
derive vital syntactic properties of the �-calculus (see Section 3.2), and then to prove that Pwf

ho

is an adequate model of P (see Section 3.3). The proofs make extensive use of the induction-
principles obtained from the de�nitions ofWfp andWfpa, and rely on the extinction of exotic
terms by the well-formedness predicates.

3.2 Deriving Syntactic Properties

When reasoning about the semantics of processes, a number of syntactic principles are regu-
larly applied: terms are instantiated with values received in an input, identi�ers are renamed to
avoid name-capturing, or processes are compared. In shallow embeddings, instantiations and
capture-avoiding renamings are generally provided by the meta-level in terms of �-reduction
and �-conversion; see Section 2.3.2. In order to compare terms syntactically, Isabelle/HOL
o�ers Leibnitz-equality on its object-level, that is, an extensional notion of �-equivalence: two
functions f and g are considered to be equal, f = g, if they are equal for all arguments:
8x: f(x) = g(x). In contrast, Coq implements equality merely as the smallest reexive rela-
tion, hence does not even consider transitivity. We will see in Section 3.2.2 that for well-formed
process-abstractions Leibnitz-equality can be further specialized, so that only a single instan-
tiation with a fresh name has to be considered. Further, in Section 3.2.3 we derive a principle
for abstracting over a free name in a process. Such an abstraction necessarily involves a com-
parison of names; recall from above that this is generally an intricate task in higher-order
syntax.

A theory of contexts In [HMS00], Honsell, Miculan, and Scagnetto present a theory of
contexts for the �-calculus which describes three syntactic principles that are necessary for an
analysis of processes in a shallow embedding but are not provided by the meta-level. Together
with those principles provided by the meta-level, the three laws allow the user to derive tran-
sitions and to perform bisimulation-proofs (see [HMS00]). Let R 2 Pwf

ho and fP ; fQ 2 Pwfa
ho , and

let a;b 2 N . Then,

Monotonicity: If a is fresh in fP (b) then a is fresh in fP ; that is, fresh(a; fP (b))
implies fresha(a; fP).

Extensionality: fP and fQ are equal if they are equal for a fresh name; that is, if
fresha(a; fP), fresha(a; fQ), and fP (a) = fQ(a), then fP = fQ.

�-Expansion: There exists a function fR 2 Pwfa
ho such that a is fresh in fR and

fR(a) = R.

Monotonicity provides a means to determine whether a name a is fresh in a process-abstraction
fP , by instantiating it with an arbitrary name b. It provides a compositional argument for the

3.2. DERIVING SYNTACTIC PROPERTIES 51

determination of fresh names. In our formalization, it replaces the universal quanti�cation in
the de�nition of fna with the use of a single fresh name. Extensionality of contexts implements
an extensional notion of equivalence. The law is a specialization of Leibnitz-equality over
Pwf
ho , testing only one instantiation with a fresh name instead of all possible instantiations.

�-expansion can be regarded as the reverse of �-reduction: instead of instantiating a process-
abstraction to obtain a process, one abstracts over an object-name in a process to obtain a
process abstraction. This is necessary when applying transition semantics where the rules
concerning restriction deal with instantiations of the continuations in the premises, such as
(�b)fP (b)

��! (�b)f 0P (b) if fP (b)
��! f 0P (b) for a fresh b. As an example, a process term

�ab:bc:�ac:0 should be transformed into �x: �xb:bc:�xc:0. A re-instantiation with a again yields
the original process, that is, �ab:bc:�ac:0.

In their formalization of the �-calculus in Coq, Honsell et al. have to|but are also able
to|state the theory of contexts in terms of axioms, and justify their validity on paper. The
justi�cation is based on a structural argument exploiting that their formalization in Coq does
not produce exotic terms. An alternative proof on paper, based on category-theory, is proposed
by Hofmann [Hof99]. The reason for the validity of the theory of contexts in Coq as well as
the impossibility to derive it within the prover is that Coq o�ers virtually no object-level
such as Isabelle/HOL. There, the theory of contexts is only valid for well-formed processes
and process-abstractions, but can also be derived within the prover. Note, however, that when
extending Coq with Leibnitz-equality, the situation would become the same as in Isabelle/HOL:
well-formedness predicates would have to be de�ned and the three principles could be derived
within the tool.

Remark: Honsell et al. require that names should not be inductive, although this would
be the usual intuition behind names, see Section 2.2. The reason is that inductivity yields
an e�ective notion of equality, from which conditionals could be derived on the object-level.
These conditionals could then be used to produce exotic terms, only that in their presence the
theory of contexts would become inconsistent.

In Sections 3.2.1 through 3.2.3, we discuss each of the three syntactic principles and show how
they can be derived for Pwf

ho in hypothetical proofs relying on well-formedness. Further, in
Section 3.2.2 we demonstrate how exotic terms make the theory of contexts invalid.

3.2.1 Monotonicity

Consider a process-abstraction fP that ought to be instantiated with a fresh name in the
derivation of a transition, or in a bisimulation-proof. The question how to determine a fresh
name for fP is answered by the theory of contexts by instantiating the abstraction with an
arbitrary name b and determining a fresh name for the resulting process fP (b). This argument
is exactly dual to the determination of the free names of fP : there, all instantiations of fP are
considered, and the intersection yields the set free names. Using only one fresh name in the
computation of the free names yields an over-approximation; this implies that the resulting set
includes fna(fP). By contraposition, a name a is fresh in fP if it is fresh in fP (b).

Theorem 3.6 (Monotonicity) If a is fresh in fP (b) then a is fresh in fP 2 Pwfa
ho ; that is,

fresh(a; fP (b)) implies fresha(a; fP).

52 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

Proof: Monotonicity is a direct consequence of the formalizations of the de�nitions of free and
fresh names, see Section 3.1.2 and in particular Table 3.10. Isabelle/HOL proves monotonicity
with one call to an automatic tactic. 2

3.2.2 Extensionality of Contexts

Leibnitz-equality provides an extensional notion of equivalence that allows for a syntactic com-
parison of process-abstractions fP and fQ. The theory of contexts implements a specialization
according to which only a single instantiation of fP and fQ with a fresh name are compared.
This extensionality of contexts is a crucial test for the expressiveness of an object-level, because
it is inconsistent in the presence of conditionals. Consider again the process-abstractions from
Section 2.3.2,

fE = �x: if a = x then 0 else ab:0
fW = �x: ab:0:

No matter what the de�nition of freshness is, any b 6= a should be fresh for fE and fW .
With fE(b) = ab:0 = fW (b), one might be tempted to conclude by applying extensionality of
contexts that fE = fW . On the other hand, fE(a) = 0 6= ab:0 = fW (a), and hence fE 6= fW .

Fortunately, such inconsistencies only arise in the presence of exotic terms like fE, and for
Pwfa
ho extensionality of contexts is valid. The proof makes use of the fact that there are at least

uncountably many names, because it picks an auxiliary fresh name when instantiating the �rst
of the two induction-hypotheses.

Theorem 3.7 (Extensionality) fP 2 Pwfa
ho and fQ 2 Pwfa

ho are equal if they are equal for a
fresh name; that is, if fresha(a; fP), fresha(a; fQ), and fP (a) = fQ(a), then fP = fQ.

Proof: By rule-induction over Wfpa, based on the well-formedness of fP . The interesting
cases are input and restriction with a continuation ffP , because they make use of the fact
that they have two induction-hypotheses each. All other cases are routine. Together with the
premises, we obtain the following goal, for both binders:

H1 First hypothesis: For all b, fQ, and a, if fQ is well-formed, ffP (b; a) = fQ(a), and a is
fresh in �x: ffP (b; x) and fQ, then �x: ffP (b; x) = fQ.

H2 Second hypothesis: For all b, fQ, and a, if fQ is well-formed, ffP (a;b) = fQ(a), and a
is fresh in �x: ffP (x;b) and fQ, then �x: ffP (x;b) = fQ.

P Premises: (1) ffP and ffQ are well-formed in both arguments, (2) a is fresh in ffP and
ffQ, and (3) �x: ffP (x; a) = �x: ffQ(x; a).

C Conclusion: �x: ffP (x; c) = �x: ffQ(x; c) for some arbitrary c.

We have to prove that H1, H2, and P imply C. The proof consists of two steps, applying
one of the induction-hypotheses each. As a preparation, we introduce a fresh name d; this
is possible because fna(ffP (x; c)) and fna(ffQ(x; c)) are �nite (Lemma 3.4(a)). The intricate
part of the proof is to �nd suitable instantiations of the two induction-hypotheses; further,
the mechanization of the justi�cation of the freshness condition is tedious, employing a result
similar to Lemma 3.5(b).

3.2. DERIVING SYNTACTIC PROPERTIES 53

Step 1: First, we instantiate in H1 the name b with d, the process-abstraction fQ with
�x: ffQ(d; x), and a with a, and obtain �x: ffP (d; x) = �x: ffQ(d; x). As a result, we show that
ffP and ffQ are equal in an instantiation of their �rst argument, no matter how the second one
is instantiated. We are thus free to insert the name c from the conclusion.

Step 2: Second, we now repeat this technique with H2, instantiating b with c, the process-
abstraction fQ with �x: ffQ(x; c), and a with d. As a result, we obtain the conclusion �x: ffP (x; c)
= �x: ffQ(x; c). 2

Remark: Recall from RulesWa3 andWa4 in Table 3.12 that we considered process-abstract-
ions ffP as well-formed if they are well-formed for all instantiations of both arguments. This
yields the two universally quanti�ed induction-hypotheses from the above proof.

3.2.3 �-Expansion

The instantiation of a process-abstraction with a name is dealt with by the meta-level in
terms of �-reduction. The reverse, abstracting over a name in a process, is not provided,
but is necessary in the derivation of transitions involving restriction. We derive this principle
of �-expansion in our framework. Both formulation and proof bear several pitfalls, however.
First, it is essential to require explicitely that the abstraction is well-formed, otherwise the
principle turns out to be too weak: to be used in combination with extensionality of contexts
(Theorem 3.7), it has to respect the well-formedness conditions stated there. Second, induction
cannot be applied directly, due to the existential quanti�er in the conclusion (`there exists an
abstraction'). Consider the case where �x: (�y)ffP (y; x) is to be abstracted with respect to some
a in a rule-induction over Wfpa. According to the premises of the resulting proof-obligations,
there are �x: ffP (b; x) and �x: ffP (x;b) for every b (see Wa3 and Wa4 in Table 3.12). From
this one certainly cannot conclude that there exists one genuine abstraction that works for
every b, which would be necessary to complete the argument. Finally, one has to take care
never to involve meta-variables in comparisons. When trying to abstract over a in ab:�bb:0 in a
naive way, for instance, one might go from left to right comparing every name along the path
with a. As a result, one would obtain �x: xb:if b = a then x else bb:0. We solve this problem
by �rst instantiating b with a fresh name c in �bb:0, and then restoring it after the comparison
with a in �cb:0. We encode this coercion-technique in a transformation-function [[]]xsys. The
list ys supplies fresh names, and xs keeps tracks of the renamings so that meta-names can be
restored. Then we show that [[R]]xsys for suitable xs and ys is well-formed, abstracts over a in
R, and that [[R]]xsys(a) = R.

A transformation-function The transformation-function [[]]xsys applies coercion from meta-
names to object-names and back in order to prevent comparisons with meta-names: whenever
a binder is encountered, the continuation is instantiated with a fresh name y from a list ys,
but the binder (input cy:fP (y) or restriction (�y)fP (y)) over y is kept unchanged; instead, a
substitution-obligation (�x: y;y) is added to a list xs, which is itself in the scope of the binder.
The x in �x: y denotes the name a to be abstracted over, which is referred to by a names-
abstraction �x: x; see Table 3.13. As a result, every comparison will work on object-names
only, and will yield the result `these names di�er', for the fresh y; as soon as this has been
noticed, the meta-name is re-inserted referring to list xs. For a preparation, all free names
b except the name a to be abstracted over, are added to xs as pairs (�x:b;b), so that the

54 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

[[0]]xsys
def
= �x: 0

[[�:P]]xsys
def
= �x: �:[[P]]xsys(x)

[[�ab:P]]xsys
def
= �x: [[a]]xs(x)[[b]]xs(x):[[P]]xsys(x)

[[ax:fP (y)]]
xs
ys

def
= �x: [[a]]xs(x)y:[[fP (hd(ys))]]

(y;hd(ys))xs
tl(ys) (x)

[[(�x)fP (y)]]
xs
ys

def
= �x: (�y)[[fP (hd(ys))]]

(y;hd(ys))xs
tl(ys) (x)

[[P +Q]]xsys
def
= �x: [[P]]xsys(x) + [[Q]]xsys(x)

[[P jQ]]xsys def
= �x: [[P]]xsys(x) j [[Q]]xsys(x)

[[[a = b]P]]xsys
def
= �x: [[[a]]xs(x) = [[b]]xs(x)][[P]]xsys(x)

[[[a 6= b]P]]xsys
def
= �x: [[[a]]xs(x) 6= [[b]]xs(x)][[P]]xsys(x)

[[!P]]xsys
def
= �x: ![[P]]xsys(x)

[[a]][]
def
= �x: x

[[a]](fa;b)xs
def
= if a = b then fa else [[a]]

xs

Table 3.13: A transformation-function. List xs contains information about which name
has to be replaced by what, whereas list ys is a supply of fresh names to instantiate bound
variables with.

function will not change them. Name a is left out, so that it will �nally be instantiated with
the meta-name x. Table 3.13 gives a formal de�nition of the transformation-function. While
traversing the process-tree once, every name along the path is transformed according to xs;
whenever a binder is encountered, the corresponding meta-name is instantiated with a fresh
object-name from ys. As typical examples, consider the transformation of output and input
pre�x:

[[�ab:P]]xsys
def
= �x: [[a]]xs(x)[[b]]xs(x):[[P]]xsys(x)

[[ax:fP (y)]]
xs
ys

def
= �x: [[a]]xs(x)y:[[fP (hd(ys))]]

(y;hd(ys))xs
tl(ys) (x)

The function traverses the process-tree once in a top-down fashion, using up ys and extending
xs with each binder encountered. Like this, only object-names are compared, but the meta-
names are restored after the function has passed by a name:

�x: : : : (�b) a b a b b : : : [(�x:b;b); : : :]
�! "
�x: : : : (�b) a c a c b : : : [(�x: b; c); (�x:b;b); : : :]
�! " "
�x: : : : (�b) x b a c b : : : [(�x: b; c); (�x:b;b); : : :]
�! "
�x: : : : (�b) x b x b b : : : [(�x: b; c); (�x:b;b); : : :]
�! "

In the remainder of this section, we present a formal proof of �-expansion that we have mecha-
nized in Isabelle/HOL. The proof consists of three parts, corresponding to the three conjectures

3.2. DERIVING SYNTACTIC PROPERTIES 55

in the �-expansion law: well-formedness, freshness, and equality. An interesting point with
regard to the equality proof is that it applies extensionality of contexts as a proof technique
and therefore makes use of the preceding proofs of well-formedness and freshness.

Well-formedness The proof that the transformation of a well-formed process yields a well-
formed process-abstraction consists of two steps, resulting from the two levels on which the
well-formedness predicatesWfpa andWfp are de�ned: �rst we prove a well-formedness result
for fP 2 Pwfa

ho , which we then apply in the actual result for P 2 Pwf
ho .

In the �rst inference, we do not apply a transformation-list but an abstraction �x: fxs(x)
over such lists. The reason is that from the beginning, the transformation-list is in the scope
of two binders, that is, in that of the �-binder over the name to be abstracted over as well
as in that of the process-abstraction itself. We call such an abstraction fxs well-formed if it
only applies well-formed names-abstractions ffa, that is, constant functions �xy:b, or identity
�xy: x or �xy: y:

Wftrla(�x: [])
Wt0

Wfnaa(ffa) Wftrla(fxs)

Wftrla(�x: (�y: ffa(x; y); a)fxs(x))
Wt1

In the well-formedness result for process-abstractions, we instantiate fxs either with a constant
name or with the meta-variable referring to the name to be abstracted over.

Lemma 3.8 Let fP 2 Pwfa
ho and ys 2 N n and b; c 2 N , and let fxs 2 N ! ((N !

N) � N)m be a well-formed abstraction over transformation-lists. Then [[fP (c)]]
fxs(b)
ys and

�x: ([[fP (c)]]
fxs(x)
ys (b)) are well-formed process-abstractions.

Proof: By rule-induction of Wfpa. We validate both well-formedness assumptions simulta-
neously by one call to an automatic tactic each. Note that neither of them could be proved
independently, because the proofs for the continuations of input and restriction mutually rely
on one another. 2

The well-formedness result for processes requires for the transformation-list that it maps object-
names to well-formed process-abstractions. This means that it should instantiate the object-
names it encounters along its way through the process-tree, either with object-names or with
the x from the outer �-abstraction. Further meta-names|which occur whenever a binder is
encountered and fxs is augmented|are dealt with by the results of Lemma 3.10.

Lemma 3.9 Let P 2 Pwf
ho and ys 2 N n and xs = [(fx1 ;x1); : : : ; (fxm;xm)] 2 ((N ! N)�N)m

such that all fxi are well-formed names-abstractions. Then [[P]]xsys is a well-formed process-
abstraction.

Proof: By rule-induction of Wfp. We validate the proof-obligations by a single call to an
automatic tactic each. Only for the two binders, input and restriction, we previously refer to
Lemma 3.8. 2

Freshness Like well-formedness before, freshness of the transformation is derived by rule-
induction overWfpa andWfp. Freshness states that the name to be abstracted over is indeed
eliminated by the transformation. Again, we state the result for process-abstractions fP before
deriving a similar result for processes P .

56 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

Lemma 3.10 Let fP 2 Pwfa
ho and ys 2 N n and a;b; c 2 N with a 6= b, and let xs =

[(fx1;x1); : : : ; (fxm ;xm)] 2 ((N ! N) � N)m such that a 6= fxi(b) for all i. Then a is
fresh in the process [[fP (c)]]

xs
ys(b).

Proof: By rule-induction of Wfpa. We validate the single proof-obligations by calling Is-
abelle's automatic tactics. 2

Note that in Lemma 3.10, we do not make any assumption about c. In case c = a, it is simply
abstracted over by the transformation. In the induction-proof, it denotes that name taken
from the supply ys in the latest instantiation of a meta-name.

Lemma 3.11 Let P 2 Pwf
ho and ys 2 N n and a;b 2 N with a 6= b. Further, let xs =

[(fx1;x1); : : : ; (fxm ;xm)] 2 ((N ! N)� N)m such that a 6= fxi(b) for all i. Then a is fresh
in the process [[P]]xsys(b).

Proof: By rule-induction ofWfp. We validate the single proof-obligations by calling Isabelle's
automatic tactics. Only for the two binders, input and restriction, we previously refer to
Lemma 3.10. 2

Equality Equality of a re-instantiation of a suitable transformation and the original process
is again proved in two steps, �rst by an induction on Wfpa and then by another induction
on Wfp. It is the most intricate part of the proof, because it involves freshness- and well-
formedness-conditions for instantiations of the continuations of binders. The reason is that in
order to make the transformation-list xs representable, we apply extensionality of contexts,
which we have proved in Section 3.2.2. As a consequence, we obtain a transformation-list
mapping all names to themselves.

Lemma 3.12 Let fP 2 Pwfa
ho and ys 2 N n and a;b;2 N and xs 2 ((N ! N)� N)m. If (1)

xs is of the form [(�x:x1;x1); : : : ; (�x:xm;xm)] and does not contain a, (2) dbcho(fP (c)) � n
and ys consists of distinct names and does not contain a, and (3) ys\fx1; : : : ;xmg = ;, then
[[fP (b)]]

xs
ys(a) = fP (b).

Proof: By rule-induction of Wfpa. The proof results in a tedious case-analysis, and makes
use of the well-formedness and freshness results proved previously in Lemmas 3.8 and 3.10.
We instantiate the continuations of binders with the �rst element of ys in the comparison,
in order to keep the shape of xs as simple as possible. This is possible, because premise (2)
guarantees freshness, and we can apply extensionality of contexts (Theorem 3.7). The Isabelle
proof-script consists of about 90 lines of code. 2

Lemma 3.13 Let P 2 Pwf
ho and ys 2 N n and a 2 N and xs 2 ((N ! N) � N)m. If (1)

xs is of the form [(�x:x1;x1); : : : ; (�x:xm;xm)] and does not contain a, (2) dbcho(P) � n and
ys consists of distinct names and does not contain a, and (3) ys \ fx1; : : : ;xmg = ;, then
[[P]]xsys(a) = P .

Proof: By rule-induction ofWfp. Again, the proof results in a tedious case-analysis employing
extensionality of contexts (Theorem 3.7) as well as Lemmas 3.8 and 3.10. The Isabelle proof-
script consists of about 80 lines of code. 2

3.3. ADEQUACY 57

[[0]]xse
def
= 0

[[�:P]]xse
def
= �:[[P]]xse

[[�ab:P]]xse
def
= [[a]]xse [[b]]xse :[[P]]

xs
e

[[ab:P]]xse
def
= [[a]]xse b:[[P]]

[b;b]xs
e

[[(�b)P]]xse
def
= (�b)[[P]]

[b;b]xs
e

[[P +Q]]xse
def
= [[P]]xse + [[Q]]xse

[[P jQ]]xse def
= [[P]]xse j [[Q]]xse

[[[a = b]P]]xse
def
= [[[a]]xse = [[b]]xse][[P]]xse

[[[a 6= b]P]]xse
def
= [[[a]]xse 6= [[b]]xse][[P]]xse

[[!P]]xse
def
= ![[P]]xse

[[0]]ysd
def
= 0

[[�:P]]ysd
def
= �:[[P]]ysd

[[�ab:P]]ysd
def
= �ab:[[P]]ysd

[[ab:P]]ysd
def
= ahd(ys):[[P]]

tl(ys)
d

[[(�b)P]]ysd
def
= (�hd(ys))[[P]]

tl(ys)
d

[[P +Q]]ysd
def
= [[P]]ysd + [[Q]]ysd

[[P jQ]]ysd def
= [[P]]ysd j [[Q]]ysd

[[[a = b]P]]ysd
def
= [a = b][[P]]ysd

[[[a 6= b]P]]ysd
def
= [a 6= b][[P]]ysd

[[!P]]ysd
def
= ![[P]]ysd

Table 3.14: Encoding �rst-order processes in higher-order syntax, and vice versa.
The functions [[]]e and [[]]d are used to mutually translate �rst-order and well-formed higher-
order processes.

Proving �-expansion The main result follows as a corollary of Lemmas 3.9, 3.11, and 3.13.
In order to abstract over a name a in a process P 2 Pwf

ho , we �rst compute ys with dbcho(P) as a
list of distinct fresh names, and create xs = [(�x:b1;b1); : : : ; (�x:bm;bm)] from the free names
in P except a, that is, from fn(P) � fag = fb1; : : : ;bmg. The resulting process-abstraction
[[P]]xsys is well-formed according to Lemma 3.9, does not contain a (Lemma 3.11), and yields P
when re-instantiated (Lemma 3.13).

Theorem 3.14 (�-Expansion) For every R 2 Pwf
ho there exists a function fR 2 Pwfa

ho such
that a is fresh in fR and fR(a) = R.

Proof: Let n = dbcho(R) for an arbitrary c, and let fn(R) = fb1; : : : ;bmg. According to
Lemma 3.4(c), there exists a set fy1; : : : ;yng of distinct fresh names for R, from which we can
build a supply-list ys = [y1; : : : ;yn]. Further, let xs be [(�x:b1;b1); : : : ; (�x:bm;bm)]. Then
[[P]]xsys is the desired process-abstraction: (1) it is well-formed (Lemma 3.9); (2) a is fresh in it
(Lemma 3.11); and (3) [[P]]xsys(a) = R (Lemma 3.13). The Isabelle proof-script consists of about
20 lines, developing xs and ys, and verifying the conditions of Lemmas 3.9, 3.11, and 3.13. 2

3.3 Adequacy

In this section, we present a mechanized proof that our higher-order syntax is adequate, that is,
that the well-formed processes implement exactly the �-calculus. To our knowledge, this is the
�rst time that an adequacy-proof for a second-order syntax has been formalized in a theorem-
prover. Despeyroux, Felty, and Hirschowitz only give a justi�cation on paper [DFH95]. In
another paper, they present a mechanized adequacy-proof for a higher-order syntax where
the well-formedness predicate is de�ned over lists of parameters [DH94]. Adequacy of two
syntaxes intuitively means that for every term in one syntax there exists a corresponding
term in the other, and vice versa. This can be shown in a constructive way by exhibiting
functions that encode �rst-order processes into higher-order processes and decode them (again):

58 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

[[]]e : Pfo ! Pho and [[]]d : Pho ! Pfo. The adequacy-proof then consists in showing that [[]]e
and [[]]d are reverse. We use encoding- and decoding-functions as depicted in Table 3.14. Like
in the transformation-function in the Section 3.2.3, we have to take care that in the decoding-
function meta-names are not involved in comparisons. Again, we take care of this by using
a transformation-list xs instead of applying a substitution whenever a binder is encountered;
that is, we use the second part of the coercion-technique from the previous section is used.
The �rst part occurs naturally in the encoding. Methodologically, the encoding of a decoding
of a higher-order process corresponds exactly to the re-instantiation of a �-abstraction over
an arbitrary free name. In this section, xs is de�ned over tuples of names instead of pairs
consisting of a names-abstraction and a name, like in the proof of �-expansion in Section 3.2.3.
The reason for this simpler shape of xs that in the adequacy-proof no (additional) abstraction
has to be performed.

3.3.1 The Encoding-Function

We use a function [[]]e in order to translate �rst-order processes from Pfo into their higher-

order counterparts in Pho, or rather in Pwf
ho ; see Table 3.14 for a complete de�nition. The

encoding follows our usual scheme: an auxiliary list xs tells for a process P in [[P]]xse how its
free names should be transformed. Whenever the function encounters an input or a restriction,
the corresponding bound name is added to xs together with a new meta-variable, and is bound
by Isabelle's functional mechanism:

[[ab:P]]xse
def
= [[a]]xse b:[[P]]

[b;b]xs
e [[(�b)P]]xse

def
= (�b)[[P]]

[b;b]xs
e

The list xs therefore ful�lls the same functionality as xs in the transformation-function for
�-expansion in Section 3.2.3. The encoding of names, [[a]]xse , follows our usual scheme: if a
does not occur in xs, it is left unchanged; otherwise, it is mapped to the name accompanying
its �rst occurrence:

[[a]]
[]
e

def
= a

[[a]]
(c;b)xs
e

def
= if a = b then c else [[a]]xse

This emphasis on the �rst occurrence is necessary again, because in non-normalized pro-
cesses, a name b can occur under several binders. To illustrate this, consider the process
ab:�ab:(�b)�ab:0. In it, the b from the �rst output is bound by the input, whereas that in the
second output is bound by the restriction. This yields the following encoding:

[[ab:�ab:(�b)�ab:0]]
[]
e = [[a]]

[]
eb:[[�ab:(�b)�ab:0]]

[(b;b)]
e new meta-name b

= ab:[[a]]
[(b;b)]
e [[b]]

[b;b]
e :[[(�b)�ab:0]]

[b;b]
e

= ab:�ab:(�b0)[[�ab:0]][(b
0;b); (b;b)]

e new meta-name b0

= ab:�ab:(�b0)[[a]][(b
0;b); (b;b)]

e [[b]]
[(b0;b); (b;b)]
e :[[0]]

[(b0;b); (b;b)]
e

= ab:�ab:(�b0)�ab0:0

Recall from Section 2.3.2 that the meta-names b and b0 are chosen by the meta-level and cannot
be manipulated on the object-level. For instance, we cannot tell whether they are equal to or
distinct from some object-name or some other meta-name.

3.3. ADEQUACY 59

Well-Formedness We have de�ned [[]]e as a function of type Pfo ! Pho, but have already

indicated that in fact it has a domain Pwf
ho . Recall from Section 3.1.2 that we consider Pwf

ho as the
set of processes in Pho that are well-formed. We therefore have to prove that for every P 2 Pfo,
the encoding [[P]]

[]
e is well-formed. In order to capture the growth of the transformation-list,

we prove a more general form of the result, considering [[P]]xse for an arbitrary xs 2 (N �N)m.
With xs replacing object-names with meta-names, we have to reason with functions fxs 2
N ! (N �N)m. Again, these functions have to satisfy a well-formedness criterion, which is
de�ned in terms of an inductive predicate:

Wfnmla(�x: [])
Wfnml1

Wfna(fa) Wfnmla(xs)

Wfnmla(�x: (fa(x); a)xs)
Wfnml2

Note that we only have to abstract over the one meta-name; all other names in fxs are instan-
tiations. The reason is that we reason about one binder at a time.

Lemma 3.15 For every P 2 Pfo and every xs 2 (N �N)m, the encoding [[P]]xse is well-formed.
In particular, [[P]]e is well-formed.

Proof: By induction on the structure of P . In fact, we show that every �rst-order process
can be transformed into a well-formed process-abstraction. By structural induction on P , we
derive that for an arbitrary list-abstraction fxs with Wfnmla(fxs), the encoding �x: [[P]]

fxs(x)
e

is a well-formed process-abstraction. The script of this proof consists of a few lines only, using
Isabelle's automatic tactics. 2

3.3.2 The Decoding-Function

We use a function [[]]d in order to translate higher-order processes from Pho into �rst-order
counterparts in Pfo; see Table 3.14 for a complete de�nition. As we will see in Section 3.3.3,

processes in Pwf
ho are translated without structural changes, so that they can be completely

restored by an application of [[]]e. Like the normalization-functions from Section 3.1.1, the
decoding applies a list ys supplying object-names to instantiate the meta-names in the scope
of input-pre�xes and restrictions. For the higher-order processes, this instantiation is a simple
function-application carried out by the meta-level. Object-names as they occur in output-
pre�xes, for instance, are left unchanged. Consider the resulting higher-order process from
our previous example, ab:�ab:(�b0)�ab0:0, and a list [b;b0] of object-names. Then we obtain a
�rst-order decoding,

[[ab:�ab:(�b0)�ab0:0]][b;b
0]

d = ab:[[�ab:(�b0)�ab0:0]][b
0]

d instantiate b with b

= ab:�ab:[[(�b0)�ab0:0]][b
0]

d

= ab:�ab:(�b0)[[�ab0:0]][]d instantiate b0 with b0

= ab:�ab:(�b0)�ab0:0:

The resulting process is �-equivalent to the process ab:�ab:(�b)�ab:0 fed into the encoding-
function in Section 3.3.1; see Table 3.5 for a de�nition of =� .

3.3.3 Proving Adequacy

The adequacy-theorem consists of two parts, one translating �rst-order into higher-order pro-
cesses and back, and the other translating well-formed higher-order into �rst-order processes

60 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

and back. As we have illustrated by an example in the previous section, this transformation
can be safely applied to well-formed processes. Exotic terms, on the other hand, can lose
structural information through an instantiation. Consider bx:fE from Section 2.3.2 with,

fE = �x: if a = x then 0 else ab:0:

A transformation with ys = [a;y] yields ba:0, and another transformation with ys = [x;y] for
a fresh x yields bx:ay:0. Obviously, the conditional cannot be recovered by [[]]e.

Theorem 3.16 (Adequacy) The sets of processes Pfo and Pho correspond as follows:

1. Let P 2 Pfo and ys 2 N n such that dbfo(P) � n, the names in P and ys are distinct,

and ys does not contain duplicates. Then, [[[[P]]
[]
e]]

ys
d =� P .

2. Let P 2 Pho be well-formed, and ys 2 N n such that dbcho(P) � n, the free names in P

and ys are distinct, and ys does not contain duplicates. Then, [[[[P]]ysd]]
[]
e = P .

Proof: 1. We prove by induction on the structure of P that for arbitrary xs and ys we have
[[[[P]]xse]]ysd = [[P]]

(xs;ys)
nm . Then, we use the result from Lemma 3.3 to conclude that for a suitable

ys, as assumed in the premises, [[[[P]]
[]
e]]

ys
d = [[P]]ysnm. Referring to Lemma 3.2, we can infer

[[[[P]]
[]
e]]

ys
d =� P .

2. The proof consists of two parts and proceeds by induction on the well-formedness predicates
for process-abstractions and processes. The proof is a tedious case-analysis. It makes use of
extensionality of contexts from Section 3.2.2, so that additional lemmas about the freshness
of names are necessary, which are proved by induction on well-formed process-abstractions.
Again, the application of a transformation-list necessitates the proofs of stronger results:

(a) For fP 2 Pwfa
ho and b 2 N and ys 2 N n and xs 2 (N � N)m, the following

holds: if (1) b is fresh for fP and does not occur in ys, and (2) ys has no
duplicates and dbcho(fP (c)) � n, (3) the names in ys are fresh for fP , and (4)

xs = [(x1;x1); : : : ; (xm;xm)] for some xi, then �x: [[[[fP (b)]]
ys
d]]

(x;b)xs
e = fP .

(b) For P 2 Pwf
ho and ys 2 N n and xs 2 (N �N)m, the following holds: if (1) ys

has no duplicates and dbcho(fP (c)) � n, (2) the names in ys are fresh for P ,
and (3) xs = [(x1;x1); : : : ; (xm;xm)] for some xi, then �x: [[[[P]]ysd]]

xs
e = fP .

We can assume that xs = [(x1;x1); : : : ; (xm;xm)] by referring to extensionality of contexts

in the proof of part (a). There, in order to prove �x: [[[[fP (b)]]
ys
d]]

(x;b)xs
e = fP , we exploit the

freshness of b, and instantiate both sides with it, obtaining [[[[fP (b)]]
ys
d]]

(b;b)xs
e = fP (b). Applying

extensionality of contexts, the proof reduces to freshness and well-formedness arguments.

We have mechanized the whole adequacy-proof in Isabelle/HOL. 2

3.4 Discussion

In this section, we have presented a fully formalized theory of higher-order abstract syntax
for the �-calculus in Isabelle/HOL: we have introduced a straightforward deep embedding as

3.4. DISCUSSION 61

well as a shallow embedding; for the shallow embedding, we have introduced well-formedness
predicates to obtain induction and exclude exotic terms; we have used the formalization to
mechanically derive the theory of contexts; �nally, we have presented an adequacy-proof re-
lating the deep and the shallow embedding. In the remainder of this chapter, we discuss some
related issues, hint at related work, and point out directions for future work.

First-order and higher-order syntax Binders generally play a crucial role in programming-
languages and process-calculi. There are two basic approaches for reasoning about them on
a formal logical level: in �rst-order syntax, free and bound parameters are equally treated
as �rst-class objects, whereas in higher-order (abstract) syntax, bound parameters are han-
dled by an underlying functional mechanism. Both approaches have their advantages and
drawbacks. While �rst-order syntax naturally yields principles for structural induction, it ne-
cessitates substitutions to perform instantiations and avoid name-capturing. Both de�nition
and application of suitable notions of substitution are tedious and error-prone, so that eÆcient
reasoning about semantics is hardly possible. In higher-order syntax, instantiations and the
treatment of bound variables are for free, yet structural induction fails, and exotic terms can
arise. Therefore, syntax-analysis cannot be performed directly.

First-order syntax always yields a deep embedding in a theorem-prover. When using higher-
order syntax, the user can choose between two alternative approaches, see also Section 2.3.2: ei-
ther he/she formalizes a �-calculus in a deep embedding and uses it as an underlying functional
framework, or he/she applies a shallow embedding. We have followed the second approach.

Well-formedness predicates A way out of the dilemmas of HOAS is to replace the miss-
ing structural induction-principles by rule-induction based on a predicate subsuming the set of
terms one is interested in. As a result, exotic terms are excluded simultaneously. A straightfor-
ward solution is to introduce a predicate over �x1; : : : ; xn: t for each n, as proposed in [DH94].
This is hard to apply in theorem-proving, however, because x1; : : : ; xn have to be formalized in
terms of �nite lists on the object-level. Like related datatypes, lists are often tedious to handle
in concrete proofs, see also Chapter 5. A more convenient solution from a theorem-proving
point of view is therefore the application of a two-step predicate, as proposed in [DFH95]. In
this chapter, we have adapted this approach for the �-calculus|yielding the set Pwf

ho |and
have fully investigated it within Isabelle/HOL.

The use of well-formedness predicates yields hypothetical judgements and proofs, because
certain properties are inconsistent for exotic terms (such as extensionality of contexts in Sec-
tion 3.2.2) or have to be strengthened for well-formed terms (such as �-expansion in Sec-
tion 3.2.3).

Deep embeddings of the �-calculus There is a range of deep embeddings of the �-
calculus, following di�erent paradigms. Our straightforward approach from Section 3.1.1 has
been adopted in [Mel95, AM96b, Mam99]. In order to prevent capture-avoiding renamings
in instantiations, the McKinna-Pollack methodology [MP99] considers free and bound names
as di�erent types; it is used in [Hen99]. DeBruijn indices [deB72] are used in [Hir97]; they
provide a canonical basis for bound names in a term by replacing them with the depth of
the binder they are associated with. In all of these formalizations, substitution-functions have
to be formalized to implement instantiations and probably capture-avoiding renamings. This
makes them useful in syntax-analysis but hard to deal with in semantic arguments.

62 CHAPTER 3. FORMALIZING THE �-CALCULUS IN HOAS

Deep embeddings of higher-order syntaxes of the �-calculus are applied in [GM96, Gay00].
While the former focusses on the approach itself and uses the �-calculus as an exemplaric
application, the latter employs it as a basis for a study of type-systems. It will have to be
investigated how the approach applies in a semantic analysis of the �-calculus, considering
transition-systems and bisimulations.

Shallow embeddings of the �-calculus To our knowledge, three shallow embeddings
of the �-calculus have been studied so far [Mil92a, HMS00, Des00]. While the �rst two of
them rely on the meta-levels of �Prolog [NM98] and Coq [BBC+99] to exclude exotic terms
automatically, the last one does not consider the issue of well-formedness. As pointed out
in [HMS00, Hof99], the absence of exotic terms is essential for a semantic analysis of �-calculus
processes in terms of labelled transition-systems and bismulations, because it regularly applies
extensionality of contexts (see [HMS00]).

The theory of contexts is necessary, because derivatives of input-transitions are instanti-
ated with (probably fresh) names, and occasionally re-abstracted over in bisimulation proofs.
In [Des00], a semantics based on abstractions and concretions [Mil91] is used. It will have to
be studied which role fresh names play in this framework, and whether the theory of contexts
is necessary in the analysis of this kind of semantics or not (we consider that something similar
will be necessary at least).

Semantic analysis of the �-calculus in a shallow embedding The formalization pre-
sented in this chapter provides a platform for the analysis of semantics for the �-calculus
in a shallow embedding in Isabelle/HOL. The framework gives the user access to the well-
formedness conditions ruling out exotic terms, because the underlying predicates are imple-
mented on the object-level. In speci�c logical frameworks like �Prolog [NM98], or Elf [Pfe89]
and its successor Twelf [PS99], the user cannot access these conditions, because they are part
of the meta-level. On the other hand, our formalization requires the user to work with hypo-
thetical judgements, whereas �Prolog and Elf/Twelf relieve him/her from this task. It is an
issue of future work which of the approaches is most suitable for the semantic analysis of the
�-calculus and for proofs about concrete systems modelled in it.

Chapter 4

Encoding Algol in the �-calculus

The �-calculus is often referred to as the essence of concurrent languages, such as the �-calculus
is for sequential ones. Previous work gives evidence that the �-calculus can model references,
functions, objects, and various forms of (non-atomic) parallelism [Wal95, Jon93, KS98, Mil92b].
Yet, so far only limited forms of combinations have been considered, and it is far from obvious
that the respective �-calculus descriptions can be combined in a faithful model. Concurrent
Idealized Algol (CIA) extends classical Idealized Algol (IA) with concurrency [Rey81, Bro96],
and therefore integrates in an elegant way imperative, concurrent, and higher-order features.
IA has been extensively studied in the literature, serving as a benchmark to various semantic
models [OT97]. It has turned out that operationally-based models [AM96a, AM99, Pit96]
best capture the semantics of Algol, because they do not produce snapback-e�ects. Models
representing states by functions|usually denotational models do so|su�er from these e�ects,
in that state-changes are reversed; this necessitates an application of logical relations to remove
the snapback-parts from the model [OT97].

In this chapter, we investigate a �-calculus model of CIA. Our work belongs to a strand of
research on giving operational semantics to IA [AM96a, AM99, Pit96], and is closely related to
Abramsky and McCusker's game semantics for IA. Our main reasons for using the �-calculus
are the following: (1) it has a �rst-order syntax, and (therefore) o�ers reasonably applicable
behavioural equivalences; (2) it nevertheless captures higher-order semantics; (3) it o�ers a
well-developed proof machinery including algebraic reasoning and type-systems; and, (4) by
representing states as processes, it does not produce snapback-e�ects. The point mentioned
in item (1) is a prevailing issue for languages with a higher-order syntax, as pointed out by
Ferreira, Hennessy, and Je�ery [FHJ95]. Proofs of process equivalences are complicated by
universal quanti�cations over terms. Further, it is generally hard to establish that a notion
of bisimilarity for higher-order languages is a congruence: this is usually proved using Howe's
technique [How96]; yet, attempts to extend this methodology to languages with local state|
like CIA, in which local variables can be de�ned|have been unsuccessful so far.

Remark: There are decisive similarities between local names in the �-calculus and local
references in imperative languages. This becomes evident in the denotational semantics of these
languages: the mathematical techniques employed in modelling the �-calculus [Sta96, FMS96]
were originally developed for the semantic description of local references. Yet, names and
references behave di�erently: receiving from a channel is destructive|it consumes a value|
whereas reading from a reference is not; a reference has a unique location, whereas a channel
may be used by several processes for both reading and writing; et cetera. Hence, it is unclear

63

64 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

if and how interesting properties of imperative languages can be proved via a translation into
the �-calculus.

In this chapter, we develop a �-calculus semantics for CIA in two stages: we �rst consider
an extension of IA with parallel composition of commands (CIA-fawaitg), before adding an
await-operator implementing atomicity (full CIA). Section 4.1 introduces a straightforward
operational semantics for CIA implementing a behavioural congruence based on bisimulations.
In Section 4.2, we present the encoding and show via an operational correspondence that it is
sound. Section 4.3 discusses proofs of several laws and examples, including the validation of a
bu�er implemented by a higher-order procedure (Section 4.3.1).

Remark: Material from this chapter is presented in [RS99, R�oc99].

4.1 Concurrent Idealized Algol

Idealized Algol (IA) was introduced by Reynolds as the core of Algol 60, extending a simply-
typed call-by-name �-calculus with a concept of state, implemented by means of local and
global variables [Rey81]. Later, Concurrent Idealized Algol (CIA) was created by Brookes by
further adding parallelism [Bro96]. One of the strengths of IA as well as CIA is the clear
separation between phrases of passive and active types: while expressions can only read from
variables, and are therefore passive, commands are capable of writing to them, and are therefore
active. The fact that expressions are passive can make the semantic description harder, as
pointed out by Abramsky and McCusker [AM96a, AM99].

Syntax We follow the syntax, typing, and notational conventions as applied in [Rey81,
Bro96]. Data-types in IA and CIA consist of integers and booleans; phrase-types are con-
structible from variables, expressions, and commands using arrow-type:

� ::= int j bool Data Types
� ::= var[�] j exp[�] j comm j (� ! �) Phrase Types

We consider phrase-types of arbitrarily higher order, as denoted by the arrow-type � ! � in
their de�nition. For simplicity we omit tupling. This is not a restriction, however, because
tuples �1 � : : :� �n ! � can be considered as curried basic arrow-types �1 ! : : :! �n ! �.
Data-types and variable-types are lifted to expression-types via the rules,

� ` v : �
� ` v : exp[�]

and
� ` � : var[�]
� ` !� : exp[�]

.

Variables can be declared on data-types only, whereas procedure-de�nition, recursion and con-
ditional are uniformly applicable to all phrase-types. An environment � is a partial function
from identi�ers to types, with domain dom(�).

The syntax is de�ned according to [Bro96], see Table 4.1 for an overview. Inaction is imple-
mented by a skip-command; further, there are assignments (V := E), sequential (C1;C2) and
parallel (C1 k C2) composition, conditionals (if B then P1 else P2), iteration (while B do C),
declaration (new [�]� := E in C), atomicity (await B then C), as well as a call-by-name
�-calculus with recursion. As a slight extension, we allow for the use of conditionals in the
body of await-statements. The body of an await-statement therefore consists of assignments,

4.1. CONCURRENT IDEALIZED ALGOL 65

� ` v : �

� ` � : var[�] when �(�) = var[�]

� ` E1 : exp[�] � ` E2 : exp[�]
� ` E1
 E2 : exp[�]

 : � � � ! �

� ` skip : comm

� ` V : var[�] � ` E : exp[�]
� ` V := E : comm

� ` C1 : comm � ` C2 : comm
� ` C1;C2 : comm

� ` C1 : comm � ` C2 : comm
� ` C1 k C2 : comm

� ` B : exp[bool] � ` P1 : � � ` P2 : �
� ` if B then P1 else P2 : �

� ` B : exp[bool] � ` C : comm
� ` while B do C : comm

� ` B : exp[bool] � ` C : comm
� ` await B then C : comm

� ` E : exp[�] �; � : var[�] ` C : comm
� ` new [�]� := E in C : comm

� ` x : � when �(x) = �

�; x : � ` P : �
� ` recx:P : �

�; x : � ` P : �0

� ` �(x : �):P : (� ! �0)
� ` P1 : (� ! �0) � ` P2 : �

� ` P1(P2) : �
0

Table 4.1: Syntax and typing of CIA.We follow standard syntax and typing conventions for
Algol, and in particular CIA. The command in the body of an await-statement is a sequential
composition of assignments and conditionals.

66 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

sequential composition and conditionals. This is important for the treatment of more involved
examples, as in Section 4.3.1. Syntax and typing rules are presented in Table 4.1. Unlike
Brookes, who considers iteration as a special kind of recursion, we explicitely add a while-
construct to the language.

Semantics We de�ne an SOS-style operational semantics for CIA, using small-step transition
rules (as opposed to a big-step or natural semantics), in order to capture the nondeterministic
behaviour resulting from the interaction of phrases via shared variables. The rules are fully
standard, with the exception of those needed to model the atomicity required by await. The
semantics is de�ned inductively for phrases of variable, expression, and command type, and is
parameterized over the set os global variables used by a program.

Transitions take place between con�gurations hP; �i, consisting of a phrase P of variable,
expression, or command type, and an assignment � representing the local and global store.
The set � of global variables is contained in dom(�), that is, � � dom(�). The main attention
focusses on command-con�gurations. For them, a transition is basically of either of the forms,

� ` hC; �i ��! hC 0; �0i � ` hC; �i
p
�! �0;

where � = � for each step of the program itself, and � 2 fout�(v); in�(v)g when the context
reads from or writes to one of the global variables in �. The `tick'

p
signi�es termination, and

�0 is the resulting state of the variables.

Structural equivalence We defer �-conversion and �-reduction to a standard structural
equivalence, for which we write ��. It deals with renamings of bound variables in order to
avoid name-clashes (�-conversion), as well as with instantiations of �-abstractions and unfold-
ings of recursive de�nitions (�-reduction). Structural congruence makes substitutions implicit
which are usually necessary to implement �-conversion and �-reduction. In the soundness-
proofs in Section 4.2, we are however interested in making these substitutions explicit. Hence,
we use con�gurations of the form hP%�; �i. There, % contains the substitutions resulting
from unfolding recursive de�nitions: Pfrecx:P=xg instead of recx:P . And � contains those
resulting from instantiations of �-terms: PfP 0=xg for (�x: P)P 0.

In the following, we present operational semantics for CIA-fawaitg (Section 4.1.1) and full
CIA (Section 4.1.2), and introduce a behavioural congruence for CIA (Section 4.1.3).

4.1.1 CIA-fawaitg

The semantics of CIA-fawaitg is fully standard. We de�ne it on three levels: one for variables
(Tables 4.2 and 4.4), one for expressions (Table 4.2 and 4.4), and a third one for commands
(Table 4.3 and 4.4). There are no explicit rules for �-abstraction and recursion. These are
dealt with by the above call-by-name structural equivalence, ��, covering �-conversion and
�-reduction.

Variables and Expressions With CIA using passive expressions, the state is not modi�ed
by their execution. Expression-con�gurations hE; �i with global variables � either perform

4.1. CONCURRENT IDEALIZED ALGOL 67

� ` h�; �i
p
�! �

V1

� ` hv; �i
p
�! v

E1
� ` hV; �i ��! hV 0; �i
� ` h!V; �i ��! h!V 0; �i E2

� ` hV; �i
p
�! �

� ` h!V; �i
p
�! �(�)

E3

� ` hE1; �i ��! hE 0
1; �i

� ` hE1
 E2; �i ��! hE 0
1
 E2; �i

E4a
� ` hE1; �i

p
�! v1 � ` hE2; �i

p
�! v2

� ` hE1
 E2; �i
p
�! v1
 v2

E5

Table 4.2: Operational semantics for CIA: Variables and Expressions. The evaluation
of a variable or an expression cannot change the state, hence � is never modi�ed. We omit
rule E4b which is a symmetric version of rule E4a. The set � � dom(�) contains the global
variables; that is, those variables that can be read and modi�ed by a context.

silent evaluation-steps, which can include reading from a variable in �, or they terminate
producing a value v:

� ` hE; �i ��! hE 0; �0i � ` hE; �i
p
�! v:

Again, � � dom(�) denotes the set of global variables. Table 4.2 gives the basic transition-
rules for variable- (V1) and expression-con�gurations (E1{E5). These are extended by the
rules in Table 4.4, which apply to all phrase-types, and are therefore added only once.

Remark: Note that there is no interaction with the environment in these rules. This only
happens on the level of commands. In fact, observational equivalence is de�ned on the level
of command-con�gurations only|see De�nition 4.1 below|and is then extended to arbitrary
phrase-types by a closure argument in De�nition 4.2.

Commands As stated above, transitions of command-con�gurations are of the form,

� ` hC; �i ��! hC 0; �0i � ` hC; �i
p
�! �0;

where � = � for each step of the program itself, and � 2 fout�(v); in�(v)g when the context
reads from or writes to one of the global variables in �. This interaction of a context with the
global variables is described by rules C11 and C12 in Table 4.3.

A declaration of a local variable adds a new cell to � (C4{C5); �-conversion guarantees
that a fresh cell can be created whenever necessary.

4.1.2 Full CIA

Parallel languages need a form of atomicity, so that mutual exclusion can be implemented.
In CIA, atomicity is present in terms of an await-command: during its execution, the whole
context is blocked. This includes that even the environment cannot access the global variables
during that time. The semantics of a command await B then C with boolean expression B
and command C is as follows: First B is evaluated; during that time already, the context is
blocked. If B evaluates to true (tt), command C is executed immediately, without unblocking

68 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

� ` hskip; �i
p
�! �

C1
� ` hV; �i

p
�! � � ` hE; �i

p
�! v

� ` hV := E; �i
p
�! �[� := v]

C2

� ` hV; �i ��! hV 0; �i
� ` hV := E; �i ��! hV 0 := E; �i C3a

� ` hE; �i ��! hE 0; �i
� ` hV := E; �i ��! hV := E 0; �i C3b

� ` hE; �i ��! hE 0; �i
� ` hnew [�]� := E in C; �i ��! hnew [�]� := E 0 in C; �i C4

� ` hE; �i
p
�! v � 62 dom(�)

� ` hnew [�]� := E in C; �i ��! hC; � [f(�; v)gi C5

� ` hC1; �i ��! hC 0
1; �

0i
� ` hC1;C2; �i ��! hC 0

1;C2; �
0i C6

� ` hC1; �i
p
�! �0

� ` hC1;C2; �i ��! hC2; �
0i C7

� ` hC1; �i ��! hC 0
1; �

0i
� ` hC1 k C2; �i ��! hC 0

1 k C2; �
0i C8a

� ` hC1; �i
p
�! �0

� ` hC1 k C2; �i ��! hC2; �
0i C9a

� ` hwhile B do C; �i ��! hif B then (C;while B do C) else skip; �i C10
� 2 �

� ` hC; �i in�h�(�)i�! hC; �i
C11 � 2 �

� ` hC; �i out�(v)�! hC; �[� := v]i
C12

Table 4.3: Operational semantics for CIA-fawaitg: Commands. The execution of
commands can a�ect the state, which means that � can be modi�ed. We omit rules C8b
and C9b which are symmetric versions of rules C8a and C9a. The set � � dom(�) contains
the global variables; that is, those variables that can be read and modi�ed by a context. The
last two rules, C11 and C12 give the context access to the global variables.

� ` hB; �i ��! hB0; �i
� ` hif B then P1 else P2; �i ��! hif B0 then P1 else P2; �i

P1

� ` hB; �i
p
�! tt

� ` hif B then P1 else P2; �i ��! hP1; �i
P2

� ` hB; �i
p
�! �

� ` hif B then P1 else P2; �i ��! hP2; �i
P3

� ` P �� P
0 � ` hP 0; �i ��! C

� ` hP; �i ��! C P4

Table 4.4: Operational semantics for CIA-fawaitg: Phrases. The only phrases which we
consider directly, are conditionals and recursive phrases of variable, expression, or command
type. Conditionals are evaluated in the usual way. Function application and recursion are not
considered explicitely; �-reduction is applied implicitely, according to the usual scheme. The
set � � dom(�) contains the global variables; that is, those variables that can be read and
modi�ed by a context. C denotes a con�guration or a result, and � 2 f�; in�hvi; out�(v)g.

4.1. CONCURRENT IDEALIZED ALGOL 69

� ` hawait B then C; �i ��! hA[[B]]BC ; �i`
Cl1

� ` hB0; �i ��! hB00; �i
� ` hA[[B0]]BC ; �i` ��! hA[[B00]]BC ; �i`

Cl2

� ` hB0; �i
p
�! tt

� ` hA[[B0]]BC ; �i` ��! hA[[C]]; �i`
Cl3a

� ` hB0; �i
p
�! �

� ` hA[[B0]]BC ; �i` ��! hawait B then C; �i Cl3b

� ` hC; �i ��! hC 0; �0i
� ` hA[[C]]; �i` ��! hA[[C 0]]; �0i`

Cl4
� ` hC; �i

p
�! �0

� ` hA[[C]]; �i`
p
�! �0

Cl5

� ` hC1; �i� ��! hC 0
1; �

0i�0

� ` hC1;C2; �i� ��! hC 0
1;C2; �

0i�0

C6'
� ` hC1; �i�

p
�! �0

� ` hC1;C2; �i� ��! hC2; �
0i C7'

� ` hC1; �i� ��! hC 0
1; �

0i�0

� ` hC1 k C2; �i� ��! hC 0
1 k C2; �

0i�0

C8a'
� ` hC1; �i�

p
�! �0

� ` hC1 k C2; �i� ��! hC2; �
0i C9a'

� ` C �� C
0 � ` hC 0; �i� ��! C

� ` hC; �i� ��! C P4'

Table 4.5: Operational semantics for Full CIA: Commands. We state additional rules
for introducing and removing locks. Whenever a con�guration is marked with a lock, only
that component which has introduced it can compute; all others have to wait until the lock
has been released again. The subscripts � and � 0 denote ` for locked con�gurations and � for
unlocked ones.

the context in-between. If B evaluates to false (�), the context is released, and the command
repeats the evaluation of B after a period of busy-waiting.

In our operational semantics, this is achieved by introducing locked con�gurations hP; �i`.
The tag ` represents a lock. Whenever an await-statement is executed, the con�guration is
marked with the lock `, and all but the await-component are prevented from running (this
component is marked itself with an A[[:]]-construct, so to be distinguishable from its context).
The lock is released either if the guarding boolean expression has been evaluated to false or,
otherwise, after the command has been completed.

Variables and Expressions As locks only a�ect command-con�gurations, the operational
semantics of variables and expressions is exactly the same as for CIA-fawaitg. This means
that the rules from Tables 4.2 and 4.4 work for variable- and expression-con�gurations for full
CIA as well. Note that there are no locked such con�gurations.

Commands The rules for locked command-con�gurations are of the form

� ` hC; �i� ��! hC 0; �0i�0 � ` hC; �i�
p
�! �0;

where � and � 0 represent the presence or absence of a lock. Table 4.5 gives rules for intro-
ducing (Cl1) and removing (Cl3b and Cl5) locks; in general, there are rules for executing
the await-statement (Cl1{Cl5), as well as locked variations of the rules dealing with sequen-
tial (C6' and C7') and parallel (C8a'{C9b') composition. The other rules are as before, see
Tables 4.3 and 4.4.

70 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

Remark: Note that a locked con�guration cannot perform a visible transition. As a con-
sequence, the environment is blocked from accessing the global variables during the execution
of an await-statement, as is the program-context.

4.1.3 Observational Congruence

We relate CIA-phrases of corresponding types by means of a behavioural congruence, based on
an equivalence over closed commands. A command C is �-closed, if its only free identi�ers in
� are of variable-type; that is, � = �1 : var[�1]; : : : ; �n : var[�n] Like this, �1; : : : ; �n can be
taken care of by a state �. Note that all command-con�gurations from the previous sections
employed closed commands.

Weak transitions We abstract from internal activities by using weak transitions C �̂
=) C

between con�gurations. The relation
�

=) is the reexive and transitive closure of
��!, and

�̂
=) is given by

�
=) ��! �

=) (arbitrarily many invisible steps before and after the � transition)
for visible � 2 fout�(v); in�hvig, and �

=) for an invisible � = � . Note that we use exactly the
same de�nition of weak transitions as in CCS or the �-calculus, see Chapter 2.

Behavioural equivalence process calculi to CIA command-con�gurations. We use an early
semantics, because we consider it more natural for languages of the kind of CIA to instantiate
input-objects as soon as they interact with the environment; that is, when writing on a global
variable, the environment immediately provides a value.

Definition 4.1 (Configuration-bisimulation) A binary relation R(�) upon command-
con�gurations is a con�guration bisimulation if C1R(�)C2 implies (where the free variables in
C1 and C2 are captured by �),

1. � ` C1
p
�! �1 implies there is a �2 such that � ` C2

p
=) �2, where �1(�) = �2(�) for all

� 2 �;

2. � ` C1 ��! C 01 implies there is a C 02 such that � ` C2 �̂
=) C 02 and C 01R(�)C 02, where

� 2 f�; out�(v); in�hvig;
3. symmetrically for transitions of C2.

We write � ` C1 � C2 if there is a con�guration bisimulation R(�) with C1R(�)C2.

Observational congruence We say that a context Con is �-closed with respect to a phrase
P if � ` Con[P] : comm for some � = �1 : var[�1]; : : : ; �n : var[�n]; that is, if Con[P] does not
contain free identi�ers except for global variables �1; : : : ; �n.

With this notion of closure, we are now able to de�ne a behavioural congruence for arbitrary
phrases. The idea behind this de�nition is the following: we would like to identify exactly those
phrases that cannot be distinguished by any context yielding a closed command.

Definition 4.2 (Observational congruence) Let P1, P2 be arbitrary phrases with iden-
ti�ers in �. Then P1 and P2 are observationally congruent, written � ` P1 �oc P2, if for every

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 71

context Con which is �0-closed with respect to P1 and P2 such that �0 � �, and every � with
dom(�) = �0, it holds that �0 ` hCon[P1]; �i � hCon[P2]; �i.
Observational congruence is the notion of behavioural equality on CIA-phrases we are inter-
ested in. It is however hard to prove equalities following its de�nition, due to the universal
quanti�cation over the contexts and assignments.

Determinacy of await-statements We conclude the section with a useful fact about locked
con�gurations. The behaviour of an await-statement is deterministic, both due to the absence
of parallel composition within its body and the incapability of expressions to change a given
assignment. Therefore, locked con�gurations either diverge (during the evaluation of their
guarding boolean expression) or yield bisimilar con�gurations without a lock (after their exe-
cution). This allows us to abstract from locked con�gurations in the full-abstraction proof of
Theorem 4.13 in Section 4.2.2.

Lemma 4.3 � ` hC; �i` ��! hC 0; �0i� with � 2 f`; �g implies � ` hC; �i` � hC 0; �0i�.
Proof: By rule-induction. Only few rules are applicable for locked con�gurations, see Ta-
ble 4.5. These rules yield a fully deterministic execution, because the environment is blocked
by the lock too. 2

Corollary 4.4 For every con�guration hC; �i` and � � dom(�) the following holds: Either
it diverges (that is, there is an in�nite computation of silent steps starting from hC; �i`) or there
is another con�guration hC 0; �0i such that � ` hC; �i` �

=) hC 0; �0i and � ` hC; �i` � hC 0; �0i.

4.2 Encoding Concurrent Idealized Algol

Recall from Section 4.1 that during a run of a program with explicit substitutions, con�gu-
rations hP; �i with phrase P and store � are extended with substitutions % and �, capturing
recursive phrases and function-applications, respectively; hence, a general notion of con�gura-
tion can be described by hP%�; �i. We encode each of these elements in the �-calculus.

Encoding phrases For the purpose of encoding arbitrary CIA-phrases, we combine tradi-
tional encodings of variables and commands, as in [Mil89], for instance, with a translation of
the call-by-name �-calculus, as proposed in [Mil92b]. Depending on whether the phrases con-
tain await-statements or not, we use one of the encodings from Tables 4.6 or 4.7. The encoding
[[P]]p of a CIA-phrase P is parameterized over a name p which is used to signal termination.
As a simple example, the command skip is encoded in terms of a process [[skip]]p = �p:0; a
value v yields [[v]]p = �phvi:0, and a variable � is translated into [[�]]p = �phin�; out�i:0. Note that
this encoding of variables implements the idea of identifying a variable with its two methods
for reading and writing [Rey81, AM96a, AM99]. We present the two encodings in more detail
below, in two separate sections for CIA-fawaitg (Section 4.2.1) and full CIA (Section 4.2.2).

Encoding state An assignment � consists of pairs of reference-cells and values stored into
them. We model these cells � explicitely, in terms of recursive agents of the form (recall from
Section 2.2.3 that recursion can be implemented by replication),

Reg�[v]
def
= in�hvi:Reg�[v] + out�(w):Reg�[w]:

72 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

Processes in the scope of fn�
def
= fin�; out�g are allowed to read from and write to Reg�.

Recall that we distinguish between local and global variables. Thus, when encoding a
con�guration hP; �i with global variables in � � dom(�), we put a restriction only over those fn�
for which � 2 dom(�)��, that is, over the local variables. In order to restrict the environment
to communications with the global variables, that is, to prevent access to those parts of P
trying to read from or write to the respective registers, we employ the I/O-type system by
Pierce and Sangiorgi [PS96] introduced in Section 2.2.3.

Encoding substitutions Recall from Section 4.1 that when making substitutions explicit
in con�gurations, we can distinguish between those dealing with recursions (which we denote
by %) and those for function-applications (for which we write �).

A substitution recxi:P
%
i =xi from % = frecx1:P %

1 =x1; : : : ; recxm:P
%
m=xmg is modelled by a

replication of the encoding of phrase P %
i accessible via xi, that is, by !xi(r):[[P

%
i]]r with parameter

q. Whenever xi occurs in the body of P %
i during its execution, a copy of [[P %

i]]q can thus be
released. This is a standard way of encoding recursion in the �-calculus.

A substitution P �
i =yi from � = fP �

1 =y1; : : : ; P
�
n =yng is modelled similarly, by a replication

of the encoding of P �
i accessible via yi, that is, by !yi(r):[[P

�
i]]r. Whenever, yi occurs in the

body of the �-abstraction (which is not part of the substitution) during its execution, a copy
of the argument P �

i is released. This way of encoding function application in a call-by-name
�-calculus has been proposed by Milner in [Mil92b].

Encoding con�gurations We are now ready to de�ne translations of con�gurations into
the �-calculus. These encodings are given in terms of a parallel composition of the elements
(phrase, substitutions, and assignment) together with suitable restrictions over the names to
access the substitutions, and local variables.

A con�guration hP%�; �i with substitutions % = frec x1:P %
1 =x1; : : : ; recxm:P

%
m=xmg and

� = fP �
1 =y1; : : : ; P

�
n =yng, local variables dom(�) � � = f�1; : : : ; �lg, and global variables

� = f�1; : : : ; �kg, translates to the following process (recall from above that fn� = fin�; out�g):
(� x1; : : : ; xm; y1; : : : ; yn; fn�1 ; : : : ; fn�l) restrictions establishing scope of %; �; dom(�)� �

(!x1(r):[[P
%
1]]r j : : : j !xm(r):[[P %

m]]r j substitutions from recursions %

!y1(r):[[P
�
1]]r j : : : j !yn(r):[[P �

n]]r j substitutions from function applications �
Reg�1 [�(�1)] j : : : jReg�l [�(�l)] j local variables in dom(�)� �
Reg�1 [�(�1)] j : : : jReg�k [�(�k)] j global variables in �
[[P]]p) encoding of phrase P

We write [[� ` hP%�; �i]]p for encodings of con�gurations with global variables in �.

Remark: The translations of % and � show how close the relationship is between recursion and
�-abstraction. In fact, recursion can be considered as a generalization of �-abstraction with
self-application, where the argument is itself in the scope of the �-abstraction. This becomes
particularly obvious in the �-calculus, because it has a �rst-order syntax, hence references are
used to access both recursive agents and function-arguments.

4.2.1 Encoding CIA-fawaitg

As noted above, we translate all phrases P into parameterized processes [[P]]p with the fresh
name p being used to signal the termination of the execution of [[P]]p. We will see below that

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 73

Variables, Expressions

[[�]]p
def
= �phin�; out�i:0

[[v]]p
def
= �phvi:0

[[!V]]p
def
= (� q)([[V]]q j q(i; o):i(x):�phxi:0)

[[E1
 E2]]p
def
= (� q; r)([[E1]]q j [[E2]]r j q(x):r(y):phx
 yi:0)

Commands

[[skip]]p
def
= �p:0

[[V := E]]p
def
= (� q; r)([[V]]q j [[E]]r j q(i; o):r(x):�ohxi:�p:0)

[[new [�]� := E in C]]p
def
= (� q)([[E]]q j q(x):(� fn�)(Reg�[x] j [[C]]p))

[[C1;C2]]p
def
= (� q)([[C1]]q j q:[[C2]]p)

[[C1 k C2]]p
def
= (� q; r)([[C1]]q j [[C2]]r j q:r:�p:0)

[[while B do C]]p
def
= (� a)(!a: (� q)([[B]]q j q(x): ([x = tt] (� r)([[C]]r j r:�a:0) j

[x = �] �p:0)) j �a:0)
Phrases

[[if B then P1 else P2]]p
def
= (� q)([[B]]q j q(x):([x = tt] [[P1]]p j [x = �] [[P2]]p))

[[x]]p
def
= �xhpi:0

[[recx: P]]p
def
= (� x)(!x(r):[[P]]r j �xhpi:0)

[[�(x : �): P]]p
def
= (� v)(�phvi:v(x; q):[[P]]q)

[[P1P2]]p
def
= (� q)([[P1]]q j q(v):(� x)(�vhx; pi:!x(r):[[P2]]r))

Table 4.6: Encoding CIA-fawaitg. Phrases P are translated into �-calculus processes [[P]]p
according to the above rules.

74 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

for P being an expression or a command, [[P]]p produces an output on p, exactly if and only
if P terminates in the operational semantics of CIA; this fact is one part of the operational
correspondence which we use to establish that our encoding is sound.

Table 4.6 gives an overview of the translating rules. As a typical example, consider the
sequential composition of two commands. Sequentiality is not a basic concept in the �-calculus,
but it can be encoded by exploiting the parameter attached to each encoding:

[[C1;C2]]p
def
= (� q)([[C1]]q j q:[[C2]]p):

First, only [[C1]]q is able to execute because of name q guarding [[C2]]p. As soon as [[C1]]q
terminates, it signals so on q and releases [[C2]]p. Yet another example of sequentiality are dec-
larations, in which an expression is evaluated, strictly before creating a new (private) location
with the result, and executing the continuation,

[[new [�]� := E in C]]p
def
= (� q)([[E]]q j q(x):(� fn�)(Reg�[x] j [[C]]p)):

Here, parameter q does not only guard [[C]]p, but is also used to transmit the result of the
evaluation of [[E]]q to register Reg�. Suppose E is a value v, then,

[[new [�]� := v in C]]p
def
= (� q)(qhvi:0 j q(x):(� fn�)(Reg�[x] j [[C]]p))
�� (� fn�)(Reg�[v] j [[P]]p);

where�� is an application of some simple �-calculus laws; to be precise, of the value-transmission
law (� q)(qhvi:R j q(x):S) �� (� q)(R jSfv=xg), and of the garbage-collection law (� q)R �� R
if q is not free in R (see also Section 2.2.2). Identi�ers are modelled by processes sending along
a speci�ed channel which is used to invoke a copy of the argument they represent. Both pro-
cedural arguments and recursion are translated using replication, so fresh copies are available
at every call (recall that CIA is a call-by-name language). For instance, if P is a free identi�er,
called xP in the �-calculus translation, then

[[new [int]� := 1 in P (!�)]]p
�� (� fn�)(Reg�[1]| {z }

Declaration

j (� q)(xP hqi:0 j q(v)| {z }
Invoking a copy
of procedure P

: (� x)(vhx; pi| {z }
Communicating
argument and
termination
signal

: !x(r):in�(z):rhzi:0)))| {z }
Procedural
argument

:

An auxiliary encoding In the results concerning operational correspondence|see Lem-
mas 4.5 and 4.6 below|we make use of an auxiliary encoding of CIA phrases [[P]]�p, which is
essentially like [[P]]p but with administrative steps already performed. For example, the usual
encoding of the assignment of a value v to a variable � given by,

[[� := v]]p = (� q; r)(�qhin�; out�i:0 j �rhvi:0 j q(i; o):r(x):�ohxi:�p:0);
reduces to the following process, where the results of evaluating variable [[�]]q and expression
[[v]]r have already been transmitted to the continuation,

[[� := v]]�p = out�hvi:�p:0:

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 75

The auxiliary translation is chosen such that for all phrases P , the standard encoding expands
it, that is, [[P]]p � [[P]]�p. By compositionality of expansion, this extends to encodings of con�g-

urations as well, that is, [[� ` hP%�; �i]]p � [[� ` hP%�; �i]]�p. The auxiliary encoding therefore
does not encode single con�gurations, but classes of con�gurations which are behaviourally
equivalent but can perform di�erent administrative steps.

Remark: It is interesting to see that, when applying the auxiliary encoding to closed com-
mands, the only relevant transitions are those in which a program reads from or writes to a
variable. The reason is that the content of the variable can determine the future behaviour of
a con�guration, whereas all other steps only have administrative character.

Operational correspondence There is a close operational correspondence between con-
�gurations � ` hP%�; �i and their (auxiliary) encodings [[� ` hP%�; �i]]�p. For instance, as
indicated above, a con�guration � ` hC%�; �i over a command C terminates if and only if its
translation [[� ` hC%�; �i]]�p terminates on p. We state operational correspondence separately
for con�gurations over variables, expressions, and those over commands; correspondence for
arbitrary phrases cannot|and need not|be considered, as con�gurations are only de�ned over
variables, expressions, and commands, see Section 4.1.

Notation: We use [[� ` �]]� to denote the encoding of an assignment � with global variables
in � � dom(�). Further, we write [[� ` C]]�p for the encoding of a con�guration C with global

variables in �. Recall from Chapter 2 that P
�

=) P 0 denotes that either P 0 = P or P
�

=) P 0;
that is, that there is a sequence of zero or more silent transition.

Lemma 4.5 (Operational Correspondence for Variables and Expressions) Let
hV %�; �i and hE%�; �i be con�gurations over a variable-phrase V , an expression E, or either
of both, written hP%�; �i, from CIA-fawaitg. Then,
� Transitions of the con�gurations:

1. � ` hV %�; �i
p
�! � implies [[� ` hV %�; �i]]�p

�phin�;out�i�! [[� ` �]]�;

2. � ` hE%�; �i
p
�! v implies [[� ` hE%�; �i]]�p

�phvi
=) [[� ` �]]�;

3. � ` hP%�; �i ��! hP 0%0� 0; �i implies [[� ` hP%�; �i]]�p �
=) R0 � [[� ` hP 0%0� 0; �i]]�p.

� Transitions of the encodings:

1. [[� ` hV %�; �i]]�p
�phin�;out�i�! R implies R = [[� ` �]]� and � ` hV %�; �i

p
=) �;

2. [[� ` hE%�; �i]]�p
�phvi�! R implies R = [[� ` �]]� and � ` hE%�; �i

p
=) v;

3. [[� ` hP%�; �i]]�p ��! R implies R � [[� ` hP 0%0� 0; �i]]�p and � ` hP%�; �i �
=) hP 0%0� 0; �i.

Proof: By induction on the structure of variable-phrases and expressions. 2

In this operational correspondence, we do not consider that the environment can read from
or write to global variables in the �-calculus encoding. This is not necessary, because we use

76 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

the results about variables and expressions only together with those for commands, and there
variable-accesses from the environment are indeed considered.

We derive operational correspondence for commands based on the results from Lemma 4.5,
applying compositional reasoning. Yet, we cannot simply restate the results for silent tran-
sitions, because parallel composition of commands within the context of a local store allows
di�erent parts of the programs to interfere. Note that in contrast to variables and expressions,
commands are capable of modifying the contents of variables.

Lemma 4.6 (Operational Correspondence for Commands) Let hC%�; �i be a con�g-
uration over a command C from CIA-fawaitg, with global variables � � dom(�). Then,

� Transitions of the con�gurations:

1. � ` hC%�; �i
p
�! �0 implies [[� ` hC%�; �i]]�p

�p
=) [[� ` �0]]�

2. � ` hC%�; �i in�(v)�! hC%�; �i implies [[� ` hC%�; �i]]�p
in�(v)�! [[� ` hC%�; �i]]�p;

3. � ` hC%�; �i out�(v)�! hC%�; �0i implies [[� ` hC%�; �i]]�p
out�(v)�! [[� ` hC%�; �0i]]�p;

4. � ` hC%�; �i ��! hC 0%0� 0; �0i implies [[� ` hC%�; �i]]�p �
=) R � [[� ` hC 0%0� 0; �0i]]�p.

� Transitions of the encodings:

1. [[� ` hC%�; �i]]�p
�p�! R implies R = [[� ` �0]]� and � ` hC%�; �i

p
=) �0 for some �0;

2. [[� ` hC%�; �i]]�p
in�(v)�! [[� ` hC%�; �i]]�p implies � ` hC%�; �i

in�(v)�! hC%�; �i;

3. [[� ` hC%�; �i]]�p
out�(v)�! [[� ` hC%�; �0i]]�p implies � ` hC%�; �i

out�(v)�! hC%�; �0i ;

4. [[� ` hC%�; �i]]�p ��! R implies R � [[� ` hC 0%0� 0; �0i]]�p and � ` hC%�; �i �
=) hC 0%0� 0; �0i.

Proof: By induction on the structure of commands, making use of Lemma 4.5. 2

Weak operational correspondence So far, in Lemma 4.6, we have compared the small-
step behaviour of CIA-fawaitg commands and their translations into the �-calculus. Yet, in
the context of observational equivalences, it is as important how the large-step behaviour cor-
responds. Such a correspondence can easily be obtained from that of the small-step behaviour
by composing transitions and reordering administrative steps in an inductive argument.

Lemma 4.7 (Weak Operational Correspondence for Commands) Let hC%�; �i be a
con�guration over a command C from CIA-fawaitg, with global variables � � dom(�). Then,

� Transitions of the con�gurations:

1. � ` hC%�; �i
p
=) �0 implies [[� ` hC%�; �i]]�p

�p
=) [[� ` �0]]�

2. � ` hC%�; �i in�(v)
=) hC 0%0� 0; �0i implies [[� ` hC%�; �i]]�p

in�(v)
=) R � [[� ` hC 0%0� 0; �0i]]�p;

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 77

3. � ` hC%�; �i out�(v)
=) hC 0%0� 0; �0i implies [[� ` hC%�; �i]]�p

out�(v)
=) R � [[� ` hC 0%0� 0; �0i]]�p;

4. � ` hC%�; �i �
=) hC 0%0� 0; �0i implies [[� ` hC%�; �i]]�p �

=) R � [[� ` hC 0%0� 0; �0i]]�p.
� Transitions of the encodings:

1. [[� ` hC%�; �i]]�p
�p

=) R implies R = [[� ` �0]]� and � ` hC%�; �i
p
=) �0 for some �0;

2. [[� ` hC%�; �i]]�p
in�(v)
=) R implies R � [[� ` hC 0%0� 0; �0i]]�p and � ` hC%�; �i

in�(v)
=) hC 0%0� 0; �0i;

3. [[� ` hC%�; �i]]�p
out�(v)
=) R implies R � [[� ` hC 0%0� 0; �0i]]�p and � ` hC%�; �i

out�(v)
=) hC 0%0� 0; �0i;

4. � ` [[hC%�; �i]]�p �
=) R implies R � [[� ` hC 0%0� 0; �0i]]�p and � ` hC%�; �i �

=) hC 0%0� 0; �0i.
Proof: By induction on the length of the transitions. The argument includes reordering
of administrative steps in the expansion-relations and executing steps as captured by the
transitions in the �-calculus encoding. 2

Soundness Exploiting the congruence-properties of ��, compositionality of the encoding,
and the operational correspondence results from Lemmas 4.6 and 4.7, we can prove that the
encoding is sound.

Notation: Let ��
oc be the observational congruence on CIA-fawaitg de�ned analogously to

�oc on full CIA (see De�nitions 4.1 and 4.2), and let �� be weak early bisimilarity for the
�-calculus, as introduced in De�nition 2.4 in Chapter 2. Further, we use [[� ` C]]�p to denote the
encoding of a closed command C together with an arbitrary assignment to its global variables.

Theorem 4.8 (Full Abstraction for Commands) For arbitrary closed commands C1

and C2 in CIA-fawaitg, with global variables �, the following holds:

� Soundness: [[� ` C1]]
�
p �� [[� ` C2]]

�
p implies � ` C1 ��

oc C2;

� Completeness: � ` C1 ��
oc C2 implies [[� ` C1]]

�
p �� [[� ` C2]]

�
p.

Proof: The proofs of the two directions are similar, and amount to the construction of a
con�guration-bisimulation from a �-calculus bisimulation, and vice versa. The justi�cation
that each of the obtained relations is indeed a bisimulation, is a case-analysis exploiting the
results about operational correspondence obtained above.

Soundness: The relation

RC1(�)
def
= f (hC1%1�1; �1i; hC2%2�2; �2i) j [[� ` hC1%1�1; �1i]]�p �� [[� ` hC2%2�2; �2i]]�p g

is a con�guration bisimulation according to De�nition 4.1. The proof is standard diagram-
chasing based on Lemmas 4.6 and 4.7.

Completeness: The relation

RC2
def
= f ([[� ` hC1%1�1; �1i]]�p; [[� ` hC2%2�2; �2i]]�p) j � ` hC1%1�1; �1i � hC2%2�2; �2i g

[IdP

78 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

Expressions

[[!V]]`p
def
= (� q)([[V]]q j q(i; o):�̀:i(x):(`:0 j �phxi:0))

Commands

[[V := E]]`p
def
= (� q; r)([[V]]q j [[E]]r j q(i; o):r(x):�̀:�ohxi:(`:0 j �p:0))

[[await B then C]]`p
def
= (� a)(!a: (� q)(�̀:[[B]]q j q(x): ([x = tt] (� r)([[C]]r j r:(`:0 j �p:0)) j

[x = �] (`:0 j �a:0))) j �a:0)

Table 4.7: Encoding Full CIA.We only state those de�ning clauses di�ering from Table 4.6.

is a weak bisimulation up to expansion, where IdP is the identity-relation on processes. Again,
the proof is standard diagram-chasing based on Lemmas 4.6 and 4.7. 2

From this result, we immediately obtain soundness of the original encoding for arbitrary phrases
from CIA-fawaitg.

Theorem 4.9 (Soundness) [[P1]]p �� [[P2]]p implies � ` P1 ��
oc P2 for arbitrary CIA-

fawaitg phrases P1 and P2.

Proof: The result is a corollary of Theorem 4.8, following by an application of the usual
congruence properties of ��. That is, if [[P1]]p �� [[P2]]p, and hence [[P1]]

�
p �� [[P2]]

�
p, then for all

closing contexts �0 ` Con[:], it holds that [[�0 ` Con[P1]]]
�
p �� [[�

0 ` Con[P2]]]
�
p. By Theorem 4.8,

we obtain for all closing contexts Con[:], that �0 ` Con[P1] ��
oc Con[P2]. Hence � ` P1 ��

oc P2,
by De�nition 4.2. 2

The converse (completeness) holds in the case of closed commands, but does not extend to
arbitrary phrases, as we shall discuss in Section 4.4. To give an intuition, one reason is
that when giving the environment direct access to local variables by submitting a procedure-
call, for instance, the environment retains this access permanently, even after it has signalled
termination of the procedure. Some of these problems can be attacked by using type-systems,
but it is unclear whether completeness can be obtained with standard type-systems.

4.2.2 Encoding Full CIA

Although during the execution of an await-statement, the whole context is stopped, it is
suÆcient simply to restrict accesses to variables in the �-calculus translation. The reason
ist that any other step does not change the semantics of the encoding with respect to weak
bisimilarity.

Encoding the lock We encode command-con�gurations hC%�; �i as describe above, only
that we now add a lock `:0 in parallel. A simple possibility to hide the lock from the en-
vironment is to restrict the whole encoding with respect to it, that is, to give a translation
(�`)(`:0 j [[� ` hC%�; �i]]`p). Such an encoding will work well in those cases where it does not
matter whether the environment interferes during the execution of an await-statement. A
major problem of this simple solution, however, is that this is not always the case. Note

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 79

that, according to our operational semantics, the environment is intended to be blocked by an
await-statement as well. This implies that even certain obvious correspondences cannot be
proved via a translation into the �-calculus, as for instance,

� : var[int] ` await tt then (� := �+ 1; � := �+ 1) �oc await tt then (� := � + 2):

The reason is that the I/O-typing we have applied so far does not forbid the environment access
to Reg�. It suÆces for the environment to read from Reg� as soon as the �rst assignment
has taken place in the �rst command; the second command cannot change the value of Reg�
accordingly.

Linearity We thus have to require from the environment to take the lock before accessing
a variable, and to release it afterwards. This means that we have to make the lock public,
hence encode con�gurations via `:0 j [[� ` hC%�; �i]]`p, and make sure that the lock is taken by
the environment only for accessing global variables, after which it is to be released again. This
can be encoded in the obligations for weak bisimilarity (see De�nition 2.4) as follows (we only
state the changes for the �rst one):

� if P
`�!in�hvi�! P 0, then there exists Q0 such that Q

`
=)in�hvi

=) Q0 and `:0 jP 0 R `:0 jQ0;

� if P
`�!out�(v)�! P 0, then there exists Q0 such that Q

`
=)in�(v)

=) Q0 and `:0 jP 0 R `:0 jQ0;

� if P
��! P 0, then there exists Q0 such that Q

�
=) Q0 and P 0 R Q0.

Like this, it is guaranteed that the lock is acquired by the environment before reading from
or writing to the global variables, and that the lock is released again afterwards. Note that
the above is an encoding into the de�nition of weak bisimilarity, of linear types as proposed
by Kobayashi, Pierce, and Turner [KPT99]. Using this modi�cation, the above example can
indeed be validated.

An auxiliary encoding Like in the previous section, we employ an auxiliary encoding
[[P]]`�p of phrases P such that [[P]]p � [[P]]`�p ; it is obtained by performing all administrative
steps. By compositionality of expansion, this again extends to whole con�gurations, that is,
[[� ` hP%�; �i]]p � [[� ` hP%�; �i]]`�p . Also like above, we use [[� ` �]]`� as the encoding of an
assignment � with global variables in � � dom(�).

Operational correspondence When deriving operational correspondence for locked con-
�gurations, we can make use of the fact that the execution of an await-statement is fully
deterministic, and hence can be dealt with bisimulations up-to expansion, both for CIA and
the encoding.

Note that already in the lemmas about operational correspondence, we do already apply locks
so that the encodings can access them. Yet, we do not yet force the environment to behave
according to a regiment of linear typing.

Lemma 4.10 (Operational Correspondence for Variables and Expressions) Let
hV %�; �i and hE%�; �i be con�gurations over a variable-phrase V , an expression E, or either
of both, written hP%�; �i, from full CIA. Then,

� Transitions of the con�gurations:

80 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

1. � ` hV %�; �i
p
�! � implies [[� ` hV %�; �i]]`�p

�phin�;out�i�! [[� ` �]]`�;

2. � ` hE%�; �i
p
�! v implies `:0 j [[� ` hE%�; �i]]`�p

�phvi
=) `:0 j [[� ` �]]`�;

3. � ` hP%�; �i ��! hP 0%0� 0; �i implies `:0 j [[� ` hP%�; �i]]`�p �
=) R0 � `:0 j [[� ` hP 0%0� 0; �i]]`�p .

� Transitions of the encodings:

1. [[� ` hV %�; �i]]`�p
�phin�;out�i�! R implies R = [[� ` �]]`� and � ` hV %�; �i

p
=) �;

2. [[� ` hE%�; �i]]`�p
�phvi�! R implies R = [[� ` �]]`� and � ` hE%�; �i

p
=) v;

3. `:0 j [[� ` hP%�; �i]]`�p ��! R implies R � `:0 j [[� ` hP 0%0� 0; �i]]`�p and � ` hP%�; �i �
=)

hP 0%0� 0; �i.

Proof: By induction on the structure of variable-phrases and expressions. 2

Lemma 4.11 (Operational Correspondence for Commands) Let hC%�; �i be a con-
�guration over a command C from full CIA, with global variables � � dom(�). Then,

� Transitions of the con�gurations:

1. � ` hC%�; �i
p
�! �0 implies `:0 j [[� ` hC%�; �i]]`�p

�p
=) `:0 j [[� ` �0]]`�

2. � ` hC%�; �i in�(v)�! hC%�; �i implies [[� ` hC%�; �i]]`�p
in�(v)�! [[� ` hC%�; �i]]`�p ;

3. � ` hC%�; �i out�(v)�! hC%�; �0i implies [[� ` hC%�; �i]]`�p
out�(v)�! [[� ` hC%�; �0i]]`�p ;

4. � ` hC%�; �i ��! hC 0%0� 0; �0i implies `:0 j [[� ` hC%�; �i]]`�p �
=) R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p ;

5. � ` hC%�; �i ��! hC 0%�; �i` implies hC 0%�; �i` �
=) hC 00%�; �0i and hC 0%�; �i` � hC 00%�; �0i

and `:0 j [[� ` hC%�; �i]]`�p �
=) R � `:0 j [[� ` hC 00%�; �0i]]`�p .

� Transitions of the encodings:

1. [[� ` hC%�; �i]]`�p
�p�! R implies R = [[� ` �0]]`� and � ` hC%�; �i

p
=) �0 for some �0;

2. [[� ` hC%�; �i]]`�p
in�(v)�! [[� ` hC%�; �i]]`�p implies � ` hC%�; �i in�(v)�! hC%�; �i;

3. [[� ` hC%�; �i]]`�p
out�(v)�! [[� ` hC%�; �0i]]`�p implies � ` hC%�; �i out�(v)�! hC%�; �0i ;

4. `:0 j [[� ` hC%�; �i]]`�p ��! R implies R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p and � ` hC%�; �i �
=)

hC 0%0� 0; �0i.

4.2. ENCODING CONCURRENT IDEALIZED ALGOL 81

Proof: By induction on the structure of commands, making use of Lemma 4.10. 2

Note that the context of the encoding can principally access the variables without taking
the lock. We omit the respective branches of the transition-systems when examining oper-
ational correspondence, because they are eliminated by the linearity-constraints imposed by
con�guration-bisimulation. As a result, we do not even have to add the locks when considering
the visible transitions of the encodings. In the results for weak operational correspondence
below, we have to add the locks nevertheless, because they can be taken and released in the
silent transitions happening before and after the inputs and outputs.

Lemma 4.12 (Weak Operational Correspondence for Commands) Let hC%�; �i be
a con�guration over a command C from full CIA, with global variables � � dom(�). Then,

� Transitions of the con�gurations:

1. � ` hC%�; �i
p
=) �0 implies `:0 j [[� ` hC%�; �i]]`�p

�p
=) `:0 j [[� ` �0]]`�

2. � ` hC%�; �i in�(v)
=) hC 0%0� 0; �0i implies `:0 j [[� ` hC%�; �i]]`�p

in�(v)
=) R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p ;

3. � ` hC%�; �i out�(v)
=) hC 0%0� 0; �0i implies `:0 j [[� ` hC%�; �i]]`�p

out�(v)
=) R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p ;

4. � ` hC%�; �i �
=) hC 0%0� 0; �0i implies `:0 j [[� ` hC%�; �i]]`�p �

=) R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p .

5. � ` hC%�; �i �
=) hC 0%�; �i` implies hC 0%�; �i` �

=) hC 00%�; �0i and hC 0%�; �i` � hC 00%�; �0i
and `:0 j [[� ` hC%�; �i]]`�p �

=) R � `:0 j [[� ` hC 00%�; �0i]]`�p .

� Transitions of the encodings:

1. `:0 j [[� ` hC%�; �i]]`�p
�p

=) R implies R = `:0 j [[� ` �0]]`� and � ` hC%�; �i
p
=) �0 for some

�0;

2. `:0 j [[� ` hC%�; �i]]`�p
in�(v)
=) R implies R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p and � ` hC%�; �i in�(v)

=)
hC 0%0� 0; �0i;

3. `:0 j [[� ` hC%�; �i]]`�p
out�(v)
=) R implies R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p and � ` hC%�; �i out�(v)

=)
hC 0%0� 0; �0i;

4. `:0 j [[� ` hC%�; �i]]`�p �
=) R implies R � `:0 j [[� ` hC 0%0� 0; �0i]]`�p and � ` hC%�; �i �

=)
hC 0%0� 0; �0i.

Proof: By induction on the length of the transitions. The argument includes reordering
of administrative steps in the expansion relations and executing steps as captured by the
transitions in the �-calculus encoding. 2

Up-to techniques in the proof of Theorem 4.13 (full abstraction for commands) below allow
us to abstract from locked con�gurations. On the level of CIA, we employ the results from
Corollary 4.4, on that of the �-calculus we use expansion.

82 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

Soundness Exploiting the congruence-properties of ��, the compositionality of the encod-
ing, and the operational correspondence results, we can prove that the encoding is sound.

Let �oc be the observational congruence on full CIA, as given in De�nitions 4.1 and 4.2,
and let �� be weak early bisimilarity with linear types for the �-calculus, as re�ned from in
De�nition 2.4 in Chapter 2 above.

Theorem 4.13 (Full Abstraction for Commands) For arbitrary closed commands C1

and C2 in full CIA, with global variables �, the following holds:

� Soundness: [[� ` C1]]
`�
p �� [[� ` C2]]

`�
p implies � ` C1 ��

oc C2;

� Completeness: � ` C1 ��
oc C2 implies [[� ` C1]]

`�
p �� [[� ` C2]]

`�
p .

Proof: The proofs of the two directions are similar, and amount to the construction of a
con�guration bisimulation from a �-calculus bisimulation, and vice versa. The justi�cation
that each of the obtained relations is indeed a bisimulation, is a case-analysis exploiting the
results about operational correspondence obtained above.

Soundness: The relation

RC1(�)
def
= f (hC1%1�1; �1i; hC2%2�2; �2i) j

`:0 j [[� ` hC1%1�1; �1i]]`�p �� `:0 j [[� ` hC2%2�2; �2i]]`�p g
is a con�guration bisimulation up to � according to De�nition 4.1 when taking linear typing of
the lock into accout. The proof is standard diagram-chasing based on Lemmas 4.11 and 4.12.

Completeness: The relation

RC2
def
= f (`:0 j [[� ` hC1%1�1; �1i]]`�p ; `:0 j [[� ` hC2%2�2; �2i]]`�p) j

� ` hC1%1�1; �1i � hC2%2�2; �2i g

[IdP
is a weak bisimulation up to expansion, with linear typing for the lock; again, IdP is the
identity-relation on processes. Again, the proof is standard diagram-chasing based on Lem-
mas 4.11 and 4.12. 2

From this result, we immediately obtain soundness for arbitrary phrases. We use �� to denote
weak bisimilarity for the �-calculus, and �l

� to stand for weak bisimilarity with a linear typing.

Theorem 4.14 (Soundness) `:0 j [[P1]]
`

p �l
� `:0 j [[P2]]

`

p and (�`)(`:0 j [[P1]]
`

p) �� (�`)(`:0 j [[P2]]
`

p)
imply � ` P1 �oc P2 for arbitrary CIA-phrases P1 and P2.

Proof: The result is a corollary of Theorem 4.13, following by an application of the usual
congruence properties of �l

�. Clearly, (�`)(`:0 j [[P1]]
`

p) �� (�`)(`:0 j [[P2]]
`

p) implies `:0 j [[P1]]
`

p �l
�

`:0 j [[P2]]
`

p. Further, if `:0 j [[P1]]
`

p �l
� `:0 j [[P2]]

`

p, and hence `:0 j [[P1]]
`�
p �� `:0 j [[P2]]

`�
p , then for all

closing contexts �0 ` Con[:], it holds that `:0 j [[�0 ` Con[P1]]]
`�
p �� `:0 j [[�0 ` Con[P2]]]

`�
p . By

Theorem 4.13, we obtain for all closing contexts Con[:], that �0 ` Con[P1] �oc Con[P2]. Hence
� ` P1 �oc P2, by De�nition 4.2. 2

4.3. LAWS AND EXAMPLES 83

Relating locked and unlocked encodings The locked encoding `:0 j [[P]]`p of a phrase P
not containing an await-statement, is equivalent to its unlocked encoding `:0 j [[P]]p, when
applying the linear typing-regiment for the lock. Further, it holds for arbitrary phrases P and
P 0 without await that [[P]]p �� [[P

0]]p implies `:0 j [[P]]`p �� `:0 j [[P 0]]`p. Therefore, we can apply
the simpler encoding for CIA-fawaitg whenever possible, in order to derive corresponding
results for full CIA.

4.3 Laws and Examples

We illustrate how to use �-calculus semantics by validating laws as well as concrete ex-
amples, of CIA. We prove most of the laws in a purely algebraic way, using some sim-
ple well-known �-calculus laws. In particular, we consider benchmark laws and examples
from [MS88, Bro96, MT91, MT92], demonstrating that the �-calculus semantics yields simple
proofs of these well-known equalities. In Section 4.3.1, we then show by a more complex ex-
ample how to tackle procedures of higher order. In that example, we apply the proof-method
of exhibiting a bisimulation, as introduced in Section 2.2.2 and applied in further case-studies
in Chapter 5.

� Basic properties of CIA operators, such as associativity of sequential composition, or as-
sociativity and commutativity of parallel composition, are straightforward consequences of
analogous �-calculus laws (like associativity and commutativity of parallel composition in the
�-calculus).

� Suppose that � does not occur free in P 0, and consider the following laws:

(L1) new [�]� := v in P 0 = P 0

(L2) new [�]� := v in (P ;P 0) = (new [�] � := v in P);P 0

(L3) new [�]� := v in (P 0;P) = P 0; (new [�]� := v in P)
(L4) new [�]� := v in (P k P 0) = (new [�]� := v in P) k P 0:

The �-calculus proofs of these laws are all similar, and purely algebraic. As an example, we

present the proof of L2; recall from Section 4.2 that fn�
def
= fin�; out�g:

[[new [�]� :=v in (P ;P 0)]]p �� (� fn�)(Reg�[v] j (� q)([[P]]q j q:[[P 0]]p)) (1)

�� (� q)((� fn�)(Reg�[v] j ([[P]]q j q:[[P 0]]p))) (2)

�� (� q)((� fn�)(Reg�[v] j [[P]]q) j q:[[P 0]]p) (3)

�� [[(new [�]� := v in P);P 0)]]p:

Line (1) contains the encoding with v already written to Reg�; in Section 4.2.1, we have shown
that this process is bisimilar to the original encoding. In line (2), the restriction on q is moved
to an outer level; and in line (3), the restriction on fn� is �nally removed from [[P 0]]p.

� A general law for call-by-name languages states that global procedures with read-capacity
only cannot change the content of local variables, which allows for an encoding of call-by-value
procedures P (E) if the argument is an expression: declare a fresh local variable �, and evaluate
E into it; then call P (!�). The following instance of the law,

new [int]� := 1 in P (!�) = P (1)

84 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

(where P is a free identi�er of appropriate type) is proved algebraically as follows:

[[new [int]� := 1 in P (!�)]]p
�� (� fn�)(Reg�[1] j (� q)(xP hqi:0 j q(v):(� x)(vhx; pi:!x(r):in�(z):rhzi:0))) (1)
�� (� q)(xP hqi:0 j q(v):(� x)(vhx; pi:(� fn�)(Reg�[1] j !x(r):in�(z):rhzi:0))) (2)
�� (� q)(xP hqi:0 j q(v):(� x)(vhx; pi:!x(r):rh1i:0)) (3)
= [[P (1)]]p:

Line (1) again contains the encoding with the declaration already performed (compare the
example above and Section 4.2.1). In lines (2) and (3), Reg� is eliminated owing to in� being
the only name in fn� to be used: in line (2), Reg� is moved into the only sub-process accessing
it, and the binder (� fn�) is moved inside the process accordingly; in line (3), Reg� is �nally
eliminated as, in the absence of out�, reading and returning a value is equivalent to just
returning the value itself.

� Another important law for IA and CIA is that local variables that are modi�ed but never
used afterwards, are superuous and can be omitted. Suppose again that P is a free identi�er
of appropriate type. Then, calling it with a command modifying a local variable � amounts to
calling it with the skip-argument, provided � is not read from afterwards. Proving the law,

new [int]� := 0 in P (� :=!�+ 1) = P (skip)

essentially amounts to showing for arbitrary non-negative integer values v that,

(� fn�)(Reg�[v] j !x(r):[[� :=!�+ 1]]r) �� !x(r):[[skip]]r;

where x denotes the formal parameter of the free identi�er P . Observe that x is a free name
accessible by the observer, because P is a free identi�er. We sketch the proof that the two pro-
cesses are bisimilar. The observer can invoke the argument via x, forking copies of [[� :=!�+ 1]]q
and [[skip]]q respectively and providing them with a fresh name q on which to signal termina-
tion:

(� fn�)(Reg�[v] j !x(r):[[� :=!� + 1]]r)
xhqi�! (� fn�)(Reg�[v] j !x(r):[[� :=!� + 1]]rj[[� :=!� + 1]]q)

!x(r):[[skip]]r
xhqi�! !x(r):[[skip]]r j [[skip]]q;

Assuming that no further procedure-calls occur while the present call is being handled, we
have:

(� fn�)(Reg�[v] j !x(r):[[� :=!�+ 1]]r j [[� :=!� + 1]]q)
�

=) (� fn�)(Reg�[v + 1] j !x(r):[[� :=!� + 1]]r j [[skip]]q) (1)
q�! (� fn�)(Reg�[v + 1] j !x(r):[[� :=!� + 1]]r) (2)

!x(r):[[skip]]r j [[skip]]q
q�! !x(r):[[skip]]r: (3)

Line (1) represents the internal actions performed when incrementing the value stored in Reg�,
and lines (2) and (3) show the signals of termination of the execution of the respective argu-
ments, yielding processes according the same scheme as before (only with a di�erent value).

The general case, in which the argument may be invoked arbitrarily often before the termi-
nation of a previous call, can be proved analogously. In this case, more pending processes have

4.3. LAWS AND EXAMPLES 85

to be added in parallel; they represent both copies of the argument and components occurring
whenever one of these copies has read a value from � but not yet written back the result of its
incrementation.

� A simple �-calculus bisimulation-relation can be used to prove that iteration is expressible
via recursion, that is, if x is not free in B and C then,

while B do C = recx: if B then (C; x) else skip:

4.3.1 Veri�cation of a Higher-Order Bu�er

In this section, we give a last|more substantial|example of showing via a translation into the
�-calculus that two implementations of a two-place bu�er in full CIA are equivalent. Observe
that the proof can be generalized to n-place bu�ers.

For the sake of simplicity, we assume that all bu�ers store integer-values. The example
involves both procedures of higher order and the await-statement. We consider a bu�er as
a higher-order procedure B(xp) whose argument xp intuitively represents the clients of the
bu�er. This argument, xp(put; get), is itself a higher-order procedure, taking two procedures
put and get as arguments: the �rst one, put(xn), is used by the client to store values in the
bu�er; the second one, get(xr), is used for retrieving values from the bu�er according to a
FIFO strategy; xn and xr are identi�ers of type int and var[int], respectively. Note that the
put- and get-procedures are provided by the bu�er, and cannot be determined by the client.

A monolithic bu�er Procedure B below de�nes a one-place bu�er; as pointed out above,
xp represents the clients, xn denotes a value stored by a client, and xr is a client location, to
which a value retrieved from the bu�er is stored. We use sugared notation for the declarations
and conditionals.

B
def
= �(xp : �c):new [bool]full := �; [int]cont := 0 in

(xp (�(xn : int): await (!full = �) then (cont := xn; full := tt))) =� put �=
(�(xr : var[int]): await (!full = tt) then (xr :=!cont; full := �)): =� get �=

In our model, a one-place bu�er possesses the two local variables full and cont: variable full
indicates whether the bu�er is full (!full = tt) and can deliver a value which is stored in cont,
or empty (!full = �) and can accept a value which it then stores in cont.

Analogously, one can de�ne bu�ers with two, or even more, places. Bu�er B1 below, for
example, is a two-place bu�er. It possesses the three local variables ib, cont1 and cont2. Variable
ib tells how many values there are in the bu�er: for !ib = 0, a value can be accepted and is
stored in cont1; for !ib = 1, yet another value can be accepted and is stored in cont2, or the
value in cont1 can be delivered; for !ib = 2, the value in cont1 is delivered, and that in cont2 is
shifted to cont1.

B1
def
= �(xp : �c):new [int]ib := 0; [int]cont1 := 0; [int]cont2 := 0 in

(xp (�(xn : int): await (!ib � 1) then
((if (!ib = 0) then cont1 := xn else cont2 := xn); ib :=!ib+ 1))

(�(xr : var[int]): await (!ib � 1) then
(xr :=!cont1; (if (!ib = 2) then cont1 :=!cont2); ib :=!ib� 1))):

86 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

A composite bu�er De�ning n-place bu�ers like B and B1 yields single monolithic terms.
However, we can also de�ne n-place bu�ers in a modular way, by connecting n one-place bu�ers.
In this case, it is necessary to distinguish the �rst n�1 bu�ers from the last one, which acts as
a barrier-bu�er. For the barrier-bu�er, we take the term B from above. To its front, we attach
head-bu�ers HB(xpt; xgt) obtaining the put- and get-procedures from the server-bu�er. HB
de�nes a put-procedure for the clients xp so that they can store values into it; as the clients
have to retrieve values form the server-bu�er that HB is attached to, HB hands them over
the get-procedure from the server-bu�er. A head-bu�er possesses the two variables fullh and
conth, where the former indicates whether a value can be delivered (!fullh = tt) from conth
or accepted (!fullh = �). Whenever HB is full, it attempts to transmit its content to the
server-bu�er, using the put-procedure from the server. The formal de�nition of head-bu�ers
HB in full CIA is as follows, again using sugared notation:

HB
def
= �(xp : �c): �(xpt : int! comm): �(xgt : var[int]! comm):

new [bool]fullh := �; [int]conth := 0 in
(xp(�(xn : int): await (:!fullh) then (conth := xn; fullh := tt))) = � put � =

xgt = � get � =
k rec x: (if (!fullh) then (xpt(!conth); fullh := �; x) else x)

We can now de�ne a composite two-place bu�er B2 in terms of a head-bu�er HB and a
one-place bu�er B by,

B2
def
= �(xp : �c):B (HB xp):

By applying conventional �-reduction, we obtain a representation of B2 of the form,

B2 = �(xp : �c):new [bool] full := �; fullh := �; [int] cont := 0; conth := 0 in
(xp (�(xn : int): await (:!fullh) then (conth := xn; fullh := tt)))

(�(xr : var[int]): await (!full) then (xr :=!cont; full := �))
k recx: (if (!fullh) then ((await (:!full) then (cont :=!conth; full := tt)); fullh := �); x):

Proving equality WithB1 and B2 both being higher-order phrases, we do not have a means
to show directly that they are observationally equivalent, let alone observationally congruent.
Therefore, in order to prove B1 �oc B2, we translate the phrases into the �-calculus and
establish (� `)(`:0 j [[B1]]

`

p) �oc (� `)(`:0 j [[B2]]
`

p). Note that due to the presence of await, we

have to use locks; hence the encoding [[:]]`.
Let Bbody

1 and Bbody
2 be the bodies of the procedures B1 and B2; they are obtained by

stripping o� the leading �, which is identical for B1 and B2. With the compositionality of ��,
it suÆces to prove that the encodings of Bbody

1 and Bbody
2 are bisimilar. We use bisimulation

up to expansion; see Section 2.2.2 for an introduction. Roughly, the relation R used for the
proof is of the following form (we omit those processes resulting from calls from clients that
have not been served immediately):

R def
= f((� `)(`:0 j [[Bbody

1]]`p); (� `)(`:0 j [[Bbody
2]]`p)); empty bu�ers

((� `)(`:0 j [[Bbody
1 (v)]]`p); (� `)(`:0 j [[Bbody

2 (v)]]`p)); one value stored

((� `)(`:0 j [[Bbody
1 (v; w)]]`p); (� `)(`:0 j [[Bbody

2 (v; w)]]`p)) two values stored

j v; w : intg;

4.3. LAWS AND EXAMPLES 87

where Bbody
1 (v) and Bbody

2 (v) are like Bbody
1 and Bbody

2 but with the value v stored in them;
and Bbody

1 (v; w) and Bbody
2 (v; w) are like Bbody

1 and Bbody
2 with the values v and w stored in

them.

A bisimulation-proof The justi�cation that R is a bisimulation up to expansion consists
of the usual case-study over all pairs contained in it and all possible transitions for each of the
processes involved. Consider, for instance, the �rst pair of the relation, where the bu�ers are
empty; that is, !ib = 0 in Bbody

1 and !full =!fullh = � in Bbody
2 . In that state the values of cont1,

cont2, cont, and conth do not matter, as they cannot be read. With corresponding sequences
of transitions,

s = xpthri client calls put-procedure, requesting that a value be stored,
r to be used later to signal termination

(� q)�xnhqi bu�er asks for a value, with xn a previously �xed channel,
and q a fresh name to communicate value

qhvi client provides value v along q
�r; bu�er signals termination along r,

the bu�ers accept a value v from their client and, after storing it, signal the termination of
that activity, thus,

(� `)(`:0 j [[Bbody
1]]`p)

s
=) (� `)(`:0 j [[Bbody

1 (v)]]`p)

(� `)(`:0 j [[Bbody
2]]`p)

s
=) (� `)(`:0 j [[Bbody

2 (v)]]`p):

During this execution, the bu�ers hold the lock; it is released at the same time the client is
informed about the termination. Now, !ib = 1 in Bbody

1 and !full = tt in Bbody
2 ; value v is

assigned to cont1 and cont, respectively. We can assume this, despite Bbody
2 �rst storing v in

conth, as

(� `)(`:0 j [[Bbody
2 (conth := v)]]`p) � (� `)(`:0 j [[Bbody

2 (cont := v)]]`p);

where � denotes expansion . Note that this application of the \up to" techniques which were
introduced in Section 2.2.2, is vital to the proof of the example (otherwise the relation would
yield an extremely large number of pairs). The other proof-obligations for R are similar.

In general, there are pending requests to the bu�ers. Some just have not been served
immediately, whereas others cannot be served at once, such as a read-request when the bu�ers
are empty, or a write-request when the bu�ers are full. Also, clients may request several
services without waiting for one to be �nished. In this case, the lock guarantees that they are
served one at a time, yet in arbitrary order.

To our knowledge, there exists no technique to prove this last example within a higher-order
operational framework, due to the presence of local state (compare the introduction to this
chapter). We do not know how to prove this or the other examples in this section directly
within the operational semantics of Algol without going through a universal quanti�cation over
contexts; recall the problems with reasoning directly within the Algol semantics, discussed
above.

88 CHAPTER 4. ENCODING ALGOL IN THE �-CALCULUS

4.4 Discussion

The approach presented in this chapter is applicable to other languages with state. We have,
for instance, modelled languages in the spirit of [MT91, MT92], using a call-by-value paradigm
instead of call-by-name, and extending variables to higher order, so that also references and
commands are stored in the registers.

Adding parallelism During the execution of an await-statement, only one thread of com-
putation is active (see Section 4.1 and [Bro96]), yielding a purely sequential behaviour. The
degree of parallelism in the presence of an active (that is, currently running) await-statement
can be increased by, for example, a simultaneous execution of phrases which do not access
variables a�ected by the await-statement. In order to increase the degree of parallelism in the
presence of an active (that is, currently running) await-statement, one may, for instance allow
for a simultaneous execution of phrases which do not access variables a�ected by the await-
statement. This can be modelled, in the SOS semantics, by locks carrying along information
about the concerned variables; in the �-calculus semantics, multiple locks can be introduced.
The necessary information on the access to variables can be gained by some simple prelimi-
nary static analysis. Of course, such an increase in parallelism changes the overall semantics;
nevertheless, there are behavioural correspondences between the more sequential and the more
parallel version: �rst, if two phrases are bisimilar in the more parallel version, then they are
also bisimilar in the sequential one (cutting o� branches from the transition-systems); and, sec-
ond, a phrase may yield a divergent computation (transition-trace) in the sequential semantics
if and only if it does so in the parallel one (transitions occurring interleaved in the parallel
semantics are causally independent, so they can be interchanged resulting in a computation of
the sequential semantics).

Related work We follow an operational approach, as promoted for IA by Abramsky and
McCusker [AM96a, AM99], and Pitts [Pit96]. Also, the work of Mason and Talcott centers
towards that direction [MT91, MT92]. Most semantics apply denotational models, making
use of relational parametricity to express irreversibility of state-changes; see, for instance,
[Rey81, OT95, Bro96].

Completeness The issue of completeness for arbitrary phrases is delicate. Consider the
following example, where P is a free identi�er:

new [int]� := 0 in
P (�);
if (!� = 0) then skip

else diverge

=

new [int]� := 0 in
P (�);
if (!� = 0) then (if (!� = 1) then diverge else skip)

else diverge

This example hinges on the fact that a context looses access to � after the completion of P .
This is not the case for �-calculus-translation, however. Suppose the phrase has been signalled
that P has terminated, and that � = 0. One would naturally conclude that both phrases should
now terminate as well. Yet, with the access gained during the execution of P , a �-calculus-
context can change the value of � into 1 even after it has once been read by the conditional;
in this case, the encoding of the left-hand phrase terminates, whereas that of the right-hand
phrase cannot.

4.4. DISCUSSION 89

For validating this example, a re�ned notion of linearity would be necessary, extending to
variables the observer has obtained from a procedure call. Type-systems of this kind have been
studied for the �-calculus in [Hon96, KPT99, Kob97]. However, even these further re�nements
might not suÆce to obtain completeness. Moreover, our experiments have led us to the con-
viction that I/O-types are usually suÆcient for reasoning, and that further typing would just
make concrete proofs too complex.

Proof-techniques The bisimulation-proofs in this chapter make extensive use of up-to tech-
niques and contextual arguments. In the derivation of the theoretical results in Section 4.2, we
apply bisimulation up to expansion (for an introduction, see Section 2.2.2); in order to prove
the example in Section 4.3.1, we further use up-to context techniques [SM92, San95, San96b].
The proofs both of theoretical results and applications are tedious, and necessitate a great
amount of book-keeping; a mechanization could turn out to be advantageous. A global objec-
tive therefore is the design and implementation of an integrated platform for reasoning about
and within the �-calculus. Such a framework should necessarily provide a range of up-to and
algebraic proof-techniques.

Chapter 5

Mechanized Validation of In�nite-State

Systems

In this chapter, we apply several bisimulation proof methods in the veri�cation of distributed
systems. In contrast to model-checking techniques, we model both system and speci�cation
in terms of processes, and apply observation equivalence. Observation equivalence in our case
corresponds to weak early bisimilarity as presented in Chapter 2.

We model the systems in a concurrent normal-form, that is, a system (C1 k : : : k Cn)
consists of a parallel composition of a number of sequential but not necessarily determin-
istic components Ci. This kind of processes usually suÆces to model reactive systems, see
also [GS95]. The behaviour of the components is described by rules of the form,

Ci
��! C 0

i;

possibly with side-conditions. The action � can be an output �a(~v), an input a(~v), or a silent
pre�x � . The behaviour of the compound system is determined by that of its components:

� Composition: if P
��! P 0, then P k Q ��! P 0 k Q;

� Communication: if P
�a(~v)�! P 0 and Q

a(~v)�! Q0, then P k Q ��! P 0 k Q0;

� and vice versa.

We use an interleaving semantics: either one of the components performs a step which is then a
step of the whole system (composition), or two components exchange data so the whole system
will indicate by a � that something is going on internally, but no further information is passed
to the observer (communication). Like in the previous chapters,

P
�

=) P 0 def
= P (

��!)�P 0

denotes the reexive-transitive closure of strong internal transitions, and

P
�

=) P 0 def
= P

�
=) ��! �

=) P 0

yields weak versions of transitions between one state of a component or a system, and another.
The following correspondence between strong and weak transitions can be derived, see also
Sections 2.1.1 and 2.3.1:

91

92 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

� if P
��! P 0, then P

�
=) P 0;

� if P
�

=) P 0, then P
�

=) P 0;

� Composition: if P
�

=) P 0, then P k Q �
=) P 0 k Q;

� Communication: if P
�a(~v)
=) P 0 and Q

a(~v)
=) Q0, then P k Q �

=) P 0 k Q0;

� and vice versa.

The derivation is by a standard induction on the length of the transitions, and can easily be
mechanized in a theorem-prover, see Section 2.3.1. In contrast to similar derivations for the
�-calculus in Chapter 3, no �-abstractions in the sense of Theorem 3.14 is necessary, because
syntax and semantics are essentially �rst-order. Nevertheless, no notion of substitution has to
be de�ned, because the syntax refers to concrete systems in contrast to the abstract description
of the �-calculus before.

The chapter is divided into three sections: in Section 5.1, we introduce a generalization of
observation equivalence which allows us to omit restrictions, so we can circumvent the question
of binders. It is based on providing a set of admitted names L, hence we call it observation
equivalence wrt. L. We apply it in two case studies from the �eld of communication protocols,
one dealing with faulty channels (see Section 5.1.1) and the other validating the Alternating Bit
Protocol (ABP, see Section 5.1.2). We pursue the semantic approach in that we exhibit concrete
bisimulation-relations. The two examples demonstrate the support general-purpose therom-
provers can o�er in the veri�cation of in�nite-state systems using bisimulations; in particular,
the whole book-keeping is dealt with by Isabelle. Further, in some cases the automatic tactics
succeed quite well by themselves when trying to �nd a matching weak derivative in the single
proof-obligations. Then we discuss proof techniques for observation equivalence (wrt. L). In
Section 5.2, we apply compositionality, so the veri�cation of a compound system can be tackled
in a divide-and-conquer manner: �rst validate the components, and then use their speci�cations
in the validation of the entire system. We do this an a proof about the speci�cation of a Sliding-
Window Protocol (SWP, see Section 5.2.1). In Section 5.3, we apply an up-to proof-technique
using bisimulations up to expansion in order to reduce the size of the relation. This is achieved
by detecting classes of states within every system that are observation-equivalent. Out of these,
we select the `smallest' process P , in the sense that it is the most eÆcient one. For each class,
we consider only such a P in the bisimulation-relation, omitting all the others. The equivalence
classes plus their representatives are derived in separate proofs. Like this, we still consider the
entire state-spaces of system and speci�cation, yet in a more modular way which results in
separate tractable proofs instead of one intractable (because of being too large) argument. We
apply both a standard and an up-to bisimulation in the validation of a simple cache-protocol,
so we can compare the two approaches (see Section 5.3.1).

Remark: All material presented in this chapter has been formalized in Isabelle/HOL; the
proof-scripts are available at http://www7.in.tum.de/~roeckl/thesis/protocols/ (com-
munication-protocols) and http://www7.in.tum.de/~roeckl/Cache/ (memory-cache-cohe-
rence). The proofs are also presented in [RE99, R�oc00, RE00].

5.1. OBSERVATION-EQUIVALENCE WRT. L 93

5.1 Observation-Equivalence wrt. L

We use a variation of observation-equivalence as introduced by Milner and Park [Mil89, Par80],
which is parameterized over a set of names telling those names that can be visible to an
observer from those that can only be used in internal communications. The standard notion
of observation equivalence can then be obtained by assuming the associated set of names to be
N . Using a set L of admissible visible names, we do not have to model restrictions, because
our systems are given in a concurrent normal-form (see introduction to this chapter), and an
outer restriction PnA can be captured by the set of admissible names N �A. This avoidance
of restrictions is particularly convenient in a mechanization of bisimulation proofs, because
it makes the decision superuous whether to formalize a restriction operator in �rst-order or
higher-order syntax. As pointed out in Chapters 2 and 3 of this thesis, either choice would
bear hard-to-deal-with consequences, in the form of either substitutions or a measure to rule
out extic terms, for instance, well-formedness predicates.

Definition 5.1 (Observation Equivalence wrt. L) A relation R � P � P is a weak
bisimulation wrt. L � N , if for all PRQ, all � 2 N [N [f � g, and all P 0; Q0 2 P,

(i) if P
��! P 0, there exists a Q0 such that Q

�̂
=) Q0 and P 0RQ0.

(ii) if Q
��! Q0, there exists a P 0 such that P

�̂
=) P 0 and P 0RQ0.

Observation equivalence wrt. L is the union �L
def
=

Sf R j R is a weak bisimulation wrt. L g.
In this de�nition, the set of names N is used in a slightly di�erent manner from the �-calculus.
We consider every input a(~x), for a sequence of values ~x, as a name in N ; the set of co-names
N is given by the corresponding outputs �a(~x). This implies that the set of visible labels L is
obtained from a uni�cation of names and co-names, N [N , like in pure CCS [Mil89].

Observation equivalence wrt. L corresponds naturally with standard observation equiv-
alence: whenever two processes are equivalent wrt. some set L, their restrictions with the
complement of L are observation equivalent; further, standard observation equivalence implies
observation equivalence wrt. arbitrary L, because of well-known congruence results.

Proposition 5.2 For all P;Q 2 P and all L � N , the following holds:

1. P �L Q implies Pn(N � L) � Qn(N � L);

2. P � Q implies P �L Q.

Proof: 1. Let R be a weak bisimulation wrt. L. Then the relation

R0 def
= f (Pn(N � L); Qn(N � L)) j (P;Q) 2 R g

is a weak bisimulation.

2. Owing to well-known congruence results, P � Q implies Pn(N � L) � Qn(N � L). Then,
from the weak bisimulation R proving P � Q, one can construct a weak bisimulation

R0 def
= f (Pn(N � L); Qn(N � L)) j (P;Q) 2 R g

94 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

K1 K(s)
acc(x)
�! K(xcs) L1 L(s)

acc(x)
�! L(xs) (accept)

K2 K(sxbt)
�
�! K(st) L2' L(sxt)

�
�! L(st) (lose)

K3 K(sxbt)
�
�! K(sxbxbt) L3 L(sxt)

�
�! L(sxxt) (duplicate)

K4 K(sxbt)
�
�! K(sxgt) (garble)

K5 K(sxb)
d(xb)
�! K(s) L5 L(sx)

del(x)
�! L(s) (deliver)

F1 F
d(xc)
�! F (x) F1' F

d(xg)
�! F (accept/discard)

F2 F (x)
�
�! F F2' F (xn+1)

�
�! F (xn) (lose, n > 0)

F3 F (xn)
�
�! F (xn+1) (duplicate)

F4 F (x)
del(x)
�! F F4' F (xn+1)

del(xn)
�! F (deliver, n > 0)

Table 5.1: Faulty Communication Channels. An implementation K can lose, duplicate, and
garble accepted messages (K1{K5). We assume garbling of messages to be detectable. A bit b
attached to each message tells whether the message is still correct (b = c) or has been garbled
(b = g). In combination with a �lter F (F6{F9, F6'{F9'), it behaves like a speci�cation L
(L1{L5).

for which (by simply rewriting its de�nition)

R00 def
= f (P;Q) j (Pn(N � L); Qn(N � L)) 2 R0 g

is a weak bisimulation wrt. L. 2

In the following two sections, we use observation equivalence wrt. a set of names for a mechani-
cal validation of two benchmark examples concerning communication protocols. We follow the
semantic approach, exhibiting a relation and proving that it is a bisimulation. This contrasts
the syntactic approach, that has been used more widely (see, for instance, [GS95, BG88, PS91]),
in which an axiomatization of the applied equivalence is given and used to transform the system
into its speci�cation. While the semantic approach requires a good intuition of the behaviour of
the systems, the syntactic approach necessitates a profound understanding of the proof-system.
A possible advantage of the semantic approach lies in the detection of errors in the description
of the system. Whereas a transformation simply does not yield the speci�cation, an analysis of
the behaviour in a bisimulation proof exhibits exactly those states with unintended behaviour.
This allows one to modify the behaviour of exactly those states successively, and �nally obtain
a correct system.

5.1.1 Faulty Channels

Our �rst example is taken from [Sne95]. It is of interest to us for the following reasons: (1) it
compares two nondeterministic in�nite-state systems operating on similar data structures, and
(2) for most of the resulting proof obligations it suÆces to �nd matching strong transitions,
that is, in most cases an action by one of the processes is matched by one single action of
the other processes. Reason (1) emphasizes that the bisimulation proof method is universally
applicable, and does not require, for instance, the speci�cation to be deterministic. Reason (2)
allows Isabelle/HOL to conduct the proof almost automatically.

5.1. OBSERVATION-EQUIVALENCE WRT. L 95

Consider two channels, K and L, of unbounded capacity; their contents can be modelled
by �nite lists of arbitrary length, and so we denote a state of channel K by K(x1 : : : xn), where
x1 : : : xn is a list of messages, each of them taken from an arbitrary domain M of possible
messages. This can be modelled by using a type variable, because Isabelle supports poly-
morphism. K and L are simple components, that is, processes without parallel composition;
Table 5.1 contains the rules formally describing their behaviour. Both K and L may lose (K2,
L2) or duplicate (K3, L3) messages, but K is further able to garble data (K4). We suppose
that it is possible to detect whether a message is correct or garbled; therefore, all messages in
K are marked with an index c if they are correct, and g if they are garbled; b stands for either
c or g. In order to sort out garbled messages at the end of K, we use a �lter F which, when
attached to a channel, delivers correctly transmitted messages (F1, F4, F4') and discards
garbled ones (F1'). Like the channels, F is itself faulty: it can lose (F2, F2') or duplicate
(F3) messages. We prove that the parallel composition of K and F|that is, K k F|is ob-
servationally equivalent to L with respect to the set of names L1 = f acc(x); del(x) j x 2M g.
(This is not so trivial as it may seem; for instance, it does not hold if F cannot lose messages,
see the remark below.) For this, we show that the relation

F def
= f (K(s) k F; L(ŝ)) j s an indexed sequence of messages,

ŝ = s without indices and garbage g
[f (K(s) k F (xn); L(ŝxn)) j s an indexed sequence of messages,

ŝ = s without indices and garbage,
x a message g

is a bisimulation wrt. L1, where ŝ in L are obtained from lists s in K by �rst eliminating
all garbled messages and then clearing all remaining messages of their c tags. For a list
s = acagacbcbccgac, for example, ŝ = aabba.

Remark: We have considered a faulty �lter F which loses and duplicates messages itself. For
a correct �lter F 0, there is no result K k F 0 �L1

L. Intuitively, if the �lter is correct then
K k F 0 is more reliable than L, while observation equivalence requires the two systems to have
the same degree of (un)reliability. In this case, one can use observation preorder, in which L
has to simulate the behaviour of K k F 0 but not vice versa.

Evaluation Proving that F is a bisimulation is not diÆcult, and most of the involvement
of the user goes into theorems describing, for instance, the relation between ŝ and ŝ0 if s0 is
obtained from s by losing one message. Provided with these theorems, Isabelle proves by one
single application of auto tac that F is a bisimulation, automatically guessing, for instance,
the matching weak transitions. The proof script contains less than 300 lines, and has been set
up within a few hours only.

5.1.2 The Alternating Bit Protocol

The Alternating Bit Protocol (ABP), proposed in [Lyn68, BSW69], is a well-established bench-
mark for proof methodologies implemented in theorem provers (see, for instance, [PS91, BG88,
NS94, Gim96]). It turns unreliable channels into reliable communication lines. We consider
an in�nite-state variant in which the channels can hold arbitrarily many messages, like in the

96 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

deliveraccept

replyacknowledge

send transmit
Trans

Ack

ReplierSender

Figure 5.1: Components of the ABP. The protocol is designed to turn the unreliable
channels Trans and Ack into a reliable communication line.

previous example. We assume that messages can be lost and duplicated, but not garbled. In
order to construct a protocol also dealing with (detectable) garbling we can use the result of
the previous subsection, replacing a channel by the parallel composition of a channel and a
�lter. Compositionality of observation equivalence automatically guarantees the correctness of
this new protocol.

The model as well as the outline of the proof follow [Mil89]. The protocol is modelled as
the parallel composition of four processes; it is schematically depicted in Figure 5.1. Messages
and acknowledgements are transmitted over two unreliable channels Trans, or T for short,
and Ack, or A for short, by a sender S, and a replier module R. The intended behaviour
of the protocol can be speci�ed by a one-place bu�er B. As pointed out by Milner [Mil89],
this allows to abstract from the data to be transmitted. We follow this argument, omitting
concrete messages in our formalization. Note, however, that including them would not further
complicate the proof, especially not in a theorem-prover.

The channels T and A exhibit exactly the same (faulty) behaviour as channel L in Sec-
tion 5.1.1: they have unbounded capacity, but can lose or duplicate messages at any time.
Initially, we assume both channels to be empty. The sender module continuously accepts mes-
sages from the environment (S1), transmits them repeatedly over channel T (S2, S3) and
waits for the current acknowledgement along A (S4, S5), before accepting a new message.
After having delivered a message to the environment (R1), the replier R repeatedly transmits
tagged acknowledgements to the sender (R2, R3) until a new message arrives (R4, R5). The
initial state of the protocol is the process,

ABP = Sa(0) k T (�) k A(�) k Rs(1) :

Table 5.2 gives a formal description of the behaviour of the components.

As indicated above, we intend the system to behave like a bu�er of capacity one. This
speci�cation is also formalized in Table 5.2, the initial state being Ba. We show that ABP �L1

Ba. Recall from the previous section that L1 = facc; delg, only that we now abstract from the
data because there is never more than one current message in the system.

The states of the protocol can be divided into two classes: a message can either be accepted
or delivered, possibly after a �nite number of silent transitions. The bisimulation relation B

5.1. OBSERVATION-EQUIVALENCE WRT. L 97

System: transmission channels

T1 T (s)
cs(x)
�! T (xs) A1 A(s)

cr(x)
�! A(xs) (accept)

T2 T (sxt)
�
�! T (st) A2 A(sxt)

�
�! A(st) (lose)

T3 T (sxt)
�
�! T (sxxt) A3 A(sxt)

�
�! A(sxxt) (duplicate)

T4 T (sx)
ct(x)
�! T (s) A4 A(sx)

ca(x)
�! A(s) (transmit)

System: sender and receiver

S1 Sa(b)
acc
�! Ss(b) R1 Ra(b)

del
�! Rs(b) (accept/deliver)

S2 Ss(b)
cs(b)
�! Sw(b) R2 Rs(b)

cr(b)
�! Rw (transmit)

S3 Sw(b)
�
�! Ss(b) R3 Rw(b)

�
�! Rs(b) (timeout)

S4 Sw(b)
ca(b)
�! Sa(:b) R4 Rw(b)

ct(:b)
�! Ra(:b) (receive new copy)

S5 Sw(b)
ca(:b)
�! Sw(b) R5 Rw(b)

ct(b)
�! Rw(b) (receive old copy)

Speci�cation: one-place bu�er

B1 Ba
acc
�! Bd B2 Bd

del
�! Ba (accept/deliver)

Table 5.2: Implementation and Speci�cation of the ABP. Sender S (S1{S5) and Replier
R (R1{R5) repeatedly transmit copies of the current message (acknowledgement) until they
receive an acknowledgement (a new message). Old copies are distinguished from new ones with
the help of an alternating bit b. The ABP is supposed to turn faulty channels of arbitrary size
into reliable one-place bu�ers B (B1{B2). The indices refer to the states S, R, and B can
assume.

thus falls into the two corresponding sub-relations

Ba
def
= f (Sa(:b) k T (bn) k A(bp) k Rs(b); Ba)

(Sa(:b) k T (bn) k A(bp) k Rw(b); Ba)
(Ss(:b) k T ((:b)n) k A(bp(:b)q) k Rs(:b); Ba)
(Ss(:b) k T ((:b)n) k A(bp(:b)q) k Rw(:b); Ba)
(Sw(:b) k T ((:b)n) k A(bp(:b)q) k Rs(:b); Ba)
(Sw(:b) k T ((:b)n) k A(bp(:b)q) k Rw(:b); Ba) j b 2 f0; 1g g;

capturing those states eventually accepting a new message, and

Bd
def
= f (Ss(:b) k T ((:b)m) k A(bp) k Ra(:b); Bd)

(Sw(:b) k T ((:b)m) k A(bp) k Ra(:b); Bd)
(Ss(:b) k T ((:b)mbn) k A(bp) k Rs(:b); Bd)
(Ss(:b) k T ((:b)mbn) k A(bp) k Rw(:b); Bd)
(Sw(:b) k T ((:b)mbn) k A(bp) k Rs(:b); Bd)
(Sw(:b) k T ((:b)mbn) k A(bp) k Rw(:b); Bd) j b 2 f0; 1g g;

where eventually a message will be delivered. In every channel, there are at most two types
of messages or acknowledgements, each type coming in a consecutive block. The �nite lists in
T and A are thus either of the form xn, or xnym; in Isabelle this can be expressed in terms of
the replicate-operator from the theory for �nite lists delivered with Isabelle/HOL.

To show that B def
= Ba[Bd is indeed a bisimulation wrt. (an abstraction of) L1 = f acc; del g,

we follow our usual scheme. As a typical example, consider the case where the ABP performs

98 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

a strong acc-transition. We have to prove the obligation, if (P;Q) 2 B and P
acc�! P 0, then

there exists a state Q0 such that Q
acc
=) Q0, and (P 0; Q0) 2 B. Out of the six subrelations in

Ba di�ering in the shape of P , Isabelle automatically extracts the �rst two as those in which
P can actually do an acc. It remains to show that in both cases the resulting process P 0 �ts
the shape of the left process in the third and fourth subrelations of Bd. The diÆculty of this
proof-step results from the lists in T and A looking di�erently in Ba and Bd. Once provided
with the necessary theorems about �nite lists, however, Isabelle completes the argument fully
automatically.

Another interesting example is the reverse case, in which Q
acc�! Q0 and P

acc
=) P 0. For the

third through sixth case of Ba, the user has to provide suitable sequences of weak transitions
leading to the acceptance of a new message. In all of the cases, we can apply the following
scheme: remove all messages and acknowledgements from T and A (that this is possible can be
shown once in a separate proof, by an induction on the length of the lists stored in the channels),
then have R transmit an acknowledgement to S, and �nally execute the acc-transition.

For the invisible transitions of the ABP, we essentially have to show that their derivatives
still lie within Ba or Bd, respectively. As for each of the processes there are several possibilities,
we examine each of the twelve cases in separate proofs. A simultaneous treatment of all the
cases may exceed the capacity of Isabelle's automatic tactics, as also the hypothetical cases
like \component A communicates with component T" have to be considered, resulting in an
exponential blow-up of cases. Again, provided with the necessary theorems about lists, Isabelle
proves the cases fully automatically.

Evaluation The proof-script contains about 800 lines. As nearly half of it consists of the-
orems about the �nite lists used in the channels, some experience with theorem-provers is
necessary to set up the proofs. The bisimulation part itself can be set up within a few days by
a user experienced both in the bisimulation proof-method and theorem-proving. In particular,
only a few proof procedures strongly based on Isabelle's automatic tactics are necessary to
capture all of the almost 100 proof-obligations. Note that, as pointed out by Milner [Mil89],
this example is clearly on the edge of what can be proved without machine-assistance, if not
beyond.

5.2 Compositionality

A major characteristic of observation equivalence is that it is compositional, yielding a divide-
and-conquer veri�cation strategy: In order to verify a compound system Sy1 k : : : k Syn
with respect to a speci�cation Sp, one veri�es the single components Syi with respect to
speci�cations Spi and then compares Sp1 k : : : k Spn with Sp. As a consequence, the sizes of
the single bisimulation relations are drastically reduced. The theoretical result underlying this
proof strategy is that for all P;Q;R 2 P, an equivalence P � Q implies P k R � Q k R, and,
similarly, P �L Q implies P k R �L Q k R.

We have already applied compositionality in the previous section, arguing that instead
of channels that lose, duplicate, and garble messages, we can use channels that only lose or
duplicate messages, in our model of the ABP. As a result, we have obtained a smaller description
which is easier to verify. In the following section, we are going to apply compositionality
systematically in several steps of a bisimulation proof showing the correctness of a speci�cation
of the Sliding-Window Protocol (SWP).

5.2. COMPOSITIONALITY 99

Channel 1

Channel 0

Channel n

Collector...
Distributor

accept deliver

Figure 5.2: A Speci�cation of the SWP. The parameterized protocol consists of a parallel
composition of n (pairs of) communication lines implementing the ABP; the ABP is used to
guarantee that a message handed over to one of the communication lines is transmitted reliably.

System: distributor and collector

D1 Dh
n

acc(x)
�! Dh

n(x) C1 C l
n

co(x)
�! C l+n1

n (x) (accept/collect)

D2 Dh
n(x)

cih(x)
�! Dh+n1

n C2 C l
n(x)

del(x)
�! C l

n (distribute/deliver)

Speci�cation: bu�er of capacity n+ 2

B3 Bn+2(s)
ci(x)
�! Bn+2(sx) if jsj < n+ 2 (accept)

B4 Bn+2(xs)
co(x)
�! Bn+2(s) (deliver)

Table 5.3: Components of the SWP. Rules D1 and D2 describe the behaviour of the
distributor, C1 and C2 that of the collector components of the SWP. The distributor Dn

continuously accepts values from the environment and transmits them to consecutive commu-
nication lines; the collector Cn recollects the values from the communication lines and delivers
them to the recipient. Owing to the cyclic behaviour of both Dn and Cn, values are always
transmitted in the right order. An SWP with n channels can be speci�ed by an n + 2-place
bu�er, as described by rules B3 and B4.

Another property that can be important in equivalence proofs, especially when using in-
duction, is associativity of parallel composition; that is, for all P;Q;R 2 P, it holds that
(P k Q) k R � P k (Q k R), respectively, (P k Q) k R �L P k (Q k R). Induction is suitable
in order to show that a single component Ps models the parallel composition of n processes of
equal structure, P k : : : k P . In order to be free whether to attach such components to the
front or to the back|or even both|associativity of parallel composition can be exploited.

5.2.1 A Sliding-Window Protocol

In [PS91], a simple parameterized Sliding Window Protocol (SWP) with input and output
windows of equal size is presented. The system consists of n communication lines each of
which uses the ABP on faulty channels. Figure 5.2 shows a schematical view. Incoming
messages are cyclically distributed to the communication lines by a distributor Dn, and are
recollected and delivered by a collector Cn; their behaviour is formally described in Table 5.3
(D1, D2, and C1, C2). The initial state of the SWP is the process

SWP = D0
n k ABP1 k : : : k ABPn k C0

n

where ABPi is a copy of the process of the previous section with the acc- and del-actions

100 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

B5 BA(s)
cih(x)�! BA(s[h := x]) if s!h = 2 (accept)

B6 BA(s)
coh(x)�! BA(s[h := 2]) if s!h = x 6= 2 (deliver)

Table 5.4: An array-bu�er. The bu�er BA consists of an array of length n, the cells of
which either contain some value x, or an auxiliary symbol 2 to denote emptiness. It models
the parallel composition of n one-place bu�ers.

suitably renamed. The system should behave like a bu�er Bn+2 of capacity n + 2, with n
being the number parallel channels in the system (the capacity is n + 2 and not n because
the distributor and the collector contribute with one place each), see also Table 5.3 (B1, B2).
This time we cannot abstract from data, as the system does not necessarily need to deliver a
message before accepting a new one: we have to guarantee that messages not be swapped. So
we prove SWP �L1

Bn+2 where L2 = f acc(x); del(x) j x 2 M g. The proof falls into several
parts, and makes extensive use of compositionality.

Replace the ABPs In a �rst step, we can apply compositionality to replace the ABP-
components with one-place bu�ers, due to the equivalence result of the previous section:

(D0
n k ABP1 k : : : k ABPn k C0

n) �L1
(D0

n k Ba1 k : : : k Ban k C0
n):

As a result, we can observe that we have got rid of the in�nite-state ABP-processes using
two-state components instead. Yet, we still have to carry out a parametric proof, valid for all
n. In the sequel, we further exploit extensionality in order to �nally replace Ba1 k : : : k Ban

by an n-place bu�er into which we then integrate Dn and Cn.

An array-bu�er We need a �nite representation of the n one-place bu�ers Ba1 k : : : k Ban

put in parallel. As a matter of design, we describe them in terms of a single component BA,
which contains an array of n cells that are initially empty; we refer to BA as an array-bu�er.
We use an auxiliary element 2 to denote that a cell in an array-bu�er is empty. Table 5.4 gives
a formal description of the behaviour of BA. We show that BA(2n) �L2

(Ba1 k : : : k Ban), with
L2 = f cih(x); coh(x) j h 2 IN; x 2 M g. The proof combines induction with the bisimulation
proof method described above. We show that for each n, the relation

Bab(n)
def
= f (Ba k BA(s); BA(s2)) j s 2Mn g
[f (Bd(x) k BA(s); BA(sx)) j x 2M; s 2Mn g

is a bisimulation wrt. L2. Then, by compositionality, we obtain,

(D0
n k Ba1 k : : : k Ban k C0

n) �L1
(D0

n k BA(2n) k C0
n):

We can observe that values are stored in and retrieved form BA in a cyclic order, because
Dn and Cn obey a cyclic behaviour: when the distributor in state Dh

n(x) encounters that
the current cell numbered h is free to store value x, it does so and proceeds in state Dh+n1

n ;
similarly, when C l

n detects a value in cell l, it reads the value to proceed in state C l+n1
n (x); see

also Table 5.3. Note that by obeying a synchronous communication paradigm, it is guaranteed
that values are only transmitted to empty communication lines, and are only read from full
ones.

5.2. COMPOSITIONALITY 101

B7 BP (h; l; s)
ci(x)
�! BP (h+jsj 1; l; s[h := x]) if s!h = 2 (accept)

B8 BP (h; l; s)
co(x)
�! BP (h; l +jsj 1; s[l := 2]) if s!l = x 6= 2 (deliver)

Table 5.5: A cyclic bu�er. The bu�er BP consists of an array of length n, like the array-
bu�er from Table 5.4: each cell either contains an element x, or 2 to denote that it is empty.
The cells are not independent, however, values are rather stored and retrieved in cyclic order.
We use +m for addition modulo m.

A cyclic n-place bu�er We emphasize the cyclic order in which values are transmitted by
modelling a cyclic n-place bu�er BP storing values in and retrieving them from consecutive
cells; its behaviour is formally described in Table 5.5. As now cyclicity is guaranteed by the
bu�er itself, it suÆces to attach a barrier one-place bu�ers Ba to its front and one to its back.
We can show that Ba k BP (2n) k Ba models D0

n k BA(2n) k C0
n, that is,

(D0
n k BA(2n) k C0

n) �L1
(Ba k BP (0; 0;2n) k Ba);

and hence the SWP, again by exhibiting a suitable bisimulation wrt. L1,

Bcb
def
= f (Dh

n k BA(s) k C l
n; Ba k BP (h; l; s) k Ba) j s 2Mn g

[f (Dh
n(x) k BA(s) k C l

n; Bd(x) k BP (h; l; s) k Ba) j x 2M; s 2Mn g
[f (Dh

n k BA(s) k C l
n(y); Ba k BP (h; l; s) k Bd(y)) j y 2M; s 2 Mn g

[f (Dh
n(x) k BA(s) k C l

n(y); Bd(x) k BP (h; l; s) k Bd(y)) j x; y 2M; s 2Mn g:
The relation Bcb falls into four sub-relations: in the �rst one, distributor and collector as well as
the corresponding barrier bu�ers are empty; in the second one, distributor and the correspond-
ing bu�er have accepted a message x; in the third one, collector and the corresponding bu�er
can deliver a message y; and in the fourth one, there are messages in all barrier components.
The lists s in the BA and BP components always correspond. Note further that the positions
of h and l always correspond, too.

An n + 2-place bu�er To complete the proof, we still have to show by exhibiting suitable
bisimulations that BP with its two one-place bu�ers behaves like the n + 2-bu�er from the
speci�cation from Table 5.3, that is,

(Ba k BP (0; 0;2n) k Ba) �L1
Bn+2:

In a �rst proof, we show that BP behaves like Bn, and in a second proof, we justify that
for every n, the bu�er Bn behaves like a parallel composition of n one-place bu�ers Ba. The
bisimulation wrt. L2 for the �rst proof is,

Bnb(n)
def
= f (BP (h; l;2ls2n�h); Bn(s)) j s 2Mh�l g
[f (BP (h; l; s2l�ht); Bn(s)) j s 2Mh; t 2Mn�l g:

That for the second proof is,

Bb(n)
def
= f (Ba k Bn(s); Bn+1(s)) j s 2Mk; 0 � k < n g
[f (Bd(x) k Bn(s); Bn+1(sx)) j x 2M; s 2Mk; 0 � k < n g;

applying an inductive argument similar to that in Bab(n). Together with compositionality and
associativity of parallel composition, that is, (P k Q) k R �L P k (Q k R), this allows us to
conclude that SWP �L1

Bn+2.

102 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

Evaluation The proof-script with the bisimulations verifying the SWP contains about 600
lines, and has been set up in less than two weeks. The proofs of (2) and (3) are rather
straightforward, as the processes related by the bisimulations behave in similar ways. Isabelle
therefore deduces the proofs automatically without the user having to split them into single
theorems covering the obligations. Note that the weak transitions are directly derivable from
strong ones, thus need not be given by the user. Also, almost no additional results about the
lists have to be provided by the user. The most challenging part concerning the mechanization
was the proof of the �rst part of (4), as here the bisimulation maps the cyclic lists of BP to the
linear lists stored in Bn+2(2n). The corresponding theorems make up for nearly two thirds of
the proof; their derivation necessitates certain expertise in theorem proving.

5.3 Up-To Techniques

When setting up new results in a theorem-prover, one is usually interested in splitting large
arguments into smaller sub-proofs. The more often such a sub-argument can be reused, the
better. In Section 5.1, for instance, we have split bisimulation proofs into single proofs for
diverse bisimulation obligations. In Section 5.2, we have exploited compositionality of obser-
vation equivalence. In this section, we discuss the application of `up-to' techniques that have
originally been introduced by Milner in [Mil89], and have been further developed as a powerful
proof-technique by Sangiorgi and Milner in [SM92]. Up-to techniques are particularly inter-
esting, because they aim at reducing the size of a bisimulation relation by transferring parts
of the behaviour of the contained systems to auxiliary bisimulation proofs. That is, instead
of showing that a relation R is a bisimulation, one chooses some suitable S and proves that
S ÆR Æ S�1 is a bisimulation. Observe that the sizes of of S and R can be by far smaller than
that of S Æ R Æ S�1. The theory of `up-to' techniques|in particular, how a suitable S should
look like|has been further investigated by Sangiorgi [San95]. In this section, we are concerned
with the application in theorem proving of one such technique, called `up-to-expansion'.

Intuitively, an expansion is a bisimulation in which the �rst process performs at least as
many internal steps as, or is less eÆcient than, the second one. Expansion can be used to
abstract, for instance, from internal timers, or from internal communication of data. Every
expansion (wrt. L) is a bisimulation (wrt. L). The converse does not hold.

Definition 5.3 (Expansion wrt. L) A relation R � P � P is an expansion wrt. L � N ,
if for all PRQ, all � 2 N [N [f�g, and all P 0; Q0 2 P,

(i) if P
��! P 0, there exist P 0 such that Q

�̂�! Q0 and P 0RQ0.

(ii) if Q
��! Q0, there exists a P 0 such that P

�
=) P 0 and P 0RQ0.

Expansion wrt. L is the union �L
def
=

Sf R j R is a weak bisimulation wrt. L g.

Definition 5.4 (Bisimulation up to Expansion) A relationR � P�P is a bisimulation
up to expansion wrt. L � N if for all PRQ, all � 2 L [f�g, all P 0 2 P, and all Q0 2 P,

(i) If P
��! P 0, there exist P 00; Q0; Q00 2 P such that Q

�̂
=) Q0 and P 0 �L P 00RQ00 �L Q0.

(ii) If Q
��! Q0, there exists P 0; P 00; Q00 2 P such that P

�̂
=) P 0 and P 0 �L P 00RQ00 �L Q0.

5.3. UP-TO TECHNIQUES 103

Bus

Memory

: : : Interfaces

Implementation: with caches

Speci�cation: without caches

Figure 5.3: The structure of implementation and speci�cation. In order to read from or write
to the memory, processors have to connect to one of the interfaces. The interfaces of the
implementation possess caches, whereas those of the speci�cation have to pass every read
request to the main memory.

It is a standard exercise to show that two states are observationally equivalent (wrt. L) if
they are bisimilar up to expansion (wrt. L). It can be established by proving that for every
bisimulation R (wrt. L), the relation �L R �L is a bisimulation wrt. L; the proof consists of
simple diagram-chasing.

Proposition 5.5 If R � P�P is a bisimulation up to expansion wrt. L � N , then �L R �L

is a bisimulation wrt. L.

Proof: The proof is obvious using standard diagram-chasing. 2

5.3.1 Write-Invalidate Cache-Coherence

As a last case study, we have chosen an example which is parameterized both in number and
size of its components. An interesting point is that internal communications follow a broadcast-
mechanism. In our formalism, this can be easily taken care of by modifying the introduction
rules for parallel composition. The new rules are,

� Pi
��! P 0

i implies P1 k : : : k Pi k : : : k Pn
��! P1 k : : : k P 0

i k : : : k Pn;

� Pi

�a(v)�! P 0
i and 8j 6= i: Pj

a(v)�! P 0
j imply P1 k : : : k Pn

��! P 0
1 k : : : k P 0

n.

An interesting point of this case-study is that implementation and speci�cation have the same
topology; that is, from an observer's point of view they are built from the same components,
yet a signi�cant part of the components behave di�erently.

We verify the coherence of a simple write-invalidate cache-protocol, as described, for in-
stance, in [HP96]; our case-study was motivated by a similar veri�cation of the protocol in
ACL2 by Moore [Moo98]. There, however, coherence is stated as a �rst-order property, whereas
following our approach it can be stated as a corollary of a much stronger result: we show that an
application of this write-invalidate cache-protocol yields a system that cannot be distinguished
from a `classical' memory without caching. Like Moore, we give a parameterized proof, so that
our result is applicable to systems of arbitrary size.

104 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

The memory, used by speci�cation and system

M1 M(s)
rqr(i)�! M(s; i) (lookup)

M2 M(s; i)
ret(s[i])
�! M(s) (return)

M3 M(s)
rqw(i; v)
�! M(sfv=s[i]g) (update)

Speci�cation: interfaces to memory without caches

I1 Il(stat; free)
readl(i)
�! Il(stat; read(i)) if i � jsj (read)

I2 Il(awake; read(i))
rqr(i)�! Il(awake;wait) (lookup)

I3 Il(awake;wait)
ret(v)
�! Il(awake;del(v)) (return)

I4 Il(stat;del(v))
returnl(v)
�! Il(stat; free) (serve)

I5 Il(stat; free)
writel(i; v)
�! Il(stat;write(i; v)) if i � jsj (write)

I6 Il(awake;write(i; v))
rqw(i; v)
�! Il(awake; free) (update)

I7 Il(awake; reql)
rqr(i)�! Il(asleep; reql) (sleep)

I8 Il(asleep; reql)
ret(v)
�! Il(awake; reql) (wake up)

I9 Il(awake; reql)
rqw(i; v)
�! Il(awake; reql) (ignore)

Implementation: interface to memory with caches

C2a Icl (cl; stat; read(i))
�
�! Icl (cl; stat;wait) if valid(cl[i]) (cache)

C2b Icl (cl; awake; read(i))
rqr(i)�! Icl (cl; awake;wait) if invalid(cl[i]) (lookup)

C6 Icl (cl; awake;write(i; v))
rqw(i; v)
�! Icl (clf(v; valid)=ig; awake; free) (update)

C9 Icl (cl; awake; reql)
rqw(i; v)
�! Icl (clf(cl[i]; invalid)=ig; awake; reql) (invalidate)

Table 5.6: Write-invalidate cache-coherence. Rules M1 to M3 describe the behaviour of
the memory. Rules I1 through I9 specify the behaviour of each interface. The behaviour of
the implementation is given by rules C1 through C9 similar to I1 to I9 except for the rules
that are explicitely shown above, which involve cache cells. Rules I1{I4, respectively C1{C4,
describe the behaviour of interfaces Il and Icl in the presence of a read request. I5, I6 and C5,
C6 handle write requests. I7, I8 and C7, C8 describe how the interfaces fall asleep whenever
they encounter a read request on the bus. I9 and C9 concern the detection that some other
interface writes on the memory.

5.3. UP-TO TECHNIQUES 105

The system: implementation and speci�cation Figure 5.3 shows a graphical represen-
tation of the topology of the system, both for implementation and speci�cation. We assume
a distributed computer network with a monolithic main memory M . Note that we do not
make any assumptions about the actual structure of the main memory; we simply model it
in terms of a component. This means that any memory which is observation-equivalent to M
could be used, owing to compositionality as discussed in Section 5.2. Communication with the
main memory takes place over a bus. We do not model this bus as a process of its own, but
use a synchronous broadcast mechanism to describe it. Computers can connect to the bus via
interfaces Ici (in the implementation) and Ii (in the speci�cation), which are again modelled
in terms of components. The di�erence between an Ici and an Ii is that I

c
i possesses a cache

memory|so that it need not necessarily communicate with M upon a request|whereas Ii
does not possess one|and hence has to access M upon every request.

The memory M is modelled in terms of a component, as described by rules M1{M3 in
Table 5.6. Upon a read-request from one of the interfaces (M1), it simply returns the desired
value (M2), and upon a write-request, it updates the speci�ed cell without returning an
acknowledgement (M3). Observe that none of the communications along the bus speci�es the
index (or, address) of the calling interface; this is not necessary, because whenever an interface
sends a read-request, this will be noticed by the others so that they can await the answer before
making requests themselves.

Before explaining the behaviour of the Ici -components, we describe that of the Ii-components,
because it is simpler and can be used as a common basis for the description of how an Ici works.
Rules I1{I9 in Table 5.6 formally de�ne the operational semantics of the Ii. An interface Ii
that is currently free can accept read- or write-requests from the environment. Upon a read-
request (I1), it asks the main memory to return the desired value (I2), and upon its receipt (I3)
returns it to the environment (I4). Upon a write-request (I5), it tells the main memory to
update its respective cell accordingly (I6). Observe that an interface can either be active
(or, awake) or passive (or, asleep), and that only active interfaces can submit read- or write-
requests. The reason is that whenever an interface performs a read-request, all others have to
wait for the request to be served before submitting themselves; for the time being, they fall
asleep (I7, I8). We exploit the underlying broadcast-mechanism to model that all interfaces
continuously snoop on the bus for requests. Due to there being no answer, write-requests are
ignored (I9).

The behaviour of the Ici -components is similar, except that some of the read-requests can be
served from the cache, and that the caches have to be updated upon write-requests. Table 5.6
therefore only presents those rules that are di�erent form I1{I9. Upon a read-request (C1,
corresponding to I1), Ici checks whether the addressed cell is valid in its cache; if it is, it takes
the value from there (C2a); if it is not, it sends a request to the main memory (C2b). Upon a
write-request (C5, corresponding to I5), it tells the main memory to update its respective cell
accordingly, and simultaneously updates the respective cell in its cache, (re-)validating it (C6).
This time, write-requests cannot be ignored by the other interfaces; instead, they invalidate
their corresponding cache-cells (C9). Read-requests, on the other hand, are treated in C7 and
C8 like in I7 and I8: whenever an interface encounters one, it falls asleep until the request
has been served.

The visible behaviour of the system, that is, both of implementation and speci�cation,
consists of accepting read- and write-requests from the environment, and answering the read-

106 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

requests. It can be described by a set L3, de�ned as follows:

L3
def
= f readl(i); writel(i; v); returnl(v) j l; i 2 IN; v of suitable type g:

With this, we can show that implementation and speci�cation behave in an equivalent way,

M(s) k Ic1(t1) k � � � k Icn(tn) �L3
M(s) k I1(u1) k � � � k In(un);

for every content s of the memory M , and for all possible tuples of parameters t1; : : : ; tn and
u1; : : : un, where tl = (cl; statl; reql) and ul = (statl; reql), and valid(cl[i]) implies cl[i] = s[i],
for all i. Note that this last condition reects the safety-property of the protocol, which is
guaranteed by observation equivalence.

Remark: Observe that a value returned to the environment as the value of some cell by
an interface need not necessarily coincide with the current value of that cell, neither in the
implementation nor in the speci�cation. The reason is that an interface may delay the delivery
of a value it has already retrieved from the memory or from its cache, even until the cell has
been updated in the memory by another interface.

Bisimulation up-to expansion We exhibit a family of bisimulations up to expansion, Rn;m

that are parameterized in the number of interfaces, n, and in the size of the store, m. The size
of each of these relations depends on the size of the type of the data stored in the memory;
if it is in�nite, Rn;m is in�nite as well. This example therefore bears three potential sources
of in�nity: (1) in�nity of the data-type, (2) in�nity due to a parameterized list describing the
store, and (3) in�nity due to a parameterized number of components.

For �xed but arbitrary n and m, the relation Rn;m contains pairs of states of the imple-
mentation and the speci�cation in which all the interfaces are awake, that is, are allowed to
access the bus immediately, all caches are coherent, and in which the requests in the Icl and Il
are identical for all l,

Rn;m
def
= f (M(s) k Ic1(c1; awake; req1) k : : : k Icn(cn; awake; reqn);

M(s) k I1(awake; req1) k : : : k In(awake; reqn)) j
jsj = m ^ 8 1 � l � n; 1 � i � m: jclj = m ^ valid(cl[i])) cl[i] = s[i] g:

The relation Rn;m is a bisimulation up to expansion wrt. L3. It contains pairs of systems
in which all interfaces are active, valid cache cells are coherent with the main memory, and
corresponding Ici and Ii carry corresponding requests. Of course, Rn;m does not describe the
entire behaviour of the systems; for instance, it does not consider states in which interfaces are
asleep, although these are obviously reachable. These states are dealt with by auxiliary expan-
sion relations Ecn;m [IdP for the implementation, and En;m [IdP for the speci�cation, where
IdP denotes the identity relation for processes. These expansions relate states directly before
and after a read-request has been served by the main memory; these states are observationally

5.3. UP-TO TECHNIQUES 107

indistinguishable.

Ecn;m def
= f (Mr(s; i) k Ic1(c1; asleep; req1) k : : : k

Icl (cl; awake;wait) k : : : k Icn(cn; asleep; reqn);
M(s) k Ic1(c1; awake; req1) k : : : k

Icl (cl; awake; del(s[i])) k : : : k Icn(cn; awake; reqn)) j
jsj = m ^ 8 1 � l � n; 1 � i � m: jclj = m ^ valid(cl[i])) cl[i] = s[i] g

En;m def
= f (Mr(s; i) k I1(asleep; req1) k : : : k

Il(awake;wait) k : : : k In(asleep; reqn);
M(s) k I1(awake; req1) k : : : k

Il(awake; del(s[i])) k : : : k In(awake; reqn)) j
jsj = m g

The whole proof then falls into the following two steps: (1) prove that IdP , every Ecn;m [IdP ,
and every En;m [IdP are expansions wrt. L3; and, (2) show that every Rn;m is a bisimulation
up to expansion wrt. L3, exploiting the results provided in step (1). The proofs follow the same
pattern as those in Section 5.1. We sketch part (2). After applying De�nition 5.4 as a rewrite-
rule and the case-exhaustion generated from the transition-rules, Isabelle/HOL automatically
computes seven proof-obligations|four for Icl and three for Il for some �xed but arbitrary
interface l|of which we consider two typical cases:

1. If Icl sends a read-request along the bus, and all other Ick fall asleep, also Il should send
a read-request with all Ik falling asleep. By expansion, these states should then yield
another pair of states in Rn;m, where the read-requests have already been served. This
is easy to show in the prover, closely following the de�nition of Rn;m, and applying the
expansion results from Ecn;m and En;m. Like in almost all cases, a strong transition can
be matched simply by a strong transition, hence not much interaction from the user is
necessary.

2. If Icl retrieves a value from its cache, Il has to perform a corresponding chain of transi-
tions. This proof-obligation requires interaction from the user: we choose that Il should
submit a read-request along the bus; afterwards we apply IdP as an expansion to the
implementation, and En;m to the speci�cation. The values to be delivered after this
transition are shown to be equal in implementation and speci�cation by applying the
coherence-criterion from Rn;m.

Evaluation The Isabelle/HOL proof-script consists of approximately 1000 lines of code.
We were able to increase the pro�t from Isabelle's automatic tactics by splitting the proof
obligations into separate subgoals. We further bene�tted from the uniform structure of the
single proofs, so we were able to reuse the same proof-procedure in several obligations.

Standard bisimulation In a standard bisimulation proof, a lot more combinations have to
be considered; both systems can be asleep, for instance, or one system is asleep waiting for a
read-request to be served while the other is awake. This yields composite bisimulation-relations

Rst
n;m wrt. L3, where Rst

n;m

def
= Rn;m [Rws

n;m [Rss
n;m. The relation Rws

n;m contains those pairs of

108 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

states in which the implementation is awake and the speci�cation is asleep,

Rws
n;m

def
= f (M(s) k Ic1(c1; awake; req1) k : : : k Icl (cl; awake; del(s[i]))

k : : : k Icn(cn; awake; reqn);
Mr(s; i) k I1(asleep; req1) k : : : k Il(awake;wait)

k : : : k In(asleep; reqn)) j
jsj = m ^ 8 1 � l � n; 1 � i � m: jclj = m ^ valid(cl[i])) cl[i] = s[i] g

The relation Rss
n;m contains those in which both are asleep,

Rss
n;m

def
= f (Mr(s; i) k Ic1(c1; asleep; req1) k : : : k Icl (cl; awake;wait)

k : : : k Icn(cn; asleep; reqn);
Mr(s; i) k I1(asleep; req1) k : : : k Il(awake;wait)

k : : : k In(asleep; reqn)) j
jsj = m ^ 8 1 � l � n; 1 � i � m: jclj = m ^ valid(cl[i])) cl[i] = s[i] g

Pairs in Rws
n;m are due to an Icl retrieving a value from its cache while the corresponding Il

has to look it up in the main memory. The combination Rsw
n;m, in which the interfaces of the

implementation are asleep while those of the speci�cation are not, need not be considered:
whenever an Icl sends a read request along the bus, there is no need for the corresponding Il
to go a step further and serve the request.

Evaluation In order to reduce the number of cases of this proof, we have modi�ed the transi-
tion systems so that interfaces that are asleep cannot even communicate with the environment.
But still the proof script is as long as that using bisimulations up to expansion, that is, around
1000 lines. Without the simpli�cation, it would have been even longer.

5.4 Discussion

In this chapter, we have described how to obtain a general validation-technique for systems
with an in�nite number of states, by applying the proof-method of observation-equivalence in
interactive theorem-proving, and have examined it on various benchmark examples. We now
present conclusions drawn from these case-studies, discussing both advantages and de�ciencies
of the approach, and compare our approach to related work in the �eld.

Range of applicability Communication protocols, as presented in Sections 5.1 and 5.2, are
often intended to behave like variations of bu�ers: messages are to be transmitted in the order
in which they arrive. This means that the speci�cation of a communication protocol usually
can be described in terms of an abstract system, so that observation equivalence is a natural
speci�cation technique. Also in hardware veri�cation, as seen in Section 5.3, the speci�cation
usually can be described in terms of a system itself, and can be made subject to observation
equivalence. A less natural �eld of application of process equivalences in general is the area of
distributed algorithms, where speci�cations often consist of lists of properties a system should
satisfy. For some of them, one can consider the most liberal system satisfying the properties,

5.4. DISCUSSION 109

and prove that the implementation behaves \as well as, or better than" this system. For this
purpose, observation equivalence is replaced by the observation-preorder.

In general, the technique is most suitable for systems that can be concisely described but
have in�nitely many states and use some nontrivial datatypes. These systems are still out of
reach for fully automatic tools, but lead to manageable bisimulations.

Is observation equivalence suitable? Observation equivalence has been argued to be too
discriminating in practice; in fact, often language (or, trace) equivalence [Mil89] is preferred,
as, for instance, in [PS91]. In the area of communication protocols, this question seems to be
a lesser problem. Many speci�cations are deterministic, and in this case, observation and fair
testing equivalence [NC95]|and sometimes even language equivalence|coincide. Compared
to these two equivalences, observation equivalences o�ers a better proof methodology. Thus,
in cases where the equivalences coincide, one can pro�t from bisimulation proof techniques in
order to show language or testing equivalence.

Sometimes one might be interested in over-speci�cations. In these cases, observation pre-
order o�ers proof techniques based on simulations, considering only one direction of a bisimula-
tion, see [Mil89] for a formal de�nition. The resulting proof methodology is similar, consisting
of one half of the de�nition of bisimulations; and compositionality can be exploited as well.

Keeping bisimulations manageable Keeping the size of relations manageable is an im-
portant problem of our approach. Compositionality of observation equivalence is a big help, as
we could see in Section 5.2: if we had not been able to replace the ABP channels by one-place
bu�ers, the bisimulation would have been unmanageable. Furthermore, there exist various
up-to techniques, one of which is bisimulation up to expansion, see Section 5.3.

How to �nd a bisimulation? Searching for a bisimulation is an incremental process. Usu-
ally, one starts with some base state of implementation and speci�cation, and adds pairs, or
(probably in�nite) families of pairs, until one has obtained a bisimulation. This approach can
be formally described in terms of the coinductive method of �xed-point generation (see, for
instance, [Rut98]), and is supported by Isabelle/HOL [Pau93]. The advantage of coinduction
is that �nding the relation and proving that it is a bisimulation are intertwined, and Isabelle
deals with all technical details as, for instance, \has pair (s; t) already been considered or not?"
One inconvenience is, however, that the bisimulation cannot yet be extracted as an Isabelle
constant from the coinductive proof, to be available for further use, and has to be added by
hand.

Dealing with data structures Proving simple facts about the data structures of a system
(list, stacks, et cetera) may amount to more than half of the interaction with the theorem
prover. These facts are stored in Isabelle's database for future use, but their application still
requires considerable expertise in theorem proving. The user may decide not to perform the
full proof, by taking theorems about data structures as unproved axioms. For simple theorems
this is a sensible approach, since the proof loses almost no credibility.

What about wrong implementations? Assume one tries to verify that the implementa-
tion I of a system matches its speci�cation S, although it does not. This is the `hard' case
using observation equivalence: no matter how hard one tries, one will always end up with a pair

110 CHAPTER 5. MECHANIZED VALIDATION OF INFINITE-STATE SYSTEMS

of states that do not match. The question is: Can the search for a bisimulation be exploited
methodically, so that inequivalence can be proved? And how can inequivalence be proved?
Often, an incorrect implementation even produces a language that is di�erent from that of
the speci�cation. Keeping this in mind, one can backtrack the coinductive path of building
up a bisimulation-relation up to the point where I and S produce di�erent transitions. Like
this, a distinguishing trace has been constructed. Here, the theorem-prover can be used as a
book-keeper; previous steps can be reproduced (manually, however) from the proof-script.

General evaluation and future work The approach is certainly labour intensive when
compared to automatic veri�cation. It is useful for in�nite-state systems with not too large a
description which do not exhibit regularity properties making it amenable to model checking.
The approach is particularly suitable for modular systems in which each of the modules has a
separate speci�cation. Future work should concentrate in the interactive design of the bisimu-
lation. As mentioned above, coinduction-techniques for this problem are available in Isabelle,
but they are still very unfriendly to the user.

Chapter 6

Conclusion and Future Work

This thesis has as its goal the outline of mechanized and mechanizable validation-techniques
for in�nite-state and higher-order concurrent systems, in the context of process-algebra. State-
explosion and undecidability problems make the use of fully automatic techniques imposiible for
the treatment of large and in�nite-state systems. We therefore base tool-support on interactive
theorem-proving. As a consequence, we have to select a human-style proof-technique. We
choose observation-equivalence, because of its natural methodology|the obligations imposed
by its de�nition are simple and uniformly applicable to diverse frameworks|and because it
is obviously well-suited for a formalization. We apply bisimulations and bisimulation-based
proof-techniques in the contexts of CCS, the �-calculus, and Concurrent Idealized Algol, and
mechanize proofs for CCS-processes in Isabelle/HOL. The results obtained in this thesis can
be regarded as the outline of an integrated framework for the validation of reactive and mobile
systems in interactive theorem-provers. (1) We recommend that a framework be based on a
simple but expressive language such as the �-calculus. Syntactic simplicity is essential with
regard both to its formalization in a logical framework and to the e�ectivity of proof-techniques.
(2) Programs should be written in higher-level languages, nevertheless, and then translated
into the description-language so that they can be veri�ed operationally within the theorem-
prover. (3) For the validation, we choose bisimulation-based proof-techniques. In order to
validate equivalences of higher-order programs, we employ bisimulations up to expansion and
contextual reasoning. These techniques can be further enhanced by adding algebraic techniques
and a coinductive construction of bisimulations. In the remainder of this chapter, we discuss
the contributions of this thesis to each of the three questions, and sketch possible directions
for future work.

(1) In Chapter 3, we have presented a shallow embedding of the monadic �-calculus in Is-
abelle/HOL. By introducing well-formedness predicates for processes and process-abstractions,
we have eliminated exotic terms and, simultaneously, obtained principles for syntax-induction.
With these, we have been able to derive vital syntactic properties of the �-calculus and prove
that the encoding is adequate, both fully within Isabelle/HOL.

The framework can now be used for a semantic analysis of the �-calculus in HOAS. It
can serve as a basis for the comparison of di�erent semantics for the �-calculus and as a
platform for the analysis of processes modelled in the �-calculus. Two semantics for the �-
calculus have been studied in shallow embeddings in Coq [HMS00, Des00]. Both of them do not
immediately instantiate continuations of input-processes, hence do not need to reabstract over
once instantiated names. While the �rst semantics follows a classical late approach, the second

111

112 CHAPTER 6. CONCLUSION AND FUTURE WORK

uses abstractions and concretions. It is an open question which of these and other semantic
models applies most naturally in a shallow embedding. Also, it will have to be investigated
whether and how the theory of contexts has to be modi�ed to deal with models like that
proposed in [Des00].

A recent strand of research investigates structural-induction principles for higher-order
logical frameworks such as Elf or its successor Twelf [Pfe89, DPS97, PS99]. Once this has
been established, it will be interesting to see how the syntactic principles we have derived in
Chapter 3 can be proved there. Adequacy will not be provable within these systems, however,
because they do not o�er means for �rst-order descriptions. On the other hand, adequacy is
guaranteed by the outline of these frameworks. Further, they might apply better in semantic
analysis, because no explicit well-formedness predicates have to be considered by the user.

(2) In Chapter 4, we have designed a sound �-calculus semantics for Concurrent Idealized Algol
(CIA), and have used it to prove classical laws, as well as a more complex example involving
procedures of higher order. Our choice of CIA is especially motivated by the fact that it has a
small syntax but can nevertheless be considered as a paragon of concurrent imperative higher-
order programming-languages. Up to this point, we do not see any means for �nding suitable
behavioural equivalences that work directly on the operational semantics of CIA. Our work is
therefore in line with game-semantics for sequential IA [AM96a, AM99].

When modelling `real-life' programming-languages in the �-calculus, mechanized support
for proofs will be indispensable on the long run. It could build on formalizations such as the
one given in Chapter 3 of this thesis, augmented with a compiler to translate terms from the
original language into the �-calculus. A very interesting, though rather theoretically oriented,
project is the mechanization of proofs in the style of Chapter 3 in an interactive theorem-prover,
no matter for which language. A proof of this size could turn out to be a hard test for logical
frameworks, exploiting induction of various kinds, and several formulations of bisimulation-
equivalences.

More recently, the design of concurrent programming-languages has centered on an exten-
sion of higher-order process-calculi with conveniences for the development of larger software-
systems, such as modularization or exception-handling [Tur95, FMS00, Ode00]. Proofs about
programs written in these languages can then be conducted within the underlying process-
calculi. Theorem-prover support could be helpful here as well.

(3) In Chapter 5, we have demonstrated by larger examples from hardware-veri�cation how
to check bisimulations in interaction with a general-purpose theorem-prover. In particular,
we have demonstrated the applicability of this kind of mechanization to in�nite-state and
parameterized systems, which cannot be veri�ed fully automatically. The outlined veri�cation-
technique is applicable in various ways: because it uses normal-forms, it can be adapted for
mobile systems in a straightforward way. Further, it can be used in a combination of theorem-
proving and model-checking, by proving that an in�nite-state (or, large) system is bisimilar
to a �nite-state (or, smaller) speci�cation, which can then be subject to a model-checking
procedure.

Still, the user has to set up the bisimulation on his/her own. Here, a further development of
interactive coinductive techniques might be useful. Further, when applying the proposed proof-
methodology in large style, the automatic tactics have to be enhanced by search-strategies that
are able not only to deal with the most trivial cases. Further, an integrated framework should
consider a range of methods, including up-to techniques as well as algebraic reasoning. This

113

is particularly important with regard to the validation of programs written in higher-level
languages like CIA.

Bibliography

[AKH92] S. Arun-Kumar and M. Hennessy, An eÆciency preorder for processes, Acta Infor-
matica 29 (1992), 737{760.

[AM96a] S. Abramsky and G. McCusker, Linearity, sharing and state: a fully abstract game
semantics for Idealized Algol with active expressions, Proc. Linear Logic meet-
ing'96, ENTCS, vol. 3, Elsevier, 1996.

[AM96b] O. Ait-Mohamed, Pi-calculus theory in HOL, Ph.D. thesis, Henry Poincarr�e Uni-
versity, Nancy, 1996.

[AM99] S. Abramsky and G. McCusker, Full abstraction for Idealized Algol with passive
expressions, Theoretical Computer Science 227 (1999), no. 1, 3{42.

[Ama93] R. Amadio, On the reduction of CHOCS bisimulation to �-calculus bisimulation,
Proc. CONCUR'93, LNCS, vol. 715, Springer, 1993, pp. 112{126.

[Bar81] H. Barendregt, The lambda-calculus, its syntax and semantics, North-Holland,
1981.

[BBC+99] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye,
D. de Rauglaudre, J. Filliâtre, E. Gim�enez, H. Herbelin, G. Huet, H. Laulh�ere,
C. Mu~noz, C. Murthy, C. Parent-Vigouroux, P. Loiseleur, C. Paulin-Mohring,
A. Sa��bi, and B. Werner, The Coq proof assistant reference manual { version 6.3.1,
Tech. report, INRIA, 1999.

[BG88] M. Bezem and J. Groote, A formal veri�cation of the alternating bit protool in the
calculus of constructions, Tech. report, Utrecht University, 1988.

[BKM96] B. Brock, M. Kaufmann, and J. Moore, ACL2 theorems about commercial micro-
processors, Proc. FMCAD'96, LNCS, vol. 1166, Springer, 1996, pp. 275{293.

[Bro96] S. Brookes, The essence of parallel Algol, Proc. LICS'96, IEEE Press, 1996, App.
in vol. 2 of [OT97], pp. 164{173.

[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson, A note on reliable full-
duplex transmission over half-duplex links, Communications of the ACM 12 (1969),
no. 5, 260{261.

[BW90] J. Baeten and W. Weijland, Process algebra, Cambridge University Press, 1990.

115

116 BIBLIOGRAPHY

[BW99] S. Berghofer and M. Wenzel, Inductive datatypes in HOL|lessons learned in
Formal-Logic Engineering, Proc. TPHOL'99, LNCS, vol. 1690, 1999, pp. 19{36.

[Chu40] A. Church, A formulation of simple type theory, Journal of Symbolic Logic 5 (1940),
56{68.

[deB72] N. deBruijn, Lambda calculus notation with nameless dummies: a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem, Inda-
gationes Mathematicae 34 (1972), 381{392.

[Des00] J. Despeyroux, A higher-order speci�cation of the �-calculus, Proc. TCS'00, LNCS,
Springer, 2000, To appear.

[DFH95] J. Despeyroux, A. Felty, and A. Hirschowitz, Higher-order abstract syntax in Coq,
Proc. TLCA'95, LNCS, vol. 902, Springer, 1995, pp. 124{138.

[DH94] J. Despeyroux and A. Hirschowitz, Higher-order abstract syntax with induction in
Coq, Proc. LPAR'94, LNCS, vol. 822, Springer, 1994, pp. 159{173.

[DPS97] J. Despeyroux, F. Pfenning, and C. Sch�urmann, Primitive recursion for higher-
order abstract syntax, Proc. TLCA'97, LNCS, vol. 1210, Springer, 1997, An ex-
tended version will appear in TCS., pp. 147{163.

[FHJ95] W. Ferreira, M. Hennessy, and A. Je�rey, A theory of weak bisimulation for core
CML, Tech. report, University of Sussex, 1995.

[FMS96] M. Fiore, E. Moggi, and D. Sangiorgi, A fully-abstract model for the �-calculus,
Proc. LICS'96, IEEE Press, 1996, pp. 43{54.

[FMS00] C. Fournet, L. Maranget, and A. Schmitt, The jocaml language beta release: Doc-
umentation and user's manual, Tech. report, INRIA, 2000.

[Gay00] S. Gay, A framework for the formalisation of pi-calculus type systems in Is-
abelle/HOL, Tech. report, University of Glasgow, 2000.

[Gim96] E. Gimenez, An application of co-inductive types in Coq: Veri�cation of the alter-
nating bit protocol, Proc. TYPES'95, LNCS, vol. 1158, Springer, 1996, pp. 135{152.

[GM93] M. Gordon and T. Melham, Introduction to hol: a theorem-proving environment
for higher-order logic, Cambridge University Press, 1993.

[GM96] A. Gordon and T. Melham, Five axioms of alpha-conversion, Proc. TPHOL'96,
LNCS, vol. 1125, Springer, 1996, pp. 173{190.

[GS95] J. Groote and J. Springintveld, Focus points and convergent process operators,
Logic Group Preprint Series 142, Utrecht University, 1995.

[Hen99] L. Henry-Gr�eard, Proof of the subject reduction property for a pi-calculus in Coq,
Tech. Report RR-3698, INRIA, 1999.

[HHP93] R. Harper, F. Honsell, and G. Plotkin, A framework for de�ning logics, Journal of
the Association of Computing Machinery 40 (1993), no. 1, 143{184.

BIBLIOGRAPHY 117

[Hir97] D. Hirschko�, A full formalisation of �-calculus theory in the calculus of construc-
tions, Proc. TPHOL'97, LNCS, vol. 1275, Springer, 1997, pp. 153{169.

[HMS00] F. Honsell, M. Miculan, and I. Scagnetto, �-calculus in (co)inductive type theory,
Theoretical Computer Science (2000), To appear.

[Hoa85] C. Hoare, Communicating sequential processes, Prentice-Hall, 1985.

[Hof99] M. Hofmann, Semantical analysis of higher-order abstract syntax, Proc. LICS'99,
vol. 158, IEEE, 1999, pp. 204{213.

[Hon96] K. Honda, Composing processes, Proc. POPL'96, ACM Press, 1996, pp. 344{357.

[How96] D. Howe, Proving congruence of bisimulation in functional programming languages,
Information and Computation 124 (1996), no. 2, 103{112.

[HP96] J. Hennessy and D. Paterson, Computer architecture { a quantitative approach,
Morgan Kaufmann, 1996.

[Jon93] C. Jones, A �-calculus semantics for an object-based design notation, Proc. CON-
CUR'93, LNCS, vol. 715, Springer, 1993, pp. 158{172.

[KMM00a] M. Kaufmann, P. Manolios, and J. Moore, Computer-aided reasoning: ACL2 case
studies, Kluwer Academic Publishers, 2000.

[KMM00b] M. Kaufmann, P. Manolios, and J. Moore, Computer-aided reasoning: An ap-
proach, Kluwer Academic Publishers, 2000.

[Kob97] N. Kobayashi, A partially deadlock-free typed process calculus, Proc. LICS'97, IEEE
Press, 1997, pp. 128{139.

[KPT99] N. Kobayashi, B. Pierce, and D. Turner, Linearity in the �-calculus, Transactions
on Programming Languages and Systems 21 (1999), no. 5, 914{947, A preliminary
version appeared in Proc. POPL'96.

[KS98] J. Kleist and D. Sangiorgi, Imperative objects and mobile processes, Proc. PRO-
COMET'98, Chapman & Hall, 1998, pp. 285{303.

[Lyn68] W. C. Lynch, Reliable full-duplex �le transmission over half-duplex telephone lines,
Comm. of the ACM 11 (1968), no. 6, 407{410.

[Mam99] B. Mammass, M�ethodes et outils pour les preuve compositionnelles de syst�emes
paralle�eles (in french), Ph.D. thesis, Pierre et Marie Curie University, Paris, 1999.

[Mel95] T. Melham, A mechanized theory of the �-calculus in HOL, Nordic Journal of
Computing 1 (1995), no. 1, 50{76.

[Mil89] R. Milner, Communication and concurrency, Prentice-Hall, 1989.

[Mil91] R. Milner, The polyadic �-calculus: A tutorial, Tech. Report ECS{LFCS{91{180,
Edinburgh University, 1991.

118 BIBLIOGRAPHY

[Mil92a] D. Miller, The �-calculus as a theory in linear logic: Preliminary results, Proc.
ELP'92, LNCS, vol. 660, Springer, 1992, pp. 242{264.

[Mil92b] R. Milner, Functions as processes, Journal of Mathematical Structures in Computer
Science 17 (1992), 119{141.

[Mil99] R. Milner, Communicating and mobile processes, Cambridge University Press,
1999.

[Moo98] J. Moore, An ACL2 proof of write invalidate cache coherence, Proc. CAV'98,
LNCS, vol. 1427, Springer, 1998, pp. 29{38.

[MP99] J. McKinna and R. Pollack, Some lambda calculus and type theory formalized,
Journal of Automated Reasoning 23 (1999), no. 3{4, 373{409.

[MPW92] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes, Information
and Computation 100 (1992), 1{77.

[MS88] A. Meyer and K. Sieber, Towards fully abstract semantics for local variables, Proc.
POPL'88, 1988, App. in vol. 2 of [OT97], pp. 191{203.

[MT91] I. Mason and C. Talcott, Equivalence in functional languages with e�ect, Journal
of Functional Programming 1 (1991), no. 3, 287{327.

[MT92] I. Mason and C. Talcott, References, local variables and operational reasoning,
Proc. LICS'92, IEEE Press, 1992, pp. 186{197.

[NC95] V. Natarajan and R. Cleaveland, Divergence and fair testing, Proc. ICALP'95,
LNCS, vol. 944, Springer, 1995, pp. 648{659.

[NM98] G. Nadathur and D. Miller, An overview of �Prolog, Proc. LPC'98, MIT Press,
1998, pp. 810{827.

[NS94] T. Nipkow and K. Slind, I/O automata in Isabelle/HOL, Proc. TYPES'94, LNCS,
vol. 996, Springer, 1994, pp. 101{119.

[Ode95] M. Odersky, Polarized name passing, Proc. FSTTCS, LNCS, vol. 1026, Springer,
1995, pp. 324{337.

[Ode00] M. Odersky, Functional nets, Proc. ESOP'2000, LNCS, vol. 1782, Springer, 2000,
pp. 1{25.

[OT95] P. O'Hearn and R. Tennent, Parametricity and local variables, Journal of the ACM
42 (1995), no. 3, 658{709, App. in vol. 2 of [OT97].

[OT97] P. O'Hearn and R. Tennent (eds.), ALGOL-like Languages, Progress in Theoretical
Computer Science, Birkh�auser, 1997, Two volumes.

[Par80] D. Park, Concurrency and automata on in�nite sequences, LNCS, vol. 104,
Springer, 1980.

BIBLIOGRAPHY 119

[Pau93] L. Paulson, Isabelle's object-logics, Tech. Report 286, University of Cambridge,
Computer Laboratory, 1993.

[Pau94] L. Paulson (ed.), Isabelle: a generic theorem prover, LNCS, vol. 828, Springer,
1994.

[Pfe89] F. Pfenning, Elf: A language for logic de�nition and veri�ed metaprogramming,
Proc. LICS'89, IEEE, 1989, pp. 313{321.

[Pit96] A. Pitts, Reasoning about local variables with operationally-based logical relations,
Proc. LICS'96, IEEE Press, 1996, App. in vol. 2 of [OT97], pp. 152{163.

[PS91] K. Paliwoda and J. Sanders, An incremental speci�cation of the sliding-window
protocol, Distributed Computing 5 (1991), 83{94.

[PS96] B. Pierce and D. Sangiorgi, Typing and subtyping for mobile processes, Mathemat-
ical Structures in Computer Science 6 (1996), no. 5, 409{453.

[PS99] F. Pfenning and C. Sch�urmann, System description: Twelf { a meta-logical frame-
work for deductive systems, Proc. CAD'99, LNAI, vol. 1632, Springer, 1999,
pp. 202{206.

[Qua99] P. Quaglia, The �-calculus: Notes on labelled semantics, Bulletin of the EATCS
(1999), no. 68, 104{114.

[QW98] P. Quaglia and D. Walker, On encoding p-� in m-�, Proc. FSTTCS'98, LNCS, vol.
1530, Springer, 1998, pp. 42{53.

[RE99] C. R�ockl and J. Esparza, Proof-checking protocols using bisimulations, Proc. CON-
CUR'99, LNCS, vol. 1664, Springer, 1999, pp. 525{540.

[RE00] C. R�ockl and J. Esparza, On the mechanized veri�cation of in�nite systems, Proc.
SFB 342 Final Colloquium, Technische Universit�at M�unchen, 2000, pp. 31{52.

[Rey81] J. Reynolds, The essence of ALGOL, Algorithmic Languages, North-Holland, 1981,
App. in vol. 2 of [OT97], pp. 345{372.

[RHB00] C. R�ockl, D. Hirschko�, and S. Berghofer, Towards a formalization of �-calculus
processes in higher order abstract syntax, Tech. report, Technische Universit�at
M�unchen, 2000.

[R�oc99] C. R�ockl, First-order proofs for higher-order languages, Proc. FBT'99, Utz, 1999,
pp. 193{202.

[R�oc00] C. R�ockl, Proving write invalidate cache coherence with bisimulations in Is-
abelle/HOL, Proc. FBT'00, Shaker, 2000, pp. 69{78.

[RS99] C. R�ockl and D. Sangiorgi, A �-calculus process semantics of concurrent idealised
ALGOL, Proc. FOSSACS'99, LNCS, vol. 1578, Springer, 1999, pp. 306{321.

[Rut98] J. Rutten, Automata and coinduction (an exercise in coalgebra), Proc. CON-
CUR'98, LNCS, vol. 1466, Springer, 1998, pp. 194{218.

120 BIBLIOGRAPHY

[San92] D. Sangiorgi, Expressing mobility in process algebras: First-order and higher-order
paradigms, Ph.D. thesis, University of Edinburgh, 1992.

[San95] D. Sangiorgi, On the bisimulation proof method, Proc. MFCS'95, LNCS, vol. 969,
Springer, 1995, full version to appear in Mathematical Structures in Computer
Science, pp. 479{488.

[San96a] D. Sangiorgi, �-calculus, internal mobility, and agent-passing calculi, Theoretical
Computer Science (1996), no. 1&2, 235{274.

[San96b] D. Sangiorgi, A theory of bisimulation of the �-calculus, Acta Informatica 33
(1996), no. 1, 69{97.

[SM92] D. Sangiorgi and R. Milner, The problem of weak bisimulation up-to, Proc. CON-
CUR'92, LNCS, vol. 630, Springer, 1992, pp. 32{46.

[Sne95] J. Snepscheut, The sliding-window protocol revisited, Formal Aspects of Computing
7 (1995), 3{17.

[SOR93] N. Shankar, S. Owre, and J. Rushby, The PVS proof checker: A reference manual,
Tech. report, SRI, 1993.

[Sta96] I. Stark, A fully abstract domain model for the �-calculus, Proc. LICS'96, IEEE
Press, 1996, pp. 36{42.

[Ste97] C. Sterling, Bisimulation, model checking and other games, Notes for Math�t In-
structional Meeting on Games and Computation, Edinburgh, 1997.

[Tho90] B. Thomsen, Calculi for higher order communicating systems, Ph.D. thesis, Impe-
rial College, 1990.

[Tur95] D. Turner, The polymorphic pi-calculus: Theory and implementation, Ph.D. thesis,
University of Edinburgh, 1995.

[Wal95] D. Walker, Objects in the �-calculus, Information and Computation 116 (1995),
253{271.

[Wer94] B. Werner, Une th�eorie des constructions inductives, Ph.D. thesis, Universit�e Paris,
1994.

[Yos96] N. Yoshida, Graph types for monadic mobile processes, Proc. FSTTCS'96, LNCS,
vol. 1180, Springer, 1996, pp. 371{386.

Index

�-closed
command, 70
context, 70

�-conversion, 30
�-reduction, 30
�-calculus, 14

monadic, 15
polyadic, 15

claset(), 29
simpset(), 29

actions, 6, 15
adequacy, 57, 60
Algol

concurrent (CIA), 63, 64
sequential (IA), 63, 64

atomicity, 67

binder, 29
bisimulation

con�guration, 70
up to expansion, 14, 19
up to expansion wrt. L, 103

broadcast, 103, 105

case-exhaustion, 25
CCS

pure, 6
value-passing (VP), 8

component, 91
compositionality, 11, 13, 92, 98
concurrent normal-form, 91
con�guration, 66, 72

locked, 69
congruence, 11

deep embedding, 32, 36

elimination-rule, 7
environment, 64
equivalence

�-equivalence, 16, 41
observation, 11, 18, 71, 91
observation wrt. L, 92, 93
structural, 66

exotic term, 32
expansion, 13, 18

wrt. L, 102

hypothetical judgement, 32

induction, 31
rule, 25
structural, 31

inductive set, 7, 22
introduction-rule, 7, 22
Isabelle

Isabelle/HOL, 21

labelled transition-system, 7, 17
labels, 6, 15

object, 8
subject, 8

Leibnitz-equality, 50
logical framework, 20

higher-order, 21

meta-level, 21, 31
meta-names, 36
meta-variable, 31
mobility, 14

names, 6, 15, 36
bound, 15, 38
free, 15, 38, 47
fresh, 16, 38, 47
object, 14
subject, 14

object-level, 21, 31
object-names, 36
object-variable, 31

121

122 INDEX

operational correspondence, 74, 75

process-tree, 33

shallow embedding, 32, 36
snapback, 63
state-explosion, 11
substitution, 30, 72
syntax

�rst-order, 29, 36
higher-order (HOAS), 29, 32, 36

tactic, 27
algebraic, 27
classical, 27

tactical, 29
theorem-prover, 21
theory, 22

.ML-�le, 22

.thy-�le, 22
theory of contexts, 50
transition

strong, 7, 17
weak, 7, 17

type-system, 19
I/O-types, 20
linearity, 20, 79, 81
sort, 19
values, 20

well-formedness, 32, 48

