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Abstract

The development and deployment of distributed applications still represents a major
problem of computer science due to the complex and heterogeneous architectures of
modern computing systems. The goal of this thesis is to improve the development
and deployment of distributed applications by enhancing the on-line tool support
for heterogeneous middleware environments. Our approach to reach this goal is
to provide a monitoring and management system that is tailored to the needs of
modern middleware applications.

Starting with an analysis of current middleware platforms and on-line tools for
various application domains, the shortcomings of existing on-line monitoring and
management approaches are worked out. Existing on-line tools mostly represent
proprietary solutions for particular middleware platforms and are tailored to homo-
geneous scenarios, while their monolithic and static architecture limits their flexi-
bility and extensibility.

From these insights, several requirements for the development of a monitoring
and management infrastructure for heterogeneous middleware arise. Approaches
for systematically managing complex environments as well as mechanisms for deal-
ing with heterogeneity are essential in this context. Moreover, concepts supporting
different kinds of on-line tools and enabling the extensibility of on-line tool envi-
ronments are indispensable.

From these considerations, the MIMO MIddleware MOnitor approach is de-
rived. MIMO is based on a multi-layer monitoring model that classifies observed
entities by means of several abstraction layers, a generic monitoring infrastructure,
and a sophisticated usage methodology. The prototypical implementation of the
MIMO system is evaluated with respect to its applicability within current middle-
ware platforms. Besides the observation of general purpose middleware platforms
like CORBA, the application to metacomputing systems, a distributed interactive
simulator, and a medical image reconstruction programme is demonstrated.

The benefits of the MIMO approach result from the systematic approach for
monitoring heterogeneous environments, its capability to support tools for all on-
line phases of the software lifecycle, and the extensible architecture of the monitor-
ing system. Furthermore, the rapid tool development methodology allows to con-
struct new tools or integrate new middleware platforms efficiently. Altogether, the
results obtained within thesis represent a major contribution to an enhanced on-line
tool support in heterogeneous middleware environments.
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Chapter 1

Introduction

The spread of distributed computing systems has immensely increased over the past
years. Distributed computing systems are becoming more and more important for
mankind, in everyday life as well as in industrial and scientific domains. The In-
ternet and its capabilities enable people to communicate and cooperate all over the
world, while high-performance parallel computers or networks of workstations al-
low to solve scientific and commercial problems faster than ever.

However, development and deployment still represent a major problem of dis-
tributed applications due to their complex and heterogeneous architectures and com-
munication mechanisms. Approaches to simplify the development and deployment
processes are the usage of middleware platforms on the one hand, and the integra-
tion of on-line tools on the other hand. Middleware environments are intended to
hide the heterogeneity of distributed systems and provide a platform for enabling
the communication between distributed components. On-line tools, in contrast, are
intended to assist developers and users of distributed environments by supporting
the analysis or control of running applications.

The goal of this thesis is to contribute to an improved development and deploy-
ment of distributed applications. To reach this goal, we present an approach for the
efficient construction of on-line tools for heterogeneous middleware environments.
With our approach, we provide a monitoring infrastructure and a usage methodol-
ogy that make it possible to efficiently and rapidly build on-line tools. Such tools
can be used to support the complete “on-line lifecycle” of distributed applications,
ranging from development tasks like debugging to subsequent deployment tasks
like the management of running applications.

1.1 Motivation and Goals
With the advances of modern technology, the presence of computers in nearly ev-
ery sector of life has drastically increased. Computers are becoming pervasive and
ubiquitous, while we are moving on towards the “information society” [Eur2000a],
[Eur2000b]. Advances in the field of interconnection networks and microprocessors
have made distributed computing interesting for many purposes. With the increased
computing and communication power, networks of workstations are becoming of
interest for problem solutions formerly reserved to classical parallel computers.
Another benefit of distributed computing systems is the permanent and location
transparent accessibility of information, which allows users to cooperate or share

1



2 CHAPTER 1. INTRODUCTION

information all over the world.
From the structural point of view, there are several ways to organise dis-

tributed computing systems. An often used paradigm is the client/server principle,
which distinguishes one of the participating computers as a server that provides
pre-defined services to its clients. More recent approaches have abandoned the
client/server principle as the server represents a central point of failure, which de-
creases the reliability and availability of the overall system. Instead, peer-to-peer
computing systems like e.g. Gnutella [Weg2000] that do not distinguish any of the
participating hosts represent a new trend for the development of distributed comput-
ing environments. Furthermore, new aspects of distributed computing have arisen
with the availability of mobile devices that dynamically connect to networks via
wireless communication.

Despite the technological advances and independent of the architecture of dis-
tributed systems, the development of software remains complex in comparison to
software development for stand-alone systems. On the one hand, this complexity
results from the diversity of components used for the construction of distributed sys-
tems, while on the other hand, complexity arises from the inherent distribution of
components. Important issues in this context are the management of the available
resources, the localisation of available functionality, the communication between
distributed components, and the handling of failure situations.

Due to rapid technology transitions and constantly growing requirements for
distributed applications, mechanisms for the efficient and reliable building of appli-
cations need to be found. A major contribution to the reduction of the development
efforts is the usage ofmiddleware platforms. Such platforms provide mechanisms
to abstract from the underlying computing infrastructure and enable a more or less
transparent interaction between application components. Nevertheless, despite the
benefits of middleware platforms, further assistance is required in order to rapidly
and efficiently develop and deploy distributed applications. For example, during
software development, communication between components needs to be traced for
debugging or performance analysis purposes. Or, during the subsequent software
deployment, distributed applications need to be managed and failure situations have
to be detected. The solution to these problems is the use ofon-line tools, which are
programs observing or controlling the behaviour of distributed applications at run-
time.

For many middleware environments, various on-line tools exist. Such tools sup-
port development tasks like visualisation, debugging, or performance analysis, as
well as deployment tasks like load balancing, computational steering, or applica-
tion management. One of the main problems of on-line tools is their interference
with the observed environment, as the observation itself influences the system under
consideration and potentially affects its behaviour. This issue represents a general
problem similar to Heisenberg’s uncertainty principle [Hei1927] within the quan-
tum theory, which has already been postulated in 1927. Thus, keeping the overhead
of on-line tools as small as possible or controlling the influence on the observed
system is an essential aspect for tool development.

When looking at currently available on-line tools supporting the development
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or deployment of distributed applications, several decisive disadvantages can be
found. Tools are mostly proprietary solutions that only work in homogeneous sce-
narios based on a single middleware platform. Furthermore, most tool approaches
only concentrate on simple scenarios where certain aspects of a distributed appli-
cation can be observed; a systematic concept for building different kinds of tools is
missing. Also, tools are inflexible with respect to their extensibility or the interop-
erability with other tools connected to the same application.

Eliminating these drawbacks of existing on-line tools represents an important
step towards improving the development and deployment process of distributed ap-
plications. Therefore, the goal of this thesis is to contribute to an enhanced on-line
tool support for distributed middleware environments. This goal can be reached by
designing and implementing an on-line tool concept that is tailored to the needs of
modern middleware. In contrast to existing tools, our approach rests upon a sys-
tematic concept for dealing with complex and heterogeneous environments. The
concepts are implemented by a generic monitoring infrastructure that serves as a
basis for all kinds of tools. As a consequence, we are establishing a flexible and
extensible tool environment that supports the complete on-line lifecycle of middle-
ware applications. Our approach for monitoring and managing heterogeneous mid-
dleware therefore represents a sophisticated step towards a more efficient software
development and deployment process for distributed applications.

1.2 Methodology and Outline
From the methodical point of view, this thesis shows the following structure: In a
first step, we present and analyse current middleware platforms that are used for
distributed applications. For these platforms, existing approaches for on-line moni-
toring, management, and tool construction are investigated. Our investigations yield
a list of drawbacks of existing systems, which are then taken as a starting point for
postulating a set of requirements for monitoring and managing heterogeneous mid-
dleware. These requirements serve as a basis for deriving a new approach for the
construction of on-line tools in heterogeneous middleware environments. The de-
rived approach represents an experimental hypothesis whose feasibility has to be
proved. Therefore, we implement a prototypical monitoring system and tool envi-
ronment that rests upon our approach and evaluate it by means of several real-world
application scenarios. Finally, we reconsider our hypothesis and evaluate our over-
all on-line monitoring approach.

Consequently, the organisation of this thesis is as follows: Chapter 1 gives a
general motivation of our work, presents the goals of our efforts, and summarises
the research contribution.

In chapter 2, we will introduce the term “middleware” and position it within
the field of distributed computing systems. A general definition of the notion of
middleware will be worked out on the basis of existing points of view and further
relevant criteria. Also, the terms heterogeneity and interoperability, which are key
features of middleware systems, will be introduced. Subsequently, major examples
for current middleware systems will be described. This is done by means of several
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categories of middleware that are being used in different application domains.
Chapter 3 will introduce the research fields of on-line monitoring and manage-

ment. We will define the terms “on-line tools”, “on-line monitoring” and “manage-
ment”, which are essential for the remainder of the thesis. Furthermore, a general
classification of tools, mechanisms for on-line monitoring, and problems arising
with the monitoring process will be described. Following these general considera-
tions, we will move on to the analysis of common approaches and systems in the
field of on-line tools. As before, we will classify these approaches and systems on
the basis of the application domains from which they have originated.

In chapter 4, we will work out the drawbacks of existing monitoring approaches
and systems. From these drawbacks, a set of requirements for a generic monitoring
approach will be derived. Here, the main goal of our requirements is to enable the
construction of on-line tools for heterogeneous middleware environments with a
single, powerful on-line monitoring approach.

Chapter 5 will introduce the MIMO MIddleware MOnitoring approach for con-
structing an on-line tool environment for heterogeneous middleware environments.
MIMO represents a concrete approach to implement the abstract requirements
stated in chapter 4. The overall MIMO approach is based on three fundamental
ideas: First of all, an information model called the “multi-layer monitoring model”
serves as a foundation for classifying entities within the observed systems. Sec-
ondly, we define a generic monitoring infrastructure that allows to build new tools
or to integrate new middleware easily. And thirdly, we present a usage methodol-
ogy and a tool framework describing the development of tools and the adaption of
middleware platforms.

The concrete implementation of a MIMO prototype will be illustrated in chap-
ter 6. After a short review of the tool development and usage process, the basic
monitoring architecture of the MIMO prototype will be shown. The architectural
point of view comprises the participating components, their interaction patterns,
and further distribution and assignment considerations. Subsequently, the access
and usage of the MIMO implementation will be presented. This description cov-
ers the interfaces needed to access the MIMO system, as well as procedures for
deploying the monitoring system in practice. Implementation details regarding the
MIMO core and its performance, instrumentation components for various middle-
ware systems, and the MIVIS tool framework will be shown in the last section of
chapter 6.

Procedures for the efficient usage of the MIMO system will be explained in
chapter 7. For this purpose, MIMO’s tool development methodology establishes a
rapid tool development process that can be applied to arbitrary monitoring scenar-
ios. In order to demonstrate the applicability of the MIMO system, several real-
world application scenarios for the MIMO approach and its tool development and
middleware integration facilities will be described. In addition to general purpose
middleware, these scenarios comprise the integration of metacomputing platforms,
a distributed simulation environment, and a medical image reconstruction applica-
tion.

In chapter 8, the overall MIMO approach, its implementation, and applicabil-
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ity will be evaluated. Moreover, after a review of the initial problem, the results
accomplished with our work will be summarised. Besides the major conceptional
contributions, essential lessons learned during the development process will be elab-
orated.

Finally, chapter 9 contains a conclusion that summarises the major aspects of
this thesis and provides an outlook to future topics.

1.3 Research Contribution
The research contribution of this thesis is to establish methods and techniques for
monitoring and managing heterogeneous middleware. The resulting benefit of our
work is to improve the on-line tool support in heterogeneous middleware environ-
ments. Our efforts therefore represent an essential contribution that enhances the
development and deployment processes of distributed applications.

In the field of on-line tools, no other tool framework is able to fulfil the require-
ments of heterogeneous middleware systems. Existing on-line tools and monitor-
ing systems are proprietary solutions tied to homogeneous middleware platforms,
which cannot observe applications based on different middleware platforms simul-
taneously. Furthermore, existing tools or monitoring systems concentrate on partic-
ular phases of the software lifecycle and do not provide mechanisms for covering all
on-line phases of application development and deployment. Extensibility with re-
spect to the development of new tools or the integration of new middleware is hardly
given because systematic usage procedures for the tool environments are missing.

Our work eliminates the drawbacks of existing approaches and provides a so-
lution to the particular problems in heterogeneous middleware environments. The
key contributions of our approach are as follows:

2 Firstly, we define an abstract information model that makes it possible to
classify entities existing within the various observed middleware platforms.
In combination with the procedure for mapping concrete middleware plat-
forms and the efficient algorithms to access the resulting data structures, the
multi-layer monitoring modeltherefore represents a basis for the systematic
monitoring of complex middleware environments.

2 Secondly, we implement ageneric monitoring infrastructurethat is open to
all kinds of tools and middleware. This infrastructure provides intelligent
procedures for starting monitoring sessions and basic services for discover-
ing the observed entities and their properties. Beyond this, all interfaces are
kept generic, such that new middleware can be attached easily and new tools
can be developed smoothly. Altogether, our monitoring infrastructure estab-
lishes a light-weight approach towards enabling communication between in-
strumented applications and tools on the basis of the multi-layer monitoring
model. As a consequence, our infrastructure fulfils the requirement for a
systematic monitoring approach that is able to support the complete on-line
lifecycle and that allows to simultaneously observe heterogeneous platforms.
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The applicability of our system thus ranges from development tasks like de-
bugging to deployment tasks like application management.

2 Thirdly, we propose a methodology for the efficient use of our monitoring in-
frastructure. Our usage methodology serves as a guideline for the systematic
development of new tools or the integrating of new middleware. This is of
great importance because the monitoring infrastructure provides a high de-
gree of freedom to users due to its generic layout. Following the steps of our
methodology therefore enables arapid tool developmentprocess, which al-
lows to rapidly construct on-line tools or to integrate new middleware, while
an incremental extension is made possible in order to adapt to changing re-
quirements. Thus, our methodology fulfils the requirements for a flexible
and extensible monitoring approach and contributes to the coverage of het-
erogeneity due to its mapping strategies for concrete middleware platforms.

In addition to these major contributions, the resulting monitoring approach
points out further aspects that are relevant for the on-line monitoring process. The
monitoring infrastructure serves as a kind of intelligent event propagation frame-
work, which itself can be interpreted as a kind of special purpose middleware. Dy-
namic processes within modern middleware applications are an important aspect
that has to be taken into account. This concerns the software lifecycle of distributed
applications as well as the highly dynamic behaviour of application components.
Moreover, the integrative aspect of building on-line tools for heterogeneous mid-
dleware is a relevant point in this thesis. Observing the diverse platforms and ap-
plications with a single tool environment is a major contribution that significantly
simplifies monitoring and management tasks.

The scientific innovation of this thesis is the concept of building a universal en-
vironment for the construction of on-line tools. While existing systems are limited
either to specific middleware platforms or to specific kinds of tools, we propose an
approach that integrates heterogeneous platforms and makes it possible to support
the complete on-line software lifecycle. As the resulting monitoring system is com-
plex, a usage methodology serves as a guideline for users and enables a rapid tool
development process.

At a first glance, the scope of our work comprises all kinds of software tools
that are used in heterogeneous environments. However, as our monitoring system
itself can be seen as a middleware platform the results also affect other middleware-
based distributed systems. Both the integrative aspects of our monitoring approach
and the mechanisms for dealing with the dynamic behaviour of modern middleware
applications can be transferred to other domains. The main insight in our context
is that only a generic and universal approach can fulfil the requirements within the
investigated middleware environments.

Finally, the technical and economical contribution of this thesis has to be em-
phasised. Many current and future information systems have and will have to solve
problems concerning the integration of heterogeneous components, the organisation
of dynamically changing environments, or the methodologies needed for utilising
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such systems. Our monitoring system may therefore serve as a foundation for con-
structing the next generation middleware.

1.4 Background
The results accomplished within this thesis are based on numerous research ac-
tivities in the field of on-line monitoring at the Lehrstuhl für Rechnertechnik und
Rechnerorganisation at Technische Universität München (LRR-TUM). During the
past years, monitoring technologies for parallel and distributed systems have been
investigated and developed [BKLW2000].

The TOPSYS project [BBB+1991] aimed at the design and development of a
hardware and software monitoring system running on iPSC/2 and iPSC/860 par-
allel computers. Later, new concepts for the construction of monitoring systems
were worked out. The objective of the On-line Monitoring Interface Specifica-
tion (OMIS) [LWSB1997] was to define a versatile interface between tools and
the monitoring system. An implementation of the OMIS specification has been re-
alised with the OMIS Compliant Monitor (OCM) [WTL1998], which now provides
the basis for the integration of several tools in the framework of the TOOL-SET
project [WLB+1997]. In this context, topics like tool interoperability [Tri1999],
load management [Röd1998], aspects of non-determinism [Obe1998], or computa-
tional steering [Rat2000] have been investigated.

The insights gained in these research projects serve as a foundation for this
thesis, which focuses on monitoring and managing heterogeneous middleware plat-
forms.





Chapter 2

Middleware

The term “middleware” describes the key approach for developing distributed ap-
plications within this thesis. Therefore, this chapter gives a general definition of the
term and introduces the field of middleware by its history, characteristics, examples
of current systems, and possible future trends.

By looking up “middleware” in standard encyclopedias or computer science dic-
tionaries, it is obvious that the term is relatively new as it can hardly be found in
any encyclopedia, and only in most recent computer science publications. The En-
cyclopaedia Britannica [Bri2000], for example, has no entry for “middleware”, and
several computer science dictionaries do not ([Inf1993]) or only briefly ([RP1999],
p. 654) offer “middleware” as a catchword.

On the other hand, running this term through Internet search engines yields a
high number of hits for this term. AltaVista [Alt2000], for example, found 243.720
pages for the search term “middleware” on Feb 7, 2000. These facts show that mid-
dleware represents an important, but still emerging research topic within computer
science, which leaves a lot of challenging questions to deal with.

2.1 General Definitions
This section gives a general introduction into the field of middleware systems based
on its historic development, and defines relevant terms in the research field of mid-
dleware.

2.1.1 Client/Server Systems
With the rise of distributed systems in the past, efforts to standardise all aspects
of distributed computing, from the physical layer up to the application layer, have
been made. But, as those standardisation efforts have shown to be very difficult
to enforce, the class ofclient/serversystems came up in order to deal with the
still existing heterogeneity within distributed applications. With the client/server
model, applications are split into tasks that get distributed among a set of nodes
communicating via the network. Every component of the applications can then be
executed on the node where it can be handled most efficiently. There are several
similar definitions for the client/server computing model (see [Sta1998], p. 555 for
examples); we will use the following one:

9
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Client/Server Model: A computing model that is based on splitting applications
into clientsandservers. Thereby, servers provide functionality by means of
services, which represent different kinds of available resources. Clients make
use of these services by submittingrequeststo the servers.

This definition does not require client and server to be distributed onto different
nodes, as it may in practice be useful to have client and server collocated on one
machine for technical reasons. Nevertheless, the general case is surely the distri-
bution of clients and servers among several nodes. Figure 2.1 illustrates the basic
client/server computing model.

Client ...               Server

Service 1

Service n

1. Request

2. Result

Figure 2.1 Client/Server Computing Model

2.1.2 The Gartner Model
When building client/server systems, there is great flexibility in the degree of distri-
bution of application components. Traditional distributed applications can be sep-
arated into the three main components presentation, business logic, and data man-
agement. Depending on the distribution of these components, theGartner Model
([LD1998], p. 23f) classifies distributed applications as shown in figure 2.2. Start-
ing from thedistributed interface, which merely adds a new graphical user interface
(GUI) to an existing legacy application, several classes of distributed applications
are defined. Thedistributed logicrepresents the classic notion of a distributed ap-
plication because of its distributed business logic, which is the core part of an ap-
plication. The last stage within the Gartner Model isdistributed data management,
where even the application’s data bases are distributed.

2.1.3 Three-Tier Applications
The Gartner Model is a two-tier model, as it always consists of two tiers represent-
ing the client- and server-side. However, many modern applications cannot be clas-
sified with the Gartner Model anymore as they break up the three main components
presentation, business logic, and data management into three separate distribution
units, which yields a so calledthree-tier architecture. Thus, with this model, a new
layer modelling the business processes is introduced between the desktop clients
and the database servers. The main reason for this separated application-logic com-
ponent is scalability within high-performing enterprise computing systems, and the



2.1. GENERAL DEFINITIONS 11

New GUI
Interface

GUI

Existing
Character
Interface

Busines
Logic

Busines
Logic

Data
Management

GUI GUI GUI

Data
Management

Data
Management

Data
Management

Data
Management

Busines
Logic

Busines
Logic

Busines
Logic

Busines
Logic

Data
Management

Netw
or

k

Netw
or

k

Distributed
Interface

Remote
Interface

Distributed 
Logic

Remote data
management

Distributed data
management

Figure 2.2 Gartner Group Distributed Application Model

encapsulation of business logic in an own component that makes it easier to handle
complex procedures.

2.1.4 Middleware
To give a general definition of the term middleware, it is at first helpful to look at
previous definitions made in different software development contexts:

2 Originally, the term “middleware” is first mentioned in distributed operating
systems literature, defining it as “standard programming interfaces and proto-
cols that sit between the application above and communications software and
operating system below” ([Sta1998], p. 563).

2 In the field of client/server systems, middleware can be characterised as the
“slash (/) in client/server” ([LD1998], p. 468). This expression already pro-
poses middleware to be responsible for the interaction between client and
server.
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2 Software engineering concepts for component-based applications define mid-
dleware as mediating software that allows to find, bind, and use services pro-
vided by components within distributed applications ([RP1999], p. 654).

Based on the general Gartner Model, middleware systems can be divided into
three categories:

2 Presentation middlewareonly cares for displaying data remotely. A Web
browser and server communicating via the HTTP protocol (hypertext transfer
protocol) can for example be classified into this category.

2 Application middlewareis used to distribute the application logic, and there-
fore functions as a general purpose programming platform for distributed ap-
plications. Its goal is to enable application programmers to build interacting
components using middleware to abstract from given system details.

2 Database middlewareis deployed to access database management systems re-
motely. For example, SQL requests being sent to the DBMS and transferring
back the results to the client are a typical task for database middleware.

Throughout this thesis, application middleware will be the focus of interest,
although all the concepts and implementations can easily be applied to the other
categories as well. Therefore, with regard to former definitions and this classifica-
tion of middleware systems, the following general definition of middleware can be
given:

Middleware: A software layer between operating platform and application that en-
ables the interaction of potentially distributed application components, reach-
ing a certain degree of transparency and independence from the surrounding
runtime environments.

Thereby, transparency from the operating platform covers the network, hard-
ware, and operating system. The kinds of transparency for the application in most
cases comprise programming language, access and location transparency. This al-
lows components implemented in different programming languages to interact with-
out knowledge of their actual location (execution node), and syntactically equivalent
to local interactions.

The implementation of middleware relies on offering an application program-
ming interface (API) to the application components, and by using the operating
platform’s underlying interfaces. Figure 2.3 shows an overview of the middleware
layer within the system model.

2.1.5 Heterogeneity and Interoperability
Another important aspect of many middleware systems is interoperability, which
describes the concept of heterogeneous components interacting with each other.
Heterogeneityin this sense covers a large variety of features, concerning either
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computing platforms or application characteristics. Features regarding the comput-
ing platforms include communication networks, hardware, and operating systems;
on the application side, heterogeneity mostly results from the use of different pro-
gramming languages for the implementation of diverse components.

Interoperability may cover only the interaction between components using dif-
ferent implementations of a single middleware platform ([OMG1998c], p. 10-1ff),
or it can be seen as an approach to enable different middleware platforms to interact
with each other. Hence, we can define the term interoperability generally as follows:

Interoperability: The ability of components of distributed applications to interact
with each other in a heterogeneous environment.

This definition covers both kinds of interoperability mentioned above. Further-
more, the notion of interoperability is also used in the area of tools ([Tri1999],
p. 51), describing tools that are able to interact with each other; however, this no-
tion is not the target of our interoperability definition.

2.2 Common Middleware Systems
In this section, we present several common application middleware systems that
are either of historical, technical, or industrial relevance, and conclude with cur-
rent trends and potential future developments. As the market of available middle-
ware systems is getting more and more complex, a number of studies classifying
and evaluating middleware concepts and products has been published ([Hei1999],
[RE1997], [Kor1997]). These studies show that middleware development has be-
come very diverse, and either has led to general purpose platforms emphasising the
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integrative aspects of middleware, or to specialised products adapted to concrete
usage scenarios. The following sections give an overview of the variety and char-
acteristics of relevant systems.

2.2.1 Historically Relevant Approaches
The two fundamental approaches most modern middleware systems rely on are the
Remote Procedure Call and the Distributed Computing Environment.

2.2.1.1 Remote Procedure Call

Remote Procedure Call (RPC) introduces the concept of calling a procedure re-
motely in a syntactically identical way to local procedure calls. Besides the unique
calling mechanism, a main advantage of this mechanism is easy parameter handling
that allows for static type checking at compile time, a feature that is not given with
pure socket communication. The drawback of RPC is that despite the syntactical
identity with local procedure calls the semantics is not identical. The reason for the
different semantics results from the different address spaces, runtime environments,
and potentially different lifetimes of the communicating processes. For example, it
is not possible to pass pointers as parameters as in local C procedure calls because
of the separate address spaces.

The implementation of RPC is based on a description of the interface with the
RPC language, from which stubs and skeletons for the client- and server-side are
generated with an RPC compiler. These stubs and skeletons take over the task of
marshalling and unmarshalling parameters on both sides, and care for the commu-
nication that relies on the TCP/IP or UDP protocols. Hence, with RPC, a certain
degree of access and location transparency can be reached.

RPC was the first system with these properties, and therefore represents a foun-
dation for most subsequent middleware platforms. It was first implemented in 1984
[BN1984], but the most popular implementation is Sun RPC, which was delivered
in 1985 as part of Sun’sOpen Network Computing(ONC). In addition to the RPC
module, ONC contains a library for external data representation (XDR) that pro-
vides functionality for platform independent data encoding. One of the main ap-
plications of RPC is Sun’s Network File System (NFS). Today, RPC and XDR
are standardised as the Internet Engineering Task Force (IETF) standards RFC
1831 [Sun1995a] and RFC 1832 [Sun1995b]. For more details on RPC, see e.g.
[LS1994].

2.2.1.2 Distributed Computing Environment

The Distributed Computing Environment (DCE) is a development of the Open
Group [Gro2000]1. Its purpose is to provide a distribution platform for client/server
applications. DCE defines an architecture model for applications that is placed on
top of the local commodity operating systems. It defines a set ofservicesthat are

1FormerlyOpen Software Foundation(OSF)
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hierarchically structured, so that higher level services can always use lower level
services.

The lowest-level service on top of the local operating system is theThread Ser-
vice; it is based on the POSIX standard 1003.1c [NBF1996], and defines an API
for lightweight processes. This API contains functions for creating, manipulating,
synchronising, and deleting threads, and serves as a basis for asynchronous com-
munication. The basic communication service placed above the Thread Service is
the Remote Procedure Call described in the previous section. On top of RPC, sev-
eral higher-level services like theTime Service, Directory Service, Security Service,
andDistributed File Serviceare available. These services provide functionality for
different kinds of general purpose tasks required in most distributed applications.
DCE environments themselves are divided into so calledcells, which represent ad-
ministrative units comprising users, machines, or applications in any arbitrary con-
figuration.

The main drawbacks of DCE are its reliance on RPC as the only communication
mechanism, and its non-object-oriented design (although there are object-oriented
extension to DCE). Nevertheless, an important contribution of DCE is its concept of
splitting middleware functionality into a set of variably usable services. Moreover,
the decentralised and therefore scalable approach of building organisational cells is
of importance for subsequent developments. These concepts can be found in many
modern middleware platforms that will be discussed in the following sections.

2.2.2 Parallel Programming Environments
Another important, but very different form of middleware are parallel programming
environments used forhigh-performance computing and networking(HPCN). The
main goal of these platforms is an efficient communication between parallel pro-
cesses, while transparency and ease of use originally play a secondary role.

First implementations of parallel programming environments are based on the
message-passingparadigm, an approach with which all communication is based
on exchanging messages. The only fundamental communication operations are the
sending and receiving of messages.

Later systems pick up thedistributed shared-memory(DSM) paradigm, which
provides an illusion of shared memory within a distributed environment. DSM sys-
tems provide the advantage of an improved location transparency and are therefore
easier to program, but have problems to reach the efficiency of message-passing
systems.

2.2.2.1 Message-Passing Systems

The two most popular implementations of message-passing systems are Parallel
Virtual Machine and the Message-Passing Interface.

Parallel Virtual Machine. Until recently, Parallel Virtual Machine (PVM)
[Sun1990] [GBD+1994] was the de-facto standard for general purpose message-
passing libraries. It can be deployed on both dedicated parallel computers and het-
erogeneous workstation clusters.
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PVM consists of a programming library supporting different kinds of func-
tionality: Process control functions create new application processes (calledPVM
tasks) within the distributed system, interprocess communication functions allow
processes to interact by exchanging messages, and environment control functions
allow to configure the environment, e.g. by defining the set of possible execution
nodes. The execution of parallel processes is controlled byPVM daemonsrunning
on each participating node, and all machines running a PVM daemon constitute
the virtual parallel machine; communication within PVM on workstations is imple-
mented using both UDP and TCP.

The advantages of PVM are its portability and its applicability in heterogeneous
environments. Further benefits are the abstraction of providing one single virtual
machine composed of several nodes, and the possibility to dynamically manage
computing nodes and processes.

Message Passing Interface. In contrast to PVM, which provides an imple-
mentation of a message-passing library, theMessage-Passing Interface(MPI)
[SOHL+1999] only defines a standard message-passing interface that can be im-
plemented by vendors of high-performance computers or clusters of workstations;
this gives vendors the opportunity to build MPI implementations with special op-
timisations for their hardware and communication infrastructure. Besides various
messaging and process management functionality, MPI allows to define message
contexts and communication topologies. Currently, MPI is established to be the
new standard among message-passing platforms.

2.2.2.2 Software Distributed Shared-Memory Systems

Message-passing systems have traditionally been deployed onloosely-coupled
hardware, as for processes with disjoint address spaces exchanging messages is the
simplest way to communicate. Ontightly-coupledhardware, in contrast,shared-
memoryprogramming is enabled because memory is equally accessible to all par-
ticipating processors. For the programmer, shared-memory programming is easier
because no explicit data movement operations are required, and synchronisations
are carried out by the runtime system to arbitrate conflicting memory accesses.

The Distributed Shared-Memory(DSM) model now tries to apply the shared-
memory programming model on loosely-coupled hardware, combining the advan-
tages of both systems: Loosely-coupled hardware is more scalable, easier to build,
and inexpensive, and with the shared-memory abstraction, a more beneficial pro-
gramming model is given.

In Software DSM systems, the DSM abstraction is provided by an additional
DSM middleware layer that provides a DSM API for the programmer, and maps
these operations to communication and synchronisation operations on the under-
lying message-passing environment. Typical software DSM implementations are
TreadMarks [ACD+1996] and Orca [BBH+1998]. The main issue of most software
DSM implementations is performance: Programming on the higher-level shared-
memory abstraction reduces the programmer’s influence on optimising communi-
cation, and hence, a trade-off between efficiency and simplicity has to be found. For
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more details on Software DSM systems, see [ZRS+2000], [Zor2000].

2.2.2.3 Summary

Both message-passing and software DSM systems are initially developed for high-
performance computing. Efficient execution and communication on heterogeneous
hardware is the main goal, while interoperability and portability have to be main-
tained. Therefore, parallel programming environments can be classified as low-level
middleware, providing only a low degree of transparency regarding the interaction
of distributed components. This holds true particularly for message-passing sys-
tems, but also in the case of DSM systems transparency is only reached at a rather
low level of memory access. Higher-level services, for example for dynamically
looking up distributed components, are missing.

2.2.3 Metacomputing Infrastructures
Metacomputing infrastructuresextend the parallel high-performance computing
paradigm to geographically distributed resources. This is either necessary when
local resources are no more sufficient for solving hard problems, or when the dis-
tribution of resources is inherent, for example in multidisciplinary collaboration
environments. The resulting infrastructures are often referred to asgrids [LK1999]
[FK1999], which represent higher-latency and lower-bandwidth wide-area intercon-
nections.

The goal of metacomputing systems is not to replace parallel computers, but
to extend the parallel programming model for usage within geographically dis-
tributed environments. To achieve this, they provide services supporting specific
requirements of metacomputing, including e.g. resource management, security pro-
tocols, information services, fault tolerance mechanisms, or communication ser-
vices. These services are adapted to common problems of distributed resource
usage, which include authentication and authorisation problems due to different
administrative domains, resource management and allocation problems in large en-
vironments, or communication problems arising from different latency, bandwidth,
and reliability within the grid.

Thus, metacomputing infrastructures lift parallel high-performance computing
to a higher level of abstraction by adding services targeted at geographically dis-
tributed systems.

Globus. Globus [FK1998] [Glo2000] represents an advanced implementation of
a metacomputing infrastructure. TheGlobus toolkitprovides basic services and
consists of several modules. These include functionality for resource management
(Globus resource allocation manager GRAM), communication (Nexus), security
(Globus Security Service GSS), information (Metacomputing Directory Service
MDS), fault tolerance, and remote data access (Globus Access to Secondary Storage
GASS). The services are independent of each other and can be used in any arbitrary
combination.

The design of the Globus toolkit reflects the main problems of metacomputing
environments:
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1. Autonomous institutions: Resources are managed by different institutions
that reside in different administrative domains.

2. Resources are managed using different resource management systems.

3. In most cases, applications require different distributed resources to be allo-
cated at the same time (resource co-allocation).

4. It has to be possible to monitor the progress of applications at runtime in order
to be able to react on changing resource requirements.

Globus deals with these problems using GSS for authentication and authorisation
in different domains, whereas GRAM allows to use different resource management
systems and add new ones, and MDS enables on-line monitoring.

Summing up, metacomputing infrastructures represent middleware for high-
performance computing that extend parallel programming environments for geo-
graphically distributed computing by enriching it with a set of services particularly
targeted at computational grids.

2.2.4 Distributed Object-Oriented Systems
This section gives a survey of the class of object-oriented middleware. After start-
ing with the general principles of this class, three major representatives for object-
oriented middleware will be described and compared in more detail.

2.2.4.1 General Principles

Generally, Distributed Object Computing (DOC) [RZB1999] integrates object ori-
entation, client/server architecture, and distributed computing. Applications are de-
composed into a set of objects, either providing server functionality or acting as
clients. These objects interact by invoking methods on requested target objects,
identical to the traditional paradigm of object-orientation.

Interfaces. In order to make the functionality offered by server objects under-
standable and available to other objects, DOC systems describe services by defining
their interfacesusing an interface definition language (IDL). This IDL description
lists all operations that are available for a certain type of service, and serves as a
basis for the generation of client and server stubs for the client and server object
implementations. This generation is performed by an IDL compiler that maps the
IDL description to various programming languages, in which the actual objects are
implemented. IDLs are declarative languages similar to C++ class declarations and
Java interfaces and describe attributes and methods available in server objects.

Broker Mechanism. DOC systems make use ofglobally unique object references
to identify objects within a shared global object space uniquely and issue method
calls upon the reference. The component that is responsible for the creation of
unique object references and delivering method calls to appropriate objects is called
the broker. Brokers are logically centralised components that are able to resolve
object references. Thus, client objects are not required to know the actual location
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of the server object they are addressing with an object reference, so that the location
transparency is managed by brokers. Brokers are implemented according to the
broker design pattern[BMR+1996] that is depicted in figure 2.4. The broker design
pattern encompasses the client, server and broker classes and their proxies. When
transferring messages between different platforms additional bridges may be used
to carry out protocol conversions.

Client Proxy
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use_broker_API()
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Figure 2.4 Broker Pattern

Technically, when a method call upon a given object reference is issued, the
DOC system has to detect whether the call is local or remote. In the remote case,
parameters need to be marshalled, a message to the remote object has to be sent, and
when the method call returns the results have to be demarshalled. Incoming requests
on the server side are processed using an analogous proceeding. In most cases,
this functionality is realised usingproxy objects, which are local representatives of
the server objects on the client side and vice versa. These proxies carry out the
respective actions and enable the access transparency for local and remote method
calls. Therefore, the combination of the broker and proxy mechanisms can be seen
as the basic communication mechanism in DOC systems.

Figure 2.5 shows the structure of theproxy design pattern[GHJV1995]. A
particular service is implemented by the original object. As clients can not access
the original directly – it may for example reside in a different address space – they
make use of proxies that provide the same interface as the originals do. To achieve
the proxy functionality, both the original and the proxy are derived from an abstract
original that only specifies the required interface. The proxy keeps a reference to
the original object and is able to forward client requests to it and deliver the results
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back to the client. In addition, proxies take over the task of packing and unpacking
data and the communication with the broker.

Finding and Accessing Objects. One of the basic conceptual questions in DOC
is how clients can obtain object references to access requested services. To solve
this problem, most DOC systems implement some kind ofnaming serviceat which
server objects can register themselves by giving their name and their object refer-
ence. The scenario for obtaining object references of a remote object using a naming
service is as follows: When a server is started it creates its objects providing given
service types and registers those objects at the naming service. Clients contact the
naming service, give a service name and obtain the object reference to the requested
service. Once the reference has been obtained, the client may invoke methods that
implement the requested services.

When a client has obtained an object reference from an appropriate server object
it can issue method calls on it. The steps carried out when a method on a given
target object reference is invoked is shown in the UML collaboration diagram in
figure 2.6. First, the client calls the method at the client proxy, which represents
the local representative of the server object. The client proxy resides in the same
address space as the client itself and provides an interface identical to the server
object’s interface. The proxy takes over the task of marshalling data and passing
the resulting request to the broker. The broker can logically be seen as a single
component responsible for delivering the request to the server object represented by
the given object reference.

On the server side, the server proxy unmarshalls the request and delivers it to the
actual server object that carries out the method call and passes the results back to
the server proxy; the way back to the client is analogous to the call. The illustrated
scenario shows a common solution in which the broker is physically distributed
among the concerned nodes and where no additional bridges are involved. In prac-
tice, the internal implementation of the broker is left to the developer and should not
influence the programming model. In large client/server environments, clients and
servers may be developed and compiled independently. The interface of a service
is the only common information clients and servers need to share.
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Garbage Collection and Persistence. As object references may be distributed
among a set of clients or saved in a file for later usage, a general strategy for deter-
mining whether references to a given object exist somewhere in the system cannot
be realised (Pacific Ocean Problem [Hen1998]). Instead, some implementations
keep track of the number of live client references (e.g. by counting the number
of live connections), while others employ some cooperative mechanisms in which
clients notify the server when they don’t need the object reference anymore.

Since servers are often considered to be long-living entities, their object refer-
ences should be persistent, i.e. they should be kept valid over time, and clients can
access the service by using the same object reference even if the server has been
shut down or deactivated in between. A problem that occurs in this context is not to
lose the server’s state when deactivating it. A possible solution is to externalise the
server object’s state by storing it on disk or in a database – when reactivating the
server, the object state can then be restored by internalising its state again.

The following sections present OMG CORBA, Sun Java RMI, and Microsoft
DCOM, three major examples of current DOC systems.
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2.2.4.2 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG). The aim of CORBA is to define a general
framework for the construction of distributed object computing systems. Therefore,
in a first step, the Object Management Architecture (OMA) reference model identi-
fying and classifying the object types in a DOC system was proposed [OMG1997a].
As shown in figure 2.7, the model consists of five components.

The actual applications are represented by the application objects. These objects
make use of the other object categories that provide a supporting environment. The
central component enabling the interaction between components is the object re-
quest broker (ORB). Object services, common facilities, and domain interfaces are
further object classes offering common services that are frequently needed in DOC
applications. Object services provide very general low-level services, e.g. naming
and trading, whereas common facilities offer higher-level functionality, and domain
interfaces are services closely adapted for specific application areas.

Common
Facili ties

Applica tion
Interfaces

Domain
Interfaces

Objec t Request Broker

Object Services

Figure 2.7 OMA Reference Model

Based on the OMA reference model, the CORBA specification [OMG1998c]
describes the ORB and related mechanisms in detail. Furthermore, there are sep-
arate specifications for the object services [OMG1997b], the common facilities
[OMG1995], and the domain interfaces.

IDL Interfaces and Language Mappings. In CORBA, interface definitions are
made using a declarativeinterface definition language(IDL). Besides the common
types and parameter passing methods, CORBA IDL fully supports exception han-
dling and interface inheritance. An important feature of CORBA IDL is its language
independence that allows to define the interface without touching implementation
aspects. From the IDL description, an IDL compiler generates mappings to various
programming languages, in which the actual object implementation can be realised.
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Information extracted from the IDL file is used to generate stubs and skeletons for
the client and server object implementations2. Additionally, the interface can be
registered in aninterface repositoryto dynamically construct requests at runtime
without making use of the client stub; moreover, theimplementation repositoryis
used to store information about the activation of the actual object implementation.

Interoperable Object References. CORBA’s way for uniquely addressing ob-
jects within the system is the usage of so calledinteroperable object references
(IORs). When a new object implementation for a given service type is instantiated,
it is the object adapter’s task to choose a globally unique object reference. The
ORB interface provides operations for converting IORs to strings and back, so that
a simple mechanism for passing around IORs is given. As objects are only acces-
sible by their object reference, CORBA objects are generally passed by-reference
when used as parameters in method calls. An extension to CORBA allowing to pass
objects by-value is currently being addressed by the OMG [OMG1998b].

According to the CORBA philosophy, IORs should be persistent in principle.
The mechanism for reaching this goal is as described before: Objects should store
their state before being deactivated and restore it when getting activated again.
However, current ORB implementations treat object activation and deactivation in
a rather proprietary way.

Finding Objects. As explained before, an issue in all DOC systems is to find
objects supporting a given interface. In CORBA, this problem is delegated to the
CORBA services that specify anaming servicewith the purpose of registering ob-
jects by giving a name and the respective IOR. Furthermore, hierarchical name
spaces can be defined in order to structure large object spaces. Moreover, another
CORBA service aimed at finding objects is thetrading servicethat allows to reg-
ister objects by giving specific properties instead of names, which represents an
advanced method for locating services.

ORB Interoperability. As different vendors may develop different implementa-
tions of the CORBA specification, interoperability between ORBs from different
vendors is an essential issue. A main problem of the first version of the CORBA
specification was the missing protocol as well as data formats for the communica-
tion between ORBs. The OMG has addressed this issue by introducing thegeneral
inter-ORB- protocol (GIOP), which specifies an exact transfer syntax and a stan-
dard set of message formats for ORB interactions on any connection-oriented trans-
port medium. A specialisation of GIOP is theInternet inter-ORB protocol (IIOP),
which specifies how GIOP is mapped to TCP/IP connections. Furthermore, other
environment-specific inter-ORB protocols (ESIOPs)are defined for interaction with
other computing infrastructures like e.g. DCE.

Object Services. CORBA follows the concept of splitting the core communica-
tion infrastructure (ORB core) from additional services. Services are defined in
a separate specification [OMG1997b] and include basic functionality like naming,

2In CORBA, the term “client” is used for the client implementation, whereas the term “object
implementation” always refers to the implementation of a server object.
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trading, and event handling, as well as more advanced services like lifecycle man-
agement, security, or transactions.

The advantage of this separation of the services from the ORB core is that it
allows a modular and incremental construction of CORBA systems. Small, light-
weight ORBs can be used for environments where no advanced services are needed
(e.g. embedded systems), whereas fully featured ORBs can be deployed in more
demanding environments (e.g. enterprise computing systems).

2.2.4.3 DCOM

The Distributed Component Object Model DCOM [Mic1998], [EE1998] is Mi-
crosoft’s distributed object infrastructure. It was developed as an extension to the
Component Object Model (COM) that enables the interaction of objects on a local
machine.

Interfaces and COM Objects. To specify interfaces, DCOM uses its own inter-
face definition language called MIDL. The Microsoft MIDL compiler is used to
generate proxy and stub code3 from these definitions. In contrast to CORBA, where
source code for different languages is generated by the IDL compilers, DCOM de-
fines a binary standard for generated interfaces that determines the physical layout
of function tables for compiled interfaces.

COM objectsare not considered as objects in the classical sense, they can rather
be seen as components composed of a set of classical objects offering a set of in-
terfaces to the clients. A special feature of COM isaggregation, which allows to
integrate interfaces of different objects into one COM object transparently for the
clients. The identification of objects within the distributed environment is realised
by using Globally Unique Identifiers (OSF identifiers with a length of 128 bits) for
classes and interfaces. COM classes are identified by class identifiers (CLSIDs),
and interfaces are addressed by interface identifiers (IIDs). A COM object presents
its functionality to the outside via its IIDs, where each interface has its own IID,
and consequently a single COM object can possess several IIDs. This is different
to CORBA and Java, where each object only possesses a single object reference
through which all functionality is provided.

Accessing objects via IIDs can represent a major drawback because it is im-
possible to address a single instance of an object, as several objects providing the
same interfaces can have the same IID; this problem can only be avoided by adding
additional identifiers calledmonikersto objects.

Finding and Accessing Objects. Accessing a COM object from the outside is
only possible by calling methods upon its IID. COM supports both static and dy-
namic invocation of methods. When the interface is known at compile-time the
usual static invocation is applicable. For dynamic invocation, COM provides an
approach calledautomation. Using this approach, the server COM object needs to
support an interface calledIDispatch that offers functionality for querying the
available methods and issuing dynamic calls. Parameters are passed in a platform

3In DCOM, the client side proxy is called “proxy” and the server side proxy is referred to as
“stub”.
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independent format callednetwork data representation. When interface identifiers
have to be passed, they are sent by means of so-called object referencesOBJREF
that contain the full information to identify the server, object, and interface.

Object creation and location in DCOM is effected using object factories associ-
ated with COM classes. To locate these object factories, information about a COM
class has to be contained in the Windows Registry, where the CLSID functions as
a key. This information can be inserted into the Windows Registry either program-
matically or manually. Aservice control manager(SCM) is responsible for looking
up the local registry and contacting the respective object factory.

2.2.4.4 Java RMI

The Remote Method Invocation (RMI) [Sun1997] service is an extension for Java
to enable distributed object computing. Like CORBA, RMI is also based on the
broker and proxy patterns explained in the general concepts.

Interfaces and Remote Objects. Interfaces in RMI are described as stan-
dard Java interfaces that have to extend the interfacejava.rmi.Remote ,
and therefore no additional interface definition language is required. Func-
tionality declared in a remote interface is implemented by classes that extend
java.rmi.server.RemoteObject and its subclasses, and clients may ac-
cess the remote objects only by using their remote references.

Finding and Accessing Objects. Parameter passing in RMI is realised with the
JavaSerialisable interface. Local objects that need to be passed as parameters
have to implement theSerialisable interface and are passed by value. Remote
objects are passed by-reference, making use of the possibility to transfer a serialised
version of the proxy to the client. Consequently, multiple copies of the proxy can
exist within a single client’s virtual machine. RMI’s ability to transfer proxy code
to clients allows to set up and invoke requests dynamically in an advantageous way.
In order to get information about the actual methods available and the respective
parameters needed, introspection (Java Reflection) can be used to extract relevant
information from the proxy code.

The problem of finding objects is realised by a naming component in RMI. On
each node, an RMI registry daemon is running that functions as a name server for
objects on its node. The registry provides a flat name space that allows to register
objects by their name and remote reference. From the outside, the RMI registry
is accessible via uniform resource locators (URLs) specifying the host name, port
number, and name fields.

2.2.4.5 Summary and Future Directions

From the example systems described in this chapter, CORBA represents the most
far reaching approach because it defines a complete framework for the construction
of object-oriented applications. RMI’s disadvantage is the limitation to Java pro-
grams only, and DCOM is mainly suited for Windows operating systems (although
there are implementations for Unix, too), and lacks of historical drawbacks result-
ing from the incremental introduction of several features. More information and
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additional overviews and comparisons of distributed object platforms can be found
in [ZRS+2000], [PS1998], [CHY+1998], [TK1998].

Current work carried out in the field of CORBA contains the CORBA-3 stan-
dard [Vin1998] that improves and extends CORBA over several dimensions. An-
other big issue is the definition of the CORBA Components specification, which
leads towards a more generalised framework [Joh1997b] for developing distributed
applications.

2.2.5 Enterprise Middleware
A relatively old category of middleware that has probably existed much longer than
the term middleware itself is enterprise middleware. This category comprises mid-
dleware that is mainly deployed in large enterprise information systems, for exam-
ple in the financial sector (banks etc.) and insurances. Important characteristics
of such information systems are a huge amount of interactive clients (dialog sys-
tems, terminals) accessing shared data with a high actuality. This results in a high
rate of operations and a high data throughput, generated by a high number of small,
but concurrent transactions, where synchronisation of parallel accesses is necessary.
Moreover, the interactive usage requires short system response times.

All these requirements are achieved by providing highly available and fault tol-
erant environments, which rely on an appropriate underlying middleware. Transac-
tion processing monitors and message-oriented middleware are the two main repre-
sentatives of this category.

2.2.5.1 Transaction Processing Monitors

Transaction processing monitors (TP-monitors, TPM) provide an execution envi-
ronment for transaction-oriented systems. Generally, atransactionis a set of oper-
ations that modify certain resources. In order to maintain a proper system state in
concurrent environments, transactions have to fulfil the so calledACID properties
[GR1993]:

2 Atomicity: Transactions are considered as the smallest, indivisible units; this
means that either all operations of a transaction are carried out, or none of
them (“all-or-nothing” principle).

2 Consistency:At the end of a transaction, the system has to be in a consistent
state. If not, the complete transaction has to be undone (“roll back”).

2 Isolation: This property requires that concurrent transactions do not influence
each other (serialisability).

2 Durability: When a transaction has been completed, the system state is mod-
ified permanently, i.e. it will e.g. not be set back by a system failure anymore.

TPMs provide a runtime environment that allows to guarantee the ACID properties.
They are therefore often referred to as the “operating systems of transactions”.
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The key components of transaction-oriented systems are the transaction man-
agers and resource managers.Resource managersprovide operations with ACID
properties on single resources, for example data base systems, files, or queues.
Transaction managerscare for the overall coordination of transactions by apply-
ing a so calledtwo-phase commit: Transactions are split into two phases, where
in the first phase operations on the single resources are committed, but not finally
executed, so that a roll back is still possible. If all operations can actually be carried
out, they get finally carried out in the second phase. If at least one operation could
not be executed, a roll back of the complete transaction is made.

The behaviour of TPMs has been standardised in the X/Open Distributed Trans-
action Processing (DTP) Model [X/O1991]. Figure 2.8 illustrates the components
of the X/Open models and their interactions.

RM
Resource Manager

RM
esource Manager

Applica tion

TM
Transac tion Manager

RM
Resource Manager

Requests

Prepare
Commit
Abort

Join

Begin
Commit
Abort

Figure 2.8 X/Open Transaction Processing Model

Hence, TPMs represent a rather high-level form of middleware, in which ad-
vanced goals have to be achieved. Mechanisms supporting the integrity of complete
enterprise information systems are provided in addition to high performance, avail-
ability, and scalability. This goes much further than pure communication middle-
ware described in the previous sections.

2.2.5.2 Message-Oriented Middleware

The second enterprise middleware platform is message-oriented middleware
(MOM). The basic principle of MOM is to transfer data by means of messages
that are put into aqueueby the sender, and read from the queue by the receiver at
an arbitrary time. Within MOM, two sub-categories can be distinguished:

2 Message-passing:This kind of MOM is based on direct application-to-
application communication. Messages from the sender are directly trans-
ferred to the receiver, and for the applications, no queues are visible.
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Message-passing is only possible in connection-oriented systems, where a
connection between sender and receiver has to be established before data
transfer.

2 Message-queuing:With message-queueing, data transfer is implemented by
using explicit queues. In this case, communication is connection-less, i.e. the
receiver needs not be active at transmission time because messages can be
stored in the queue until the receiver becomes active.

The main benefits of MOM are the asynchronous and connection-less commu-
nication with message-queueing systems. In large wide-area distributed networks,
this is a key feature as application components may not be active or reachable at
all times, such that decoupling senders and receivers increases system performance
and stability.

Other relevant features of MOM include guaranteed message-transfer, which
provides a method for senders to make sure that asynchronously sent messages
have actually arrived at the receiver component. Furthermore, fault tolerance is of
crucial importance within MOM systems. This includes the detection of incomplete
or modified messages as well as recovery after system crashes on any hop between
sender and receiver.

The most important usage scenario for MOM are certainly batch processing
systems, where asynchronity and guaranteed transfer are the main aspects. Consid-
ering the level of abstraction, on the one hand MOM resides on a rather low level
as messages are the only communication entity, but on the other hand, its applica-
bility in heterogeneous areas including host-based systems as well as workstation
environments puts it onto a higher level of interoperability.

2.3 Summary
In this section, we have defined the term “middleware” starting from distributed
computing and the client/server model. It has become clear that middleware com-
prises a lot of different implementations for rather diverse application scenarios.
According to the users’ needs, the key trade-off between universality, complexity,
and performance has to be found. The more specific and tailored to given applica-
tion scenarios a middleware is, the better is the performance that can be reached. On
the other hand, ease of use and simple programming models in most cases object to
performance, too.

The platforms described in this section include traditional approaches that have
built a foundation for current implementations, as well as middleware for high-
performance computing and enterprise middleware, which represent fairly appli-
cation domain specific systems. Finally, distributed object-computing platforms
represent the most general purpose middleware; they have been explained in more
detail as they are of interest for the implementation of the monitoring system that
will be shown later. Table 2.1 summarises the characteristics of the described mid-
dleware according to the following properties4:

4The range of ratings is “�”, “0”, “ +”, “++”, standing for poor, medium, good, or very good
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Middleware /
Criteria

RPC DCE
PVM
MPI

DSM
Meta-
compu-
ting

DOC
TPM
MOM

Abstraction
Level

0 + � 0 + ++ +

Universality + + � � 0 ++ 0

Performance 0 0 ++ 0 + 0 +

Overhead + � + + 0 + �

Portability 0 + 0 � 0 ++ +

Interoperability � 0 � � � ++ +

Table 2.1 Comparison of Middleware Characteristics

2 Abstraction levelcharacterises the ease of use of a middleware for the pro-
grammer and the availability of advanced services.

2 Universalityindicates the applicability of a middleware to different scenarios.
The more generally applicable a middleware is, the higher is its universality.

2 Performanceevaluates the runtime efficiency of the execution of applications
using this middleware.

2 Overheaddenotes the general effort needed to deploy this middleware. The
more light-weight middleware is, the lower is its overhead. Hence, a small
overhead results in a good rating here.

2 Portabilitycharacterises the applicability of this middleware in heterogeneous
environments, i.e. without considering interactions to other middleware prod-
ucts.

2 Interoperabilityfinally stands for the interaction with other middleware plat-
forms, including legacy integration.

The table shows that middleware with a higher universality, abstraction level,
and interoperability tends to have a higher overhead and a lower performance. More
specialised middleware can partially compensate this through its adaption to given
application scenarios. Nevertheless, this rating cannot represent a completely ex-
tensive survey of middleware, as the variety of products is enormous, even within

fulfilment of a criteria.
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the single categories. Nevertheless, it can be concluded that distributed object-
computing systems tend to be the most general approach for middleware up to now
and act as an integrative platform for other concepts due to their high interoperabil-
ity and universality.

Trends. Current trends for middleware platforms lead to two distinct directions:
On the one hand, optimised platforms for specific application domains like high-
performance computing are developed. On the other hand, big effort is put into
integrative middleware like CORBA, with the goal of improved interoperability be-
tween different middleware products and the integration of legacy applications. Ex-
emplary indicators for such developments are e.g. Object Transaction Processing
Monitors (OTPM), which represent a combination of DOC and TPM functionality.
This tendency towards highly interoperable and integrated systems justifies a new
need for tool concepts and environments that are able to deal with such complex
systems.



Chapter 3

Monitoring and Management

This chapter introduces general concepts, mechanisms, and systems for monitoring
and managing distributed environments. Developing and maintaining complex ap-
plications has become impossible without a sufficient tool support. Monitoring and
management systems provide the basis for on-line tools, which are a major tech-
nique for handling the on-line phases of the software lifecycle. As we will see,
approaches for monitoring and management within the middleware landscape are
very diverse, but we can extract common concepts that represent the foundation for
a general monitoring and management approach.

3.1 General Principles
Before going into detail with current implementations of monitoring and manage-
ment systems, we will introduce their fundamental terms and mechanisms in this
section.

3.1.1 Software Development and On-line Tools
Basically,toolsare programs used to support or simplify the development and de-
ployment of applications. This comprises software development tools like inte-
grated development environments with analysis and design tools, GUI builders, and
debuggers, as well ason-line toolsthat are applied to the developed application
at runtime. In contrast tooff-line toolsthat only collect information at runtime for
later analysis, the characteristic of on-line tools is to allow immediate manipulations
of the running program in addition to data collection. This leads to the following
definition:

On-line Tools: On-line tools are tools applied to an application during runtime.
They have the capability to collect data for later analysis as well as the poten-
tial to manipulate the current execution of the application.

Further characteristics of tools are whether they work in a centralised or dis-
tributed way, or whether they are interactive or automatic ([Lud1998], p. 20). In
the course of this thesis, when talking about tools, we will be referring to on-line
tools if not explicitly mentioned otherwise. Examples for such on-line tools are
performance analysis tools, debuggers, visualisation tools, load balancers, or com-
putational steering tools (see [Tri1999], p. 25ff), i.e. tools applicable as soon as
there is a running prototype of the application.

31
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Moreover, an appropriate tool support becomes more important with the grow-
ing complexity of applications and environments in which applications are de-
ployed. Therefore, tools play a significant role in the field of software development
for parallel and distributed systems [Bod1995], [Wal1995]), including middleware-
based applications.

3.1.2 Monitoring
In order to implement tools as described before, mechanisms to collect required in-
formation from the observed system or to influence it are needed. Every tool could
implement this functionality on its own, but this would cause a high effort and po-
tentially cause problems concerning the coexistence, integration and interoperabil-
ity of different tools. Therefore, in most cases an additional monitoring abstraction
layer separating the tools from the observed applications is introduced. This layer is
implemented by amonitoring system(or simply monitor) that provides basic func-
tionality for accessing and manipulating the observed applications. This monitoring
system processes commands or requests from tools and possibly provides the syn-
chronisation of concurrent tools. Figure 3.1 illustrates the resulting three-tier model
consisting of tools, the monitoring system, and the monitored applications.

Tool

Applica tion

Tool

Applica tion

Tool

Monitoring Sys tem

Applica tion

Tool−Monitor−Interface

Monitor−Application−Interface

Figure 3.1 Three-tier Monitoring Architecture

The interface for accessing monitoring functionality from the tools is called
the tool-monitor interface, and the monitoring interface needed to access and con-
trol applications is called themonitor-application interface. As for tools, it can
be distinguished betweenoff-line monitoring, which only allows the observation of
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programs without manipulating them [JLSU1987] andon-line monitoring, which
also allows manipulations. [Tre1996]. Hence, on-line monitoring can be defined as
follows:

On-line Monitoring: On-line monitoring comprises techniques and mechanisms
to dynamically observe and potentially manipulate applications at runtime.

On-line monitoring can consequently be seen as a technical precondition for build-
ing on-line tools. As for tools, the term “monitoring” will be referring to on-line
monitoring unless otherwise mentioned.

3.1.3 Management
Another important term in the field of software development and deployment is
management. General definitions see management asall activities undertaken to
reach a business-goal oriented effective and efficient deployment of a distributed
environment and its resources[HAN1999]. Here, management on different levels
of interest can be distinguished:Network managementdeals with communication
services and network components,system managementcovers resources of end sys-
tems, andapplication managementis responsible for distributed applications and
services. Functionality carried out in the management process can be classified into
the following categories, which are also calledmanagement functions:

2 Configuration managementcares for the adaption of systems to specific de-
ployment conditions.

2 Fault managementis responsible for discovering, isolating, and fixing abnor-
mal behaviour.

2 Performance managementhas the aim of realising given quality-of-service
requirements.

2 Accounting and user managementcovers administrative tasks concerning
naming, authorisation, and billing functions.

2 Security managementcomprises the analysis of given threats and the imple-
mentation of appropriate mechanisms to protect the system.

These management functions are implemented bymanagement tools, which can be
classified as on-line tools that make use of a monitoring system to execute their
tasks. Hence, our definition of management can be formulated in the following
way:

Management: Management covers all activities required to establish management
functions, thereby making use of management tools and on-line monitoring
techniques.

Other definitions of monitoring and management use the terms in a different way:
They define monitoring as a way only to observe a system without manipulating
it, and management as the manipulation facility based on monitoring [MS1995].
Nevertheless, we will proceed with the above definition throughout this thesis.
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3.1.4 Classification of Tools
As we have seen that tools with different functions are attached to different phases of
the software lifecycle, we can give a general classification of tools now. Figure 3.2
shows a rough partitioning of the software lifecycle into three major phases:

Analysis & Design Implementation &Test
Deployment &
 Maintenance

Design Tools Development Tools Deployment Tools

Off−line On−line / Off−line

Figure 3.2 Coarse Software Lifecycle and Tool Types

2 Analysis and design phase:
In this phase, no on-line tools are required since there is no running prototype
of an application. Tools used for this phase are classified asdesign tools,
including e.g. modelling tools, code generation tools, or GUI builders.

2 Implementation and test phase:
During implementation and testing, tools like debuggers, visualisers, or per-
formance analysis tools are applied. We classify these tools asdevelopment
tools, as they are mainly used with running prototypes, but before delivery of
the software product.

2 Deployment and maintenance phase:
After completion of applications, they are deployed in a suitable operating en-
vironment. During this phase,deployment toolscare for a smooth operation
of single applications and the complete environment. This includes manage-
ment tools as well as application-specific tools. For example, performance
management can balance load within the complete environment, but single
applications may also use their own load balancing mechanisms [SR1997],
[RS1997], [Rac1997].

As management tools are applied during the deployment phase and implement
more advanced features concerning the whole operating environment, they can be
categorised as high-level tools compared to development tools used for implemen-
tation and testing, which are mainly concerned with issues of single applications.
We will therefore refer to tools using lower-level system information, like e.g. de-
buggers, aslow-level tools, and to management tools operating on more abstract
entities ashigh-leveltools.
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3.1.5 Monitoring Mechanisms
Monitoring an application requires techniques to gather information from a running
program and to perform manipulating operations on the program. Basically, the two
general approaches are hardware-monitoring and software-monitoring. Hardware-
monitoring provides the only possibility of not influencing the running application
at all, but is much harder to realise and less flexible. We will therefore concentrate
on software-based monitoring techniques in the following.

3.1.5.1 Events and Actions

All monitoring techniques rely on the detection ofeventsthat are relevant for the
program behaviour. Of course, the notion of relevance depends on the specific tool
and application; therefore, monitoring systems allow tools to define relevant events
dynamically. With these events, certainactionsare triggered, i.e. commands that
are executed when the event occurs. These commands can either carry out data
collection, or also manipulate the running program. The mechanism of events and
actions is also called theeven-action paradigm.

3.1.5.2 Instrumentation

Instrumentation represents the basic approach to implement software-monitoring
techniques. The idea of software instrumentation is to insert additional code car-
rying out monitoring tasks at appropriate positions. Depending on the module of
code-insertion, several instrumentation techniques are distinguished (see [Tre1996],
p. 26ff, [STK1996], [SMSP1996]):

2 Application instrumentation:
This technique covers all mechanisms that instrument the application it-
self. It can be implemented bysource-code instrumentation, which inserts
monitoring-code at appropriate positions within the application sources. This
approach is very flexible and portable, but the sources have to be available and
recompiled.Object-code instrumentationin contrast adds or replaces code in-
side the compiled application objects. The approach only requires relinking
and no recompilation, but is technically harder to implement. Portability is
also an issue when object formats are not identical on different platforms, but
with standardised platforms like Java where the object format is identical on
all platforms, portability is given.

2 Runtime environment instrumentation:
The second approach for software-monitoring is runtime environment instru-
mentation, which modifies components of the runtime environment instead of
the applications. It is mostly implemented by instrumenting libraries linked
with applications or the operating system. Moreover, the technique also
allows for middleware instrumentation, as most middleware platforms are
based on libraries or system calls that implement middleware functionality.

The advantage of instrumenting the runtime environment is transparency for the
applications, i.e. applications need not be aware of the presence of a monitoring
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system at all. Application instrumentation has the advantage of allowing very spe-
cific and domain-dependent code insertions that can be more efficient than general
runtime instrumentation. In practice, several instrumentation techniques are often
combined.

3.1.5.3 Wrapping

A technique that is commonly used to instrument middleware is calledwrapping,
which works as follows: An entity that has to be monitored is renamed, and a new
entity with the name of the original entity is added to the system. Now, when clients
access the monitored object, they automatically call the new monitored object. The
monitoring object can carry out monitoring actions and finally call the original ob-
ject. Hence, this approach is completely transparent for clients and does not need
to modify the original entity (except renaming it). The advantage of this approach
is its simplicity, the drawback is its limited usability because operations inside the
wrapped entity cannot be observed. Nevertheless, in the field of middleware wrap-
ping is an advantageous technique as basic entity access events need to be monitored
frequently.

3.1.6 Problems of Monitoring
There are several issues that have to be taken into account when software-
monitoring systems are used for observing application behaviour. Some issues con-
cern sequential as well as parallel systems, while others are only of interest when
parallel systems are being monitored. Among the most important issues are the
following:

2 Monitoring overhead:
As mentioned above, one of the main problems of software-monitoring is its
impact on the observed system. Any kind of instrumentation requires addi-
tional actions to be carried out, resulting in a delay of the original program.
This delay causes problems especially for performance analysis, where ex-
ecution times have to be measured as exactly as possible. Therefore, the
overheadcaused by the monitoring system should be kept small.

2 Global time and event ordering:
In distributed systems, the time of the local clocks may differ from machine
to machine. This influences the ordering of events, when using time as an or-
dering criteria. Therefore, either a mechanism for synchronising these clocks
or an additional event ordering mechanism needs to be found.

2 Non-deterministic behaviour and races:
In a distributed system, non-deterministic behaviour occurs when several par-
allel components compete for output from or to another component. This
has the consequence of potentially different program executions with a dif-
ferent partial event ordering for identical input data. Situations where two
or more components compete for the state of another component are called
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races([Obe1998], p. 25ff). This leads to non-reproducible program execu-
tions, which causes a problem e.g. for debugging distributed applications.

2 Heterogeneity of the observed applications:
When monitoring heterogeneous application components, different kinds of
instrumentation may be required. Difficulties for the monitoring process re-
sult from different characteristics of these instrumentations, either coming
from functional or overhead related issues of the instrumentation.

Generally, issues of monitoring systems depend on the abstraction level on which
monitoring is carried out. For example, performance analysis of high-performance
computing systems is much more influenced by delays and overhead than high-
level management tools. Vice versa, issues of heterogeneity are mostly an issue
of management and not of low-level tools. Hence, the selection of instrumentation
techniques requires great care, depending on the requirements of tools using the
measured data.

3.2 Common Approaches and Systems
Depending on the application domain and the respective tools, currently exist-
ing monitoring and management systems are very diverse. This section gives an
overview about common monitoring and management systems and approaches. We
classify those systems into the categories for parallel programming environments,
distributed object systems, application management systems, and network manage-
ment systems.

3.2.1 Monitoring Systems for Parallel Programming
In this section, we discuss approaches for monitoring parallel programming en-
vironments. As explained in the previous chapter, these systems are particularly
related to message-passing and distributed shared-memory systems.

3.2.1.1 OMIS – On-line Monitoring Interface Specification

The On-line Monitoring Interface Specification(OMIS) [LWSB1997] is a joint
project between the Lehrstuhl für Rechnertechnik und Rechnerorganisation, Tech-
nische Universität München, Germany (LRR-TUM), and Emory University, At-
lanta, GA, USA. Its main goal is to develop a standard for runtime tool development
in parallel and distributed systems.

OMIS is the first system to follow the idea of separation of monitoring system
and tools through a standardised interface. Consequently, tools can be developed
platform independently, while only the monitor has to be ported to different plat-
forms. This has the advantage of bringingn tools tom platforms with an effort
of n +m instead ofn �m, because tools only need to be developed once, and the
monitoring system needs to be ported to every platform. Without this proceeding,
every tool would have to be ported to every platform.
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The OMIS interface is based on requests being sent from tools to the moni-
tor, and on the event-action paradigm for event processing. The system model of
OMIS relies on a hierarchy of the abstract objects nodes, processes, threads, mes-
sage queues, and messages. Objects themselves are referred to by using tokens,
which can be converted into other types by token expansion. For example, when
a request requires a thread token as an argument, but a process token is given, this
process token is automatically broken up to all threads within the context of the
process.

The basic system architecture of OMIS is based on the three-tier model shown in
figure 3.1. Additionally, OMIS allows to be extended by tool extensions or monitor
extensions. These extensions can be used to implement distributed tools or to sup-
port specific programming environments. Based on the OMIS standard, theOMIS
compliant monitor(OCM) is an implementation of the OMIS concept [WTL1998],
and the first version of OCM is built with support for PVM and therefore called
OCM/PVM. The access of OCM to application data is effected using instrumenta-
tion of parallel programming libraries or other specialised runtime libraries. Con-
cerning the distribution of requests and the gathering of results, OCM implements
a node distribution unit (NDU), which is the only component interacting directly
with tools. The NDU is responsible for accepting requests from tools, distributing
them to a set of local monitors residing on every participating machine, assembling
collected data, and passing the result back to tools.

Evaluation. All in all, the benefits of OMIS/OCM are its approach to define a
standard interface for tools, thus reducing the complexity of tool development, and
introducing the separation of tools, monitor, and applications. Also, the token con-
cept with its expansion mechanisms represents a major progress for tool develop-
ment. Nevertheless, from the middleware point of view, OMIS/OCM is a rather low-
level approach, targeted mainly at high-performance message-passing programs. It
is not designed for usage in middleware environments, where heterogeneity and
integration of management functionality are of interest, too.

3.2.1.2 Coral

An example for a monitoring system supporting DSM isCoral [Zor2000]. Devel-
oped at LRR-TUM, a current implementation of Coral is targeted at the TreadMarks
DSM library [ACD+1996], but easily adaptable to other DSM middleware.

Coral’s principal approach is to provide the abstraction of shared memory to
parallel tools. Therefore, the monitor has to manage DSM mechanism transpar-
ently, hiding DSM internals from tools. The architecture of Coral is based on a
client/server model, the event-action paradigm, and a layer model decomposing
monitoring functions into three units.

Due to performance reasons, the implementation of Coral internally uses a pro-
prietary message-passing communication library. Local communication between
the monitor and the applications is effected using shared memory segments. Ad-
vanced monitoring functions like object migration and checkpointing are integrated
by specific migration or checkpointing frameworks that are used by the Coral core.
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Evaluation. The main contribution of Coral is its concept of allowing tools to
operate on the same abstraction level as the actual middleware. This enables
application-level monitoring of DSM programs, in addition to lower-level moni-
toring of the DSM middleware itself.

3.2.2 Tools and Monitors for Distributed Object Comput-
ing

Tools and monitoring systems for distributed object computing environments are
rather diverse. To a great extent, proprietary tools for specific DOC implementa-
tions are supplied by the vendors. Additionally, tools and monitors are often re-
stricted to certain DOC categories, for example CORBA. A generic monitoring
system supporting heterogeneous DOC environments with several different DOC
categories does not exist. Furthermore, most systems merge tools and monitor into
one monolithic system, hindering easy tool construction or extension. Most ap-
proaches described in the following passages deal with CORBA systems, because
for other DOC middleware, only few sophisticated on-line tools or monitors exist.

3.2.2.1 CORBA Assistant

CORBA Assistant is a management system for CORBA developed by Fraunhofer-
IITB [Fra1997]. The goal of CORBA Assistant is to provide an application man-
agement facility that can be part of a larger integrated management environment.
The design of CORBA Assistant is based on the following principles:

2 Managed objects:
In order to get an external management view on a resource, managed objects
are introduced. Managed objects represent wrappers around resources that
have to be managed, adding functional extensions for management purposes
to the normal interface of the managed resources. This includes attributes
of the management resource (for example version numbers or component-
specific counters), management operations like resetting the managed objects,
or asynchronous event notification functionality.

2 Management protocols:
CORBA Assistant follows the principal architecture of common management
systems: An agent is responsible for providing a management view upon
managed objects by implementing the respective functionality. The function-
ality is accessed by a management tool (or manager) that processes infor-
mation retrieved from a set of agents. The interaction between agents and
manager is based on CORBA communication mechanisms.

2 Management Information Bases (MIBs):
Management Information Bases (MIBs) are an important concept for repre-
senting information about the managed system (see section 3.2.4.3). MIBs
are defined using a formal notation and can be read by any management
tool as the format is standardised. The MIB defined by CORBA Assistant
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contains information about running processes implementing CORBA clients
and servers, as well as more detailed data about the CORBA objects ex-
isting within clients and servers. This allows for observing current system
configurations (e.g. the distribution of CORBA objects among the partici-
pating hosts), collecting accounting data (e.g. CPU usage or data volumes
being transferred), or managing performance (e.g. measuring response times
or throughput).

An implementation is currently only available for the Orbix CORBA product, and
based on the Orbix filter mechanism, which is not CORBA compliant. The imple-
mentation of the managed objects concept relies on the following instrumentation
techniques:

2 Object implementation phase:
Here, instrumentation code needs to be added to the source of object imple-
mentations (source code implementation).

2 Linking phase:
A management library has to be linked with the instrumented and compiled
objects.

The object definition (CORBA IDL) of server objects is not influenced by the above
instrumentation and applications can be started as without management facility. To-
gether with CORBA Assistant, theOrbas management tool is delivered. Orbas
allows to browse the MIB, display management attributes and performance graphs.

Evaluation. Summing up, the main advantage of CORBA Assistant is its usage
of a CORBA MIB in a standard format, which enables different tools to be built
upon the management agents. On the other hand, the large overhead caused by us-
ing heavy-weight MIBs causes performance problems and prohibits the application
for high-performance domains. The major disadvantage of CORBA Assistant is its
restriction to Orbix applications only. While an extension to other CORBA imple-
mentations could be realised with minor effort1, the integration of other middleware
platforms is not feasible. This represents a main limitation of CORBA Assistant
with respect to monitoring systems for heterogeneous middleware platforms.

3.2.2.2 AppMan

In the AppManproject [KDW+1999] at Fachhochschule Wiesbaden, Germany, a
management system for complex distributed CORBA-based applications is being
developed. Its major goal is to integrate application and network management func-
tionality, primarily concerning configuration, event, and performance management.
The current AppMan implementation itself is implemented using CORBA.

Information Model. The basic idea of AppMan is to define an information model
describing the structure of the observed system. As it is impossible to define a gen-
eral model for all kinds of applications, AppMan focuses on CORBA applications
and the respective communication model.

1By replacing Orbix filters with interceptors compliant to the CORBA standard.
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The AppMan information model defines the four layers application, CORBA,
system, and network as fundamental entities. Every layer can be subdivided into its
composing elements: Applications consist of components and subcomponents; the
CORBA layer comprises server objects, object adapters, and the local ORB sub-
component; the system is based on processes and hosts; the network finally consists
of nodes, subnetworks, and networks. Based on this model, concrete applications
are represented by instances of the presented entities and their relationships. More-
over, the overall information model is divided into the two views static and dynamic
view.

Architecture and Implementation AppMan’s architecture relies on anevent
management service(EMS) responsible for the communication within the man-
agement system. Through the EMS, sensors, evaluators, a correlation engine, man-
agement automata, and actors interact in the following way:

2 Sensorsextract management relevant data from the observed system. They
can be implemented using different kinds of instrumentation, or by using
other existing information sources like e.g. SNMP.

2 Evaluatorsprovide the transformation of raw data from the sensors to mean-
ingful metrics. They include e.g. computation of minima, maxima, average
values, or deviations.

2 The correlation enginefilters the incoming events with respect to the infor-
mation model, such that only relevant events are passed to the affected com-
ponents.

2 Management automataare tools automatically processing filtered events and
generating management actions. These automata can be nested, work in par-
allel, or be meshed.

2 Actorsare the last element in the event chain and execute management actions
that are issued by the automata in order to implement feedback to the observed
system.

In addition to these components, a topology service is used to store static structural
data of the environment.

Evaluation. AppMan’s concept of generic sensors enabling the integration of dif-
ferent information sources is one of its main benefits, as this approach represents a
foundation for monitoring heterogeneous middleware. Also, the possibility to add
different kinds of tools to the EMS is an open and extensible solution.

However, the exclusive concentration of the information model on CORBA lim-
its its applicability essentially. Also, the decomposition of the four layers of the
information model into the given subcomponents is more or less arbitrary and may
not be useful for some application domains.
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3.2.2.3 OrbixManager

OrbixManager[Ion2000] is a vendor proprietary management tool for the IONA
Orbix CORBA implementation. Its purpose is to simplify administration and man-
agement of a CORBA environment. OrbixManager relies on managed objects that
are controlled by the management tool through so calledmanagement agents. Stan-
dard management information bases are used to describe the characteristics of man-
aged objects. The architecture of OrbixManager consists of four components:

2 Management library:
This library has to be linked with Orbix applications and contains an interface
for the management service to access management functionality; hence, the
management agents are implemented within this library.

2 Management service:
This component represents the actual monitoring system, implemented by
a single stand-alone application mediating between the management library
and the management tool.

2 Management tool:
The only tool available with OrbixManager is the management tool that pro-
vides a GUI for data measured by the underlying monitoring system.

2 SNMP proxy:
In order to make use of SNMP-oriented information sources or to deliver data
to other SNMP-tools, the SNMP proxy, acting as a gateway between CORBA
and SNMP, is needed.

An advanced feature of OrbixManager is the possibility to observe single threaded
pure clients. Observing this kind of clients represents a problem for monitoring sys-
tems as they can hardly be monitored without severe interference. OrbixManager’s
solution is to keep a proxy for such clients within the management service, which is
contacted by the management library (running within the client process) at specific
points defined by a “rendezvous policy”.

Evaluation. OrbixManager is a proprietary tool delivered from an ORB vendor
for its CORBA implementation. Due to the non-intrusiveness of the approach that
results in a minimal overhead, the performance of the monitoring and management
system is good. However, this can only be reached by using Orbix internal interfaces
that are not available for any other CORBA implementation; hence, portability to
other middleware platforms is hardly possible.

Furthermore, the functionality of OrbixManager is limited to features of the
management tool that is tightly coupled with the management service. Although
communication within OrbixManager relies on CORBA IIOP, it is not possible to
access functionality from outside as the interfaces are proprietary and not docu-
mented.

Consequently, as there is no separation between tool, monitor, and application
instrumentation through defined interfaces, the SNMP proxy represents the only
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technique for interaction with other tools or applications. This is not sufficient for
building flexible tools or the adaption of other ORBs or middleware products to the
monitored environment.

3.2.2.4 Inprise AppCenter

AppCenteris a vendor proprietary application management tool-set for the Inprise
Visibroker ORB and the AppServer integrated development environment [Inp2000].

AppCenter follows a model-based approach to manage distributed applications:
With an application-modelling environment, application-focused views of the en-
vironment can be defined. Starting with the topology of an application, groups
representing the building blocks of a distributed application can be defined, and de-
pendencies between components can be modelled. Further relationships between
components allow to model fault tolerance by specifying backup objects that are
automatically activated when the primary object goes down, or, on the other hand,
containment relationships that specify components being included in other compo-
nents, requiring the container to be started before the contained entity.

The basic architecture of AppCenter consists of three parts:

2 The user interfaceis a Java-based console from which all activities of the
management system are controlled. The console can be customised to show
different views of the modelled applications.

2 A core management servicecontains the business logic of AppCenter; it
stores the application model and is responsible for the execution and coor-
dination of management functions.

2 Management agentsare located on every participating host and take care of
the local execution management tasks.

Hence, in general monitoring terms, the user interface represents a tool, the core
management service comprises the monitoring system itself, and management
agents contain the instrumentation code.

The functionality available within AppCenter comprises the following areas:

2 Active management functions allow to start or stop applications or compo-
nents. From the predefined model, actions necessary to start applications can
be derived from dependencies and containment relationships.

2 Performance monitoring creates built-in performance statistics of modelled
application objects.

2 Load balancing mechanisms enable activation of a variable number of servers,
and the assignment of clients to least-loaded servers.

2 An event-action mechanism allows to filter specific events and trigger actions
– like e.g. sending email or starting other processes – with these events.



44 CHAPTER 3. MONITORING AND MANAGEMENT

Moreover, AppCenter provides the possibility of exporting or importing application
models using an XML description, and defines an SNMP MIB to interact with other
management systems. Also, in addition to CORBA objects it is possible to monitor
DCOM or EJB (Enterprise Java Beans) components.

Evaluation. AppCenter represents the most far reaching approach for a propri-
etary tool coming from an ORB vendor. Its ability in principle to integrate CORBA,
DCOM, and EJB demonstrates a step towards open tool environments as well as en-
abling SNMP connections. Also, XML export and import functions for application
models make it possible to process these data with other tools.

However, reasonable application modelling with AppCenter can only be carried
out in collaboration with Inprise Visibroker and AppServer because the systems are
tightly integrated. The integration of other ORBs, or DCOM and EJB components
not based on Inprise products is left open. Like with other proprietary products,
the tool-monitor interface is not open and the integration of own instrumentation
techniques is not possible, which makes it impossible to build own tools or inspect
other middleware.

3.2.2.5 Silk for CORBA

The Silk for CORBA [Seg2000] software is a third-party family of products for
testing, monitoring, and controlling distributed CORBA applications. It consists of
four separate tools implementing different tool functionality:

SilkPilot. SilkPilot is a tool for validating the behaviour of CORBA servers. It is
a GUI tool that allows to connect to CORBA servers and to issue requests based on
the interface descriptions that are automatically retrieved from a CORBA Interface
Repository. A sequence of method calls issued during a session can be converted
into Java source code for later replay.

SilkObserver. SilkObserver is a tool for tracing and monitoring distributed com-
munication. It is based on the instrumentation of clients and servers by linking
additional observer libraries with them, a setup editor that allows to configure filters
for specific methods to be traced, a viewer for graphical display of the data, and a
data recorder combined with a parser for off-line replay and analysis of measured
data.

SilkPerformer. SilkPerformer provides a load testing facility for CORBA servers.
Load testing is based on IIOP traffic observation with a so called Internet Recorder,
which is integrated into the socket library and records IIOP traffic before transmit-
ting it to the actual clients.

The IIOP packages can be replayed exactly as recorded or reconfigured to gen-
erate different traffic profiles. Reconfiguring and changing invocation parameters
requires additional effort as parameter types cannot be determined by observing
IIOP only. Therefore, SilkPerformer is able to extract parameter information from
the interface definitions, which enables parameter types to be associated with actual
IIOP packages.
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With a workload definition wizard, it is then possible to generate traffic seem-
ingly coming from different machines with a variable number of concurrent users
and a variable transaction frequency. During the load tests, results can be pre-
sented with a GUI tool showing virtual users, transaction status, response times,
data throughput, and occurring errors.

SilkMeter. SilkMeter makes it possible to implement security and accounting
functions for CORBA servers. Security relies on a usage control manager and server
controlling the access to specific objects on the basis of secret keys. Access rights
can be given according to several different access control schemes like floating,
node-locked, time-limited, or personal licenses.

Accounting functions are implemented either by postage- or gas-metering: With
the former, only a predefined number of accesses to a certain resource is allowed,
while with the latter, the user is billed after making use of the resource. With Silk-
Meter, both kinds of metering are available either for users, groups, or hosts. As
already mentioned, most Silk functionality is integrated by linking additional li-
braries with the clients and servers. Furthermore, for advanced functionality like
accounting, extra source code needs to be added to clients or servers.

Evaluation. Compared to other tools and monitors described before, Silk for
CORBA brings some non-standard features like access control, accounting, or load
testing to the spectrum of relevant DOC tools.

However, its approach of delivering four stand-alone tools that have to be ap-
plied separately to an application is a drawback that reflects the lack of a versatile
monitor on which to construct tools by using an open API. Moreover, only the Or-
bix and Visibroker CORBA implementations are supported by Silk, and there is no
easy way of adapting other platforms. Thus, the overall functionality of Silk for
CORBA can be classified as good, whereas the general architecture is its limitation.

3.2.2.6 Others

In addition to the systems described in detail, there are other approaches or products
worth mentioning, either because of specific features, or for the sake of complete-
ness.

The MODIMOS Managed Object-Based Distributed Monitoring System
[ZL1995] aims at delivering an adaptable platform for visualising heterogeneous
distributed applications. It has the interesting concept of so calledplugsused to
adapt new platforms to a given monitoring system. This enables an easy integration
of new systems by defining standard interfaces for plugs.

For handling events within CORBA monitoring and management systems,
object-oriented frameworks deriving all events from a single root class have been
proposed [Sch1997]. By specifying common properties of all event classes, a more
generic event handling mechanism can be implemented utilising this approach.

Furthermore, there are other proprietary tools delivered by middleware vendors.
For example,BEA Manager[BEA2000] is an administration tool for the BEA We-
bLogic CORBA-based middleware. We do not discuss all of these tools in detail as
their functionality is similar to the features of OrbixManager or Inprise AppCenter
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vendor tools already analysed.
All of the above-metioned systems are mainly targeted at CORBA middleware.

This can be explained either with a lacking tool support of other middleware plat-
forms, especially DCOM and Java RMI. For DCOM, there is only very little on-
line tools support. Although there is an integrated debugger with most development
platforms, there are no tools specifically designed for distributed applications. For
Windows 2000, a tool namedAppCenter Servercoping with monitoring and man-
agement issues is announced, but not yet available [Ewa2000].

For Java RMI, the lacking tool support can be explained with its increasing
convergence towards CORBA. WithRMI over IIOP [IBM2000], is is possible to
connect RMI-based applications to CORBA environments, hence allowing RMI
components to be monitored and managed with CORBA tools to a certain de-
gree.RMI over IIOPrelies on the Java-to-IDL [OMG1999] and Objects-by-Value
[OMG1998b] efforts of the OMG, tackling with the problems of mapping Java in-
terfaces to CORBA IDL and introducing the call-by-value semantics to CORBA.

3.2.2.7 Summary

With the described systems for monitoring and managing DOC platforms, we have
shown a great variety of tools and functions useful for DOC environments. Among
the interesting tool functionality are basic features like visualisation, performance
monitoring, load distribution, and interface testing, as well as advanced functions
like load testing, access control and accounting, and generic event-action patterns.

The usage of standard techniques like SNMP or MIBs is a benefit of some sys-
tems that enables the interaction with other management systems, although this is
not sufficient for building both development and deployment tools. Specific solu-
tions, for example OrbixManager’s approach of keeping proxies for single threaded
clients, are useful but not easily transferable to other platforms. Other techniques
based e.g. on IIOP are more general, but still limited to CORBA or RMI systems.
Nevertheless, the idea of building tools on standard protocols is a step towards open
tool environments.

From the architectural point of view, all the approaches follow the general struc-
ture of tools, monitoring system, and instrumentation, although this separation is
mostly implemented in a proprietary way and does not allow the insertion of ad-
ditional components. The fusion between tools and monitor on the one hand, or
monitor and instrumentation on the other hand is the major drawback of all inves-
tigated systems. Here, the demand for improvement is given in order to cope with
the characteristics of heterogeneous middleware.

3.2.3 Enterprise Tools and Standards
There is a large variety of monitoring and management tools for enterprise mid-
dleware, resulting on the one hand from the variety of enterprise middleware itself,
and from a large number of third-party vendors offering tools for any application
scenario on the other hand. Because of the large variety of products, we have picked
two characteristic representatives to illustrate the concepts of enterprise monitoring



3.2. COMMON APPROACHES AND SYSTEMS 47

and management frameworks. Our proceeding does not cover the whole spectrum
of available products, but is sufficient for our middleware-oriented point of view of
this category.

3.2.3.1 BMC Patrol

The BMC Patrol [BMC2000] product line comprises a large set of tools in the field
of distributed application management. In our context, one of Patrol’s key con-
cept calledknowledge modulesis of interest. Knowledge modules are application
specific components used to connect various operating systems, networks, network
management systems, middleware, or applications to the Patrol platform. For ex-
ample, knowledge modules for common operating systems like Unix, OS/390 or
Windows NT are available, as well as for enterprise middleware like MOM prod-
ucts or Transaction Processing Monitors or common database systems like Oracle
or Informix.

The architecture of BMC Patrol is agent-based, where the agent on the managed
system makes use of the respective knowledge module in order to be able to manage
its components. Tools for a variety of tasks depending on the actual environment
are provided with Patrol, including standard tools for visualisation or performance
management as well as domain specific tools for the knowledge modules.

Evaluation. BMC Patrol is a very powerful set of tools for enterprise environ-
ments. Its functionality comprises a lot of areas, from low-level network man-
agement up to high-level database management. However, the consequence is an
enormous complexity that only pays off for complex environments. Despite its
concept of separating knowledge modules from the core system, Patrol is a very
heavy-weight product that requires high effort to be deployed. Moreover, the focus
of Patrol tools is on the deployment phase only, whereas development tools are of
little interest for Patrol. As for most commercial products, the interfaces of Patrol
are not open (except an SNMP gateway), which prohibits an easy extension to other
middleware platforms not supported by BMC. However, this would be of particu-
lar interest for integrating own, non-standard middleware that will not be supported
by BMC because of their minor significance. Nevertheless, the overall approach
of application specific knowledge modules can be seen as a smart possibility for
integrating heterogeneous components.

3.2.3.2 LoadRunner

Mercury Interactive LoadRunner [Mer2000] [Kac1999] is a load testing tool for
distributed enterprise environments. Similar to the SilkPerformer tool described in
section 3.2.2.5, LoadRunner is built to produce load for testing servers, but - in
contrast to SilkPerformer - is not limited to CORBA platforms.

The architecture of LoadRunner is based on a controller used to set up, config-
ure, and start load tests. With a virtual user generator, different user characteristics
can be defined and configured to reflect specific profiles. During the load tests, per-
formance data are collected and can be analysed off-line after the completion of the
tests.
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The advantage of LoadRunner is its availability for diverse computing plat-
forms, including general purpose protocols like CORBA-IIOP, FTP, HTTP, enter-
prise middleware like TPMs, and domain specific software like SAP or Oracle.

Evaluation. For LoadRunner, the same arguments as for BMC Patrol apply.
LoadRunner is a proprietary tool available for a large set of domains, which only
pays off for complex environments. Its benefit is the support of a large number of
communication protocols, but the lack of a generic interface for connecting own
protocols limits its general usability.

3.2.3.3 Application Response Measurement

Due to the difficulties resulting from proprietary approaches for monitoring and
managing enterprise environments, attempts to create a vendor-neutral interface
for observing business transactions have been undertaken. Starting as independent
projects at Tivoli Systems and Hewlett Packard, the activities were merged into a
working group for defining a general Application Response Measurement (ARM)
interface. The resulting API is now standardised by the Open Group [Gro1998],
and free software development kits are available, too.

Architecture. ARM’s architecture consists ofARM agentsand the management
applications making use of these agents. ARM agents run on every participating
host and consist of two parts: AnARM API subagentis dynamically linked to the
instrumented application and runs within the address space of the application. This
subagent communicates through inter-process communication mechanisms with its
local ARM processing subagentthat runs in another process. The management ap-
plications can then contact the ARM processing sub-agents to retrieve information.

The ARM API and implementation. ARM specifies the two APIs ARM V1 and
ARM V2 [Joh1997a]. Version 1 contains basic functionality and was later extended
to version 2 providing enhanced functions. Basic functionality covers initialising
the agents, defining applications and transactions, and generating start- and stop-
events for transactions. Version 2 allows to ship additional information, including
parent/child relationships for nested transactions, or further data describing transac-
tions more exactly.

The API reflects the general design considerations for ARM, which are sim-
plicity, low runtime overhead, and extensibility. Also, an implementation of the
API should not use extra threads for communication with the local processing sub-
agent, as this would increase program complexity and introduce a variability in the
measurements due to unpredictable thread processing behaviour.

In addition to the ARM API, the standard also defines a data format for the ARM
operations. This is necessary for enabling management applications to interact with
all kinds of ARM agents, independent of the respective vendor.

Use Cases. There are several use cases for which ARM is appropriate. The
simplest case of monitoring beginning and end of single transactions is straight-
forward. A more demanding task arises when nested transactions are considered: In
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this case, parent/child relationships can be used to extract information about the re-
sulting hierarchy of transactions. This hierarchy can be useful for analysing nested
transactions and by determining the relationships between sub-transactions.

ARM’s technique to detect these correlations between transactions is simple but
powerful: When a transaction is started, the ARM agent assigns acorrelator to
this transaction and returns it to the caller. When this parent transaction initiates a
child transaction, the correlator is passed with every request in this transaction. A
management application can collect all the correlators and reconstruct the transac-
tion hierarchy from these data. In practice, this technique can be used efficiently
by turning on correlators only for specific transactions that have to be monitored.
Every time a child transaction receives a request with a correlator, it propagates the
use of correlators, thus spreading the correlators through the complete hierarchy.

Other use cases for ARM include performance analysis by sending performance
data with transaction events, or supervision of transaction success by sending diag-
nostic messages with transaction-stop events.

Evaluation. The ARM idea for monitoring transactions is a simple but power-
ful instrument for observing transaction-oriented systems. Its benefits are simplic-
ity, flexibility, and openness. From a general point of view, the drawbacks are its
limitation to observation only (as no manipulations are possible), its orientation to
transaction-based applications, and the missing higher-level architecture describing
patterns for the collaboration between management applications and agents.

However, basic ideas of ARM – especially the correlation mechanisms – repre-
sent intelligent concepts that can also be applied to general middleware monitors.

3.2.3.4 Summary

We have seen that monitoring and management systems for enterprise middle-
ware are often large, heavy-weight systems with a far reaching functionality tightly
adapted to existing platforms and applications. From our general point of view,
the main drawback of such systems is the missing openness to integrate other mid-
dleware or build own tools. Other approaches like ARM, in contrast, show that
openness and flexibility are the key issues for successful tool development for any
kind of middleware. Basic approaches adopting various applications, protocols, or
platforms within one tool environment are therefore a key concept for building tools
for heterogeneous systems.

3.2.4 Network Management Approaches
Another important category of on-line monitoring systems are network manage-
ment systems. On the one hand, network management approaches are historically
relevant as they have been existing for a long time, starting from early local area
network management and growing to large telecommunication network manage-
ment systems. On the other hand, network management is still an ongoing research
topic, as network management systems tend to merge with application management
systems, resulting in anintegrated managementapproach.
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From the monitoring perspective, network management represents a form of
on-line monitoring where similar problems like distribution, synchronisation, and
heterogeneity come up. Although those issues are regarded in a slightly different
context, the general principles remain the same.

In the following, we introduce major network management concepts and stan-
dards that are relevant from our monitoring-oriented view. Network management
is a very voluminous topic, thus this overview cannot cover the complete network
management area extensively as this would go beyond the scope of our focus.

3.2.4.1 Management Architectures

Basically, network or integrated management approaches are defined using man-
agement architectures describing a framework for management relevant aspects
([HAN1999], chapter 4). These aspects are usually classified into four categories:

2 The information modeldefines the methods for modelling and describing
managed entities.

2 The organisational modeldetermines the roles of actuators within the man-
agement system and their ways of cooperation and interaction.

2 Thecommunication modeldefines communication concepts, including com-
municating partners, protocols with syntax and semantics of management in-
formation, and integration into the overall framework.

2 Thefunctional modelsplits management functionality into sub-categories, for
example the management functions explained in section 3.1.3.

The coarse structure of management architectures can be recognised in many exist-
ing management systems, although they are often not visible to the users, who only
access the management system through a standardised management API.

3.2.4.2 OSI-Management and TMN

The OSI-management framework is defined within the ISO-OSI reference model
[ISO1994] [ISO1989] and represents a reference architecture for management sys-
tems based on the four categories introduced above. OSI-management relies on
the OSI layer model to describe the management-relevant aspects. Its information
model is completely object-oriented, which allows for a comprehensive structural
description of management information bases (MIBs). The organisational model as-
sumes a distributed cooperative management and defines manager and agentroles
for actuators within management systems. The communication protocol recognises
three communication mechanisms for systems management, layer management,
and protocol management, and the functional model classifies functionality into
the five groups mentioned in section 3.1.3.

Telecommunications Management Network(TMN) is a management architec-
ture explicitly tailored to manage public networks (PSTNs). It is standardised by
the International Telecommunication Union (ITU) [ITU1997] and closely related to
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the OSI-management approach. Important aspects of TMN are its orientation to-
wards large and complex networks, and the introduction of a separate management
network called TMN-overlay network.

3.2.4.3 Internet Management: SNMP

The most popular management architecture is the Internet management architec-
ture, often designated as SNMP-management because of its Simple Network Man-
agement Protocol (SNMP). Internet management and SNMP are standardised by
the IETF RFCs 1155, 1213, and 1157 [RM1990], [MR1991], [CFSD1990].

The information model (structure of management informationSMI), exists in
the two versions SNMPv1-SMI and SNMPv2-SMI, with version 2 being an exten-
sion of version 1. Internet management uses a client/server model for the propa-
gation of management related data:Management agentsprovide the collection of
information or manipulation of managed resources, while themanagement station
(or manager) represents the management application interacting with a set of agents.

A critical aspect of management systems is the description of the properties of
the managed resources. For this purpose, Internet management uses so called Man-
agement Information Bases (MIBs). Every agent keeps anagent-MIBcontaining
variables describing characteristics of its managed node. These variables are called
management objects(in a non-object-oriented sense). The structure of an agent-
MIB is determined through the generalInternet-MIBthat lists all management ob-
jects, their meaning, and how the are identified. For vendor-independent usage of
such MIBs, it is necessary to uniquely define the Internet-MIB. Therefore, a global
identification tree identifying all management objects in a hierarchical manner has
been standardised.

As mentioned above, the communication protocol between agents and manager
is SNMP. With SNMPv1, only four operation types are defined:

2 Reading information from an agent is implemented using aget-request
operation that can be issued by a manager. As a parameter, only the respective
MIB-entry needs to be specified.

2 Stepping through an agent-MIB can be carried out withget-next opera-
tion, which provides the next entry from the agents MIB.

2 Write access to agent-MIBs is granted with aset operation.

2 Asynchronous events can be tracked using thetrap operation, which notifies
the manager in case the given event occurs.

In addition to the available operations, SNMP also defines the exact format of mes-
sages being exchanged between agent and manager. SNMPv2 extends SNMPv1
by adding encryption mechanisms and further request types like e.g. bulk requests
allowing to retrieve larger amounts of data with one request. However, due to its
complicated security mechanism, SNMPv2 could not be established for general us-
age. Currently, a new SNMPv3 standard unifying different endeavours is being
undertaken, but not yet finished.
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3.2.4.4 Summary and Evaluation

Network and integrated management approaches have shown to be very flexible,
but large-scale and heavy-weight concepts for managing distributed environments.
Their focus is still on network aspects, although application integration becomes
more and more important. From our on-line monitoring perspective, a disadvantage
is the concentration on deployment tools only, since development aspects are only
of minor interest for management systems.

Moreover, the network management approaches are often too heavy-weight to
be easy to use and to develop tools rapidly. The SNMPv1 approach is an exception
as it is very general through the usage of standardised MIBs and the simple API.
However, advanced tool functionality may not be implemented with SNMP, for
example when synchronisation of distributed events is required; in this case, a lot
of work is left to the tool developer.

3.3 Conclusion
Starting with a definition of on-line tools, on-line monitoring, and management, we
have given a general introduction into the area of our interest in this chapter. After
illustrating criteria for classifying tools and introducing basic monitoring mecha-
nisms and problems, we have proceeded with a survey of common on-line monitor-
ing approaches and implementations.

The systems analysed in our survey exhibit a wide range of monitoring aspects,
which we have organised according to the kind of middleware they are built for.
Similar to the previous chapter, tools and monitoring systems can be classified into
the categories tools and monitors for parallel programming, distributed object sys-
tems, enterprise middleware, and network management.

Another attribute for classifying the described systems is the type of their ap-
proach. Some approaches represent specifications or standards for monitoring,
while others are more or less proprietary solutions for specific purposes. In the
category of specifications, we have the following approaches:

2 OMIS

2 ARM

2 OSI-Management/TMN

2 SNMP

Mostly, these systems are higher level concepts emphasising the integration aspects
of distributed environments; in this sense, OMIS represents an exception within this
category. The category of proprietary approaches contains the following systems:

2 Coral

2 CORBA Assistant

2 AppMan

2 OrbixManager
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2 Inprise AppCenter

2 Silk for CORBA

2 BMC Patrol

2 LoadRunner

These products fall mainly into the category of distributed object systems and en-
terprise middleware. For DOC, this is reasonable as the field is rather new and
no standardisation efforts have been completed yet; for enterprise middleware, the
solutions have had a long history and have grown while being deployed within en-
terprises, where no interest in generalisation is given. Nevertheless, these products
are not completely proprietary and provide communication capabilities with other
systems, e.g. through SNMP support.

From the analysis of the various monitoring approaches, the question about the
origins of this diversity arises. A main reason lies in the diversity of the main
focus of interest for the different monitoring systems. The diversity itself is not
the fundamental problem, but leads to a differentgranularityof monitoring for the
respective middleware, from which different approaches for monitoring are derived.
For example, while for parallel programming environments, non-intrusiveness and
high performance are key issues, this is not a main aspect for network management,
where time is considered with a more coarse granularity2. Considering the main
entities of the analysed systems, the granularity shown in Table 3.1 results.

Monitor Granularity

OMIS, Coral OS Processes
CORBA monitors CORBA Objects
Enterprise monitors Transactions
Network managementManaged objects

Table 3.1 Granularity of Monitoring Systems

While parallel programming tools exhibit the finest granularity residing on op-
erating system process level, main entities for other systems are becoming more
and more coarse, growing from CORBA objects to transactions and managed ob-
jects (which often cover hardware entities like machines or network components).
Of course, these values do not hold for any monitor, and exceptions do exist, but a
general trend can certainly be derived.

Concluding with this analysis, the question remains why there is no generic
monitoring system capable of dealing with all kinds of middleware. This issue will
be our guideline for the next chapters, where we will present a novel approach for
dealing with the described problems.

2This does not mean that time is not important for network management at all, but in general, the
required resolution is lower.





Chapter 4

Requirements for a Generic
Monitoring Approach

In this chapter, we will establish requirements for designing a generic monitoring
system. As we have seen in the previous chapter, several monitors for different
kinds of middleware exist. These systems offer similar functionality and rely on
similar concepts, but they are not interchangeable and none of them is universally
applicable. Hence, in this chapter we will provide the foundation for a generic
monitoring system that is able to deal with different kinds of middleware and that
allows to develop different types of tools.

Starting from the analysis of existing tools and monitors, we will expose the
drawbacks hindering them from providing a foundation for a generic monitoring
system. Subsequently, we will elaborate key criteria that have to be fulfilled by a
generic monitor. These criteria define a basis for the design and implementation of
a new monitoring infrastructure that will be illustrated in the following.

4.1 Drawbacks of Existing Systems
In part, the disadvantages of specific monitoring systems have been explained in the
previous chapter. Here, we will summarise and substantiate these shortcomings in
a systematic way.

4.1.1 Proprietary Solutions
A major drawback of many monitors is that they are proprietary solutions. Such
systems are developed by vendors of specific middleware platforms, tailored to the
requirements of that platform and its foreseen application domains, and can hardly
be applied to other scenarios. The main reasons for these limitations are as follows:

2 Interfaces used within the monitoring system are not open, i.e. they are not
documented and not publicly available. Mostly, interfaces between tools and
monitor as well as interfaces between instrumentation and monitor are af-
fected by this fact. Therefore, communication with other monitors or appli-
cations is hardly possible.

2 Communication within the system is not based on common communication
standards or protocols. Here, the usage of non-portable and operating sys-
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tem dependent protocols (e.g. relying on binary data encodings) makes the
integration of other information sources hard.

Such limitations do not hold for all existing systems, as standards like ARM or net-
work management approaches are often based on general definitions. Nevertheless,
for many other systems like most CORBA monitors, these restrictions definitely
hold.

4.1.2 Homogeneous Scenarios
The second shortcoming of most monitoring approaches is their restriction to ho-
mogenous systems only. Monitoring systems and tools concentrate on the kind of
middleware they are built for and are not able to handle data coming from other
middleware platforms. Hence, the drawbacks in this case include two aspects:

2 First, the monitoring systems cannot be adapted to be used with other plat-
forms than those they were originally developed for.

2 Second, monitoring systems are not able to observe more than one middle-
ware platform simultaneously.

This lacking adaptability results from a missing general information model on
which the monitor would have to be constructed. An appropriate information model
has the task of abstracting from the concrete characteristics of monitored entities in
order to enable a more general classification of collected data.

Moreover, the homogeneity of monitoring systems is also reflected in the tools
provided with the monitors. Due to the drawbacks of the monitoring systems, tool
functionality is consequently limited to specific functions, too. Hence, these tool
functions are closely related to the middleware platform and predefined application
scenarios.

4.1.3 Simple Scenarios
Except for the network management approaches, most other monitoring concepts
only cover simple scenarios and environments: Monitored environments only in-
volve one single application that may consist of a set of distributed, but uniform
components.

More complex scenarios like three-tier architectures being executed in a hetero-
geneous environment that dynamically includes different operating environments
are not considered. The reason for this shortcoming lies in a more or less static
layout of the complete monitoring environment that does not allow for easy and
scalable integration of new components. Furthermore, the observation of several
independent applications or components within a single environment is not covered,
or at least only one application per tool can be handled as tools are not capable of
handling multiple applications at a time.
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4.1.4 Missing Interoperability Support
Another important disadvantage of common monitoring approaches is a lacking
support of interoperability concepts. In our case, interoperability support covers
two distinct concepts:

2 First, interoperability can be seen in the field of heterogeneous compo-
nents interacting with each other. A current example for this case are
mixed CORBA- and DCOM-applications communicating through a CORBA-
DCOM bridge. Here, interoperability support for the monitoring systems de-
notes the ability of the monitoring system to observe this “inter-middleware”
communication.

2 Second, interoperability support can be seen in the sense ofinteroperable
tools, i.e. tools simultaneously working on a single application or component
while interfering with each other in a controlled manner (see section 2.1.5).

Both kinds of interoperability are not supported by most monitoring approaches.
From the systems described in the previous chapter, only OMIS/OCM implements
tool interoperability, while only ARM and the network management approaches are
in principle able to handle application interoperability.

4.1.5 Inflexible Architecture
A final, but nevertheless decisive drawback concerns the architecture of the mon-
itoring systems. From the architectural point of view, none of the monitoring
approaches shows a clear separation between tools, the monitoring system core,
and the instrumented applications. Only OMIS/OCM presents a well-defined tool-
monitor interface and the possibility to extend the interface, but all the other sys-
tems are either monolithic implementations or do not treat architecture details at all.
However, a clear design of the core monitoring system is a crucial aspect for several
reasons:

2 From the tool’s point of view, well-defined and generic tool-monitor inter-
faces provide a facility for implementing different kinds of tool functionality
without influence on the monitoring system (see OMIS/OCM).

2 From the observed applications point of view, generic instrumentation-
monitor-interfaces provide a means for the easy and flexible integration of
new middleware platforms.

Hence, taking these two aspects together would result in a flexible and extensible
monitoring approach. However, current systems do not show this kind of interfaces,
but provide a heavy-weight and monolithic monitor that does not allow the easy
integration of new middleware or the flexible building of new tools adapted to any
kind of middleware.

The flexibility of using only parts of the monitoring system would allow to ob-
serve only interesting aspects of an application and hence improve performance,
while extensibility would make it possible to add new middleware and therefore
improve reuse capabilities of the monitor core.
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4.2 Criteria for a Generic Monitoring Approach
From the drawbacks of existing systems and approaches, a set of requirements for a
generic monitoring system can be derived. Here, we are listing the requirements in
an abstract way, while a concrete implementation will follow in the next chapters.
Altogether, our requirements aim at the construction of integrated tool environments
for complex middleware systems [RWMB1998], [ZRL1999].

4.2.1 Systematic Concept for Complex Environments
Most monitoring approaches suffer from a lacking systematic concept for deal-
ing with complex environments. Complexity in middleware applications occurs
in many shapes:

2 Firstly, complexity can be caused by a large number of components that have
to be observed by a monitor. In this case, scalability issues gain relevance
as the monitoring overhead should not increase disproportionately for per-
formance reasons. A solution for the scalability problem is to introduce a
hierarchy for components within the observed system, which enables a sys-
tematic classification of monitored entities and allows to generate definable
views on the overall application system.

2 A second source of complexity comes from the observation of multiple ap-
plications with a single monitoring system. A monitor therefore has to be
able to handle different application architectures and implementations. For
example, software architectures like two- or three-tier applications have to be
monitored as well as integrated legacy components that may be implemented
differently and show a completely distinct software architecture.

As a consequence of this complexity of monitored environments, an implementation
of a monitoring system should be based on a monitoring infrastructure that defines
a generic monitor core and enables a flexible usage within complex environments.

In addition to a suitable monitor core, amonitoring frameworkfor complex en-
vironments is essential. When building tools on the basis of a generic infrastructure,
a framework [Joh1997b] defining the core components and access and usage pat-
terns is required for the implementation of tools and the integration of any kind of
middleware. Furthermore, relying on a monitoring framework, the definition of a
tool development methodologyis useful for enabling a rapid and efficient design and
implementation of tools. This development methodology can be seen as a recipe for
constructing tools for a given middleware using the given monitoring infrastructure.
Its target is to establish a process for rapidly adding new tools and middleware to an
existing monitoring environment without interfering with other running tools. Up
to now, none of the existing monitoring systems has offered a precise tool devel-
opment methodology that provides the possibility for a flexible tool development
and middleware integration. Therefore, the tool development methodology that will
be substantiated in more detail in chapter 7 represents an important step towards a
more general and efficient tool development process.
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4.2.2 Tool Support for all On-Line Phases
Current monitoring approaches mostly concentrate on tools for specific phases of
the software lifecycle. Therefore, they are not suited for the implementation of tool
functionality belonging to other phases, although no significant differences between
these phases exist. Figure 4.1 shows an overview of the software lifecycle for paral-
lel and distributed applications (see [Bod1995], [Lud1998]). For on-line tools, only
the late development (debugging, test, etc.) and deployment phases are relevant.
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Figure 4.1 Lifecycle for Distributed Software Development

A major requirement for a generic on-line monitoring approach is to support
both tools for the late development phase and the subsequent deployment phase. As
a consequence, the structure of the monitor has to enable observation of entities with
a differentgranularity. While during the development phase, fine granular entities
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are of interest e.g. for debugging or performance tuning, in the deployment phase a
more coarse granularity observing application components or complete applications
is of importance. In other words, this means that a generic monitoring systems has
to be laid out for low-level development tools as well as for high-level deployment
tools. Using a monitor with such capabilites simplifies software development and
deployment enormously as all kinds of tools can be implemented within a uniform
infrastructure, which makes programming and operation easier.

Another aspect of supporting both the development and deployment phases is
the ability to integrate classical monitoring functions and management functions as
described in section 3.1.3. The only problem that remains to be solved is the com-
plexity arising from the support of both lifecycle phases. But, as already explained
in the previous section, a hierarchical view on the observed system in combination
with a generic monitoring infrastructure integrates well into these ideas. Thus, a
separation between development- and deployment-related data can easily be made
through a hierarchical view on the system, which makes it possible for tools to
concentrate on relevant facets without being bothered by other data.

4.2.3 Cover System Heterogeneity
A significant aspect for monitoring middleware environments is to take into account
the existing system heterogeneity. As already mentioned, heterogeneity occurs in a
variety of shapes, including the following aspects:

2 Hardware

2 Operating systems

2 Programming languages

2 Middleware platforms

2 Application-specific protocols and standards

When heterogeneous environments are monitored using a single monitoring sys-
tem as explained above, it has to be assured that heterogenous platforms can be
monitoredsimultaneouslywith a single instance of the monitoring system. Conse-
quently, the monitoring system has to be able to handle heterogeneous components
simultaneously and present the respective data to tools. Tools themselves can either
concentrate on a single middleware platform and ignore heterogeneity, or be built
for usage within heterogeneous environments.

As a key criteria for simultaneous monitoring of heterogeneous components, the
usage of ageneral information modelfor middleware-based systems results from
the consideration of the various data types coming from different middleware plat-
forms. The justification for an abstract and general information model derives from
comparability and interoperability considerations, as comparability on the one hand
is necessary to correlate data from different platforms, and interoperability allows
to monitor inter-middleware communication. From the conceptual point of view,
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the information model has to be general enough to comprise all possible character-
istics of observed entities and allow a mapping of its abstract entities to concrete
instances of the respective middleware platforms. Moreover, a hierarchical struc-
ture of the information model is obvious because of its ability to advantageously
classify information within complex systems.

Another important feature of a general information model is its contribution
to the aspect of integrating the classical monitoring and network management
“worlds” illustrated before. Due to the fact that network monitoring approaches are
frequently based on information models defined e.g. through management informa-
tion bases (MIBs), introducing a similar model adapted for middleware platforms
and covering classical monitoring as well as management functions represents a
step towards an integrated monitoring and management concept.

Finally, heterogeneity also comprises the aspect for the monitoring systems it-
self to be applicable within a heterogeneous operating environment, i.e. to be exe-
cutable on various hardware and operating systems.

4.2.4 Flexibility and Extensibility
In addition to the concepts presented up to now, flexibility and extensibility are
important criteria for a generic monitoring approach. Concerning flexibility, two
main features have to be taken into account:

2 At first, the core monitoring system has to be designed in a way that does
not restrict the type and amount of data to be retrieved from an observed sys-
tem. Hence, the semantics of measured data should not influence the monitor
core at all, except for basic data that are essential for fundamental monitor-
ing tasks. As an example, events indicating the generation or destruction of
monitored entities can be essential for the overall operation of the monitor,
but application specific data should be propagated to interested tools without
intervention of the monitor.

2 Secondly, it has to be ensured that multiple tools can be applied simultane-
ously to an observed environment. This includes independent tools and ap-
plications as well as tools operating on the same monitored entities and there-
fore possibly influencing each other. Here, interoperability concepts have to
be taken into consideration, allowing tools for example to communicate with
each other to synchronise their actions or to inform each other.

Bearing these features in mind, a monitoring system is prepared to observe most
imaginable scenarios. By touching as little semantics as possible within the monitor
core, it is e.g. enabled to observe applications based on middleware as well as the
middleware platforms themselves with a single system, but using different tools.
The simultaneous application of these tools then allows to gain deeper insight into
the whole environment.

Regarding extensibility, there are further criteria a generic monitor approach has
to fulfil:
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2 On the one hand, extensibility with respect to the observed middleware has
to be given. This can be ensured by using a general information model and
generic interfaces for instrumentation-code accessing the monitor core. A
general information model can be used to map and classify any kind of mid-
dleware to the abstract model, while generic interfaces provide the technical
integration of middleware platforms. Hence, the combination of the informa-
tion model and generic interfaces enables an easy and efficient integration of
new middleware platforms, also during ongoing deployment of the monitor-
ing system.

2 On the other hand, extensibility regarding the tools making use of the mon-
itoring system has to be guaranteed. At first, this implies the possibility to
dynamically add new tools to the monitoring environment. Like before, this
feature can be accomplished by defining a general tool-monitor interface that
acts as an entry point for all tools. However, in practice it is often required
to enrich existing tools with additional functions. In this case, it is advanta-
geous to build tools on another, separate tool framework that is able to add
new tool components easily to existing tools. Again, the process is simplified
if all tools are based on the general information model defined by the monitor
core.

Summing up, it can be concluded that flexibility and extensibility can be reached
by making the monitor core as generic as possible, and thereby preserve a simple
access and usage through defined access interfaces and a general underlying infor-
mation model.

4.3 Summary
Based on the preceding discussions that have been initiated by an analysis of draw-
backs of existing monitoring systems, our main requirements for a generic monitor-
ing approach can be summarised as follows:

1. Definition of an infrastructure and access framework in order to handle sys-
tem complexity.

2. Support of all on-line lifecycle phases by enabling the monitoring of entities
with different granularity.

3. Coverage of heterogeneity by introducing a general information model that
allows simultaneous monitoring of different platforms.

4. Achieve flexibility and extensibility that provides the possibility to dynami-
cally add new tools and new middleware without affecting the monitor core.

Of course, it has to be kept in mind that the more general a monitoring approach
is, the higher the overhead of monitoring gets. Therefore, a trade-off between per-
formance and complexity of the monitor on the one hand, and the universality and
functionality of the approach on the other hand has to be found. From the preceding
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requirements, it can be concluded that our approach to handle this problem relies
on the concept of defining a generic monitoring infrastructure: A small and light-
weight monitor core with generic interfaces and a general information model serves
as a foundation for integrating diverse middleware and building various tools. The
development of tools and the adaption of new middleware is simplified by providing
access and usage frameworks for the monitor core, and by defining a methodology
for the development processes. With this approach, a configurable monitoring ap-
proach that can be customised for usage within various middleware scenarios is
given.

In the subsequent chapters, we will illustrate the design and implementation of
the MIMO monitoring infrastructure, which represents a concrete application of the
general concepts acquired above.





Chapter 5

The MIMO Approach

This chapter introduces theMIMO MIddleware MOnitorapproach for monitoring
heterogeneous middleware. After having postulated a set of requirements for a
generic monitor in the previous chapter, MIMO presents a concrete approach for
implementing a monitoring systems that complies with the stated requirements.

Starting with the introduction of themulti-layer monitoring approach, one of
the fundamental aspects of the overall MIMO approach is illustrated and enforced
by a formal description. Additionally, a general monitoring infrastructure will be in-
troduced, and the need for a methodology for developing tools and integrating new
middleware will be substantiated. Altogether, these aspects establish a basis for the
overall monitoring infrastructure and framework; details concerning the monitor ar-
chitecture and its components will then be discussed more deeply in the subsequent
chapters.

The basic idea of the MIMO approach is to define a versatile monitor core
that only stores information concerning the current system state, i.e. data about
the existence of monitored entities. More specific data, e.g. describing attributes
of monitored entities can then be queried by directly contacting the instrumenta-
tion component that is responsible for a certain entity. The multi-layer monitoring
model enables a structured and systematic classification of existing entities, while
the monitoring infrastructure defines how further information can be queried from
specific entities. The usage methodology supports a concerted development and
integration of tools and middleware platforms.

5.1 Multi-Layer Monitoring
The core of the MIMO approach rests upon the multi-layer monitoring (MLM)
model, which we will derive in this section. After the introduction of the abstract
information model and its formal foundation, we will show the integration of con-
crete middleware platforms.

5.1.1 Hierarchical Information Model
As we have seen in the previous chapter, a common information model for the rep-
resentation of monitored environments is needed to monitor heterogeneous middle-
ware systems. Such an information model provides the basis for classifying infor-
mation retrieved from observed platforms by defining a concept for the description
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of monitored entities. From our requirements, we can derive a model that fulfils the
following properties:

2 The possibility to classify monitored entities with a different granularity and
on different abstraction levels is given.

2 Steps for the observation of complex environments are undertaken.

2 The observation and classification of heterogeneous entities with a single
model is made possible.

As a consequence of the first and second requirement, ahierarchical information
modelis appropriate because of its ability to handle complex systems in a clear and
structured manner. From the third requirement, the need for a generic model that
can be customised for usage within various middleware scenarios can be derived.
Therefore, MIMO’s information model is based on a hierarchical and generic model
of the observed environment.

Obviously, the definition of a common information model the monitoring sys-
tem is built on also influences the layout and usage of tools. In our case, the hierar-
chical information model suggests a hierarchical tool layout and usage; this means
that tools should either operate on single levels of the information model, or exploit
the information model’s hierarchy when accessing multiple levels of the model.

5.1.2 Abstract Entity-Relationship Information Model
MIMO’s description of the monitored environment relies on anentity-relationship
model(see [Dat1995], ch. 12). In our scenario,entitiesrepresent “distinguishable
things” that are being observed by the monitoring system. In this term, “distin-
guishable” expresses the fact of possessing a unique identity in our context, and
“things” comprise all kinds of modelled objects including software- and hardware-
components on different abstraction levels. Besides their identity, entities hold a set
of properties (or attributes) containing further information. Several entities can be
linked throughrelationshipsthat define associations with specific semantics among
entities.

To define a general model for middleware environments, it is necessary to de-
termine relevant entities and their relationships. On the one hand, as the model
should be applicable to all kinds of middleware platforms, a general model has to
beabstractin order not to limit its scope of usage. On the other hand, entities from
concrete middleware platforms have to be classified according to this model. There-
fore, the MIMO approach defines an abstract information model that only contains
as little restricting preconditions as possible and a procedure to map concrete mid-
dleware platforms to this abstract model.

The advantage of this proceeding is to enable the simultaneous monitoring of
heterogeneous middleware because all platforms are mapped to a single abstract
information model. An alternative approach would be the definition of a customised
model for every platform; however, the disadvantage of these models would be the
loss of generality, accompanied by with a missing comparability of entities from
different middleware platforms.
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5.1.3 The Multi-Layer Monitoring Model
From the described preconditions and the analysis of common middleware in chap-
ter 2, MIMO’s generic information model can be derived. However, as there still
remains a certain degree of freedom, the following layers have been chosen with
respect to practical monitoring tasks; hence, they should exploit as much informa-
tion as possible from the observed environment, and thereby allow to concentrate
on specific details without losing the monitoring context and system overview.

Hardware Layer

Runtime Environment

Implementation Layer

Distributed Objects

Interface Layer

Applications

Monitoring
System

Figure 5.1 MIMO Multi-Layer Monitoring Model

Figure 5.1 illustrates the resulting multi-layer monitoring (MLM) model
[Rac1999]. The hierarchical model consists of six layers representing different ab-
straction levels, into which information from the observed environment is classified.
Within an application, the whole functionality offered by components is described
by interfaces; these interfaces are defined in any kind of definition language that
are represented by the interface layer. The subsequent implementation of the func-
tionality described by these interfaces is effected by objects within the distributed
object layer. These objects may still be considered as abstract entities residing in a
global object space. In order to enable communication between the distributed ob-
jects, middleware is required, and in particular a mechanism to define and uniquely
identify objects within the object space is needed. Hence, objects identified by these
middleware-specific object identifiers are stored in the distributed objects layer. Fur-
thermore, as objects on the distributed object level are still abstract entities, they
need to be implemented in a concrete programming language. This implementation
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of the objects is considered in the implementation layer. Finally, the implemen-
tation objects are executed within a runtime environment that can be an operating
system or a virtual machine on top of an operating system that is being executed by
the underlying hardware nodes; thus, the lowest two layers represent entities within
the runtime environment and the underlying hardware.

As a consequence, for the tools making use of a MLM-based monitoring system,
the following facts are relevant:

2 Firstly, it is possible to gather data on all abstraction levels in order to serve
as an information source for all kinds of on-line tools.

2 Secondly, the mappings between the different layers are of great importance.
As all entities within a specific layer are mapped onto appropriate entities
within the layer on the next lower level until the hardware layer is reached,
keeping track of these mappings is essential because the relationships be-
tween entities in two adjacent layers are not necessarily one-to-one relation-
ships.

The tools making use of the monitoring system may be very diverse and therefore
operate only on specific abstraction levels, while for other tools, mappings between
layers can be of special interest. Our multi-layer monitoring approach closely re-
flects the structure of the middleware environment and is therefore well suited for
both classes of on-line tools discussed above.

Considering the relationships between entities in adjacent layers, the abstract
MLM-model expresses only weak assertions about how the different entity types
are related to each other: Applicationscontaina set of interfaces that areoffered by
distributed objects. The objects areimplemented byentities in the implementation
layer, which in turn arerunning within runtime entities that areexecuted onspe-
cific hardware. Moreover, these relationships are not quantified, i.e. they have to
be assumed asm : n relationships. For concrete middleware, these relationships
are specialised with the concrete entity types for this middleware. Hence, the ab-
stract MLM-model in a first step introduces as little semantics as possible for the
relationships in order not to limit the generality.

5.1.4 Formal Description
After having started with an informal description of the multi-layer monitoring
model and its derivation, we now introduce a formal model to describe MLM-based
monitoring systems and algorithms in more detail.

5.1.4.1 Basic Formalism

The MLM-model can be seen as a set of layersL containing information about
existing entities within the observed system. In our case, the set of layers is

L = fL0; : : : ; L��1g
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where� is the number of layers, with� = 6 in for the MLM-model1.
The system state, i.e. the set of all entities known to the monitor at a time is

calledS, with
S = (E;R)

whereE denotes the existing entities within all layers:

E = fE0; : : : ; E��1g

andR denotes the relationships originating from these layers:

R = fR0; : : : ; R��1g

Evidently, for every Layeri, Ei denotes the set of entities within this layer:

Ei = fei;0; : : : ; ei;ni�1g

whereni is the number of entities residing in layeri.
Moreover,Ri denotes the relationships for layeri:

Ri = fri;0; : : : ; ri;ni�1g

Here, every entityei;j with i 2 f0; : : : ;�� 1g andj 2 f0; : : : ; ni � 1g has a set of
up- and down-relationships linking them with respective entities in the layersi� 1
andi + 1 (of course, fori = 0 there is no up-link and fori = � � 1 there is no
down-link). Hence, the relationshipsri;j for entityei;j are given by

ri;j = (Uei;j ; Dei;j)

where
Uei;j = fei�1;li;j;0 ; : : : ; ei�1;li;j;ui;j�1g

for i = 1; : : : ;�� 1, and

Dei;j = fei+1;mi;j;0
; : : : ; ei+1;mi;j;di;j�1

g

for i = 0; : : : ;�� 2.
Here,ui;j anddi;j denote the number of up- and down-links for entityei;j; conse-
quently,Uei;j andDei;j are the sets of entities in the layersi � 1 andi + 1 being
linked with ei;j, andli;j;0; : : : ; li;j;ui;j�1 andmi;j;0; : : : ; mi;j;di;j�1 are the indices of
the linked entities in the upper and lower layers. In the following, we do not distin-
guish between the relationsRi for i = 0; : : : ;�� 1 with respect to their potentially
different semantics; for the sake of simplicity,R only models a general relationship
without reflecting the underlying semantics.

To illustrate the introduced notation, figure 5.2 shows a fragment of a set of
entities and their links to the adjacent layers. The up- and down-links for entities
ei;j andei;j+1 are marked by arrows to the respective entities in the layersi� 1 and
i + 1.

1We continue to take� as the number of layers, although we never change the number of layers
throughout this thesis.
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Figure 5.2 Entities and Relationships

As the MLM-model does not define a concrete semantics for the relationships
between entities, the only statement that can be made is that relationships between
entities are alwayssymmetricby definition, i.e.

8entitiesei; ej 2 E : ej 2 Uei , ei 2 Dej

This property can be deduced from the general definition of the entity term and the
layers; if it does not hold, the consistency of the system state is violated.

5.1.4.2 Relationships between Entities

Another aspect of our model is that all entities areweak entitiesin the sense of the
entity-relationship model, because no entity can exist on its own without possessing
at least one up- and one down-link (except those on the topmost and lowest layer,
which do not have an up- or down-link, respectively). Consequently, a relationship
R linking any two entities within two different layers of the model can be defined2.
Two entitiesei;j andek;l are related throughR, if the following holds:

ei;jRek;l , 9z = fz1; : : : ; zng(n > 1)

with
z1 = ei;j ^ zn = ek;l

2
R only lists relationship between entities inadjacentlayers.
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and
zm+1 2 Dzm(k > i) or zm+1 2 Uzm(k < i)

for m = 1; : : : ; n � 1. Two entities within the same layer can never be inR as no
relationship between two entities of the same type exists.

The computation ofR is similar to the computation of thetransitive closure
([Sed1988], p. 473ff) for a given relation; we just have to take a directed graph
consisting of all entities and either theD orU relation for the edges. The difference
to our case is that we do not need to compute the complete relation, but find all
entities that are related to a certain starting entity in one given layer. Moreover, we
could not store the complete relation anyway because it dynamically changes with
the system state; to deal with this problem, a mechanism that incrementally updates
the transitive closure would have to be found, but this would cause too much effort
that cannot be justified by performance improvements. Hence, the complexity of
O(n3) for computing the transitive closure combined with a dynamic update is not
appropriate to solve our problem. In section 5.1.6, we will present an algorithm to
computeR for a single entity, as well as other MLM-related algorithms.

5.1.4.3 Hierarchy Structure

Finally, it should be pointed out that the whole hierarchical information model does
not necessarily represent atree structure, because it is possible that entities on a
lower level of the hierarchy are connected to more than one entity on a higher level.
This is of practical relevance e.g. when instances of distributed objects offer more
than one interface, or when several processes are executed on a single machine.

However, the system state described by the MLM model still represents a hierar-
chy: The graphG representing the system state results from entities being vertices
and either theD or U relation being used for the edges (here, the usage of one
of the relationsD or U is sufficient because the information contained inD and
U is redundant; we only use it for a more convenient description). AsG is a di-
rected, acyclic graph, a partial ordering of the entities is given, andG consequently
represents a hierarchy.

5.1.5 Application to Concrete Middleware
The next step after formulating a formal foundation for the abstract information
model is the application of this model to concrete middleware platforms.

5.1.5.1 Mapping of Concrete Middleware

Now that we have explained the multi-layer monitoring model and its formal foun-
dation, we can go into detail with the integration of concrete middleware platforms
and the MLM approach. The proceeding for monitoring a middleware platform is
as follows:

2 In a first step, the entities existing within the middleware need to be analysed
and classified into a set of abstraction layers.
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2 The resulting abstraction layers need to be mapped to MIMO’s MLM model.

The result of the first step is a layer modelC with p layers describing the relevant
entity types of the concrete middleware�:

C = fC0; : : : ; Cp�1g

Obviously,C depends on the middleware platform and on the goals of the mon-
itoring process, as the relevance of certain entity types corresponds to the tools
processing the resulting data.

For the second step, a functionM that mapsC to MLM’s layer model needs to
be defined:

M� : C ! L

with
M�(Ci) = Lj

8i 2 f0; : : : ; p� 1g andj 2 f0; : : : ;�� 1g. To yield a valid mapping,M� has to
be afunction, i.e. map everyCi to a singleLj.

There are no other preconditions thatM� has to fulfil, but the following cases
should be mentioned for clarity:

1. p < �:
As the number of layers in the concrete middleware is smaller than the num-
ber of layers in the MLM model, not all MLM layers can be filled with data.
Thus, in this case empty layers emerge, which need to be treated properly;
the proceeding for this case will be shown in section 5.1.5.3.

2. p = �:
In this case, the mapping fromC toL can be bijective, but does not necessar-
ily have to be. IfM� is bijective, every layer inC exactly corresponds to a
layer inL, which is a standard case that can be applied conveniently.

3. p > �:
If the number of layers in the concrete middleware is bigger than the number
of MLM layers, more than one layer inC needs to be mapped to a single layer
in L. Hence,M� cannot be injective anymore because at least two layers inC
are mapped to the same layer inL. This case is not forbidden, but may lead
to a more complicated system model.

In practice, only the first two cases are of relevance, while the third case should be
avoided in order not to complicate monitoring tasks.

5.1.5.2 Example: CORBA

As a simple example for our theoretical background, the mapping of the CORBA
middleware to our MLM model can be shown. Table 5.1 shows the definition of the
CORBA layers and their mapping to the MLM model. The example is straightfor-
ward because our CORBA model shows six layers that can be mapped easily to the
MLM model.
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Multi-Layer Monitoring Model CORBA layer

Application layer CORBA applications
Interface layer IDL interfaces
Distributed object layer CORBA objects
Implementation layer Object implementations
Run-time layer OS processes and threads
Hardware layer Nodes

Table 5.1 CORBA to MLM Mapping

An important aspect for the mapping is the unambiguousness of the entities in
their respective context. This means that entities have to be uniquely identifiable
within their layers. For CORBA, the identification of entities can be implemented
as follows:

2 Applications are identified by their name3.

2 CORBA Interfaces are uniquely described by their interface name that is de-
rived from the IDL description.

2 CORBA objects can be uniquely addressed by theirinteroperable object ref-
erence(IOR).

2 Object implementations, processes, and threads can be uniquely identified by
their memory address, process or thread identification number on the respec-
tive machine.

2 Nodes are identified by their IP address.

The only problem arising here is that identifiers coming from two different mid-
dleware platforms must not interfere with each other. This is a general issue that
has to be kept in mind during the deployment of the monitoring system; a simple
heuristics to circumvent difficulties is to prepend identifiers with the name of the
respective middleware platform (which is in general uniquely defined).

Of course, depending on the monitoring scenario, other models of CORBA ap-
plications can be defined. Our example represents a relatively general model of
CORBA applications that can be used for most common monitoring tasks, without
being specialised to any details of CORBA.

5.1.5.3 Handling Empty Layers

As mentioned before, empty layers in the information model can occur if a layer
model for a certain middleware contains less layers than the MLM model. This case
requires special treatment, because otherwise the structure of the relations between
entities would be destroyed. Our formal model requires that every entity only keeps

3This identification by name is the only possibility for nearly all middleware platforms, but as
the number of applications is generally small, this is not an issue.
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references to entities in adjacent layers. If a layer is empty, we therefore have to
introducedummy entitiesthat allow to skip the original MLM layer.

For example, assuming that a layerLi is kept empty because there is no mapping
from a certain middleware toL, a set of entities

c = fc0; : : : ; ci�1; ci+1; : : : ; c��1g

has to be inserted intoE. If so, a dummy entitydci�1;ci+1 has to be inserted withc,
yielding

c = fc0; : : : ; ci�1; dci�1;ci+1; ci+1; : : : ; c��1g

for the insertion intoE. The dummy element linksci�1 with ci+1 and acts as a
surrogate for the missing entity. Apparently, different dummy entities need to be
generated for each different pair of entities in order not to modify the original re-
lationships. If more than one layer is kept empty, all these layers need to be filled
with newly generated dummy entities. With this proceeding, the case forp < � can
be treated properly without influencing the following algorithms.

5.1.6 Algorithms for Accessing the MLM
Based on the formal description of the MLM model, we can proceed to the fun-
damental algorithms for accessing the defined data structures. First, we will show
how to insert and delete entities from the MLM model, and subsequently we will
introduce a mapping algorithm that computes theR relation from section 5.1.4.2.

5.1.6.1 Insertion

Figure 5.3 gives the basic algorithm for inserting entities into the MLM model.
The input for the insertion algorithm is a list of entitiese = fe0;j0 ; : : : ; e��1;j��1g.
It is not possible to insert single elements ofe because the relationships between
the entities need to be preserved. Nevertheless, the possibility to insert only parts
of e is given, if the two adjacent entities for a given newei;ji are included and
already existing in the MLM model. This case is straightforward and similar to the
algorithm described here, so we concentrate on the case of inserting entities for all
layers of the MLM.

The proceeding of the algorithm is simple: It traverses all layers of the MLM and
inserts the respective entityei;ji, if it is not yet contained in layerLi. Additionally,
the relations for every entity are updated in a second step.

For simplicity, the algorithm does not contain arrangements for handling empty
layers as described above. Nevertheless, in practice this problem is solved by keep-
ing elements of the input empty for non-existing layers, while the algorithm has to
introduce dummy elements for these elements. The complexity of the algorithm is
linear with the number of layers. Inside the layers, the effort of the lookup oper-
ations depends on the internal representation of the sets, and can be implemented
efficiently e.g. by using hashing mechanisms.
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Algorithm insertEntity :
Input An entity liste0;j0; : : : ; e��1;j��1 to be inserted

System StateS = fE;Rg
Output Modified system stateS = fE;Rg

begin
for i := 0 to �� 1 do

// INSERT ei, IF NOT ALREADY IN Ei:
if ei;ji =2 Ei then

Ei := Ei [ ei;ji;
Uei;ji

:= ;;
Dei;ji

:= ;;
fi
// ADD UP- AND DOWN-LINK :
if i 6= 0 then

Dei�1;ji�1
:= Dei�1;ji�1

[ ei;ji; // ADD DOWN-LINK

Uei;ji
:= Uei;ji

[ ei�1;ji�1; // ADD UP-LINK

fi
od

end

Figure 5.3 Insertion Algorithm

5.1.6.2 Deletion

At first glance, the deletion of an entity from the system state is straightforward. A
given entityei;j is looked up in the elementsEi of layer i and removed, if found.
But, in a second step, the relationships of the deleted entity also have to be removed.
This concerns the entity’sU andD relations that are deleted with the elements itself,
and also the related entitiesD andU relations, which are redundantly stored. Here,
the case ofei;j being the last related entity for an entitye in an adjacent layer can
occur. If e has no more relationships to layeri, it has to be deleted because all
entities are weak entities. Consequently, the deletion ofe can be implemented by
a recursive deletion call. An example for this propagation of the deletion process
is shown in figure 5.4 for entityei;j; the bold lines mark the influenced entities
that have to be removed as a consequence ofei;j ’s removal. The resulting deletion
algorithm is illustrated in figure 5.5.

5.1.6.3 Related Entities

As already mentioned before, an algorithm for computing theR relation is required
for conveniently querying the current system state. The problem is to compute all
entities in layerl that are related to a given entityei;j. We have explained before
that the problem is similar to the transitive closure that can be computed with War-
shall’s algorithm [AHU1975b], [AHU1975a]. But, as we operate on a dynamically
changing relation and only need to get the related entities in a given layer and for a
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...

......
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Figure 5.4 Deletion and Propagation Process

single starting element, our algorithm shown in figure 5.6 works differently.
As we have a given hierarchy consisting of several layers, we only have to tra-

verse these layers and expand the relationships starting from our initial entity, until
we reach the target layer. The only decision to be made at he beginning is whether
to move upwards or downwards in our hierarchy, from then on it is sufficient to
compute the setMk of related entities in the respective layerk. When the target
layerl is reached,Ml naturally contains the resulting set of related entities forei;j.

This algorithm represents one of the fundamental mechanisms for quickly and
efficiently accessing information stored in the MLM model because it allows for
a directed navigation through a complex system model, especially if only partial
aspects of the overall system are of interest for certain tools.

5.1.7 Summary
In this section, we have introduced the multi-layer monitoring model, which repre-
sents an abstract, hierarchical information model that is tailored to our monitoring
purposes. After an informal description, we have developed a formal description
for the basic model, the integration of concrete middleware, and fundamental ac-
cess algorithms.

These principles of the MIMO approach will be taken up again when the imple-
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Algorithm deleteEntity:
Input An entityei;j to be deleted

System StateS = fE;Rg
Output Modified system stateS = fE;Rg

begin
// REMOVE ENTITY FROME:
Ei := Ei n ei;j;
Ri := Ri n ri;j;
// REMOVE DOWN- AND UP-LINKS TO DELETED ENTITY;
// CHECK WHETHER ENTITIES IN ADJACENT LAYERS NEED TO BE REMOVED:
// UP-LINKS:
if i 6= 0 then

foreache 2 Uei;j do
De := De n ei;j;
if De = ; then deleteEntity(e); fi // RECURSIVE CALL

od
fi
// DOWN-LINKS:
if i 6= �� 1 then

foreach e 2 Dei;j do
Ue := Ue n ei;j;
if Ue = ; then deleteEntity(e); fi // RECURSIVE CALL

od
fi

end

Figure 5.5 Deletion Algorithm

mentation of the monitoring system is described in detail.

5.2 Monitoring Infrastructure
The second fundamental concept of the MIMO approach is the MIMO monitoring
infrastructure. From the requirements stated in the previous chapter, we address the
following points with our monitoring infrastructure:

2 Definition of a suitable framework that allows to handle the system complex-
ity.

2 Achievement of flexibility and extensibility that makes it possible to dynam-
ically add new tools and middleware.

The main aspects for the definition of the monitoring infrastructure are the definition
of a core framework, enhanced by general interface definitions, and a universal
event model.
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Algorithm relatedEntitities:
Input An entityei;j and a layerl to whichei;j should be mapped

System StateS = fE;Rg
Output A set of entitiesMl containing the related entities forei;j

begin
// NOTHING TO DO IF MAPPED TO THE SAME LAYER:
if i = l then

Ml := fei;jg;
return Ml;

fi
// SET INCREMENT OR DECREMENT:
if i < l then inc := 1; elseinc := �1; fi
// GO THROUGH LAYERS AND BUILD MAPPINGS:
Mi := fei;jg;
for k := i+ inc to l stepinc do

// EXPLORE UP- OR DOWN-LINKS OF ENTITIES IN ADJACENT LAYER:
Mk := ;;
foreache 2Mk�inc do

if inc = 1 thenMk := Mk [De; // ADD DOWN-LINKS

elseMk := Mk [ Ue; // ADD UP-LINKS

fi
od

od
// Ml NOW CONTAINS LIST OF MAPPED ENTITIES

return Ml;
end

Figure 5.6 Related Entities Algorithm

5.2.1 Core Monitoring Framework
The first element of the monitoring infrastructure is the definition of the core moni-
toring framework. A framework determines the main components of the monitoring
environment and the respective usage patterns [Joh1997b], where the level of ab-
straction is higher than that for separate design patterns (which can be constituting
elements of frameworks).

Our basic framework for the MIMO monitor consists of a three-tier model of the
monitoring system as shown in section 3.1.2. A logically central monitor core pro-
vides an entrance point for tools and instrumented middleware. It offers appropriate
interfaces and provides a correct propagation of incoming events.

The usage pattern for tools basically consists of three phases:

1. Attach to the monitor.

2. Send requests and get responses synchronously or asynchronously.
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3. Detach from the monitor.

The detailed mechanisms and implementation possibilities for these steps are illus-
trated in more detail in the next chapter, where we describe the implementation of
the monitor.

From the application side, the situation is not as trivial because applications
are usually not laid out for being monitored, and thus mechanisms collecting data
from them and interacting with the monitor core have to be found. The code taking
over this part is calledinstrumentationand has to be integrated into the application.
With our general framework, we cannot make any assumption about how the in-
strumentation gathers data from the application, how it potentially manipulates it,
and how the code is integrated, because of the large amount of possibilities existing
here. The only distinction we can make at this point is whether instrumentation is
added transparently for an application or not. In case the application is instrumented
transparently, we call the instrumentation component anintruder, and in case it is
integrated non-transparently, we call it anadapter. Hence, assuming the existence
of an intruder or adapter that is able to gather data from and influence the observed
application, the usage pattern of the monitor core is analogous to the one for tools:

1. Attach to the monitor.

2. Send events to and receive commands from the monitor core.

3. Detach from the monitor.

Usually, attaching to the monitor is carried out when an application starts, and de-
taching indicates the termination of an application.

The monitor core itself is responsible for establishing the connection between
tools and the instrumented applications; this includes the propagation of requests to
the concerned intruder or adapter, as well as transferring back the events to the tools.
Consequently, the information the monitor core has to store is state information
about the observed environments, so that requests and events can be routed correctly
to the concerned components.

5.2.2 Interfaces and Events
Up to now, no information has been given about how the communication between
tools, monitor core, and instrumentation code is carried out. Basically, we have to
distinguish between synchronous and asynchronous communication patterns. For
synchronous communication, we can rely on interfaces with a request/reply seman-
tics, where the requesting component is blocked until the result is passed back. For
asynchronous communication, interfaces cannot be used as the requesting compo-
nent proceeds with other tasks and results have to be passed by means of events;
hence, an event-based communication mechanism needs to be introduced in addi-
tion to interfaces.

For reaching a flexible and extensible layout of the monitoring infrastructure,
the interfaces and event models need to be generic in order to enable the integration
of diverse middleware and the construction of different tool types.
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5.2.2.1 Generic Interfaces

The monitor core offers interfaces for both tools and instrumented applications.
The interface for tools is called thetool-monitor interfaceand has to provide the
following basic operations:

2 Attach and detach operations:
As mentioned before, these operations are required to announce the existence
of new tools or the termination of a tool. From the monitor core’s point of
view, tools need to have identifiers, e.g. for asynchronously passing back re-
sults.

2 Request operation:
This operation represents the only way for a tool to issue requests. It has to
be possible to request certain functionality synchronously or asynchronously,
depending on the usage case.

Even more importantly, the content of the request may vary from tool to tool, de-
pending on concrete monitoring tasks. Obviously, the monitoring core can only be
designed to answer a set of common requests concerning state information it has ac-
tually stored. As this information cannot be sufficient for tools, the proceeding is to
issue requests for certain user-defined events, which are being generated from suited
instrumentation code and passed to requesting tools without semantical processing
by the monitor, which only forwards the events to interested tools.

As a consequence of the generic request-operation, the need for a generic event
model originates. Hence, the interfaces only enable the interaction between tools,
monitor core, and instrumentations, while concrete details are left to the event-based
communication.

5.2.2.2 Generic Event Model

The event mechanism resulting from the above discussion is used for asynchronous
communication between tool and monitor on the one hand, and instrumentation and
monitor on the other hand. As requests coming from tools are issued synchronously
because all activity originates from the tools, no asynchronous communication from
the tool to the monitor core is required. Vice versa, from the monitor to the tool,
asynchronous communication is required in any case to pass back events for issued
requests. Hence, for the tool-monitor interaction, only one event channel from the
monitor to the tool has to be established.

For the instrumentation-monitor communication, in contrast, two event chan-
nels for both directions are necessary as asynchronous events emerging from the
observed application have to be propagated to the monitor, while control commands
from the monitor to the instrumentation may also be passed asynchronously in order
not to block the monitor.

Concerning the content of the generated events, we have to distinguish two types
of events:

2 Events describing basic changes important for the current system state have
to be predefined and interpreted by the monitor core. For example, events
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indicating the generation of new entities or the deletion of entities belong to
this event type. The monitor needs to analyse and interpret these events and
update its system state according to this information. This is necessary for
coordination purposes, as requests or commands only have to be propagated
to concerned entities; without general knowledge of the system state, this
could not be accomplished.

2 Events not containing critical, state changing information are not of interest
for the monitor core. We call these eventsuser-defined events, which are
not interpreted by the monitor, but only propagated to tools that have been
registered for these events by preceding requests.

Thus, the generic event model allows to introduce any kind of event; the mon-
itor core does not associate any semantics with them. The only demand is that the
general format of event descriptions is well-defined. Event descriptions therefore
have to contain the event type and its parameters in a fixed format, such that they
can be dynamically included into a running monitoring system without requiring
any changes to it. Of course, for a reasonable usage of user-defined events, instru-
mentation and tool need to agree on those events; we will explore this condition in
detail in section 5.3.

5.2.3 Conclusion
In this section, we have presented MIMO’s monitoring infrastructure, which is
based on the definition of a monitoring framework, generic interfaces, and a generic
event model. The monitoring framework relies on a three-tier model clearly separat-
ing tool, monitor, and monitored applications, for which elementary access patterns
to the monitor core have been defined. The interfaces are designed for synchronous
communication with the monitor core, while event-based communication is used
for asynchronous propagation of data.

Altogether, the idea behind the chosen approach is to put as few preconditions
as possible into the monitor core in order not to limit its scope of usage. Rather,
the monitor core should be considered as an intelligent component for the exchange
of requests and events between tools and instrumented applications. In this sense,
the monitor core can be seen as a sort of intelligent “router” for request and event
information, which can be flexibly deployed in any scenario.

5.3 Usage Methodology and Tool Frameworks
The last important concept of the MIMO approach concerns the efficient deploy-
ment of the MIMO infrastructure. As the monitoring infrastructure represents a
rather complex environment, a proceeding for the usage of the system is required.
This includes technical issues as well as guidelines for users who wish to develop
new tools or integrate new middleware into the monitoring environment.

Our concept to enable an efficient usage of the MIMO infrastructure is based on
two features: Firstly, a usage methodology giving guidelines for a concerted devel-
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opment of tools and the integration of new middleware is defined, and secondly, a
reusable and adaptable framework for easy GUI tool construction is presented.

5.3.1 Usage Methodology
As explained above, the generic layout of the MIMO infrastructure provides a high
degree of freedom to develop new tools and to integrate new middleware. We have
seen that, in addition to the basic requests and event types, user-defined event types
serve as a basis for the implementation of new tool functionality. However, the
development of tools and instrumentation code is closely related and a methodology
for optimal coordination of the development tasks is therefore advantageous.

Our proposed usage methodology for the MIMO infrastructure consists of the
following major steps:

1. Definition of tool functionality.

2. Definition of required data to be retrieved from the monitored system in order
to fulfil tool functionality.

3. If no mapping of this concrete middleware to the MLM model exists: Defini-
tion of the mapping to the MLM model.

4. Definition of events and commands needed for monitoring the application.

5. Implementation of instrumentation code and tool.

It can be seen that the approach starts with the definition of the tool functionality
and the necessary events and commands derived from it. If this middleware has not
been used with MIMO before, a mapping of its layer model to the MLM model
is required; this mapping depends on the usage scenario and can either be general
or specialised for the given monitoring tasks. Based on these definitions, tool and
instrumentation have to be implemented, which can in principle be done simultane-
ously. At this point, we cannot make any statements about how the instrumentation
has to be implemented as there are a lot of possibilities that are preferable under
certain circumstances. The most important aspect is that tool and instrumentation
have to be adjusted to each other, while the monitor core only serves as an intelli-
gent way of interaction between them. We will substantiate this methodology later
with a concrete implementation of the monitoring system.

5.3.2 Tool Frameworks
When we look at a set of common tools for distributed systems, it is remarkable that
a given amount of basic functionality is present with most tools of tool sets. This
includes for example basic visualisation capabilities for gaining an overview of the
observed system, or logging functions. Beyond this, tool functionality can be very
diverse and depend highly on the type of tool and middleware. Consequently, as we
wish to monitor heterogeneous middleware with our approach, a tool framework
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offering these basic tool functions on the one hand, and being dynamically exten-
sible with any kind of tools functionality on the other hand shows to be profitable.
Especially for GUI tools, basic visualisation capabilities are needed in nearly any
case and serve as a starting point for further functions. Thus, the concept of a tool
framework simplifies tool development considerably and therefore integrates well
with our usage methodology because both aim at a systematic and rapid tool devel-
opment process. We will go into further detail with our tool framework when we
describe a concrete implementation.

5.4 Summary
In this chapter, we have introduced the fundamental concepts of the MIMO MId-
dleware MOnitor approach. MIMO’s goal is to design and implement a monitoring
system that fulfils the requirements stated in the previous chapter. To accomplish
this, MIMO relies on three basic pillars depicted in figure 5.7:
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Figure 5.7 MIMO Fundamental Concepts

First, a multi-layer monitoring model defines an abstract information model that
is able to handle complex and heterogeneous environments; concrete middleware
can easily be mapped to this model by pursuing a given standard procedure. Sec-
ondly, MIMO proposes a general monitoring infrastructure affecting the layout of
monitor components and their interaction patterns. And thirdly, a usage method-
ology describing the deployment of the overall infrastructure has been established;
this methodology represents an essential part of the approach, as for complex mon-
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itoring environments an efficient tool and instrumentation development and collab-
oration is indispensable. Hence, taking all aspects of the MIMO approach together,
its primary aim is to provide a generic monitoring approach that enables a flexible
and efficient application in heterogeneous environments.



Chapter 6

MIMO Architecture and
Implementation

After having presented the conceptual aspects of the MIMO approach in the previ-
ous chapter, we are now proceeding with the architecture and implementation of the
MIMO monitoring system [RLRS2000].

The MIMO approach introduced before represents a basic concept for the con-
struction of a generic monitoring system. As we have seen, it is based on the
multi-layer monitoring model, a generic monitoring infrastructure, and an appro-
priate usage methodology. In this chapter, we will present a monitoring architecture
describing the components within the resulting monitoring system that fulfils the
required properties. Subsequently, we will proceed with a description of the access
and usage patterns for these components and a technical view on implementation
aspects of the MIMO prototype.

The monitoring architecture can be seen as a kind of coarse design of the MIMO
monitor and its components, which is justified by the preceding general discussion
of monitoring aspects. The access and usage patterns specify the interactions be-
tween components more precisely, and therefore serve as a starting point for tool
and instrumentation developers for the integration of further tools or middleware.
The description of the implementation finally gives further details about technical
aspects; these aspects are not necessarily relevant for using the MIMO system, but
interesting from the programmer’s point of view.

6.1 Tool Development and Usage Process
First, before going into detail with the MIMO architecture and implementation, we
will start with a short survey of the overall tool development and usage process.
This is important as several – potentially different – persons are involved in the tool
development and usage process, and we have to distinguish between these actuators
carefully in the following. Figure 6.1 shows an overview of MIMO’s tool develop-
ment and deployment use cases1. The three actuators occurring in our scenario are
the tool user, the tool developer, and the application developer.

Based on an existing application or an application under development, the use
cases depicted in the figure are necessary to produce a running tool. Starting with

1From now on, we will illustrate models and processes using the Unified Modeling Language
(UML) [RJB1998], [Alh1998], [Wah1998].
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Figure 6.1 MIMO Tool Development and Deployment Use Case

a specification of tool functionality that is made by the tool user and possibly influ-
enced by the tool developer in order to take into account the underlying monitoring
system, the subsequent implementation of tool and instrumentation has to be carried
out. While the tool itself is of course implemented by the tool developer, the instru-
mentation can be implemented by both tool or application developers, depending
on the concrete scenario. After the implementation of the tool, the tool user is re-
sponsible for setting up and configuring the monitoring environment, as well as for
finally deploying the tool.

A relevant consideration concerns the mapping of the three roles of application
developer, tool developer, and tool user to real persons. Depending on the scenario,
these persons need not necessarily be different, whereby two factors mainly influ-
ence this mapping:

2 Project size:
Of course, for small projects application developer, tool developer and user
can merge into a single person. With a rising project size, tasks will be split
among several persons, resulting in the different mappings of roles to persons.

2 Tool type:
Another important aspect that is orthogonal to the project size is the type
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of tool that is being developed. On the one hand, for example, for standard
development tools like debuggers, the application developer and tool user
will often be identical, whereas the tool developer is working independently.
On the other hand, other tools covering e.g. management functions might be
developed by the application developer, but used by independent tool users
deploying the delivered software.

As a consequence, no general assumption about the persons involved in the tool
development and usage process can be made, if our monitoring system should be
kept open for all scenarios. Nevertheless, the separation between the different roles
has to be kept in mind for the following considerations, and we will come back to
these roles especially during MIMO’s tool development methodology.

6.2 Monitoring Architecture
The architecture of the MIMO monitoring system relies on the three-tier monitoring
approach presented in section 3.1.2. This basic architecture is appropriate to fulfil
the requirements stated before and to implement a system according to the criteria
postulated in chapter 5.

6.2.1 Basic System Structure
Figure 6.2 shows an overview of the resulting structure of the monitoring environ-
ment. The main participants are tools, the MIMO core components, instrumentation
components, and application components.

An application may consist of several components, which are represented by
processes executed on a given node. These application components are monitored
directly by instrumentation components that are responsible for gathering infor-
mation and controlling them. As instrumentation can be implemented in a great
variety of ways, we cannot make any assumption about its concrete implementation
here and it is thus denoted as a generic component. In practice, the instrumenta-
tion could e.g. either reside in the application component’s process or be integrated
into the operating system. The relationship between instrumentation and applica-
tion component is a one-to-one relationship, expressing that every instance of an
instrumentation component is responsible for a single application component.

In order to communicate with MIMO, every instrumentation component is as-
signed to a single instance of MIMO; conversely, MIMO instances can handle sev-
eral instrumentation components simultaneously, so that any number of instrumen-
tation components may be assigned to a single MIMO instance, depending on the
concrete monitoring environment. For tools, the same policy as for instrumentation
components holds: Any number of tools can be assigned to a single MIMO in-
stance, but every tool is only attached to one single instance. Both MIMO instances
and tools are denoted as processes because they are executed independently.

Finally, as there might be several MIMO instances within an observed environ-
ment at a given time, these instances cooperate with each other for ordering events
properly and for getting synchronised.
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Figure 6.2 MIMO Structure

In the following, we will discuss the individual components and their interac-
tions in more detail; here, distribution aspects concerning the assignment of instru-
mentation components to MIMO instances are also of relevance, especially with
respect to performance aspects.

6.2.2 Components
The basic system structure introduced above contains a set of logical components
that have to be mapped to physical implementation components. As a modular
layout of the system is already given by following the general three-tier model,
the originating components can be defined straightforwardly. In addition to this
definition of basic components, their interfaces need to be specified. The resulting
component diagram is shown in figure 6.3, including the three components of the
monitoring system and the application part.

The interfaces modelled and specified within MIMO are the tool-monitor inter-
face, which serves as an entrance point for tools, and the instrumentation-monitor
interface, which represents the contact point for instrumentations. The tool’s user
interface and the instrumentation-application interface cannot be specified gener-
ally: For the user interface, this is impossible as tool functionality can be very
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diverse. For the instrumentation-application interface, no general specification is
possible if we do not want to restrict the scope of usage of the monitoring system.
From the MIMO point of view, the first standardised interface to applications has to
be provided by the instrumentation, which can use any arbitrary approach to interact
with the application components. Finally, the monitor-monitor interface represents
the communication facility among different MIMO instances. This interface is an
internal monitor issue and therefore not of interest for tool development.

Tool−Monitor Interface

Instrumentation

MIMO Core

Instrumentation−Monitor Interface

User Interface

Instrumentation−Application Interface

Application

Tool

Monitor−Monitor
Interface

Figure 6.3 MIMO Components

The subsequent sections will illuminate the respective MIMO core, tool, and
instrumentation components more precisely.

6.2.2.1 MIMO Core

The MIMO core represents the central component of the monitoring system. It
serves as the only entrance point for tools and instrumentation components and
provides the interfaces to these components. Besides the implementation of the
multi-layer monitoring model, the MIMO core’s main duty is to provide the request
processing capabilities of MIMO and to care for the proper handling of events. In
addition, several preconditions stated before have to be taken into account in order
to comply with the requirements of the MIMO approach.
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Request Processing and Event Handling. Requests issued by tools have to be
processed by the respective MIMO core to which the tool is attached. Thereby, re-
quests issued by tools may either besynchronous, i.e. the tool waits for a response
and is blocked until the result is passed back from the monitor, or they may beasyn-
chronous, where the tool is not blocked and gets the results delivered back by means
of events. Depending on the request type, both forms of request processing need
to be supported. Event handling, in contrast, is always carried out asynchronously
due to the nature of the event notion. Hence, the MIMO core has to provide means
for both synchronous and asynchronous interaction with tools and instrumentation
components.

Providing a Logically Central Monitor. Physically, MIMO may consist of a set
of concurrent MIMO core components that cooperate with each other in order to
present a single monitor to the attached components. Thus, the distribution of
MIMO components has to be transparent for tools and instrumentation components
that only “see” the MIMO core instance they are assigned to. In order to main-
tain this illusion of a single monitor for tools and instrumented applications, several
arrangements are required:

2 Requests being issued by a tool to its MIMO instance need to be processed
by all active MIMO instances, if they are concerned. To reach this, requests
either have to be distributed to all other MIMO instances in order to guarantee
the inclusion of all active application components, or it has to be assured that
all relevant events are being perceived by the tool’s MIMO instance. Further-
more, if necessary, results coming from other MIMO core instances have to
be assembled and passed back to the tool in order to return a single result for
a given synchronous request.

2 Events originating in any application component have to be distributed to in-
terested tools. As said above, this can be done by distributing either events
or requests to all active MIMO core instances. However, in addition to this
distribution, synchronisation and event ordering has to be carried out in order
to guarantee the same time and order of events for all tools, because the ap-
plications are running in a heterogeneous environment where no global clock
can be assumed [Lam1978].

Of course, the actions required to provide this logically central monitor have to
be hidden from tools and instrumentation components, and thus communication
required for this purpose is handled through the monitor-monitor interfaces. Details
about the implementation of these features will be shown later.

Support of Multi-Layer Monitoring. Another important feature of the MIMO
core is the support of the multi-layer monitoring model introduced in the previous
chapter. As the MLM model is one of MIMO’s fundamental aspects, the MIMO
core is designed to provide its functionality based on this model. Requests, re-
sponses, and event handling therefore rely on data types derived from the entity
model defined within the multi-layer monitoring approach. Hence, every tool and
instrumentation component has to interact with MIMO using these types.
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Provide Monitoring Infrastructure. One final important task of the MIMO core
is to implement the monitoring infrastructure illustrated in section 5.2. Above all,
this includes the implementation of generic interfaces needed to communicate with
tools and instrumentations. Tools may issue requests to the MIMO core after an
initial attachment to the monitor, and instrumentations may send events to it. The
“application logic” within the MIMO core is responsible for processing the requests
and triggering the right actions on the basis of the incoming events. Doing so, the
implementation of these features has to be kept generic in order not to restrict the
scope of usage of the monitor core. We will explain the concrete implementation of
these interfaces and event handling procedures in section 6.2.3.

6.2.2.2 Tools

Tools represent the next essential component within our monitoring scenario. As
mentioned before, every tool is assigned to a single MIMO instance and may issue
requests to it. Results are passed back synchronously or asynchronously, depend-
ing on its type. Requests where the tool waits for the response immediately and is
blocked for that time are calledsynchronous requests. This is e.g. useful for query-
ing the current state of some monitored entity; here, the result can be returned with
a very small delay caused by the MIMO core for processing the request, and no
critical waiting time for the tool arises. Other requests, which are interested e.g. in
the occurrence of a certain event, are normally issued asynchronously as the time
until the event actually takes place is not predetermined.

In our general context, we do not make any further assumption about tools,
except that they communicate with their MIMO core through the defined interfaces.

6.2.2.3 Instrumentation

The third important component of our monitoring architecture is the instrumenta-
tion. Instrumentation is required for gathering information from monitored appli-
cation components and delivering it to the MIMO core, as well as for executing
monitor commands that manipulate the running application.

There is a great variety of ways for instrumenting applications, which highly
depend on the runtime environment and implementation issues of the application.
Therefore, the MIMO monitoring architecture does not make any assumption about
how instrumentation is actually implemented. The only important issue is to enable
a standardised interaction between the monitor core and the instrumentation. Syn-
tactically, the interaction between the instrumentation and the MIMO core is imple-
mented using standardised interfaces caring for a proper communication. However,
in order to allow MIMO to monitor a certain application component, additional
information concerning its classification within the MLM model is required.

Hence, the semantics of certain, fundamental events needs to be predefined,
allowing the MIMO core to interpret these events and store basic information about
the state of the observed system. Beyond this basic information, the semantics of
events cannot be predefined because the deployment scenarios of the monitor can
be very diverse and instrumentation components may produce various event types.
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This may e.g. comprise further attributes or properties of monitored entities, which
can then be queried by tools with an event-based approach without affecting the
MIMO core at all. To deal with this issue, the MIMO core does not interpret these
events, but passes them directly to interested tools registered for these event types.
The only thing that needs to be guaranteed in this case is that instrumentation and
tool are adjusted to each other and operate on a common event semantics. This
is relevant for events being passed from the instrumentation to the tool as well as
for commands being sent from the tool to an instrumentation component. We will
explain the required proceeding for this cooperation in detail in chapter 7.

6.2.3 Interaction Patterns
During the description of the MIMO components, the interactions between these
components have already been touched slightly. In this section, we will introduce
MIMO’s communication concept in detail, before we proceed with more complex
usage patterns in the following section. A key precondition of the communica-
tion concept is to implement a generic communication approach as defined in sec-
tion 5.2.

6.2.3.1 Synchronous and Asynchronous Communication

As already mentioned, MIMO’s communication relies on both synchronous and
asynchronous interactions between tools, the MIMO core, and instrumentations.
Synchronous communication is used whenever the component initiating the inter-
action waits for the result and is blocked until it is received. Hence, synchronous
communication is in general only useful when the processing time of a request is
low and the result gets passed back immediately. Asynchronous communication, in
contrast, is useful for event-based interactions where the time until the occurrence
of the event is not determined and the originator of the request does not want to be
blocked until that time.

Within the MIMO architecture, synchronous and asynchronous communication
are implemented using different approaches. For synchronous communication,syn-
chronous interfacesoffering a set of predefined operations are used, whereas for
asynchronous communicationevent channelsfor the delivery of events are set up.

As the MIMO implementation itself is a distributed middleware application,
it makes use of middleware techniques to enable the communication between its
components. Independent of an actual MIMO implementation, nearly every mid-
dleware platform offers mechanisms for implementing synchronous interfaces and
event channels; therefore, the following considerations are still independent of the
concrete middleware taken for the MIMO prototype.

6.2.3.2 Synchronous Interfaces

Usually, interfaces are defined using an Interface Definition Language (IDL), which
lists all available operations and their parameters. Although some middleware plat-
forms allow the definition of interfaces with asynchronous operations, MIMO ex-
clusively uses interfaces with synchronous operations.
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Looking at the interfaces illustrated in the component diagram in figure 6.3,
the interfaces marked there denote any kind of communication facility, no matter
whether they are synchronous or asynchronous2. Within MIMO, synchronous inter-
faces are used to implement the following parts of the communication architecture:

2 Attach and detach operations:
For the tool-monitor interface and the instrumentation-monitor interface, the
operations for attaching a new tool or instrumented application component,
or for detaching such a component are carried out synchronously. This makes
sense because these operations are only executed once per tool or instrumen-
tation component, while they are not time critical.

2 Request operations:
Moreover, issuing new requests by a tool to the MIMO core is carried out
synchronously; depending on the type of request, either the result is returned
to the tool immediately, or a request identifier is given back if further results
will arrive through the event mechanism.

The monitor-monitor interface in the component diagram is completely im-
plemented without using synchronous interfaces, and for the instrumentation-
application interface, no statement about its design can be made here as it entirely
depends on details of the application.

6.2.3.3 Event Channels

Event channels are supported by most middleware platforms and provide a mecha-
nism for decoupling the communication between a supplier and a consumer. With
the event channel approach, suppliers obtain the possibility topushevents into the
event channel, which in turn delivers the events to consumers that are registered for
these events. As multiple subscribers can be attached to a single event channel, this
approach represents a mechanism for implementing a multi-cast system. Within
MIMO, event channels are applied for three cases:

2 Monitor-tool event delivery:
As mentioned above, tools may receive events from the MIMO core when
requests for certain events have issued.

2 Instrumentation-monitor interaction:
Except for the attachment and detachment operations, any further interac-
tion between instrumentation and monitor core is carried out asynchronously.
Events originating in the instrumented application are passed to the MIMO
core through a monitor-instrumentation event channel, and commands or re-
quests from the monitor core to the instrumentation are passed through an
instrumentation-monitor event channel.

2The term “interface” in the UML component diagrams is more general as it covers both syn-
chronous and asynchronous communication mechanisms; in our technical context, we speak of in-
terfaces only in the synchronous case.
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Asynchronous communication is in this case obligatory because the instru-
mentation is often integrated into the application process, which should not
be blocked in any case. As the event channel buffers incoming events for the
instrumentation until it pulls them from the channel, a minimal intrusiveness
can be guaranteed for the application with this proceeding.

A final, relevant aspect of event channels is that they can be used in anun-
typedmode, in which the type of event needs not be declared at development
time. Rather, events carry their own type description with them, enabling
to dynamically generate new event types during runtime. This is of crucial
importance as MIMO’s event model should be kept generic, which can be
guaranteed with our proceeding.

2 Monitor-monitor interaction:
A final usage scenario for event channels is the interaction between several
MIMO core instances. Here, requests or events need to be distributed among
the instances in order to carry out synchronisation or event ordering tasks.
As the MIMO core instances act independent of each other, asynchronous
communication is obligatory here, too.

Moreover, a benefit of event channels for this case is its multi-cast ability:
Whenever data need to be shared among all instances, a simple push operation
to the event channel enables the distribution of the data to all attached MIMO
instances. This is extraordinarily useful in our monitoring scenario, where
the number of active MIMO instances can vary in the cause of time. Without
using event channels, every instance would have to keep track of the living
instances, which would result in a rather high management effort.

To sum up, it can be seen that event channels enabling asynchronous communi-
cation are deployed within MIMO at several crucial positions where the decoupling
of communication partners is mandatory.

Altogether, synchronous and asynchronous communication paradigms comple-
ment one another within MIMO, such that administrative tasks are managed through
synchronous interfaces, while the dynamically evolving behaviour is handled by
event channels. We will come back to implementation aspects of our communica-
tion architecture during the description of the MIMO implementation in section 6.4.

6.2.4 Distribution and Assignment of MIMO Instances
During the description of the basic monitoring structure, the assignment of tools
and instrumentation components to MIMO instances has already been mentioned.
The assignment of an entity to a given MIMO instance has the effect that events
originating from this entity are always passed to its assigned MIMO instance, and
that it receives commands or requests from its MIMO instance; the assigned MIMO
instance therefore represents the entity’s direct communication partner. Now we
will present a comprehensive and formal analysis of this aspect, followed by several
application scenarios with practical relevance.
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6.2.4.1 Formal Description of Distribution Aspects

In general, in our monitoring environment a set of entities is monitored by a set of
MIMO instances. Here, questions concerning the distribution of MIMO instances
and the assignment of entities to these instances arise. Our approach to solve this
problem is to define a simple mapping between entities and MIMO instances, which
may be used flexibly according to the respective usage case.

Formal Model. For simplicity, the assignment of the entities to a certain MIMO
instance is determined by properties of a predefined layer�. Hence, letE be the set
of entities in layer�:

E = fe1; : : : ; ekg;

andM be the set of active MIMO instances:

M = fm1; : : : ; mlg:

The assignment of entities to MIMO instances defines a mapping ofE to M , such
that everymi in M monitors a set of entities�i with

�i = fei;1; : : : ; ei;kig;

whereei;j 2 E 8j 2 f1; : : : ; kig. As explained before, every entity inE is moni-
tored by a single MIMO instance, such that the following property holds:

8i; j 2 f1; : : : ; lg; i 6= j : �i \ �j = ;;

and every entity inE is monitored by exactly one MIMO instance:

lX

i=1

ki = k;

whereki represents the number of entities assigned tomi (for i 2 f1; : : : ; lg).
In addition to this model, other assignment strategies taking into account more

than one entity layer are imaginable, but no further profit arises from such an ap-
proach; we will therefore restrict our considerations to the simple case described
above.

Heuristics. As a precondition of this distribution strategy, a certain layer� has to
be distinguished for the assignment of entities to MIMO instances. This selection
can be influenced by many criteria that depend on the concrete monitoring environ-
ment.

However, in practice, a heuristics for our proceeding is to take the hardware
layer (i.e. the computational nodes) of the multi-layer monitoring model as the dis-
tinguished layer and run one MIMO instance per node. This heuristics guarantees
that entities are monitored by their local MIMO instance, which is in many cases
advantageous for performance reasons. Nevertheless, other assignment strategies
are possible and in some cases useful, too, as we will illustrate in the following
section.
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6.2.4.2 Example Scenarios

After having presented the formal background of the mapping of entities to MIMO
core instances, we will now show two examples for the practical usage of the model.

Central MIMO Instance. The first application scenario is shown in the UML com-
ponent diagram in figure 6.4. The example consists of two tools running on two dif-
ferent nodes, a single MIMO core instance running on a separate node, and two in-
strumented applications on two further nodes. The assignment of entities to MIMO
instances is trivial in this case, as there exists only one MIMO instance that manages
all monitoring activities.

Clearly, the MIMO instance in this case represents a potential bottleneck, espe-
cially when several instrumented applications are involved. For small monitoring
scenarios, this approach can be useful as only little effort is required to set up the
monitoring environment. For cases carrying out management tasks that generate
only few events and where latency is not critical, this approach is applicable, too.

MIMO Core

Tool 1 Tool 2

Applica tion

Instrumentation

Applica tion

Instrumentation

Figure 6.4 Deployment Scenario with Central MIMO

Distributed MIMO Instances. A second example is illustrated in figure 6.5. Here,
each of the two nodes executing instrumented application components possesses
its own MIMO instance, to which several tools are attached. This case represents
an example for the heuristics mentioned in the previous section, where nodes are
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used as the decisive entities for the assignment to MIMO instances and every node
executes an own MIMO instance.

This monitoring scenario is well suited for large environments, as no MIMO in-
stance becomes a potential bottleneck (except the case of a single node overloading
its local MIMO instance, which should not happen in any case). Nevertheless, net-
work traffic increases when the number of events that have to be distributed among
the MIMO instances is high. With our approach it is therefore less likely that nodes
get overloaded.

Tool 1

MIMO Core

Applica tion

Instrumentation

Tool 2 Tool 3

MIMO Core

Applica tion

Instrumentation

Figure 6.5 Deployment Scenario with Distributed MIMO

Summing up, our examples represent two extreme cases with either a complete
centralisation or a complete distribution of the monitoring tasks. Pursuing these
considerations, mixed scenarios combining both approaches are also imaginable
and useful. The result of such combinations are monitoring environments where
certain MIMO instances are responsible for a given set of nodes. The number of as-
signed components may e.g. depend on the expected effort needed to monitor these
components. Of course, the strategy for the distribution and assignment of MIMO
instances is a question arising during the set-up and deployment of the monitoring
system. Here, to minimise the monitoring overhead a trade-off between computa-
tion and communication overhead on the respective nodes has to be found. In any
case, the benefit of the MIMO approach is to enable its applicability to all kinds of
distribution cases.
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6.2.5 Summary
In this section, we have introduced the monitoring architecture of the MIMO sys-
tem, i.e. the software components and their potential physical distribution. The
basic architecture relies on a three-tier model with the components tools, MIMO
core, and instrumentation.

The monitoring architecture fulfils the requirement for a generic monitoring in-
frastructure, as it defines a core framework, and because it is flexibly usable and
configurable for a wide range of application scenarios. The interfaces within the
system are based on synchronous interfaces and event channels, both of which are
kept generic and not restricted for a certain usage case. Moreover, the MIMO core
represents the central component for the implementation of the multi-layer moni-
toring model, on which the overall MIMO approach is based.

What remains to be solved is a coordinated development process for tools and
instrumentation components. As we have shown, this requirement can be derived
from the event semantics that has to be defined according to the respective tool sce-
nario. The solution to this issue lies in a systematic tool development methodology,
which we will present in the next chapter.

6.3 MIMO Access and Usage
After discussing the general monitoring architecture of the MIMO approach, we
will now describe the access and usage of MIMO from the tool and instrumentation
point of view.

Furthermore, from now on we will describe our concrete implementation of the
MIMO prototype, which is based on the CORBA. Data types, interfaces, and event
channels are therefore specified using the CORBA interface definition language
(IDL). Of course, an implementation could also make use of a different middleware
platform as long as it supports synchronous interfaces and event channel mecha-
nisms. The transformation of the CORBA description to another middleware is
straightforward.

6.3.1 Entity Definition
A foundation for the interaction between all participating components is the de-
scription of the entities defined in the multi-layer monitoring approach. Figure 6.6
shows the CORBA IDL specification of the entity notion. Every entity is deter-
mined by its type and its identifier; the type can be any layer from the MLM model
and the identifier in its general shape is represented by a string. Within MIMO, it
is assumed that identifiers are globally unique. This condition holds for most mid-
dleware platforms, where object references are introduced; if proprietary identifiers
are used here, the instrumentation has to take care of their uniqueness.

For cases, where a set of entities is passed as a parameter, the type for an entity
list can be used; the CORBA sequence allows to pass a list of arbitrary length here.

Another basic specification treats the exceptions that MIMO can throw while
processing its requests. For this purpose, the typeMIMOException is introduced
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module MIMO {
enum EntityType { E_Appl, E_Interface, E_Object,

E_Impl, E_Runtime, E_Node };

typedef string EntityID;

struct Entity {
EntityType etype;
EntityID eid;

};

typedef sequence<Entity> EntityList;
};

Figure 6.6 Entity IDL Definition

and catches possible errors.

6.3.2 MIMO Core Start-Up
Before any tool or instrumented application can make use of the MIMO system,
the monitoring environment needs to be set up and started. As we have seen in the
previous section, the distribution and assignment of MIMO core instances is very
flexible and can be selected according to the respective application scenario. We
will discuss details concerning these aspects in chapter 7.

Independent of the distribution of MIMO instances, tools and instrumentations
need to find a MIMO instance when being started. For this reason, the CORBA
Naming Service [OMG2000b] is used as a central point for looking up active MIMO
core instances. The first MIMO core that is started creates a naming context for the
MIMO system, where all MIMO instances register themselves. Here, every regis-
tration contains the name of the host where the MIMO instance is being executed,
allowing tools and instrumentations to select a MIMO instance on their local host
(if it exists); this proceeding simplifies the heuristics described in section 6.2.4,
whereas other selection strategies might cause more effort.

With this start-up procedure, it is ensured that every tool or instrumentation is
able to find a MIMO instance to become attached to. Of course, further activities
are necessary at the start-up of the MIMO environment, but we will present imple-
mentation details – e.g. the installation of the event channel for monitor-monitor
communication – later in section 6.4; here we will only concentrate on aspects im-
portant from the tool and instrumentation point of view.

6.3.3 Tool View
Tools communicate with the MIMO core through the tool-monitor interface and
through the monitor-tool event channel. Figure 6.7 shows IDL specification of the
tool-monitor interface, which serves as the entrance point for any tool-monitor in-
teraction. The operations offered by this interface cover attachment and detachment
of tools. as well as request processing functionality.
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module MIMO {
interface ToolMonitor {

ToolID attach(in string tname,
out CosEventChannelAdmin::EventChannel evch)

raises(MIMOException);

void detach(in ToolID tid)
raises(MIMOException);

long request(in RequestName rname,
in EntityList elist,
out any result)

raises(MIMOException);

RequestID start_request(in ToolID tid,
in RequestName rname,
in EntityList elist)

raises(MIMOException);

long stop_request(in RequestID rid)
raises(MIMOException);

};
};

Figure 6.7 Tool-Monitor Interface

6.3.3.1 Attachment and Detachment

To start a monitoring session, every tool needs to be attached to a MIMO instance.
For this reason, it has to query the naming service and get an object reference of
a MIMO core according to its selection strategy. In order to simplify this process,
there are helper packages for several programming languages, which we will ex-
plain in more detail in the implementation part.

Once the tool keeps a reference of its chosen MIMO instance, it calls theattach
operation to indicate its existence. As a parameter, the tool’s name is passed to
MIMO; this name can be user-defined and has no further relevance, except that
MIMO is able to display a list of attached tools. The result of the operation is a
tool identifier that is unique for this MIMO instance and an event channel through
which events are passed back to the tool.

The event channels within the MIMO prototype make use of the CORBA Event
Service [OMG2000a]. Using the event channel, the tool is able to subscribe its
events in various ways; most importantly, it can implement a push- or pull-style
consumer, receiving events either immediately or on demand by polling the channel.

To indicate the end of a monitoring session, a tool has to call thedetach oper-
ation. Upon that, the MIMO core destroys the event channel and cancels all active
requests for that tool.

6.3.3.2 Requests

The most important operations of the tool-monitor interface are the two request
operations for synchronous or asynchronous tasks.
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Therequest operation is used for synchronous queries about the current system
state. The input consists of a request name and a list of entities upon which the
request should be applied. The result of this operation is of the CORBA typeany ,
which is a generic type that can hold any kind of data. This type of data contained
in the result is determined according to the respective request. For example, if the
request queries all active entities in a given layer, the result is a list of these entities,
packed up in the CORBAany . Requests supported by the MIMO prototype are
only queries for the system state, while the rest of functions is handled through
event-based requests.

Thestart_request operation works similarly to the synchronous operation, but
receives a request identifier as a result instead of the CORBAany . If relevant
events for the request occur, they are sent through the monitor-tool event channel
with the respective request ID, which is needed by the tool in order to determine
the appropriate request. Thestop_request operation finally terminates an active
asynchronous request.

6.3.3.3 Tool Lifecycle

Summing up, a tool’s lifecycle can be illustrated with the UML sequence diagram in
figure 6.8. After an initial attachment, an arbitrary number of requests can be issued,
where results are given back either synchronously or through the event channel. The
detachment operation finally terminates the tool lifecycle.

6.3.4 Instrumentation View
The communication between instrumentation components and the MIMO core is
handled by the instrumentation-monitor interface and two event channels for further
asynchronous interaction. Figure 6.9 shows the instrumentation-monitor interface,
which only provides the two operations for attaching and detaching an instrumented
application component.

6.3.4.1 Attachment and Detachment

The attachment works similar to the tool attachment described above. After fetch-
ing an object reference of the MIMO core, theattach operation is called. In this
case, two event channels are set up: The instrumentation-monitor event channel
for delivering events to the monitor, and the monitor-instrumentation event channel
for sending commands or requests to the instrumented application. As explained
before, events from the monitor core to the instrumentation need to be passed asyn-
chronously in order to leave the decision about the processing modalities to the
instrumentation, which tries to perturb the running application as little as possible.

Like before, the detachment of an instrumented application is announced
through thedetach operation, which takes the instrumentation’s ID as a parameter.
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: MIMO Core: Tool

attachTool
start−up

request or
start_request

*
return events
for RID

detach
Tool
terminates

return RESULT
or 
return RID

return TID

Figure 6.8 Tool Lifecycle

6.3.4.2 Event-Based Interaction

The event-based interaction through the two event channels between MIMO core
and instrumentation is twofold:

2 Firstly, general events that are important for the overall system state are
passed any time from the instrumentation to the monitor core, without being
explicitly requested. Such events concern mainly the creation of new entities,
or the deletion of existing entities.

In order to keep track of the current system state, the MIMO core needs to be
informed about such actions in any case. With these data, the graph describ-
ing the multi-layer monitoring oriented view on the observed system can be
constructed; this graph therefore serves as a basis for further requests to cer-
tain entities describing the system state. Of course, the syntax and semantics
of these events needs to be predefined because the static MIMO core has to
be able to analyse them.
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module MIMO {
interface InstrumentationMonitor {

InstrumentationID attach(in string iname,
out CosEventChannelAdmin::EventChannel ievch,
out CosEventChannelAdmin::EventChannel mevch)

raises(MIMOException);

void detach(in InstrumentationID iid)
raises(MIMOException);

};
};

Figure 6.9 Instrumentation-Monitor Interface

2 Secondly, events containing requests about specific entities can be sent from
the monitor core to the instrumentation. Such events may contain queries
about further properties of entities, or issue commands to be executed by the
instrumentation. If a response is necessary, the instrumentation sends back
an event enclosing the results for a preceding query. The content of these
events cannot be predefined because it depends on the application and the
capabilities of the respective instrumentation.

To implement this approach, it is necessary to define a general event format
that allows to pass any kind of data between instrumentation and monitor, with-
out predefining the semantics of all possible events. Therefore, MIMO uses the
generic event format shown in figure 6.10 to pass events between instrumentation
and monitor core. Every event contains a request identifier that is used to refer to

module MIMO {
struct InstrumentationEvent {

RequestID rid;
long long time; // time of event
string etype; // type of event
any description; // description of the event

};
};

Figure 6.10 Instrumentation Event Definition IDL

a certain request to which this event is a response; for general events (that have no
corresponding request) this identifier is zero. Furthermore, every event contains its
occurrence time, a string describing its type, and a generic CORBAany with its
description.

For general events like the creation or deletion of entities, the type and content
of the description are predefined in order to enable the MIMO core to analyse and
update its system state. Other event types are not touched by MIMO, but passed
on to tools interested in these events. Those tools have to be able to analyse the
content of the description due to additional agreements that are made in the context
of a coordinated tool and instrumentation development. Moreover, the capabilities



104 CHAPTER 6. MIMO ARCHITECTURE AND IMPLEMENTATION

of the respective instrumentation highly depend on implementation details of the
application, such that in some cases different components of the same application
may exhibit different functionality; therefore, a valid response to a query may also
contain the non-availability of a requested feature.

6.3.4.3 Instrumentation Lifecycle

Recapulating the lifecycle of an instrumentation yields the UML sequence diagram
in figure 6.11. The initial attachment after application start-up is followed by any
number of events originating in the instrumented application, or by requests or com-
mands coming from the monitor core.

: MIMO Core: Instrumentation

attachApplication
start−up

*
send events

*
requests / commands

detach
Application
terminates

return IID

Figure 6.11 Instrumentation Lifecycle

6.3.5 Example
Figure 6.12 shows an example of the collaboration of tools, MIMO core, and in-
strumented applications. After starting up a MIMO core, two applications attach
to MIMO and receive their identifiers. During application runtime, two applica-
tion entitiesO1 andO2 are newly created and announced to MIMO by sending the
appropriate events.

A subsequently started tool usually proceeds as follows: First, it queries MIMO
about the current system state, i.e. the entities existing within a specific abstraction
layer of the layer model. In our example case, the tool issues aget_objects



6.3. MIMO ACCESS AND USAGE 105

request that queries the entities on the object level of the multi-layer monitoring
model. Accordingly, MIMO returns the two known entitiesO1 andO2 to the tool.

MIMO Core: Too l

attach

detach

return TID

:  Instr−1

attach

new_entity(O1)

   new_entity(O2)
request( get_objects )

O1, O2

start_request( get_load(O2) )

   event(EID=1, get_load)

:  Instr−2

attach

  event(1,get_load,0.25)
event(1,load=0.25)

RID = 1

Figure 6.12 Usage Example

Now, the tool can issue further requests concerning the entities known to the
system. Our example tool queries entityO2 for its load by sending the request
get_load for O2 to MIMO. As this is no basic request concerning the system
state, it is initiated asynchronously, such that MIMO generates and returns a request
identifier to the tool and forwards the request to the respective instrumentation for
O2, again with an identifier for its request to the instrumentation.

The instrumentation now measures the required data and sends an event with
the appropriate event identifier back to MIMO, which in turn returns the event with
the respective tool request identifier to the tool. Usually, as the request was started
asynchronously it would have to be stopped again, but for our example we assume
the semantics of ourget_load command only to return it once and terminate
automatically.

An important aspect that can be seen in this example is the coordination between
tool and instrumentation. Except for basic event types, tool and instrumentation
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need to agree on the syntax and semantics of events in order to cooperate with each
other. This point will be intensified with our tool development methodology in
chapter 7.

6.3.6 Summary
This section was devoted to the access and usage of the MIMO system. We have
illustrated the interfaces for both tools and instrumented applications, as well as
mechanisms for asynchronous event-based communication. Furthermore, we have
shown the basic usage patterns that describe the common proceeding for using
MIMO.

The benefit of MIMO lies in its applicability for very diverse scenarios because
only few predefined requests and events for updating the system state are required,
whereas any kind of user-defined request and event type can be dynamically in-
troduced into the system. With respect to our requirements defined in chapter 4,
this allows to build a flexible and extensible monitor that is able to systematically
integrate different request and event types.

6.4 MIMO Implementation
In this section, we will describe further details of our prototypical MIMO imple-
mentation [RLRS2000]. As already indicated, this includes organisational aspects
of the start-up process of the MIMO environment and internals of the MIMO core
implementation, as well as implemented tools and instrumentation components.

The MIMO core description concentrates on internal data structures, request
and event processing procedures, and distribution aspects. The tool description
mainly covers our MIVIS tool framework, while for the instrumentation side the
focus lies on the integration of the CORBA and DCOM middleware, as well as
Java applications. Finally, we will conclude with performance considerations of
our MIMO prototype.

6.4.1 MIMO Core
Here we are describing MIMO’s start-up procedure, its internal data structures,
its request and event processing policies, and synchronisation and event ordering
mechanisms. The prototype of the MIMO core is completely implemented in Java,
thus allowing it to be executed on nearly any operating platform.

6.4.1.1 Start-Up Procedure

Our monitoring environment is highly dynamic due to the flexible distribution
of MIMO instances and the dynamic attachment and detachment of applications.
Therefore, a method to look up and connecting to MIMO instances is needed for
tools and instrumented applications.

Naming Service and MIMO Registration. As already mentioned, the CORBA
Naming Service is used for looking up active MIMO instances. However, in our
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dynamic context this is not sufficient for solving our initialisation problem: In order
to connect to the CORBA Naming Service, tools and instrumentation components
need to know its object reference (IOR). As this IOR may vary in the cause of time
when the Naming Service is restarted or migrated to another host it cannot be used
as a static entry point for components that wish to look up MIMO. The solution
to this problem is the introduction of another abstraction level for initialising the
system: When the Naming Service is started on a given machine, it makes use of
a WWW server to register its IOR under a predefined and static URL (Uniform
Resource Locator). Clients wishing to know the IOR of the Naming Service can
then contact the WWW server and query the IOR with a fixed URL. With this IOR,
they can connect to the Naming Service and receive the object references of MIMO
instances.

Once the Naming Service is started and its IOR can be queried from the WWW
server, every MIMO instance that is started registers its IOR under the MIMO nam-
ing context; as a key, the machine name where the MIMO instance is being executed
is taken. Hence, tools or instrumented applications can query the MIMO naming
context and get a list of all active MIMO instances with their respective host names.
With this information, they can select a MIMO instance to attach to according to
their policy; for example, as mentioned before, they might take a local MIMO in-
stance if it exists.

Setting Up the Monitor-Monitor Event Channel. A monitor-monitor event
channel is needed for the communication between the active MIMO instances.
Therefore, the first MIMO instance that is started up creates this event channel and
registers it under the MIMO naming context. Every subsequent MIMO instance can
then query this event channel and announce its existence to the other instances.

6.4.1.2 Internal Data Structures

The relevant internal data structures existing within every MIMO instance are the
system state, the tool list, the instrumentation list, and the request list.

System State. Every MIMO instance stores a graph of all existing entities within
the observed environment with respect to the multi-layer monitoring model. As said
before, events indicating the generation or destruction of entities are broadcast to all
MIMO instances through the monitor-monitor event channel, so that every instance
can incrementally update its system state. When a MIMO instance starts up, it can
receive the current system state by requesting it through a special event that is sent
to the monitor-monitor event channel. Any active instance can then answer this
request to initialise the new MIMO instance; a simple heuristics is to take the first
MIMO instance that set up the monitor-monitor event channel as the reference to
answer such initialisation requests.

Tool and Instrumentation List. Obviously, every MIMO instance has to store
lists of tools and instrumented applications attached to it. In addition to the respec-
tive identifiers, a list of the event channels used for interaction with these compo-
nents is also stored.
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Request List. As described above, there are two kinds of requests that may be
issued by a tool. Synchronous requests concerning the current system state are
processed by MIMO immediately and need not be stored. Asynchronous requests,
however, for which events might be delivered later need to be stored in the request
list of the concerned MIMO instances.

6.4.1.3 Request and Event Processing

The two kinds of requests that can be issued are synchronous (ad-hoc) requests
and asynchronous requests. From the MIMO core’s point of view, processing these
requests is quite different.

Synchronous Requests. MIMO immediately answers synchronous requests and
blocks the tool until it delivers the response, which is passed back as the result to
the operation call. Such requests can only query the current system state and do not
imply further operations on instrumentation components. Therefore, they need not
be stored in the request list because no events for them may originate later.

The fundamental operation for querying the system state has to implement the
algorithm for detecting related entities described in section 5.1.6.3. The basic prob-
lem here is to return the set of entities on the given layer that are related to a set of
input entities on any other layer. As the system state is incrementally updated when-
ever entities are created or destroyed, the application of the algorithm is straight-
forward.

Asynchronous Requests. Asynchronous requests cause much more effort for
the MIMO core. As a result of such requests, a request identifier is returned to the
tool and the request is stored in MIMO’s request list. The request itself is passed
to the concerned instrumentation components, which in turn pass results back to
MIMO by means of events. Whenever an event for an active request in the request
list occurs, it is passed back to the respective tool.

Unfortunately, requests may not only concern entities that are controlled by the
local MIMO instance, but remote entities may also be affected, which makes it
necessary to distribute the requests among all active MIMO instances. The resulting
procedure for processing an incoming asynchronous requests is as follows:

1. Every request is stored locally in the request list and the request is passed to
corresponding local entities.

2. The local MIMO acts as the root MIMO for this request and sends the request
to the monitor-monitor event channel to inform all other instances about it.

3. Every remote instance checks whether its local entities are concerned by the
request when the request comes in through the event channel. If there are
concerned entities, the request is passed to them and stored in the request list.

4. Whenever an event for the request at the root MIMO occurs, it is passed to
the tool through the monitor-tool event channel.
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5. Whenever an event for the request occurs at a remote MIMO instance, it
passes the event to the monitor-monitor event channel.

6. Events coming in from the monitor-monitor event channel are only processed
by the root MIMO that has an appropriate entry for this request in the request
list; all other instances will discard it.

The benefit of this approach is that only one event channel is required for the
interaction among the MIMO instances. The amount of events passed through the
monitor-monitor event channel can be high if there are many requests, but this so-
lution represents a trade-off between the number of messages and the amount of
data that needs to be stored by each MIMO instance. Here, further optimisations
concerning the network traffic and MIMO load may be integrated.

State Change Events. In addition to events generated as response to active re-
quests, there are general events concerning the system state. Therefore, every in-
strumentation component automatically generates events for the creation or destruc-
tion of entities. These events are always passed through the monitor-monitor event
channel in order to make it possible for every MIMO instance to update its system
state.

Tools are not necessarily informed about these events because they generally
query the system state synchronously. Nevertheless, if a tool wishes to be informed
about changes in the system state, it can issue an asynchronous request for the
creation and destruction events.

6.4.1.4 Synchronisation and Event Ordering

As our monitoring environment is distributed, the synchronisation of the clocks and
the ordering of the events ([LS1994], ch. 3) has to be taken into account for the
implementation of MIMO. According to [Lam1978], a system is considered dis-
tributed if the message transmission delay is not negligible compared to the time
between events in a single process. In such a system, time stamps are in general
not sufficient for correctly ordering the events because the clocks of different com-
ponents may deviate from each other. To solve this problem, there are several ap-
proaches that can be implemented within MIMO.

Clock Synchronisation using the Network Time Protocol. A first and simple
approach to order the events is to make use of the Network Time Protocol (NTP)
[Mil1992]. With this protocol, the clocks of distributed computers can be synchro-
nised across the Internet with an accuracy of one millisecond.

The advantage of NTP is that it exists for nearly all operating systems and that it
is easy to install and use. No additional measures within MIMO need to be carried
out because the clocks generating the time stamps are synchronised. However, the
drawback of NTP is that it does not ensure a correct ordering of events:

2 Firstly, for applications where deviations of one millisecond are of importance
its accuracy is not sufficient.
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2 Secondly, synchronising the clocks is not sufficient to guarantee a total order-
ing of events.

In practice, though, synchronising clocks with the Network Time Protocol is often
sufficient; thus, our current MIMO prototype relies on NTP synchronised clocks
within the monitored environment and does not take additional measures to order
the events.

Implementing an Event Ordering Algorithm. If a partial or total ordering of
events within the monitored environment is indispensable, an additional algorithm
has to be integrated into the monitoring system. For this purpose, several algorithms
have been proposed ([Gos1991], ch. 6). The approaches are either centralised or
distributed, and make e.g. use of time-based event ordering or token passing mech-
anisms. Elementary examples for distributed, time-based algorithms are those of
Lamport [Lam1978] and Ricart and Agrawala [RA1981]. Both of them are able to
reach a total ordering of events, but need to exchange3(N�1) and2(N�1) (where
N is the number of participating nodes) messages for every event.

Another algorithm for implementing a virtually synchronous system is the
CBCAST algorithm used within the ISIS system [BJ1987], with which a consis-
tent time order is reached by introducing vector clocks. With the ISIS approach,
the order in which events are perceived is equal for all participants, and causally
connected events are ordered according to their dependencies. The algorithm for
obtaining this ordering works as follows:

1. Every participant within the system is assigned an identification number and
a state vector.

2. Every participant stores a state vector containing the number of the last mes-
sage being received from every other participant.

3. If any participant wants to send a message, it increases its message number
by one and sends its complete state vector with the message to all other par-
ticipants.

4. If a new message arrives at any participantP , it has to check two conditions
to receive it:

2 First, all preceding messages from this sender must already have been
received.

2 Second, it has to be assured that all messages that the sender has already
received from any other participant have also been received byP .

These conditions can be checked by using the state vector sent with the mes-
sage. If they are fulfilled, the message can be received, and if not, it has to be
delayed until the conditions are fulfilled after the reception of other messages.

The advantage of the algorithm is that causal connections are always reflected
in the event ordering, while the number of messages to be sent for every event



6.4. MIMO IMPLEMENTATION 111

is N � 1. For example, this is important when two events for the sending and
receiving of a remote method call are generated; if the monitoring system perceived
the second event before the first event, additional effort would be needed to solve
this inconsistency.

The disadvantage of the algorithm is that it requires the exchange of the state
vectors with every event, which causes a considerable overhead. Another disad-
vantage of all such ordering algorithms is that every event needs to be distributed
to every other participant. However, with our MIMO prototype, the second prob-
lem would not occur because events can easily be broadcast through the monitor-
monitor event channel.

Finally, a third problem within MIMO would be caused by the fact that the
number of participants varies over time because of the dynamic nature of our en-
vironment. Therefore, additional measures adapting the algorithm for a varying
number of participants would have to be integrated. This would increase the over-
head further as for every new participant a synchronisation message announcing its
existence needs to be broadcast to all participants.

Using the CORBA Time Service. Another approach to synchronise clocks or
to implement an event ordering mechanism is to use the CORBA TimeService
[OMG2000c]. A useful scenario for implementing clock synchronisation is the
Timer Event Service described in the TimeService specification. The components
participating in this scenario are as follows:

2 A logical Timer Event Service object generates the actual time values.

2 These time values are sent to Timer Event Handler objects through push-style
CORBA event channels.

2 Actual Timer Events are attached to the Timer Event Handlers, which allow
to set timers and trigger the events in case of occurrence.

The resulting structure of the TimeService is shown in figure 6.13. This archi-
tecture of the TimeService can be used to build a synchronisation system for the
clocks. Unfortunately, currently only few CORBA implementations like e.g. MICO
[PR2000] support the CORBA TimeService, prohibiting its deployment for most
environments. Moreover, the initial Request-for-Proposal (RFP) for the CORBA
TimeService also contained suggestions for event ordering mechanisms, but these
were not included in the final specification. Thus, the ordering problem can only be
solved by an implementation of the algorithm outlined in the previous paragraph.

To sum up, it can be seen that clock synchronisation can be achieved using
several approaches, but no total event ordering can be reached without manually
integrating a costly algorithm that introduces vector clocks. Therefore, the cur-
rent MIMO prototype relies on NTP synchronised clocks, while the usage of the
CORBA TimeService to synchronise the clocks could also be integrated if no NTP
is available in an actual environment.
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Figure 6.13 CORBA TimeService

6.4.2 Tools
Tools making use of the MIMO system can be very diverse due to the complex
nature of monitoring scenarios. MIMO only requires tools to make use of the stan-
dardised interfaces to access its functionality, but beyond this, no restriction is given.
As an example tool, we here illustrate the MIVIS visualisation tool, which has been
developed together with the MIMO prototype.

6.4.2.1 MIVIS Visualisation Tool

The MIVIS visualiser [Rud1999] represents a basic tool for demonstrating the
multi-layer monitoring approach of MIMO. Above all, its capabilities within com-
plex heterogeneous environments – where scalability and a uniform view on the
observed system are important – are shown.

On the one hand, MIVIS is based on the analysis of other visualisation ap-
proaches like VISTOP [Bra1994], DePauw [dPHKV1993], and CORBA-Assistant
[Fra1997]. The main requirements resulting from this analysis are scalability, un-
complicated extensibility, platform independence, an ergonomic user interface, and
the possibility of having several displays at a time. On the other hand, the visu-
alisation tool should comply with the multi-layer monitoring approach in order to
support its advantageous usage.

MIVIS Concept. The general problem of visualisation is scalability because huge
amounts of data have to be presented in a way that allows the observer to keep track
of the information offered. Thus, it has to be possible to reduce data by means of fil-
tering mechanisms. MIVIS realises this reduction by using its selection mechanism
that provides a kind of filtering based on the multi-layer monitoring model.
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Figure 6.14 shows a screenshot of the MIVIS tool. All entities in the monitored
application are shown inside the selection frame. Each layer of the multi-layer mon-
itoring model is represented in one tab of a tabbed pane. The user can select entities
within the different layers and thus control the granularity of the visualisation. To
gain an overall insight, monitoring the system on the application layer or the hard-
ware layer can be carried out without exposing any details. To get more insight into
the internals of the application the user can pick out a few interesting entities and
go up or down to adjacent layers to get more detailed information.

MIVIS Displays. Up to now, the three display types text display, scroll display,
and call frequency display have been implemented:

2 The text display prints out the events that are monitored in plain text, which
can basically be used for logging purposes; details that might not be visible
in a graphical display can be looked up here at a later time.

2 The scroll display visualises communication between entities. The selected
entities are displayed on the y-axis in a coordinate system. The x-axis shows
the time. When an entity communicates with another entity, an arrow between
the two is shown in the coordinate system.

2 The call frequency display visualises communication in a different way: Only
cumulative data containing the number of calls are of interest and thus shown
as a vertical beam for each caller and for each called entity.

These displays only represent fundamental aspects of an application that might be
of interest, while others can easily be added depending on the respective monitoring
scenario.

6.4.2.2 A Tool Framework Based on MIVIS

When we look at a set of common tools for distributed systems, it is remarkable
that a given amount of basic functionality is present within most tool sets. This
includes for example the basic visualisation capabilities for gaining an overview
of the observed system, or logging functions. Beyond this, tool functionality can
be very diverse and highly depend on the type of tool and middleware. Hence,
as we wish to build tools for heterogeneous middleware with our approach, a tool
framework offering these basic functions on the one hand, and being dynamically
extensible with any kind of tool plug-ins on the other hand, results to be profitable.
Especially for GUI tools, basic visualisation capabilities are needed in almost any
case and serve as a starting point for further functions.

Within MIMO, due to its design and implementation concept MIVIS can serve
as such a kind of environment with respect to the construction of GUI-based tools.

A Tool Framework Using JavaBeans. As MIVIS is completely implemented in
Java, platform independence and portability is given, which represents an important
criteria for a universal tool framework. To fulfil the requirement of uncomplicated
extensibility of the framework, it is split into a main program and several JavaBeans
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Figure 6.14 MIVIS Screen Shot

[Ham1997] software components. The main program takes care of the communi-
cation with MIMO and the processing of the data, and the JavaBeans take over the
graphical presentation.

All JavaBeans are discovered by MIVIS at startup time and are dynamically



6.4. MIMO IMPLEMENTATION 115

integrated into the GUI. If a different type of display is needed, a user can inte-
grate that display type using Java and turn it into a JavaBean. This component is
placed into a specific directory intended for MIVIS to find and use it. With this
approach, the main program does not have to be changed or recompiled at all, the
only requirement is that the JavaBean implements a minimal interface that enables
the main program to communicate with the bean.

The bean-specific properties can be set by the user, while MIVIS knows about
these properties by means of the introspection mechanism and provides editors to
change the settings of these properties. Additional editors for properties of a special
data type can be placed inside the JavaBean and used instead of the standard editors.
All properties together with their editors are shown inside the Option Frame, where
MIVIS allows the user to edit properties unknown to the framework at compile-
time. This approach offers a very dynamic and flexible way to configure the be-
haviour of various display types; the concept of separating the display types from
the main program makes it very easy to generate new display types for MIVIS with-
out the need of changing the original code.

Consequently, adding new tool functions is possible by simply implementing
a new JavaBean that offers a minimal interface for the MIVIS framework. Sub-
sequently, it can make use of the complete MIVIS features, including intelligent
selection mechanisms and standard properties; therefore, this “plug-in” approach
enables an efficient usage of the MIVIS framework.

Summing up, MIVIS represents a basic visualisation tool for applications mon-
itored by MIMO and additionally serves as a framework for integrating further tool
functions depending on the actual deployment scenario. This concept provides a
major contribution to the tool development methodology that will be presented in
chapter 7.

6.4.3 Instrumentation
The instrumentation of applications can be implemented in a great variety of ways.
A taxonomy of existing instrumentation strategies can be found in [MBBD1999].
In this section, we are presenting three examples of the integration of common
middleware platforms.

6.4.3.1 Intruders and Adapters

For our MIMO implementation, two general approaches of instrumentation can be
distinguished according to the transparency with respect to the instrumented appli-
cation.

2 Intruders are instrumentation components that are transparently integrated
into the monitored application. Such instrumentation can be implemented on
different transparency levels: Transparency can either mean that the appli-
cation programmer does not need to integrate code into the application, but
the source code gets preprocessed before it is compiled in order to add mon-
itoring code, or, on a higher transparency level, the compiled application is
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instrumented without recompilation by means of library or operating system
instrumentation. In our case, we only define intruders as components that do
not require manual instrumentation of the source code.

2 Adapters in contrast are instrumentation components that are non-
transparently integrated into the application. They can e.g. be implemented
by inserting additional monitoring code into the application, which are then
prepared for further monitoring from the beginning.

Subsequently, we will present two intruders for the CORBA and DCOM mid-
dleware, followed by a generic Java adapter that is suited for any kind of Java-based
middleware.

6.4.3.2 CORBA Intruder

The CORBA intruder for MIMO applications [Ort1999] is able to transparently
monitor CORBA applications written in C++. It relies on the instrumentation of
CORBA implementation libraries [Lev1999] that are linked to the actual application
components; in these libraries, CORBA method calls are wrapped by instrumen-
tation methods, which interact with the MIMO core and then invoke the original
method.

Implementation for ORBacus. Our prototypical intruder is implemented using
the ORBacus C++ ORB [Obj2000]. It does not create a separate thread for the in-
strumentation, so that interaction with the MIMO core is only possible at positions
where instrumented methods are called from within the application. Among the in-
strumented CORBA methods are functions indicating the creation and destruction
of CORBA objects, as well as communication methods allowing to detect the inter-
action of different CORBA objects. As our instrumentation resides on the CORBA
implementation level, both client- and server-side calls to CORBA functions can be
detected, which is hardly possible with most existing CORBA monitors.

Micro-Benchmarks. To measure the overhead of the instrumentation caused by
the CORBA intruder, several micro-benchmarks describing the behaviour of im-
portant CORBA method calls have been carried out. Major CORBA methods to
be observed are those indicating the creation or destruction of objects and com-
munication among objects. To evaluate the performance, several scenarios with a
varying number and location of MIMO instances for the participating components
have been used. Figure 6.15 summarises the results with average values from the
different monitoring scenarios3. The measured values represent the time needed
for calling object creation, object deletion, and interaction methods, either with or
without the instrumentation ([Ort1999], ch. 6).

The average overhead shown in the diagram is about 80% for creation and dele-
tion of CORBA objects and approximately 60% for interactions between objects.

3The measurements were carried out on single processor 300 MHz Sun Ultra-10 workstations
with 192 MB, the Solaris 2.6 operating system, connected through a 100 MBit Ethernet network.
The ORBacus version used for the experiments was ORBacus 3.2.
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Figure 6.15 CORBA Intruder Overhead

These overhead values are relatively high because for most CORBA method calls,
an additional call to the MIMO instance is necessary. As this call is implemented
using the same middleware as the observed application, it is not negligible com-
pared to the original invocation time. However, for most applications, the overhead
caused for creation and deletion operation is not critical because such operation are
not carried out frequently. For interactions, in contrast, this overhead may cause
serious delays for the applications. Therefore, this proceeding is not applicable for
situations with a high number of monitoring events.

Nevertheless, these measurements represent values collected with our non-
optimised implementation; the overhead can therefore be decreased by setting up
local MIMO instances for performance critical applications components, and by
intelligently monitoring the application in order to minimise the number of events
sent to MIMO.

6.4.3.3 DCOM Intruder

For monitoring DCOM applications, a DCOM intruder [Süs1999] has been devel-
oped. Generally, there are various possibilities for retrieving data from DCOM
applications that can be integrated. For our prototype, we have implemented an
approach that relies on wrapping DCOM objects with a universal object wrapper.

Implementation of the DCOM Intruder. The wrapping process used for our
DCOM intruder makes use of an interception framework that is based on auniversal
delegator[Bro1999a], [Bro1999b]. With this delegator, calls to DCOM interfaces
are passed to a delegator hook for monitoring purposes before delivering them to
the original object. Our DCOM intruder uses this technique for passing calls to ob-
served objects to a COMService that contains the local monitoring component. The
COMService is implemented as a Windows NT service that runs with one instance
on every monitored machine. It encloses a COMLog component for processing
the events and a COM-CORBA bridge component that transforms the data into the
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format required by MIMO.

Performance. The outlined implementation already suggests a high overhead of
this instrumentation approach, as it comprises internal COM communication with
an additional data transformation to CORBA. Figure 6.16 illustrates performance
data showing the overhead of the DCOM intruder for local and remote DCOM
method invocations. The test case consists of a local or remote caller invoking a
method on a machine running a DCOM object that is observed by our COMService,
where also a local MIMO instance is present4. The measured times are for 20
subsequent calls to the monitored object.
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Figure 6.16 DCOM Intruder Overhead

The resulting overhead for remote calls is approximately 90% for remote calls
and 870% for local calls. While for remote calls the overhead is still acceptable, our
approach is not feasible for observing local COM calls. As already indicated, the
main reasons for the poor performance are the frequent local inter-process COM
calls and the additional overhead for transforming the data to CORBA calls for
MIMO. In the local case, the percental overhead is unacceptably high because local
COM calls are optimised by the COM runtime libraries, whereas our transformation
to CORBA and the subsequent communication with MIMO are not optimised for
local usage.

Nevertheless, several optimisations are possible for improving the performance
of our DCOM intruder:

2 First, the universal delegator used for implementing the object interception
mechanism is designed for very general applicability and could be optimised
by deploying it without separating the delegator and COMLog component by
COM interfaces, which introduce an additional abstraction level.

2 Second, our COM-CORBA bridge is relatively primitive and does not include
any optimisations for data conversion. Integrating a sophisticated COM-
CORBA bridge here yields considerable performance improvements.

4The machine used for the test case was a PC with a 266 MHz Pentium II processor, 128 memory,
running Windows NT 4.0; the network connection was a 10 MBit Ethernet.
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2 Third, COM+ [Pla1999] – the successor of COM – provides an extended
support for monitoring and managing COM applications. Therefore, applying
the universal delegator for wrapping COM objects will lapse in any case.

Hence, if we take these criteria into account for further performance improve-
ment, monitoring DCOM applications with the DCOM intruder represents a feasi-
ble approach with certain limitations. For management tasks or object supervision
tasks where events occur rather infrequently, the DCOM intruder can be applied
smoothly. For high-performance computing scenarios or performance critical tasks,
additional effort is necessary for reducing the overhead, which can e.g. be done by
building more intelligent intruders that minimise the event rate as far as possible.

6.4.3.4 Generic Java Adapter

Another instrumentation component implemented with the MIMO prototype is a
generic Java adapter. As mentioned above, adapters can be used for integrating
monitoring tasks into the source code of applications. Our generic Java adapter
therefore represents a Java class library containing functions for easy access to the
MIMO core. For example, this comprises functions for looking up and attaching to
MIMO, as well as sending and receiving events to and from MIMO without taking
care for the underlying CORBA communication. An example for the deployment
of our Java adapter will be shown in section 7.2.2.

Moreover, it should be mentioned that the implementation of a Java intruder
based on the Java adapter is straightforward. The technical implementation of in-
strumenting Java class files can be carried out by wrapping methods in the class
files; as the Java class file format is well defined, this can be reached in a clean and
portable way.

6.4.4 Conclusion
In this section, we have outlined the implementation of the MIMO prototype. Be-
ginning with the start-up procedures and the description of the MIMO core, we
have subsequently shown the MIVIS visualisation tool and its suitability as a gen-
eral tool framework, as well as examples for possible instrumentation mechanisms
for general purpose middleware.

Regarding the prototype implementation, performance improvements could be
reached by integrating the various optimisations mentioned above. However, new
technologies like COM-CORBA bridges or the release of COM+ will foil some
insights because critical parts will change with these techniques. Using all these
techniques still does not yet solve some problems that limit the performance of
the MIMO implementation; the performance of CORBA for passing events is in-
herently limited with existing CORBA implementations, especially when complex
data types have to be marshalled and unmarshalled.

Therefore, it can be seen that monitoring middleware applications with a moni-
toring system that is based on middleware techniques of the same granularity yields
a non-negligible overhead with regard to performance aspects. This overhead is
the price for the flexible and extensible usage of the monitoring system and has to
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be taken into account when instrumentation components are designed and imple-
mented.

With regard to our overall monitoring scenario, we found out thatorganisational
aspectsare extremely important for the cooperation of monitoring components. The
set-up of the monitoring environment including the distribution and assignment of
MIMO instances, their registration and look-up procedures, needs to be managed
before any monitoring action can actually occur. Hence, a main result of our imple-
mentation is that an advantageous organisation of the monitoring environment is of
crucial importance within dynamic and heterogeneous environments. For deploying
tools efficiently, organisational aspects therefore play an immensely important role,
especially for performance reasons.

6.5 Summary
This chapter has illustrated the details of the MIMO architecture, its usage, and
implementation. The architecture is layed out very generally in order to fulfil the
requirements stated in chapter 4. After a short introduction of the overall tool devel-
opment and usage process, we have presented MIMO’s architecture, which consists
of the three main components MIMO core, tools, and instrumentation components.
The usage of the MIMO core – which implements the multi-layer monitoring ap-
proach – has been illuminated from both tool and instrumentation side.

Concerning the implementation of the MIMO prototype, the basic internal com-
munication principles used for request and event distribution have been shown; here,
the problem of clock synchronisation and event ordering is an important aspect, for
which several solution approaches within our environment have been explained.
From the tool point of view, the MIVIS tool framework represents a general pur-
pose framework for building GUI tools efficiently. For the instrumentation side,
intruders for the CORBA and DCOM middleware have been developed as well as a
generic adapter for Java based middleware.

In the next chapter we will continue with a methodology for efficiently devel-
oping tools based on the MIMO implementation and several real-world application
scenarios.



Chapter 7

Tool Development and
Application Scenarios

In this chapter, we will present a methodology for efficiently developing tools using
the MIMO monitoring system, and we subsequently demonstrate the applicability
of our methodology by means of several real-world application scenarios.

So far, we have explained the basic idea of the MIMO approach, followed by the
implementation of the monitoring system. As the resulting system is complex and
leaves a lot of freedom to the tool developer, a methodology for efficiently using it
in practice is required. Therefore, we now derive a tool development methodology
that can easily be followed by tool developers in order to build tools systematically
and rapidly. Our methodology consists of a predefined sequence of steps that lead
to the integration of new middleware platforms to the MIMO system. Depending
on the respective middleware environment and tool needs, these steps can be carried
out iteratively in order to augment the middleware integration or tool functionality,
so that an incremental tool development process is accomplished.

Furthermore, we will present several application scenarios that demonstrate the
applicability of our approach to real-world scenarios. The spectrum of our examples
includes the Globus grid computing environment, the LSD metacomputing system,
the SEEDS airport simulator, and a medical image processing application. In addi-
tion to our general purpose middleware (CORBA, DCOM) instrumentation shown
in the previous chapter, these examples exhibit the flexibility of the MIMO system
under varying deployment conditions.

Hence, the quintessence of this chapter is to prove the advantageous usage pos-
sibilities of the MIMO system, both on the methodical level and from the practical
point of view represented by real-world applications.

7.1 Tool Development Methodology
A methodology that describes the proceeding for the development of new tools or
the integration of new middleware is indispensable for the MIMO system. This
section first motivates the proposal of a tool development methodology, then gives
an outline of the methodology itself, and finally considers some implementation
aspects.
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7.1.1 Motivation
Most monitoring systems do not include a methodology for their efficient usage.
However, when we consider the MIMO system, there are several reasons that rec-
ommend the definition of a tool development methodology:

2 Firstly, the MIMO monitoring environment is a rather complex system, which
leaves many degrees of freedom to the tool developer. For example, the re-
quests and events going beyond simple system state queries are completely
customisable, so that tools and instrumentation need to be adapted to each
other. Therefore, a tool development methodology can serve as a guidance
for tool developers that describes a fixed procedure for developing tools or
integrating middleware. With this approach, a systematic usage of the MIMO
infrastructure is made possible without confusing tool developers about how
to deploy MIMO’s facilities correctly.

2 A second reason for MIMO’s tool development methodology is to enable
rapid tool development. In analogy to the general software development pro-
cess (see [BH1996], [McD1991]), where it is considered important to build
prototypes of running programmes rapidly, MIMO takes up this concept and
allows to build tools and instrumentation components very quickly. More-
over, the tool development methodology is layed out to support an iterative
development or the incremental extension of tools and instrumentation com-
ponents. Hence, with MIMO’s tool development methodology it is possible
to build tool prototypes rapidly and to extend them incrementally during their
deployment.

2 Another important point considering the tool development within heteroge-
neous systems is to maintain the comparability of the data retrieved from
various middleware platforms. To reach such a comparability, it is necessary
to define the mapping of the middleware platform to the multi-layer moni-
toring model. The tool development methodology takes over this task and
standardises the integration of heterogeneous platforms.

2 A further aspect concerning the heterogeneity of the observed middleware is
to enable reusage of developed instrumentation components or tools. For ex-
ample, the integration of some Java-based middleware might be reused for
future Java-based environments. Such a reusage mechanism can only be im-
plemented if the design and implementation follows some basic predefined
rules, which are defined within the tool development methodology. The re-
sult of this reusage mechanism is to provide a kind of self-extending moni-
toring infrastructure containing instrumentation components or tools that can
be reused for future monitoring scenarios.

2 A last significant aspect of our tool development methodology concerns the
implementation of tools and especially instrumentation components. As per-
formance can be critical in some observed applications, it has to be assured
that implementations do not produce too much overhead. Our methodology
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supports this requirement by its incremental instrumentation process, which
reduces instrumentation to the essential parts without losing its extensibility.
This means that only the required information should be collected from the
observed system, while a simple and rapid introduction of further functional-
ity is preserved.

Considering these criteria, the integration of our tool development methodology
into the MIMO system is justified from several points of view. Especially for mod-
ern operating environments where middleware and applications change frequently,
the possibility to rapidly adjust to new circumstances is highly desirable.

7.1.2 Rapid Tool Development Methodology
After justifying the need for our tool development methodology for MIMO, the
concrete model for developing tools with MIMO can now be established.

7.1.2.1 The Tool Development Lifecycle

Figure 7.1 illustrates the major steps of MIMO’s tool development methodology
[RL2001] that make up the tool development lifecycle within MIMO.

1. Define Tool 
Functionali ty

2. Define Required
Monitoring Data

3. Map Concrete 
Middleware
to MLM Model

4. Define Requests 
and Events 

5. Implement Tool
& Instrumentation

Figure 7.1 Steps of the Tool Development Methodology

Basically, the methodology consists of steps for the definition of tool function-
ality, the resulting data that need to be exchanged, and the requests, commands,
and events derived from this definition, as well as a mapping of the respective mid-
dleware to the multi-layer monitoring model, and the implementation of tool and
instrumentation.
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7.1.2.2 Roles of Developers and Users

With reference to section 6.1, where the use case for the tool development and
deployment process has been shown we can now come back to the roles defined
there. The definition of tool functionality is mostly carried out by the tool user
who wishes to observe certain aspects of the system; also, it might be supported by
the application developer, who may cooperate with the tool user during application
development. As mentioned before, the two roles can also be mapped to a single
person in some application scenarios.

The definition of the required monitoring data, the mapping to the multi-layer
monitoring model, and the definition of the requests, commands, and events is car-
ried out by the tool developer. He or she has to consider both the tool user’s per-
spective as well as MIMO’s classification scheme. Like before, the tool developer
can be supported by or even be identical with the application developer for these
tasks. The tool implementation is finally carried out by the tool developer, whereas
the implementation of the instrumentation can both be taken over by both the tool
or application developer.

Considering the fusion of different roles to single persons, the following guide-
lines can be given:

2 For tools like debuggers, which are developed independently from certain
application scenarios, the tool developer is separate from the tool user and
application developer, whereas the tool user often merges with the application
developer in this case.

2 For tools being delivered with software products, for example for manage-
ment tools that support the software deployment, the application developer is
frequently identical with the tool developer.

2 For very specialised tools that are neither provided with applications and that
are no standard tools, the tool developer and tool user may merge. Conse-
quently, in this case, the tool user develops his or her own tool because there
is no other possibility for getting the desired tool functionality.

Moreover, as already mentioned before, the three roles can also be mapped to three
disjoint persons, which is imaginable especially for large projects.

7.1.2.3 Steps of the Tool Development Methodology

The detailed tasks of the single steps of our tool development lifecycle are as fol-
lows:

Definition of Tool Functionality. The first step of the methodology defines the
tool functionality in a relatively abstract way. For example, this task includes the
definition of the tool type, whether it is interactive or automatic, or whether it only
observes an application or also manipulates it. Here, the tool user’s view on the
system serves as a starting point for all considerations, while the definition of func-
tionality is kept coarse.
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Definition of Monitoring Data In the second step, the coarse description of the
functionality is refined to refer to more technical aspects of the observed environ-
ment. Data that need to be retrieved from the application have to be determined as
well as commands that need to be issued by the tool in order to accomplish the tool
functions.

Middleware Mapping to the Multi-Layer Monitoring Model A very important
aspect of tool development is the integration of the middleware platform to be mon-
itored into MIMO’s multi-layer monitoring model. In order to perform this task,
the tool developer needs to consider the layering given in the new middleware plat-
form and map it to the best matching layers of MIMO’s model according to the tool
requirements.

Most middleware platforms exhibit a clear layer model, although it is not always
made explicit. The decisive point for the mapping is to reflect MIMO’s philosophy
of layer definitions for determining the corresponding layers within the new mid-
dleware that has to be integrated. As a starting point for the mapping, it is often
useful to consider thedistributed objectslayer because it possesses a central po-
sition for middleware-based applications. From this layer, the tool developer can
move upwards and downwards to the adjacent layers. The interface and implemen-
tation layer also depend highly on the respective middleware platform with their
interaction and implementation policies for distributed objects, whereas for many
common systems, the application, runtime, and hardware layer are determined by
the notion of the monitored application, the operating system processes, and the
computing node.

Moreover, the mapping of middleware layers to MIMO’s layer model influences
the comparability of data coming from different middleware platforms, because
entities within the same layer should correspond to each other even if they origi-
nate from different middleware platforms. As a consequence, it is essential to keep
MIMO’s philosophy of layers in mind when integrating a new middleware platform.

Definition of Requests, Commands, and Events Once the definitions of the
monitoring data and the mapping to the multi-layer monitoring model have been
carried out, the concrete requests, commands, and events to be exchanged between
tool and instrumentation need to be defined. This comprises the syntax as well as
the semantics of the transferred data, including their parameters and attributes.

The decisions taken during this phase are also important from reusage aspects
of tools and instrumentation: When standardised names for requests, commands,
and events are chosen, tools can possibly be reused for new middleware platforms
that are instrumented using the same syntax and semantics, so that the tool func-
tionality can easily be transferred to these platforms. Conversely, newly developed
tools can rely on existing instrumentation components if they all support the same
requests and commands, which enables a simple reusage of already implemented
instrumentation code. Hence, as using well-defined syntax and semantics for re-
quests, commands, and events is essential for reusage purposes, we will elaborate
this aspect in more detail in the next section.
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Implementation of Tool and Instrumentation The final step of the development
methodology is the implementation of tool and instrumentation. Here, the deci-
sion of implementing the tool as a stand-alone program or as part of the MIVIS
framework has to be taken. For GUI tools, being part of MIVIS is in most cases
simpler, whereas for automatic and non-interactive tools like e.g. load balancers a
stand-alone program being executed in the background is preferable.

For the instrumentation, the developer needs to decide whether to implement an
intruder or an adapter. Depending on the respective middleware and tool function-
ality, both approaches may be reasonable as we have shown in section 6.4.3. Fur-
thermore, the implementation of instrumentation code is influenced by performance
considerations that have to be taken into account in order to limit the overhead of
the instrumentation.

7.1.2.4 Iterative Tool Development and Incremental Tool Extension

As we have seen, tool development with MIMO’s methodology is a straightforward
process that leads from the definition of tool functionality to the implementation of
the tool. However, as tool functionality is often complex, the implementation of
the tool itself and the instrumentation are costly. Therefore, our methodology also
allows to implement basic functionality and to iterate over the tool development
lifecycle in order to incrementally add new functions to tool and instrumentation.
With this approach, a rapid prototype of a tool can be implemented quickly in order
to prove the feasibility of the implementation, while a following extension is made
possible without having to discard previously implemented functionality.

The step that needs to be carried out only during the first iteration is the mapping
of the middleware to the MIMO model. This mapping should be kept constant as it
represents a basis for the subsequent steps, which would have to be changed entirely
when the mapping changes.

Furthermore, when new requirements arise during the deployment of a tool the
lifecycle can be traversed again, starting with a redefinition of tool functions based
on the new circumstances.

7.1.3 Implementation Aspects
After specifying the general tool development methodology, some details concern-
ing the implementation of the illustrated concepts remain.

For the definition of requests and events, two classes of queries have to be
distinguished: Firstly, system state queries that are processed by the MIMO core
are standardised by MIMO and hence identical for all tools and instrumentation
components. Secondly, all other requests not concerning the system state are user-
defined and only propagated intelligently by the MIMO core. For this second class
of requests and events, we have found that it is beneficial for reusage purposes to
standardise the syntax and semantics for a set of often occurring monitoring tasks.
Therefore, we will sketch the shape of such a standardised request and event set for
middleware environments.
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7.1.3.1 System State Queries.

The layout of system state queries has already been outlined in section 6.3.5. Such
requests allow to query the existing entities within one of the MIMO layers, con-
strained by some additional parameters; the request names for the respective layers
are as shown in table 7.1.

Layer Request Name

Application Layer get_application
Interface Layer get_interface
Distributed Objects Layer get_object
Implementation Layer get_implementation
Runtime Layer get_runtime
Hardware Layer get_node

Table 7.1 System State Query Requests

As a parameter to these requests, a list of entities can be provided. The result
consists of all entities within the required layer that are related to the given input
entities according to therelated-entitiesalgorithm described in section 5.1.6. The
system state queries may be issued synchronously or asynchronously, where in the
synchronous case the current systems state is considered, and in the asynchronous
case the query is applied to all newly created entities. The format of the results
being passed back synchronously or by means of events is also well-defined.

7.1.3.2 User-Defined Requests and Events.

Queries not accessing the system state are not touched by the MIMO core, but only
propagated to involved entities. Tool and instrumentation need to be adjusted in
order to agree on the syntax and semantics of exchanged data. Nevertheless, most
tools make use of common monitoring tasks, so that a definition of a standard set of
requests is advantageous. Common tasks may e.g. include the following functions:

2 For observing the communication between entities, a request called
get_interactions is useful; as a parameter, it takes a list of entities
for which communication activities should be reported. In case of commu-
nication, an event describing the communicating entities and their exchanged
data is triggered.

2 For retrieving information about certain attributes of monitored entities, an
operation namedget_attribute can be used, which takes the name of an
attribute as a parameter. Such attributes may e.g. concern the load of an entity
or other internal aspects.

The definition of further requests and events highly depends on the application
environment of the monitoring system. For example, manipulating commands that
initiate a migration of objects can only be applied if the underlying middleware
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is capable of this feature. Hence, we cannot give an extensive list of all possible
requests and events, but supporting a standard set of operations should be kept in
mind when designing and implementing a tool environment.

7.1.3.3 Usage of Standardised Descriptions.

Another relevant aspect during the implementation of a tool environment is to rely
on standardised descriptions for certain components. Approaches like theManage-
ment Information Bases (MIBs)defined with SNMP can be used for the description
of attributes that have to be queried with MIMO. As SNMP only provides a set- and
get-operation, reading or writing such parameters can easily be emulated within
MIMO. For components where MIBs are available, like e.g. CORBA environments
based on Orbix [Ion2000], these can be used for monitoring with MIMO, too.

7.1.4 Conclusion
In this section, we have presented MIMO’s methodology for developing tools and
integrating new middleware. As our monitoring infrastructure is complex and leaves
many degrees of freedom to the user, the methodology enables a rapid tool devel-
opment by giving a systematic standard procedure to the tool developer. Tool de-
velopment gets “demystified” because our methodology serves as an orientation for
developers to construct new tools efficiently.

What remains is the question whether an even more customisable infrastruc-
ture could be useful. For example, the multi-layer monitoring model itself could be
made customisable and provide a varying number of layers. However, with such
extensions, the comparability of data coming from various middleware platforms
would be lost, and hence one of the major advantages of MIMO would disappear.
Furthermore, an even more customisable infrastructure would be more complicated
to use and prevent developers from making use of all features. Therefore, MIMO’s
approach represents a well suited degree of generality for middleware-based envi-
ronments, while the tool development methodology allows to build tools rapidly
and efficiently.

7.2 Application Scenarios
Our proposed tool development and middleware integration methodology can be
used for adapting very diverse kinds of middleware to the MIMO environment.
In this section, we will show several examples for the applicability of the MIMO
approach to integrate heterogeneous middleware into the observed environment.

After having presented how to monitor general purpose middleware like
CORBA or DCOM in section 6.4.3, we now proceed with more specialised mid-
dleware platforms. Our application scenarios include the two metacomputing plat-
forms Globus and LSD, the SEEDS environment for distributed, interactive real-
time simulation, and a medical image processing application. For all these plat-
forms, we will show their mapping to the multi-layer monitoring model and imple-
mentation issues concerning the instrumentation of components within the respec-
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tive systems. A quintessence of this section is the insight that the integration of
different platforms can be extremely diverse, and moreover that – due to different
monitoring goals – instrumentation possibilities are manifold even within a single
middleware platform.

7.2.1 Globus
This section describes the design and implementation of a Globus adapter for
MIMO [Rac2000], i.e. a component for collecting information from Globus ap-
plications and delivering it to MIMO in an appropriate way.

7.2.1.1 Monitoring the Globus Job Submission Procedure

The Globus metacomputing system has already been described in section 2.2.3. An
important aspect of Globus is the distribution of jobs within the set of available re-
sources. For this purpose, on every host participating in the Globus environment a
gatekeeper controls the authentication and authorisation processes for users request-
ing to start jobs on this host. Once a user is granted resources on a machine, the
Globus job manager is responsible for launching the specified job on this machine.
Hence, monitoring the gatekeepers and job managers allows to observe the submis-
sion and distribution of jobs within Globus. Besides other relevant aspects, moni-
toring the job submission procedure is therefore a major instrument for gaining an
overview of a running Globus environment. Our proceeding follows the tool devel-
opment methodology by defining the tool functionality and the derived monitoring
data, mapping Globus to the multi-layer monitoring model, and implementing the
resulting request and event types.

Consequently, the first steps are to define the tool functionality and the mon-
itored data needed for this purpose. As we are concentrating on the integrative
aspects of the MIMO environment here, we wish to visualise the job submission
procedure of Globus. The processes that have to be monitored for this purpose
are the authentication and authorisation at the Globus gatekeeper, and the job sub-
missions at the Globus job managers. Whenever the gatekeeper or job manager
is contacted from a potential client, events for MIMO need to be generated, if re-
quested. The data delivered with the events may contain additional details about the
user wishing to submit a job, or further details of the job specifications.

7.2.1.2 Multi-Layer Monitoring Mapping for Globus

Secondly, the Globus middleware needs to be mapped to the multi-layer monitoring
model. The result is the assignment of MIMO’s abstract entities to concrete Globus
entities shown in Table 7.2.

As we wish to observe the job submission procedure of Globus, our mapping
mainly concentrates on running Globus jobs that are started on different hosts by
using the gatekeeper’s interface to authenticate and authorise a user. Other Globus
information sources like the heartbeat monitor or MDS could also be integrated into
the model, but have not been taken into account here.
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MIMO MLM Layer Globus Entities

Application Globus applications
Interface Globus gatekeeper
Distributed Objects Globus job identification
Implementation Local executable
Runtime Local PID
Hardware Node

Table 7.2 Mapping of Globus Entities to the MIMO Model

7.2.1.3 Globus Adapter Design and Implementation

The Globus adapter delivering data to MIMO has to use MIMO’s CORBA interfaces
for attaching and detaching, and CORBA event channels for asynchronous commu-
nication. Therefore, an ORB handling the communication with MIMO needs to be
integrated into the adapter. As the Globus adapter needs to be integrated and linked
with Globus components, it is conveniently implemented in C like the Globus com-
ponents used for the prototype implementation. Hence, the following criteria were
important for selecting a C ORB to implement the Globus adapter:

2 Light-weight:
The ORB should be light in size and performance in order to influence the
observed system as little as possible.

2 Free availability:
The chosen ORB should be freely available without any constraints, because
the Globus software is also freely available.

2 Functionality:
The ORB has to provide a C mapping and basic naming and event services.

2 CORBA compliance:
Many ORBs still show a lack of CORBA compliance. This results in a lacking
interoperability with other ORBs provided by different vendors. As MIMO is
implemented using the ORBacus ORB [Obj2000], CORBA compliance and
interoperability are crucial criteria for the selected ORB.

The number of ORBs fulfilling the above requirements is rather small because C
mappings are not provided at all with most ORB implementations. After comparing
existing ORBs fulfilling our requirements the ORBit ORB [Red1999] was chosen.
ORBit is being developed as a GNOME project [GNO2000], provides a C-mapping,
and is a very light-weight and high-performing implementation. Also, CORBA
compliance and interoperability with ORBacus are given.

7.2.1.4 Globus Adapter Implementation

The Globus adapter is implemented as a C library providing basic functions for at-
taching to and detaching from MIMO, and for providing event-based asynchronous
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data in case of state changes. The instrumentation of the C code itself can be done
in various ways, e.g. source code instrumentation or transparent instrumentation of
other libraries.

Figure 7.2 shows the functions that are available with the Globus adapter for
MIMO. The attach and detach operations are used for setting up and terminating

/* attach to and detach from MIMO: */

int MIMO_attach(int argc, char *argv[]);
int MIMO_detach(void);

/* generic events: */
int MIMO_event(char *evtype, CORBA_any descr);

/* object lifecycle and interaction events: */
int MIMO_newEvent(char *entities[6] );
int MIMO_delEvent(int layer,char *entname);
int MIMO_interactionEvent(int layer1, char *entname1,

int layer2, char* entname2,
char *method);

Figure 7.2 Globus Adapter Functions

connections to MIMO. Whenever no MIMO is running within the environment,
any function call to the adapter will fail without further influence to the observed
program. The parameters to be passed with the above attach and detach operations
are defined in MIMO’s instrumentation-monitor interface.

The genericMIMO_event operation can be used to generate any kind of event
for MIMO. Its format contains a string giving the type of the event and a CORBA
any keeping the description. The time of the event is automatically added by the
Globus adapter. For often occurring events like lifecycle events (construction and
destruction of objects) and object interaction, additional operations have been added
to the Globus adapter. The operations areMIMO_newEvent, MIMO_delEvent,
and MIMO_interactionEvent. The parameters passed to them comply with the
IDL description of possible MIMO instrumentation events, which has been shown
in section 6.3.4.

7.2.1.5 Instrumentation of Globus Components

An important concept of MIMO is not to depend on any special kind of instru-
mentation. Therefore various instrumentation techniques can be applied, as long as
communication with MIMO is handled through its IDL interfaces and event chan-
nels.

Source Code Instrumentation. Within Globus, the gatekeeper and job manager
components have been instrumented by inserting code into the Globus sources. The
following things need to be carried out in order to apply this kind of instrumentation
to the Globus components:
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2 Include the “globus-adap.h” header file.

2 Add MIMO_attach andMIMO_detach operations at the beginning and at
the end.

2 Add MIMO event operations wherever events need to be generated.

2 Link the Globus adapter library with the executable.

Obviously, the precondition for this approach is the ability to modify the sources
and rebuild the application. The advantage is that events can be generated with a
very fine granularity, so that the programmer may concentrate on specific aspects
that have to be monitored. Moreover, the basic changes to the sources are kept very
small as only three lines of code have to be added.

Gatekeeper and Job Manager Instrumentation. In order to apply the tech-
niques described above, the Globus gatekeeper and job manager have been instru-
mented. By observing the gatekeeper, authentication and authorisation behaviour
within Globus can be monitored, because the gatekeeper serves as the “entrance
point” for users to a machine; this is the reason why it is classified in the inter-
face layer of the multi-layer monitoring model. Instrumenting the job manager then
allows to monitor running Globus jobs and to observe their queueing behaviour.
Thus, instrumentation of both components with the approach described above en-
ables the generation of events for MIMO whenever new job submissions arrive at
the observed nodes.

Of course, the instrumentation technique used here could be improved in order
not to require source code manipulation, e.g. by means of instrumenting libraries
used by the gatekeeper and job manager. In this case, no recompilation and no
relinking would be necessary, but the event analysis would get more complicated.

7.2.1.6 Summary

In this section we have shown how to connect job submission components of the
Globus metacomputing infrastructure to the MIMO infrastructure. For this pur-
pose, an adapter for the CORBA C language mapping has been developed and suc-
cessfully deployed with the Globus gatekeeper and job manager components. This
proof of concept demonstrates the applicability and flexibility of MIMO’s multi-
layer monitoring approach. Moreover, the developed C adapter for MIMO can be
used for other C-based middleware platforms.

To extend the Globus adapter, other Globus information sources can be in-
cluded to provide information for MIMO, for example the Globus heartbeat monitor
[SFK+1998] and Globus MDS [FFK+1997]. Consequently, MIMO then serves as
a central point for collecting different information coming from different sources,
which leads towards a more general approach for discovering information or event
sources within distributed computing environments.
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7.2.2 LSD — Latency Sensitive Distribution
In this section we present the integration of the LSD (Latency Sensitive Distribu-
tion) metacomputing middleware into the MIMO environment [DR2000].

7.2.2.1 LSD Overview

LSD is a client/server based middleware that relies on the Java thread model. A LSD
server is implemented by a master daemon, which represents a task that accepts
all kinds of Java threads implementing a specific worker interface. Its interface
defines the interaction between the runtime system of LSD and the application’s
worker tasks. Additionally, the LSD server stores a dynamically generated and
periodically updated latency table that contains the communication bandwidth and
latency information from every client node in the system. When requested by the
master daemon, all registered clients are expected to update their communication
tables and send the results to the master daemon. Thus, when receiving several
tasks from an application that have to be distributed, the master daemon reads the
job communication behaviour from a given structure defined in the worker interface.
After the job is distributed to several nodes according to the latency table, a light-
weight name service is used for the job-to-job communication.

The default algorithm for thread distribution is straightforward: Low-latency
nodes are mapped to threads with the highest communication requirements. In order
to improve the distribution of worker tasks in addition to this default distribution
algorithm, it is possible to dynamically load and execute new distribution strategies
from the connecting application. With this approach the applications are able to
install their own distribution mechanism, which makes use of the master daemon’s
methods for gaining information about the clients.

On the client side, a node daemon handles the jobs sent to this node and cares
for all administrative actions to be carried out. For returning the results and for the
job-to-job communication, the name server provides the location of the remaining
threads of the application. The latency table is also sent to the master daemon by
the node daemon.

7.2.2.2 Monitoring LSD with MIMO

In this section, we will show how to monitor the LSD metacomputing platform
with MIMO. Doing so, we will follow MIMO’s tool development and middleware
integration methodology: The tool functions and the derived monitoring data are
defined before LSD is mapped to the multi-layer monitoring model. Subsequently,
the defined request and event types are implemented on the instrumentation and tool
side.

Monitoring Goals. Like with Globus, our goal for monitoring the LSD system
is to observe the distribution of jobs within the system. To make this possible, the
interaction between users and the LSD master daemon on the one hand, as well as
the interaction between master and node daemons on the other hand needs to be
observed. Such activities therefore have to be propagated to MIMO by means of
appropriate events.
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Mapping of LSD to MIMO. As we have chosen to take an application-oriented
point of view to monitor LSD applications, our main entities arejobsandthreads
distributed by LSD to solve a given problem coming from an LSD-based applica-
tion. Hence, the mapping of LSD-entities to the MIMO MLM model is as illustrated
in Table 7.3.

MIMO MLM Layer LSD Entities

Application LSD Application
Interface LSD Worker Interface
Distributed Object LSD Jobs
Implementation LSD Thread
Runtime LSD Process
Hardware Node

Table 7.3 Mapping of LSD to the MIMO Model

Here, applications making use of the LSD meta-computer can be observed by
monitoring the job submissions distributed by the LSD master through the worker
interface, and the resulting jobs and their corresponding threads that are executed in
processes on specific hosts.

Implementation. The next step is to define appropriate events of interest. For our
job distribution scenario, the following events are of interest:

2 Creation and deletion of new jobs and threads.

2 Interaction between jobs and threads.

This allows to monitor the dynamic behaviour of LSD applications, covering the
distribution of jobs, their interactions, and the collection of results.

The instrumentation of LSD applications is implemented using the generic Java
adapter described in section 6.4.3. This adapter contains methods for conveniently
handling the communication with MIMO on a Java basis. It includes standard func-
tions for attaching to and detaching from MIMO, and allows to send the above
events with their parameters to MIMO. As we are only observing applications with-
out manipulating them, this instrumentation can rapidly be inserted into the LSD
implementation.

As a result, the LSD runtime behaviour can be visualised with the MIVIS tool
without further effort. If additional functionality – for example for steering a run-
ning application – is needed, additional displays carrying out these functions can
be inserted into the MIVIS framework. Moreover, it is possible to simultaneously
monitor Globus and LSD applications whenever running within the same MIMO
environment. These cross-platform observation and management capabilities are a
major benefit of the MIMO approach.
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7.2.3 SEEDS
Having demonstrated the integration of two metacomputing systems into the MIMO
system, this section describes a very different distributed environment to be mon-
itored with MIMO. The SEEDS simulation environment is particularly interesting
because it is based on two different middleware platforms that are deployed simul-
taneously within the simulator. One of the main benefits of MIMO is the capability
to monitor different platforms at the same time, which results in an improved com-
parability of data coming from different middleware platforms, but belonging to the
same application.

7.2.3.1 SEEDS Overview

SEEDS (Simulation Environment for the Evaluation of Distributed traffic con-
trol Systems) represents a distributed interactive real-time simulation environment
[Ale1999] [BdSLR1997] composed of powerful workstations connected by a local
area network. It is targeted at the evaluation of Advanced Surface Movement Guid-
ance and Control Systems (A-SMGCS), e.g. used for airport ground-traffic man-
agement systems. The simulation environment allows the definition and evaluation
of technologies and performance requirements needed to implement new functions
and procedures of A-SMGCS, to mould new roles within airports, and to introduce
new automatic tools and interfaces to support A-SMGCS operators.

The simulation environment is a distributed interactive real-time system, in
which several actuators take part in the simulation by practising various roles. These
roles include airport surface traffic controllers, traffic planners, pilots and vehicle
drivers, and other external actuators like airport authorities. In general, actuators can
either be human operators interactively participating at the simulation (e.g. for train-
ing purposes), or automated actuators, being simulated by software processes acting
according to predefined rules. Human operators (controllers, pilots) are equipped
with a 3D visualisation of their current scenario and a 2D visualisation generated
from different kinds of radar systems. They act in real-time by issuing commands
via specifically designed human computer interfaces. The simulation environment
is responsible for managing and distributing the state of the airport (consisting of
its static and mobile objects, and other airport features such as control lights or stop
bars), as well as for enabling the interaction between different actuators.

7.2.3.2 Monitoring SEEDS with MIMO

The main actuators within SEEDS are interactive controllers supplied with 2D and
3D visualisations of the simulated world, where they can manoeuvre their vehicles.
The interesting aspect of building tools for observing or steering the SEEDS system
is that it is based on two middleware platforms used simultaneously: CORBA com-
munication is used for the transmission of simulation control data and for 2D visual-
isation, and the DIS [Gol1995] (Distributed Interactive Simulation) protocol is used
for efficiently distributing 3D visualisation data [RdSH+1999a], [RdSH+1999b],
[RdSH+2000].
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Mapping of SEEDS to MIMO. Therefore, for monitoring a running SEEDS sim-
ulation, entities of both platforms have to be considered. Table 7.4 illustrates the
resulting mapping of SEEDS to the MLM model, when 2D and 3D visualisation as-
pects are of particular interest; it can be seen that for the interfaces and distributed
objects, both CORBA and DIS entities have to be considered.

MIMO MLM layer SEEDS layer

Application SEEDS simulation run
Interface 2D CORBA and 3D DIS visualisation interfaces
Distributed Objects 2D CORBA and 3D DIS clients and servers
Implementation Programming language objects
Runtime OS Processes
Hardware Node

Table 7.4 Mapping of SEEDS components to the MIMO model

Implementation Aspects. The implementation of the instrumentation code for
the SEEDS components is similar to the instrumentation of the metacomputing
platforms. As the SEEDS simulator is implemented in C++ and Java, the C and
Java adapters can easily be reused here. Events need to be generated for the various
aspects of the 2D and 3D visualisation, which is a performance critical part of the
system that has to be optimised carefully [RL1997].

7.2.4 Managing a Load-Balanced Medical Application
Another interesting application scenario for MIMO is a medical application in
the field of distributed image processing. Here we present an example for visu-
alising and steering a realignment application used for the reconstruction of im-
ages obtained through functional magnetic resonance imaging (fMRI) techniques
[May2000].

7.2.4.1 The Load-Balanced Realignment Application

Data obtained from fRMI need to be processed to reconstruct the images from the
measured projection data. An important task within this procedure is the realign-
ment of images gained from the fRMI, with which a set of images is aligned to a
predefined reference image.

As the reconstruction effort for such images is very high, distributed reconstruc-
tion using clusters of workstations is carried out. The architecture of our exemplary
realignment application is based on the client/server paradigm. Clients submit re-
alignment jobs to the load-balanced realignment server, which in turn distributes the
jobs to appropriate servant objects according to its load distribution strategy. The
servants carry out the realignment and pass back the result to the respective client.
The advantage of this proceeding is that depending on the amount of available re-
sources a variable number of servants can contribute to the reconstruction process.
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The distributed realignment application is based on CORBA as a communication
middleware and implemented both using Java and C++.

Furthermore, in order to utilise the dynamically changing resources in an advan-
tageous way, a load balancing mechanism is applied to the realignment application
[Lin2000]. The entities of interest for the load balancer are the servants carrying out
the computation tasks. As these servants are implemented using CORBA objects,
object migrationandobject replicationrepresent the load balancing mechanisms
applied for the realignment application. The implementation of the load balancing
mechanism makes use of a modified ORB that has been extended for load balancing
purposes.

7.2.4.2 Monitoring and Managing the Realignment Application with MIMO

Figure 7.3 shows an overview of the load-balanced realignment application and the
monitoring scenario. Jobs coming from the clients are distributed to the servants,
which retrieve original images and pass back the realignment data. The load bal-
ancer controls the servant objects and carries out object migrations or replications
according to its load distribution strategy.

In our monitoring scenario, both the realignment application and the load bal-
ancer are instrumented and controlled by MIMO. The realignment application uses
the Java adapter to provide data about the existing client and servant objects for
MIMO, so that a visualisation of the overall realignment process is made possi-
ble. Additionally, the load balancer is instrumented and provides information about
load balancing decisions to MIMO, such that load balancing decisions can also be
traced. The resulting visualisation is implemented with a specialised MIVIS display
that shows the available computing nodes, the servants running on these nodes, and
additional load information.

Beyond these visualisation capabilities, our scenario also allows to manipulate
the running realignment application by steering the load balancer from the MIVIS
display. Object migrations and replications can be initiated with a drag-and-drop
approach that allows to move objects between the available computing nodes in the
MIVIS display.

Interoperability between MIVIS and Load Balancer. The realignment scenario
implements a kind of interoperability between the load balancer tool and MIVIS.
However, the load balancer directly operates on the realignment application without
making use of MIMO, which complicates the interaction between both tools. For
keeping the load balancer under the control of MIMO, it is therefore instrumented to
provide information about its load balancing operations as well as to receive explicit
commands from MIMO. Hence, MIVIS represents the leading tool in our case:
It visualises information from the realignment application and the load balancer,
while it can manipulate the running application by issuing commands to the load
balancer. This kind of interoperability is an advantageous approach for our scenario,
where the automatic load balancer independently performs its tasks while it can be
observed and controlled by the dominating MIVIS tool in order to carry out manual
interventions.
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Figure 7.3 Overview of the Realignment Scenario

Application Steering and Management. Our realignment scenario represents
an example for steering monitored applications by means of a GUI-based MIVIS
display. The migration or replication of objects can be initiated for manually con-
trolling running applications, which can be profitable for several purposes:

2 Application steering can be carried out to tune the performance of the realign-
ment application.

2 Application or system management can be carried out by moving objects
away from computing nodes, e.g. when maintenance tasks need to be exe-
cuted on those machines. This manipulation is implemented without interfer-
ing with the running realignment process.

Depending on the respective usage scenario, other steering or management tasks are
imaginable in addition to our object migration and replication examples. Neverthe-
less, the ability to manipulate running applications and the possibility for tools to
interoperate with each other represent an essential foundation for further tasks.
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7.2.5 Summary
Summing up, we have presented a set of rather diverse application scenarios for the
MIMO infrastructure. The Globus and LSD metacomputing platforms have been
integrated as well as the SEEDS simulation environment. Instrumentation mech-
anisms for these platforms can be very diverse and concentrate on certain aspects
that have to be observed. For example, with Globus we focused on the job submis-
sion procedure, but due to the complexity of the Globus environment many other
processes could also be monitored, if necessary. In any case, MIMO provides the
basis for supervising further aspects or for adding further information sources.

Moreover, our realignment application from the medical image processing field
has shown how to integrate visualisation capabilities with steering or management
tasks. The interoperability between the load balancer and the MIVIS tool is a power-
ful example that allows to manipulate running applications for computational steer-
ing or management purposes.

Concerning the tool implementation, we have seen that basic visualisation capa-
bilities are available after the integration of the middleware by using the MIVIS tool.
Further functionality can easily be introduced by implementing further displays that
can be added to the tool framework.

7.3 Conclusion
This chapter has presented a methodology for advantageously using the MIMO
infrastructure, followed by several real-world application scenarios demonstrating
the feasibility of the described approaches. It can therefore be seen as a proof of
concept for the MIMO idea and its implementation.

The theoretical methodology derived in the first section has shown to be ap-
plicable to the set of real-world applications demonstrated in the second section.
Moreover, possibilities for further implementation techniques or extensions have
been illustrated.

These considerations allow us to conclude the description of the MIMO system.
In the following chapter, we will proceed with a critical evaluation of the overall
approach and its consequences before we point out the major results achieved during
the development of MIMO.





Chapter 8

Evaluation and Results

Critically reconsidering and validating the MIMO approach and its implementation
is an important aspect of this thesis. This chapter will start with an evaluation of
important MIMO topics, followed by an elaboration of the results of the MIMO
project.

The evaluation of the work described in this thesis concentrates on three topics.
First of all, the general approach consisting of the multi-layer monitoring model
and its implications will be discussed. Secondly, our implementation of the MIMO
approach that resulted in a MIMO prototype will be reconsidered with regard to
general implementation issues as well as performance criteria. And thirdly, we will
review MIMO’s tool development methodology both on a theoretical basis and by
means of the described application scenarios.

Concerning the results of this thesis, we will point out the insights gained during
the conception and construction of MIMO. As an outcome, we will present signif-
icant characteristics of monitoring and management within heterogeneous middle-
ware environments. Besides being able to master the heterogeneity within such sys-
tems, the capability to deal with dynamic environments is a major goal that needs to
be accomplished. These insights substantially influence design and implementation
decisions of future monitoring systems.

8.1 Evaluation
The evaluation of our work considers the three topics general approach, imple-
mentation and performance, and usage of the monitoring and management system.
Important criteria for our considerations are the monitoring requirements stated in
chapter 4 as well as further aspects that came up during the development.

8.1.1 MIMO Approach
The MIMO approach described in chapter 5 rests upon three fundamental blocks:
The multi-layer monitoring model, a generic monitoring infrastructure, and a usage
methodology and tool framework. Consequently, we will critically reconsider each
of these blocks in order to get an evaluation of the overall MIMO approach.

141
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8.1.1.1 Multi-Layer Monitoring Model

Structuring the information being monitored in complex distributed environments
is an essential aspect of a monitoring system. For this purpose, MIMO uses the
multi-layer monitoring model as an information model for the representation of the
observed middleware environment.

The advantage of the multi-layer monitoring model is that it allows a classifi-
cation of monitored entities into several hierarchy levels. As a result, information
on all abstraction layers can be gathered and stored within the system state graph,
while relationships between adjacent layers imply further semantics. Especially
for large, distributed environments such a classification makes it easier to gain an
overview of the observed systems and applications, so that the requirement for sup-
porting complex systems is fulfilled. Another benefit of the multi-layer monitoring
model is that it enables the comparability of information coming from different in-
formation sources or middleware platforms. Entities classified on the same layer
of the model are comparable in a defined way that is determined by the mapping
of the respective middleware to the multi-layer monitoring model. The impact of
this comparability aspect can mainly be perceived when heterogeneous systems are
being monitored with MIMO. Entities residing on the same abstraction level can
advantageously be compared to each other, no matter from which middleware plat-
form they are originating. Therefore, the multi-layer monitoring approach optimally
fulfils the requirement for supporting heterogeneous computing environments.

Considering the drawbacks of the multi-layer monitoring model, a few points
have to be discussed. As mentioned before, the six layers defined by our model are
not appropriate for every existing middleware platform. The need to treat empty lay-
ers differently is an indication for this fact and allows to create a smart workaround
for affected middleware platforms. However, there are only two possibilities to
avoid completely the case of platforms not fitting into the multi-layer monitoring
model:

2 The first possibility is to abandon the idea of using an information model at
all. The consequence would be a large set of entities that are not structured
with respect to any criteria. With this approach all the advantages of MIMO
would get lost, so that this approach results to be non-feasible.

2 The second possibility is to make the multi-layer monitoring model customis-
able with respect to the layers existing within the information model. The
result would be a more complicated information model because each new
middleware could enforce to create new layers within the model, making the
usage of MIMO essentially more complicated. Moreover, one of the main
benefits of the model would also get lost because the comparability between
entities coming from different platforms would no longer be given.

Hence, when we consider all these arguments, the multi-layer monitoring model
is justified and represents a main benefit of the MIMO system. It can be seen as a
kind of invariance that is used to merge all the heterogeneous middleware platforms.
It tries to be as general as possible, while it is still tied to a notion of middleware
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that cannot comprise all imaginable environments perfectly. In this sense, the multi-
layer monitoring model represents a trade-off between generality on the one hand,
and conformance with common middleware systems on the other hand, such that a
maximum level of integration is reached.

8.1.1.2 Generic Monitoring Infrastructure

The generic monitoring infrastructure proposed with the MIMO approach fulfils all
requirements stated before. It provides an infrastructure that takes over all main
tasks of a monitor that are needed by all kinds of tools. This comprises start-up
procedures for the attachment to the monitor within dynamic environments as well
as basic functions for obtaining an overview of the observed system, its main actu-
ators and their interactions. Furthermore, the interfaces for tools and instrumented
components are kept generic in order to allow the implementation of arbitrary tool
functionality.

Hence, the monitoring infrastructure fulfils the requirement for supporting all
on-line phases of the software lifecycle, as tools for all these phases can be im-
plemented on the basis of the MIMO infrastructure. Furthermore, complex and
heterogeneous systems are supported as the infrastructure relies on the multi-layer
monitoring model. Flexibility and extensibility are given due to the generic inter-
faces of the monitoring infrastructure. The development of new tools as well as
the integration of new middleware can be carried out by using MIMO’s standard
interfaces and the customisable event exchange mechanisms.

A point of criticism of the infrastructure is that it is complex, which results in
a relatively high effort for developing tools or integrating middleware. However,
there are two arguments that object to this statement:

2 Firstly, the usage methodology and tool framework delivered with the infras-
tructure simplify the process of tool development and middleware integration
as far as possible.

2 Secondly, a monitoring approach leaving many degrees of freedom to the user
is in principle more complex than a system with a fixed functionality. But,
providing a monolithic system with a fixed functionality that is as powerful
as our infrastructure is impossible because not all application scenarios can
be foreseen at the time of the development of the monitor.

As a consequence, developing tools with the MIMO infrastructure causes less effort
because they can profit from the flexible infrastructure. With static and monolithic
monitoring systems the monitor itself needs to be extended for the respective sce-
nario in each case, which causes more effort than customising MIMO for a new
scenario.

Therefore, the idea behind MIMO’s monitoring infrastructure can be seen as
an approach for intelligently enabling the communication between tools and in-
strumented applications, where the monitor core only provides basic functionality
and propagates more advanced information between the involved components. The
result of this approach is a light-weight and powerful monitoring infrastructure.
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8.1.1.3 Usage Methodology

From the conceptual point of view, MIMO’s tool development methodology opti-
mally fits into the monitoring infrastructure. As the infrastructure leaves a lot of
freedom to the user, the development methodology serves as a guidance for users
developing new tools or integrating new middleware. By giving a standard pro-
cedure to the user, the complexity of development tasks can therefore be reduced,
while for special purposes it is still possible to deviate from the methodology in
order to make use of the full capabilities of MIMO.

Another advantage of adding a usage methodology to the MIMO system is that
it enables a rapid tool development process. In analogy to the rapid prototyping con-
cept from the software engineering area, the incremental and iterative development
of tools and instrumentation components allows to implement such components
rapidly, while the possibility of further extension is given.

All in all, MIMO’s usage methodology emphasises the requirement for being
able to implement new tools or to adjust to new platforms rapidly and efficiently .
This aspect is of great importance, especially for current and coming middleware
systems where monitors will have to deal with even more dynamic and evolving
applications.

8.1.1.4 Conclusion

The overall MIMO approach consists of a separation into the three basic blocks
multi-layer monitoring model, monitoring infrastructure, and usage methodology.
This design of the monitoring approach has shown to be clear and applicable from
a theoretical as well as from a practical point of view. The separation of the multi-
layer monitoring model from a concrete implementation of the infrastructure decou-
ples the underlying information model from technical aspects, and the definition of
a usage methodology simplifies the application of the complex monitoring system.
Thus, our monitoring approach represents a systematic and structured concept for
observing heterogeneous middleware environments.

8.1.2 Implementation and Performance
To evaluate the implementation and performance of our MIMO prototype, we con-
sider several techniques with their advantages and disadvantages. For different
implementation techniques, the design and implementation effort can be deducted
with respect to different programming languages, communication platforms, and
software development tools. Subsequently, further criteria concerning the runtime
performance, reliability, and portability of the implemented system can be evalu-
ated.

For our evaluation, we will start with the MIMO core, which represents the
heart of the monitoring system. Next, we will consider the instrumentation and tool
components that make use of the MIMO core.
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8.1.2.1 MIMO Core

As extensively described in section 6.4, the MIMO core is implemented using Java
as a programming language and CORBA as a standard for communication among
the distributed components. When we evaluate the MIMO core prototype accord-
ing to the criteria stated above, the design and implementation efforts of Java and
CORBA result to be low, yielding an efficient design and implementation of the
MIMO core.

Designing the interfaces with CORBA can be carried out in a clear and struc-
tured manner using CORBA’s interface definition language. The implementation
of the core with Java is a straightforward process due to the advanced integration
of Java and CORBA. As Java resides on a relatively high abstraction level that is
supported by elaborate class libraries, the implementation of the MIMO core can be
carried out with a low effort compared to other lower-level programming languages.

The resulting implementation can then be evaluated with respect to runtime per-
formance, reliability, and portability. As we have seen, the performance of our pro-
totype is sufficient for most middleware applications. Both latency and throughput
of the communication between instrumentation, tools and the MIMO core do not
delay application tasks significantly. The performance critical part is the instrumen-
tation code that can increase the overhead of the observed application substantially
in some cases. Moreover, the memory footprint of the Java virtual machine exe-
cuting the MIMO core is relatively high; thus, when memory limitations are given
on observed machines, they should possibly not execute an instance of MIMO core
directly, but communicate with a MIMO instance on another machine.

A further advantage of our implementation using Java and CORBA is its reli-
ability. Due to the advanced exception mechanisms for dealing with failures it is
possible to detect and recover from error cases with little effort. Finally, the porta-
bility of an implementation based on Java and CORBA is outstanding. Both Java
and CORBA implementations are available for nearly any hardware and operating
system, allowing to transfer the MIMO core to new platforms easily.

As an alternative to our implementation approach, languages and communica-
tion paradigms with a lower memory usage and a higher communication perfor-
mance could be taken into account. For example, the core could be implemented
using C as a programming language and make use of PVM as a communication
platform. This proceeding would reduce the communication latency and the mem-
ory consumption to some extent. However, considering the remaining evaluation
criteria still makes our approach preferable to this solution: The design and imple-
mentation effort substantially increases with C and PVM, reaching a comparable
reliability causes much more programming effort, and the portability is problematic
in principle.

Thus, an overall consideration of the MIMO core yields the insight that our
MIMO core using Java and CORBA is a well-suited approach for implementing the
monitoring concepts. While the performance could be increased slightly with other
implementation techniques, Java and CORBA are preferable with respect to all re-
maining evaluation aspects, making it the favourable solution for our middleware
monitoring purposes.
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8.1.2.2 Instrumentation

Regarding the instrumentation of applications, we have seen that the possibilities
are manifold due to MIMO’s concept of separating the monitor core from instru-
mentation components. As an example, we have presented several scenarios for
integrating different middleware platforms. For all these intruders or adapters, the
design effort is low as the interface to the monitor core is defined exactly, and the
development methodology describes the major steps for implementing new instru-
mentation components. Of course, depending on the respective platform that needs
to be instrumented, the effort of gathering relevant information or manipulating the
application can be relatively high, but the overall procedure for interacting with the
MIMO core is well defined.

For the remaining criteria, an evaluation has to distinguish carefully between
the particular middleware that is instrumented. While a Java adapter causes little
overhead due to the fact that it makes use of the virtual machine already executing
the instrumented Java application, the instrumentation of the DCOM applications
causes a high overhead if no sophisticated COM to CORBA bridge can be used.
Therefore, the performance of the instrumentation components needs to be regarded
in relation to the observed environment. In any case, if the overhead of the instru-
mentation is too high, i.e. if the application is influenced too much by integrating the
CORBA-based instrumentation code, it can be decoupled from the monitor by using
more efficient communication mechanism. For example, for performance critical
applications the instrumentation component can act as a kind of proxy object for
the monitor core, which communicates with the application using shared-memory
techniques and converts the data to CORBA calls for interacting with MIMO. As
shared-memory communication can be implemented very efficiently, the overhead
of the instrumentation can be decreased substantially with this approach.

Finally, reliability and portability aspects have to be analysed. Of course, re-
liability is given from the point where CORBA communication is used for further
interaction. Concerning portability, the presented instrumentation components can
be reused for similar scenarios where the same middleware needs to be observed.
Portability regarding the transfer of code to different hardware or operating sys-
tems is not an issue in this context because instrumentation components are tied to
specific middleware, which is mostly bound to predefined environments.

8.1.2.3 Tools

The final aspect for evaluating our MIMO implementation is the MIVIS framework
for developing tools. MIVIS is implemented in Java, relying on the Java Swing
[ELW1998] package for building graphical user interfaces and the Java Beans con-
cept [Ham1997] for adding new components. The design and implementation of
GUI tools is made very simple as the framework and its existing displays can be
deployed. The main benefit of this proceeding is that it reaches a very high degree
of portability, which is very important for tools as they should be able to run on any
machine within a heterogeneous environment. Moreover, the extensibility that is
accomplished by using the Java Beans concept is an important advantage.
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However, MIVIS is only applicable for building GUI-based tools. For tools
that require no graphical user interface, e.g. automatic tools like load balancers, the
framework is hardly suited as such tools should operate in the background. Nev-
ertheless, as building graphical user interfaces causes a high effort within the tool
development process, our contribution to simplify this task can reduce the overall
tool development effort in many cases.

8.1.2.4 Conclusion

In this section, we have evaluated our prototypical MIMO implementation with re-
spect to several criteria. We have shown that our approach making use of Java and
CORBA as an implementation platform for the monitor core is the preferable solu-
tion regarding the design and implementation effort, the reliability, and the porta-
bility. The performance of the system is sufficient for most monitoring scenarios,
while it can be reduced substantially by selecting intelligent instrumentation mech-
anisms, if necessary. The MIVIS tool framework has shown to be a very efficient
way for constructing GUI-based tools.

Altogether, our implementation emphasises the integrative aspect of the mon-
itoring concept, which is open to both the tool- and instrumentation-side. Also,
for future systems, Java and CORBA represent a very useful choice for our pur-
poses, as e.g. mobile devices will be able to communicate usingminimumCORBA
[OMG1998a], allowing MIMO to be used within these highly dynamic domains.

8.1.3 Tool development and Middleware Integration
The third important concept for our evaluation is MIMO’s tool development and
middleware integration methodology. As we have already seen in the evaluation
of the MIMO approach, the tool development methodology provides a systematic
way of using several degrees of freedom of the monitoring infrastructure. From
a theoretical point of view, the MIMO core serves as an instrument to enable the
communication between tool and instrumented applications. Consequently, tools
and instrumentation components can be optimally adapted to each other by making
use of the methodology. From the practical point of view, we have demonstrated the
applicability of our methodology by means of several applications scenarios. The
tool development and middleware integration process has shown to be a straightfor-
ward and efficient process in all of the considered example scenarios. Above all,
the capability to incrementally augment instrumentation and tool functionality is a
major benefit that supports the software development lifecycle.

Of course, when we critically analyse our methodology it becomes clear that
not all imaginable application scenarios can be covered by the five steps making up
the development lifecycle. Nevertheless, it still serves as a basis for dealing with
most standard situations that users can adjust to their special needs, if required.
Furthermore, the steps of the methodology are kept very general, which makes the
customisation for particular scenarios easy.

When we consider the set of available monitoring systems in the field of mid-
dleware, MIMO is the only approach that explicitly provides a usage methodology.
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The reason for this lies in the complex and powerful architecture of the monitoring
approach. While other monolithic monitors do not need a tool development or mid-
dleware integration methodology because of their static and limited scope of usage,
MIMO is laid out much more generally. The price for this generic approach that
allows MIMO to be used in a large scope of scenarios is a more complex usage,
which has to be supported by a sophisticated methodology. Hence, our methodol-
ogy reflects these considerations and optimally assists users of the MIMO system.

8.2 Results
After having evaluated the key features of the MIMO system, we can now sum-
marise the results acquired during the conception, development, and application of
MIMO.

8.2.1 Problem Review
The initial motivation for our work was to find a way for efficiently constructing
on-line tools for heterogeneous middleware environments. Based on an analysis
of existing systems for current middleware platforms, we have postulated a list of
requirements in order to eliminate the drawbacks of tools and monitors. The stated
requirements comprise the following aspects:

2 The need for a systematic monitoring concept for complex environments.

2 The support of all on-line phases of the software lifecycle.

2 The coverage of the system heterogeneity.

2 The demand for a flexible and extensible tool environment.

The MIMO approach reflects these requirements and defines a monitoring concept
that rests upon three basic blocks. Furthermore, during the design, implementation,
and evaluation of the MIMO prototype, several additional criteria of great impor-
tance for monitoring heterogeneous middleware have been worked out. Therefore,
we will here recapitulate the conceptual results derived from our requirements and
theoretical considerations, as well as additional lessons learned during the imple-
mentation of the MIMO ideas.

8.2.2 Conceptional Results
A principle result derived from the requirements postulated for the construction of
a tool environment in heterogeneous middleware platforms is to partition the mon-
itoring system into three basic blocks. An information model is used to represent
all kinds of entities within observed middleware applications. Based on this infor-
mation model, a generic monitoring infrastructure enabling the interaction between
tools and observed applications is defined and implemented. As this infrastructure
is kept open and leaves a high degree of freedom to users, a methodology for devel-
oping new tools and integrating new middleware into the monitoring environment
is established.
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8.2.2.1 Abstract Information Model

The multi-layer monitoring model represents a hierarchical information model that
is described by an abstract entity-relationship model. The abstraction layers of the
model are defined in order to be able to cover almost all existing middleware plat-
forms. A formal description of the multi-layer monitoring model allows to derive
algorithms for efficiently accessing and manipulating the resulting data structures.
Furthermore, the application to concrete middleware platforms is made possible
by a well-defined procedure for mapping given middleware platforms to the ab-
stract layers of the multi-layer monitoring model. Considering other monitoring
approaches for middleware-based systems, no such system provides an information
model with this degree of universality.

8.2.2.2 Generic Monitoring Infrastructure

Another essential result of the MIMO approach is the generic monitoring infrastruc-
ture. The insight that no static or monolithic monitoring system is able to fulfil the
requirements of the middleware systems under consideration leads to the definition
of the generic monitoring infrastructure.

However, our infrastructure goes further than the traditional separation of tools,
the monitor, and the observed application presented in section 3.1.2, where the mon-
itor is not monolithic anymore but still static with respect to its functionality. In-
stead, MIMO’s infrastructure is generic with regard to both the monitoring archi-
tecture and its functionality. This property is achieved by keeping all interfaces to
the infrastructure generic, i.e. putting as little semantics as possible into the moni-
tor core. In order to be open to all kinds of middleware and tool requirements, no
predefined application scenario is assumed.

The syntax of all interfaces and event descriptions is defined exactly, so that
tools and instrumentation components can be integrated in a straightforward man-
ner. Depending on the semantics of the information exchanged between tools and
instrumentation, any kind of functionality can be implemented without being lim-
ited by a static set of operations within the monitor core. Moreover, due to its
generic design, the complete infrastructure can be kept very light-weight.

8.2.2.3 Tool Development and Middleware Integration Methodology

The third basic block of the MIMO approach is the tool development and middle-
ware integration methodology. As MIMO’s monitoring infrastructure is layed out in
a generic way, the need for a usage methodology arises. Fulfilling this need results
in a methodology that describes a standard procedure for building new tools with
MIMO or for integrating new middleware platforms. Therefore, it can be seen as a
guidance for users in order to make use of the MIMO system in an efficient and rapid
way. Furthermore, the comparability of data coming from different sources and the
reusage of instrumentation components is improved by following our methodology.
In analogy to the rapid prototyping approach within the software development pro-
cess, MIMO’s tool development methodology establishes a rapid tool development
process. Also, while tools can be constructed rapidly, their incremental extension is
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assured due to the iterative procedure.

8.2.3 Lessons Learned
In addition to the conceptual results, we have gained several important insights con-
cerning our monitoring issue. These results have not intuitively been clear from the
beginning of our developments, but represent outcomes of the incremental develop-
ment process and its consequent review.

8.2.3.1 Monitor as an Event-Propagation Infrastructure

The first aspect concerns the usage possibilities of the generic infrastructure. Due to
the openness of MIMO’s communication facilities, it can be regarded as a generic
event-propagation system that is not necessarily tied to pure monitoring purposes.
As said, the infrastructure is light-weight and assumes only little semantics about
the information that is exchanged. Standard services like looking up components
existing within the system and interacting with these components are useful for any
kind of interaction in distributed applications.

Hence, MIMO itself can be seen as a kind of middleware for event-based dis-
tributed systems. Through its generic design, not only the on-line tool domain, but
also other application domains may profit of the MIMO infrastructure. Relevant
domains are those requiring similar features as the monitoring system, including
support for heterogeneity or dynamic integration of new components. Especially in
the field of mobile devices, these requirements will increasingly be given in future
systems.

8.2.3.2 Dynamic Behaviour of Modern Middleware Systems

Another important insight is to realise the dynamic behaviour of current middle-
ware systems. Dynamic processes within middleware environments occur in several
ways:

2 First, middleware applications change frequently because components are of-
ten added, deleted, or modified. The middleware platforms taken for the im-
plementation of distributed applications are constantly under development as
technology moves rapidly in this field. Moreover, new applications and mid-
dleware platforms need to be dynamically integrated into existing operating
environments.

2 Secondly, the behaviour of the observed applications is highly dynamic.
Complete applications or single application components are only temporar-
ily active and may change their location.

Therefore, this dynamic behaviour of the overall application lifecycle, as well as
the dynamic behaviour of running applications has a great impact on the capabil-
ities of the monitoring system.Organisational aspectsplay a very important role
for monitoring purposes, including the dynamic look-up procedures for detecting
and attaching to the monitoring system and the location transparent communication
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between the involved components. MIMO’s approach that allows to detect MIMO
instances through location transparent name service is an example for such an or-
ganisational aspect. Furthermore, a well-defined methodology for dealing with the
dynamic application lifecycle is a useful feature in this context.

Altogether, we can conclude that current middleware systems represent a “mov-
ing target” that rapidly changes in various ways. For future systems, the dynamics
will increase further because a higher number of mobile devices will participate in
distributed middleware applications, enforcing the need for dealing with dynamic
processes.

8.2.3.3 Integrative Aspects of Monitoring and Management

A last aspect that needs to be emphasised is the integrative aspect of monitoring and
management in heterogeneous middleware environments. As the number of envi-
ronments dedicated to single applications is decreasing in the field of middleware
applications, the need to observe multiple applications simultaneously arises. Espe-
cially for management purposes, obtaining an overview about the overall operating
environment is an important task. Therefore, a monitoring system integrating vari-
ous heterogeneous middleware platforms and applications as well as tools support-
ing all aspects of the software lifecycle are a significant contribution with respect to
the integrative aspect of monitoring and managing heterogeneous middleware.

8.3 Summary
In this chapter, we have evaluated our work with respect to the general approach,
implementation and performance aspects, and the tool development methodology.
Our overall approach has shown to be feasible from a theoretical point of view and
with respect to the practical application to real-world scenarios.

After a review of the initial problem, we have presented the conceptional results
and the lessons learned during the implementation and refinement of the MIMO
system. The conceptional results mainly concern the architecture of the monitor-
ing system and its application. The lessons learned emphasise the generality of
the monitor implementation, which itself represents a kind of middleware platform.
Essential criteria within such environments are the ability to deal with dynamic en-
vironments and the integrative aspect of the monitoring approach. These insights
will gain even more importance for the construction of future monitoring and man-
agement tools.





Chapter 9

Conclusion

This thesis has presented a new approach for monitoring and managing heteroge-
neous middleware. In this chapter, we will conclude the thesis by summarising the
work that has been carried out and the results that we have obtained. Additionally,
we will provide an outlook to open questions and future research topics.

9.1 Summary
The motivation behind our work was the insufficient on-line tool support for de-
veloping and deploying distributed middleware applications. Based on the analysis
of current middleware systems and existing tool environments, we have elaborated
the shortcomings and disadvantages regarding the on-line tool support. The short-
comings of existing tool approaches lie in their proprietary solutions that are only
applicable to simple and homogeneous scenarios. The architecture of existing mon-
itoring systems is inflexible and makes the integration of new middleware platforms
or new tools complicated.

Modern middleware environments in contrast tend to be very diverse and com-
plex. Therefore, an approach for optimally constructing on-line tools for such envi-
ronments needs to be generic and to fulfil a set of properties that we have extracted
with our investigations. A generic monitoring approach for modern middleware
environments needs to provide a systematic concept for dealing with complex envi-
ronments. This comprises mechanisms for integrating heterogeneous components,
the support of tools for all phases of the on-line software lifecycle, and a flexible
and extensible architecture. On the basis of these requirements, we have derived the
MIMO approach for monitoring and managing heterogeneous middleware. MIMO
rests upon three fundamental concepts that address our requirements. As exten-
sively illustrated, themulti-layer monitoring model, ourgeneric monitoring infras-
tructure, and theusage methodologymake up the basic blocks of our monitoring
approach. For our prototypical implementation of the MIMO approach, we have
described the monitoring architecture, the usage of the monitor by tools and instru-
mentation, and technical aspects. Subsequently, we have demonstrated the applica-
bility of the MIMO system to various application domains. In addition to the obser-
vation of general purpose middleware, we have shown the usage for metacomputing
systems, a simulation environment, and a medical image processing application.

The evaluation of our work has shown that the MIMO approach is well suited
for our monitoring and management purposes. Splitting the overall concept into the
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three parts information model, monitoring infrastructure, and usage methodology
is advantageous for coping with the manifold requirements given within heteroge-
neous middleware environments. The multi-layer monitoring model is an appropri-
ate approach that provides a systematic formalism for handling complex and hetero-
geneous middleware. The implementation of our generic monitoring infrastructure
using Java and CORBA has shown to be applicable for our scenarios. Further per-
formance improvements could be achieved by refining the instrumentation policies
and implementations. Nevertheless, taking into account the design and implemen-
tation effort, no other language or communication paradigm results to be preferable
to our implementation based on Java and CORBA. The usage methodology finally
represents a beneficial component of the MIMO approach. Due to the generic and
open design of the monitoring infrastructure, it serves as a guideline for implement-
ing tools or integrating new middleware and thus enables a rapid tool development
process.

When we reconsider our initial motivation and the solutions to the problems we
have addressed, the major scientific difficulty is to handle the high degree of hetero-
geneity within the platforms under consideration. This heterogeneity not only con-
cerns the middleware platforms themselves, but also the different types of tools that
users wish to implement, ranging from early development tasks like visualisation
to advanced management functions like the administration of application environ-
ments. In order to find a solution to this problem, a trade-off between universality
on the one hand and adaptation to specific requirements on the other hand had to be
found. A high degree of universality makes the system powerful and applicable to
a wide range of scenarios, but more complicated to use. In contrast, a system that
is tailored to specific requirements simplifies the handling, but restricts the scope
of usage. Our trade-off to solve this contradiction has been to design a system that
allows to integrate nearly any middleware that possesses a kind of object model, and
to leave it open for implementing a wide range of tools. The multi-layer monitoring
model and the generic monitoring infrastructure reflect this trade-off.

A flexible integration of middleware platforms is enabled by the mapping strate-
gies of the multi-layer monitoring model, while the monitoring infrastructure pro-
vides a light-weight monitor core that assumes little semantics regarding the ex-
changed data. Nevertheless, in order to achieve a simple and efficient usage of the
monitoring system, the monitoring infrastructure supports basic services that are
needed by all tool environments. Moreover, our usage methodology provides ad-
ditional assistance aiming at the efficient usage of the generic system. Hence, our
overall approach for dealing with heterogeneity can be summarised by the idea of
providing a universal system that is supported by sophisticated services and a usage
methodology.

What we learned from our investigations is that the resulting monitoring system
represents a kind of intelligent event-propagation infrastructure. It allows tools and
instrumentation components to interact with each other in an asynchronous and
location transparent way. This kind of communication is not necessarily tied to
monitoring purposes, but could easily be transferred to other similar scenarios. In
this sense, our monitoring infrastructure itself can be seen as a middleware platform,
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which implements the publisher-subscriber communication paradigm, enhanced by
additional services that simplify organisational tasks.

Furthermore, we learned that dynamic processes play a substantial role within
current middleware applications. On the one hand, this concerns rapid changes re-
garding the platforms used for distributed applications and the existing applications
themselves. As technology moves fast, a monitoring system continuously has to
deal with changing platforms and applications. We attack this issue with our ad-
vanced usage methodology, which allows an incremental adaption to changing sit-
uations and supports a rapid tool development process. On the other hand, dynamic
processes occur within existing applications. The behaviour of modern middleware
applications is highly dynamic with respect to the existence, activity, and location
of application components. This trend towards highly dynamic systems will further
increase with the spread of mobile devices. Hence, modern monitoring systems
need to be able to handle such dynamic processes. Our approach to solve this is-
sue is to implement a monitor core that takes into account the organisational aspect
needed for dynamically connecting tools, monitor, and instrumentation components
with each other.

Finally, we have found that integrative aspects are of substantial importance
when tool environments for heterogeneous middleware applications are constructed.
Especially for management purposes, where obtaining an overview of the complete
computing environment is a relevant feature, tools being able to combine informa-
tion coming from different applications are advantageous. Therefore, the integrative
aspect of our monitoring approach is a significant and non-negligible contribution
for building on-line tools for heterogeneous middleware environments.

9.2 Outlook
In addition to the work described within this thesis, there are further related ques-
tions connected to our monitoring research. First of all, we did not focus on the
aspect of interoperability between concurrently applied on-line tools. The only sce-
nario considering the cooperation between tools is the medicine scenario with the
combination of the MIVIS visualisation and management tool and a load balancer.
Here, more sophisticated concepts for tool interoperability obtained in [Tri1999]
could be taken into account.

Another interesting aspect concerns the support of standards for our monitor
implementation. For example, gathering information about the observed comput-
ing environment could make use of the SNMP standard (see section 3.2.4.3). As
implementations of SNMP are widely spread and available for most platforms, the
monitoring system could use SNMP as a data source for gaining system related
data. These data can be useful for supporting application-specific instrumentations
that are not able to access system related data. With the MIMO approach, we have
now provided the basis for integrating data sources like SNMP easily.

Moreover, the format for transferring events between tool, monitor, and instru-
mentations currently relies on the generic data types provided by CORBA. A more
general approach could make use of upcoming standards like XML [LLF1998] to
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describe the data being delivered with an event. XML allows to pass a description
of the event semantics with the event itself in an advantageous way. By developing
an appropriate XML document type description, a systematic approach for defining
the event semantics could be provided for both tool- and instrumentation-side. With
this proceeding, the tool development and middleware integration process could be
organised in a more transparent manner.

Finally, a highly critical and sensitive aspect that we did not consider within this
thesis is security. Especially for practical usage within enterprise computing envi-
ronments, strategies prohibiting the access of unauthorised tools to the monitoring
system have to be found. In this, mechanisms for controlling the access to the moni-
toring system on several levels need to be defined. For example, users or tools might
be restricted to observe certain applications or aspects of applications, while system
administrators are authorised to access all applications. Also, restrictions could be
defined on different abstraction levels, such that ordinary users cannot access sys-
tem critical data, or that the manipulation of running applications is reserved for
distinguished users. Integrating security into monitoring systems therefore repre-
sents an important research topic for which up to now no sophisticated approaches
have been proposed.

When we extrapolate current developments regarding the future of distributed
applications and technologies, basic trends influencing the requirements for the next
generation of on-line tools can be observed. At first, coming applications and ac-
cess structures will be even more dynamic than today. This trend is driven by the
increasing spread and capabilities of mobile devices on the one hand, and the en-
hanced communication networks on the other hand. For example, scenarios need
to be handled in which a user connects to a computing environment using a per-
sonal digital assistant (PDA) with an Internet access provided by a mobile phone.
Tools need to be able to track such users, even when they are only temporarily ac-
tive, change their location, or migrate their application components. Problems that
arise with this scenario are the need to recognise and follow instances of applica-
tions when network boundaries are crossed and the instances migrate to different
execution platforms. Also, users may get temporarily disconnected or work off-line
and reconnect to the computing environment through a different communication
medium. Questions emerging from such scenarios need to be considered in future
monitoring approaches, as the range of hard- and software components involved in
distributed computing environments steadily gets broader. Currently, components
reaching from host-based systems to mobile digital assistants need to be taken into
account for such prognoses, but no limits are foreseeable yet.

A final consideration regarding the general utilisation of on-line tools is the ex-
tension of their scope of usage. As the presence of computers is getting pervasive
and ubiquitous, daily life will more and more be influenced by automatically con-
trolled procedures. Architectures for integrating any kind of static or mobile devices
like Jini [Sun2000] are an indicator for this trend. In these highly distributed and
dynamic environments, on-line tools for observing or steering attached devices will
be indispensable. Our contributions for dealing with heterogeneous middleware are
transferable to such scenarios in a straightforward way. Thus, a realistic and feasible
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perspective for our monitoring approach is to leave the pure software development
and deployment scenarios by moving to the construction of on-line tools for any
kind of distributed devices. Steering the coffee maker in the kitchen from a laptop
in the office is only a small but useful example for this vision.
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