
Analyzing Java in Isabelle/HOL

— Formalization, Type Safety and Hoare Logic —

David von Oheimb

Institut für Informatik, Lehrstuhl IV

Analyzing Java in Isabelle/HOL

— Formalization, Type Safety and Hoare Logic —

David von Oheimb

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. Jürgen Eickel

Prüfer der Dissertation:

1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Univ.-Prof. Dr. Arnd Poetzsch-Heffter, FernUniversität Hagen

Die Dissertation wurde am 30. November 2000 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 30. Januar 2001 angenommen.

Kurzfassung

Diese Dissertation behandelt die maschinelle Analyse des (fast vollständigen)
sequentiellen Teils der objektorientierten Programmiersprache Java. Wir zeigen,
dass die Einbettung einer solchen Sprache in einen Theorembeweiser, in diesem
Fall Isabelle/HOL, und der Beweis wichtiger metatheoretischer Eigenschaften
inzwischen gut möglich ist. Dazu beschreiben wir detailliert die Formalisierung
mit Abstrakter Syntax, Typsystem und der Operationellen Semantik sowie ein
Anwendungsbeispiel, geben einen Beweis der Typsicherheit, entwickeln eine
Axiomatische Semantik und beweisen deren Korrektheit und Vollständigkeit.

Abstract

This thesis deals with machine-checking a large sublanguage of sequential Java, covering
nearly all features, in particular the object-oriented ones. It shows that embedding such a
language in a theorem prover and deducing practically important properties is meanwhile
possible and explains in detail how this can be achieved.

We formalize the abstract syntax, and the static semantics including the type system
and well-formedness conditions, as well as an operational (evaluation) semantics of the
language. Based on these definitions, we can express soundness of the type system, an
important design goal claimed to be reached by the designers of Java, and prove that type
safety holds indeed. Moreover, we give an axiomatic semantics of partial correctness for
both statements and (side-effecting) expressions. We prove the soundness of this semantics
relative to the operational semantics, and even prove completeness. We further give a small
but instructive application example.

A direct outcome of this work is the confirmation that the design and specification of
Java (or at least the subset considered) is reasonable, yet some omissions in the language
specification and possibilities for generalizing the design can be pointed out. The second
main contribution is a sound and complete Hoare logic, where the soundness proof for our
Hoare logic gives new insights into the role of type safety. To our knowledge, this logic is
the first one for an object-oriented language that has been proved complete. By-products
of this work are a new general technique for handling side-effecting expressions and their
results, the discovery of the strongest possible rule of consequence, and a new rule for flexible
handling of mutual recursion.

All definitions and proofs have been done fully formally with the interactive theorem
prover Isabelle/HOL, representing one of its major applications. This approach guarantees
not only rigorous definitions, but also gives maximal confidence in the results obtained.
Thus this thesis demonstrates that machine-checking the design of an important non-trivial
programming language and conducting meta-theory on it entirely within a theorem proving
system has become a reality.

Not that we are competent in ourselves
to claim anything for ourselves,

but our competence comes from God.
2 Corinthians 3:5

Acknowledgments

I thank my supervisor Tobias Nipkow for giving me the opportunity to work in this in-
teresting project, for his prompt and continuous support, and his well-founded and helpful
advice.

I thank Arnd Poetzsch-Heffter for being my referee, and am I indebted to him, Tobias
Nipkow, Martin Strecker, Marieke Huisman and the members of the Isabelle theorem proving
group in Munich for their comments on draft versions of this thesis. Furthermore I am
grateful to Cornelia Pusch, Sophia Drossopoulou, Donald Syme, Martin Hofmann, Peter
Müller, Thomas Kleymann and Francis Tang for inspiring and clarifying discussions.

I thank the — former and current — members and guests of our working group, namely
Tobias Nipkow, Franz Regensburger, Dieter Nazareth, Christian Prehofer, Konrad Slind,
Olaf Müller, Cornelia Pusch, Wolfgang Naraschewski, Markus Wenzel, Leonor Prensa Nieto,
John Harrison, Stefan Berghofer, Gerwin Klein, Gertrud Bauer, Sebastian Skalberg, Raman
Ramanujam and Giampaolo Bella, as well as Manfred Broy and the remaining colleagues
and staff members of our chair, for the excellent working atmosphere and the technical and
organizational support.

I thank my mother Erika, Reinhard Kahl, Edith Steiler, my landlords Gottlieb and Ilse
Endraß in Gröbenzell, Helmut Kilgus, Marlies Gilliam and the members of the Vineyard
church initiative in Puchheim for their encouragement and prayers.

To Hagen and Erika

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2

1.2.1 Formal Language Semantics . 2
1.2.2 Need for Machine Support . 2
1.2.3 Maturity of Machine Support . 2
1.2.4 Advances in Methodology . 3
1.2.5 Design Check . 3
1.2.6 Hoare Logic . 3
1.2.7 Direct Applications . 3

1.3 Related Work . 4
1.4 Overview . 5
1.5 Java-like Languages . 5

1.5.1 Java . 5
1.5.2 Java Card and Java`ight . 6
1.5.3 Differences to Java . 7

1.6 Formalization . 9
1.6.1 Validation Problem . 9
1.6.2 Goals . 9
1.6.3 Principles . 9
1.6.4 Techniques . 10
1.6.5 Embedding Style . 11

1.7 Isabelle/HOL . 11
1.7.1 Presentation of Formal Content . 12
1.7.2 Theories . 12
1.7.3 HOL Library . 13
1.7.4 Proof Tools . 13

2 Static Semantics 15
2.1 Names . 15
2.2 Types . 16

2.2.1 Primitive Types . 16
2.2.2 Reference Types . 16

2.3 Values . 17
2.4 Terms . 17

2.4.1 Statements . 17
2.4.2 Expressions . 18
2.4.3 Variables . 20

vii

2.4.4 Combination . 21
2.5 Lookup Tables . 21

2.5.1 Unique Tables . 21
2.5.2 Non-functional Tables . 22
2.5.3 Alternatives . 22

2.6 Declarations . 23
2.6.1 Fields and Methods . 23
2.6.2 Classes and Interfaces . 23
2.6.3 Programs . 24
2.6.4 Hierarchy Traversal . 25

2.7 Type Relations . 28
2.7.1 Basic Relations . 28
2.7.2 Transitive Closures . 28
2.7.3 Widening . 29
2.7.4 Narrowing and Casting . 30

2.8 Well-Typedness . 31
2.8.1 Environments . 31
2.8.2 Judgments . 31
2.8.3 Statements . 32
2.8.4 Expressions . 32
2.8.5 Methods . 33
2.8.6 Variables . 35
2.8.7 Expression Lists . 35
2.8.8 Properties . 36

2.9 Well-Formedness . 36
2.9.1 Fields and Methods . 36
2.9.2 Interfaces . 37
2.9.3 Classes . 37
2.9.4 Programs . 37
2.9.5 Properties . 38

3 Operational Semantics 39
3.1 State . 39

3.1.1 Objects . 39
3.1.2 Stores . 41
3.1.3 Exceptions . 42
3.1.4 Full State . 43

3.2 Evaluation . 44
3.2.1 Evaluation vs. Transition . 44
3.2.2 Judgments . 45
3.2.3 Exception Propagation . 47
3.2.4 Standard Statements . 48
3.2.5 Exception Handling . 48
3.2.6 Class Initialization . 49
3.2.7 Simple Expressions . 50
3.2.8 Memory Allocation . 51
3.2.9 Method Call . 52
3.2.10 Variables . 53
3.2.11 Expression Lists . 54
3.2.12 Properties . 54

viii

4 Type Safety 55
4.1 Notions . 55
4.2 Relevance . 56
4.3 Auxiliary notions . 56
4.4 Goal . 58
4.5 Proof . 58
4.6 Discussion . 60

4.6.1 Non-termination . 60
4.6.2 Alternative: Transition Semantics . 60

4.7 Problems with Transition Semantics . 60
4.7.1 Problem Origins . 61
4.7.2 Array Problem . 61
4.7.3 Conditional Problem . 61
4.7.4 Side Effects on Types . 62

4.8 Summary . 62

5 Axiomatic Semantics 63
5.1 Assertions . 63

5.1.1 Logical Language . 63
5.1.2 Auxiliary Variables . 64
5.1.3 Result Values . 65
5.1.4 Assertion Type . 66
5.1.5 Combinators . 67

5.2 Triples . 67
5.3 Validity . 68

5.3.1 Single Triples . 68
5.3.2 Recursive Depth . 69
5.3.3 Liftings . 69

5.4 Structural Rules . 70
5.4.1 Handling Conclusions . 70
5.4.2 Handling Assumptions . 70
5.4.3 Rule of Consequence . 71

5.5 Universal Quantification . 72
5.6 Java-specific Rules . 73

5.6.1 Exception Propagation . 73
5.6.2 Standard Statements . 73
5.6.3 Exception Handling . 74
5.6.4 Class Initialization . 75
5.6.5 Simple Expressions . 75
5.6.6 Object Creation . 76
5.6.7 Variables . 76
5.6.8 Method Call . 77
5.6.9 Expression Lists . 79
5.6.10 Critical Review . 79

5.7 Soundness . 79
5.7.1 General Approach . 80
5.7.2 Method Implementation Rule . 80
5.7.3 Method Call Rule and Type safety . 80
5.7.4 Summary . 81

5.8 Completeness . 81

ix

5.8.1 MGF Approach . 82
5.8.2 Mutual Recursion . 83
5.8.3 Static Initialization . 84
5.8.4 Main Induction . 84
5.8.5 Proof-theoretical Remarks . 85
5.8.6 Summary . 87

6 Example 89
6.1 Program . 89
6.2 Model . 90

6.2.1 Names . 91
6.2.2 Method Declarations . 91
6.2.3 Class and Interface Declarations . 91
6.2.4 Test Program . 92

6.3 Properties . 93
6.3.1 Well-formedness . 93
6.3.2 Well-typedness . 94
6.3.3 Symbolic Execution . 95
6.3.4 Proof using Hoare Logic . 98

6.4 Summary . 101

7 Conclusions 103
7.1 Achievements . 103
7.2 Experience . 104
7.3 Further Work . 105
7.4 Final Statement . 106

Appendix 107

Bibliography 165

x

Chapter 1

Introduction

1.1 Motivation

Ever since the invention and first serious applications of computers in the middle of the last
century, the importance of computer software has been growing enormously. Starting as a
by-product of electronic hardware development, meanwhile it has become an industry of its
own heavily influencing production, administration, commerce and leisure.

Becoming more and more a crucial part in our modern society, correctness problems and
the resulting risks of applying software have emerged gradually but evidently. The most
striking example recently has been the well-known “Y2K bug” [NYT99] demonstrating to
anyone in the world how easily misconceptions on the use of software and faults in non-
tested situations could become a global — at least economic — threat. Other malfunctions
have been more spectacular like the destruction of an Ariane V rocket [L+96] or much more
annoying to millions of users like the everyday experience of MS Windows bugs [Kar98].

Even long before these and many other failures actually happened, on the October 1968
NATO Science Committee Conference on Software Engineering in Garmisch-Partenkirchen
the term “software crisis” was used to describe the situation of software being late, over-
budget and full of errors. Unfortunately, this crisis has become chronic [Gib94] since then.
The reasons for this phenomenon are evident: the tasks of computation are inherently —
and increasingly — complex, and so is the software implementing it. Moreover there is
high demand of producing software within very short time, having only a limited number of
skilled developers available, and even these are non-perfect human beings.

To remedy the situation, typically more or less rigorous tests are performed, but these
are not sufficient as they do not guarantee the absence of errors. A real solution to rule out
design and coding — yet not analysis — errors would be to prove correctness using formal
(mathematical, logical) methods, for two reasons: formalization helps to understand the
problem to be dealt with, and proofs give maximal confidence in correctness. Unfortunately
even just applying formal methods is typically quite difficult and takes a lot of effort and
thus is rarely used in practice today.

The vision of computer science and hope of at least those parts of industry developing
safety- and mission-critical software is that through research and experience formal methods
get mature and easier to apply, e.g. by automation. Further positive effects can be expected
from improved programming languages and related tools. A promising relatively new aspect
is to use machine-checked formal methods to analyze such equipment and enhance their
development. The work presented here aims to be a step in this direction.

1

1.2 Aims

1.2.1 Formal Language Semantics

As opposed to informal human languages, languages used for expressing computer programs
have a small vocabulary, a simple structure and uniquely definable semantics. The theory of
programming languages has a relatively long and successful tradition, as can be seen from
the available standard textbooks on the subject, e.g. [Win93] and [NN92]. In order to obtain
a precise description and analysis, formal techniques originating from discrete mathematics,
in particular logics, should be applied (and extended). This is particularly important since
even if each of the basic principles of a programming language are normally well understood,
their interplay often causes effects that are difficult to comprehend. Without formal analysis,
design errors like loopholes in the type system may occur, as happened e.g. for Eiffel [Coo89].

1.2.2 Need for Machine Support

Programming language theory typically deals with idealized core languages that are very
convenient for studying difficult phenomenons without having to bother with (apparently)
unrelated features and details. Up to this point, doing pen-and-paper work is sufficient, even
if machine-checked formalizations and proofs increase precision and reliability. Yet when it
comes to applying the theory to actual languages, as (partially) done e.g. in [DE97a], one
is forced to handle a lot of details as well as their sometimes unexpected interference. The
sheer amount of work and the number of mistakes that inevitably creep in render the pen-
and-paper approach infeasible, in particular in the presence of changes and extensions. Here,
machine-supported formalization and proofs come to the rescue, promising correctness and
at least partial automation.

1.2.3 Maturity of Machine Support

Practically useful theorem proving systems have been around for more than one decade
[Gor85, C+86, OSR92, Pau90, DFH+93, Pol94]. Their standard in terms of correctness and
robustness is usually very high (although for PVS [PVS, GH98] efficiency is more impor-
tant), but at least for several years their expressiveness, degree of automation or scalability
has been insufficient for large complex applications. Also the methodology of language
embeddings had to be developed, where a major contribution is due to Gordon [Gor89].
Fortunately, over time there has been considerable progress in theorem proving, taking as
an example Isabelle [Pau94b, Isa] where support for inductive definitions and mutually re-
cursive datatypes [BW99], combinations of rewriting with proof search strategies, and a
convenient user interface [AGKS99] have been added. Progress in the general computing
power available plays an important role as well. The overall goal of this thesis is to demon-
strate that, making use of all these advances,

machine-checking the design and meta-theory
of realistic programming languages has become feasible.

As a case study supporting this claim we

• take one of the currently most popular programming languages, Java (cf. §1.5),

• formalize (cf. §1.6) it, and

• conduct meta-theoretical proofs of various properties

• in a state-of-the art verification system, Isabelle/HOL (cf. §1.7).

2

1.2.4 Advances in Methodology

This work is the first larger-scale embedding of an object-oriented programming language
for performing meta-theory in a theorem prover. Such a challenging task requires not only a
high degree of dedication, but also extensions of the existing methodology of embeddings, in
particular applying software-engineering techniques (cf. §1.6.4) in order to keep the resulting
system manageable. So a secondary aim of this thesis is to convey experience and guidelines
supporting future formal investigations of other languages using Isabelle or similar theorem
provers. Therefore we present the formal issues not in full mathematical abstraction, but
in the more technical style actually required by the theorem prover. On the other hand, we
abstract from the peculiarities of Isabelle as far as possible, stressing the general principles
that apply also to its relatives.

1.2.5 Design Check

Concerning the embedded language itself, we aim at checking the consistency of Java’s design
and specification. We do not really expect to find severe loopholes in the language design, in
particular concerning type soundness, but one cannot be sure without rigorous verification.
Yet we do expect to identify problematic (in particular in the sense of unnecessarily difficult)
features and find minor omissions and inconsistencies of the specification. This provides
valuable feedback for the designers and specification authors as well as language tool (e.g.
compiler) developers and programmers who may be warned of potential pitfalls.

1.2.6 Hoare Logic

Next to a proof of type soundness, as the second major meta-theoretical undertaking we aim
at developing a Hoare logic (i.e. axiomatic semantics) for Java and prove it correct w.r.t.
our operational semantics and, if possible, also prove relative completeness. The latter
issue is particularly challenging since by now no such completeness proof is known for any
object-oriented language, not even on paper.

1.2.7 Direct Applications

Our formalization itself can be — and actually is — used in several ways.

• The formalization of current Java is a good starting point for investigating possible
future extensions, for example generic types and intersection types [BW98].

• Together with a formalization of the Java Virtual Machine (JVM) and its bytecode, it
serves as the basis for compiler verification.

• The Hoare logic may of course be used to perform program verification.

• Even further in this direction, we plan to formalize program design using UML [BRJ98,
EFLR99] and in particular OCL [WK99] for verifying the implementation of high-level
specifications.

• A simplified version [NOP00] of the system is used for teaching on semantics.

3

1.3 Related Work

This section provides an overview of the literature related to our work. Further related work
and more detailed remarks on some of the references summarized here will be given in the
subsequent chapters where appropriate.

The work described in this thesis is has been performed in the context of the DFG
Project Bali [NOPK] aiming to treat the major aspects of Java and its environment formally
within Isabelle/HOL. Next to investigations of the Java source language [NO98, ON99]
describing previous stages of the work presented here, there is a corresponding formalization
of the JVM [Pus98a] and in particular on the Bytecode Verifier [Pus99, KN00]. The papers
[OP98, NOP00] give an overview on both the source and bytecode levels. Work on combining
them via compiler correctness is in progress.

The first formalization of a (small, later extended) subset of Java is due to Drossopoulou
and Eisenbach [DE97a, DE99] including a pen-and-paper proof of type soundness, which
heavily inspired our formalization and type soundness proof. Börger and Schulte [BS99]
formalize (as an Abstract State Machine) a rather large subset including multi-threading,
aiming at compiler verification and rapid prototyping, but no proofs have been reported.
Wallace [Wal97] gives a quite similar ASM semantics of Java slightly better structured
through the use of so-called Montages.

Concerning the embedding of programming language semantics in a theorem prover, the
pioneering work is Gordon’s [Gor89], who defined the semantics of a simple while-language
(as a shallow embedding, cf. §1.6.5) and derived Hoare logic rules within his HOL system.
Later, Nipkow embedded a similar language called IMP defined for didactic purposes [Win93]
in Isabelle/HOL [Nip98]. A recent work on a non-object-oriented language is due to Norrish
[Nor98] formalizing the bulk of the C language as a transition semantics in Gordon’s HOL,
proving type preservation and useful lemmas concerning determinism [Nor99] for it, and
deriving a Hoare logic for a subset free of side effects and abrupt termination.

Various sublanguages of Java have been formalized mechanically by

Syme [Sym99b] proving type soundness as the major case study for his DECLARE prover
[Sym97, Sym99a], directly mechanizing and improving the work contained in [DE97a],

Jacobs et al. [JBH+98, HJ00] translating Java classes to a more or less denotational rep-
resentation (as PVS or Isabelle theories) using their LOOP [J+a] tool and performing
program verification with a Hoare logic proved sound within their system,

Attali et al. [ACR98, ACR] giving an executable transition semantics and a visualization
tool for a large subset of Java within the Centaur system aiming at program simulation
and (ultimately) at verification as well.

Recently several proposals for not machine-checked Hoare logics for some more or less
object-oriented languages have been given, e.g. [AL97, dB99]. The work of Poetzsch-Heffter
and Müller [PHM99] dealing with a subset of Java, contains also a soundness proof (on
paper) which inspired parts of our soundness proof. Inspiration for our completeness proof
and the approach for dealing with auxiliary variable stems from Kleymann1 [Sch97, Kle98]
who gives a logic of total correctness and VDM rules for a simple imperative language with a
single recursive procedure and proves soundness and completeness using the theorem prover
Lego. Homeier and Martin [HM96] deal with a similar language but including mutual
recursion and prove the correctness of a verification condition generator using Gordon’s
HOL, while von Oheimb [Ohe99] proves also completeness for an IMP-like language with
mutual recursion using Isabelle, which was an important building block of this thesis.

1formerly Schreiber

4

1.4 Overview

The structure of this thesis is as follows. The remainder of this introducing Chapter 1 gives
background information on Java and some of its derivatives, general formalization issues,
and the theorem prover Isabelle/HOL.

Chapters 2 and 3 define the operational semantics of Java`ight giving all the details of
our formalization. The former focuses on the static aspects, thus syntax, type system, and
well-formedness conditions, whereas the latter contains the dynamic aspects, thus the state
model and evaluation rules.

Chapter 4 deals with type soundness as the first application of our operational semantics.
We explain the necessary notions, comment on our proof, and compare it to an alternative
approach using transition semantics.

Chapter 5 introduces our Hoare logic for Java`ight including all the techniques required
like auxiliary variables, intermediate values, and result entries. We sketch the proofs of
soundness and completeness covering two alternatives for handling mutual recursion.

Chapter 6 gives a small instructive example applying most of the concepts introduced in
the chapters before.

Chapter 7 concludes by summarizing the achievements of this thesis and the lessons
learnt for Java, formalization and theorem proving, and points out further work.

This thesis contains parts of the following previously published material: [NO98, ON99,
Ohe99, Ohe00a].

1.5 Java-like Languages

From the early days of programming up to now programmers are accustomed to an impera-
tive (state-oriented, operational) style of programming and using corresponding languages,
even though functional and other declarative languages would often be more appropriate
and much less error-prone. Nevertheless there has been development over procedural to
object-oriented style giving better structuring of software and thus improving reliability,
maintainability and reuse. Still at least two problematic issues remain: mutable state, and
object references. Introducing side effects and aliasing, they are the main challenges for
reasoning about programs. In contrast, they are rather well understood and easy (yet in
part cumbersome) to model on the level of language semantics. Other features tend to be
difficult on both levels, like subtyping involving inheritance and hiding, exceptions lead-
ing to potential unexpected termination, and concurrency involving non-determinism and
synchronization.

1.5.1 Java

Java [AGH00] is currently one of the most popular programming languages since it com-
bines recent experience on object-oriented programming with high security and portability.
Despite some attempts for public standardization, proprietary modifications and even pla-
giarism, Java is still under full control of Sun Microsystems. This has the advantage of
maximal integrity but on the other hand gives little opportunity for suggestions (e.g. from
academia) for improvement other than those — directly or indirectly — meeting the eco-
nomic interests of that company.

5

None of Java’s features had been actually new at the time of its design, but the good
mixture by concentrating on useful and more or less well-understood features makes the
difference. These are

• (rather) purely object-oriented paradigm, as opposed to e.g. C++

• interfaces and classes implementing them

• (almost) static typing and initialization test

• dynamic object allocation and automatic garbage collection

• static overloading and dynamic binding

• elaborate exception handling

• name spaces and visibility control

• concurrency through language-supported multi-threading

• virtual machine [LY96] making compiled code portable

Some of Java’s features are problematic and may be criticize as flaws, like

• covariance (instead of non-variance) of array types making dynamic type checks neces-
sary for array assignment

• lack of generic types, where corresponding extensions have been proposed and discussed
for several years [AFM97, MBL97, OW97], of which the one by Odersky et al. meanwhile
has been selected for realization [BOSW98]

• counterintuitive and hard to implement semantics of concurrency which is currently
being revised

• minor unnecessary restrictions, as summarized in §1.5.3

Our work focuses on Java version 1.0, as this was the one available at the beginning of
the project. The extensions made meanwhile, in particular inner classes, are not of special
interest for us. Thus all our references to the Java specification refer to its first official
version [GJS96].

1.5.2 Java Card and Java`ight

Java is aimed to run not only on conventional personal computers and workstations, but
also on embedded systems and so-called Smart Cards [Sun99a, TJ97]. Since on smart cards
memory (and computational power) is rather limited, a sublanguage of Java that can cope
with very little resources, called Java Card [Sun99b], has been defined. To this end, garbage
collection and multi-threading are not included, and the application programming interface
(API) providing platform independence is shortened.

The sublanguage of Java that we consider, called Java`ight, is rather similar to Java Card.
There are only two important features still missing, viz. name spaces and visibility control,
which we aim to include later. Apart from that, we believe to have included all features
important for an investigation of the semantics of a practical imperative object-oriented
language.

For easier comparison with other approaches formalizing diverse sublanguages of Java,
we give a list of the features of Java`ight:

• class and interface declarations

• class fields and methods

• instance fields and methods

6

• inheritance, overriding, and hiding

• objects (including arrays)

• a few primitive types

• all relations on reference types

• dynamic object allocation

• static initialization

• static overloading of fields and methods

• dynamic binding of method calls

• exception throwing and handling

Note that these features are more or less orthogonal to each other. In contrast, instances
of certain concepts, e.g. numerous variants of control statements, can be reduced to a most
generic or at least prototypical one. In this case we only provide that generic variant, from
which the others can be derived — typically by instantiation — without losing expressive-
ness.

1.5.3 Differences to Java

This subsection gives a detailed account of how Java`ight differs from Java 1.0 and Java
Card.

There are several aspects of Java that are not modeled in Java`ight (in order to obtain a
lean formalization) and cannot be emulated neither:

• multi-threading, a problematic feature also not included in Java Card

• garbage collection, which is also not included in Java Card

• packages and hierarchical name spaces, which we are planning to add later

• field and method modifiers other than static, also to be added later

• definite assignment

• throws clauses

• (standard) unary and binary operators

• memory overflow when allocating a class object

• stack overflow

7

Some features of Java that are left out in Java`ight for simplicity can be emulated:

• interface fields (i.e. named constants), cf. §2.6.2

• user-defined constructors, cf. §2.6.2

• multiple static initializers, cf. §2.6.2

• creation of multi-dimensional arrays, cf. §2.4.2

• nested blocks and inner local variables, cf. §5
• static references (by type name) to methods and fields, cf. §2.4.2 and 2.4.3

• break, continue, and return statements (to be added later), cf. §2.4.1

• try catch statement with multiple catch clauses, cf. §5
• return statements, cf. §2.6.1

As far as Java`ight is a subset of Java, it adheres to the Java language specification [GJS96],
except for several useful generalizations:

• any expression may be used as a statement, cf. §5
• the finally statement may be used in any context, cf. §5
• super may be used as an ordinary expression, cf. §2.4.2

• in class and interface declarations we allow the result type of a method overriding some
method m to widen to the result type of m (instead of requiring it to be identical),
cf. §2.9.2 and 2.9.3

• in the same way, the relation between methods taken into account when defining the
narrowing relation is relaxed, cf. §2.7.4

• if a class or an interface inherits more than one method with the same signature,
these methods need not have identical return types as long as they are overridden or
implemented by a method whose return type is a common subtype, cf. §2.9.2 and 2.9.3

• we use a weaker notion of “more specific methods”, which seems more appropriate from
the software engineering viewpoint and extends the set of legal method invocations,
cf. §13

• the type of an assignment is determined by the right-hand side, which can be more
specific than the left-hand side, cf. §2.8.4

We found several issues not specified in [GJS96] and defined a reasonable behavior that
seems to be consistent with current implementations:

• given a Null reference, the throw statement raises a NullPointer exception, cf. §16

• each standard exception thrown yields a fresh exception object, cf. §14

• if there is not enough memory even to allocate an OutOfMemory error, program execution
simply halts, cf. §3.2.8

• the exact position of class initializations has been fixed, cf. §3.2.6

A few parts of the specification are even misleading and had to be corrected:

• methods of class Object may be called upon any interface, cf. §2.8.5

• method invocation mode super is effectively static, cf. §3.2.9

• method lookup does not need to take the return type into account, cf. §3.2.9

8

1.6 Formalization

Even rather abstract entities like programming languages (except for their syntax) are typ-
ically defined in an informal — but hopefully precise — way. To make then amenable to
formal analysis means to describe them by mathematical means, at least on paper, or —
even more rigorously and reliably — on the computer. As formalization is the most creative
and interesting part of work like ours, it will take up most of the space in this thesis.

1.6.1 Validation Problem

Unfortunately the crucial transformation step of formalization is itself informal, so much care
is required in order to obtain something really useful. Basic validation is done by manual
inspection, which in the ideal case is done by several people independently, possibly aided
by a tool re-translating the model to a less formal (and more verbose) description. Further
steps are identification and proof of key properties of the model, as well as generation of
test examples covering as much of the model as possible and comparing their outcome to
the original system, for which rapid prototyping and code generation tools are very helpful.

1.6.2 Goals

For a formalization like ours it is important to aim at the following general design goals.

understandability (including readability on the lexical level) is the basic requirement, as
otherwise handling and applying the formalized model will be severely hampered

faithfulness to the original specification as otherwise the properties derived from the model
do not apply to the original system

maintainability for ease of change and extension

executability for validation checks, rapid prototyping, and didactic purposes

adequacy for applications, in particular for theorem proving and code generation

It is worthwhile to keep these goals in mind while reading the subsequent chapters and
to judge yourself how far we have reached them.

1.6.3 Principles

In order to achieve the goals mentioned above, principles successfully used in ordinary soft-
ware development apply also to language embeddings:

simplicity and succinctness: keeping things as short and simple as possible minimizes
errors and eases validation as well as applications

standardization: using symbols, terms and concepts that are generally well-known and
keeping names consistent with the original specification of the system being modeled
avoids confusion and improves maintainability and suitability for code generation.

modularity and locality: grouping together things that belong to each other intrinsically
enhances maintainability

abstraction and minimal redundancy: avoiding unnecessary details and replications of
any kind (unless put to the extreme) strongly improves maintainability and adequacy
for theorem proving

All of these principles promote the basic goal of understandability as well.

9

1.6.4 Techniques

There are several distinct techniques aiming at the goals (by implementing the principles)
given. Each situation within our formalization where we apply them is marked with a tag
referring to the following list.

The first group of techniques concerns shaping the outer boundaries of the model, i.e.
describes a certain relation to the original language specification:

Restrictions by leaving out features that are
too difficult or uninteresting

Underspecification by leaving out irrelevant details

Generalization by removing unnecessary restrictions

Clarification by filling gaps in the specification

Correction of misleading parts of the specification

The second group of features concern the inner structure of the model:

Factoring2 by forming hierarchies cap-
turing common behavior

Unification of related concepts

Reduction to already defined concepts

2A semi-graphical pun by Wenzel: “Factory1 + Factory2 ; Factored Factories ; -)”

10

1.6.5 Embedding Style

When formalizing a programming language in a theorem prover, which is also called embed-
ding, one has basically two options [BGG+92]:

deep embeddings define as a first step the (abstract) syntax of the language and then
assign semantics to it. This is useful when doing meta-theory in the language since one
can express properties of the syntactic structure and prove generic properties of the
language (such as type soundness).

shallow embeddings define the semantics of each construct in the language by an en-
tity within the underlying logic. This is advantageous for reasoning about individual
programs of the language as the extra syntactic level is avoided.

As our aim is meta-theory, from this characterization it should be clear that we mainly use
a deep embedding. It is also possible to mix both styles, which we will do when shallowly
embedding the assertion language of our axiomatic semantics into higher-order logic.

1.7 Isabelle/HOL

For our formalization and proofs we use the theorem proving system Isabelle/HOL. This
is the generic interactive theorem prover Isabelle [Pau94b] instantiated with Church’s clas-
sical, simply-typed Higher-Order Logic (HOL) [Chu40, And86]. Isabelle/HOL has been
developed by Paulson in Cambridge and Nipkow in Munich. The system is evolving further,
in particular through the work of the Munich theorem proving group (Wenzel et al.) [Isa].

The merits of Isabelle/HOL we heavily make use of are:

expressiveness of the logic enables natural and direct formalization

type inference helps to easily detect ill-formed expressions

syntax capabilities allow well-readable formulas

proof tools suitable for rather convenient semi-automatic reasoning

trustworthiness of the underlying inference machinery due to the “LCF approach”
[GMW79, Pau87]

convenient use achieved with the user interface Proof General [Asp00a, Asp00b]

user support through extensive documentation and the developers themselves

Recently Isabelle has acquired a new metalanguage for declarations and proofs (replacing
ML [MTH90] as the proof script language) called Isar [Wen99b, Wen99a], yet we always refer
to the “traditional” version of the Isabelle user interface, as introduced e.g. in [Pau94a]. A
more recent gentle introduction to Isabelle/HOL is [Nip99]. Here and in the subsequent
chapters by HOL we mean Isabelle/HOL, which is not to be confused with its nearest
relative, Gordon’s HOL system [GM93], currently referred to as HOL98 [HOLb].

11

1.7.1 Presentation of Formal Content

In the remainder of this section, we will briefly introduce those aspects of Isabelle required
for understanding the definitions and theorems given in the subsequent chapters. According
to our aim to give a technically oriented, but not prover-specific presentation, we abstract
from syntactic details by leaving out the respective Isabelle keywords, quotes, etc. The
actual Isabelle theory sources are given in the appendix, and the full sources including the
proof scripts are available on the web at http://isabelle.in.tum.de/Bali/src/Bali5/.

We heavily make use of Isabelle’s capability to use common “mathematical” syntax for
many logical connectives and other symbols, e.g. ‘∀’ instead of ASCII replacements like ‘All’
or ‘!’. Not only are graphical symbols much more readable, but they also form the tokens of a
generally understood mathematical notation, as opposed to any prover-specific pure-ASCII
transcription.

We further adopt the following typographic conventions: The names of logical constants
like ‘True’ or ‘cfield’ appear in sans serif, while type names like ‘bool’ or ‘state’ and variables
like ‘v’ appear in italics, and Java keywords like ‘catch’ appear in typewriter font.

1.7.2 Theories

Isabelle source is structured as a directed acyclic graph of theories, each comprising a list of
sections. A section may introduce a piece of syntax, a type or a logical constant, or define
their properties.

Types follow the syntax of ML. Type abbreviations are introduced simply as equations.
Logical constants are declared by giving their name and type, separated by ‘::’. Both types
and constants may obtain additional general mixfix syntax (possibly with graphical sym-
bols and user-defined precedences). We write non-recursive definitions as well as syntactic
abbreviations (which should enhance readability of long formulas) with ‘≡’.

The appearance of formulas is fairly standard, e.g. ‘−→’ is the (right-associative) infix
implication symbol. Terms are expressions of an extended λ-calculus similar to ML. Function
application is written in curried style. Predicates are functions with Boolean result.

Primitive recursive function definitions are written with pattern matching as usual.
There are also general (but well-founded, since HOL is a total logic) recursive definitions.
We will heavily use inductive relations and datatypes. A free datatype is defined by listing
its constructors together with their argument types, separated by ‘|’. All these higher forms
of definitions are handled by separate packages that produce more low-level syntax, type and
constant definitions and derive their characteristic properties. For instance, the datatype
declaration

t = C t1 t2
| . . .

induces a declaration for the new type t and the injective function C :: t1 → t2 → t as
datatype constructor. Additionally, for our presentation we assume3 that for each construc-
tor C :: t1 → t2 → t there is a corresponding destructor (a.k.a. selector) the C :: t → t1 × t2,
defined as the C z ≡ ε(x,y). z = C x y. For descriptions like these we apply Hilbert’s choice
operator ε, where εx. P x denotes some (deterministically chosen) value x satisfying P, or
some default value if no such value exists. The default value is represented as the polymor-
phic constant arbitrary :: α and is completely unspecified and thus definable as εx. False. Note
that in HOL there is no empty type.

3The current HOL datatype package does not provide destructors, but we define them manually where
needed.

12

http://isabelle.in.tum.de/Bali/src/Bali5/

1.7.3 HOL Library

We build our formalization on top of the standard HOL library. Here we briefly introduce
the types and functions used later. The fundamentals of HOL are introduced in [NPW94],
whereas the latest version of HOL can be found in [HOLa].

In HOL there are the basic types unit (with a single value denoted by ()), bool, int and
nat, as well as the polymorphic type (α)set of homogeneous sets for any element type α.
Occasionally we apply the infix ‘image’ operator lifting a function over a set, defined as
f “ S ≡ {f x |x. x∈S}.

The product type α × β comes with the projection functions fst and snd. Tuples are
(improper) pairs nested to the right, e.g. (a,b,c) = (a,(b,c)). They may be used also as
patterns like in λ(x,y). f x y. Sometimes we use tuples where (extensible) records with named
fields would be more appropriate, which is for historical reasons since records were not
available in HOL at earlier stages of our formalization work. Meanwhile there is even
a methodology for object-oriented verification using extensible records [NW98], which is
aimed to support program verification using shallow embedding.

The sum type α + β comes with the injections Inl and Inr. For the ternary sum α + β + γ

we assume the injections In1, In2 and In3 γ.. Furthermore, for the nested sums that we will
use the abbreviations In1l e ≡ In1 (Inl e) and In1r e ≡ In1 (Inr e) are handy.

The list type (α)list is defined via its constructors [] denoting the empty list and the infix
‘cons’ operator ‘#’, which are introduced by the datatype declaration

(α)list = [] | α#(α)list

The concatenation operator on lists is written as the infix symbol ‘@’. We use the functional
map :: (α → β) → (α)list → (β)list applying a function to all elements of a list, the function
length :: (α)list → nat, a check for absence of duplicate elements nodups :: (α)list → bool, and
a conversion function set :: (α)list → (α)set.

We frequently use the datatype

(α)option = None | Some α

It has an unpacking function the :: (α)option → α such that the (Some x) = x and the None =
arbitrary. There is a simple function mapping o2s :: (α)option → (α)set converting an optional
value to a set, with the characteristic equations o2s (Some x) = {x} and o2s None = ∅. With
its help, we define the bounded quantifications ∀x∈A: P ≡ ∀x∈o2s A. P and ∃x∈A: P ≡
∃x∈o2s A. P. Analogous to the map function for lists, there is

option map :: (α → β) → ((α)option → (β)option)
option map f ≡ λz. case z of None → None | Some x → Some (f x)

1.7.4 Proof Tools

Proofs with (traditional) Isabelle are conducted in a goal-directed, backward-chaining style:
goals are stated and successively reduced to further subgoals using so-called tactics, which
are transformers on the proof state, until the proof state becomes trivial. Tactics may be
combined using tacticals, which act as control structures.

The basic tactics are resolution, applying inference rules backwards in natural deduction
style, and rewriting, applying (conditional) directed equalities. Natural deduction involv-
ing search with backtracking can be automated using the so-called classical reasoner, and
rewriting typically is done with the simplifier, both using suitable sets of rules. These two
tools are often combined.

13

A typical proof is semi-automatic in the sense that the user directs the important higher-
level steps like inductions, case distinctions, and classical proof schemes. On the less inter-
esting and more straightforward remaining subgoals of the proof, the automatic tools are
often smart enough to find suitable proofs, at least when equipped with lemmas expressing
characteristic properties of the entities involved. Such lemmas typically include obvious
introduction and elimination or rewrite rules, which an experienced user can predict and
prove in advance or at least identify on demand.

14

Chapter 2

Static Semantics

As the basis for all further investigations, we formalize the static aspects of Java`ight, i.e.
its (abstract) syntax, type system, and well-formedness conditions. Many of our definitions
have been inspired by Drossopoulou and Eisenbach’s pioneering work [DE97a], yet improved
and adapted for our needs.

As is typical for formal systems, we have to define all features in bottom-up fashion
and our presentation aims to reflect this faithfully. Doing so we follow a strictly layered
approach, starting with simple syntactic properties for all features of the language and
stepwise moving up to the most complex context-related semantic properties. One might
wonder why we do not pursue a more feature-oriented approach, i.e. getting through the
different layers separately for each construct. This is partially done in the Java Specification
[GJS96], but impossible in our rigorous setting not allowing forward references: for example,
even for a rather simple language feature like the fields of a class, the main well-formedness
condition is that the field types have to exist, which can be checked only in the context
of the whole program, which cannot be defined without all other features already being
known at least syntactically. A similar obstacle is e.g. the subclass relation, which has to be
defined in the context of whole programs but is already used in well-formedness conditions
of methods. Thus one has to take care to minimize forward references in the model and
avoid circularities.

An actual pitfall have been the definitions of lookup functions for methods and fields
together with the definition of well-formed classes as given in [DE97a, §2.4]. They are
implicitly circular [Sym99b, §2.1] because the lookup functions are well-defined only if the
subclass hierarchy is well-founded (cf. §2.6.4), but on the other hand the definition of well-
formedness makes use of the lookup functions.

2.1 Names

Java distinguishes between the primitive notion of identifiers [GJS96, §3.8] and the derived
notion of names [GJS96, §6.2, 6.5]. Since in Java`ight we do not consider packages [Restric-
tion], we may take names and identifiers as synonyms.

We model names in HOL (basically) as opaque (i.e. not further defined) types [Underspec
] as our name space is flat and thus does not have any interesting internal structure.

Thus we introduce the type mname of method names without further specifying it.
The second kind of names is expression names, i.e. names of fields and local variables,

modeled by the opaque type ename.

15

The third kind is type names. Since there are some language-defined type names like
Object, we define a free datatype tname with special constructors for the distinct names and
a default constructor for the remaining type names, denoted by tnam:

tname = Object

| SXcpt xname
| TName tnam

xname = Throwable

| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

The constructor SXcpt is used to comprise the names of the language-defined exceptions
[Factoring].

2.2 Types

In Java`ight, we have all reference types (and the null type) of Java, but only the most
important primitive types [Restriction].

ty = PrimT prim ty
| RefT ref ty

Each of both type hierarchies is conveniently described using a HOL datatype.

2.2.1 Primitive Types

In our model there are three kinds of primitive types [GJS96, §4.2]: Boolean values, integers,
and the void type. The latter is an artifact useful as dummy return type of void methods.

prim ty = void

| boolean
| int

2.2.2 Reference Types

In Java there are three kinds of reference types [GJS96, §4.3]: interface, class, and array
types. Additionally, we consider the null type [GJS96, §4.1] as being a (proper) reference
type [Unification].

The HOL datatype ty stands for any Java type. Note that it has to be defined by mutual
recursion with ref ty since both datatypes depend on each other.

ref ty = NullT
| IfaceT tname
| ClassT tname
| ArrayT ty

Though it is helpful to group together the reference types using the constructor RefT
[Factoring], it is often convenient to refer to them directly with simple names.
Therefore we add the following abbreviations.

NT ≡ RefT NullT
Iface I ≡ RefT (IfaceT I)
Class C ≡ RefT (ClassT C)
T[] ≡ RefT (ArrayT T)

16

2.3 Values

We have to define the notion of a value already here (within the static rather than dynamic
semantics) since our model of literal terms relies on it.

The definition of values relies in a straightforward way on the standard HOL types of
Boolean values bool and integers int.

val = Unit
| Bool bool
| Intg int
| Null
| Addr loc

The value Unit serves as a dummy result of statements and void methods [Unification
]. The type loc of locations or addresses, i.e. non-null references to objects, is not

further specified [Underspec]. Note that the type int is actually too abstract because
it allows arbitrarily large integer values, which is of course not the case within Java.

Values normally have an associated type, which we compute with the function typeof by
case distinction, a degenerate form of primitive recursion. Since addresses have a type only
if they point to an existing object, we make the outcome of typeof optional and in this case
depend on a function of HOL type

dyn ty = loc → (ty)option

to be supplied as an extra argument.

typeof :: dyn ty → val → (ty) option
typeof dt Unit = Some (PrimT void)
typeof dt (Bool b) = Some (PrimT boolean)
typeof dt (Intg i) = Some (PrimT int)
typeof dt Null = Some NT
typeof dt (Addr a) = dt a

Vice versa, for all types a default value is defined, again by case distinction1.

default val :: ty → val
default val (PrimT void) = Unit
default val (PrimT boolean) = Bool False
default val (PrimT int) = Intg 0

default val (RefT r) = Null

2.4 Terms

We distinguish three kinds of Java terms: statements, expressions and variables. We define
their abstract syntax as the constructors of three (mutually recursive) HOL datatypes.

2.4.1 Statements

Statements [GJS96, §14] in Java`ight are reduced to their bare essentials.
For control transfer, we provide only if and while in their most general forms without

the obvious syntactic variants. We do not formalize the switch statement and any kind
of jumps, i.e. break and continue, labels, and return statements [Restriction].

1Actually, for technical reasons default val is defined together with an auxiliary function defpval for the
default value of primitive types.

17

These have to be emulated with the given conditional and loop statements 2. Yet if one
aims to support them more conveniently for the user, it should be straightforward to handle
them using the exception mechanism [Reduction], which would be an optimization
of the approach given in [HJ00]: the type of exceptions (cf. §14) just has to be generalized
to include the three additional sources of abrupt completion [GJS96, §14.1], and suitable
catching constructs have to be added to the evaluation rules for loops (cf. §3.2.4) and
method calls (cf. §3.2.9).

We do not consider nested blocks [Restriction]. Thus all local variables have to
be declared at the outermost (i.e. method) level, and a block [GJS96, §14.2] is nothing but
a statement that may contain other statements via sequential composition.

stmt = Skip
| Expr expr
| stmt; stmt
| if(expr) stmt else stmt
| while(expr) stmt
| throw expr
| try stmt catch (tname ename) stmt
| stmt finally stmt
| init tname

We denote the empty statement by Skip and model expression statements using Expr which
converts expressions to statements causing evaluation for side effects only. Assignments and
method calls, which are expressions because they yield a value, can be turned into state-
ments this way. In contrast to Java, for simplicity we allow this for any kind of expression
[Generalization].

In order to simplify the semantical rules, we divide the try catch finally state-
ment into a try catch statement and a finally statement, which now might be used
in any context [Generalization] and is equivalent to a try catch finally state-
ment with empty catch clause. Our version of the try catch statement has exactly one
catch clause [Restriction]. (Multiple catch clauses can be emulated with nested
try catch statements or conditional statements applying the instanceof operator.)
We model class initialization [GJS96, §12.4] with the artificial statement init [Unification

] that is inserted at all points where some class is potentially initialized. See §3.2.6
for further description.

Since we do not consider multi-threading [Restriction], the synchronized state-
ment [GJS96, §14.17] is not included here.

2.4.2 Expressions

Java expressions [GJS96, §15], in particular method calls and object creation, do not only
yield values but typically also cause side effects on the program state. A common modeling
technique is to get rid of side effects by transforming the problematic expressions into a
series of assignments (which are then considered as statements) to temporary variables. We
believe that such a transformation is inadequate since it severely alters the structure of
programs and has non-trivial semantical connections: consider for example the case of a
complex Boolean expression in a loop condition. Not only a number of temporary variables
have to be declared and used, but also all intermediate assignment statements that are then
necessary have to be inserted twice: before the loop and at the end of the loop body. Care
has to be taken to patch continue statements accordingly. Further potential pitfalls are

2Techniques for doing so are known from computability theory

18

possible changes to the evaluation order and the exact flow of exception propagation. To
avoid all this, we handle expressions first-class, even if this causes inconveniences, above all
for the axiomatic semantics (cf. §5.1.3).

Our Java`ight model leaves out the standard unary and binary operators as their typing
and semantics is straightforward [Restriction]. Increment-like operators could be
emulated with assignments. We restrict array creation to a single dimension [Restriction

]. Creation of multi-dimensional arrays can be emulated with nested array creation,
while access and assignment to multi-dimensional arrays is nested anyway.

expr = new tname
| new ty[expr]
| Cast ty expr
| expr instanceof ref ty
| Lit val
| super
| Acc var
| var := expr
| expr ? expr : expr
| {ref ty, ref ty, inv mode}expr..mname({(ty)list}(expr)list)
| Methd tname sig
| Body tname stmt expr

Literal values are encoded directly by their semantics [Reduction] with the con-
structor Lit receiving an argument of type val (cf. §2.3). Variable access uses an explicit
constructor, Acc, to avoid syntactic ambiguities. The this expression is modeled as a spe-
cial non-assignable local variable named This [Reduction]. We model super as an
expression of its own (with the same value as This and the supertype of This as its type)
[Generalization]. Though the conditional expression ? : is quite redundant
with the conditional statement, we include it to demonstrate that our model does not suffer
from the Conditional Problem (in connection with transition semantics) described in §4.7.3.

Method calls could be represented basically as terms of the form expr..mname((expr)list).
Yet we add, enclosed in braces {. . .}, several subterms called type annotations. They are
not part of the input language but serve as auxiliary information (computed by the type
checker) that is crucial for resolving method overloading and for the static binding of fields.
Distinguishing between the actual input language and the augmented language, as done by
Drossopoulou and Eisenbach [DE99] would lead to a considerable amount of redundancy
in the syntax and in particular in the typing rules. We avoid this [Unification]
by assuming that the annotations are added beforehand by some preprocessor. Then the
correctness of the annotations can be thought of being checked by the typing rules, cf. §2.8.5.

The type inv mode gives the invocation mode [GJS96, §15.11.3] for a method call and is
defined as

inv mode = Static
| Super
| IntVir

where IntVir stands for interface or virtual. Using inv mode, we handle all variants of
method calls with a single rule [Unification]. This avoids much redundancy as
contained in other approaches with the drawback of complicating the evaluation rule for
method call, which now has to cater for all cases. (Of course, simpler rules for specific cases
are easily derivable.) The special case of calling a static method from a type name may be
emulated by providing (instead of the type name) a null pointer that is cast to the desired
type [Reduction]. We define the abbreviation StatRef to assist with this:

StatRef rt ≡ Cast (RefT rt) (Lit Null)

19

The type sig stands for the signature [GJS96, §8.4.2] of a method identifying it uniquely
within a given class. It consists of the method name and the list of its parameter types, not
including the result type:

sig = mname × (ty)list

The auxiliary expression Methd C m is employed within method calls (cf. §3.2.9). It
denotes the implementation of method m of class C, a concept crucial for the axiomatic
semantics, as will be motivated in §5.6.8. The unfolded version of a method implementation
is its actual body, for which we introduce Body D c e where D is the defining class, c is the
(block of) statements in the body, and e is the result expression as motivated in §2.6.1.
This further auxiliary term is a useful abstraction used for simplifying the Methd rule of the
axiomatic semantics.

2.4.3 Variables

Variables can be thought of as mutable expressions. Typically (and this was also our initial
solution) they are modeled with expressions for reading access and statements or expressions
for assignment. But since in Java there are several (and rather complex) kinds of variables
and distinguishing between access and assignment leads to syntactical and semantical re-
dundancy, we model them as a concept of its own [Factoring], which is also more
consistent with the Java specification [GJS96, §15.2, 15.25]. This decision complicates the
semantical view of variables (cf. §3.2.10), yet to a tolerable extent.

There are actually five kinds of variables: local variables, method parameters, instance
variables, class variables (i.e. static fields), and array components. Local variables and
method parameters are unified easily, and even the two kinds of field variables may be
combined [Unification], introducing a Boolean tag indicating static fields. One
could even consider reducing local variables to field variables, as discussed in §3.1.1.

var = LVar lname
| {tname,bool}expr..ename
| expr[expr]

The terms in braces for field variables are again type annotations, whose exact purpose will
be explained in §2.8.6. Analogously to static method calls, the special case of accessing a
static field from a type name may be emulated using the abbreviation StatRef [Reduction

].
Local variables (including parameters) have the explicit constructor LVar, which (anal-

ogously to Acc) avoids syntactic ambiguities. Its argument is either the name of a proper
local variable (with constructor EName) or This where the property ∀n. This 6= EName n is
crucial.

lname = ename + unit
EName ≡ Inl
This ≡ Inr ()

We provide the abbreviations

this ≡ Acc (LVar This)
!!v ≡ Acc (LVar (EName v))
v:==e ≡ Expr (LVar (EName v) := e)

for convenience. The special syntax for a field f of the current class, viz. leaving out this, is
not supported [Reduction].

20

2.4.4 Combination

For most semantical judgments and their properties there are rather similar variants for
statements, expressions, expression lists, and variables. In order to allow more uniform
propositions which avoids much redundancy, we group them [Factoring] according
to their kinds of results using the nested sum type

term = (expr+stmt) + var + (expr)list

Here expressions and statements are combined [Unification] rather tight since when
viewing statements as expressions yielding a dummy result, both kinds of terms yield exactly
one result value.

We define the auxiliary predicate

is stmt t ≡ ∃c. t = In1r c

2.5 Lookup Tables

A crucial ingredient of our formalization is the type of lookup tables, which we model as
(pseudo-)partial3 functions.

2.5.1 Unique Tables

A table4 with key type α and entry type β can be defined as

(α,β)table = α → (β)option

Thus t x = None means that there is no entry for key x, and t x = Some y means that x is
associated with the entry y.

The empty table, pointwise update, update by lists (of identical length in our applica-
tions), combination of tables, and extension of one table by another, are defined as follows:

empty :: (α,β)table
(7→) :: (α,β)table → α → β → (α,β)table
([7→]) :: (α,β)table → (α)list → (β)list → (α,β)table
(+) :: (α,γ)table → (β,γ)table → (α+β,γ)table
++ :: (α,β)table → (α,β)table → (α,β)table

empty ≡ λk. None
t(a 7→b) ≡ λk. if k = a then Some b else t k
t([] [7→][]) = t
t(x#xs[7→]y#ys) = t(x 7→y)(xs[7→]ys)
s (+) t ≡ λk. case k of Inl x → s x | Inr y → t y
s ++ t ≡ λk. case t k of None → s k | Some x → Some x

We will further need an auxiliary predicate relating two tables by stating that whenever
an entry in one table has the same key as an entry in the other table (which models hiding
or overriding) the given relation holds:

hiding entails :: (α,β)table → (α,γ)table → (β → γ → bool) → bool
t hiding s entails R ≡ ∀k. ∀x∈t k: ∀y∈s k: R x y

3Note that from the HOL perspective, all functions are total.
4A variant called map meanwhile has been included in the Isabelle/HOL library.

21

2.5.2 Non-functional Tables

For forming the union of a set of tables, we also need the type of tables that may return
multiple entries for a given key,

(α,β)tables = α → (β)set

together with a union operator and straightforward variants of two of the notions defined
above:

Un tables :: ((α,β)tables)set → (α,β)tables
Un tables ts ≡ λk.

⋃
t∈ts. t k

⊕⊕ :: (α,β)tables → (α,β)tables → (α,β)tables
s ⊕⊕ t ≡ λk. if t k = ∅ then s k else t k

hidings entails :: (α,β)tables → (α,γ)tables → (β → γ → bool) → bool
t hidings s entails R ≡ ∀k. ∀x∈t k. ∀y∈s k. R x y

2.5.3 Alternatives

An alternative model for partial functions would be a pair of a definedness predicate and a
totalized function, but this presentation would be less compact. Yet in some applications,
the definedness test is not required. Here the model with a totalized function only would
be more convenient than our model where we write the (t x) when we know that for the key
x an entry must exist. Yet in most applications like type-checking, the definedness test is
essential.

Alternative variants of lookup tables are finite sets or lists of pairs. Both are less abstract
than partial functions since with them non-uniqueness is possible or even the order of pairs
is significant, and lookup is more difficult than the immediate function application t x. On
the other hand, for modeling program semantics the list variant has two important benefits:
it is a priori finite, like any part of a program is, and has a rather operational characteristic
useful for code generation. This motivates the additional use of type (α × β)list for modeling
declarations within a program. This type gives us an implicit finiteness constraint and the
possibility for explicit uniqueness check:

unique :: (α × β)list → bool
unique ≡ nodups ◦ map fst

For looking up declared entities it is very convenient to transform declaration lists into
the abstract tables defined above:

table of :: (α × β)list → (α,β)table
table of [] = empty
table of ((k,x)#t) = (table of t)(k 7→x)

This transformation function has the following characteristic properties:

in set get unique l −→ (k, x) ∈ set l −→ table of l k = Some x

get in set table of xs k = Some y −→ (k, y) ∈ set xs

We will use the list variant principally for modeling static declarations while using partial
functions for entities derived from these declarations and for the run-time stores within the
program state.

22

2.6 Declarations

In this section we describe our model of Java`ight programs, which is basically a nested
structure of tuples describing classes and their members. It might be worth replacing the
tuple representation by (extensible) records. Their explicit naming of fields is more verbose
but assists readability (by explicitly relating the values of components with their roles) and
simplifies extensions.

2.6.1 Fields and Methods

A field declaration [GJS96, §8.3] is indexed by the field name and contains of a modifier and
the field type.

fdecl = ename × field
field = modi × ty

The only field and method modifier we currently consider is static [Restriction].
Thus we define

modi = bool

and projecting on the static modifier is trivial: static m ≡ m

A method declaration (sig × mhead for interfaces and sig × methd for classes) is indexed
by the signature and contains the method head and — if appearing within a class — the
method body. The former consists of the modifier, the list of parameter names and the
result type, whereas the latter consists of the list of local variables, a statement representing
the actual body, and a result expression, explained below. See §6.2.2 for examples.

mdecl = sig × methd
methd = mhead × mbody
mhead = modi × (ename)list × ty
mbody = (ename × ty)list × stmt × expr

Note that mhead comprises the information on methods common to both class and interface
declarations [Factoring]. For projecting on the return type contained in a method
head, we use the abbreviation mrt mh ≡ snd (snd mh).

Like in [DE99], the result expression saves us from dealing with return statements oc-
curring in arbitrary positions within the method body. Such statements may be replaced
by assignments to a suitable result variable followed by a control transfer5 to the end of
the method body, using the result variable as return expression [Reduction]. For
void methods, we provide a dummy result type (cf. §2.2.1) and value (cf. §2.3) [Unification

].
We do not consider throws clauses [Restriction].

2.6.2 Classes and Interfaces

An interface [GJS96, §9.1] declaration is indexed by the interface name and contains a list
of superinterface names and the interface body, which is just a list of method declarations.
We do not consider interface fields, i.e. named constants [Restriction].

idecl = tname × iface
iface = (tname)list × ibody
ibody = (sig × mhead)list

5Some cases like return statements within loops would require non-trivial program transformations.

23

Similarly, a class declaration [GJS96, §8.1] is indexed by the class name and specifies the
names of the superclass and of implemented interfaces, as well as lists of field and method
declarations and a static initializer [GJS96, §8.5]. See §6.2.3 for examples. Without loss of
expressiveness, we combine all static initializers of a class into a single block of type stmt
[Reduction]. For every class the superclass entry is explicit [Reduction],
and the superclass entry for class Object is unused. User-defined constructors [GJS96, §8.6]
may be emulated using methods called directly after instance creation [Reduction].

cdecl = tname × class
class = tname × (tname)list × cbody
cbody = (fdecl)list × (mdecl)list × stmt

These type definitions are nested because the inner parts like cbody are sometimes used
independently of the outer ones [Factoring].

We model the most important language-defined standard classes, viz. several standard
exceptions and Object. The list of all these classes will be used for examples. We do not
give actual definitions for the method declarations contained in them (if any) since they are
irrelevant for meta theory [Underspec]. For concrete program verification they can
be added on demand, in particular the equals method of Object.

ObjectC :: cdecl
SXcptC :: xname → cdecl
Object mdecls :: (mdecl)list
SXcpt mdecls :: (mdecl)list

ObjectC ≡ (Object ,(arbitrary,[],[],Object mdecls,Skip)
SXcptC xn ≡ let sc = if xn = Throwable then Object else SXcpt Throwable in

(SXcpt xn,(sc ,[],[],SXcpt mdecls ,Skip))

standard classes :: (cdecl)list
standard classes ≡ [ObjectC, SXcptC Throwable,

SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize , SXcptC IndOutBound, SXcptC ArrStore]

Note how we model (through the superclass entry) the fact that the standard exceptions
form a flat hierarchy with Throwable as its root, which in turn is a direct subclass of Object.

2.6.3 Programs

A program is a pair of lists of interface and class declarations:

prog = (idecl)list × (cdecl)list

We will use the symbol ‘Γ’ for programs, since programs play the role of the static context
in many judgments, e.g. typing and evaluation.

There are two access functions on programs, defined as abbreviations:

iface :: prog → (tname,iface)table
class :: prog → (tname,class)table

iface Γ I ≡ table of (fst Γ) I
class Γ C ≡ table of (snd Γ) C

looking up interfaces and classes, respectively. Based on these, we define the predicates

is iface Γ I ≡ iface Γ I 6= None
is class Γ C ≡ class Γ C 6= None

24

testing the existence of an interface or a class, respectively. On top of them, in turn, we
define6 the predicate is type :: prog → ty → bool checking for a proper type:

is type Γ (PrimT) = True
is type Γ NT = True
is type Γ (Iface I) = is iface Γ I
is type Γ (Class C) = is class Γ C
is type Γ (T[]) = is type Γ T

2.6.4 Hierarchy Traversal

Later we will need functions for looking up methods and fields by their identifier (i.e. sig-
nature or field specification fspec = ename × tname, cf. §2.8.6) in the context of a given class
or interface within a program:

imethds :: prog → tname → (sig,tname × mhead)tables
cmethd :: prog → tname → (sig,tname × methd)table
fields :: prog → tname → (fspec × field)list

These functions have to take inheritance into account, and thus need to traverse the class
and interface hierarchies recursively. From the logical perspective this is non-trivial because
such a recursive access is well-defined only if the respective subclass or subinterface relation
is well-founded. This is an intricate issue easily overlooked or neglected when doing a pen-
and-paper formalization, as happened e.g. in [DE97a]. After noticing the problem already
by careful inspection of their definitions, we took the approach described in this subsection.
Syme [Sym99b, §2.1] resorted to inductive definitions instead, thus he does not have to worry
about definedness in the first place. Of course, later he has to prove that — under certain
conditions — field and method lookup do yield a (unique) result.

Well-Foundedness

In order to state and exploit the well-foundedness of the class and interface hierarchies, we
define the notions of a direct subclass [GJS96, §8.1.3] and direct subinterface [GJS96, §9.1.3]
here. We have to do this in anticipation of the type relations introduced in §2.7, because
there we unfortunately already need the functions cmethd and imethds. Note that they are
expressed with reference to a given program, as will all other type relations.

subint1 :: prog → (tname × tname)set
subcls1 :: prog → (tname × tname)set

subint1 Γ ≡ {(I ,J). ∃i∈iface Γ I: J∈set (fst i)}
subcls1 Γ ≡ {(C,D). C 6= Object ∧ (∃c∈class Γ C: fst c = D)}

A binary relation (and its converse) is well-founded if it is finite and acyclic. Finiteness
is rather simple here as in any Java program only a finite number of classes and interfaces
may exist, and this implicit finiteness constraint carries over to our model since for class
and interface declarations we deliberately chose a list representation, which is a priori finite.
From the finiteness of its domain and range, one can conclude the finiteness of a relation,
and thus we get

finite (subint1 Γ) and finite (subcls1 Γ)

Obtaining acyclicity is a bit more involved. To this end we introduce the notion of well-
structuredness, which is part of the overall well-formedness notion that we will introduce in

6Actually, for technical reasons is type is defined by mutual primitive recursion with the auxiliary pred-
icate isrtype testing a reference type.

25

§2.9. Well-structuredness comprises constraints mentioned in [GJS96, §8.1.3, 9.1.3]: A class
may not be declared as a subclass of itself, and analogously for interfaces. We model this
using predicates on interfaces, classes, and whole programs. For example, an interface is
well-structured if none of its direct superinterfaces is at the same time a subinterface of the
current interface. It is convenient to require that additionally the superinterfaces actually
exist within the program. Analogous conditions have to be met for class declarations, and
the well-structuredness for a programs means just well-structuredness of all its classes and
interfaces:

ws idecl :: prog → tname → (tname)list → bool
ws cdecl :: prog → tname → tname → bool
ws prog :: prog → bool

ws idecl Γ I si ≡ ∀J∈set si. is iface Γ J ∧ (J,I) /∈ (subint1 Γ)+

ws cdecl Γ C sc ≡ C 6= Object −→ is class Γ sc ∧ (sc,C) /∈ (subcls1 Γ)+

ws prog Γ ≡ (∀(I ,(si, ib))∈set (fst Γ). ws idecl Γ I si) ∧
(∀(C,(sc,cb))∈set (snd Γ). ws cdecl Γ C sc)

Exploiting well-structuredness of programs, we can prove that both the subinterface and the
subclass relations are acyclic (and also irreflexive) and thus their converses are well-founded:

ws prog Γ −→ acyclic (subint1 Γ) and ws prog Γ −→ acyclic (subcls1 Γ)

ws prog Γ −→ wf ((subint1 Γ)−1) and ws prog Γ −→ wf ((subcls1 Γ)−1)

Recursion Operators

Having obtained well-foundedness, we can define the desired lookup functions. In order to
factor out the common recursion pattern [Factoring] we define general recursion
operators on the interface and class hierarchy: 7

iface rec :: prog × tname → (tname → ibody → (α)set → α) → α
class rec :: prog × tname → α → (tname → cbody → α → α) → α

Next we give their characteristic recursive equations, which can be exploited only if their
respective preconditions are met:

iface rec ws prog Γ −→ iface Γ I = Some (si,ib) −→
iface rec (Γ,I) f = f I ib ((λJ. iface rec (Γ,J) f) “ set si)

class rec ws prog Γ −→ class Γ C = Some (sc,si,cb) −→
class rec (Γ,C) t f = f C cb (if C = Object then t else class rec (Γ,sc) t f)

The recursion operator for interfaces takes as its argument (next the program and the
interface to begin with) a function that combines the current interface and body, as well
as the set of entities computed recursively, into a new entity. The operator for classes acts
analogously, but does not need to use sets of entities because for any class (except for Object,
for which we provide an explicit start value) there is exactly one superclass.

Application

Finally, we can define the lookup functions by supplying the recursion operators with suitable
arguments:

7 As a workaround for some limitations of the Isabelle/HOL package for recursive definitions [Sli96], we
originally had to introduce an auxiliary well-founded relation, which meanwhile is no longer necessary.

26

imethds Γ I ≡ iface rec (Γ,I)
(λI ms ts. (Un tables ts) ⊕⊕ (o2s ◦ table of (map (λ(s,m). (s,I,m)) ms)))

cmethd Γ C ≡ class rec (Γ,C) empty
(λC (fs,ms,ini) ts. ts ++ table of (map (λ(s,m). (s,C,m)) ms))

fields Γ C ≡ class rec (Γ,C) [] (λC (fs,ms,ini) ts. map (λ(n,t). ((n,C),t)) fs @ ts)

imethds unifies the method tables for the superinterfaces and combines them (implementing
inheritance and overriding) with the method declarations of the current interface, which are
labeled with the name of this interface. Due to table unification, a possibly non-functional
method table is produced, but this does no harm, as discussed in §2.9.2. Analogously, cmethd

computes a (unique) table of methods starting from the empty table, and fields collects the
list of fields of a class, starting from the empty list. For an example see §6.3.1.

A simple application of cmethd is the predicate

is methd :: prog → tname → sig → bool
is methd Γ ≡ λC sig. is class Γ C ∧ cmethd Γ C sig 6= None

Well-foundedness justifies the following rules for induction on the (converse) direct subin-
terface and subclass relation, which are used for deriving properties of the lookup functions:

ws subint1 induct

is iface Γ I ws prog Γ

∀I is ms. iface Γ I = Some (is,ms) ∧ (∀J ∈ set is.

(I,J)∈subint1 Γ ∧ P J ∧ is iface Γ J)) −→ P I

P I

ws subcls1 induct

is class Γ C ws prog Γ

∀C D c. class Γ C = Some (D,c) ∧ (C 6= Object −→
(C,D)∈subcls1 Γ ∧ P D ∧ is class Γ D)) −→ P C

P C

An important property is the relation between the entity (a class or interface) in which
a certain member (a method or field) is available and the context where the declaration of
the member is actually given and from which it is inherited. For example, for imethds this
lemma reads as

imethds defpl
ws prog Γ −→ is iface Γ I −→ (md,mh) ∈ imethds Γ I sig −→
(∃is ms. iface Γ md = Some (is, ms) ∧ (I,md) ∈ (subint1 Γ)∗ ∧

table of ms sig = Some mh) ∧ (md,mh) ∈ imethds Γ md sig

meaning that for a well-formed program, if an interface has a certain method as its member,
then the defining interface is a superinterface and directly contains the method declaration
that also has been found in the subinterface. Of course, there are analogous lemmas for the
other lookup functions.

We will further need a lemma concerning uniqueness of fields:

ws unique fields
ws prog Γ ∧ is class Γ C ∧
(∀C D s fs r. class Γ C = Some (D,s,fs,r) −→ unique fs) −→
unique (fields Γ C)

27

2.7 Type Relations

In the Java specification, most type relations are called conversions capturing the idea that
a value of one type may be transformed into a value of another type. This is adequate
for many primitive types, but not really for reference types, since reference values never
change even when being interpreted as belonging to different types. As the only conversion
applicable on the primitive types that we consider is the (trivial) identity conversion, we do
not encounter any transformation of values but just the relational aspect on types.

2.7.1 Basic Relations

Two of the three basic relations on reference types, the direct subinterface and subclass
relations, have already been defined in §2.6.4. Here we just provide mixfix syntax for them
and give the connection

Γ`I≺1
i J ≡ (I, J) ∈ subint1 Γ

Γ`C≺1
c D ≡ (C,D) ∈ subcls1 Γ

The third one is the direct implementation [GJS96, §8.1.3] relation, which we give the syntax

prog`tname ;1 tname

and define as

implmt1 Γ ≡ {(C,I). C 6= Object ∧ (∃c∈class Γ C: I ∈ set (fst (snd c)))}

Note that for all three relations, it easily follows from their definitions that the left
of both type arguments is a proper type, i.e. is class or is iface holds for it, respectively,
which is essential to guarantee the finiteness of the relations. One could consider requiring
(for symmetry) that the right type argument is also proper, but this complicates matters
unnecessarily.

2.7.2 Transitive Closures

All three basic relations are extended by some kind of transitive closure. The subinterface
[GJS96, §9.1.3] and subclass [GJS96, §8.1.3] relations

prog`tname�i tname
prog`tname�c tname

are originally defined as the transitive closure of their direct counterparts. We deviate from
this for convenience by taking also the reflexive closures:

Γ`I �i J ≡ (I, J) ∈ (subint1 Γ)∗

Γ`C �c D ≡ (C,D) ∈ (subcls1 Γ)∗

The implementation relation

prog`tname;tname

combines its direct counterpart with the subinterface and subclass relations. We exactly
mirror its specification [GJS96, §8.1.4], which is in fact an inductive definition:

direct
Γ`C ;1 J

Γ`C;J
subint

Γ`C ;1 I Γ`I�i J

Γ`C;J
subcls1

Γ`C≺1
c D Γ`D;J

Γ`C;J

28

Inductive definitions are a very flexible and powerful mechanism that we use heavily for
defining various kinds of relations and judgments.

We derive, typically by induction, a number of properties, for example

subcls implmt Γ`C�c D ∧ Γ`D;I −→ Γ`C;I

and
subcls ObjectI ws prog Γ ∧ is class Γ C −→ Γ`C�c Object

2.7.3 Widening

The most important type relation is widening [GJS96, §5.3]:

prog`ty�ty

where we combine the identity conversion and the widening reference conversion. Γ`S�T

means that S is a syntactic subtype of T, i.e. in any expression context (for instance assign-
ments and method invocations) expecting a value of type T, a value of type S may occur.
Note that this does not necessarily mean that type S semantically behaves like type T, but
only that it offers at least a syntactically compatible set of fields and methods. The widening
relation is defined inductively as

refl
Γ`T�T

null
Γ`NT�RefT R

subint
Γ`I�i J

Γ` Iface I� Iface J
int obj

Γ` Iface I�Class Object

subcls
Γ`C�c D

Γ`Class C�Class D
implmt

Γ`C;I

Γ`Class C� Iface I

array
Γ`RefT S�RefT T

Γ`RefT S[]�RefT T[]
arr obj

Γ`T[]�Class Object

The most important property of the widening relation is transitivity:

ws widen trans ws prog Γ −→ Γ`S�U −→ Γ`U�T −→ Γ`S�T

We prove this by rule induction where we need well-structuredness for applying the lemma
subcls ObjectI given above. Widening is also antisymmetric and enjoys many other (simple)
properties like

widen Class Iface eq Γ`Class C� Iface I = Γ`C;I

The widening relation carries over canonically to lists of types:

Γ`Ts[�]Ts′ ≡ list all2 (λT T ′. Γ`T�T ′) Ts Ts′

where
list all2 :: (α → β → bool) → (α)list → (β)list → bool
list all2 P xs ys ≡ length xs = length ys ∧ (∀(x,y)∈set (zip xs ys). P x y)

29

2.7.4 Narrowing and Casting

The narrowing [GJS96, §5.1.5] relation

prog`ty�ty

is a kind of converse of the widening relation, where Γ`S�T means that an element of (a
subtype of) S might be an element of T, but in a way that cannot be guaranteed statically.
An explicit inductive definition of a relation fulfilling these constraints while making the
(approximate) static check as strict as possible would be even more involved than the one
actually given in the specification. The definition given there — which we follow except for a
slight generalization concerning the subint case as noted below — is actually too permissive,
which could be fixed using additional side conditions.

subcls
Γ`C�c D

Γ`Class D�Class C
int cls

Γ` Iface I�Class C
implmt

¬Γ`C;I

Γ`Class C�Iface I

array
Γ`RefT S�RefT T

Γ`RefT S[]�RefT T[]
obj arr

Γ`Class Object�T[]

subint

¬Γ`I�i J

(imethds Γ I) hidings (imethds Γ J) entails (λ(, m) (,m′). Γ`mrt m�mrt m′)

Γ` Iface I�Iface J

The subint case contains the side condition that for any pair of methods (one of interface
I, the other of J) with a common signature the result types are in widening relation, while
[GJS96, §5.1.5] demands equality [Generalization]. On the other hand, corresponding
conditions on the result types of methods should be added to the first three cases as well
[Clarification] and thus the narrowing relation could be strengthened avoiding some
cases of type casts that are hopeless anyway (in the sense that the cast will always fail). In
earlier versions of our formalization we did this partially, but this was not worth the effort
because it does not have any effect on the properties of narrowing we actually need.

Unification of widening and narrowing leads to the casting [GJS96, §5.5] relation

prog`ty �? ty

where Γ`S �? T means that a value of type S can be cast to type T, i.e. at least possibly
conforms to T.

widen
Γ`S�T

Γ`S �? T
narrow

Γ`S�T

Γ`S �? T

Surprisingly, the only properties of narrowing and casting we actually need are

cast RefT2 Γ`S �? RefT R −→ ∃t. S = RefT t

cast PrimT2 Γ`S �? PrimT pt −→ ∃t. S = PrimT t ∧ Γ`PrimT t�PrimT pt

where narrowing is only indirectly involved. Thus one could dispense with the two inductive
definitions altogether and require just these two properties as axioms [Underspec].

30

2.8 Well-Typedness

Classically, the notion of well-typedness serves as a sanity check on the possible outcome
of expressions. It extends naturally to variables and enclosing statements. Since typing
in Java is unique (in particular, there is no subsumption, which would defeat the method
overloading mechanism), typing rules are used also for inferring the types of expressions
and variables. We further use them for expressing related well-formedness conditions —
namely the existence of variables, fields and methods —, and for computing type annotations
(cf. §2.4.2).

2.8.1 Environments

Typing is always done relative to some environment. A static environment consists of a
global part, namely the program Γ, and a local environment (typically denoted by ‘Λ’)
that gives the types of the current local variables including the This pointer (in non-static
methods) and method parameters. Recall that we do not consider nested blocks. The terms
prg and lcl serve as projection operators.

lenv = (lname, ty)table
env = prog × lenv

prg (Γ,Λ) ≡ Γ
lcl (Γ,Λ) ≡ Λ

When defining a transition semantics and proving type soundness for it, as will be dis-
cussed in §4.6.2, one would have to assign types to partially evaluated terms. This requires
a dynamic type environment, viz. the type dyn ty already introduced in §2.3 which assigns
types to references.

2.8.2 Judgments

As motivated in §2.4.4, we unify all kinds of typing judgments into one, which will consid-
erably reduce redundancy in their applications, in particular when expressing type safety
(cf. §4.4). Concerning the type, we can combine expressions, variables and statements since
they have a single type if we consider statements to have the dummy type PrimT void. Only
expression lists, of course, are associated with lists of types.

tys = ty + (ty)list

In order to provide for a transition semantics,8 we have extended the well-typedness
judgment and the typing rules to include also the dynamic environment, whereas in the
judgments that we actually use later this parameter is set to empty dt ≡ λa. None.

The extended judgment has the following form.9

env,dyn ty|=term::tys

We define also syntactic variants for the four kinds of terms, hiding the necessary injec-
tions. Note that the count of dashes behind the ‘::’ symbol below is mnemonic for the number
of values produced: a statement yields no, an expression one, a variable two (cf. §3.2.10),
and an expression list any number of values.

8We planned originally to give an additional transition semantics, but this has been suspended.
9 As required for technical reasons by the definition package for inductive relations, the internal form

is wt :: (env × dyn ty × term × tys)set. This is translated to the more readable external form via
E,dt|=t ::T ≡ (E,dt,t,T) ∈ wt. Here the env and dyn ty parts are not just parameters of wt (which would
result in the type env → dyn ty → (term × tys)set) because the environment changes within the typing
rule for the try catch statement.

31

env,dyn ty|=stmt ::
√

env,dyn ty|=expr ::–ty
env,dyn ty|=var ::=ty
env,dyn ty|=(expr)list ::

.
=(ty)list

E,dt|=s::
√
≡ E,dt|=In1r s::Inl (PrimT void)

E,dt|=e::–T ≡ E,dt|=In1l e::Inl T
E,dt|=e::=T ≡ E,dt|=In2 e::Inl T
E,dt|=e::

.
=T ≡ E,dt|=In3 e::Inr T

Replacing ‘|=’ by ‘`’, we further introduce the following specialized typing judgments
that we will actually use in the proof of type safety for evaluation semantics and in the
example given in §6.

E`t :: T ≡ E,empty dt|=t :: T

E`s::
√
≡ E,empty dt|=s::

√

E`e::–T ≡ E,empty dt|=e::–T
E`e::=T ≡ E,empty dt|=e::=T
E`e::

.
=T ≡ E,empty dt|=e::

.
=T

The typing rules, given next, are modeled conveniently as inductive definitions. See
§6.3.1 for application examples.

2.8.3 Statements

The type-checking rules for the standard statements [GJS96, §14] are standard:

E,dt|=Skip ::
√

E,dt|=e::–T

E,dt|=Expr e::
√

E,dt|=e::–PrimT boolean E,dt|=c::
√

E,dt|=while(e) c::
√

E,dt|=c1::
√

E,dt|=c2::
√

E,dt|=c1; c2::
√

E,dt|=e::–PrimT boolean E,dt|=c1::
√

E,dt|=c2::
√

E,dt|=if(e) c1 else c2::
√

Also the rules for most of the Java-specific statements are straightforward. Just note
the use of the subclass relation in two of the following rules ensuring that a value thrown or
caught as an exception is indeed an exception object.

E,dt|=e::–Class tn prg E`tn�c SXcpt Throwable

E,dt|=throw e::
√

E,dt|=c1::
√

E,dt|=c2::
√

E,dt|=c1 finally c2

(Γ,Λ),dt|=c1::
√

Γ`tn�c SXcpt Throwable

Λ (EName vn) = None (Γ,Λ[EName vn 7→Class tn]),dt|=c2::
√

(Γ,Λ),dt|=try c1 catch(tn vn) c2::
√

is class (prg E) C

E,dt|=init C ::
√

The try catch statement is the only one that involves a change of the type environ-
ment, namely to include typing information for the exception parameter. The name of this
parameter is required to be new in the local environment.

2.8.4 Expressions

The first few of the typing rules for expressions [GJS96, §15] straightforwardly follow the
specification.

typeof dt x = Some T

E,dt|=Lit x ::–T

E,dt|=e0::–PrimT boolean E,dt|=e1::–T1 E,dt|=e2::–T2

prg E`T1�T2 ∧ T = T2 ∨ prg E`T2�T1 ∧ T = T1

E,dt|=e0 ? e1 : e2::–T

32

is class (prg E) C

E,dt|=new C ::–Class C

is type (prg E) T E,dt|=i ::–PrimT int

E,dt|=NewA T[i]::–T[]

E,dt|=e::–T prg E,dt|=T�? T ′ is type (prg E) T ′

E,dt|=Cast T ′ e::–T ′

E,dt|=e::–RefT T prg E,dt|=RefT T�? RefT T ′

E,dt|=e instanceof T ′::–PrimT boolean

When using the rule for literal values Lit with dt set to empty dt, addresses are prohibited as
literal values, which is what we need for an evaluation semantics regarding terms as static
entities only.

Variable access includes reading access to the This pointer. Since on the contrary, assign-
ing to This is prohibited, variable assignment rules out this special case.

E,dt|=va::=T

E,dt|=Acc va::–T

E,dt|=va::=T va 6= LVar This E,dt|=v ::–T ′ prg E`T ′�T

E,dt|=va:=v ::–T ′

Note that in our model the type of an assignment is determined by the right-hand side (as
opposed to the left-hand side) [Generalization]. Thus less type information is lost
and more programs are rendered legal. When an assignment is used as an argument to a
method call, a type cast to the type of the left-hand side may be used to avoid a potentially
different resolution of method overloading.

The rule for super [GJS96, §15.10.2, 15.11.1] checks if This is accessible, and unless the
corresponding class is Object, returns the superclass of that class.

lcl E This = Some (Class C) C 6= Object class (prg E) C = Some (D,)

E,dt|=super::–Class D

2.8.5 Methods

The most complex expressions, also concerning their typing, are method calls [GJS96,
§15.11], so they deserve special attention. See also §6.3.2 for a running example of the
definitions given below.

Method Calls

A method call { , , }e..mn({ }ps) is type-correct if the expression e has some reference type
t, the parameters ps have some types pTs, and there is a unique “maximally specific” method
(see below) with signature (mn,pTs) accessible from t:

E,dt|=e::–RefT t E,dt|=ps::–pTs max spec (prg E) t (mn,pTs) = {((md,(m,pns,rT)),pTs′)}
E,dt|={t,md,invmode (static m) e}e..mn({pTs′}ps)::–rT

In this case, the method call is annotated with t, the defining class md of the method found,
its parameter types pTs′, and its invocation mode, as computed by the auxiliary function

invmode :: modi → expr → inv mode
invmode m e ≡ if static m then Static else if e = super then Super else IntVir

The annotation t is not needed for the operational semantics, but will be used in the ax-
iomatic semantics, whereas md serves as the class used for static method calls. The annota-
tion pTs′ resolves static overloading and thus will be used — in conjunction with the method
name — for method lookup at run time.

33

Resolution of Static Overloading

According to [GJS96, §15.11.2], static overloading is resolved by selecting the most specific
method applicable (if exists). To model this, we use the following auxiliary functions and
relations. For a given program, mheads returns the set of all extended method heads with
signature sig available for a reference type rt, where by method head emhead we mean the
pair of the defining class or interface and the method head.

The function mheads relies on cmheads dealing with the special case of classes. Note
that an interface may contain more than one method with a given signature. Furthermore,
methods of class Object are accessible for any interface ([Correction], a omission of
[GJS96] first reported by [PB97]) or array type [GJS96, §10.7].

emhead = ref ty × mhead
cmheads :: prog → tname → sig → emhead set
mheads :: prog → ref ty → sig → emhead set

cmheads Γ C ≡ λsig. (λ(C,(h,b)). (ClassT C,h)) “ o2s (cmethd Γ C sig)

mheads Γ NullT = λsig. ∅
mheads Γ (IfaceT I) = λsig. (λ(I,h).(IfaceT I,h)) “ imethds Γ I sig ∪ cmheads Γ Object sig
mheads Γ (ClassT C) = cmheads Γ C
mheads Γ (ArrayT T) = cmheads Γ Object

The set of methods of a reference type applicable for a given signature consists of those
methods returned by mheads whose parameter types are supertypes (by widening) of the
corresponding types in the signature:

appl methds :: prog → ref ty → sig → (emhead × (ty)list) set
appl methds Γ rt (mn,Ts) ≡ {(mh,Ts′) |mh Ts′. mh ∈ mheads Γ rt (mn,Ts′) ∧ Γ`Ts[�]Ts′}

A method is more specific than another iff the lists of parameter types and10 the defining
entities (i.e. classes or interfaces) are in widening relation:

more spec :: prog → emhead × (ty)list → emhead × (ty)list → bool
more spec Γ ((md,mh),pTs) ((md′,mh′),pTs′) ≡ Γ`pTs[�]pTs′ ∧ Γ`RefT md�RefT md′

The maximally specific methods are the applicable methods for which no more specific
applicable method exists:

max spec :: prog → ref ty → sig →(emhead × (ty)list) set
max spec Γ rt sig ≡ {m| m∈appl methds Γ rt sig ∧

(∀m′∈appl methds Γ rt sig. more spec Γ m′ m −→ m′ = m)}

If max spec yields only one method, it is the most specific one.
As observed by [AZD00], the relation behind max spec can be relaxed by leaving out

the comparison of the defining entity. This extends the set of most specific methods and
therefore renders more programs legal [Generalization], without altering the opera-
tional semantics. Taking into account the defining entity is doubtful from the perspective
of software engineering anyway. Thus the version of more spec we actually use meanwhile is

more spec Γ (mh,pTs) (mh′,pTs′) ≡ Γ`pTs[�]pTs′

Moreover, for type soundness the only property of more spec, appl methds and max spec
actually required is

(mh,pTs′) ∈ max spec Γ T (mn,pTs) −→ mh ∈ mheads Γ T (mn,pTs′) ∧ Γ`pTs[�]pTs′

such that we could leave out their definitions entirely, just declare the constant max spec,
and assert this property [Underspec].

10See also the modified version below.

34

Method Implementations

A method implementation Methd C sig has a type T if C is a proper class and contains a
method with signature sig whose body is of type T. This in turn means that the defining
entity is a proper class, the statement block is well-typed and the result has type T.

is class (prg E) C cmethd (prg E) C sig = Some (md, , ,blk,res) E,dt|=Body md blk res::–T

E,dt|=Methd C sig ::–T

is class (prg E) D E,dt|=blk ::
√

E,dt|=res::–T

E,dt|=Body D blk res::–T

2.8.6 Variables

The rule for local variables [GJS96, §15.13.1] uses the local environment to check if the
variable exists and to look up its type:

lcl E vn = Some T is type (prg E) T

E,dt|=LVar vn::=T

We require the extra condition that the type is proper because otherwise we would have to
introduce and use the well-formedness condition ∀vn. ∀T∈lcl E vn: is type (prg E) T for the
local part of environments. We could derive this well-formedness property for environments
obtained from well-formed method declarations, but we want to use the typing rules also
for terms where the connection to method declarations is not given.

The typing of array variables [GJS96, §15.12] is straightforward, whereas the typing of
field variables [GJS96, §15.10.1] is more sophisticated, as described below.

E,dt|=e::–T[] E,dt|=i ::–PrimT int

E,dt|=e[i]::=T

E,dt|=e::–Class C cfield (prg E) C fn = Some (fd,(m,fT))

E,dt|={fd,static m}e..fn::=fT

The function

cfield :: prog → tname → (ename, tname × field)table

is a variant of fields, defined as

cfield Γ C ≡ table of ((map (λ((fn,fd),T). (fn,(fd,T)))) (fields Γ C))

It implements a field lookup based on the field name alone, i.e. hiding of fields (of different
classes) with equal names. A field access { , }e..fn is annotated with the defining class fd
and the modifier static of the field found by searching the class hierarchy for the name
fn (starting from the type Class C of the reference expression e). The annotation fd will be
used at run time to access the field (in the context of possibly a subclass of C) by calling
table of fields with the pair (fn,fd) as its search key argument. Combining the field name and
the defining class, as given by the type

fspec = ename × tname

is necessary to access the field because in the new context it is possibly hidden. Thus static
binding for fields is ensured.

2.8.7 Expression Lists

Expression lists are used as arguments for method calls. As their typing is canonical, it is
not even explicitly specified in [GJS96].

E,dt|=[]::
.
=[]

E,dt|=e::–T E,dt|=es::
.
=Ts

E,dt|=e#es::
.
=T#Ts

35

2.8.8 Properties

Unifying the different kinds of typing judgments — in the absence of dependent typing for
HOL — brings a slight technical complication: we need the fact that the injections used for
the term argument of judgments E,dt|=t ::U match the injections used for the type argument:

E,dt|=t ::U −→ case t of In1 ec → (case ec of Inl e → ∃T. U = Inl T
| Inr c → U = Inl (PrimT void))

| In2 v → (∃T. U = Inl T)
| In3 es→ (∃Ts. U = Inr Ts)

This is proved easily by case distinction: any expression or variable is associated with a
single type, any statement with the dummy type void, and any expression list with a list of
types.

For well-structured programs (which are needed to ensure anti-symmetry of the widening
relation), the typing of terms is unique:

ws prog (fst E) ∧ E,dt|=t ::T ∧ E,dt|=t ::T ′ −→ T = T ′

This property can be shown straightforwardly by rule induction, yet is not actually used.

2.9 Well-Formedness

Complementing the well-typedness of terms, we define the notion of well-formedness for
classes, interfaces, their members, and whole programs. It reflects the static checks done
by the compiler for global sanity of all declarations. The well-formedness conditions are
naturally expressed as a hierarchy of predicates reflecting the structure of declarations. For
an application example see §6.3.1. With a very powerful type system including predicate
subtyping combined with mutual recursion, they could be incorporated directly into the
model of declarations, but this is by no means necessary.

2.9.1 Fields and Methods

A field declaration is well-formed iff the type of the field exists [GJS96, §8.3]:

wf fdecl :: prog → fdecl → bool
wf fdecl Γ (fn,(m,ft)) ≡ is type Γ ft

A method declaration is well-formed only if its head is well-formed [GJS96, §8.4], which
means that the numbers of parameter names and types agree, all parameter and result types
exist, and the parameter names are distinct.

wf mhead :: prog → sig → mhead → bool
wf mhead Γ (mn,pTs) (m,pns,rT) ≡ length pTs = length pns ∧

(∀T∈set pTs. is type Γ T) ∧ is type Γ rT ∧
nodups pns

If the method declaration appears in a class (given as an extra parameter to wf mdecl), there
is also a method body, and therefore several additional conditions have to be met. If the
defining class is Object, the method must not be static. The names of the local variables
[GJS96, §14.3] must be unique and may not hide the parameters, and all types of the local
variables must exist. The method body has to be well-typed (in the static context of its
parameter types, local variables, and the current class unless the method is static), and its
result expression must have a type that widens to the result type.

36

wf mdecl :: prog → tname → mdecl → bool
wf mdecl Γ C ((mn,pTs),(m,pns,rT),lvars,blk,res) ≡ wf mhead Γ (mn,pTs) (m,pns,rT) ∧

(C = Object −→ ¬static m) ∧
unique lvars ∧ (∀pn∈set pns. table of lvars pn = None) ∧
(∀(vn,T)∈set lvars. is type Γ T) ∧
(∃T. (Γ,table of lvars(pns[7→]pTs) (+)

(if static m then empty else empty(()7→Class C)))`
Body C blk res::–T ∧ Γ`T�rT)

2.9.2 Interfaces

A well-formed interface declaration [GJS96, §9.1] is well-structured (i.e. all superinterfaces
exist and are not subinterfaces at the same time) and the interface name is not a class
name at the same time. All methods actually declared in the interface are uniquely named,
well-formed, and non-static. Furthermore, the result type of any method overriding a set
of methods defined in the superinterfaces widens to each of the corresponding result types
[GJS96, §9.4.1]. So as already observed by Drossopoulou and Eisenbach [DE97a], the result
types need not be equal [Generalization]. Note that the specification [GJS96] explic-
itly allows that an interface inherits more than one method with the same signature. Yet
in contrast to the specification, we do not require that these methods have identical return
types [Generalization].

wf idecl :: prog → idecl → bool
wf idecl Γ (I,(si,ms)) ≡ ws idecl Γ I si ∧ ¬is class Γ I ∧

unique ms ∧ (∀(sig,mh)∈set ms. wf mhead Γ sig mh ∧ ¬static (fst mh)) ∧
(o2s ◦ table of ms hidings Un tables((λJ.(imethds Γ J)) “ set si)
entails (λmh (md,mh′). Γ`mrt mh�mrt mh′))

2.9.3 Classes

Analogously to interfaces, a well-formed class declaration [GJS96, §8.1] is well-structured and
the class name is not an interface name at the same time. All implemented interfaces exist,
and for any method of such an interface, the class provides a non-static method implementing
it whose return type is in widening (rather than identity, [Generalization]) relation.
Like for interfaces, a class may inherit from implemented interfaces more than one method
with the same signature, and in contrast to the specification, we do not require that these
methods have related return types [Generalization]. All fields and methods actually
declared in the class are uniquely named and well-formed. The initialization block is well-
typed. Unless the class is Object, any method overriding a method of the superclass is static
iff the overridden method is static [GJS96, §8.4.6] and has a result type that is in widening
(rather than identity, [Generalization]) relation.

wf cdecl:: prog → cdecl → bool
wf cdecl Γ (C,(sc,si,fs,ms,init)) ≡ ws cdecl Γ C sc ∧ ¬is iface Γ C ∧

(∀I∈set si. is iface Γ I ∧ (∀s. ∀(md′,mh′) ∈ imethds Γ I s.
(∃(md ,(mh ,b)) ∈ cmethd Γ C s: Γ`mrt mh�mrt mh′ ∧ ¬static (fst mh)))) ∧
(∀f ∈set fs. wf fdecl Γ f) ∧ unique fs ∧
(∀m∈set ms. wf mdecl Γ C m) ∧ unique ms ∧
(Γ,empty)` init::

√
∧

(C 6= Object −→ ((table of ms) hiding (cmethd Γ sc) entails
(λ(mh,b) (md′,(mh′,b′)). static (fst mh′) = static (fst mh) ∧ Γ`mrt mh�mrt mh′)))

37

2.9.4 Programs

Finally, all interfaces and classes declared in a well-formed program [GJS96, §8.1, 9.1] are
named uniquely and are in turn well-formed. The list of classes includes the class declarations
for Object and the standard exceptions [Unification].

wf prog :: prog → bool
wf prog Γ ≡ let is = fst Γ; cs = snd Γ in

ObjectC ∈ set cs ∧ (∀xn. SXcptC xn ∈ set cs) ∧
(∀i∈set is. wf idecl Γ i) ∧ unique is ∧
(∀c∈set cs. wf cdecl Γ c) ∧ unique cs

2.9.5 Properties

There is a whole wealth of properties that can be proved for well-formed programs, most
of which are required as lemmas for type soundness. Here we mention just a representative
selection.

Many lemmas can be derived straightforwardly from the corresponding definitions, like

wf ws prog wf prog Γ −→ ws prog Γ

Object is class wf prog Γ −→ is class Γ Object

Xcpt subcls Throwable wf prog Γ −→ Γ`SXcpt xn�c SXcpt Throwable

Other lemmas involve induction, typically on the subclass or subinterface hierarchy.
For well-formed programs, a class contains (by inheritance) all fields of any superclass:

fields mono
wf prog Γ ∧ is class Γ D ∧ Γ`D�c C ∧ table of (fields Γ C) fn = Some f −→
table of (fields Γ D) fn = Some f

If for some signature a reference type contains a method with that signature, then any
class that widens to the reference type (or Object if the reference is an array) contains
(by inheritance, overriding or hiding) a corresponding method that is static iff the former
method is static and has a result type that is in widening relation:

class mheadsD
wf prog Γ ∧ is class Γ C ∧ is type Γ (RefT t) ∧ (md,m,pn,rT)∈mheads Γ t sig ∧
(if (∃T. t = ArrayT T) then C = Object else Γ`Class C�RefT t) −→
∃(md′,(m′,pn′,rT′),mb)∈cmethd Γ C sig: static m′ = static m ∧ Γ`rT′�rT

If an expression is well-typed in the context of a well-formed program, its type is proper:

ty expr is type wf prog Γ ∧ (Γ,Λ)`e::–T −→ is type Γ T

38

Chapter 3

Operational Semantics

For formalizing the dynamic aspects of Java`ight we have the classical three-fold choice of
using an operational, axiomatic, or denotational style.

• An operational semantics is close to the Java language specification, rather easy to
understand, and more or less directly executable.
• An axiomatic semantics aiming at program verification is a bit more abstract, but

less intuitive and hard to validate.
• A denotational semantics is even more abstract, but also by far more difficult.

Aiming at a simple, easy to validate model (at least for the fundamental description, from
which others may be derived), it was a clear decision to prefer the operational style.

The two main parts of the operational semantics are the model of the state and the
evaluation rules. The state model will also be used for our axiomatic semantics, as well as
most of the auxiliary functions defined along with the evaluation rules.

3.1 State

The program state basically consists of the values of all global and local variables. In our
model also information on present exceptions is included, whereas more technical auxiliary
information like a program counter, a method call stack, and machine registers are not
required. See §6.3.3 for example states.

We introduce first a rather generic notion of objects, then global and local stores, excep-
tions, and finally the overall structure of the program state.

3.1.1 Objects

In Java terminology, an object is either a class instance or an array. We model both variants
in a uniform way by factoring out the common structure [Factoring], namely a tag
and a table of values.

We model the static fields of a class as so-called class objects [Reduction]. One
could adopt the Smalltalk view that everything is an object, even the set of local variables
of method invocations, as done by some language implementations as well. This would
reduce redundancy a bit further, but we did not dare to do this in the beginning (at a time
when we did not yet handle class objects either), and meanwhile a change of this rather
fundamental issue would cost too much, however it is an option worth considering. Such
considerations pay since unifying the storage model does not only unify access, which in

39

particular simplifies the notion of conformance (cf. §4.3), but also reduces the number of
lemmas required for the proof of type soundness.

Object tags are defined via the datatype

obj tag = CInst tname
| Arr ty int

where for a class instance the class name and for an array its component type and length
are given. For a class object the tag will be irrelevant since its type is given already by the
reference to it (see below).

An object is a pair of the object tag and a table of values, indexed by variable names vn,
which are either field specifications (for class instances, as described in §2.8.6) or integers
(used as indexes for arrays).

vn = fspec + int
obj = obj tag × (vn,val)table

We define a non-standard selector and a few other access functions on objects:

the Arr :: obj option → ty × int × (vn,val)table
the Arr obj ≡ ε(T,k,t). obj = Some (Arr T k,t)

upd obj :: vn → val → obj → obj
upd obj n v ≡ λ(oi,vs). (oi,vs(n 7→v))

obj ty :: obj → ty
obj class :: obj → tname

obj ty obj ≡ case fst obj of CInst C → Class C | Arr T k → T[]
obj class obj ≡ case fst obj of CInst C → C | Arr T k → Object

the Arr returns the constituents of an optional object that is assumed to be some array,
upd obj updates a variable within an object (i.e. a field or array component), obj ty returns
the type of an object, and obj class returns the class to be used for a method call upon the
given object.

We will need object stores for ordinary objects to be referenced via locations on the heap
as (loc,obj)table, and class objects containing static fields as (tname,obj)table. The stores could
be defined either in separation, or, isomorphically, in combination as (loc + tname,obj)table.
We chose the latter option since this enables a uniform access [Unification]. Thus
a (generalized) object reference is either a location or a class name:

oref = loc + tname

We define the abbreviations Heap ≡ Inl and Stat ≡ Inr for clarity.
The table of field types of an object, as determined by its tag and reference, is calculated

with the function

var tys :: prog → obj tag → oref → (vn,ty)table
var tys Γ oi r ≡ case r of Heap a → (case oi of

CInst C → fields table Γ C (λn (m,fT). ¬static m) (+) empty
| Arr T k → empty (+) arr comps T k)

| Stat C → fields table Γ C (λ(fn,fd) (m,fT). fd = C ∧ static m) (+) empty
where

i in bounds k ≡ 0 ≤ i ∧ i < k
arr comps T k ≡ λi. if i in bounds k then Some T else None
fields table :: prog → tname → (fspec → field → bool) → (fspec,ty)table
fields table Γ C P ≡ option map snd ◦ table of (filter (λ(n,f). P n f) (fields Γ C))

40

fields table filters the fields of a class (depending on the predicate P on the field declara-
tions) and returns the corresponding type table. For an instance of a class C these fields are
all non-static fields declared in C or inherited from its superclasses, for an array of size k the
components with indexes from 0 to k–1, and for a class object of a class C the static fields
declared in C. The latter ones do not include the static fields inherited from the superclasses
of C because such fields are shared and thus need to be stored only once: in the class object
of C.

3.1.2 Stores

The program state contains two stores, namely for the (global) objects and the local variables
(including method parameters and the This pointer):

globs = (oref , obj)table
locals = (lname, val)table

We combine them into a type

st = st globs locals

that we use as an abstract datatype in order to make the rest of our model independent of
possible future extensions of the state representation. Here an extensive record type would
have been helpful.

We denote variables of type st by s, possibly with subscripts.
The (only) operations directly manipulating the stores are

globs :: st → globs
locals :: st → locals

globs ≡ st rep (λg l. g)
locals ≡ st rep (λg l. l)

where
st rep f s ≡ case s of st g l → f g l

for read access and

gupd(7→) :: oref → obj → st → st
lupd(7→) :: lname → val → st → st
upd gobj :: oref → vn → val → st → st
set locals :: locals → st → st

gupd(r 7→obj) ≡ st rep (λg l. st (g(r 7→obj)) l)
lupd(vn 7→v) ≡ st rep (λg l. st g (l(vn 7→v)))
upd gobj r n v ≡ st rep (λg l. st (chg map (upd obj n v) r g) l)
set locals l ≡ st rep (λg l ′. st g l)

where
chg map f a m ≡ case m a of None → m | Some b → m(a 7→f b)

for update and set access.
There are a few derived functions for accessing the heap = (loc, obj)table and the This

pointer:

heap :: st → heap
heap s ≡ globs s ◦ Heap

lookup obj :: st → val → obj
lookup obj s a′ ≡ the (heap s (the Addr a′))

41

val this :: st → val
val this s ≡ the (locals s This)

For object initialization we define the functions

init obj :: prog → obj tag → oref → st → st
init class obj :: prog → tname → st → st

init obj Γ oi r ≡ gupd(r 7→(oi,init vals (var tys Γ oi r)))
init class obj Γ C ≡ init obj Γ arbitrary (Inr C)

where
init vals :: (α, ty)table → (α, val)table
init vals vs ≡ option map default val ◦ vs

Note that for a class object the object tag is irrelevant (as the corresponding class is already
determined by the object reference) and therefore set to arbitrary.

3.1.3 Exceptions

As the word suggests, exceptions are exceptional states of a program giving rise to some non-
normal mode of execution. We model exceptions naturally as part of the program state,
next to the stores, which remain as they are whether an exception is present or not.

In the literature exceptions are sometimes given a more exceptional state than they
deserve. For instance, in the transition semantics of Drossopoulou and Eisenbach [DE99]
exceptions are regarded as a special form of terms. Thus, a syntactic trick called “expression
contexts” has to be used to describe exception propagation in a uniform way. Huisman and
Jacobs [HJ00] model the result state of expressions and statements with an outer distinction
between hangup, normal completion, and abnormal completion, while giving the store as a
parameter where appropriate. This violates the principle of uniformity and thus adds clutter
through the omnipresence of case distinctions on the state in their model. Moreover, the
axiomatic semantics based on this model uses special kinds of Hoare triples (each with its
own version of validity) for reasoning about exceptions, which at least doubles the number
of rule variants needed. The different versions of validity have recently been unified [JP00],
but the redundancy within each rule remains.

In Java exceptions are represented not as simple values, but as instances of (a subclass
of) Throwable. This implies that when a standard exception like NullPointer is thrown, a
suitable object is implicitly allocated1. Therefore, apparently spontaneous side-effects on
the heap (and — even worse — out-of-memory conditions) may occur almost everywhere,
which is a feature rather unpleasant to model. We relieve the pain by representing a thrown
standard exception at first by a suitable tag, which is transformed into the corresponding
exception object as late as possible: it may become visible to the programmer when reaching
a catch clause. Consequently, we define the type xcpt of exceptions as

xcpt = XcptLoc loc
| StdXcpt xname

where the first alternative references an allocated exception object and the second one rep-
resents the intermediate form of a standard exception.

Whether an exception is present — i.e. it has been thrown, but not (yet) been caught
— is modeled with an optional type:

xopt = xcpt option

1This was not explicitly specified, but appears to be the usual implementation [Clarification].

42

In our model many situations arise where under a certain condition an exception should
be raised, yet only if no exception is already present which has to take precedence. This
behavior is captured by the function

xcpt if :: bool → xopt → xopt → xopt
xcpt if c x′ x ≡ if c ∧ (x = None) then x′ else x

It has several typical applications, which we define via the abbreviations

raise if c xn ≡ xcpt if c (Some (StdXcpt xn))
np v ≡ raise if (v = Null) NullPointer

For example, np v propagates any present exception and otherwise throws the NullPointer

exception if the value v, which is assumed to be a reference, is the Null pointer.

3.1.4 Full State

The full program state is a pair of the exception status and the (global and local) stores:

state = xopt × st

Here a record type would not be very useful because the two components are used and
manipulated rather orthogonally. We denote variables of type state by σ, possibly with
subscripts.

For normal (exception-free) states we provide the abbreviation

Norm s ≡ (None,s)

Conversely, the predicate

normal σ ≡ fst σ = None

checks if a given state is normal. The predicates

inited :: tname → globs → bool
initd :: tname → state → bool

inited C g ≡ g (Stat C) 6= None
initd C σ ≡ inited C (globs (snd σ))

check whether a given class already has been initialized (or to be exact, initialization is at
least in progress), i.e. its class object is available.

We further define functionals mapping an update of the exception or store part of the
state to an update of the full state,

xupd :: (xopt → xopt) → state → state
supd :: (st → st) → state → state
xupd f ≡ λ(x,s). (f x,s)
supd f ≡ λ(x,s). (x,f s)

applied for instance when setting and restoring local variables:

set lvars :: locals → state → state
restore lvars :: state → state → state

set lvars l ≡ supd (set locals l)
restore lvars σ′ σ ≡ set lvars (locals (snd σ′)) σ

43

3.2 Evaluation

In this section we describe the heart of our semantics: the evaluation rules for Java`ight terms.
We speak of “evaluation” for uniformity (even if, strictly speaking, statements are executed
and not evaluated) and for stressing the contrast to transition rules, as discussed next. Then
we introduce the general format of our evaluation judgments and introduce our model for
abrupt completion (i.e. exceptions). Subsequently we give the rules for statements (simple
ones, exception handling, class initialization), expressions (simple ones, memory allocation,
method call), variables and expression lists. Finally we mention important properties proved
for the evaluation relation.

3.2.1 Evaluation vs. Transition

When defining an operational semantics, one may choose one (or some combination) of two
options: giving

• an evaluation (a.k.a. “big-step” or “natural”) semantics [Kah87], or

• a transition (a.k.a. “small-step” or “structural operational”) semantics [Plo81].

We chose an evaluation semantics because of its advantages over a transition semantics (at
least for our application):

• It is easier to read and maintain because it is more abstract and less verbose. In
particular, it is sufficient to have one rule for each kind of term, rather than a collection
of (simpler) rules depending on the number of subterms. This also avoids duplication
of side conditions (in positive or negative form) into several of the rules for a single kind
of term, and artificial extra side conditions like “ground” and “almost ground” terms
[DE99] can be avoided. The low-level nature of transition semantics is particularly
striking when given as an Abstract State Machine (ASM) [BS99].

• It is easier to validate since the Java language specification is given in an evaluation-
oriented operational style.

• Within complex recursive rules intermediate values need not be stored explicitly, e.g.
for method calls the current invocation frame does not have to be stored explicitly on
a stack (or within the term representing the method body).

• Proofs are much easier to conduct as the powerful principle of rule induction can be
used and potentially problematic invariants on intermediate states within execution of
one term are not required. Experience with proving type soundness for a transition
semantics (cf. §4.7.3) particularly confirms this.

On the other hand, the drawbacks of our choice are:

• Multi-threading, i.e. concurrency, cannot be described, which is typically done with
fine-grained interleaving of transitions.

• Stating a property of infinite executions is not directly possible. Doing so requires the
meta-level argument that the property holds for all finite prefixes of them, where the
prefixing may be implemented with a counter decremented for each step of evaluation
and throwing an exception when zero is reached.

Switching to a transition semantics later would be a drastical change, yet one could
re-use the static model and all auxiliary functions, extend the state model as required, and
derive the equivalence (for single-threaded programs) of both variants easily.

44

3.2.2 Judgments

Similarly to the typing judgments, we combine the judgments for the execution of statements
and the evaluation of expressions, expression lists, and variables into one. Again we consider
statements as a special form of expressions, assigning to them the dummy result value Unit.
Here variables cannot be viewed as expressions any more since their result is more complex:
it consists of both a simple value (for read access) and a state-transforming function which
depends on the value to be assigned to the variable:

vvar = val × (val → state → state)

The vvar notion is reminiscent of L-values introduced by Strachey [Str00].
Thus the generalized result type for terms becomes

vals = val + vvar + (val)list

The general evaluation judgment has the form

prog`state −term�→ (vals × state)

where Γ`σ −t�→ (w,σ′) means that in the context of program Γ evaluation of term t from
the initial state σ terminates in state σ′ and yields the result w.

Analogously to the variants given for the typing judgments, we define the syntactic
variants

prog`state −stmt→ state
prog`state −expr–�val→ state
prog`state −var=�vvar→ state
prog`state −(expr)list

.
=�(val)list→ state

by the abbreviations

• ≡ In1 Unit
Γ`σ −c → σ′ ≡ Γ`σ −In1r c�→ (• , σ′)
Γ`σ −e–�v → σ′ ≡ Γ`σ −In1l e�→ (In1 v , σ′)
Γ`σ −e=�vf→ σ′ ≡ Γ`σ −In2 e�→ (In2 vf, σ′)
Γ`σ −e

.
=�v→ σ′ ≡ Γ`σ −In3 e�→ (In3 v , σ′)

To meet the design goal of minimal redundancy, for each kind of term, we aim to give
only one rule capturing all of its behavior. This is possible only if we manage to handle all
possible situations in a uniform way. Issues possibly causing rules to be split and techniques
to avoid this include:

• explicit alternatives of control flow in conditional statements, which can be dealt with
by suitable meta-level conditional expressions

• exceptions possibly present in the start state and intermediate states, for which our
approach is described in detail in the next subsection

• (implicit) potential class initializations and similar cases of optional action, which we
handle by conditionally executing either the appropriate statement(s) or Skip2.

Using the techniques just mentioned, we succeed to avoid splitting rules.
2Because of limitations of the inductive definition package of HOL, we cannot replace a judg-

ment like Γ`σ −if b then c else Skip→ σ′ by the equivalent — and perhaps a bit more readable —
if b then Γ`σ −c→ σ′ else σ=σ′ since in this term the inductively defined relation appears condition-
ally.

45

A related subtle and conceptually problematic issue is how to deal with expectations
on the dynamic types of intermediate values. Take as a simple example the statement
if(e) c1 else c2. Its execution relies on the assumption that the value v of e is a Boolean
value and not, say, an object reference. This brings us already to the concept of type
soundness, which we can handle only after we have defined the operational semantics itself.
There are at least three ways to solve this problem:

“aggressive”: Simply assume that everything is in order and use selectors like the Bool

that yield an unknown result if they happen to be applied to e.g. Intg 42. For example,
for the conditional statement we can give the rule

Γ`Norm s0 −e–�v→ σ1 Γ`σ1−(if the Bool v then c1 else c2)→ σ2

Γ`Norm s0 −if(e) c1 else c2 → σ2

that is applicable even if v is not a Boolean value, in which case either c1 or c2 is
selected arbitrarily. This solution not only leads to simple proofs but also has the
special conceptual advantage of being closest to the actual behavior of execution.

“strict”: If something is wrong, let evaluation get stuck, which is modeled by the situation
that no rule is applicable. In our example, the rule

Γ`Norm s0 −e–�Bool b→ σ1 Γ`σ1−(if b then c1 else c2)→ σ2

Γ`Norm s0 −if(e) c1 else c2 → σ2

can be applied (with pattern matching) only if the outcome of e is indeed a Boolean
value, and there is no further rule for the conditional statement. For an evaluation
semantics this implies that getting stuck and non-termination cannot be distinguished,
and thus type soundness cannot be formulated at all. Moreover, even for a transition
semantics, type soundness becomes a progress property, i.e. the existence of a final
(next) state has to be proved. Hence the transition relation occurs positively in the
soundness theorem and the convenient rule induction scheme cannot be used.

“defensive”: In case of errors throw some (non-catchable) “TypeMismatch” exception,
such that the proof of type soundness has to show that this exception will never be
actually thrown. In our example we could either take the rule just given and add the
extra rule

Γ`Norm s0 −e–�v→ σ1

Γ`Norm s0 −if(e) c1 else c2 → xupd (raise if True TypeMismatch) σ1

or give the combined rule

Γ`Norm s0 −e–�v→ σ1

Γ`xupd (raise if (¬∃b. v=Bool b) TypeMismatch) σ1 −(if the Bool v then c1 else c2)→ σ2

Γ`Norm s0 −if(e) c1 else c2 → σ2

The disadvantage is that this approach leads to new rule variants or at least complicates
the existing rules through additional case distinctions.

From the argumentation given it will be obvious that we opted for the first variant.

46

3.2.3 Exception Propagation

When an exception is thrown, any subsequent computation is skipped and the exception is
propagated until it is caught or the program execution terminates.

For an evaluation semantics the standard way of implementing propagation is as follows.
Exceptions are assumed to be present only in the final state of judgments, but never in the
initial state. Thus the judgments have the general form st −term�→ state (abstracting from
irrelevant details here). All intermediate states within an evaluation rule potentially contain
exceptions. Therefore the rules have to be split at all these intermediate states to distinguish
the two possible situations where an exception is present (which has to be propagated) or
not. For sequential composition of two subterms, which is the simplest example, this looks
like

s0 −t1�→ (None,s1) s1 −t2�→ σ2

σ0 −t1; t2�→ σ2

s0 −t1�→ (Some xs,s1)

s0 −t1; t2�→ (Some xs,s1)

Consequently rules for a term with n subterms have to be split into at least n rules since it
involves at least n − 1 intermediate states. In Java there are many terms with more than
one subterm, so we were highly motivated to invent a better solution.

Our solution reminds of monads in the sense that exceptions are propagated behind the
scenes: the above explicit case distinction on the caller’s side of a rule is moved to the callee’s
side and made more or less implicit. To this end, exceptions are permitted also in the start
state of judgments (incidentally yielding more symmetry). Now, there is one general rule
defining exception propagation:

(Some xs,s) −t�→ (Some xs,s)

All further evaluation rules can assume that in their initial states no exception is present.
That is, they have the generic form

Norm s0 −t1�→ σ1 σ1 −t2�→ . . .

Norm s0 −t�→ . . .

In our specific model, the full rule for exception propagation is

14.1, 15.53

Γ`(Some xc,s) −t�→ (arbitrary3 t,(Some xc,s))

What we have added here is production of a suitable result value. In case an exception is
present, the result value entry in judgments is irrelevant, but its full inclusion helps to make
the structure independent of exception occurrence [Unification]. Such irrelevant val-
ues are normally ignored, so it should not matter whether they are unique. Yet for simplicity
we prefer (fixed) arbitrary values over “nondeterministic” values. Additionally, our unified
model for expressions, variables etc. requires that they are at least of the corresponding
type, i.e. involve the correct injection. This is achieved by the auxiliary function

arbitrary3 :: term → vals
arbitrary3 t ≡ case t of In1 ec → In1 (case ec of Inl e → Inl arbitrary | Inr c → Inr Unit)

| In2 v → In2 arbitrary
| In3 es → In3 arbitrary

3The numeric labels appearing in this and many subsequent rules refer to the corresponding definition
in [GJS96].

47

3.2.4 Standard Statements

Due to our implicit exception propagation mechanism, the rules for those statements not
directly involving exceptions appear almost as usual:

14.5
Γ`Norm s −Skip→ Norm s

14.2
Γ`Norm s0 −c1 → σ1 Γ`σ1 −c2 → σ2

Γ`Norm s0 −c1; c2→ σ2

14.7
Γ`Norm s0 −e–�v→ σ1

Γ`Norm s0 −Expr e→ σ1

14.8.2

Γ`Norm s0 −e–�b→ σ1

Γ`σ1−(if the Bool b then c1 else c2)→ σ2

Γ`Norm s0 −if(e) c1 else c2 → σ2

14.10

Γ`Norm s0 −e–�b→ σ1

if the Bool b then Γ`σ1 −c→ σ2 ∧ Γ`σ2 −while(e) c→ σ3 else σ3=σ1

Γ`Norm s0 −while(e) c→ σ3

The three conditions of the loop rule could have been combined yielding the more compact
rule

14.10
Γ`Norm s0 −if(e) (c; while(e) c) else Skip→ σ3

Γ`Norm s0 −while(e) c→ σ3

We decided not to do so for uniformity with the other rules (such that all judgments in
the preconditions of any rule are non-composite Java`ight terms), which is also helpful for
proofs. Of course, one version of the rule can be derived from the other.

3.2.5 Exception Handling

Throwing a user-defined exception means first evaluating the reference.

14.16
Γ`Norm s0 −e–�a′→ σ1

Γ`Norm s0 −throw e→ xupd (throw a′) σ1

If no exception has occurred doing this and the resulting value is not a null reference4, the
auxiliary function throw copies the evaluated location into the exception component of the
state:

throw :: val → xopt → xopt
throw a′ x ≡ xcpt if True (Some (XcptLoc (the Addr a′))) (np a′ x)

When describing the effect of the statement try c1 catch(C vn) c2 we have to distinguish
whether in state σ2 after execution of c1 an exception of appropriate (dynamic) type, viz. a
subclass of C, is present, as denoted by

, `catch :: prog → state → tname → bool
Γ,σ`catch C ≡ ∃xc. fst σ = Some xc ∧ Γ,snd σ`Addr (the XcptLoc xc) fits Class C

This predicate in turn relies on

, ` fits :: prog → st → val → ty → bool
Γ,s`a fits T ≡ (∃rt. T = RefT rt) −→ a = Null ∨ Γ`obj ty (lookup obj s a)�T

4This test of null pointer dereferencing was not mentioned in specification, [Clarification]

48

checking whether a value a is assignable to type T. The fits predicate will be used also for
the dynamic type checks in type casts, the instanceof expression, and array assignments.
In all these applications, if T is not a reference type, it is known from the context that the
assignment is harmless and so the predicate yields True. Thus it is strictly weaker than the
notion of conformance introduced in §4.3.

14.18.1

Γ`Norm s0 −c1→ σ1 Γ`σ1 −sxalloc→ σ2

if Γ,σ2`catch C then Γ`new xcpt var vn σ2 −c2→ σ3 else σ3=σ2

Γ`Norm s0 −try c1 catch(C vn) c2→ σ3

In case Γ,σ2`catch C holds, the statement c2 of the catch clause is executed with its exception
parameter vn set to the caught exception using the function

new xcpt var :: ename → state → state
new xcpt var vn ≡ λ(x,s). Norm (lupd(EName vn 7→Addr (the XcptLoc (the x))) s)

After the catch clause the exception parameter is still present (as a local variable in the
state), which is harmless because it becomes inaccessible.

As motivated in §3.1.3, standard exceptions of class xn may be represented by StdXcpt xn,
which must be replaced by XcptLoc a before entering the catch clause, where a is the location
of a newly allocated instance of class xn. This task is performed by the (partial) function
sxalloc, which we define inductively as a judgment of the form

prog`state −sxalloc→ state

for analogy with the evaluation judgments:

Γ`Norm s −sxalloc→ Norm s Γ`(Some (XcptLoc a),s) −sxalloc→ (Some (XcptLoc a),s)

Γ`Norm s0 −halloc (CInst (SXcpt xn))�a→ (x,s1)

Γ`(Some (StdXcpt xn),s0) −sxalloc→ (Some (XcptLoc a),s1)

If no standard exception is present, the function performed is the identity on the state.
Otherwise, the judgment halloc allocates the exception object (if possible). See §6.3.3 for
an application example, and memory allocation will be described in §3.2.8. Our approach
using StdXcpt and sxalloc my seem complicated, but note that a more direct model would
be even more complicated: allocating an exception causes a side-effect on the heap, which
would add much clutter to the already rather complex (and sometimes even nested, see e.g.
the definition of avar in §3.2.10) conditional expressions defining the generation of standard
exceptions.

The finally statement is similar to the sequential composition, but executes its second
clause from a normal state regardless whether an exception has been thrown in its first
clause or not. If one exception occurs in either clause, it is (re-)raised after the statement,
and if both parts throw an exception, the first one takes precedence.

14.18.2
Γ`Norm s0 −c1→ (x1,s1) Γ`Norm s1 −c2→ σ2

Γ`Norm s0 −c1 finally c2→ xupd (xcpt if (x1 6=None) x1) σ2

3.2.6 Class Initialization

Within the evaluation of a few expressions, e.g. field accesses and method calls, first active
use of some class C is possible triggering its initialization. To model this behavior we insert
an artificial statement init C at those positions. We had to fix the exact positions, but we
are not sure if this should be considered as an improvement of the specification [Clarification

49

] or if the positions have been left unspecified intentionally. If the class in question is
already initialized, below abbreviated by initedC, there is nothing to do. Otherwise, a new
class object is allocated — incidentally marking that initialization is in progress —, and if
the class is not Object, its superclass is (potentially) initialized. Then the static initializer
of the current class is executed, whereby the current local variables have to be hidden and
afterwards restored.

12.4.2, 8.5

the (class Γ C) = (sc,si,fs,ms,ini) if inited C (globs s0) then σ3 = Norm s0 else
(Γ`Norm (init class obj Γ C s0) −(if C = Object then Skip else init sc)→ σ1 ∧

Γ`set lvars empty σ1 −ini→ σ2 ∧ σ3 = restore lvars σ1 σ2)

Γ`Norm s0 −init C→ σ3

We ignore the rare case of memory overflow when allocating class objects (in contrast ordi-
nary objects) [Restriction].

3.2.7 Simple Expressions

In contrast to the statement rules, most evaluation rules for expressions deserve a comment.
The result of a literal expression is simply the given value, and the value of super is that

of this. The state is left unchanged.

15.7.1
Γ`Norm s −Lit v–�v→ Norm s

15.10.2
Γ`Norm s −super–�val this s→ Norm s

A (reading) variable access returns the value of the variable:

15.2
Γ`Norm s0 −va=�(v,f)→ σ1

Γ`Norm s0 −Acc va–�v→ σ1

Variable assignment evaluates the right hand side and uses its value to (possibly) update
the state:

15.25.1
Γ`Norm s0 −va=�(w,f)→ σ1 Γ`σ1 −e–�v→ σ2

Γ`Norm s0 −va:=e–�v→ assign f v σ2

The update takes place only if no exception is already present and the update function itself
does not throw a new one, as implemented by

assign :: (val → state → state) → val → state → state
assign f v ≡ λ(x,s). let (x′,s′) = if x = None then f v (x,s) else (x,s)

in (x′,if x′ = None then s′ else s)

The semantics of the conditional expression is straightforward:

15.24
Γ`Norm s0 −e0–�b→ σ1 Γ`σ1 −(if the Bool b then e1 else e2)–�v→ σ2

Γ`Norm s0 −e0 ? e1 : e2–�v→ σ2

A type cast merely evaluates its argument and raises an exception if the dynamic type
of the result happens to be unsuitable:

15.15
Γ`Norm s0 −e–�v→ σ1

Γ`Norm s0 −Cast T e–�v→ xupd (raise if (¬(Γ,snd σ1`v fits T)) ClassCast) σ1

Similarly, the type comparison operator flags whether the type of its argument is assignable
to the given reference type:

15.19.2
Γ`Norm s0 −e–�v→ σ1

Γ`Norm s0 −e instanceof T–�Bool (v 6=Null ∧ Γ,snd σ1`v fits RefT T)→ σ1

50

3.2.8 Memory Allocation

Memory allocation is an intricate issue: its outcome is practically (from the user’s perspec-
tive) non-deterministic, and it may even fail. As we intend to model this behavior faithfully
and as loosely as possible, we use the following allocation function:

new Addr :: heap → loc option
new Addr h ≡ if (∀a. h a 6= None) then None else Some (εa. h a = None)

If there is no free location on the heap, it fails, otherwise returns a free location. Here
Hilbert’s choice operator is used naturally. Note that since its result is determined by the
heap, but not actually known, new Addr is in fact just a — non-executable — specification
[Underspec]. Of course more detailed — and executable — models could be given,
for example instantiating the type of locations to a fixed range of natural numbers where
new Addr returns the lowest such number not occupied (if any). See §6.3.3 for an example
application.

Heap Extension

The “partial” function new Addr is the heart of our allocation judgment

prog`state −halloc obj tag�loc→ state

which we write (and define) in the style of the evaluation judgments because of its strong
relation to them. If possible, halloc allocates a fresh object with the given tag on the heap,
initializes it (using init obj), and returns an updated state. Otherwise it raises an OutOfMemory

exception.

12.5

new Addr (heap s) = Some a (x,oi′) = (if atleast free (heap s) 2 then (None,oi))
else (Some (XcptLoc a),CInst (SXcpt OutOfMemory)))

Γ`Norm s −halloc oi�a→ (x,init obj Γ oi′ (Heap a) s)

If an exception is present already in the start state, it is propagated as usual:

Γ`(Some x,s) −halloc oi�arbitrary→ (Some x,s)

Interference with Exception Object Creation

A further complication arising from potential memory exhaustion is due to the fact that
exception objects themselves have to be allocated. [GJS96] does not specify what happens
if there is not enough memory even to allocate an OutOfMemory exception. We model a
sensible implementation [Clarification] that signals success of memory allocation
only if there is still another free location left on the heap. The situation where there is
enough memory to allocate not only the object in question, but also a further (possibly
exception) object, is formalized as

atleast free (heap s) 2

where5

atleast free :: heap → nat → bool
atleast free h 0 = True
atleast free h (n+1) = (∃a. h a = None ∧ (∀obj. atleast free (h(a 7→obj)) n))

Otherwise (i.e. if no further location is left) halloc already returns an OutOfMemory exception,
such that when the corresponding exception object has to be allocated (using sxalloc in our
case), this is still possible.

5Interestingly, the actual definition does not matter for our meta-theoretical proofs. Thus, we are free to
abstract also from the actual (byte) size of objects [Underspec].

51

Note that sxalloc (cf. §16) is designed carefully to implement the behavior just de-
scribed: it calls halloc from a normal state, and if an OutOfMemory exception has already
been thrown because there is just one free location left, halloc yields that location (and
throws an OutOfMemory exception again, which is ignored). sxalloc uses this last free location
to allocate the required instance of OutOfMemory. Yet if that exception is caught later and
any further attempt to allocate objects is made 6, we have to give up: we simply stop ex-
ecution, which we model with the premise new Addr (heap s) = Some a, rendering the halloc

rule non-applicable in that case.

Object Creation

Now that the primitives for memory allocation have been developed, it is straightforward to
apply them for class instance and array creation:

15.8.1, 12.4.1
Γ`Norm s0 −init C→ σ1 Γ`σ1 −halloc (CInst C)�a→ σ2

Γ`Norm s0 −new C–�Addr a→ σ2

Just note that for the expressions new C and new T[e] (in case T is a class) the class object
of C potentially has to be initialized first. For array creation, in addition the component
count is evaluated and a suitable exception is thrown if the result is negative.

15.9.1, 12.4.1

Γ`Norm s0 −init comp ty T→ σ1 Γ`σ1 −e–�i ′→ σ2

Γ`xupd (check neg i ′) σ2 −halloc (Arr T (the Intg i ′))�a→ σ3

Γ`Norm s0 −new T[e]–�Addr a→ σ3

where
init comp ty :: ty → stmt
init comp ty T ≡ if (∃C. T = Class C) then init (the Class T) else Skip
check neg i ′ ≡ raise if (the Intg i ′<0) NegArrSize

We do not consider garbage collection [Restriction], therefore there is no need
to model finalizers.

3.2.9 Method Call

A method call evaluates the target reference and the arguments, determines the target class,
sets the local variables of the callee, transfers control, and finally restores the local variables:

15.11.4

Γ`Norm s0 −e–�a′→ σ1 Γ`σ1 −args
.
=�vs→ σ2 C = target mode (snd σ2) a′ md

Γ` init lvars Γ C (mn,pTs) mode a′ vs σ2 −Methd C (mn,pTs)–�v→ σ3

Γ`Norm s0 −{t,md,mode}e..mn({pTs}args)–�v→ (restore lvars σ2 σ3)

Note that we do not model potential stack overflow [Restriction]. See §6.3.3 for an
application example. The function

target :: inv mode → st → val → ref ty → tname
target m s a′ rt ≡ if m = IntVir then obj class (lookup obj s a′) else the Class (RefT rt)

computes the target according to the invocation mode. For invocation mode interface or
virtual, it dynamically looks up the class of the object, and for mode static or super,
it returns the type md in the annotation (statically) determined by the well-typedness rule

6According to our experiments, in this strange situation current Java implementations show a wide range
of behavior: from sudden termination without executing finally blocks, over hangup, to infinite invocation
of a single exception handler.

52

(cf. §2.8.5). Since invocation mode super uses the superclass of the caller’s class, it is
effectively static [Correction]. Still we have to distinguish super from static because
only for the latter case the This pointer is not set.

The auxiliary function init lvars primarily assigns the argument values to the parameter
variables. If the invocation mode is not static, it also assigns target reference of the call
to the This pointer and checks if the reference is the Null pointer. Furthermore, it initializes
the (remaining) local variables with their default values. This is necessary for type safety
as we do not model the definite assignment check [GJS96, §16] [Restriction]. Yet
if a program passes the check (and assuming that the check is designed and implemented
correctly) then it will read local variables only after explicitly assigning to them. The
artificial initial values that we introduce are thus unobservable.

init lvars :: prog → tname → sig → inv mode → val → val list → state → state
init lvars Γ C sig mode a′ pvs ≡ λ(x,s). let

(,(,pns,),lvars,) = the (cmethd Γ C sig);
l = init vals(table of lvars)(pns[7→]pvs) (+)

(if mode = Static then empty else empty(()7→a′))
in set lvars l (if mode = Static then x else np a′ x,s)

Note that the method lookup as modeled by cmethd Γ C sig does not need to take the return
type into account, other than stated in [GJS96, §15.11.4.4] [Correction].

As will be motivated in §5.6.8, we distinguish the callee’s side of method calls, the
method implementation, from the caller’s side and further handle the actual method body
separately. This also helps to keep the complexity of the method call rule bearable. Thus
the only thing to do for the method implementation rule is to look up the method according
to its signature and determine the information needed for the body:

Γ`Norm s0 −body Γ C sig–�v→ σ1

Γ`Norm s0 −Methd C sig–�v→ σ1

where body Γ C sig = let (D, , ,c,e) = the (cmethd Γ C sig) in Body D c e

The evaluation of the body is just a sequential composition of initializing the current
class (if required), executing the block of statements, and evaluating the result expression:

14.15, 12.4.1
Γ`Norm s0 −init D→ σ1 Γ`σ1 −c→ σ2 Γ`σ2 −e–�v→ σ3

Γ`Norm s0 −Body D c e–�v→ σ3

One could alternatively reduce Body to the sequential composition of its three components
using ; [Reduction], which would require a slight generalization of ; to enable
propagation of the result v.

3.2.10 Variables

As already motivated in §2.4.3, and specified in §3.2.2, the result of a variable consists
of its current value and an update function. Since the calculation of the result is rather
involved and identical for the operational semantics and axiomatic semantics, we define it
using auxiliary functions, one for each kind of variable.

The simplest case is of course the one for local variables:

15.13.1, 15.7.2
Γ`Norm s −LVar vn=�lvar vn s→ Norm s

where
lvar :: lname → st → vvar
lvar vn s ≡ (the (locals s vn), λv. supd (lupd(vn 7→v)))

53

The rule for field variables is more involved, for several reasons: It has to consider class
initialization, check for Null pointer access, and access the object store distinguishing static
and instance variables. At least we avoid much redundancy by sharing most parts of the
computation necessary for read and write access.

15.10.1, 12.4.1
Γ`Norm s0 −init C→ σ1 Γ`σ1 −e–�a′→ σ2 (v,σ′2) = fvar C stat fn a′ σ2

Γ`Norm s0 −{C,stat}e..fn=�v→ σ′2

where
fvar :: tname → bool → ename → val → state → vvar × state
fvar C stat fn a′ σ ≡ let (oref,xf) = if stat then (Stat C,id) else (Heap (the Addr a′),np a′);

n = Inl (fn,C); f = (λv. supd (upd gobj oref n v))
in ((the (snd (the (globs (snd σ) oref)) n),f),xupd xf σ)

Even more complex are array variables because of several cases where an exception has
to be thrown: a check for Null pointer dereferencing and index bound violation is performed,
which for simplicity is done before evaluating the right-hand side. Furthermore, the update
function activated for write access by the assignment rule performs a dynamic type check
on the value to be stored.

15.12.1, 15.25.1
Γ` Norm s0 −e1–�a→ σ1 Γ`σ1 −e2–�i→ σ2 (v,σ′2) = avar Γ i a σ2

Γ`Norm s0 −e1[e2]=�v→ σ′2

where
avar :: prog → val → val → state → vvar × state
avar Γ i ′ a′ σ ≡ let oref = Heap (the Addr a′); i = the Intg i ′;

n = Inr i; (T,k,cs) = the Arr (globs (snd σ) oref);
f = (λv (x,s). (raise if (¬Γ,s`v fits T) ArrStore x, upd gobj oref n v s))

in ((the (cs n),f), xupd (raise if (¬ i in bounds k) IndOutBound ◦ np a′) σ)

3.2.11 Expression Lists

The evaluation of expressions canonically extends to expression lists:

Γ`Norm s0 −[]
.
=�[]→ Norm s0

15.6.4
Γ`Norm s0 −e–�v→ σ1 Γ`σ1 −es

.
=�vs→ σ2

Γ`Norm s0 −e#es
.
=�v#vs→ σ2

3.2.12 Properties

In analogy to the typing judgments, the injections used in the evaluation rules do not
mismatch:

Γ`s −t�→ (w,s′) −→ case t of In1 ec → (case ec of Inl e → (∃v. w = In1 v)
| Inr c → w = •)

| In2 v → (∃vf. w = In2 vf)
| In3 es → (∃vs. w = In3 vs)

Evaluation is unique, and it enjoys two propagation properties for exceptions:

unique eval Γ`σ −t�→ wσ −→ Γ`σ −t�→ wσ′ −→ wσ′ = wσ

eval xcpt Γ`(Some xc,s) −t�→ (w,σ′) −→ σ′ = (Some xc,s)

eval no xcpt Γ`(x,s) −t�→ (w,Norm s′) −→ x = None

The halloc and sxalloc relations have similar properties.

54

Chapter 4

Type Safety

This chapter describes our soundness proof for the type system of Java`ight. Type soundness
involves both the static and the dynamic semantics as well as their interplay. Thus its proof is
an excellent check for the language design itself, but also a validation aid for its formalization
and a benchmark for the adequacy of the formalization for meta-theoretical proofs. If the
proof fails, it should be easy to spot which of these three aspects the problem is due to.

4.1 Notions

A programming language is called type-safe if its design prevents type errors. A type error
is the application of a non-function or the use of a function on arguments for which it is not
defined [WF94]. Note that this general definition does not already presume the existence of
a (static) type system. Type errors can have hazardous effects such as interpreting arbitrary
values as pointers (and thus possibly corrupting memory) or, for object-oriented languages,
calling non-existing methods. A prominent bad example has been Eiffel due to a mistake in
its type system: the contravariance of method parameter types was confused with covariance
[Coo89]. This failure alerted many designers of (in particular object-oriented) programming
languages to take type safety extremely serious. See, for example, the series of papers by
Bruce et al. [Bru93, BCM+93, BGS95].

The common way to prevent type errors is to give a type system that — together with
other well-formedness constraints — is strong enough to imply type safety. This property
of a type system is called type soundness. When claiming type soundness for ML, Milner
expressed it with the slogan “Well-typed expressions do not go wrong” [Mil78]. The first
type soundness proofs were given in the form of so-called subject reduction theorems for
the typed λ-calculus. The form of these theorems is “if an expression is well-typed and is
reduced to some value (or some other term) then this result has a compatible type”.

A programming language is statically typed if the absence of compile-time errors guar-
antees not only the absence of (run-time) type errors but also that run-time type checks
are not needed. Languages like Java do not fulfill this ideal because they contain type casts
and other constructs that (in general) cannot be fully checked statically. To ensure type
safety, any type mismatch when evaluating problematic constructs has to be caught, and in
reaction execution is stopped or a suitable exception is thrown.

In the literature the terms “type safety” and “type soundness” are sometimes used
interchangeably. We will define formally only the latter term and use it in particular to
stress precise technical issues. In more informal contexts we will use “type safety” even if
we actually mean type soundness (implying type safety).

55

4.2 Relevance

Given the wide-spread use of Java programs obtained from sources that cannot be trusted
(i.e. via the Internet), the machines executing these programs have to be protected from
(intentional and non-intentional) malicious behavior. The security policy incorporated in
the design of Java aiming to achieve this relies, among other things, on type-safe program
execution. Special care has been taken to make the Java Virtual Machine (JVM) [LY96]
executing compiled Java programs robust against type errors. For programs to be executed,
the so-called Bytecode Verifier checks well-formedness, in particular well-typedness on the
level of machine instructions, called bytecode. If the type system of the bytecode is sound,
well-typedness implies the absence of runtime type mismatches. Thus type-safe execution
of Java programs actually depends on two requirements:

• correct implementation of type-checking within the Bytecode Verifier. Whether this
requirement is fulfilled is hard to tell as this requires program verification of complex
(and typically commercial, not open-source) software.

• type soundness on the bytecode level. This has been investigated first by Qian [CGQ98,
Qia99], then by Pusch [Pus98b], Nipkow [Nip00] and others.

From the security perspective, type safety is required only for the bytecode level. Type
safety on the Java source level would be helpful only if one could guarantee that the bytecode
to be executed has been produced with a correct compiler. Yet type soundness on the source
level does have its merits:

• it is an important design check for the language. One cannot expect type soundness
for the target language of compilation if it is not already given on the source level.

• it has high methodological value for program development. Since Java is a statically
typed language (if we gloss over the dynamic checks for array assignments and explicit
type casts), all type errors are detected already at compilation, which eases debugging
and maintenance enormously.

The Java specification explicitly addresses the issue of type soundness [GJS96, §15.3]:

The value of an expression is always assignment compatible with the type of the
expression, just as the value stored in a variable is always compatible with the
type of the variable. In other words, the value of an expression whose type is T is
always suitable for assignment to a variable of type T.

Later in the same chapter, the reader is reminded of consequence of this general statement
in the special context of method calls where T is the class or interface containing the method
declaration as determined statically and R is the dynamic type of the corresponding object
[GJS96, §15.11.4.4]:

Note that for invocation mode interface, R necessarily implements T; for invo-
cation mode virtual, R is necessarily either T or a subclass of T.

Clearly, in the design of Java type soundness has been an important goal. The claim
quoted above shows that the designers of Java are convinced that their language is type-safe,
but they do not provide any proof for this property.

4.3 Auxiliary notions

In order to express type soundness, we define a little hierarchy of auxiliary concepts of
conformance, initially inspired by [DE97a].

56

Relative to a given program Γ and a state s, a value v conforms to a type T, written
Γ,s`v ::T, iff the dynamic type of v widens to T:

Γ,s`v ::�T ≡ ∃T ′∈typeof (dyn ty s) v: Γ`T ′�T
dyn ty s a ≡ option map obj ty (heap s a)

where the function dyn ty calculates the dynamic type of the object at a given location on
the heap. It is used by the function typeof in case v is an address, as defined in §2.3.

The concept of conformance for a single value extends to tables of values and their
respective types, yielding a judgment of the form prog,st`(α, val)table[::�](α, ty)table:

Γ,s`vs[::�]Ts ≡ ∀n. ∀T∈Ts n: ∃v∈vs n: Γ,s`v ::�T

This general notion is used for both object fields and local variables.
An object obj with reference r is conforming, expressed by a judgment of the form

prog,st`obj ::�
√

oref, iff the values of its fields conform to their respective types and (un-
less the object is a class object) its tag gives a valid dynamic type:

Γ,s`obj ::�
√

r ≡ Γ,s`snd obj[::�]var tys Γ (fst obj) r ∧
((∃a. r = Heap a) −→ is type Γ (obj ty obj))

Note that, according to the definition of var tys (cf. §3.1.1), the parameter r is needed to
determine the fields of class objects.

Finally we can define the notion of a whole state σ conforming to an environment E. The
relation σ::�E means that all objects (including class objects) as well as the current local
variables in σ are conforming, and if an exception reference is present, it conforms to class
Throwable. This implies that all values within the state are compatible with their respective
static types.

(x,s)::�(Γ, Λ) ≡
(∀r. ∀obj∈globs s r: Γ,s`obj ::�

√
r) ∧

Γ,s` locals s[::�]Λ ∧
(∀a. x = Some (XcptLoc a) −→ Γ,s`Addr a ::�Class (SXcpt Throwable))

Note that the conformance relation is defined such that it does not take into account inac-
cessible values, i.e. values that occur in the state but not in the corresponding component
of the static environment. Among others, this frees us from explicitly deleting the exception
parameter from the table of local variables after a catch clause.

In the proofs described below we will need the property that during execution, objects
are not lost and moreover retain the values of their tags. This is expressed by the following
relation on states, which we call global extension, of the form st�st:

s�s′ ≡ ∀r. ∀(oi, fs)∈globs s r: ∃(oi′,fs′)∈globs s′ r: oi′ = oi

Note that if we considered garbage collection, we would have to restrict this property to
accessible objects.

Each of the above notions has a number of rather straightforward properties, such as

conf widen ws prog Γ −→ Γ`T�T ′ −→ Γ,s`v ::�T −→ Γ,s`v ::�T ′

lconf init vals ∀n. ∀T∈fs n:is type Γ T −→ Γ,s` init vals fs[::�]fs

oconf cong Γ,set locals l s`obj ::�
√

r = Γ,s`obj ::�
√

r

conforms xgext (x ,s)::�(Γ,Λ) ∧ (x′, s′)::�(Γ, Λ) ∧ s′�s −→ (x′,s)::�(Γ,Λ)

inited gext s�s′ −→ inited C (globs s) −→ inited C (globs s′)

57

4.4 Goal

With the help of the notions just introduced we can express our goal of type soundness as
follows. In the context of a well-formed program, if the execution of a well-typed statement
c transforms a state conforming to the environment into another state then that state again
conforms to the environment:

wf prog Γ ∧ (Γ,Λ)`c::
√
∧ σ::�(Γ,Λ) ∧ Γ`σ −c→ σ′ −→ σ′::�(Γ,Λ)

Analogously, the evaluation of a well-typed expression e preserves the conformance of the
state to the environment. In addition, unless an exception has occurred, the result of the
expression conforms to its static type:

wf prog Γ ∧ (Γ,Λ)`e::T ∧ σ::�(Γ,Λ) ∧ Γ`σ −e�v→ (x′,s′) −→
(x′,s′)::�(Γ,Λ) ∧ (x′ = None −→ Γ,s′`v ::�T)

We will further need similar properties for variables and expressions. Thanks to the unifor-
mity of our well-typedness and evaluation judgments, all parts of the resulting four formulas
can be shared if we further introduce a uniform notion of result conformance given below.
Thus the actual main proof obligation, with explicit universal quantification where needed
in order to obtain a strong enough induction hypotheses for rule induction, reads as

wf prog Γ −→ Γ`σ −t�→ (v,σ′) −→ ∀Λ. σ::�(Γ,Λ) −→
∀T. (Γ,Λ)`t ::T −→ σ′::�(Γ,Λ) ∧ (fst σ′ = None −→ Γ,Λ,snd σ′`t�v ::�T)

where
Γ,Λ,s` In1 �In1 v ::�Inl T = Γ,s`v ::�T
Γ,Λ,s` In2 �In2 (v,f)::�Inl T = (Γ,s`v ::�T ∧ s� f�T ::�(Γ,Λ))
Γ,Λ,s` In3 �In3 vs ::�Inr Ts = list all2 (λv T. Γ,s`v ::�T) vs Ts
s� f�T ::�(Γ,Λ) ≡ ∀s′ w. Norm s′::�(Γ,Λ) −→ Γ,s′`w ::�T −→ s�s′ −→

assign f w (Norm s′)::�(Γ,Λ)

In the result conformance predicate, which is of the form prog,lenv,st`term�vals::�tys, the
term argument determines which notion of conformance is actually used. The second case is
more involved than the others: for a variable we have to state not only that its value conforms
to the variable type but also that assigning to it a new value (conforming to the same type)
in any state Norm s′ that is an extension of the current state preserves conformance.

Of course, the two properties given above as our initial goals now result as corollaries
from the main theorem. A further interesting corollary is that method calls with dynamic
binding always execute a suitable method, i.e. ‘method not understood’ run-time errors
are impossible. More formally, for a well-formed program and a state σ that conforms to
the current environment, if a method call e..mn(ps) with invocation mode “Interface or
Virtual” is well-typed and e evaluates from σ without an exception to a non-null value
then this value is an address of an existing object obj and the method lookup for the given
signature (mn, pTs′) within the dynamic type of obj yields a proper method body:

wf prog Γ ∧ (Γ,Λ)`{t,md,IntVir}e..mn({pTs′}ps)::–rT ∧ σ::�(Γ,Λ) ∧
Γ`σ −e–�a′→ Norm s′ ∧ a′ 6= Null −→
∃a obj. a′ = Addr a ∧ heap s′ a = Some obj ∧ cmethd Γ (obj class obj) (mn, pTs′) 6= None

4.5 Proof

We have to prove both the global extension property and actual type soundness for all kinds
of evaluation relations as well as the auxiliary relations halloc and sxalloc. Fortunately, global
extension can be proved in advance, i.e. independently from type soundness. Since sxalloc

depends on halloc and the four kinds of evaluation relations depend on each other and the
two auxiliary relations, we have to perform the proofs in the order given below.

58

We prove (by rule induction) global extension for halloc, sxalloc, and then for the remaining
relations:

halloc gext Γ`σ1 −halloc oi�a→ σ2 −→ snd σ1 � snd σ2

sxalloc gext Γ`σ1 −sxalloc→ σ2 −→ snd σ1 � snd σ2

eval gext lemma Γ`σ −t�→ (w,σ′) −→ snd σ� snd σ′ ∧ (case w of

In1 v → True

| In2 vf → normal σ −→ (∀v x s. s� snd (assign (snd vf) v (x,s)))

| In3 vs → True)

Then we prove (some variants of) type soundness for the two auxiliary relations.

halloc ts wf prog Γ ∧ Γ`σ1 −halloc oi�a→ σ2 ∧ σ1::�(Γ,Λ) ∧ is type Γ (obj ty (oi,fs)) −→
σ2::�(Γ,Λ) ∧ (fst σ2 = None −→ Γ,snd σ2`Addr a::�obj ty (oi,fs))

sxalloc ts wf prog Γ ∧ Γ`σ1 −sxalloc→ σ2 −→ case fst σ1 of None → σ2 = σ1

| Some x → ∃a. fst σ2 = Some (XcptLoc a) ∧ (∀Λ. σ1::�(Γ,Λ) −→ σ2::�(Γ,Λ))

Finally, we prove the main type soundness theorem by rule induction on the evaluation
relations. The proof consists of one case per syntactic construct, currently 27.
• 12 cases can be solved rather directly (e.g. from the induction hypothesis), like the

expression statement Expr e:
wf prog Γ ∧ Γ`Norm s0 −e–�v→ σ1 ∧
(∀Λ. Norm s0::�(Γ,Λ) −→ (∀T. (Γ,Λ)`e::–T −→
σ1::�(Γ,Λ) ∧ (fst σ1 = None −→ Γ,snd σ1`v ::�T))) ∧

Norm s0::�(Γ,Λ) ∧ (Γ,Λ)`e::–T −→
σ1::�(Γ,Λ)

• 9 cases require just a few lemmas on the structure of the state, like the class instance
creation new C:

wf prog Γ ∧ Γ`Norm s0 −init C→ σ1 ∧
(∀Λ. Norm s0::�(Γ,Λ) −→ is class Γ C −→ σ1::�(Γ,Λ)) ∧
Γ`σ1 −halloc CInst C�a→ σ2 ∧ Norm s0::�(Γ,Λ) ∧ is class Γ C −→
σ2::�(Γ,Λ) ∧ (fst σ2 None −→ Γ,snd σ2`Addr a::�Class C)

• the remaining 6 cases require extensive reasoning on constructs involved: viz. class
initialization, assignment, try catch, field and array variables, and the method call
{t,cT,mode}e..mn({pTs}ps) as the most complex one:

wf prog Γ ∧ Γ`Norm s0 −e–�a′→ σ1 ∧
(∀Λ. Norm s0::�(Γ,Λ) −→ (∀T. (Γ,Λ)`e::–T −→
σ1::�(Γ,Λ) ∧ (fst σ1 = None −→ Γ,snd σ1`a′::�T))) ∧

Γ`σ1 −ps
.
=�vs→ σ2 ∧

(∀Λ. σ1::�(Γ,Λ) −→ (∀Ts. (Γ,Λ)`ps::
.
=Ts −→

σ2::�(Γ,Λ) ∧ (fst σ2 = None −→ list all2 (λv T. Γ,snd σ2`v ::�T) pvs Ts))) ∧
C = target (invmode m e) (snd σ2) a′ cT ∧
σ′2 = init lvars Γ C (mn, pTs) (invmode m e) a′ pvs σ2

Γ`σ′2 −Methd C (mn, pTs)–�v→ σ3 ∧
(∀Λ. σ′2::�(Γ,Λ) −→ (∀T. (Γ,Λ)`Methd C (mn, pTs)::–T −→
σ3::�(Γ,Λ) ∧ (fst σ3 = None −→ Γ,snd σ3`v ::�T))) ∧

Norm s0::�(Γ,Λ) ∧ (Γ,Λ)`e::–RefT t ∧ (Γ,Λ)`ps::
.
=pTsa ∧

max spec Γ t (mn, pTsa) = {((cT, m, pns, rT), pTs)} −→
restore lvars σ2 σ3::�(Γ,Λ) ∧ (fst σ3 = None −→ Γ,snd σ3`v ::�rT)

Factoring out the reasoning for the more complex cases into one or several lemmas helps to
keep the main proof manageable.

59

4.6 Discussion

This section comments on a potential weakness of our approach using an evaluation seman-
tics as the basis for the proof of type soundness. We sketch the alternative using a transition
semantics. In the subsequent section, we point out the problems of that approach, as origi-
nally presented in [Ohe98].

4.6.1 Non-termination

As it stands, our type soundness theorem does not directly say anything about non-termi-
nating computations, which might lead to the conclusion that it is useless for the type-safe
execution of reactive systems and other looping programs. Fortunately, the theorem carries
over even to such cases if one accepts the following meta-level reasoning:

Since every infinite computation consists of more than one statement, each non-
terminating program can be interrupted after any finite number of statements
executed, for example by introducing a counter and raising an exception when a
given number of statements has been reached. The theorem implies that the state
resulting from interrupting the computation after any finite number of statements
executed conforms to the environment. Thus the whole (infinite) computation can
be concluded to be type-safe.

4.6.2 Alternative: Transition Semantics

A more natural account for non-termination could be given with a subject reduction theorem
for a transition semantics rather than evaluation semantics. In this case the main theorem
would look like

wf prog Γ ∧ (Γ,Λ),dyn ty (snd σ)|=t ::T ∧ σ::�(Γ,Λ) ∧ Γ`(t,σ) →1 (t′,σ′) −→
σ′::�(Γ,Λ) ∧ (fst σ′ = None −→ ∃T ′. (Γ,Λ),dyn ty (snd σ′)|=t ::T ′ ∧ Γ`T ′�T)

where , |= :: is the extended typing judgment taking into account the dynamic types of
objects occurring in partially evaluated terms (cf. §11), and Γ`(t,σ) →1 (t′,σ′) should mean
that the configuration consisting of a term t and a state σ is transformed (in an atomic step)
to (t′,σ′).

Together with the progress property ¬ground t −→ ∃t′ σ′. Γ`(t,σ) →1 (t′,σ′), which has
to be proved e.g. by structural induction, type safety for both finite and infinite computations
is obvious.

The above subject reduction theorem can again be proved by rule induction. However,
this proof is much more involved than for an evaluation semantics. Next to the general draw-
backs already mentioned in §3.2.1, new difficulties arise, namely problematic intermediate
situations during program execution, as described in the next section.

4.7 Problems with Transition Semantics

When Drossopoulou and Eisenbach did their first version of their type soundness proof for a
small subset of Java [DE97a], and when we shortly after that decided to prefer a transition
semantics over an evaluation semantics, apparently no one was fully aware of the trouble
transition semantics brings to the proof of type soundness. When adding arrays to their
sublanguage [DE97b], they recognized a phenomenon that we call the array problem. A
related problem which we call conditional problem was later brought up by Hosoya, Pierce
and Turner and has been discussed in an e-mail forum [PHT+98].

60

4.7.1 Problem Origins

Essentially, both problems mentioned above are due to the fact that the normal typing
rules correspond to the final outcome of terms, which fits perfectly with an evaluation
semantics but not necessarily fits with a transition semantics with its intermediate states.
In a transition semantics, addresses (i.e. literal values of the form Lit (Addr a)) emerge as
intermediate expressions, and due to subtyping their types may be narrower than the types
of the original (unreduced) expressions. This leads to ill-typed intermediate expressions in
at least two cases.

4.7.2 Array Problem

Consider an array variable arr that is statically of some type C[] and dynamically of some
subtype D[]. Assigning to one of its elements an expression e that is statically of type C and
dynamically (i.e. after full evaluation) of type D is perfectly legal and type-safe. Yet when
executing the assignment expression arr[i]:=e stepwise we get to an intermediate expression
Lit (Addr a)[i]:=e that is ill-typed because Lit (Addr a) is already of type D[] and the right-hand
side e is still of the (super)type C. Only after evaluating also e well-typedness is restored.

Essentially the same problem arises when the left-hand side gets narrower, as before, but
the right-hand side remains of type C. Surely, an ArrStore exception is thrown immediately
after both sides have been evaluated, but the intermediate expression where just the left-
hand side has been evaluated is ill-typed.

The problem could be circumvented by evaluating the right-hand side before the left-hand
side, but thus would alter the semantics of the language, which is not acceptable. It would
disappear also if Java arrays were non-variant, i.e. did not allow subtyping on arrays at all.
Drossopoulou and Eisenbach as well as Syme solve the problem as follows [DE99, Sym99b].
They relax the typing rule for array assignments by removing the widening requirement
between the right-hand and left-hand side. On the other hand they have to prove the so-
called array property stating that the dynamic type check performed for array assignments
is sufficient to preserve conformance.

4.7.3 Conditional Problem

Consider two parameters a and b (of some method m) whose types are A and B where A

widens to B or vice versa. Thus the conditional expression c ? a : b within m is well-typed
and its type is the narrower one of A and B. Assume further that m is called with actual
arguments whose types are some subtype C of A and some subtype D of B, respectively, where
C and D themselves are not in widening relation. Up to now, everything is fine since the
method call is also well-typed. Yet when executing the call, inserting the argument values,
the types of a and b become C and D, respectively, and c ? a : b is no longer well-typed
because neither C widens to D nor vice versa. Note that this problem necessarily involves
method calls because this is the only situation where both branches of the conditional
expression are evaluated in advance (due to call-by-value semantics). Otherwise, first c is
evaluated and then either a or b is selected for further reduction whereby the conditional
expression disappears.

Several solutions to this problem have been proposed [PHT+98], namely

• adding type casts or intermediate variables, acting as annotations of the intended (orig-
inal) types, for both branches of the conditional expression,

• adding a type annotation for the result of the conditional expression, which relieves
from inferring that type,

61

• relaxing (an intermediate form of) the typing rule such that it allows for any common
supertype of the two argument types as the result type, which unfortunately makes
typing non-unique,

• inventing joins1 (i.e. least upper bounds) of arbitrary reference types and take as the
result type the join of both argument types.

All solutions change the language or at least require an intermediate language with an
adapted type system, where the amount of change increases from almost negligible (for the
first solution) to heavy (for the last one).

Our contribution to the discussion were clarifications and summarization. The reason
why we consider in Java`ight the otherwise uninteresting conditional expression at all in our
model was to demonstrate that at least for an evaluation semantics it does not cause any
problems. It was only recently when we noticed that also for a transition semantics the
conditional problem occurs only if method calls are inlined (i.e. β-reduced) such that the
actual argument values are substituted for the formal parameters within the method body.

In the discussion, both Drossopoulou and Syme promoted the third of the above solutions
for use with their model. Yet their model does not at all suffer from the problem because
it performs explicit substitution: it stores the argument values in the state as the values of
fresh variables, and only the names of the new variables are substituted for the parameter
names in the method body. As a consequence, the typing of the parameters (according to
the environment) is maintained.

4.7.4 Side Effects on Types

When Syme machine-checked the proof of Drossopoulou and Eisenbach, he found — and
corrected — in their proofs a subtle error related to the array problem [Sym99b, §6.2].
Furthermore, he recognized a major omission concerning side effects on types [Sym99b, §6.3]:
reducing a term might affect the types of other terms (e.g. further subterms of a common
superterm) due to side-effects on the state. Consequently, he requires and proves a lemma
stating that execution preserves typing up to widening. Drossopoulou and Eisenbach take
into account the improvements pointed out by Syme in later versions of their proof [DE99,
§9.2] and show that even strict type preservation holds: the types of other terms are not
affected at all.

4.8 Summary

We have proven

Theorem 1 Java, as far as covered by our model, is type-safe.

Once the rather large number of required concepts and properties are identified, for
an evaluation semantics the proof is moderately difficult, yet lengthy. The type safety
result directly applies to terminating evaluations and can be carried over also to infinite
computations. For a transition semantics, the proof would be even more involved.

1See for example the work by Büchi and Weck [BW98] for the benefits and an implementation of compound
types for Java.

62

Chapter 5

Axiomatic Semantics

In this chapter we present a Hoare-style logic that is an important first step towards verifying
Java programs. Here we do not focus on the methodological issues involved with program
verification as done e.g. by Poetzsch-Heffter and Müller [PHM99, MPH99], but concentrate
on the meta-theory and its mechanization.

We describe how to extend classical Hoare logic [Hoa69, Apt81] to handle side-effecting
expressions, intermediate values, exceptions, mutual recursion, dynamic binding, static ini-
tialization and other difficult features. We first give our axiomatic semantics of partial cor-
rectness, motivating and discussing all required concepts like assertions and validity. Then
we sketch our proof of soundness and (relative) completeness, both w.r.t. a slight elaboration
of the operational semantics given in §3.

More or less self-contained articles covering the topic of this chapter are [Ohe00a],
[Ohe00b] and [Ohe01].

5.1 Assertions

In designing an axiomatic semantics the most critical notion is that of assertions, i.e. propo-
sitions describing the pre- and postconditions of term execution. The language of assertions
and the underlying logic strongly determine the expressiveness and completeness of the
resulting verification logic.

5.1.1 Logical Language

As the assertion language and logic, we could use Peano Arithmetic, i.e. first-order predicate
logic with equality, natural numbers, + and ∗. This is because we will quantify essentially
just over (lists and finite mappings of) values. The program state can be encoded using lists
of (lists of) values, the potentially problematic variable update functions (contained in type
vval) can be coded as a simple choice between the three possible cases lvar, fvar and avar, and
for lists standard encodings exist. Thus a rather minimal language would be sufficient, but
at the expense of technically awkward encodings. Based on these observations, we could
define a notion of expressiveness suiting our needs.

Moreover, we could embed the assertion language, being higher-order or not, deeply into
HOL. Doing so would enable us to explicitly treat expressiveness and the whole issue of
completeness (basically) along the lines of Cook [Coo78], who did a good job separating
concerns within the completeness affair. Yet as observed by Kleymann [Kle98, §2.12], some

63

of the known incompleteness results crucially depend on certain expressiveness properties
and have been misinterpreted in the sense that they were attributed relevance for practical
purposes, which they in fact do not have. Actually, we are not aware of any actual verification
system based on Hoare logic where incompleteness of the underlying logic is an issue. Thus
Kleymann an others follow Aczel’s suggestion [Acz82] not to consider expressiveness when
investigating the completeness of a Hoare-style logic. Moreover, compared to a shallow
embedding, a deep embedding would complicate in particular the meta-level proofs as it
requires talking explicitly about the syntactic level (i.e. terms and substitutions) and their
semantic interpretation, which would just add clutter without giving us any benefit.

For the reasons given above we shallow-embed assertions in HOL. As a result, we do
not have to bother with expressiveness. Concerning derivability, we automatically only
have to deal with relative completeness in the sense of Cook [Coo78], i.e. completeness of
the Hoare logic rule system itself modulo (in-)completeness of the underlying meta logic.
In particular, within the rule of consequence, the derivability of an implication between
assertions is replaced simply by its validity, i.e. mere implication in the meta logic HOL.

Since assertions depend on the program variables (including the heap), from the HOL
perspective, they are essentially just predicates on the state. We use the state as an ex-
plicit parameter of the assertions, which is most appropriate when conducting meta-theory.
Thus an example Hoare triple that is traditionally given as {True} c {X=1} now formally
reads as {λσ. True} c {λσ. locals (snd σ) X = Some (Intg 1)}, where the rather cumbersome
expression in the postcondition could of course be suitably abbreviated and the assertions
pretty-printed. For actual program verification, a mechanism for hiding the state and di-
rectly referring to the program variable names, as given by Wenzel [Wen00], would enhance
readability.

5.1.2 Auxiliary Variables

Program verification typically involves relating pre- and postconditions of program terms,
in particular when stating that a certain portion of the state does not change or when giving
input-/output specifications of methods (or general procedures). Such relations are easily
expressed in VDM [Jon90] using “hooked” expressions within the postcondition to refer to
the initial state. With plain Hoare logic, one cannot make such references, but one can
extend the logic by so-called auxiliary variables, or logical variables, which are universally
bound at a higher level.

For example, the proposition that a procedure P does not change the contents of a
program variable X may be formulated as the triple {X=Z} Call P {X=Z}, which should mean
that whenever X has some value denoted by Z before calling P, after return it still has the
same value, as given by Z. A potential interpretation for Z is to be a program variable not
occurring in P, but this essential side condition cannot be expressed within the logic. A
better and rather intuitive alternative is that Z is viewed as a free variable, which is thus
implicitly universally quantified at the outermost logical level. Yet this gives the desired
interpretation only if the triple occurs (implication-)positively, and thus is unsuitable when
triples are used also in assumptions as required for verifying recursive methods (cf. §5.6.8).

Viewing Z as an arbitrary (yet fixed) constant preserves correctness, but this approach
suffers from incompleteness: take a procedure triple like {X=Z} Call Quad {Y=Z∗Z} as an
example. Both for handling recursive calls during its proof and for different applications
after it has been proved, different instantiations of Z may be required, which is impossible
if Z is a constant. The classical but cumbersome and often incomplete way out, as de-
scribed e.g. by Apt [Apt81], is inventing some (more or less ad-hoc) set of substitution and
adaptation rules involving sometimes intricate side-conditions on variable occurrences. A

64

semantically satisfactory solution that we could adopt would involve (implicit or explicit)
universal quantification at the level of triples like ∀Z. {P Z} c {Q Z}, but this changes the
outer structure of Hoare triples and makes them more difficult to handle, in particular if
they occur in assumptions.

We follow the approach promoted and applied by Kleymann [Sch97]: implicit quantifi-
cation of auxiliary variables at the level of triple validity. In order to abstract from the
number and the names of the auxiliary variables used in different triples, assertions receive
an extra parameter representing the collection of all required auxiliary variables. The type
of the parameter is not specified and thus can be instantiated as appropriate, typically to a
tuple of values (for actual program verification) or the whole state (for meta theory). With
this extended notion of assertions, the motivating example {X=Z} Call P {X=Z} now reads
as {λσ Z. locals (snd σ) X = Z} Call P {λσ Z. locals (snd σ) X = Z} where in this case the type
of Z is of course the type of the variable X.

5.1.3 Result Values

We still need a further — orthogonal — extension of assertions, namely for handling the
result values of side-effecting expressions. In contrast to most other axiomatic semantics
given in the literature, and as already motivated in §2.4.2, we take such expressions serious.

Homeier and Martin [HM95] appear to be the first and only ones so far embedding side-
effecting expressions in a machine-checked axiomatic semantics. They transform expressions
syntactically into the assertion language while using simultaneous substitutions to account
for side-effects. This solution does not require special triples and result value entries. On
the other hand, it is not general enough because it can handle only variable assignments
(including e.g. incrementation operators) but not method calls within expressions which
appear frequently in object-oriented programs.

We use triples not only to describe the behavior of statements, but also all other classes
of terms, i.e. expressions, expression lists, and variables. This requires a mechanism for not
only recording, but also for passing on the values produced by these terms. In an operational
semantics, the (nameless) result values can be referred to and passed on via meta variables
bound at the outermost logical level, but in an axiomatic semantics, such a simple technique
is impossible: the behavior of a term has to be described solely by a suitable triple without
any reference to its surroundings. Thus all variables occurring in the pre- and postconditions
of the triple have to be logically bound to that triple. Violating this principle easily leads
to unsound or incomplete rule systems.

Kowaltowski [Kow77] rather early pointed to the right direction giving a surprisingly
simple (syntactic) solution: Within assertions there is a default reference, call it ρ, to the
result of the current expression. The rule for constant expressions, for example, then reads
as

{P[c/ρ]} c {P}

which is reminiscent of the well-known assignment rule applied to ρ:=c. The rule for an
arbitrary binary operator ∗ reads as

{P} d {Q[ρ/τ]} {Q} e {R[τ∗ρ/ρ]}
{P} d∗e {R}

τ does not occur elsewhere

and can be justified by simulating the the special result variables with intermediate program
variables. Unfortunately these rules cannot be used directly in our rigorous semantical
setting as they rely on syntactic substitutions and the problematic syntactic side condition
of variable freshness.

65

After some experimentation we found and implemented a first solution of the result
representation problem: let the assertions refer to a stack of result values. This not only
gives a default reference, viz. the stack top, but also an arbitrary number of unique references
for further intermediate results where the explicit syntactic shifting performed when having
two or more intermediate results is handled by pushing and popping elements.

Later we noticed that there is a simpler solution: assertions receive the (single) current
result value as a parameter. Thus substitution can be modeled simply by a combined
abstraction and application, and the rule for constant expressions reads as

{λρ. P c} c {P}

Note that the precondition effectively ignores the result parameter ρ, i.e. P c does not depend
on it, since it makes sense only in the postcondition. We will later (cf. §5.1.5) abbreviate
the precondition to P←c.

Multiple result values within a Hoare logic rule can be handled by suitable explicit
universal quantification and substitution of all but the last value in the following way. First,
observe that we may rewrite the rule for binary operators to

{P} d {Q} {Q[τ/ρ]} e {R[τ∗ρ/ρ]}
{P} d∗e {R}

for some τ not occurring elsewhere

This form has two advantages: we only need substitution to ρ and the side condition on
τ can be made local to the second triple in the assumptions. Thus we can model the side
condition semantically by universal quantification of τ around the second triple and end up
with the rule

{P} d {Q} ∀τ . {λρ. Q τ} e {λρ. R (τ∗ρ)}
{P} d∗e {R}

Both subexpressions are evaluated in sequence, where Q as intermediate assertion typically
involves the result of d. The final postcondition R is modified for the proof on e as follows:
we take the second intermediate result ρ, combine it with the first intermediate result τ as
obtained from the precondition, and use the combined value as the overall result.

We define the type res of the result parameter simply as the generalized result type given
already for the operational semantics (cf. §3.2.2)

res = vals

and will use the abbreviations

Val v ≡ In1 v
Var v ≡ In2 v
Vals v ≡ In3 v

for injecting single values, variables and value lists into res.
The names Val, Var, and Vals will be used not only as constructors, but also as (destructor)

patterns. For example, λVal v. f v is a function on the result entry that expects a single value
v and passes it to f.

5.1.4 Assertion Type

Having decided on the logical language, the use of auxiliary variables, and the result entry,
we can finally give the type of assertions. It has a type parameter α for the auxiliary variables
and is defined as a relation between res, state and the auxiliary variables:

α assn = res → state → α → bool

66

See §6.3.4 for application examples.
For implications between assertions we use the abbreviation

P → Q ≡ ∀Y σ Z. P Y σ Z −→ Q Y σ Z

As done here, we typically refer to the result parameter of an assertion as Y, the state as σ,
and the auxiliary variables as Z.

5.1.5 Combinators

In order to keep the axiomatic rules short and thus more readable, we define several assertion
(predicate) combinators hiding the state, result, and auxiliary variables in applications as
far as possible.

• λs.. P s ≡ λY σ. P (snd σ) Y σ allows P to peek at the state (without the exception
status) directly.

• P ∧. p ≡ λY σ Z. P Y σ Z ∧ p σ means that not only P holds but also p, applied to
the program state only. The assertion

Normal P ≡ P ∧. normal

is a simple application stating that P holds and no exception has occurred.

• f .; P ≡ λY σ. P Y (f σ) means that P holds for the state transformed by f.

• P ;. f ≡ λY σ′ Z. ∃σ. P Y σ Z ∧ σ′= f σ means that P held for some state σ and the
current state is the image of σ under the state transformer f.

Note that the latter two combinators have (almost) inverse effect, in the following sense:
((f .; P) ;. f) → P and P → (f .; (P ;. f)).

Another group of combinators provides abbreviations for producing and consuming re-
sults:

• P←w ≡ λY. P w means that P holds where w is substituted as the result.

• λw :. P w ≡ λY. P Y Y peeks at the current result and passes it to P :: res → α assn.

• P↓ ≡ λY σ Z. ∃Y. P Y σ Z simply ignores the result.

• P↓=w ≡ λY :. P↓ ∧. (λs. Y=w) asserts that the current result is w and then ignores it.

For successive substitutions the leftmost one prevails: P←w←v = P←w.

5.2 Triples

We define Hoare-style triples (as usual consisting of a term and two assertions as pre- and
postconditions) via a datatype

(α)triple

with a single constructor with the mixfix syntax:

{α assn} terms� {α assn}

67

We give — again in analogy to typing and evaluation judgments — a variant for each
class of terms:

{P} e–� {Q} ≡ {P} In1l e� {Q}
{P} e=� {Q} ≡ {P} In2 e� {Q}
{P} e

.
=�{Q} ≡ {P} In3 e� {Q}

{P} .c. {Q} ≡ {P} In1r c� {Q}

In some triples of our Hoare logic rules given below the term parameter will be a
(quantifier-free) meta-level expression such as if b then Skip else c rather than a pure term
of (the abstract syntax of) Java`ight. This does not hinder the use of such rules since during
application these expressions are reduced to pure Java`ight terms, in this case to either Skip

or c. Another typical example is the expression body Γ C sig which is ultimately replaced by
the actual body of the given method.

For handling recursive methods we take (a variant of) the standard approach where
triples appear not only in the conclusion: sets of triples are used as assumptions (i.e. con-
texts) within the validity and derivability judgments.

(α)triples = ((α)triple)set

Furthermore, in order to handle mutual recursion, it is convenient to use sets of triples as
(multiple) conclusions as well, as further explained in §5.6.8. Semantically speaking, forming
sets of triples always means conjunction of its members. Note that for simplicity we allow
infinite sets here though only finite sets of triples are derivable.

Actually, the triple type should not have a type parameter and triples should be univer-
sally quantified over the type of the auxiliary variables instead: ∀α. {α assn} terms� {α assn}.
This is not possible in HOL due to the weak (parametric) polymorphism. As a consequence,
all members of a set of triples and also the assumptions and conclusions as a whole, and thus
all triples within a single derivation, are bound to have the same type of auxiliary variables.

5.3 Validity

5.3.1 Single Triples

The validity of a single triple is a judgment of the form

prog|=nat:(α)triple

We define partial correctness as

Γ|=n:{P} t� {Q} ≡ ∀Y σ Z. P Y σ Z −→ type ok Γ t σ −→
(∀Y ′ σ′. Γ`σ −t�−n→ (Y ′,σ′) −→ Q Y ′ σ′ Z)

Validity of {P} t� {Q} intuitively means that if P holds for some type-conforming starting
state σ and the evaluation of the term t terminates, then Q holds for the result and the final
state σ′. Note the universal quantification on the auxiliary variable Z motivated in §5.1.2.

The predicate

type ok :: prog → term → state → bool
type ok Γ t σ ≡ ∃Λ. (normal σ −→ ∃T. (Γ,Λ)`t ::T) ∧ σ::�(Γ,Λ)

expresses that the term t is well-typed (at least if σ is a normal state) and that all values
in σ conform to their static types, both w.r.t. the global environment Γ and some local
environment Λ. This additional precondition is required to ensure soundness, as will be
discussed in §5.7.3.

68

5.3.2 Recursive Depth

The judgment Γ`σ −t�−n→ (v,σ′) (as well as its obvious variants for the four specific classes
of terms) is a slight refinement of the evaluation judgment given in §3.2. The refinement
does not alter the semantics of evaluation, i.e. the new parameter n is a mere annotation,
stating that evaluation is done with a maximal recursive depth n. This notion is required
for the proof of soundness and thus will be motivated in §5.7.2.

The inductive rules defining the extended judgment are exactly the same as before, except
that �→ is replaced by �−n→ and the rule for unfolding the method body is replaced by

Γ`Norm s0 −body Γ C sig–�v−n→ σ1

Γ`Norm s0 −Methd C sig–�v−n+1→ σ1

The original and refined version are equivalent in the sense that Γ`σ −t�→ (v,σ′) iff
∃n. Γ`σ −t�−n→ (v,σ′), which can be shown by rule induction for each direction. The
‘only if’ direction relies on monotonicity:

Γ`σ −t�−n→ (v,σ′) −→ ∀m. n≤m −→ Γ`σ −t�−m→ (v,σ′)

Note that validity is monotone in the other direction:

Γ|=n:t −→ ∀m. m≤n −→ Γ|=m:t

5.3.3 Liftings

The validity of a single triple canonically carries over to sets of triples:

prog||=nat:(α)triples
Γ||=n:ts ≡ ∀t∈ts. Γ|=n:t

More interesting is the extension of validity to assumptions, defined as

prog,(β)triples||=(α)triples
Γ,A||=ts ≡ ∀n. Γ||=n:A −→ Γ||=n:ts

meaning that a set of triples ts is valid up to any given recursive depth under the assumption
that the set A is valid up to the same depth.

Note the different type parameters for the set of triples in the assumption and in the
conclusion. This emphasizes that they may have different types of auxiliary variables. Un-
fortunately, due to the restriction mentioned in §5.2 and the rules asm and Methd (given
below) which short-circuit the type variables, assumptions and conclusions are restricted to
identical types.

We abbreviate the validity of a single triple under a set of assumptions as

Γ,A|=t ≡ Γ,A||={t}

Note that our definition for Γ,A||=ts is weaker than the version one might expect, viz.

(∀n. Γ||=n:A) −→ (∀n. Γ||=n:ts)

Yet for an empty set of assumptions, both variants are equivalent, and Γ,∅|=t gives the
standard notion of validity in the sense that it effectively forgets about the recursive depth:

Γ,∅|={P}t�{Q} = ∀n. Γ||=n:∅ −→ Γ||=n:{{P}t�{Q}} = ∀n. ∀t∈{{P}t�{Q}}. Γ|=n:t =
∀Y σ Z Y ′ σ′. P Y σ Z −→ type ok Γ t σ −→ Γ`σ −t�→ (Y ′,σ′) −→ Q Y ′ σ′ Z

The derivability judgments have the general form

prog,(β)triples|`(α)triples

but for the standard case of a single triple in the conclusion we use the abbreviation

Γ,A`t ≡ Γ,A|`{t}

69

5.4 Structural Rules

As for any Hoare-style logic, there are a number of structural rules applicable for any kind
of terms: rules for handling assumptions and conclusions and the rule of consequence. Many
logics involve further rules handling variables and logical connectives within the assertions,
but with a strong rule of consequence at hand they are not really necessary.

5.4.1 Handling Conclusions

The first two rules deal with deriving finite sets of triples, which is done one by one, until
finally the empty set is reached:

insert
Γ,A`t Γ,A|`ts

Γ,A|`{t}∪ts
empty

Γ,A|`∅

As opposed to introducing sets of conclusions, one may throw away triples using

weaken
Γ,A|`ts′ ts ⊆ ts′

Γ,A|`ts

5.4.2 Handling Assumptions

Assumptions are introduced using the Methd rule (cf. §5.6.8) and exploited using the fol-
lowing rule:

asm
ts⊆A

Γ,A|`ts

There is also a rule for throwing away assumptions:

(thin)
Γ,A′ |`ts A′ ⊆ A

Γ,A|`ts

It does not need to be asserted, but can be derived (with rule induction) from the others1.
If we had given the simpler but less convenient rule

(asm ′)
Γ,A|`A

for exploiting assumptions, the thin rule could no longer be derived.
The cut rule is admissible (i.e. valid) but not derivable:

(cut)
Γ,A′ |`ts Γ,A|`A′

Γ,A|`ts

It could be added for convenience, yet we leave it out since it is not strictly necessary for
completeness.

1Therefore we write its name in parentheses, as we will do for all derived rules.

70

5.4.3 Rule of Consequence

Kleymann suggests [Sch97, §4.1 and 4.3] a rule of consequence that is stronger than the
usual one because it allows to adapt the values of auxiliary variables as required. In the
context of recursion this helps to avoid incompleteness and introduction of ad-hoc rules of
adaptation. Hofmann [Hof97] gives a rule that is even a bit stronger. After transforming
his rule to our setting, simplifying it a bit and adding result value handling, it reads as

(conseq12)

Γ,A`{P ′} t� {Q ′}
∀Y σ Z Y ′ σ′. P Y σ Z −→ (∀Y Z ′. P ′ Y σ Z ′ −→ Q ′ Y ′ σ′ Z ′) −→ Q Y ′ σ′ Z

Γ,A`{P} t� {Q}

It will turn out that for completeness we further need (derivatives of) the rule

(escape)
∀Y σ Z. P Y σ Z −→ Γ,A`{λY ′ σ′ Z ′. (Y ′,σ′) = (Y,σ)} t� {λY σ Z ′. Q Y σ Z}

Γ,A`{P} t� {Q}

We call it escape rule since it enables extrusion of the result entry, state, and auxiliary
variables from the triple’s precondition such that P can be used as an assumption on the
meta-logical level governing the rest of the triple. This is essential in particular when dealing
with dynamic binding where code depends on the state. Simple consequences of the escape
rule are the following two:

(constant)
C −→ Γ,A`{P} t� {Q}

Γ,A`{λY σ Z. C ∧ P Y σ Z} t� {Q}

(impossible)
Γ,A`{λY σ Z. False} t� {Q}

As already described in [Ohe99], we noticed that rather than asserting the rules conseq12
and escape, it is possible to give an even stronger rule of consequence from which these two
may be derived:

conseq

∀Y σ Z. P Y σ Z −→ (∃P ′ Q ′. Γ,A`{P ′} t� {Q ′} ∧
(∀Y ′ σ′. (∀Y Z ′. P ′ Y σ Z ′ −→ Q ′ Y ′ σ′ Z ′) −→ Q Y ′ σ′ Z))

Γ,A`{P} t� {Q}

This version is the strongest possible one since it directly reflects the semantics of the pre-
and postconditions involved, as can be seen when conducting its soundness proof. Note
that it allows choosing the pre- and postconditions of the inner triple, P ′ and Q ′, under the
assumption P and depending on its parameters Y, σ, and Z.

Common structural rules such as

(trivial)
Γ,A`{P} t� {λY σ Z. True}

(disj)
Γ,A`{P1} t� {Q1} Γ,A`{P2} t� {Q2}

Γ,A`{λY σ Z. P1 Y σ Z ∨ P2 Y σ Z} t� {λY σ Z. Q1 Y σ Z ∨ Q2 Y σ Z}

are no longer required at all and may be derived easily if desired. In contrast, two other
derived rules are quite handy, namely the restriction of the rule of consequence to either the
pre- or postcondition:

(conseq1)
Γ,A`{P ′} t� {Q} P → P ′

Γ,A`{P} t� {Q}
(conseq2)

Γ,A`{P} t� {Q ′} Q ′ → Q

Γ,A`{P} t� {Q}

71

5.5 Universal Quantification

In the rules given in the next section we will use several techniques introducing and exploiting
universal quantification around triples in the rules’ premises. Their common purpose is to
extend the scope in which values are visible in order to reflect dependencies between different
pre- and postconditions. The techniques may be nested and combined with each other: for
instance, the rule for method calls (cf. §5.6.8) applies all of them on a single triple. We
classify the techniques by the source of the values, as follows.

State Extrusion is of the form ∀z. Γ,A`{P z ∧. (λσ. z = f σ) } t z� {Q z}, which means
picking some part of the state (using some function f) in the precondition, binding it
to a variable z, and using it anywhere within the triple. This technique is useful e.g. to
save, modify locally to t, and restore local variables. It is very similar to a technique
within the MGF approach that will be explained in §5.8.1, the difference being that
there implicit quantification of auxiliary variables is used.

Result Extrusion, already introduced in §5.1.3, has the general form ∀z. Γ,A`{P z←Inj z}
t z� {Q z} where Inj is one of the injections Val, Var or Vals. It means matching (and
binding) the result of the previous triple and using it anywhere within the triple,
typically in order to calculate a new result or let the term t depend on it.

Value Passing involves two triples ∀z. Γ,A`{P z} t1 z� {Q z} and ∀z. Γ,A`{f (Q z) z}
t2 z� {R z} where f is an assertion transformer modifying Q z. It is logically equivalent
to ∀z. Γ,A`{P z} t1 z� {Q z} ∧ Γ,A`{f (Q z) z} t2 z� {R z} and thus simply extends
the scope of z to the second triple. This is useful for passing on previously obtained
values to other triples.

An interesting issue is how the bound variables are actually used because this affects the
usability and completeness of the resulting Hoare logic. There are again three cases:

State Transformation uses the bound variables to change the state within a pre- or post-
condition, typically by applying the assertion transformer .; .

Result Generation uses the values to compute results to be entered in the result compo-
nent of a postcondition, typically by applying the assertion transformer ← .

Term Dependence means, syntactically speaking, that the term between the pre- and
postcondition is an expression actually referring to the bound variables.

The first two uses are harmless: in applications one has to derive triples of the form
∀z. Γ,A`{P z} t� {Q z} (where t does not depend on z) for all potential values of z. Con-
cerning the Hoare logic rules, this can be done in a uniform way for some fixed but arbitrary
value z because the shape of the triple is the same for all z. Only the proofs of side condi-
tions that possibly emerge when using the rule of consequence might require enhanced proof
principles like a (local) induction over z. Yet for these proofs we can assume the full power
of predicate logic anyway since we consider relative completeness, as motivated in §5.1.1.

The third use, dependent terms, is problematic because the triples involved have the
form ∀z. Γ,A`{P z} t z� {Q z} where the term t z does depend on z such that uniform rule
application is not possible. The only other option for a finitary proof within Hoare logic is
to explicitly enumerate all possible cases for z, where of course the variety has to be finite.
Often this is easy because the type of z is bool (or some other finite type). The other option is
to derive from the precondition P z, typically by applying the escape rule, that only finitely
many values for z — commonly even just one — are actually possible. Then the proof
proceeds by constructing a finite set (or superset) of the possible values and derive the triple
for each of its members where the term expression t z, as well as the assertions P z and Q z,
can be reduced to something not mentioning the variable z anymore.

72

5.6 Java-specific Rules

This section contains the main part of our axiomatic semantics, namely the Hoare-style rules
for each kind of Java term. The rules given here describe exactly the same behavior as the
operational rules of §3.2 and re-use auxiliary definitions as far as possible. Thus we do not
need to repeat the general descriptions already given along with the operational semantics
but concentrate on the new aspects required by the axiomatic semantics.

We have designed each rule (except for Loop) such that its final postcondition is given by
a predicate variable only. Thus application of the rules in the typical “backward-proof” style
of Hoare logic is simplified because we avoid the need for applying the rule of consequence in
order to adapt the syntactical form of the postcondition, which normally requires awkward
explicit instantiations. In other words, the weakest precondition of a given postcondition is
typically generated automatically.

5.6.1 Exception Propagation

In order to describe the propagation of exceptions we use essentially the same mechanism
as for the operational semantics: there is a general rule

Xcpt
Γ,A`{P←(arbitrary3 t) ∧. Not ◦ normal} t� {P}

stating that if an exception has occurred, the current command is ignored and thus the state
is not changed. Just a suitable dummy result is generated. All other rules — except for the
Loop rule — assume that the initial state is normal using the predicate transformer Normal.

Note that we deal with exceptions in a very simple and straightforward way by having
the exception status available within the assertions, like any other part of the program
state. Most other axiomatic semantics in the literature leave out exceptions completely and
thus cannot infer anything in case of exceptional states, though Poetzsch-Heffter and Müller
plan to extend their work [PHM99] to include them. Huisman and Jacobs [HJ00] model
exceptions using special triples for exceptional states, each with its own variant of validity.

5.6.2 Standard Statements

Thanks to our implicit exception propagation mechanism, the rules for the standard state-
ments appear almost as usual.

Skip
Γ,A`{Normal (P←•)} .Skip. {P}

In order to obtain soundness w.r.t. our notion of validity, here (and in a few other rules)
we have to mention explicitly the dummy result of statements, •. In applications this is no
harm since pre- and postconditions of statements do not refer to the result entry anyway.

Comp
Γ,A`{Normal P} .c1. {Q} Γ,A`{Q} .c2. {R}

Γ,A`{Normal P} .c1;c2. {R}

For expression statements, the result of the expression is discarded using the ← operator:

Expr
Γ,A`{Normal P} e–� {Q←•}
Γ,A`{Normal P} .Expr e. {Q}

73

For terms involving a condition we define the Boolean result substitution operator
P←=b ≡ λY σ Z. ∃v. (P←Val v) σ Z ∧ (normal σ −→ the Bool v = b)

which is a variant of the operator← expressing that, unless an exception has been thrown, the
result of the preceding Boolean expression is b. Using it in conjunction with the result extru-
sion technique introduced in §5.5 and the meta-level conditional expression if b then else ,
we can describe both branches of conditional terms with a single triple, like in

If
Γ,A`{Normal P} e–� {P ′} ∀b. Γ,A`{P ′←=b} .(if b then c1 else c2). {Q}

Γ,A`{Normal P} .if(e) c1 else c2. {Q}

What is a notational convenience here (to avoid two triples, one for each branch), will be
essential for the Call rule, given below (cf. §5.6.8).

Another application of the Boolean substitution for case distinctions is

Loop
Γ,A`{P} e–� {P ′} Γ,A`{Normal (P ′←=True)} .c. {P}

Γ,A`{P} .while(e) c. {(P ′←=False)↓=•}

The loop body needs to be verified only if no exception has been thrown meanwhile and
the Boolean expression e yields True. Upon termination e yields False (unless an exception
has occurred). Here both P and P ′ play the role of the loop invariant, where P ′ is typically
equivalent to P, at least if e does not have side-effects.

Here, in order to achieve completeness, we have to give P rather than Normal P as the
precondition of the triple in the rule’s conclusion because it should be the same as the invari-
ant P and in general the invariant cannot maintain the absence of exceptions. Furthermore,
also for ensuring completeness, here we have to deviate from the principle of having as the
final postcondition a predicate variable only. Thus applying the rule of consequence will be
necessary here, but this does not cause extra nuisance since finding and inserting suitable
invariants P (and P ′) requires manual engagement anyway.

5.6.3 Exception Handling

The rules for exception handling strongly resemble the rules given in §3.2.5, the main dif-
ference being the way intermediate results are handled.

The rule for the throw statement modifies the postcondition Q by updating the exception
component of the state with the reference just evaluated.

Throw
Γ,A`{Normal P} e–� {λVal a :. xupd (throw a) .; Q←•}

Γ,A`{Normal P} .throw e. {Q}

When describing the effect of the statement try c1 catch(C vn) c2 we have to distinguish
whether in the state after executing c1 an exception of appropriate (dynamic) type, viz. a
subclass of C, is present, as denoted by Γ,σ`catch C. Only if this is the case, the statement
c2 is considered with its exception parameter vn set (using the function new xcpt var) to the
caught exception. Otherwise, the final postcondition R has to be implied immediately. For
the try . . . catch statement the sxalloc relation has to be lifted to the assertion level, as done
by the SXAlloc transformer.

Try

Γ,A`{Normal P} .c1. {SXAlloc Γ Q}
Γ,A`{Q ∧. (λσ. Γ,σ`catch C) ;. new xcpt var vn} .c2. {R}
(Q ∧. (λσ. ¬Γ,σ`catch C)) → R

Γ,A`{Normal P} .try c1 catch(C vn) c2. {R}
where

SXAlloc :: prog → (α)assn → (α)assn
SXAlloc Γ P ≡ λY σ Z. ∀σ′. Γ`σ −sxalloc→ σ′ −→ P Y σ′ Z

74

The rule for the finally statement needs to transfer the exception status before exe-
cuting the second substatement to the postcondition where it is combined with the current
exception status, producing the final status. In earlier versions of our axiomatic seman-
tics, we employed a special result stack entry to transfer the exception status (denoted by
fst σ here), but this is not necessary: it suffices to apply the state extrusion technique, as
explained in §5.5.

Fin

Γ,A`{Normal P} .c1. {Q}
∀x. Γ,A`{Q ∧. (λσ. x=fst σ) ;. xupd (λx. None)} .c2. {xupd (xcpt if (x 6=None) x) .; R}

Γ,A`{Normal P} .c1 finally c2. {R}

5.6.4 Class Initialization

In contrast to the operational rule for class initialization (cf. §3.2.6), here it is simpler to
give two rules. If the class in question is already initialized, there is nothing to do:

Done
Γ,A`{Normal (P ∧. initd C)} .init C. {P}

Otherwise, initialization allocates a new static object, treats the superclass (if any), and
finally invokes the static initializers of the class itself, whereby the current local variables
are remembered in the bound variable l, hidden during the call to ini (using set lvars empty),
and later restored:

Init

the (class Γ C) = (sc, , , ,ini) sup = if C = Object then Skip else init sc

Γ,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init class obj Γ C))} .sup. {Q}
∀l. Γ,A`{Q ∧. (λσ. l = locals (snd σ)) ;. set lvars empty} .ini. {set lvars l .; R}

Γ,A`{Normal (P ∧. Not ◦ initd C)} .init C. {R}

Note that the values of sc, ini and sup depending on C are known statically and thus appli-
cation of this rule simplifies immediately. See §6.3.4 for an example.

5.6.5 Simple Expressions

As already motivated in §5.1.3, the rule for literal values is

Lit
Γ,A`{Normal (P←Val v)} Lit v–� {P}

It states that for a literal expression (i.e. constant) v the postcondition P can be derived if
P — with the value v inserted — holds as the precondition and the (pre-)state is normal.
An equivalent but typically less convenient alternative form would be

(Lit2)
Γ,A`{Normal P} Lit v–� {Normal (P↓=Val v)}

The rule for super is similar, except that one has to peek at the state in order to get the
value of This:

Super
Γ,A`{Normal (λs.. P←Val (val this s))} super–� {P}

Variable access is the first example where the result entry is a variable. Here we just
need its first component, which is the current value of the variable.

Acc
Γ,A`{Normal P} va=� {λVar (v,f) :. Q←Val v}

Γ,A`{Normal P} Acc va–� {Q}

75

The rule for variable assignment uses the result extrusion technique to refer to the re-
sulting of va.

Ass

Γ,A`{Normal P} va=� {Q}
∀vf. Γ,A`{Q←Var vf} e–� {λVal v :. assign (snd vf) v .; R}

Γ,A`{Normal P} va:=e–� {R}

The rule for conditional expressions parallels the one for conditional statements:

Cond
Γ,A`{Normal P} e0–� {P ′} ∀b. Γ,A`{P ′←=b} (if b then e1 else e2)–� {Q}

Γ,A`{Normal P} e0 ? e1 : e2–� {Q}

The rules for type casts and the instanceof expression do not impose new challenges:

Γ,A`{Normal P} e–� {λVal v :. λs.. xupd (raise if (¬Γ,s`v fits T) ClassCast) .; Q←Val v}
Γ,A`{Normal P} Cast T e–� {Q}

Inst
Γ,A`{Normal P} e–� {λVal v :. λs.. Q←Val (Bool (v 6=Null ∧ Γ,s`v fits RefT T))}

Γ,A`{Normal P} e instanceof T–� {Q}

5.6.6 Object Creation

Allocating an object on the heap requires lifting the halloc relation to the assertion level in
analogy to the SXAlloc transformer given above. See §6.3.4 for application examples.

NewC
Γ,A`{Normal P} .init C. {Alloc Γ (CInst C) Q}

Γ,A`{Normal P} new C–� {Q}

where

Alloc :: prog → obj tag → (α)assn → (α)assn
Alloc Γ otag P ≡ λY σ Z. ∀σ′ a. Γ,A`σ −halloc otag�a→ σ′−→ P (Val (Addr a)) σ′ Z

NewA

Γ,A`{Normal P} .init comp ty T. {Q}
Γ,A`{Q} e–� {λVal i :. xupd (check neg i) .; Alloc Γ (Arr T (the Intg i)) R}

Γ,A`{Normal P} new T[e]–� {R}

5.6.7 Variables

The rule for local variables is analogous to the rule for the super expression:

LVar
Γ,A`{Normal (λs.. P←Var (lvar vn s))} LVar vn=� {P}

The rules for field and array variables have a common pattern: calling a variable-
generating function vf on the state and applying a given assertion to the resulting variable
and state. We capture this in the predicate transformer [Factoring]

..; :: (state → vvar × state) → (α)assn → (α)assn
vf ..; P ≡ λY σ. let (v,σ′) = vf σ in P (Var v) σ′

Applying it, we obtain the two rules

FVar
Γ,A`{Normal P} .init C. {Q} Γ,A`{Q} e–� {λVal a :. fvar C stat fn a ..; R}

Γ,A`{Normal P} {C,stat}e..fn=� {R}

AVar
Γ,A`{Normal P} e1–� {Q} ∀a. Γ,A`{Q←Val a} e2–� {λVal i :. avar Γ i a ..; R}

Γ,A`{Normal P} e1[e2]=� {R}

76

5.6.8 Method Call

A rather complex issue within an axiomatic semantics in general is mutual recursion. For
an object-oriented language, dynamic binding in method calls gives a further challenge.

Dynamic Binding

Handling dynamic binding for method calls is difficult for two reasons.
First, the actual method to be called depends on the class D dynamically computed

from the receiver expression e and thus in general cannot be inferred statically. The usual
technique for dealing with term dependence, as done e.g. for the standard Hoare rule for
conditional statements, is to statically enumerate all possible values. We cannot use it for
D because the variety of possible values is large — but finite because it is bound by the
total number of methods in the given program — and not fixed locally since it depends on
the class hierarchy. We handle this problem with the state extrusion and term dependence
technique introduced in §5.5, introducing universal quantification for D and the precon-
dition (λ(x,s). D = target mode s a md ∧ . . .) binding D. An alternative solution is given in
[PHM99], where D is referred to via This and the possibly large range of values for D is
handled in a cascadic way using two special rules.

Second, one should be able to assume that for invocation mode interface or virtual
the actual value D is a subtype of rt, the (static) type of e. The intuitive — but absolutely
non-trivial — reason why the relation Class D�RefT rt holds is of course type safety. The
problem here is how to establish this relation. The rules given in [PHM99], for example,
put the burden of verifying the relation on the user, which is a legal option, but in general
not practically feasible. In contrast, our solution makes the relation available to the user
as a helpful assumption, which transfers the proof burden once and for all to the soundness
proof on the meta-level.

We write the subtype relation in the form

prog`inv mode→tname�ref ty

and give it the definition

Γ`mode→D�rt ≡ mode = IntVir −→
is class Γ D ∧ (if (∃T. rt=ArrayT T) then D=Object else Γ`Class D�RefT rt)

reflecting the knowledge on D required for program verification in case of virtual method
invocation.

A minor further complication is that we have to transfer the result a of the expression e

not to the triple directly following but to the one after it. We can cope with this by combining
the result extrusion and value passing techniques.

The remaining parts of the method call rule deals with the unproblematic issues of
argument evaluation, setting up the local variables (including parameters) of the called
method and restoring the previous local variables on return, for which we use the universally
quantified variable l. See §6.3.4 for an application example.

Call

Γ,A`{Normal P} e–� {Q} ∀a. Γ,A`{Q←Val a} args
.
=� {R a}

∀a vs D l. Γ,A`{(R a←Vals vs ∧. (λ(x,s). D = target mode s a md ∧ l = locals s) ;.

init lvars Γ D (mn,pTs) mode a vs) ∧. (λσ. normal σ −→ Γ`mode→D�rt)}
Methd D (mn,pTs)–� {set lvars l .; S}

Γ,A`{Normal P} {rt,md,mode}e..mn({pTs}args)–� {S}

Note that Γ`mode→D�rt is asserted only if the current state is normal. Otherwise, an
exception occurred evaluating e (or args) such that we cannot assume anything about D.

77

For the same reason the well-typedness judgment in the definition of type ok (cf. §5.3.1) is
guarded by normal σ since otherwise Methd D (mn,pTs) is not necessarily well-typed.

The above rule is general enough to handle all sorts of method calls, also static ones and
those relative to interfaces or super. One may derive simpler specialized versions of the Call
rule, for example for static method calls:

CallS

the (cmethd Γ C (mn,pTs)) = (md,(m,pns,rT),lvars,bdy)

Γ,A`{Normal P} e–� {Q} Γ,A`{Q↓} args
.
=� {R}

∀vs l. Γ,A`{R←Vals vs ∧. (λσ. l = locals (snd σ)) ;. init lvars Γ C (mn,pTs) Static a vs}
Methd C (mn,pTs)–� {set lvars l .; S}

Γ,A`{Normal P} {rt,ClassT C,Static}e..mn({pTs}args)–� {S}

Note that the rule can ignore (applying ↓) the value of e, and the free variable a acts as a
dummy parameter of the function init lvars.

From the methodological perspective it would be interesting to take into account seman-
tic subtyping. Doing so, one could introduce method specifications, in particular within
interfaces, that have to be fulfilled by all classes implementing them (and their subclasses).
Then a derived rule for method calls could exploit the semantic subtyping in the sense that
for verifying calls to methods bound by a specification one only has to show that the method
specification, as statically determined by the type annotation rt, fulfils the given require-
ments (rather than directly showing them for all method implementations in subclasses of
rt).

Mutual Recursion

We cope with recursive calls adopting the standard solution of introducing Hoare triples
as assumptions within the derivation judgments. Thanks to the well-known recursion rule
(see e.g. [Apt81, §3.2] and [PHM99]), within an unfolded method body one may appeal to
a suitable assumption catering for all further recursive calls.

As discussed in [Ohe99], the recursion rule is sufficient for completeness, but its nested
application required for mutual recursion in general gives rise to replication of proofs for part
of the methods involved. This nuisance can be overcome with rules that allow simultaneous
rather than nested verification. One such rule is given by Homeier and Martin in [HM96].
Since they aim at verification condition generation, they designed a rule for verifying all
procedures contained in a program simultaneously, which requires the user to identify in
advance a single specification for each method suitable to cover all invocation contexts.
Our rule can also be used to verify all methods at once, but is more flexible for interactive
verification: each time a call to a cluster of mutually recursive procedures is encountered,
it permits to verify simultaneously as many (and no more) procedures as desired and to
identify the necessary specifications locally.

The Methd rule allows verifying the specifications of a set of methods ms (or to be exact,
method implementations) by verifying their expansions, that is, the corresponding method
bodies. It is vital that when encountering recursive calls during the verification of the bodies,
one can assume that the methods implementations already fulfill their specifications. This
explains why method implementations are separated from method bodies, something that
would not be necessary for the underlying operational semantics itself.

Methd
Γ,A∪{{P} Methd–� {Q} | ms} |` {{P} body Γ–� {Q} | ms}

Γ,A|`{{P} Methd–� {Q} | ms}

where {{P} tf–� {Q} | ms} ≡ (λ(C,sig). {Normal (P C sig)} tf C sig–� {Q C sig}) “ ms

yields a family of method triples indexed by the set ms (consisting of pairs of a class and

78

signature). Both the assertions P and Q and the term function tf depend on the index
values given by ms, such that members like {Normal (P C sig)} Methd C sig–� {Q C sig} are
generated.

The structural rules for handling assumptions and sets of triples in the conclusion have
been described in §5.4.

The function body (cf. §3.2.9) and the constructor Body for intermediate body terms
have been introduced because the Methd rule above is already complex enough. After the
function body Γ has obtained a class name and a signature during applications of the Methd
rule, handling the method body is the same as in the operational semantics: the expression
body Γ C sig calculates the intermediate term Body D c e with the entries for the defining
class of the method, the actual method body, and the result expression. These are then
processed sequentially using the rule

Body
Γ,A`{Normal P} .init D. {Q} Γ,A`{Q} .c. {R} Γ,A`{R} e–� {S}

Γ,A`{Normal P} Body D c e–� {S}

5.6.9 Expression Lists

Lists of expressions are dealt with canonically:

Nil
{Normal P←Vals []} []

.
=� {P}

Cons
Γ,A`{Normal P} e–� {Q} ∀v. Γ,A`{Q←Val v} es

.
=� {λVals vs :. R←Vals (v#vs)}

Γ,A`{Normal P} e#es
.
=� {R}

5.6.10 Critical Review

The inductively defined Hoare logic rules given in this section precisely cover the axiomatic
semantics of Java`ight. Unfortunately, they are not easy to read and to apply by hand. The
reason for this is the inherent complexity of the language, requiring in particular non-trivial
transformations of the state. On the other hand, the format of our rules should facilitate
the construction of an automatic verification condition generator, and our experience with
example proofs (§6.3.4) shows that even for rather complex assertions the theorem proving
system deals with proof obligations mostly automatically.

One might also get the impression that our axiomatic semantics is rather close to the
operational semantics. We believe that this similarity is not intrinsic but due to our use
of the same state transformers as for the operational semantics. We do this for simplicity
in conjunction with our semantical notion of assertions, but it should be possible to give a
more syntactic notion of assertions and corresponding rules that do not refer to any concept
of the operational semantics. The general advantages of a Hoare logic over the operational
semantics for program verification, namely concentration on the actually relevant properties
of the state and powerful tools for dealing with loops and recursion, are fully realized by our
axiomatic semantics.

5.7 Soundness

A Hoare logic that is unsound would be useless since its very purpose is to verify correctness
of programs. Thus after giving a Hoare logic the proof of its soundness is obligatory, in
particular when — like in our case — the rules are rather involved and thus their correctness
is by far not obvious.

79

5.7.1 General Approach

The ultimate goal for proving soundness of our axiomatic semantics w.r.t. the operational
semantics is

wf prog Γ −→ Γ,∅`t −→ Γ,∅|=t

i.e. any triple t that is derivable from the empty set of assumptions is valid. The additional
premise that the program is well-formed is required to show soundness of the method call
rule requiring type safety, as explained in §5.6.8 and 5.7.3.

The soundness goal is a direct instance of

wf prog Γ −→ Γ,A|`ts −→ Γ,A||=ts

which can be shown as usual by rule induction on the derivation of |`.
The different cases emerging in the induction are basically straightforward, with a few

notable exceptions. Since the Loop rule involves a loop invariant rather than unfolding the
loop as done for the operational semantics, it requires an auxiliary rule induction on the
derivation of the evaluation judgment as contained in the definition of validity.

5.7.2 Method Implementation Rule

The Methd rule demands special treatment because it adds assumptions about recursive
calls, such that an (inductive) argument on the depth of these calls is needed in order to
avoid circularities. This could be achieved by syntactic manipulations that unfold procedure
calls up to a given depth n, as done e.g. in [Hof97]. Instead, we prefer a semantic approach
inspired by the proofs given in [PHM99] and [Kle98]: employing the notion of recursive
depth already introduced in §5.3.2.

Induction on the recursive depth boils down to showing in the base case

Γ|=0:{Normal P} Methd C sig–� {Q}

and in the inductive step

Γ|=n:{Normal P} body Γ C sig–�{Q} −→ Γ|=n+1:{Normal P} Methd C sig–� {Q}

5.7.3 Method Call Rule and Type safety

The Call rule is not only bulky (and thus it helps to treat this case separately from the
main rule induction) but also raises major semantical complications. Interestingly, type
safety plays a crucial role here: The important fact that for virtual method calls the relation
Γ`mode→D�rt holds, can be derived in general only if the method call is well-typed and
the state in which the class D has been dynamically looked up conforms to its environment.

In order to obtain the desired conformance property, one essentially has to keep it as an
invariant. But rather than requiring the user to prove this property over and over for each
program to be verified, we built it — together with well-typedness — into our notion of
validity (cf. §5.3.1) in the form of the judgment type ok. This also gives rise to a new rule:

hazard
Γ,A`{P ∧. Not ◦ type ok Γ t} t� {Q}

The rule, which will be required for the completeness proof, indicates that if at any time
conformance was violated, anything could happen — something that is in line with our
intuition on erroneous program execution.

80

Including conformance (and well-typedness) into validity complicates the proof of sound-
ness, because now we have to show that it is an invariant property of any valid triple, affecting
each case of the main rule induction, not only the one for method calls. Fortunately, we
have already proved type soundness for the operational semantics, as given in §4. Making
use of this theorem can be simplified — yet not hidden completely — by using for the main
induction actually a variant of our validity notion, namely

Γ|=n:{P} t� {Q} ≡ ∀Y σ Z. P Y σ Z −→ ∀Λ T. σ::�(Γ,Λ) −→ (normal σ −→ (Γ,Λ)`t ::T)
−→ ∀Y ′ σ′. Γ`σ −t�−n→ (Y ′,σ′) −→ Q Y ′ σ′ Z ∧ σ′::�(Γ,Λ)

One can show easily, exploiting type soundness, that for well-formed programs this variant
is equivalent to the original one. Even with this variant, parts of the type soundness proof
have to be repeated, e.g. to derive well-typedness of the static initializer invoked for class
initialization.

5.7.4 Summary

We have proven

Theorem 2 For well-formed programs our axiomatic semantics is sound w.r.t. its opera-
tional counterpart.

As we can conclude from this section, one interesting aspect of the proof of soundness
is to find a suitable notion of validity capable of capturing an inductive argument on the
recursive depth of procedure calls. The other noticeable thing is the insight that type safety
is required to prove correct the rule for handling dynamic binding.

5.8 Completeness

The proof of completeness, stating that the given Hoare logic is useful (at least from the
theoretical perspective), is much more challenging than the proof of soundness. We give the
outline of the proof in a bit more detail since it is the first such proof for an object-oriented
language.

We benefit heavily from the MGF approach which is described below. We extend this ap-
proach, which was given for only a single recursive procedure, to mutually recursive methods
and static initialization using auxiliary inductions. As discussed in [Ohe99], when dealing
with mutual recursion some complications arise, which could be overcome in three different
ways, each with specific advantages and drawbacks. Here we implement the first two vari-
ants involving structural induction that either is nested as deep as the number of methods
involved or handles all these methods simultaneously. The third variant, not used here, em-
ploys rule induction on the operational semantics, which is more powerful and would save a
lot of effort avoiding the auxiliary inductions. On the other hand, it requires an unpleasant
unfolding variant of the Loop rule and an additional divergence rule. Thus it is probably
too tightly connected to the operational semantics, and the employment of rule inductions
makes its usability at least doubtful in the light of the proof-theoretical remarks given in
§5.8.5.

Our ultimate goal for proving (relative) completeness is to show that for a well-structured
program, any valid triple is derivable from the empty set of assumptions:

ws prog Γ −→ Γ,∅|=t −→ Γ,∅`t

The well-known approach involving weakest preconditions wp t Q for a given term t and
postcondition Q cannot be pursued here, because when verifying recursive method calls the
postcondition changes such that structural induction on t does not go through.

81

5.8.1 MGF Approach

The Most General Formula (MGF) approach was introduced by Gorelick [Gor75] and pro-
moted by Apt [Apt81], Kleymann [Kle98] and others.

For partial correctness, the MGF of a term t gives for the most general precondition
(which just remembers the initial state) the strongest postcondition, which is the operational
semantics of t. More precisely, the MGF of t in the context of a program Γ is defined as

{ .=} t� {Γ→}
where
{P} t� {Γ→} ≡ {P} t� {λY σ′ σ. Γ`σ −t�→ (Y,σ′)}
.
= ≡ λY σ Z. σ = Z

Note that here the auxiliary variables have the type state since they refer to the initial
program state. In the precondition the state is stored in Z and retrieved in the postcondition
in the form of the bound variable σ. Using it, the postcondition asserts that the result Y

and state σ′ are exactly those obtained from the initial state by evaluating t. Thus the MGF
is trivially valid, and the main task is to show that it is also derivable.

A property of the MGF used often is that Γ,A`{Normal
.
=} t� {Γ→} can be interchanged

freely with Γ,A`{ .=} t� {Γ→}, i.e. restricting the precondition to normal states is sufficient,
because the case of an exceptional state can be always dealt with the Xcpt rule.

The main lemma of the MGF approach is

MGF deriv ws prog Γ −→ Γ,∅`{ .=} t� {Γ→}

Once the derivability of the MGF has been proved, completeness is a rather simple conse-
quence, as follows. We show

Γ,∅|={P} t� {Q} −→ Γ,∅`{ .=} t� {Γ→} −→ Γ,∅`{P} t� {Q}

First, we apply the rule

(no hazard)
Γ,A`{P ∧. type ok Γ t} t� {Q}

Γ,A`{P} t� {Q}

derived from hazard (cf. §5.7.3), in order to obtain the extra precondition type ok Γ t which is
needed because this judgment is part of our notion of validity. Next, we apply the conseq12
rule, and after unfolding the definitions of validity we are left with the proof obligation

(∀n Y σ Z. (∀t∈∅. Γ|=n:t) −→ P Y σ Z −→ type ok Γ t σ −→
(∀Y ′ σ′. Γ`σ −t�−n→ (Y ′, σ′) −→ Q Y ′ σ′ Z)) −→

∀Y σ Z. P Y σ Z ∧ type ok Γ t σ −→ (∀Y ′ σ′. Γ`σ −t�→ (Y ′, σ′) −→ Q Y ′ σ′ Z)

which is a rather trivial predicate-logical theorem, exploiting the fact

Γ`σ −t�→ (w,σ′) −→ ∃n. Γ`σ −t�−n→ (w,σ′)

The main lemma is proved basically by structural induction. Complications arise because
for method calls as well as class initialization the terms involved do not become structurally
smaller. To solve the problem we employ auxiliary inductions on the number of methods
not yet verified and on the number of classes not yet initialized, as explained in the two
subsequent sections.

82

5.8.2 Mutual Recursion

The idea for handling mutual recursion is as follows. First prove derivability of the MGF
under the assumption that it has already been proved for all methods:

MGF asm
(∀C sig. is methd Γ C sig −→ Γ,A`{ .=} In1l (Methd C sig)� {Γ→}) −→
Γ,A`{ .=} t� {Γ→}

Then prove MGF deriv applying the lemma, the Methd rule, which supplies the required as-
sumptions for the methods, and the asm rule for exploiting them. There are two alternatives
for collecting the assumptions. Both alternatives rely on the fact that for a well-structured
program the number of methods to consider is finite:

finite is methd ws prog Γ −→ finite {(C,sig). is methd Γ C sig}

It is interesting to note that for the whole proof of completeness — in contrast to sound-
ness — well-formedness is not required at all, and the only occasion where we need well-
structuredness is to ensure finiteness.

Nested Version

One alternative is to use the classical recursion rule that adds just one assumption per
application:

(MethdN)
Γ,A ∪ {{Normal P} Methd C sig–� {Q}}` {Normal P} body Γ C sig–� {Q}

Γ,A`{Normal P} Methd C sig–� {Q}

A minor advantage of this version is that it does not require the rules empty and insert
for handling sets of conclusions. The main disadvantage is that it requires a complicated
scheme for induction on the number of methods not yet considered:

finite U uA = (λ(C, sig). { .=} In1l (Methd C sig)� {Γ→}) “ U

∀A. A ⊆ uA −→ n ≤ |uA| −→ |A| = |uA| – n −→ ∀t. Γ,A`{ .=} t� {Γ→}

which is proved by induction on n. Is is applied instantiating U to {(C,sig). is methd Γ C sig},
n to |U|, and consequently A to ∅, yielding the desired result. Note that without finiteness,
calculations on cardinality like |A| = |uA| – n would be meaningless.

The induction scheme has been inspired by Hofmann [HO99]. His lecture notes [Hof97]
further contain a proof of completeness using the MGF approach for the language IMP
augmented by a single procedure, which we have simplified and extended for our purposes.

Simultaneous Version

We invented the Methd rule that allows handling procedures simultaneously not only in
order to simplify applications, but also to make the complicated nesting scheme of the first
version dispensable for the meta-theoretic completeness proof. Using its power, the second
version becomes rather straightforward. In this case, the cut rule would be convenient, but
it can be circumvented by employing the derived rule

F ⊆ U finite U ((∀(C,sig)∈F. Γ,A`f C sig) −→ (∀(C,sig)∈U. Γ,A`g C sig))

Γ,A|`(λ(C,sig). f C sig) “ F −→ Γ,A|`(λ(C,sig). g C sig) “ F

which is proved by induction on the size of U. On application, both F and U get instantiated
to {(C,sig). is methd Γ C sig}, so finiteness of the number of methods is vital also here.

83

5.8.3 Static Initialization

Now it remains to show Γ,A`{ .=} t� {Γ→} under the assumption that the MGFs for all
proper methods are derivable:

∀C sig. is methd Γ C sig −→ Γ,A`{ .=} In1l (Methd C sig)� {Γ→}

The precondition of the assumption can be discharged because due to the relation type ok in
our notion of validity, we get the fact that Methd C sig is well-typed for free. Furthermore,
all well-typed methods are proper, as follows easily from the corresponding definitions:

wt Methd is methd (Γ,Λ)` In1l (Methd C sig)::T −→ is methd Γ C sig

Static initialization requires an induction on the number of classes not yet initialized. To
this end we define the auxiliary concepts

nyinitcls :: prog → state → (tname)set
nyinitcls Γ σ ≡ {C. is class Γ C ∧ ¬ initd C σ}

` init≤ :: prog → nat → state → bool
Γ` init≤n ≡ λσ. |nyinitcls Γ σ| ≤1 n

{=: } � { →} :: nat → term → prog → (state)triple
{=:n} t� {Γ→} ≡ { .= ∧. Γ` init≤n} t� {Γ→}

such that nyinitcls Γ σ is the set of classes not yet initialized, or to be more precise, whose
initialization has not yet begun, in state σ. The triple {=:n} t� {Γ→} is a variant of the
MGF with the extra precondition that the number of classes not yet initialized is not greater
than n.

nyinitcls Γ σ is finite because it is a subset of the finite set of proper classes. It cannot
grow (and thus increase its cardinality) during program execution, as captured by the lemma

nyinitcls gext snd σ� snd σ′ −→ nyinitcls Γ σ′ ⊆ nyinitcls Γ σ

and it actually shrinks by one when a class is newly initialized.
Since Γ,A`{ .=} t� {Γ→} is equivalent to ∀n. Γ,A`{=:n} t� {Γ→}, it remains to show

∀n C sig. Γ,A`{=:n} In1l(Methd C sig)� {Γ→} −→ ∀t. Γ,A`{=:n}t�{Γ→}

We can do this by full induction on n, i.e. we may assume that ∀t. Γ,A`{=:m} t� {Γ→}
already holds for all smaller m.

5.8.4 Main Induction

Finally, we have collected enough assumptions such that the main induction will go through.
We show

(∀n C sig. Γ,A`{=:n} In1l (Methd C sig)� {Γ→}) −→
(∀m. m<n −→ (∀t. Γ,A`{=:m} t� {Γ→})) −→

Γ,A`{=:n} t� {Γ→}

by structural induction on t. We comment on the most interesting cases.
The first premise is exploited for handling the Methd expression itself and its application

in the Call case simply by assumption.

84

We prove the case of the initialization statement as the separate lemma

MGFn init (∀m. m<n −→ ∀t. Γ,A`{=:m} t� {Γ→}) −→ Γ,A`{=:n} In1r (init C)� {Γ→}

because it is needed several times, namely for all terms that involve potential class initializa-
tion. When applying the lemma, we can of course make use of the second premise. The only
other use of the premise is in the proof of MGFn init itself: for handling the initialization of
the superclass and the static initializer of the current class where we know that the current
class is actually being initialized and thus the number of classes not yet initialized decreases.
This proof is one of the rare cases where we take advantage of the implicit precondition that
the current term (init C here) is well-typed and thus C is a proper class.

For the Loop case, we employ an alternative formulation of the MGF augmented by a
predicate in the precondition:

Γ,A`{Normal (
.
= ∧. p)} t� {Γ→} =

Γ,A`{Normal ((λY σ Z. ∀wσ′. Γ`σ −t�→ wσ′ −→ wσ′ = Z) ∧. p)} t� {λY σ Z. (Y,σ) = Z}

In the second line the auxiliary variable Z stores the result and final — rather than initial
— state, which allows formulating a suitable loop invariant. We make use only of the “if”
direction of the above equivalence, which is also the more interesting one: its proof relies on
the facts that evaluation is deterministic and that there are at least two different program
states.

Note that the alternative version of the MGF has a different type of auxiliary variable,
namely res × state. Therefore, we have to apply the conseq and Loop rules with rather
general types. Yet due to the type restrictions of HOL mentioned in §5.2, the original rules
from the inductive definition are not general enough, and thus we have to state variants of
them with identical propositions but generalized types as axioms.

5.8.5 Proof-theoretical Remarks

One might wonder if the implication proved,

ws prog Γ −→ Γ,∅|=t −→ Γ,∅`t

really means relative completeness, in the sense that for any given concrete program Γ and
valid triple t there is a derivation for t, requiring only finitely many applications of the Hoare
logic rules plus a complete predicate logic for dealing with side conditions like in the rule of
consequence.

One potential problem is the fact that the rules Methd and Init yield structural expansion
of terms rather than reduction of subterms, as already noted and dealt with in the previous
subsections.

Furthermore, it is a general property of inductively defined sets S that any proof tree for
a theorem x ∈ S has a finite height but possibly infinite width, for example if the definition
of S contains a rule

∀y. f y∈S

z∈S

where y is of an infinite type. Since in particular for our inductively defined relation , |`
there are rules involving universal quantifications on possibly infinite domains, for example
parts of the program state, we cannot be sure a priori that any proof of Γ,A|`ts is finitary.

Thus we have to ensure ourselves of finiteness by other, more specific means, which we
do in two different ways.

85

• The formalistic answer is that in our proof of completeness we only use the Hoare rules
mentioned in §5.4 and 5.6, structural induction on terms, and induction on the number
of methods and the number of uninitialized classes (both of which are finite). All
remaining steps are term rewriting and finitary predicate-logical derivations (involving
e.g. the rules of the operational semantics in order to derive the postcondition of the
MGF), and in particular we do not employ rule induction.

• We additionally give a more constructive answer: a recursive procedure, inspired by our
proof of completeness. It generates a proof outline for any (valid) goal Γ,∅`t, assuming
that Γ is well-structured. We sketch the procedure (glossing over applications of the
rules conseq and Xcpt) and argue informally that this procedure terminates and thus
one can conclude that the proof is finitary.

Assume that M = {(C,sig). is methd Γ C sig} is the set of methods in Γ, the function
spec = λtf (C,sig). {(Pre C sig)} tf C sig–� {Post C sig} forms a triple with the (most gen-
eral) method specification, MSpecs = spec Methd “ M abbreviates the set of all method
specifications, and specb = spec (body Γ) gives the body of a method with its specifica-
tion. Note that M and thus also MSpecs and specb “ M are finite.

For showing Γ,∅`t we use the following initial proof tree.

Γ,MSpecs|`MSpecs
asm

Γ,MSpecs`specb m1
Methd asm(MSpecs, specb mi)

. . .

Γ,MSpecs|`MSpecs
asm

Γ,MSpecs`specb m|M|

Γ,MSpecs`specb “ M
|M|∗insert +empty

Γ,∅|`MSpecs
Methd

Γ,∅`t
Methd asm(∅, t)

Methd asm(A, t) is a proof procedure used for showing Γ,A|`MSpecs −→ Γ,A`t. The
procedure assumes Γ,A|`MSpecs and calls the recursive procedure prove triple(t). (One
could alternatively use the rule cut and a proof procedure Methd asm′(A, t) proving
Γ,A∪MSpecs`t.) We define prove triple({P} t� {Q}) by case distinction on t.

case Methd C sig: use weaken and the assumption.

case init C: prove Γ,A`{P ∧. initd C} t� {Q} using contradiction or Done;
prove Γ,A`{P ∧. Not ◦ initd C} t� {Q} trying contradiction first and resort to Init
plus recursion only if unsuccessful.

case ∀b. Γ,A`{P ′←=b} tf (if b then c1 else c2)� {Q ′}: expand to both cases True and
False and proceed recursively.

case ∀D l. Γ,A`{R′ D l} Methd D sig–� {S′ l}: take a fixed but arbitrary D, exploit the
precondition R′ D l in order to restrict the variety of D, and use weaken and the
assumption.

all other universal quantifications: proceed recursively for any fixed but arbitrary
value since the proof is uniform.

otherwise: use the canonical rule plus recursion.

The procedure prove triple(t) terminates (assuming that the proofs of the emerging
side conditions terminate) because for all recursive calls the number of quantifiers is
reduced or the Java`ight terms involved become structurally smaller, except for init C

where the number of uninitialized classes is reduced.

86

5.8.6 Summary

We have proven

Theorem 3 For well-structured programs our axiomatic semantics is relatively complete.

The proof is non-trivial because next to structural induction it requires nested auxiliary
inductions for handling mutual recursion and class initialization. The MGF approach has
been successfully refined and applied. Here well-formedness and well-typedness only play a
minor role.

87

88

Chapter 6

Example

In the previous chapters we have introduced both our model of the Java language and proofs
on the language in general. Although our focus is clearly on meta-theory, in this chapter we
give a small application example. It should

• give an impression of the features covered by the model

• illustrate our approach and the interplay of the concepts introduced

• provide a rudimentary way of validating the model

• demonstrate the suitability for actual program verification

This list of goals also guides the structure of the present chapter.

6.1 Program

Subsequently we handle the following example program fragment.

interface HasFoo {
public Base foo(Base z);

}

class Base implements HasFoo {
static boolean arr[] = new boolean[2];
HasFoo vee;
public Base foo(Base z) {

return z;
}

}

class Ext extends Base {
int vee;
public Ext foo(Base z) {

((Ext) z).vee = 1;
return null;

}
}

89

Base e = new Ext();
try {
e.foo(null);

}
catch(NullPointerException z) {
while(Ext.arr[2]) ;

}

The program fragment consists of three simple but complete type declarations and a block
of statements that might occur in any method body that has access to these declarations,
for instance in the main method of a test class:

class Example {
public static void main(String args[]) throws Throwable {

}
}

Note that the result type of method foo within class Ext is more specific than for the over-
ridden method in Base. We use this to demonstrate that useful generalizations (cf. §1.5.3)
are actually possible even if current Java does not allow them. In order to compile this
example program with any current Java implementation, one has to replace the result type
Ext by Base.

The program does not intend to give an example of good programming style or com-
mon patterns in software development, but should give a condensed illustration of as many
features of Java`ight as possible. It includes:

• class, array and interface declarations with inheritance, hiding of fields, and overriding
of methods (with refined result type),

• primitive types, reference types and their relations,

• method calls with dynamic binding, parameter and return value passing and access,

• local variable declarations, assignment, and access,

• expression statements, sequential composition, loops, literal values, field assignment
and type casts,

• exception generation and propagation, try catch and throw statements.

• static initialization and dynamic instance creation

6.2 Model

We translate the program fragment — currently without tool support — to an Isabelle
theory built on top of our formalization of Java`ight. See the appendix for the actual code.
In this chapter we adopt the special typographic convention that logical entities declared
only for the sake of the example are printed in typewriter font and are not listed in the
index.

90

6.2.1 Names

We have to represent the Java type names HasFoo, Base, and Ext as members of the TName

alternative of the HOL type tname and state that they are pairwise different. In order to
avoid the clutter when explicitly using the injection TName, we employ syntax translations
mapping the names to corresponding internal names prepended by TName. Introducing
the internal names as members of the type tnam, we encounter a minor technical problem:
Due to limitations of Isabelle/HOL, the unspecified type tnam (which actually should be a
parameter of the theory Name) cannot simply be instantiated as required. Our workaround
is to define an extra free datatype tnam containing the internal names as its constructors
and asserting tnam to be isomorphic to tnam.

The field and variable names arr, vee, z, and e that should be of type ename are dealt
with analogously.

6.2.2 Method Declarations

We first model the three different declarations of method foo.

• Within interface HasFoo, the declaration consists of the signature and the method
head. The former contains the name foo of type mname and the single parameter
type Class Base, and the latter contains the flag indicating a non-static method, the
parameter name z, and the result type Class Base.

• Within class Base, the declaration consists of the information just given plus a method
body, which here is just the empty list of local variables, the empty body Skip, and the
return expression !!z accessing the parameter z.

• Within class Ext, the signature and the method head is the same except that the result
type is Class Ext. Here the list of local variables is empty again, the body consists of a
single expression statement, and the result expression is the Null literal. The expression
statement is an assignment of the integer literal 1 to the vee field variable of the object
referenced by the parameter z which is cast to type Class Ext. Due to this type cast,
the field name vee refers to the field (of type PrimT int) defined in class Ext, such
that the field variable is annotated with Ext as the defining class and False indicating a
non-static field.

HasFoo foo ≡ ((foo,[Class Base]), (False,[z],Class Base))
Base foo ≡ ((foo,[Class Base]), ((False,[z],Class Base),([],Skip,!!z)))
Ext foo ≡ ((foo,[Class Base]), ((False,[z],Class Ext),

([],Expr({Ext,False}Cast (Class Ext) !!z..vee := Lit (Intg 1)),Lit Null)))

6.2.3 Class and Interface Declarations

Using the above definitions, we can model the declarations of the three reference types in
the program.

• The model of interface HasFoo has an empty list of superinterfaces and a singleton list of
method declarations containing the entry for the first declaration of method foo given
above.

• Our model of class Base explicitly gives Object as the superclass and HasFoo as the
only implemented interface. The list of fields contains two entries, one for arr, where
the inner pair of values means that it is a static array of Boolean values, and one for
vee which is a non-static field of interface type HasFoo. There is one method, viz. the

91

second variant of method foo. The static initializer is an assignment (as an expression
statement) of an array creation expression to the field variable arr viewed from Base.
The annotations of this field variable indicate that it is static and has been declared
in class Base, and the reference expression of the field is the static class name Base,
or to be exact, its emulation using StatRef as defined in §2.4.2. In the array creation
expression the element type is boolean, and the size is given by the literal integer 2.

• The model of class Ext mentions Base as the superclass, the empty list of implemented
interfaces, a new entry for field vee, this time of type PrimT int, the third version of
method foo (overriding the one of the superclass) and the default static initializer Skip.

arr viewed from C ≡ {Base,True}StatRef (ClassT C)..arr
HasFooInt ≡ ([],[HasFoo foo])
BaseCl ≡ (Object, [HasFoo],

[(arr, (True, PrimT boolean[])),
(vee, (False,Iface HasFoo))],

[Base foo],
Expr(arr viewed from Base := new (PrimT boolean)[Lit (Intg 2)]))

ExtCl ≡ (Base , [],
[(vee, (False,PrimT int))],
[Ext foo],
Skip)

6.2.4 Test Program

• Our test program tprg consists of the list with the single interface (HasFoo,HasFooInt)

and the list of the two user-defined classes (Base,BaseCl) and (Ext,ExtCl) together with
the language-defined standard classes.

• The code fragment test with parameter pTs is the sequential composition of the (initial-
izing) assignment of a new instance of class Ext to the local variablee and a try catch

statement. The try clause is a method call (as an expression statement) relative to e of
the method foo with the singleton parameter list consisting of the Null literal. The call
is annotated with the indicator IntVir for dynamic method lookup and two times with
class Base, namely as the static type of the reference expression !!e and as the defining
class of the method foo. We have abstracted from the remaining type annotation for
the parameter type list of foo, which will turn out to be the singleton list consisting of
class Base. The catch clause has the exception parameter z of type NullPointer, and
its body is a while loop with the empty body Skip. The loop condition is the access
to an element of the array referred to by the field variable arr viewed from Ext at the
index given by the integer literal 2.

ifaces ≡ [(HasFoo,HasFooInt)]
classes ≡ [(Base,BaseCl),(Ext,ExtCl)] @ standard classes
tprg ≡ (ifaces,classes)
CTBase ≡ ClassT Base

test pTs ≡ e :== new Ext;

try Expr({CTBase,CTBase,IntVir}!!e..foo({pTs}[Lit Null]))
catch((SXcpt NullPointer) z)

(while(Acc (Acc (arr viewed from Ext)[Lit (Intg 2)])) Skip)

The sequence of statements test could have been embedded in tprg, which we have left out
for simplicity.

92

6.3 Properties

We now aim to prove the characteristic properties of our example program expected also
by manual code inspection, by the compiler and by a test run of the program. The ability
of deriving those properties gives confidence that our model of the Java language in general
and the test program in particular is adequate.

6.3.1 Well-formedness

We begin the analysis by showing that tprg is well-formed, a static property checked by the
compiler as well.

First we have to show that tprg is well-structured since this property is required for
performing method and field lookup. We show that the declarations of class Object, class
Throwable, the remaining standard exception classes, class Base, class Ext, and interface
HasFoo are all well-structured, where the main effort is to show that various subclass and
subinterface relations do not hold. Now it is easy to conclude that ws prog tprg holds.

Exploiting well-structuredness we can derive the equations

fields tprg Base = [((arr, Base), (True, PrimT boolean[])),
((vee, Base), (False, Iface HasFoo))]

fields tprg Ext = [((vee, Ext), (False, PrimT int))] @ fields tprg Base

cmethd tprg Object = empty
cmethd tprg Base = empty((foo,[Class Base])7→(Base, (False,[z],Class Base), [], Skip, !!z))
cmethd tprg Ext = cmethd tprg Base ++

empty((foo,[Class Base])7→(Ext , (False,[z],Class Ext), [],
Expr ({Ext,False}Cast (Class Ext) !!z..vee:=Lit (Intg 1)),
Lit Null))

where we assume that class Object does not have methods:

Object mdecls ≡ []

Independently of well-structuredness we can derive that the set of classes and interfaces
is unique, that the subinterface relation is empty, and that the following subclass relations
hold:

tprg`SXcpt xn�c SXcpt Throwable

tprg`Ext�c Base

Finally, by unfolding the respective definitions, exploiting well-structuredness and ap-
plying the rules for well-typedness to the terms in the method bodies, we can show well-
formedness of all declared elements, in particular

wf mdecl tprg Base Base foo

wf mdecl tprg Ext Ext foo

wf cdecl tprg (Base,BaseCl)
wf cdecl tprg (Ext ,ExtCl)

wf prog tprg

where we further assume that the standard exceptions do not have methods:

SXcpt mdecls ≡ []

93

6.3.2 Well-typedness

In order to demonstrate the effect of the typing rules we show that test ?pTs is well-typed.
The argument ?pTs is a schematic variable (standing for the type annotation of the method
call that we left open) which we expect to get suitably instantiated during the proof.

Our proof obligation is
(tprg, empty(EName e7→Class Base))`test ?pTs::

√

where the local type environment consists of one entry for the local variable e of class Base.
The proof proceeds by applying about 20 instances of the typing rules (in backward-

chaining manner) and about 15 applications of term rewriting for expansion of definitions
and simplification.

Local Variables

After a few steps, we have to prove the subgoal
(tprg, empty(EName e7→Class Base))`LVar (EName e)::=?T4

and after applying the rule for local variables (cf. §2.8.6) we have to show
snd (tprg, empty(EName e7→Class Base)) (EName e) = Some ?T4

which holds (instantiating ?T4 to Class Base) because of the entry for e in the type environ-
ment.

Method Call

A few steps later we arrive at
(tprg, empty(EName e7→Class Base))`{CTBase,CTBase,IntVir}!!e..foo({?pTs}[Lit Null])::–?T8

and after applying the rule for method calls (cf. §2.8.5) we have to show
max spec tprg (CTBase) (foo, [NT]) = {((CTBase, ?m8, ?pns8, ?T8), ?pTs)}

From the lemma
appl methds tprg (CTBase) (foo, [NT]) = {((CTBase, (False,[z],Class Base)), [Class Base])}

we obtain the following subgoal, which we solve by reflexivity:
?m8 = False ∧ ?pns8 = [z] ∧ ?T8 = Class Base ∧ ?pTs = [Class Base]

Note that at this point the schematic variable ?pTs is instantiated and thus the missing type
annotation has been computed, as done also by the compiler.

Field Variables

Again a few steps later we arrive at
(tprg, empty(EName e7→Class Base)(EName z 7→Class (SXcpt NullPointer)))`
arr viewed from Ext::=PrimT boolean[]

where due to the rule for the try catch statement (cf. §2.8.3) the local type environment
has been augmented by an entry for the exception parameter z of class NullPointer. After
applying the rule for field variables (cf. §2.8.6) we have to show

cfield tprg Ext arr = Some (Base, True, PrimT boolean[])

which we do by rewriting with the definition of cfield and exploiting the above equations for
fields tprg Ext and fields tprg Base. Note that even if arr is referred to via class Ext, we get
(through inheritance) the static field declared in class Base.

The remainder of the proof is straightforward.

94

6.3.3 Symbolic Execution

A good validation test for our formalization and final demonstration of its use is symbolically
executing the test program using the operational semantics. Doing so we noticed a slip in
an earlier version of our model of class objects: their representations, as governed by the
function var tys introduced in §3.1.1, contained superfluous entries for inherited static fields
even though such fields are shared among all subclasses of the defining class.

We execute the program fragment test [Class Base] within program tprg from the start
state Norm s0 where s0 = st empty empty under the assumption that there are at least four free
locations on the heap of s0. To capture the not yet known final state we use the schematic
variable ?σ9. Thus our goal reads as

atleast free (heap s0) 4 −→ tprg`Norm s0 −test [Class Base]→ ?σ9

In other words, we simulate program execution by a proof of the above formula within
Isabelle/HOL, leaving the final state initially undetermined. Henceforth we mention as-
sumptions only where necessary for understanding.

The proof of this goal involves about 45 applications of rules of the operational seman-
tics, 35 applications of the simplifier rewriting with numerous equations (typically on state
transformers), and a few applications of predicate-logical reasoning to deal with side condi-
tions of the rules. The proof is rather syntax-directed and straightforward. On the other
hand, it is quite detailed — just note the number of on-the-fly abbreviations we introduce
below — and requires non-trivial properties of the heap, used as assumptions and derived
facts.

Class Initialization and Instance Creation

After a few steps we get to the subgoal

tprg`Norm s0 −new Ext–�?v9→ ?σ23

which, applying the rule for class instance creation (cf. §17), leads us further to

tprg`Norm s0 −init Ext→ ?σ2

Since in the current state Norm s0 there is no entry for the class object of class Ext, it
has to be initialized. This in turn triggers initialization of class Base, which in turn triggers
initialization of class Object, which is trivial. The static initializer of class Base is non-trivial,
and thus we have to execute

tprg`Norm s1 −Expr (arr viewed from Base := new PrimT boolean[Lit (Intg 2)])→ ?σ′2
where

globs1 = empty(Stat Object 7→(arbitrary, empty))
(Stat Base 7→(arbitrary, empty(Inl (arr, Base)7→Null)))
(Stat Ext 7→(arbitrary, empty))

s1 = globs1 empty

globs1 contains the class objects of the classes Object, Base and Ext whose fields have been
initialized to their default values. The static field variable arr of class Base, which has been
initialized to the Null reference, is now updated with an array object that has to be allocated
on the heap. Consequently, after a few further steps applying the rule for array creation
(cf. §17) we arrive at

tprg`Norm s1 −halloc Arr (PrimT boolean) 2�?a′→ ?σ12

95

The halloc relation can be successfully fulfilled only if

∃a. new Addr (heap s1) = Some a ∧ atleast free (heap s1) 2

holds. This can indeed be derived from our assumption atleast free (heap s0) 4. Assuming
that new Addr (heap s1) yields location a we obtain

?σ12
′ = Norm (st globs12 empty)

?σ′2 = Norm (st globs2 empty)
?σ2 = ?σ′2

where
globs12 = globs1 (Heap a 7→obj a)
globs2 = globs12(Stat Base 7→(arbitrary, empty(Inl (arr, Base)7→Addr a)))
obj a = (Arr (PrimT boolean) 2, empty(Inr 07→Bool False)(Inr 17→Bool False))

This finishes the initialization of class Ext. Assuming that the new instance of class Ext is
allocated at location b, the intermediate state after assigning the object reference to e and
before executing the try catch statement is

σ3 = Norm s3

where
s3 = st globs3 locs3
locs3 = empty(EName e7→Addr b)
globs3 = globs2(Heap b 7→obj b)
obj b = (CInst Ext,(empty(Inl (vee, Base)7→Null)

(Inl (vee, Ext)7→Intg 0)))

Note that within obj b there are the two different versions of field vee as declared in the
classes Base and Ext, initialized to their respective default values.

At this stage we can derive from our assumptions that

atleast free (heap s0(a 7→obj a)(b 7→obj b)) 2 ∧ a 6= b

holds, which we will need later. Note that even if we reason in an operational style here,
we have to collect propositions, as typically done for program verification using Hoare logic.
Moreover, the rather low-level reasoning forces us to deal with uninteresting details such as
distinctness of certain memory locations.

Method Call

The next important step is to evaluate the method call

tprg`σ3 −{CTBase,CTBase,IntVir}!!e..foo({[Class Base]}[Lit Null])–�?v7→ ?σ7

After evaluating the target reference to Addr b and the argument list to [Null], the dynamic
type of the reference target IntVir s3 (Addr b) (CTBase) evaluates to the tag of obj b, which is
Ext. Thus method foo of class Ext is invoked

tprg`σ4 −Methd Ext (foo, [Class Base])–�?v8→ ?σ6
′

from state

σ4 = Norm s4

where
s4 = st globs3 locs8
locs8 = empty(EName z 7→Null)(This 7→Addr b)

Here the local variables consist of the parameter z bound to Null and This bound to the
calling reference.

96

Field Variables

After unfolding the method body and a few further steps (including two calls to init Ext that
in the current state σ4 are equivalent to Skip) we get to

tprg`σ4 −{Ext,False}Cast (Class Ext) !!z..vee=�(?w6, ?f6)→ ?σ6

Evaluating fvar Ext False vee (the (locals s4 (EName z))) s4′ (due to the rule for field variables,
cf. §3.2.10), we obtain the exceptional state ?σ6 = (Some (StdXcpt NullPointer), s4) because
z contains the Null reference. Thus the state update function ?f6 and the value ?v8 (as
well as the field value ?v6, which is used for reading access only anyway) turn out to be
irrelevant. Due to the exception the evaluation of the right-hand side Lit (Intg 1) of the
assignment and the result expression Lit Null is short-circuited, and the method call returns
with the NullPointer exception thrown (and of course the former local variables of the callee
restored): ?σ7 =(Some (StdXcpt NullPointer), s3).

Try & Catch Statement

Now the catch clause is going to be executed. Before we can do this a proper exception
object of class NullPointer has to be allocated, as done by the relation sxalloc (cf. §16):

tprg`?σ7 −sxalloc→ ?σ78

We make use of the derived fact atleast free (heap s0(a 7→obj a)(b 7→obj b)) 2, and assuming
that the next fresh location returned by new Addr is c we obtain

?σ78 = (Some (XcptLoc c), st globs8 locs3)
where

globs8 = globs3(Heap c 7→obj c)
obj c = (CInst (SXcpt NullPointer),empty)

and can further derive a 6= c. The body of the catch clause is now executed from the state

σ8 = Norm s8

where
s8 = st globs8 locs8
locs8 = locs3(EName z7→Addr c)

that is, the exception parameter is bound to the location of obj c.

Loop Statement

Finally, after a few steps of evaluating the while loop and the array access contained in it,
evaluating var tprg (Intg 2) (Addr a) σ8 — exploiting the facts a 6= b and a 6= c — yields the
state (Some (StdXcpt IndOutBound), s8) because the maximal index of the array obj a is less
than 2. Thus further execution of the loop is short-circuited and the final state is

?σ9 = (Some (StdXcpt IndOutBound),
st (empty(Stat Object 7→(arbitrary, empty))

(Stat Base 7→(arbitrary, empty(Inl (arr, Base)7→Addr a)))
(Stat Ext 7→(arbitrary, empty))
(Heap a 7→obj a)(Heap b 7→obj b)(Heap c 7→obj c))

(empty(EName e7→Addr b)(EName z7→Addr c)))

Note that in this state the exception parameter z of the try catch statement is still
present (but has become inaccessible).

97

6.3.4 Proof using Hoare Logic

In this section we use the rules of the axiomatic semantics to derive a non-trivial property of
the example. We comment on the most interesting steps of the proof. This should give an
impression of how the axiomatic semantics can be used for actual program verification. For
demonstrating the power of a Hoare logic in general, other programs, namely those involving
non-trivial loops and recursive method calls, would be surely suited better. Yet the current
example has the advantage of involving almost all features of Java`ight and allowing direct
comparison with the just given symbolic program execution using the operational semantics.

We show that the test program terminates (if at all — this is partial correctness) abruptly
with an IndOutBound exception:

tprg,∅`{Pre} .test [Class Base]. {λY σ Z. fst σ = Some (StdXcpt IndOutBound)}
where

Pre ≡ Normal (λY σ Z. heap free 4 σ ∧ ¬initd Base σ ∧ ¬initd Ext σ)
heap free n ≡ λσ. atleast free (heap (snd σ)) n

That is, we aim to derive from the empty set of assumptions that if initially there are at
least four free locations on the heap and the classes Base and Ext are not initialized then
after termination of the program the exception IndOutBound has been thrown. This property
relies on a bunch of more or less implicit properties of the program control involving class
initialization, dynamic binding, and actual values of method parameters. One could of
course prove also other properties like ((Ext)e).vee = 0.

We make our way through the control flow as directed by the syntax in the usual “back-
wards” style where the current postcondition is fully known and directs the instantiations
of schematic variables typically contained in the precondition mostly automatically. That
is, we can apply the syntax-directed Hoare logic rules mostly without making use of the
rule of consequence and explicitly instantiating assertions. We have reached this desirable
convenience by designing the rules such that the postcondition of the triple in their conse-
quent consists (typically) solely of a free assertion variable that can always be instantiated
as required in the application. Yet in a few places explicit instantiations are needed, and
sometimes we deliberately use them in order to manually simplify assertions.

This example proof takes about 130 steps, 50 of which are applications of syntax-directed
Hoare logic rules. We apply the rule of consequence 13 times and do about 20 explicit
instantiations of schematic assertion variables. The simplifier or classical reasoner (or their
combination) is called about 40 times. One third of the proof deals with class initialization.

Try Rule

We first have to show that the catch clause at the end of the program is actually taken. We
instantiate the assertion Q of the Try rule (cf. §5.6.3) with

λY σ Z. arr inv (snd σ) ∧ tprg,σ`catch SXcpt NullPointer

where arr inv ≡ λs. ∃obj a T el. heap s a = Some (Arr T 2,el) ∧
globs s (Stat Base) = Some obj ∧ snd obj (Inl (arr, Base)) = Some (Addr a)

stating that immediately before the catch clause a NullPointer exception has been thrown
and the property arr inv holds. This property will be needed in the condition of the while

loop and will take part in the assertions as an invariant all the way back to the creation of
the static array arr. It states that there is a class object for class Base with a field named
arr which points to an array on the heap with no more than two components. Note that
we do not have to say anything about the type of the array components or about other
global or local entities possibly contained in the state, such abstraction being one of the
main advantages of a Hoare logic in general.

98

Loop Rule

After a few steps of preparation we are ready to apply the rule Loop (cf. §5.6.2):

tprg,∅`{Normal (λY σ Z. arr inv (snd s))}
.while (Acc (Acc (arr viewed from Ext[Lit (Intg 2)])) Skip.
{(λY σ Z. fst σ = Some (StdXcpt IndOutBound))←=False↓=•}

The loop body can be dealt with by contradiction between the normal pre-state expected for
it and the exceptional state actually present. After a few further steps we reach the reason
of the IndOutBound exception being thrown: accessing the array Ext.arr at index 2.

tprg,∅`{Normal (λY σ Z. arr inv (snd σ))} arr viewed from Ext=� {Normal (λVar (v, f) σ Z.
fst (snd (avar tprg (Intg 2) v σ)) = Some (StdXcpt IndOutBound))}

Method Call

Going further backwards, we have to show that arr inv is maintained by allocating the excep-
tion object for the NullPointer exception and then augment the invariant by the proposition
heap free 2 indicating that there has been enough memory left to do that allocation. The
current list of proof obligations meanwhile is

tprg,∅`{Normal ?P1} {CTBase,CTBase,IntVir}!!e..foo({[Class Base]}[Lit Null])–�
{((λY (x,s) Z. x = Some (StdXcpt NullPointer) ∧ arr inv s) ∧. heap free 2)←•}

tprg,∅`{Normal (λY σ Z. heap free 4 σ ∧ ¬ initd Base σ ∧ ¬ initd Ext σ)} .e :== new Ext.
{Normal ?P1}

where the precondition {Normal ?P1} is not — and does not need to be — fully instantiated
yet. Tackling the first of these subgoals we apply a variant of the method call rule (cf. §5.6.8)
that has been slightly simplified making use of fact that we already (statically) know that
the dynamic type of the calling reference is Ext. The rule leaves us with the following four
new subgoals:

tprg` IntVir→Ext�CTBase
∀a vs l. tprg,∅`{?R16 a←In3 vs ∧. (λσ. l = locals (snd σ)) ;.

init lvars tprg Ext (foo, [Class Base]) IntVir a vs}
Methd Ext (foo, [Class Base])–� {set lvars l .;
((λY (x,s) Z. x=Some (StdXcpt NullPointer) ∧ arr inv s) ∧. heap free 2)←•}

∀a. tprg,∅`{?Q16←In1 a} [Lit Null]
.
=�{?R16 a ∧. (λσ. obj class (lookup obj (snd σ) a)=Ext)}

tprg,∅`{Normal ?P1} !!e–� {?Q16}

The first of these is immediate (unfolding its definition and exploiting the fact that within
tprg, Ext is a subclass of Base). The second one is our first application example where we
have to derive a triple that is explicitly universally quantified. We do this simply by deriving
the triple for arbitrary but fixed a, vs and l. We continue by applying the rules Methd and
then thin to throw away the assumption on Methd Ext (foo, [Class Base]) which we will not
need. Then we unfold the method body and apply Body .

We handle the result expression Lit Null using the Xcpt rule because we know that an
exception is thrown in the actual body, given next:

tprg,∅`{?Q34 a vs l} .Expr ({Ext,False}Cast (Class Ext) !!z..vee:=Lit (Intg 1)).
{(set lvars l .; (λY (x,s) Z. x = Some (StdXcpt NullPointer) ∧ arr inv s)←• ∧.

heap free 2)←In1 arbitrary}

After several canonical steps including application of the FVar rule, which is responsible for
the generation of the exception, we have to handle the initialization statement init Ext of the
class defining the method. At this stage it is advisable to manually instantiate ?R16 for which
— after inspecting the current postcondition — we find the following value appropriate:

99

λa′. Normal ((λVals vs (x,s) Z. arr inv s ∧ inited Ext (globs s) ∧ a′ 6= Null ∧ hd vs = Null) ∧.
heap free 2)

Now since we are done with the method body, we return to the argument list of the call,

∀a. tprg,∅`{?Q16←In1 a} [Lit Null]
.
=� {R16’ a}

where the postcondition is abbreviated by R16’ a. It depends on the universally quantified
variable a, whereas ?Q16 only indirectly depends on a through the result substitution. Thus
before we can apply Cons, we have to make the dependency explicit. In such situations,
rules like

subst Val
∀v. Γ,A`{P ′ v←Val v} t� {Q v}

∀v. Γ,A`{(λw :. P ′ (the In1 w))←Val v} t� {Q v}

which partially instantiate ?Q16 are useful. After a few further steps the method call is
done.

Object Creation

Since it remains to show

tprg,∅`{Pre} .e:==new Ext. {Normal ((λY (x,s) Z. (∃a. the (locals s (EName e)) = Addr a ∧
obj class (lookup obj s a) = Ext) ∧ arr inv s) ∧. initd Ext ∧. heap free 2)}

the next important step is to handle the creation of an instance of class Ext. With the
auxiliary rule straightforwardly derived from the properties of object allocation

Alloc

Γ,A`{P} t� {Normal (λY (x,s) Z. (∀a. new Addr (heap s) = Some a −→
Q (Val (Addr a)) (Norm(init obj Γ (CInst C) (Heap a) s)) Z)) ∧. heap free 2}

Γ,A`{P} t� {Alloc Γ (CInst C) Q}

this does not cause any problems, despite the number of auxiliary functions like new Addr
involved. After a handful steps we obtain

tprg,∅`{Pre} LVar (EName e)=� {?P}
tprg,∅`{Normal ?P} .init Ext. {Normal ((λY σ Z. arr inv (snd σ) ∧

vf = lvar (EName e) (snd σ)) ∧. heap free 3 ∧. initd Ext)}

The first of these subgoals is trivial, while the second accounts for the remaining three dozen
steps of the proof.

Static Initialization

Now we have to assume that class Ext and its superclass Base are not yet initialized. Initial-
ization of Ext itself (e.g. using a straightforward variant of Init exploiting Ext 6= Object) is
immediate. Initialization of Base (using the same variant of Init) is a bit more involved —
though not difficult — because its non-default static initializer Expr (arr viewed from Base :=

new PrimT boolean[Lit (Intg 2)]) has to be treated. This statement causes an extra call to
init Base (due to the field variable contained in it) but this time no further initialization
is needed because initialization of Base is already in progress. Finally, the class Object is
potentially initialized. For this common simple case we have derived the auxiliary rule

triv init Object
wf prog Γ P → (supd (init class obj Γ Object) .; P)

Γ,A`{Normal P←•} .init Object. {P ∧. initd Object}

applicable for all P that ignore the class object for Object.

100

6.4 Summary

We have given an example program showing many features of our language model at work.
Performing proofs on actual programs and symbolically executing them is tedious as one
has to deal with a lot of detail and typically huge formulas (unless one introduces suitable
abbreviations by hand, as we did). Serious applications, in particular program verification,
would require more tool support like a (semi-)automatic verification condition generator and
solver. For symbolic execution the tool by Berghofer [Ber00] that generates executable ML
code from Isabelle/HOL theories promises to be helpful.

When comparing the proof by symbolic program execution (applying the operational
semantics) and the proof using Hoare logic, in this case the former is slightly more direct
because the assertions used with the Hoare logic introduce a certain notational overhead. Yet
if a program to be verified contains proper iteration and recursion, the approach using Hoare
logic will take full advantage of its built-in support for proving and exploiting loop invariants
and method specifications, which would clearly be superior to a (low-level) proof using the
operational semantics. The other important advantage of Hoare logic, namely the ability
to formulate and manipulate properties with maximal abstraction, has been demonstrated
even by our rather small example.

101

102

Chapter 7

Conclusions

In this chapter we summarize and evaluate our results, share some of our insights and point
out advisable future work.

7.1 Achievements

We have formalized significant parts of the programming language Java and conducted
meta-theory on it within the theorem prover Isabelle/HOL: a proof of type soundness and
the development of a sound and complete Hoare logic. In particular, we have achieved the
following contributions to the field of machine-checked programming language semantics.

Formalization of Java We have given the first rather comprehensive machine-checked (in
the sense of fully formal) model of Java. Meanwhile, also a handful other formaliza-
tions within mechanical theorem proving systems exist, typically dealing with smaller
fractions of the language. Attali et al. [ACR] give an executable specification covering
more or less the whole language — including multi-threading — which on the other
hand it is not suited (nor intended) for meta-theoretical proofs. By now no verification
has been done using it.

Type Safety of Java We have proved that a large subset of Java is type-safe. Our proof
goes further than others given so far in the sense that it is machine-checked (and thus
maximally reliable) and covers not only full exception handling, but also static methods
and fields and their initialization.

Extensions of Hoare Logic We have developed techniques for modeling expressions with
side-effects within a Hoare Logic first-class, i.e. without assignments to intermediate
variables, and for generally describing dependence of program terms upon values com-
puted. We have further strengthened the rule of consequence and improved the handling
of mutual recursion. By a non-trivial example we have demonstrated the suitability of
our logic for actual program verification.

Soundness and Completeness We have shown that when defining and proving correct
a method call rule in the presence of dynamic binding, type safety plays a crucial
role. Moreover, we have given the first proof of completeness at all for an axiomatic
semantics of an object-oriented language.

Maturity of Theorem Proving Technology We explored — and contributed to — the
maturity of a state-of-the art theorem prover, Isabelle/HOL, concerning its use for

103

both specifying realistic programming languages and proving some important non-
trivial properties. We have demonstrated that for an experienced user such work is
indeed feasible. Doing so we encountered only minor restrictions and difficulties using
the system, yet noticed that for large-scale applications some proof engineering (in
analogy to software engineering) facilities like enhanced support for modularity and
change management are desirable.

7.2 Experience

Conducting the work described in this thesis has given insights into several topics, including

Java The design of (the most important parts of) Java is sound in the sense that it enjoys
type safety. At several places, in particular concerning the relations between method re-
turn types, the language could be less restrictive. Array covariance and the mechanism
for resolving static method overloading are perhaps not really worth the difficulties
they introduce.
The Java specification is quite well-structured and unambiguous. There are just a few
omissions, concerning exceptions and class initialization, and misleading statements,
concerning method calls. Furthermore, we spotted and reported a few dozens linguistic,
typographic, and other minor mistakes.
Part of these observations are new, and part of them had already been found by others
and have just been confirmed here. When further extending the subset of Java covered,
we expect to detect more problematic issues, since it is already known that for example
the concurrency model and class loading contains flaws.

Axiomatic Semantics The completeness result for our Hoare logic implies that programs
using even enhanced features like mutual recursion and dynamic binding can be proved
correct. Yet, unfortunately, many of the rules given are quite complex and thus appar-
ently not easy to use. This is in part due to our semantical notion of assertions suited
better for meta-theoretical investigations than for practical use, but the main point is
that Java is an inherently difficult language, taking into account e.g. mutual recursion,
dynamic binding, exception handling, and static initialization.
As experience with our small but non-trivial example reveals, verifying programs heav-
ily dealing with exceptions and class initialization is tedious, though further machine
support would probably be a relief. Both our rather “deep” (cf. §1.6.5) formalization
and Isabelle itself as the underlying theorem proving system is tailored more towards
meta-theory rather than proofs on concrete systems of realistic size. Thus large-scale
program verification would require adaptations of the model and extensions to the user
interface and proof management, or possibly even transfer of the Hoare logic rules to
a specialized integrated program development and verification tool.
After all, using an axiomatic semantics like ours for program verification helps to con-
centrate on the interesting properties of a program (rather than fiddling with details
of the state as with an operational semantics) and provides powerful tools for deal-
ing with loops and recursion. This general experience carries over from procedural to
object-oriented languages like Java.

Larger-scale Formal Systems Since the subset of Java we chose contains most of the
features of a real world programming language, our work was a major undertaking, also
because currently the theorem prover technology that we could apply and the method-
ology of its use has been developed only recently and is still evolving. Even though
both the formalization and the proofs have been kept as dense as reasonably possible,

104

the system consists of almost 2000 lines of Isabelle theories (excluding comments) and
more than 5000 lines of proof scripts. The table below gives more detailed approximate
numbers.

Number of Lemmas Lines of Theory Lines of Proof
Static Semantics 180 710 1220
Dynamic Semantics 120 430 780
Type Safety1 100 50 890
Axiomatic Semantics 160 490 1790
Example and Other 100 220 750
Total 660 1900 5430

Processing all theories and proofs on a machine considered passably fast these days
takes about 40 minutes.

Our system is one of the largest applications of Isabelle developed so far. Without
applying the simplification techniques listed in the introduction, developing it would
have been much harder if not impossible for a single person in reasonable time. Due
to important design decisions such as using an evaluation semantics, we believe that
our model has become the most elegant and concise one available. This is also the
experience of Büchi who chose our system as the basis for proving type safety of his
extension of Java with Compound Types [BW98, §6]. Even with little previous expe-
rience on mechanical theorem proving, he had remarkably little trouble understanding
and modifying the formalization and the proofs for his purpose and thus commends
the system for its well-structuredness.

The use of theorem proving system on the one hand causes much work: getting familiar
with the system, coping with its limitations or helping to reduce them, and being forced
to carry out everything in full detail. On the other hand, both for the formalization
and the proofs, machine support was indispensable. Otherwise there would have been
plenty of opportunity for omissions and inaccuracies like type errors and inconsistencies,
but also the sheer number of definitions to keep in mind and inferences to perform by
hand would be overwhelming. This is particularly true within a non-trivial project
where many iterations are performed, leading to frequent replay of the large proofs
with often subtle, but possibly crucial differences. Due to the number of rules in the
operational and axiomatic semantics, in the inductive proofs there are many cases
involving a great amount of detail to be considered, for which the partial automation
of the theorem prover is of great help.

7.3 Further Work

There are several ways in which this work can — and probably will — be extended and
applied.

Extensions of the Model Two important features of the static semantics, name spaces
and visibility control, are still missing. It should not be too difficult to add them to
the formalization and adapt the proof of type soundness accordingly. This is part of
the work to be done for the new European Project VerifiCard [J+b].

1Many of the proofs technically belonging to the theories on the static and dynamic semantics are in fact
needed for the proof of type soundness only and thus could be re-assigned to this line.

105

Extending the model of the dynamic semantics by adding concurrency is much more
challenging: to this end one has to resort to the inconvenient transition semantics and
it would be wise to prove the equivalence to the evaluation semantics already present.
The memory model has to be enhanced, probably along the lines given by Wirsing
et al. [CKRW97]. Since the general theory and methodology for verifying concurrent
program is still under development, the task of inventing a suitable verification logic
for Java, possibly as an extension of our current axiomatic semantics, will be worth at
least another PhD thesis.

Modifications of Java Our formalization of current Java is a good starting point for in-
vestigating future language extensions. There is already interest in using the model for
investigating the type safety of the planned Generic Java [ONO00]. This task has been
proposed as a Master’s thesis. To our knowledge, there are currently no other plans
for official changes to Java, but there is much room for research at least in academia
on improving, specializing, and extending the language.

Compiler Verification An extension of our model is going to be used, also within the
Project VerifiCard, as the source-level reference semantics for compiler verification.
During the project it might turn out that minor parts of the formalization should be
adapted in order to facilitate the necessary proofs.

Program Verification Our Hoare logic is not yet fully suited for actual application in
program verification. It should be helpful — and not difficult — to identify and deduce
simpler specialized versions of many rules more convenient to apply in standard, e.g.
exception-free, situations. Furthermore, better support by tailored verification tools
like an automatic verification condition generator and an some advanced methodology
for handling e.g. method specifications and object references will surely ease the pain.

Support for Program Design The current stage of the Project Bali [NOPK] includes an
application for verifying the implementation of high-level specifications: formalizing the
Object Constraint Language of UML also within Isabelle/HOL and tightly connecting
it with our axiomatic semantics.

7.4 Final Statement

By the example of treating Java with Isabelle/HOL, we have demonstrated that

machine-checking the design and meta-theory
of realistic programming languages has become feasible.

Such an undertaking is still difficult and costly, yet we believe that for practically important
languages it is worth while. May the results of this work, both experience and techniques,
be encouraging and helpful for further research and applications in this direction.

106

Appendix

107

Isabelle Theory Sources

108

(* Title: Isabelle/Bali/Basis.thy
ID: $Basis.thy,v 1.29 2000/11/14 09:35:34 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Definitions extending HOL as logical basis of Bali
*)

Basis = PreBasis +

syntax
"3" :: nat ("3")
"4" :: nat ("4")

translations
"3" == "Suc 2"
"4" == "Suc 3"

constdefs
the Inl :: "’a + ’b ⇒ ’a"
"the Inl x ≡ εa. x = Inl a"
the Inr :: "’a + ’b ⇒ ’b"
"the Inr x ≡ εb. x = Inr b"

datatype (’a, ’b, ’c) sum3 = In1 ’a | In2 ’b | In3 ’c
constdefs

the In1 :: "(’a, ’b, ’c) sum3 ⇒ ’a"
"the In1 x ≡ εa. x = In1 a"
the In2 :: "(’a, ’b, ’c) sum3 ⇒ ’b"
"the In2 x ≡ εb. x = In2 b"
the In3 :: "(’a, ’b, ’c) sum3 ⇒ ’c"
"the In3 x ≡ εc. x = In3 c"

syntax
In1l :: "’al ⇒ (’al + ’ar, ’b, ’c) sum3"
In1r :: "’ar ⇒ (’al + ’ar, ’b, ’c) sum3"

translations
"In1l e" == "In1 (Inl e)"
"In1r c" == "In1 (Inr c)"

translations
"option"<= (type) "Option.option"
"list" <= (type) "List.list"
"sum3" <= (type) "Basis.sum3"

syntax
fun sum :: "(’a => ’c) => (’b => ’c) => ((’a+’b) => ’c)" (infixr "’(+’)"80)

translations
"fun sum" == "sum case"

109

syntax
"@Oall" :: [pttrn, ’a option, bool] => bool ("(3! : :/)" [0,0,10] 10)
"@Oex" :: [pttrn, ’a option, bool] => bool ("(3? : :/)" [0,0,10] 10)

syntax (symbols)
"@Oall" :: [pttrn, ’a option, bool] => bool ("(3∀ ∈ :/)" [0,0,10] 10)
"@Oex" :: [pttrn, ’a option, bool] => bool ("(3∃ ∈ :/)" [0,0,10] 10)

translations
"! x:A: P" == "! x:o2s A. P"
"? x:A: P" == "? x:o2s A. P"

constdefs
unique :: "(’a × ’b) list ⇒ bool"
"unique ≡ nodups ◦ map fst"

consts
lsplit :: "[[’a, ’a list] => ’b, ’a list] => ’b"

defs
lsplit def "lsplit == %f l. f (hd l) (tl l)"

(* list patterns -- extends pre-defined type "pttrn" used in abstractions *)
syntax
" lpttrn" :: [pttrn,pttrn] => pttrn (" #/ " [901,900] 900)

translations
"%y#x#xs. b" == "lsplit (%y x#xs. b)"
"%x#xs . b" == "lsplit (%x xs . b)"

syntax

"@dummy pat" :: pttrn ("’ ")

end

ML
fun dummy pat tr [] = Free (" ",dummyT)
| dummy pat tr ts = raise TERM ("dummy pat tr", ts);

val parse translation = ("@dummy pat", dummy pat tr)::parse translation;

110

(* Title: Isabelle/Bali/Table.thy
ID: $Table.thy,v 1.29 2000/11/27 15:20:15 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Abstract tables and their implementation as lists

design issues:
* definition of table: infinite map vs. list vs. finite set
list chosen, because:
+ a priori finite
+ lookup is more operational than for finite set
- not very abstract, but function table converts it to abstract mapping

* coding of lookup result: Some/None vs. value/arbitrary
Some/None chosen, because:
++ makes definedness check possible (applies also to finite set),

which is important for the type standard, hiding/overriding, etc.
(though it may perhaps be possible at least for the operational semantics
to treat programs as infinite, i.e. where classes, fields, methods etc.
of any name are considered to be defined)

- sometimes awkward case distinctions, alleviated by operator ’the’
*)

Table = Basis +

types (’a, ’b) table (* table with key type ’a and contents type ’b *)
= "’a ; ’b"
(’a, ’b) tables (* non-unique table with key ’a and contents ’b *)
= "’a ⇒ ’b set"

syntax
table of :: "(’a × ’b) list ⇒ (’a, ’b) table" (* concrete table *)

translations
"table of" == "map of"

(type)"’a ; ’b" <= (type)"’a ⇒ ’b Option.option"
(type)"(’a, ’b) table" <= (type)"’a ; ’b"

consts
Un tables :: "(’a, ’b) tables set ⇒ (’a, ’b) tables"
overrides :: "(’a, ’b) tables ⇒ (’a, ’b) tables ⇒

(’a, ’b) tables" (infixl "⊕⊕" 100)
hidings entails:: "(’a, ’b) tables ⇒ (’a, ’c) tables ⇒

(’b ⇒ ’c ⇒ bool) ⇒ bool" (" hidings entails " 20)
(* variant for unique table: *)
hiding entails :: "(’a, ’b) table ⇒ (’a, ’c) table ⇒

(’b ⇒ ’c ⇒ bool) ⇒ bool" (" hiding entails " 20)

111

defs
Un tables def "Un tables ts ≡ λk.

⋃
t∈ts. t k"

overrides def "s ⊕⊕ t ≡ λk. if t k = {} then s k else t k"
hidings entails def "t hidings s entails R ≡ ∀k. ∀x∈t k. ∀y∈s k. R x y"
hiding entails def "t hiding s entails R ≡ ∀k. ∀x∈t k: ∀y∈s k: R x y"

consts
atleast free :: "(’a ~=> ’b) => nat => bool"

primrec
"atleast free m 0 = True"
"atleast free m (Suc n) = (? a. m a = None & (!b. atleast free (m(a|->b)) n))"

end

112

(* Title: Isabelle/Bali/Name.thy
ID: $Name.thy,v 1.5 2000/06/29 19:35:31 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Java names

simplifications:
no packages, thus no internal structure of names
*)

Name = Basis +

(* cf. 6.5 *)
types tnam (* ordinary type name, i.e. class or interface name *)

ename (* expression name, i.e. variable or field name *)
mname (* method name *)

arities tnam, ename, mname :: term

types lname (* names for local variables and the This pointer *)
= "ename + unit"

syntax EName, This :: lname
translations
"lname" <= (type) "ename + unit"
"EName" => "Inl"
"This" => "Inr ()"

datatype xname (* names of standard exceptions *)
= Throwable
| NullPointer | OutOfMemory | ClassCast
| NegArrSize | IndOutBound | ArrStore

datatype tname (* type names for standard classes and other type names *)
= Object
| SXcpt xname
| TName tnam

translations
"mname" <= (type) "Name.mname"
"xname" <= (type) "Name.xname"
"tname" <= (type) "Name.tname"
"ename" <= (type) "Name.ename"

end

113

(* Title: Isabelle/Bali/Type.thy
ID: $Type.thy,v 1.19 2000/05/02 09:40:54 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Java types

simplifications:
* only the most important primitive types
* the null type is regarded as reference type
*)
Type = Name +

datatype prim ty (* primitive type, cf. 4.2 *)
= Void (* ’result type’ of void methods *)
| Boolean
| Integer

datatype ref ty (* reference type, cf. 4.3 *)
= NullT (* null type, cf. 4.1 *)
| IfaceT tname (* interface type *)
| ClassT tname (* class type *)
| ArrayT ty (* array type *)

and ty (* any type, cf. 4.1 *)
= PrimT prim ty (* primitive type *)
| RefT ref ty (* reference type *)

translations
"prim ty" <= (type) "Type.prim ty"
"ref ty" <= (type) "Type.ref ty"
"ty" <= (type) "Type.ty"

syntax
NT :: " ty"
Iface :: "tname ⇒ ty"
Class :: "tname ⇒ ty"
Array :: "ty ⇒ ty" (" .[]" [90] 90)

translations
"NT" == "RefT NullT"
"Iface I" == "RefT (IfaceT I)"
"Class C" == "RefT (ClassT C)"
"T.[]" == "RefT (ArrayT T)"

constdefs
the Class :: "ty ⇒ tname"
"the Class T ≡ εC. T = Class C"
end

114

(* Title: Isabelle/Bali/Value.thy
ID: $Value.thy,v 1.3 2000/07/14 14:48:59 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Java values
*)

Value = Type +

types loc (* locations, i.e. abstract references on objects *)
arities loc :: term

datatype val (** name not ’val’ because of nasty clash with ML token ’val’ **)
= Unit (* dummy result value of void methods *)
| Bool bool (* Boolean value *)
| Intg int (* integer value *)
| Null (* null reference *)
| Addr loc (* addresses, i.e. locations of objects *)

types val = val
translations "val" <= (type) "val "

"val" <= (type) "Term.val "
"loc" <= (type) "Term.loc"

constdefs
the Bool :: "val ⇒ bool" "the Bool v ≡ εb. v = Bool b"
the Intg :: "val ⇒ int" "the Intg v ≡ εi. v = Intg i"
the Addr :: "val ⇒ loc" "the Addr v ≡ εa. v = Addr a"

types dyn ty = "loc ⇒ ty option"
consts
typeof :: "dyn ty ⇒ val ⇒ ty option"
defpval :: "prim ty ⇒ val" (* default value for primitive types *)
default val :: " ty ⇒ val" (* default value for all types *)

primrec "typeof dt Unit = Some (PrimT Void)"
"typeof dt (Bool b) = Some (PrimT Boolean)"
"typeof dt (Intg i) = Some (PrimT Integer)"
"typeof dt Null = Some NT"
"typeof dt (Addr a) = dt a"

primrec "defpval Void = Unit"
"defpval Boolean = Bool False"
"defpval Integer = Intg #0"

primrec "default val (PrimT pt) = defpval pt"
"default val (RefT r) = Null"

end

115

(* Title: Isabelle/Bali/Term.thy
ID: $Term.thy,v 1.43 2000/11/21 07:50:57 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Java expressions and statements

design issues:
* invocation frames for local variables could be reduced to special static
objects (one per method). This would reduce redundancy, but yield a rather
non-standard execution model more difficult to understand.

* method bodies separated from calls to handle assumptions in axiomat. semantics
NB: Body is intended to be in the environment of the called method.

* class initialization is regarded as (auxiliary) statement (required for AxSem)
simplifications:
* expression statement allowed for any expression
* no unary, binary, etc, operators
* This is modeled as a special non-assignable local variable
* Super is modeled as a general expression with the same value as This
* access to field x in current class via This.x
* NewA creates only one-dimensional arrays;
initialization of further subarrays may be simulated with nested NewAs

* The ’Lit’ constructor is allowed to contain a reference value.
But this is assumed to be prohibited in the input language, which is enforced
by the type-checking rules.

* a call of a static method via a type name may be simulated by a dummy variable
* result expression instead of return statement (see Decl.thy)
* no nested blocks with inner local variables
* no synchronized statements
* no secondary forms of if, while (e.g. no for) (may be easily simulated)
* no switch, break, continue, no labels (may be simulated with while)
* the try catch finally statement is divided into the try catch statement and
a finally statement, which may be considered as try..finally with empty catch

* the try catch statement has exactly one catch clause; multiple ones can be
simulated with instanceof

* the compiler is supposed to add the annotations { } during type-checking. This
transformation is left out as its result is checked by the type rules anyway

*)
Term = Value +

datatype inv mode (* invocation mode for method calls *)
= Static (* static *)
| SuperM (* super *)
| IntVir (* interface or virtual *)

types sig (* signature of a method, cf. 8.4.2 *)
= "mname × ty list" (* acutally belongs to Decl.thy *)

datatype var
= LVar lname(* local variable (incl. parameters) *)
| FVar tname bool expr ename(*class field*)("{ , } .. "[10,10,85,99]90)
| AVar expr expr (* array component *) (" .[]"[90,10]90)

116

and expr
= NewC tname (* class instance creation *)
| NewA ty expr (* array creation *) ("New []"[99,10]85)
| Cast ty expr (* type cast *)
| Inst expr ref ty (* instanceof *) (" InstOf "[85,99] 85)
| Lit val (* literal value, references not allowed *)
| Super (* special Super keyword *)
| Acc var (* variable access *)
| Ass var expr (* variable assign *) (" := " [90,85]85)
| Cond expr expr expr (* conditional *) (" ? : " [85,85,80]80)
| Call ref ty ref ty inv mode expr mname (* method call *)
(ty list) (expr list) ("{ , , } .. ’({ } ’)" [10,10,10,85,99,10,10]85)

| Methd tname sig (* (folded) method *)
| Body tname stmt expr (* (unfolded) method body *)

and stmt
= Skip (* empty statement *)
| Expr expr (* expression statement *)
| Comp stmt stmt (" ;; " [66,65]65)
| If expr stmt stmt ("If’(’) Else " [80,79,79]70)
| Loop expr stmt ("While’(’) " [80,79]70)
| Throw expr
| TryC stmt

tname ename stmt ("Try Catch’(’) " [79,99,80,79]70)
| Fin stmt stmt (" Finally " [79,79]70)
| init tname (* class initialization *)

types term = "(expr+stmt, var, expr list) sum3"
translations
"sig" <= (type) "mname × ty list"
"var" <= (type) "Term.var"
"expr" <= (type) "Term.expr"
"stmt" <= (type) "Term.stmt"
"term" <= (type) "(expr+stmt, var, expr list) sum3"

syntax
this :: expr
LAcc :: "ename ⇒ expr" ("!!")
LAss :: "ename ⇒ expr ⇒ stmt" (" :== " [90,85] 85)
StatRef :: "ref ty ⇒ expr"

translations
"this" == "Acc (LVar This)"
"!!v" == "Acc (LVar (Inl v))"
"v:==e" == "Expr (Ass (LVar (Inl v)) e)"
"StatRef rt" == "Cast (RefT rt) (Lit Null)"

constdefs
is stmt :: "term ⇒ bool"

"is stmt t ≡ ∃c. t=In1r c"
end

117

(* Title: Isabelle/Bali/Decl.thy
ID: $Decl.thy,v 1.40 2000/11/27 15:20:15 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Field, method, interface, and class declarations, whole Java programs

simplifications:
* the only field and method modifier is static
* no constructors, which may be simulated by new + suitable methods
* there is just one global initializer per class, which can simulate all others

* no throws clause
* result statement replaced by result expression (evaluated at the end of the
execution of the body; transformation is always possible (with goto, while)

* a void method is replaced by one that returns Unit (of dummy type Void)

* no interface modifiers yet, i.e. every interface is public
* no interface fields

* no class modifiers yet, i.e. every class is public, non-final
* every class has an explicit superclass (unused for Object)
* the (standard) methods of Object and of standard exceptions are not specified

* no packages
* no main method
*)

Decl = Term + Table + (** order is significant, because of clash for "var" **)

types modi = bool (* modifier: static *)
field = "modi × ty"
fdecl = "ename × field" (* field declaration, cf. 8.3 *)

translations
"field" <= (type) "bool × ty"
"fdecl" <= (type) "ename × field"

types (*sig: see Term.thy *)

mhead (* method head (excluding signature) *)
= "modi × ename list × ty"
(* modifier, parameter names, result type *)

mbody (* method body *)
= "(ename × ty) list × stmt × expr"
(* local variables, block+result expression *)

methd (* method in a class *)
= "mhead × mbody"

118

mdecl (* method declaration in a class *)
= "sig × methd"

translations
"mhead" <= (type) "bool × ename list × ty"
"mbody" <= (type) "(ename × ty) list × stmt × expr"
"methd" <= (type) "mhead × mbody"
"mdecl" <= (type) "sig × methd"

syntax
static :: "modi ⇒ bool"
mrt :: "mhead ⇒ ty"

translations
"static" => "id"
"mrt mh" => "snd (snd mh)"

types ibody (* interface body *)
= "(sig × mhead) list"
(* methods *)

iface (* interface *)
= "tname list × ibody"
(* superinterface list *)

idecl (* interface declaration, cf. 9.1 *)
= "tname × iface"

translations
"ibody" <= (type) "(sig × mhead) list"
"iface" <= (type) "tname list × ibody"
"idecl" <= (type) "tname × iface"

types cbody (* class body *)
= "fdecl list × mdecl list × stmt"
(* fields, methods, initializer *)

class (* class *)
= "tname × tname list × cbody"
(* superclass, implemented interfaces *)

cdecl (* class declaration, cf. 8.1 *)
= "tname × class"

translations
"cbody" <= (type) "fdecl list × mdecl list × stmt"
"class" <= (type) "tname × tname list × cbody"
"cdecl" <= (type) "tname × class"

119

consts

Object mdecls :: "mdecl list" (* methods of Object *)
SXcpt mdecls :: "mdecl list" (* methods of SXcpts *)
ObjectC :: "cdecl" (* declaration of root class *)
SXcptC ::"xname ⇒ cdecl" (* declarations of throwable classes *)
standard classes :: cdecl list

defs

ObjectC def "ObjectC ≡ (Object , (arbitrary ,[],[],Object mdecls,Skip))"
SXcptC def "SXcptC xn≡ (SXcpt xn, (if xn = Throwable then Object else

SXcpt Throwable,[],[],SXcpt mdecls,Skip))"
standard classes def "standard classes ≡ [ObjectC, SXcptC Throwable,

SXcptC NullPointer, SXcptC OutOfMemory, SXcptC ClassCast,
SXcptC NegArrSize , SXcptC IndOutBound, SXcptC ArrStore]"

(* programs *)
types prog = "idecl list × cdecl list"
translations

"prog"<= (type) "idecl list × cdecl list"

syntax
iface :: "prog ⇒ (tname, iface) table"
class :: "prog ⇒ (tname, class) table"
is iface :: "prog ⇒ tname ⇒ bool"
is class :: "prog ⇒ tname ⇒ bool"

translations
"iface G I" == "table of (fst G) I"
"class G C" == "table of (snd G) C"

"is iface G I" == "iface G I 6= None"
"is class G C" == "class G C 6= None"

consts
is type :: "prog ⇒ ty ⇒ bool"
isrtype :: "prog ⇒ ref ty ⇒ bool"

primrec "is type G (PrimT pt) = True"
"is type G (RefT rt) = isrtype G rt"
"isrtype G (NullT) = True"
"isrtype G (IfaceT tn) = is iface G tn"
"isrtype G (ClassT tn) = is class G tn"
"isrtype G (ArrayT T) = is type G T"

120

(* subinterface and subclass relation, in anticipation of TypeRel.thy *)
consts
subint1,
subcls1 :: "prog ⇒ (tname × tname) set"

defs
subint1 def "subint1 G ≡ {(I,J). ∃i∈iface G I: J∈set (fst i)}"
subcls1 def "subcls1 G ≡ {(C,D). C6=Object ∧ (∃c∈class G C: fst c = D)}"

(* well-structured programs *)
constdefs
ws idecl :: "prog ⇒ tname ⇒ tname list ⇒ bool"

"ws idecl G I si ≡ ∀J∈set si. is iface G J ∧ (J,I)/∈(subint1 G)^+"

ws cdecl :: "prog ⇒ tname ⇒ tname ⇒ bool"
"ws cdecl G C sc ≡ C 6=Object −→ is class G sc ∧ (sc,C)/∈(subcls1 G)^+"

ws prog :: "prog ⇒ bool"
"ws prog G ≡ (∀(I,(si,ib))∈set (fst G). ws idecl G I si) ∧

(∀(C,(sc,cb))∈set (snd G). ws cdecl G C sc)"

(* auxiliary well-founded relation for the recursion operators below *)
constdefs
ws wfrel :: "(prog ⇒ (tname × tname) set) ⇒

((prog × tname) × (prog × tname)) set"
"ws wfrel R ≡ {((G,T),(G’,T’)). G’ = G ∧ ws prog G ∧ (T’,T) ∈ R G}"

(* general operators for recursion over the interface and class hiearchies *)
consts
iface rec :: "prog × tname ⇒ (tname ⇒ ibody ⇒ ’a set ⇒ ’a) ⇒ ’a"
class rec :: "prog × tname ⇒ ’a ⇒ (tname ⇒ cbody ⇒ ’a ⇒ ’a) ⇒ ’a"

recdef iface rec "ws wfrel subint1" congs image cong
"iface rec (G,I) = (λf. case iface G I of None ⇒ arbitrary | Some (si,ib) ⇒

if ws prog G then f I ib ((λJ. iface rec (G,J) f)‘‘set si)
else arbitrary)"

recdef class rec "ws wfrel subcls1"
"class rec(G,C) = (λt f. case class G C of None⇒ arbitrary | Some (sc,si,cb)⇒

if ws prog G then f C cb (if C = Object then t else class rec (G,sc) t f)
else arbitrary)"

types
fspec = "ename × tname"

consts
imethds :: "prog ⇒ tname ⇒ (sig , tname × mhead) tables"
cmethd :: "prog ⇒ tname ⇒ (sig , tname × methd) table"
fields :: "prog ⇒ tname ⇒ ((ename × tname) × field) list"
cfield :: "prog ⇒ tname ⇒ (ename , tname × field) table"

121

defs
(* methods of an interface, with overriding and inheritance, cf. 9.2 *)
imeths def "imethds G I ≡ iface rec (G,I) (λI ms ts.

(Un tables ts) ⊕⊕ (o2s ◦ table of (map (λ(s,m). (s,I,m)) ms)))"

(* methods of a class, with inheritance, overriding and hiding, cf. 8.4.6 *)
cmethd def "cmethd G C ≡ class rec (G,C) empty (λC (fs,ms,ini) ts.

ts ++ table of (map (λ(s,m). (s,C,m)) ms))"

(* list of fields of a class, including inherited and hidden ones *)
fields def "fields G C ≡ class rec (G,C) [] (λC (fs,ms,ini) ts.

map (λ(n,t). ((n,C),t)) fs @ ts)"

(* fields of a class, with inheritance and hiding, cf. 8.3 *)
cfield def "cfield G C ≡ table of((map (λ((n,d),T).(n,(d,T)))) (fields G C))"

constdefs
is methd :: "prog ⇒ tname ⇒ sig ⇒ bool"
"is methd G ≡ λC sig. is class G C ∧ cmethd G C sig 6= None"

end

122

(* Title: Isabelle/Bali/TypeRel.thy
ID: $TypeRel.thy,v 1.31 2000/07/25 21:54:10 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

The relations between Java types

simplifications:
* subinterface, subclass and widening relation includes identity

improvements over Java Specification 1.0:
* narrowing reference conversion also in cases where the return types of a pair
of methods common to both types are in widening (rather identity) relation

* one could add similar constraints also for other cases

design issues:
* the type relations do not require is type for their arguments
* the subint1 and subcls1 relations imply is iface/is class for their first
arguments, which is required for their finiteness

*)

TypeRel = Decl +

consts

(*subint1, in Decl.thy*) (* direct subinterface *)
(*subint, by translation*) (* subinterface *)
(*subcls1, in Decl.thy*) (* direct subclass *)
(*subcls, by translation*) (* subclass *)
implmt1, (* direct implementation *)
implmt :: "prog ⇒ (tname × tname) set" (* implementation *)
widen, (* widening *)
narrow, (* narrowing *)
cast :: "prog ⇒ (ty × ty) set" (* casting *)

syntax

"@subint1" :: "prog => [tname, tname] => bool" (" |- <:I1 " [71,71,71] 70)
"@subint" :: "prog => [tname, tname] => bool" (" |- <=:I "[71,71,71] 70)
"@subcls1" :: "prog => [tname, tname] => bool" (" |- <:C1 " [71,71,71] 70)
"@subcls" :: "prog => [tname, tname] => bool" (" |- <=:C "[71,71,71] 70)
"@implmt1" :: "prog => [tname, tname] => bool" (" |- ~>1 " [71,71,71] 70)
"@implmt" :: "prog => [tname, tname] => bool" (" |- ~> " [71,71,71] 70)
"@widen" :: "prog => [ty , ty] => bool" (" |- <=: " [71,71,71] 70)
"@narrow" :: "prog => [ty , ty] => bool" (" |- :> " [71,71,71] 70)
"@cast" :: "prog => [ty , ty] => bool" (" |- <=:? "[71,71,71] 70)

123

syntax (symbols)

"@subint1" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` ≺I1 " [71,71,71] 70)
"@subint" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` �I " [71,71,71] 70)
"@subcls1" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` ≺C1 " [71,71,71] 70)
"@subcls" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` �C " [71,71,71] 70)
"@implmt1" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` ;1 " [71,71,71] 70)
"@implmt" :: "prog ⇒ [tname, tname] ⇒ bool" (" ` ; " [71,71,71] 70)
"@widen" :: "prog ⇒ [ty , ty] ⇒ bool" (" ` � " [71,71,71] 70)
"@narrow" :: "prog ⇒ [ty , ty] ⇒ bool" (" ` � " [71,71,71] 70)
"@cast" :: "prog ⇒ [ty , ty] ⇒ bool" (" ` �? " [71,71,71] 70)

translations

"G`I ≺I1 J" == "(I,J) ∈ subint1 G"
"G`I �I J" == "(I,J) ∈(subint1 G)^*" (* cf. 9.1.3 *)
"G`C ≺C1 D" == "(C,D) ∈ subcls1 G"
"G`C �C D" == "(C,D) ∈(subcls1 G)^*" (* cf. 8.1.3 *)
"G`C ;1 I" == "(C,I) ∈ implmt1 G"
"G`C ; I" == "(C,I) ∈ implmt G"
"G`S � T" == "(S,T) ∈ widen G"
"G`S � T" == "(S,T) ∈ narrow G"
"G`S �? T" == "(S,T) ∈ cast G"

defs

(* direct subinterface in Decl.thy, cf. 9.1.3 *)
(* direct subclass in Decl.thy, cf. 8.1.3 *)

(* direct implementation, cf. 8.1.3 *)
implmt1 def "implmt1 G≡{(C,I). C6=Object ∧ (∃c∈class G C: I∈set (fst(snd c)))}"

inductive "implmt G" intrs (* cf. 8.1.4 *)

direct "G`C;1J =⇒ G`C;J"
subint "[[G`C;1I; G`I�I J]] =⇒ G`C;J"
subcls1 "[[G`C≺C1D; G`D;J]] =⇒ G`C;J"

inductive "widen G" intrs (*widening, viz. method invocation conversion, cf. 5.3
i.e. kind of syntactic subtyping *)

refl "G` T�T" (*identity conversion, cf. 5.1.1 *)
subint "G`I�I J =⇒ G` Iface I� Iface J"(*wid.ref.conv., cf. 5.1.4 *)
int obj "G` Iface I� Class Object"
subcls "G`C�C D =⇒ G` Class C� Class D"
implmt "G`C;I =⇒ G` Class C� Iface I"
null "G` NT� RefT R"
arr obj "G` T.[]� Class Object"
array "G`RefT S�RefT T =⇒ G`RefT S.[]� RefT T.[]"

124

(* all properties of narrowing and casting conversions we actually need *)
(* these can easily be proven from the definitions below *)
(*
rules
cast RefT2 "G`S�? RefT R =⇒ ∃t. S=RefT t"
cast PrimT2 "G`S�? PrimT pt =⇒ ∃t. S=PrimT t ∧ G`PrimT t�PrimT pt"

*)

constdefs
widens :: "prog ⇒ [ty list, ty list] ⇒ bool" (" ` [�] " [71,71,71] 70)

"G`Ts[�]Ts’ ≡ list all2 (λT T’. G`T�T’) Ts Ts’"

(* more detailed than necessary for type-safety, see above rules. *)
inductive "narrow G" intrs (* narrowing reference conversion, cf. 5.1.5 *)

subcls "G`C�C D =⇒ G` Class D�Class C"
implmt "¬G`C;I =⇒ G` Class C�Iface I"
obj arr "G`Class Object�T.[]"
int cls "G` Iface I�Class C"
subint "imethds G I hidings imethds G J entails

(λ(md, mh) (md’,mh’). G`mrt mh�mrt mh’) =⇒
¬G`I�I J =⇒ G` Iface I�Iface J"

array "G`RefT S�RefT T =⇒ G` RefT S.[]�RefT T.[]"

inductive "cast G" intrs (* casting conversion, cf. 5.5 *)

widen "G`S�T =⇒ G`S�? T"
narrow "G`S�T =⇒ G`S�? T"

end

125

(* Title: Isabelle/Bali/WellType.thy
ID: $WellType.thy,v 1.42 2000/07/11 20:28:42 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Well-typedness of Java programs

improvements over Java Specification 1.0:
* methods of Object can be called upon references of interface or array type

simplifications:
* the type rules include all static checks on statements and expressions, e.g.
definedness of names (of parameters, locals, fields, methods)

design issues:
* unified type judgment for statements, variables, expressions, expression lists
* statements are typed like expressions with dummy type Void
* the typing rules take an extra argument that is capable of determining
the dynamic type of objects. Therefore, they can be used for both
checking static types and determining runtime types in transition semantics.

*)
WellType = TypeRel +

types lenv
= "(lname, ty) table" (* local variables, including This *)

env
= "prog × lenv" (* program, locals *)

syntax
prg :: "env ⇒ prog"
lcl :: "env ⇒ lenv"

translations
"lenv" <= (type) "(lname, ty) table"
"env" <= (type) "prog × lenv"
"prg" => "fst"
"lcl" => "snd"

types
emhead = "ref ty × mhead"

consts
cmheads :: "prog ⇒ tname ⇒ sig ⇒ emhead set"
mheads :: "prog ⇒ ref ty ⇒ sig ⇒ emhead set"

defs
cmheads def
"cmheads G C ≡ λsig. (λ(C,(h,b)). (ClassT C,h)) ‘‘ o2s (cmethd G C sig)"

126

primrec

"mheads G NullT = (λsig. {})"
"mheads G (IfaceT I) = (λsig. (λ(I,h).(IfaceT I,h)) ‘‘ imethds G I sig ∪

cmheads G Object sig)"
"mheads G (ClassT C) = cmheads G C"
"mheads G (ArrayT T) = cmheads G Object"
(* more detailed than necessary for type-safety, see below. *)

constdefs

(* applicable methods, cf. 15.11.2.1 *)
appl methds :: "prog ⇒ ref ty ⇒ sig ⇒ (emhead × ty list) set"

"appl methds G rt ≡ λ(mn, pTs). {(mh,pTs’) |mh pTs’.
mh ∈ mheads G rt (mn, pTs’) ∧ G`pTs[�]pTs’}"

(* more specific methods, cf. 15.11.2.2 *)
more spec :: "prog ⇒ emhead × ty list ⇒ emhead × ty list ⇒ bool"

"more spec G ≡ λ(mh,pTs). λ(mh’,pTs’). G`pTs[�]pTs’"
(*more spec G ≡λ((d,h),pTs). λ((d’,h’),pTs’). G`RefT d�RefT d’∧G`pTs[�]pTs’*)

(* maximally specific methods, cf. 15.11.2.2 *)
max spec :: "prog ⇒ ref ty ⇒ sig ⇒ (emhead × ty list) set"

" max spec G rt sig ≡{m. m ∈appl methds G rt sig ∧
(∀m’∈appl methds G rt sig. more spec G m’ m −→ m’=m)}"

(*
rules (* all properties of more spec, appl methods and max spec we actually need

these can easily be proven from the above definitions @*)

max spec2mheads "max spec G rt (mn, pTs) = insert (mh, pTs’) A =⇒
mh∈mheads G rt (mn, pTs’) ∧ G`pTs[�]pTs’"

*)

constdefs

empty dt :: "dyn ty"
"empty dt ≡ λa. None"

invmode :: "modi ⇒ expr ⇒ inv mode"
"invmode m e ≡ if static m then Static else if e=Super then SuperM else IntVir"

types tys = "ty + ty list"
translations
"tys" <= (type) "ty + ty list"

127

consts
wt :: "(env × dyn ty × term × tys) set"

(*wt :: " env ⇒ dyn ty ⇒ (term × tys) set" not feasible because of
changing env in Try stmt *)

syntax

wt :: "env ⇒ dyn ty ⇒ [term,tys] ⇒ bool" (" , |= :: " [51,51,51,51] 50)
wt stmt :: "env ⇒ dyn ty ⇒ stmt ⇒ bool" (" , |= :<>" [51,51,51] 50)
ty expr :: "env ⇒ dyn ty ⇒ [expr ,ty] ⇒ bool" (" , |= :- " [51,51,51,51] 50)
ty var :: "env ⇒ dyn ty ⇒ [var ,ty] ⇒ bool" (" , |= := " [51,51,51,51] 50)
ty exprs:: "env ⇒ dyn ty ⇒ [expr list,

ty list] ⇒ bool" (" , |= :# " [51,51,51,51] 50)
syntax (xsymbols)

wt :: "env ⇒ dyn ty ⇒ [term, tys] ⇒ bool" (" , |= :: " [51,51,51,51] 50)
wt stmt :: "env ⇒ dyn ty ⇒ stmt ⇒ bool" (" , |= ::

√
" [51,51,51] 50)

ty expr :: "env ⇒ dyn ty ⇒ [expr ,ty] ⇒ bool" (" , |= ::- " [51,51,51,51] 50)
ty var :: "env ⇒ dyn ty ⇒ [var ,ty] ⇒ bool" (" , |= ::= " [51,51,51,51] 50)
ty exprs:: "env ⇒ dyn ty ⇒ [expr list,

ty list] ⇒ bool" (" , |= :: .= " [51,51,51,51] 50)
translations

"E,dt|=t::T" == "(E,dt,t,T) ∈ wt"
"E,dt|=s::

√
" == "E,dt|=In1r s::Inl (PrimT Void)"

"E,dt|=e::-T" == "E,dt|=In1l e::Inl T"
"E,dt|=e::=T" == "E,dt|=In2 e::Inl T"
"E,dt|=e:: .=T" == "E,dt|=In3 e::Inr T"

syntax (* for purely static typing *)

wt :: "env ⇒ [term, tys] ⇒ bool" (" |- :: " [51,51,51] 50)
wt stmt :: "env ⇒ stmt ⇒ bool" (" |- :<>" [51,51] 50)
ty expr :: "env ⇒ [expr ,ty] ⇒ bool" (" |- :- " [51,51,51] 50)
ty var :: "env ⇒ [var ,ty] ⇒ bool" (" |- := " [51,51,51] 50)
ty exprs :: "env ⇒ [expr list,

ty list] ⇒ bool" (" |- :# " [51,51,51] 50)
syntax (xsymbols)

wt :: "env ⇒ [term,tys] ⇒ bool" (" ` :: " [51,51,51] 50)
wt stmt :: "env ⇒ stmt ⇒ bool" (" ` ::

√
" [51,51] 50)

ty expr :: "env ⇒ [expr ,ty] ⇒ bool" (" ` ::- " [51,51,51] 50)
ty var :: "env ⇒ [var ,ty] ⇒ bool" (" ` ::= " [51,51,51] 50)
ty exprs :: "env ⇒ [expr list,

ty list] ⇒ bool" (" ` :: .= " [51,51,51] 50)

translations
"E`t:: T" == "E,empty dt|=t:: T"
"E`s::

√
" == "E,empty dt|=s::

√
"

"E`e::-T" == "E,empty dt|=e::-T"
"E`e::=T" == "E,empty dt|=e::=T"
"E`e:: .=T" == "E,empty dt|=e:: .=T"

128

inductive wt intrs

(* well-typed statements *)

Skip "E,dt|=Skip::
√
"

Expr "[[E,dt|=e::-T]] =⇒
E,dt|=Expr e::

√
"

Comp "[[E,dt|=c1::
√
;

E,dt|=c2::
√

]] =⇒
E,dt|=c1;; c2::

√
"

(* cf. 14.8 *)
If "[[E,dt|=e::-PrimT Boolean;

E,dt|=c1::
√
;

E,dt|=c2::
√

]] =⇒
E,dt|=If(e) c1 Else c2::

√
"

(* cf. 14.10 *)
Loop "[[E,dt|=e::-PrimT Boolean;

E,dt|=c::
√

]] =⇒
E,dt|=While(e) c::

√
"

(* cf. 14.16 *)
Throw "[[E,dt|=e::-Class tn;

prg E`tn�C SXcpt Throwable]] =⇒
E,dt|=Throw e::

√
"

(* cf. 14.18 *)
Try "[[E,dt|=c1::

√
; prg E`tn�C SXcpt Throwable;

lcl E (EName vn)=None; (prg E,lcl E(EName vn7→Class tn)),dt|=c2::
√

]] =⇒
E,dt|=Try c1 Catch(tn vn) c2::

√
"

(* cf. 14.18 *)
Fin "[[E,dt|=c1::

√
; E,dt|=c2::

√
]] =⇒

E,dt|=c1 Finally c2::
√
"

Init "[[is class (prg E) C]] =⇒
E,dt|=init C::

√
"

(* well-typed expressions *)

(* cf. 15.8 *)
NewC "[[is class (prg E) C]] =⇒

E,dt|=NewC C::-Class C"
(* cf. 15.9 *)
NewA "[[is type (prg E) T;

E,dt|=i::-PrimT Integer]] =⇒
E,dt|=New T[i]::-T.[]"

129

(* cf. 15.15 *)
Cast "[[E,dt|=e::-T; is type (prg E) T’;

prg E`T�? T’]] =⇒
E,dt|=Cast T’ e::-T’"

(* cf. 15.19.2 *)
Inst "[[E,dt|=e::-RefT T;

prg E`RefT T�? RefT T’]] =⇒
E,dt|=e InstOf T’::-PrimT Boolean"

(* cf. 15.7.1 *)
Lit "[[typeof dt x = Some T]] =⇒

E,dt|=Lit x::-T"

(* cf. 15.10.2, 15.11.1 *)
Super "[[lcl E This = Some (Class C); C 6= Object;

class (prg E) C = Some (D, rest)]] =⇒
E,dt|=Super::-Class D"

(* cf. 15.13.1, 15.10.1, 15.12 *)
Acc "[[E,dt|=va::=T]] =⇒

E,dt|=Acc va::-T"

(* cf. 15.25, 15.25.1 *)
Ass "[[E,dt|=va::=T; va 6= LVar This;

E,dt|=v ::-T’;
prg E`T’�T]] =⇒

E,dt|=va:=v::-T’"

(* cf. 15.24 *)
Cond "[[E,dt|=e0::-PrimT Boolean;

E,dt|=e1::-T1; E,dt|=e2::-T2;
prg E`T1�T2 ∧ T = T2 ∨ prg E`T2�T1 ∧ T = T1]] =⇒

E,dt|=e0 ? e1 : e2::-T"

(* cf. 15.11.1, 15.11.2, 15.11.3 *)
Call "[[E,dt|=e::-RefT t;

E,dt|=ps:: .=pTs;
max spec (prg E) t (mn, pTs) = {((md,(m,pns,rT)),pTs’)}]] =⇒

E,dt|={t,md,invmode m e}e..mn({pTs’}ps)::-rT"

Methd "[[is class (prg E) C;
cmethd (prg E) C sig = Some (md,mh,lvars,blk,res);
E,dt|=Body md blk res::-T]] =⇒

E,dt|=Methd C sig::-T"

Body "[[is class (prg E) D;
E,dt|=blk::

√
;

E,dt|=res::-T]] =⇒
E,dt|=Body D blk res::-T"

130

(* well-typed variables *)

(* cf. 15.13.1 *)
LVar "[[lcl E vn = Some T; is type (prg E) T]] =⇒

E,dt|=LVar vn::=T"
(* cf. 15.10.1 *)
FVar "[[E,dt|=e::-Class C;

cfield (prg E) C fn = Some (fd,(m,fT))]] =⇒
E,dt|={fd,static m}e..fn::=fT"

(* cf. 15.12 *)
AVar "[[E,dt|=e::-T.[];

E,dt|=i::-PrimT Integer]] =⇒
E,dt|=e.[i]::=T"

(* well-typed expression lists *)

(* cf. 15.11.??? *)
Nil "E,dt|=[]:: .=[]"

(* cf. 15.11.??? *)
Cons "[[E,dt|=e ::-T;

E,dt|=es:: .=Ts]] =⇒
E,dt|=e#es:: .=T#Ts"

end

131

(* Title: Isabelle/Bali/WellForm.thy
ID: $WellForm.thy,v 1.32 2000/11/27 15:20:16 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Well-formedness of Java programs
for static checks on expressions and statements, see WellType.thy

improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):
* a method implementing or overwriting another method may have a result type
that widens to the result type of the other method (instead of identical type)

* if an interface inherits more than one method with the same signature, the
methods need not have identical return types

simplifications:
* Object and standard exceptions are assumed to be declared like normal classes
*)

WellForm = WellType +

consts

wf fdecl :: "prog ⇒ fdecl ⇒ bool"
wf mhead :: "prog ⇒ sig ⇒ mhead ⇒ bool"
wf mdecl :: "prog ⇒ tname ⇒ mdecl ⇒ bool"
wf idecl :: "prog ⇒ idecl ⇒ bool"
wf cdecl :: "prog ⇒ cdecl ⇒ bool"
wf prog :: "prog ⇒ bool"

defs

(* well-formed field declaration (common part for classes and interfaces),
cf. 8.3 and (9.3) *)

wf fdecl def "wf fdecl G ≡ λ(fn,(m,ft)). is type G ft"

(*well-formed method declaration,cf. 8.4, 8.4.1, 8.4.3, 8.4.5, 14.3.2, (9.4)*)
(* cf. 14.15, 15.7.2, for scope issues cf. 8.4.1 and 14.3.2 *)
wf mhead def "wf mhead G ≡ λ(mn,pTs) (m,pns,rT). length pTs = length pns ∧

(∀T∈set pTs. is type G T) ∧ is type G rT ∧
nodups pns"

wf mdecl def "wf mdecl G C ≡ λ((mn,pTs),(m,pns,rT),lvars,blk,res).
wf mhead G (mn,pTs) (m,pns,rT) ∧ unique lvars ∧
(C=Object −→ ¬static m) ∧ (∀(vn,T)∈set lvars. is type G T) ∧
(∀pn∈set pns. table of lvars pn = None) ∧
(∃T. (G,table of lvars(pns[7→]pTs) (+)

(if static m then empty else empty(()7→Class C)))`
Body C blk res::-T ∧ G`T�rT)"

132

(* well-formed interface declaration, cf. 9.1, 9.1.2.1, 9.1.3, 9.4 *)
wf idecl def "wf idecl G ≡ λ(I,(si,ms)). ws idecl G I si ∧

¬is class G I ∧
(∀(sig,mh)∈set ms. wf mhead G sig mh ∧ ¬static (fst mh)) ∧
unique ms ∧
(o2s ◦ table of ms hidings Un tables((λJ.(imethds G J))‘‘set si)
entails (λmh (md,mh’). G`mrt mh�mrt mh’))"

(* well-formed class declaration, cf. 8.1, 8.1.2.1, 8.1.2.2, 8.1.3, 8.1.4 and
class method declaration, cf. 8.4.3.3, 8.4.6.1, 8.4.6.2, 8.4.6.3, 8.4.6.4 *)
wf cdecl def "wf cdecl G ≡ λ(C,(sc,si,fs,ms,init)).

¬is iface G C ∧
(∀I∈set si. is iface G I ∧

(∀s. ∀(md’, mh’) ∈ imethds G I s.
(∃(md ,(mh ,b)) ∈ cmethd G C s: G`mrt mh�mrt mh’ ∧

¬static (fst mh)))) ∧
(∀f∈set fs. wf fdecl G f) ∧ unique fs ∧
(∀m∈set ms. wf mdecl G C m) ∧ unique ms ∧
(G,empty)`init::

√
∧ ws cdecl G C sc ∧

(C 6= Object −→ (table of ms hiding cmethd G sc entails
(λ(mh,b) (md’,(mh’,b’)). G`mrt mh�mrt mh’ ∧

static (fst mh’) = static (fst mh))))"

(* well-formed program, cf. 8.1, 9.1 *)
wf prog def "wf prog G ≡ let is = fst G; cs = snd G in

ObjectC ∈ set cs ∧ (∀xn. SXcptC xn ∈ set cs) ∧
(∀i∈set is. wf idecl G i) ∧ unique is ∧
(∀c∈set cs. wf cdecl G c) ∧ unique cs"

end

133

(* Title: Isabelle/Bali/State.thy
ID: $State.thy,v 1.63 2000/11/23 09:57:31 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

State for evaluation of Java expressions and statements

design issues:
* all kinds of objects (class instances, arrays, and class objects)
are handeled via a general object abstraction

* the heap and the map for class objects are combined into a single table
(recall (loc, obj) table × (tname, obj) table ~= (loc + tname, obj) table)

simplifications:

*)

State = TypeRel +

datatype obj tag = (* tag for generic object *)
CInst tname (* class instance *)

| Arr ty int (* array with component type and length *)
(* | CStat the tag is irrelevant for a class object,

i.e. the static fields of a class *)

types vn = "fspec + int" (* variable name *)
obj = "obj tag × (vn, val) table" (* generalized object *)

constdefs

the Arr :: "obj option ⇒ ty × int × (vn, val) table"
"the Arr obj ≡ ε(T,k,t). obj = Some (Arr T k,t)"

upd obj :: "vn ⇒ val ⇒ obj ⇒ obj"
"upd obj n v ≡ λ(oi,vs). (oi,vs(n7→v))"

obj ty :: "obj ⇒ ty"
"obj ty obj ≡ case fst obj of CInst C ⇒ Class C | Arr T k ⇒ T.[]"

obj class :: "obj ⇒ tname"
"obj class obj ≡ case fst obj of CInst C ⇒ C | Arr T k ⇒ Object"

types oref = "loc + tname" (* generalized object reference *)
syntax
Heap :: "loc ⇒ oref"
Stat :: "tname ⇒ oref"

translations
"Heap" => "Inl"
"Stat" => "Inr"

134

constdefs
fields table :: "prog ⇒ tname ⇒ (fspec ⇒ field ⇒ bool) ⇒ (fspec, ty) table"

"fields table G C P ≡ option map snd ◦ table of (filter (split P) (fields G C))"

in bounds :: "int ⇒ int ⇒ bool" ("(/ in’ bounds)" [50, 51] 50)
"i in bounds k ≡ 0 ≤ i ∧ i < k"

arr comps :: "’a ⇒ int ⇒ int ⇒ ’a option"
"arr comps T k ≡ λi. if i in bounds k then Some T else None"

var tys :: "prog ⇒ obj tag ⇒ oref ⇒ (vn, ty) table"
"var tys G oi r ≡ case r of Heap a ⇒ (case oi of

CInst C ⇒ fields table G C (λn (m,fT). ¬static m) (+) empty
| Arr T k ⇒ empty (+) arr comps T k)

| Stat C ⇒ fields table G C
(λ(fn,fd) (m,fT). fd = C ∧ static m) (+) empty"

types globs (* global variables: heap and static variables *)
= "(oref , obj) table"
heap
= "(loc , obj) table"
locals
= "(lname, val) table" (* local variables *)

datatype st = (* pure state, i.e. contents of all variables *)
st globs locals

constdefs

globs :: "st ⇒ globs"
"globs ≡ st case (λg l. g)"

locals :: "st ⇒ locals"
"locals ≡ st case (λg l. l)"

heap :: "st ⇒ heap"
"heap s ≡ globs s ◦ Heap"

new Addr :: "heap ⇒ loc option"
"new Addr h ≡ if (∀a. h a 6= None) then None else Some (εa. h a = None)"

syntax
val this :: "st ⇒ val"
lookup obj :: "st ⇒ val ⇒ obj"

translations
"val this s" == "the (locals s This)"
"lookup obj s a’" == "the (heap s (the Addr a’))"

135

syntax
init vals :: "(’a, ty) table ⇒ (’a, val) table"

translations
"init vals vs" == "option map default val ◦ vs"

constdefs
gupd :: "oref ⇒ obj ⇒ st ⇒ st" ("gupd’(7→ ’)"[10,10]1000)
"gupd r obj ≡ st case (λg l. st (g(r7→obj)) l)"

lupd :: "lname ⇒ val ⇒ st ⇒ st" ("lupd’(7→ ’)"[10,10]1000)
"lupd vn v ≡ st case (λg l. st g (l(vn7→v)))"

upd gobj :: "oref ⇒ vn ⇒ val ⇒ st ⇒ st"
"upd gobj r n v ≡ st case (λg l. st (chg map (upd obj n v) r g) l)"

set locals :: "locals ⇒ st ⇒ st"
"set locals l ≡ st case (λg l’. st g l)"

init obj :: "prog ⇒ obj tag ⇒ oref ⇒ st ⇒ st"
"init obj G oi r ≡ gupd(r7→(oi, init vals (var tys G oi r)))"

syntax
init class obj :: "prog ⇒ tname ⇒ st ⇒ st"

translations
"init class obj G C" == "init obj G arbitrary (Inr C)"

datatype xcpt (* exception *)
= XcptLoc loc (* location of allocated execption object *)
| StdXcpt xname (* intermediate standard exception, see Eval.thy *)

consts

the XcptLoc :: "xcpt ⇒ loc"
the StdXcpt :: "xcpt ⇒ xname"

defs

the XcptLoc def "the XcptLoc xc ≡ εa. xc = XcptLoc a"
the StdXcpt def "the StdXcpt xc ≡ εx. xc = StdXcpt x"

types
xopt = "xcpt option"

constdefs
xcpt if :: "bool ⇒ xopt ⇒ xopt ⇒ xopt"
"xcpt if c x’ x ≡ if c ∧ (x = None) then x’ else x"

136

syntax
raise if :: "bool ⇒ xname ⇒ xopt ⇒ xopt"
np :: "val ⇒ xopt ⇒ xopt"
check neg:: "val ⇒ xopt ⇒ xopt"

translations
"raise if c xn" == "xcpt if c (Some (StdXcpt xn))"
"np v" == "raise if (v = Null) NullPointer"
"check neg i’" == "raise if (the Intg i’<0) NegArrSize"
types
state = "xopt × st" (* state including exception information *)

syntax
Norm :: "st ⇒ state"

translations
"Norm s" == "(None,s)"
"xopt" <= (type) "State.xcpt option"
"xopt" <= (type) "xcpt option"
"state" <= (type) "xopt × State.st"
"state" <= (type) "xopt × st"

constdefs
normal :: "state ⇒ bool"

"normal ≡ λs. fst s = None"

inited :: "tname ⇒ globs ⇒ bool"
"inited C g ≡ g (Stat C) 6= None"

initd :: "tname ⇒ state ⇒ bool"
"initd C ≡ inited C ◦ globs ◦ snd"

heap free :: "nat ⇒ state ⇒ bool"
"heap free n ≡ λs. atleast free (heap (snd s)) n"

xupd :: "(xopt ⇒ xopt) ⇒ state ⇒ state"
"xupd f ≡ prod fun f id"

supd :: "(st ⇒ st) ⇒ state ⇒ state"
"supd ≡ prod fun id"

syntax
set lvars :: "locals ⇒ state ⇒ state"
restore lvars :: "state ⇒ state ⇒ state"

translations
"set lvars l" == "supd (set locals l)"
"restore lvars s’ s" == "set lvars (locals (snd s’)) s"

end

137

(* Title: Isabelle/Bali/Eval.thy
ID: $Eval.thy,v 1.85 2000/11/27 15:20:15 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Operational evaluation (big-step) semantics of Java expressions and statements

improvements over Java Specification 1.0:
* dynamic method lookup does not need to consider the return type (cf.15.11.4.4)
* throw raises a NullPointer exception if a null reference is given, and each
throw of a standard exception yield a fresh exception object (was not specified)

* if there is not enough memory even to allocate an OutOfMemory exception,
evaluation/execution fails, i.e. simply stops (was not specified)

* array assignment checks lhs (and may throw exceptions) before evaluating rhs
* fixed exact positions of class initializations (immediate at first active use)
design issues:
* evaluation vs. (single-step) transition semantics
evaluation semantics chosen, because:
++ less verbose and therefore easier to read (and to handle in proofs)
+ more abstract
+ intermediate values (appearing in recursive rules) need not be stored

explicitly, e.g. no call body construct or stack of invocation frames
containing local variables and return addresses for method calls needed

+ convenient rule induction for subject reduction theorem
- no interleaving (for parallelism) can be described
- stating a property of infinite executions requires the meta-level argument

that this property holds for any finite prefixes of it (e.g. stopped using
a counter that is decremented to zero and then throwing an exception)

* unified evaluation for variables, expressions, expression lists, statements
* the value entry in statement rules is redundant
* the value entry in rules is irrelevant in case of exceptions, but its full
inclusion helps to make the rule structure independent of exception occurence.

* as irrelevant value entries are ignored, it does not matter if they are unique
For simplicity, (fixed) arbitrary values are preferred over "free" values.

* the rule format is such that the start state may contain an exception.
++ faciliates exception handling
+ symmetry

* the rules are defined carefully in order to be applicable even in not
type-correct situations (yielding undefined values),
e.g. the Addr (Val (Bool b)) = arbitrary.
++ fewer rules
- less readable because of auxiliary functions like the Addr
Alternative: "defensive" evaluation throwing some InternalError exception

in case of (impossible, for correct programs) type mismatches
* there is exactly one rule per syntactic construct
+ no redundancy in case distinctions

* halloc fails iff there is no free heap address. When there is
only one free heap address left, it returns an OutOfMemory exception.
In this way it is guaranteed that when an OutOfMemory exception is thrown for
the first time, there is a free location on the heap to allocate it.

138

* the allocation of objects that represent standard exceptions is deferred until
execution of any enclosing catch clause, which is transparent to the program.
- requires an auxiliary execution relation
++ avoids copies of allocation code and awkward case distinctions (whether

there is enough memory to allocate the exception) in evaluation rules
* unfortunately new Addr is not directly executable because of Hilbert operator.

simplifications:
* local variables are initialized with default values (no definite assignment)
* garbage collection not considered, therefore also no finalizers
* stack overflow and memory overflow during class initialization not modelled
* exceptions in initializations not replaced by ExceptionInInitializerError
*)

Eval = State +

types vvar = "val × (val ⇒ state ⇒ state)"
vals = "(val, vvar, val list) sum3"

translations
"vvar" <= (type) "val × (val ⇒ state ⇒ state)"
"vals" <= (type)"(val, vvar, val list) sum3"

constdefs
arbitrary3 :: "(’al + ’ar, ’b, ’c) sum3 ⇒ vals"

"arbitrary3 ≡ sum3 case (In1 ◦ sum case (λx. arbitrary) (λx. Unit))
(λx. In2 arbitrary) (λx. In3 arbitrary)"

constdefs
throw :: "val ⇒ xopt ⇒ xopt"

"throw a’ x ≡ xcpt if True (Some (XcptLoc (the Addr a’))) (np a’ x)"

fits :: "prog ⇒ st ⇒ val ⇒ ty ⇒ bool" (" , ` fits "[61,61,61,61]60)
"G,s`a’ fits T ≡ (∃rt. T=RefT rt) −→ a’=Null ∨ G`obj ty(lookup obj s a’)�T"

catch ::"prog ⇒ state ⇒ tname ⇒ bool" (" , `catch "[61,61,61]60)
"G,s`catch C≡∃xc. fst s=Some xc ∧ G,snd s`Addr (the XcptLoc xc) fits Class C"

new xcpt var :: "ename ⇒ state ⇒ state"
"new xcpt var vn ≡ λ(x,s). Norm(lupd(EName vn 7→Addr (the XcptLoc (the x))) s)"

constdefs

assign :: "(’a ⇒ state ⇒ state) ⇒ ’a ⇒ state ⇒ state"
"assign f v ≡ λ(x,s). let (x’,s’) = (if x = None then f v else id) (x,s)

in (x’,if x’ = None then s’ else s)"

init comp ty :: "ty ⇒ stmt"
"init comp ty T ≡ if (∃C. T = Class C) then init (the Class T) else Skip"

139

constdefs

target :: "inv mode ⇒ st ⇒ val ⇒ ref ty ⇒ tname"
"target m s a’ t ≡ if m = IntVir

then obj class (lookup obj s a’) else the Class (RefT t)"

init lvars :: "prog ⇒ tname ⇒ sig ⇒ inv mode ⇒ val ⇒ val list ⇒
state ⇒ state"

"init lvars G C sig mode a’ pvs ≡ λ(x,s). let
(,(,pns,),lvars,) = the (cmethd G C sig);
l = init vals(table of lvars)(pns[7→]pvs) (+)

(if mode=Static then empty else empty(()7→a’))
in set lvars l (if mode = Static then x else np a’ x,s)"

body :: "prog ⇒ tname ⇒ sig ⇒ expr"
"body G C sig ≡ let (D, , , c, e) = the (cmethd G C sig) in Body D c e"

consts
eval :: "prog ⇒ (state × term × vals × state) set"
halloc:: "prog ⇒ (state × obj tag × loc × state) set"
sxalloc:: "prog ⇒ (state × state) set"

constdefs
lvar :: "lname ⇒ st ⇒ vvar"

"lvar vn s ≡ (the (locals s vn), λv. supd (lupd(vn7→v)))"

fvar :: "tname ⇒ bool ⇒ ename ⇒ val ⇒ state ⇒ vvar × state"
"fvar C stat fn a’ s ≡ let (oref,xf) = if stat then (Stat C,id)

else (Heap (the Addr a’),np a’);
n = Inl (fn,C); f = (λv. supd (upd gobj oref n v)) in

((the (snd (the (globs (snd s) oref)) n),f),xupd xf s)"

avar :: "prog ⇒ val ⇒ val ⇒ state ⇒ vvar × state"
"avar G i’ a’ s ≡ let oref = Heap (the Addr a’); i = the Intg i’; n = Inr i;

(T,k,cs) = the Arr (globs (snd s) oref); f = (λv (x,s).
(raise if (¬G,s`v fits T) ArrStore x, upd gobj oref n v s)) in

((the (cs n),f), xupd (raise if (¬i in bounds k) IndOutBound ◦ np a’) s)"

syntax

eval ::"[prog,state,term ,vals*state]=>bool"(" |- - >-> " [61,61,80, 61]60)
exec ::"[prog,state,stmt ,state]=>bool"(" |- - -> " [61,61,65, 61]60)
evar ::"[prog,state,var ,vvar,state]=>bool"(" |- - => -> "[61,61,90,61,61]60)
eval ::"[prog,state,expr ,val, state]=>bool"(" |- - -> -> "[61,61,80,61,61]60)
evals::"[prog,state,expr list ,

val list ,state]=>bool"(" |- - #> -> "[61,61,61,61,61]60)
hallo::"[prog,state,obj tag,

loc,state]=>bool"(" |- -halloc > -> "[61,61,61,61,61]60)
sallo::"[prog,state ,state]=>bool" (" |- -sxalloc-> "[61,61, 61]60)

140

syntax (xsymbols)

dummy res :: "vals" ("•")
eval ::"[prog,state,term,vals×state]⇒bool" (" ` − �→ " [61,61,80, 61]60)
exec ::"[prog,state,stmt ,state]⇒bool"(" ` − → " [61,61,65, 61]60)
evar ::"[prog,state,var ,vvar,state]⇒bool"(" ` − =� → "[61,61,90,61,61]60)
eval ::"[prog,state,expr ,val ,state]⇒bool"(" ` − -� → "[61,61,80,61,61]60)
evals::"[prog,state,expr list ,

val list ,state]⇒bool"(" ` − .=� → "[61,61,61,61,61]60)
hallo::"[prog,state,obj tag,

loc,state]⇒bool"(" ` −halloc � → "[61,61,61,61,61]60)
sallo::"[prog,state, state]⇒bool" (" ` −sxalloc→ "[61,61, 61]60)

translations
"•" == "In1 Unit"
"G`s −t �→ w s’ " == "(s,t,w s’) ∈ eval G"
"G`s −t �→ (w, s’)" <= "(s,t,w, s’) ∈ eval G"
"G`s −t �→ (w,x,s’)" <= "(s,t,w,x,s’) ∈ eval G"
"G`s −c → (x,s’)" <= "G`s −In1r c�→ (• ,x,s’)"
"G`s −c → s’ " == "G`s −In1r c�→ (• , s’)"
"G`s −e-�v → (x,s’)" <= "G`s −In1l e�→ (In1 v ,x,s’)"
"G`s −e-�v → s’ " == "G`s −In1l e�→ (In1 v , s’)"
"G`s −e=�vf→ (x,s’)" <= "G`s −In2 e�→ (In2 vf,x,s’)"
"G`s −e=�vf→ s’ " == "G`s −In2 e�→ (In2 vf, s’)"
"G`s −e .=�v → (x,s’)" <= "G`s −In3 e�→ (In3 v ,x,s’)"
"G`s −e .=�v → s’ " == "G`s −In3 e�→ (In3 v , s’)"
"G`s −halloc oi�a→ (x,s’)" <= "(s,oi,a,x,s’) ∈ halloc G"
"G`s −halloc oi�a→ s’ " == "(s,oi,a, s’) ∈ halloc G"
"G`s −sxalloc→ (x,s’)" <= "(s ,x,s’) ∈ sxalloc G"
"G`s −sxalloc→ s’ " == "(s , s’) ∈ sxalloc G"

inductive "halloc G" intrs (* allocating objects on the heap, cf. 12.5 *)

Xcpt "G`(Some x,s) −halloc oi�arbitrary→ (Some x,s)"

New "[[new Addr (heap s) = Some a;
(x,oi’) = (if atleast free (heap s) 2 then (None,oi)

else (Some (XcptLoc a),CInst (SXcpt OutOfMemory)))]] =⇒
G`Norm s −halloc oi�a→ (x,init obj G oi’ (Heap a) s)"

inductive "sxalloc G" intrs (* allocating exception objects for
standard exceptions (other than OutOfMemory) *)

Norm "G` Norm s −sxalloc→ Norm s"

XcptL "G`(Some (XcptLoc a),s) −sxalloc→ (Some (XcptLoc a),s)"

SXcpt "[[G`Norm s0 −halloc (CInst (SXcpt xn))�a→ (x,s1)]] =⇒
G`(Some (StdXcpt xn),s0) −sxalloc→ (Some (XcptLoc a),s1)"

141

inductive "eval G" intrs

(* propagation of exceptions *)

(* cf. 14.1, 15.5 *)
Xcpt "G`(Some xc,s) −t�→ (arbitrary3 t,(Some xc,s))"

(* execution of statements *)

(* cf. 14.5 *)
Skip "G`Norm s −Skip→ Norm s"

(* cf. 14.7 *)
Expr "[[G`Norm s0 −e-�v→ s1]] =⇒

G`Norm s0 −Expr e→ s1"

(* cf. 14.2 *)
Comp "[[G`Norm s0 −c1 → s1;

G` s1 −c2 → s2]] =⇒
G`Norm s0 −c1;; c2→ s2"

(* cf. 14.8.2 *)
If "[[G`Norm s0 −e-�b→ s1;

G` s1−(if the Bool b then c1 else c2)→ s2]] =⇒
G`Norm s0 −If(e) c1 Else c2 → s2"

(* cf. 14.10, 14.10.1 *)
(* G`Norm s0 −If(e) (c;; While(e) c) Else Skip→ s3 *)
Loop "[[G`Norm s0 −e-�b→ s1;

if the Bool b then (G`s1 −c→ s2 ∧ G`s2 −While(e) c→ s3)
else s3 = s1]] =⇒

G`Norm s0 −While(e) c→ s3"

(* cf. 14.16 *)
Throw "[[G`Norm s0 −e-�a’→ s1]] =⇒

G`Norm s0 −Throw e→ xupd (throw a’) s1"

(* cf. 14.18.1 *)
Try "[[G`Norm s0 −c1→ s1; G`s1 −sxalloc→ s2;

if G,s2`catch C then G`new xcpt var vn s2 −c2→ s3 else s3 = s2]] =⇒
G`Norm s0 −Try c1 Catch(C vn) c2→ s3"

(* cf. 14.18.2 *)
Fin "[[G`Norm s0 −c1→ (x1,s1);

G`Norm s1 −c2→ s2]] =⇒
G`Norm s0 −c1 Finally c2→ xupd (xcpt if (x16=None) x1) s2"

142

(* cf. 12.4.2, 8.5 *)
Init "[[the (class G C) = (sc,si,fs,ms,ini);

if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init class obj G C s0)

−(if C = Object then Skip else init sc)→ s1 ∧
G`set lvars empty s1 −ini→ s2 ∧ s3 = restore lvars s1 s2)]] =⇒
G`Norm s0 −init C→ s3"

(* evaluation of expressions *)

(* cf. 15.8.1, 12.4.1 *)
NewC "[[G`Norm s0 −init C→ s1;

G` s1 −halloc (CInst C)�a→ s2]] =⇒
G`Norm s0 −NewC C-�Addr a→ s2"

(* cf. 15.9.1, 12.4.1 *)
NewA "[[G`Norm s0 −init comp ty T→ s1; G`s1 −e-�i’→ s2;

G`xupd (check neg i’) s2 −halloc (Arr T (the Intg i’))�a→ s3]] =⇒
G`Norm s0 −New T[e]-�Addr a→ s3"

(* cf. 15.15 *)
Cast "[[G`Norm s0 −e-�v→ s1;

s2 = xupd (raise if (¬G,snd s1`v fits T) ClassCast) s1]] =⇒
G`Norm s0 −Cast T e-�v→ s2"

(* cf. 15.19.2 *)
Inst "[[G`Norm s0 −e-�v→ s1;

b = (v6=Null ∧ G,snd s1`v fits RefT T)]] =⇒
G`Norm s0 −e InstOf T-�Bool b→ s1"

(* cf. 15.7.1 *)
Lit "G`Norm s −Lit v-�v→ Norm s"

(* cf. 15.10.2 *)
Super "G`Norm s −Super-�val this s→ Norm s"

(* cf. 15.2 *)
Acc "[[G`Norm s0 −va=�(v,f)→ s1]] =⇒

G`Norm s0 −Acc va-�v→ s1"

(* cf. 15.25.1 *)
Ass "[[G`Norm s0 −va=�(w,f)→ s1;

G` s1 −e-�v → s2]] =⇒
G`Norm s0 −va:=e-�v→ assign f v s2"

143

(* cf. 15.24 *)
Cond "[[G`Norm s0 −e0-�b→ s1;

G` s1 −(if the Bool b then e1 else e2)-�v→ s2]] =⇒
G`Norm s0 −e0 ? e1 : e2-�v→ s2"

(* cf. 15.11.4.1, 15.11.4.2, 15.11.4.4, 15.11.4.5 *)
Call "[[G`Norm s0 −e-�a’→ s1; G`s1 −args .=�vs→ s2;

C = target mode (snd s2) a’ cT;
G`init lvars G C (mn,pTs) mode a’ vs s2 −Methd C (mn,pTs)-�v→ s3]] =⇒
G`Norm s0 −{t,cT,mode}e..mn({pTs}args)-�v→ (restore lvars s2 s3)"

Methd "[[G`Norm s0 −body G C sig-�v→ s1]] =⇒
G`Norm s0 −Methd C sig-�v→ s1"

(* cf. 14.15, 12.4.1 *)
Body "[[G`Norm s0 −init D→ s1; G`s1 −c→ s2; G`s2 −e-�v→ s3]] =⇒

G`Norm s0 −Body D c e-�v→ s3"

(* evaluation of variables *)

(* cf. 15.13.1, 15.7.2 *)
LVar "G`Norm s −LVar vn=�lvar vn s→ Norm s"

(* cf. 15.10.1, 12.4.1 *)
FVar "[[G`Norm s0 −init C→ s1; G`s1 −e-�a→ s2;

(v,s2’) = fvar C stat fn a s2]] =⇒
G`Norm s0 −{C,stat}e..fn=�v→ s2’"

(* cf. 15.12.1, 15.25.1 *)
AVar "[[G` Norm s0 −e1-�a→ s1; G`s1 −e2-�i→ s2;

(v,s2’) = avar G i a s2]] =⇒
G`Norm s0 −e1.[e2]=�v→ s2’"

(* evaluation of expression lists *)

(* cf. 15.11.4.2 *)
Nil

"G`Norm s0 −[] .=�[]→ Norm s0"

(* cf. 15.6.4 *)
Cons "[[G`Norm s0 −e -� v → s1;

G` s1 −es .=�vs→ s2]] =⇒
G`Norm s0 −e#es .=�v#vs→ s2"

monos
if def2

end

144

(* Title: Isabelle/Bali/Evaln.thy
ID: $Evaln.thy,v 1.32 2000/11/19 19:09:36 oheimb Exp $
Author: David von Oheimb
Copyright 1999 Technische Universitaet Muenchen

Operational evaluation (big-step) semantics of Java expressions and statements
Variant of eval relation with counter for bounded recursive depth
Evaln could completely replace Eval.
*)
Evaln = Eval +

consts

evaln :: "prog ⇒ (state × term × nat × vals × state) set"

syntax

evaln :: "[prog, state, term, nat, vals * state] => bool"
(" |- - >- -> " [61,61,80, 61,61] 60)

evarn :: "[prog, state, var , vvar , nat, state] => bool"
(" |- - => - -> " [61,61,90,61,61,61] 60)

eval n:: "[prog, state, expr , val , nat, state] => bool"
(" |- - -> - -> " [61,61,80,61,61,61] 60)

evalsn:: "[prog, state, expr list, val list, nat, state] => bool"
(" |- - #> - -> " [61,61,61,61,61,61] 60)

execn :: "[prog, state, stmt , nat, state] => bool"
(" |- - - -> " [61,61,65, 61,61] 60)

syntax (xsymbols)

evaln :: "[prog, state, term, nat, vals × state] ⇒ bool"
(" ` − �− → " [61,61,80, 61,61] 60)

evarn :: "[prog, state, var , vvar , nat, state] ⇒ bool"
(" ` − =� − → " [61,61,90,61,61,61] 60)

eval n:: "[prog, state, expr , val , nat, state] ⇒ bool"
(" ` − -� − → " [61,61,80,61,61,61] 60)

evalsn:: "[prog, state, expr list, val list, nat, state] ⇒ bool"
(" ` − .=� − → " [61,61,61,61,61,61] 60)

execn :: "[prog, state, stmt , nat, state] ⇒ bool"
(" ` − − → " [61,61,65, 61,61] 60)

translations

"G`s −t �−n→ w s’ " == "(s,t,n,w s’) ∈ evaln G"
"G`s −t �−n→ (w, s’)" <= "(s,t,n,w, s’) ∈ evaln G"
"G`s −t �−n→ (w,x,s’)" <= "(s,t,n,w,x,s’) ∈ evaln G"
"G`s −c −n→ (x,s’)" <= "G`s −In1r c�−n→ (• ,x,s’)"
"G`s −c −n→ s’ " == "G`s −In1r c�−n→ (• , s’)"
"G`s −e-�v −n→ (x,s’)" <= "G`s −In1l e�−n→ (In1 v ,x,s’)"
"G`s −e-�v −n→ s’ " == "G`s −In1l e�−n→ (In1 v , s’)"
"G`s −e=�vf −n→ (x,s’)" <= "G`s −In2 e�−n→ (In2 vf,x,s’)"

145

"G`s −e=�vf −n→ s’ " == "G`s −In2 e�−n→ (In2 vf, s’)"
"G`s −e .=�v −n→ (x,s’)" <= "G`s −In3 e�−n→ (In3 v ,x,s’)"
"G`s −e .=�v −n→ s’ " == "G`s −In3 e�−n→ (In3 v , s’)"

inductive "evaln G" intrs

(* propagation of exceptions *)

Xcpt "G`(Some xc,s) −t�−n→ (arbitrary3 t,(Some xc,s))"

(* evaluation of variables *)

LVar "G`Norm s −LVar vn=�lvar vn s−n→ Norm s"

FVar "[[G`Norm s0 −init C−n→ s1; G`s1 −e-�a’−n→ s2;
(v,s2’) = fvar C stat fn a’ s2]] =⇒
G`Norm s0 −{C,stat}e..fn=�v−n→ s2’"

AVar "[[G` Norm s0 −e1-�a−n→ s1 ; G`s1 −e2-�i−n→ s2;
(v,s2’) = avar G i a s2]] =⇒

G`Norm s0 −e1.[e2]=�v−n→ s2’"

(* evaluation of expressions *)

NewC "[[G`Norm s0 −init C−n→ s1;
G` s1 −halloc (CInst C)�a→ s2]] =⇒

G`Norm s0 −NewC C-�Addr a−n→ s2"

NewA "[[G`Norm s0 −init comp ty T−n→ s1; G`s1 −e-�i’−n→ s2;
G`xupd (check neg i’) s2 −halloc (Arr T (the Intg i’))�a→ s3]] =⇒

G`Norm s0 −New T[e]-�Addr a−n→ s3"

Cast "[[G`Norm s0 −e-�v−n→ s1;
s2 = xupd (raise if (¬G,snd s1`v fits T) ClassCast) s1]] =⇒

G`Norm s0 −Cast T e-�v−n→ s2"

Inst "[[G`Norm s0 −e-�v−n→ s1;
b = (v6=Null ∧ G,snd s1`v fits RefT T)]] =⇒

G`Norm s0 −e InstOf T-�Bool b−n→ s1"

Lit "G`Norm s −Lit v-�v−n→ Norm s"

Super "G`Norm s −Super-�val this s−n→ Norm s"

146

Acc "[[G`Norm s0 −va=�(v,f)−n→ s1]] =⇒
G`Norm s0 −Acc va-�v−n→ s1"

Ass "[[G`Norm s0 −va=�(w,f)−n→ s1;
G` s1 −e-�v −n→ s2]] =⇒

G`Norm s0 −va:=e-�v−n→ assign f v s2"

Cond "[[G`Norm s0 −e0-�b−n→ s1;
G` s1 −(if the Bool b then e1 else e2)-�v−n→ s2]] =⇒

G`Norm s0 −e0 ? e1 : e2-�v−n→ s2"

Call "[[G`Norm s0 −e-�a’−n→ s1; G`s1 −args .=�vs−n→ s2;
C = target mode (snd s2) a’ cT;
G`init lvars G C (mn,pTs) mode a’ vs s2 −Methd C (mn,pTs)-�v−n→ s3]]

=⇒ G`Norm s0 −{t,cT,mode}e..mn({pTs}args)-�v−n→ (restore lvars s2 s3)"

Methd "[[G`Norm s0 −body G C sig-�v−n→ s1]] =⇒
G`Norm s0 −Methd C sig-�v−Suc n→ s1"

Body "[[G`Norm s0−init D−n→ s1; G`s1 −c−n→ s2; G`s2 −e-�v−n→ s3]] =⇒
G`Norm s0 −Body D c e-�v−n→ s3"

(* evaluation of expression lists *)

Nil
"G`Norm s0 −[] .=�[]−n→ Norm s0"

Cons "[[G`Norm s0 −e -� v −n→ s1;
G` s1 −es .=�vs−n→ s2]] =⇒

G`Norm s0 −e#es .=�v#vs−n→ s2"

(* execution of statements *)

Skip "G`Norm s −Skip−n→ Norm s"

Expr "[[G`Norm s0 −e-�v−n→ s1]] =⇒
G`Norm s0 −Expr e−n→ s1"

Comp "[[G`Norm s0 −c1 −n→ s1;
G` s1 −c2 −n→ s2]] =⇒

G`Norm s0 −c1;; c2−n→ s2"

If "[[G`Norm s0 −e-�b−n→ s1;
G` s1−(if the Bool b then c1 else c2)−n→ s2]] =⇒

G`Norm s0 −If(e) c1 Else c2 −n→ s2"

Loop "[[G`Norm s0 −e-�b−n→ s1;
if the Bool b then (G`s1 −c−n→ s2 ∧ G`s2 −While(e) c−n→ s3)

else s3 = s1]] =⇒
G`Norm s0 −While(e) c−n→ s3"

147

Throw "[[G`Norm s0 −e-�a’−n→ s1]] =⇒
G`Norm s0 −Throw e−n→ xupd (throw a’) s1"

Try "[[G`Norm s0 −c1−n→ s1; G`s1 −sxalloc→ s2;
if G,s2`catch tn then G`new xcpt var vn s2 −c2−n→ s3 else s3 = s2]] =⇒

G`Norm s0 −Try c1 Catch(tn vn) c2−n→ s3"

Fin "[[G`Norm s0 −c1−n→ (x1,s1);
G`Norm s1 −c2−n→ s2]] =⇒

G`Norm s0 −c1 Finally c2−n→ xupd (xcpt if (x16=None) x1) s2"

Init "[[the (class G C) = (sc,si,fs,ms,ini);
if inited C (globs s0) then s3 = Norm s0
else (G`Norm (init class obj G C s0)

−(if C = Object then Skip else init sc)−n→ s1 ∧
G`set lvars empty s1 −ini−n→ s2 ∧ s3 = restore lvars s1 s2)]] =⇒
G`Norm s0 −init C−n→ s3"

monos
if def2

end

148

(* Title: Isabelle/Bali/Conform.thy
ID: $Conform.thy,v 1.5 2000/10/19 21:21:51 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

Conformance notions for the type soundness proof for Java

design issues:
* lconf allows for (arbitrary) inaccessible values
* "conforms" does not directly imply that the dynamic types of all objects on
the heap are indeed existing classes. Yet this can be inferred for all
referenced objs.

*)

Conform = State +

types env = "prog × (lname, ty) table" (* same as env of WellType.thy *)

constdefs

gext :: "st ⇒ st ⇒ bool" (" ≤| " [71,71] 70)
"s≤|s’ ≡ ∀r. ∀(oi, fs)∈globs s r: ∃(oi’,fs’)∈globs s’ r: oi’ = oi"

conf :: "prog ⇒ st ⇒ val ⇒ ty ⇒ bool" (" , ` ::� " [71,71,71,71] 70)
"G,s`v::�T ≡ ∃T’∈typeof (λa. option map obj ty (heap s a)) v:G`T’�T"

lconf :: "prog ⇒ st ⇒ (’a, val) table ⇒ (’a, ty) table ⇒ bool"
(" , ` [::�] " [71,71,71,71] 70)

"G,s`vs[::�]Ts ≡ ∀n. ∀T∈Ts n: ∃v∈vs n: G,s`v::�T"

oconf :: "prog ⇒ st ⇒ obj ⇒ oref ⇒ bool" (" , ` ::�
√

" [71,71,71,71] 70)
"G,s`obj::�

√
r ≡ G,s`snd obj[::�]var tys G (fst obj) r ∧ (case r of

Heap a ⇒ is type G (obj ty obj) | Stat C ⇒ True)"

conforms :: "state ⇒ env ⇒ bool" (" ::� " [71,71] 70)
"xs::�E ≡ let (G, L) = E; s = snd xs; l = locals s in

(∀r. ∀obj∈globs s r: G,s`obj ::�
√
r) ∧

G,s`l [::�]L ∧
(∀a. fst xs=Some(XcptLoc a) −→ G,s`Addr a::�Class (SXcpt Throwable))"

end

149

(* Title: Isabelle/Bali/TypeSafe.thy
ID: $TypeSafe.thy,v 1.21 2000/11/25 23:58:27 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

The type soundness proof for Java
*)

TypeSafe = Eval + WellForm + Conform +

constdefs
DynT prop::"[prog,inv mode,tname,ref ty] ⇒ bool" (" ` → � "[71,71,71,71] 70)
"G`mode→D�t ≡ mode = IntVir −→ is class G D ∧

(if (∃T. t=ArrayT T) then D=Object else G`Class D�RefT t)"

assign conforms :: "st ⇒ (val ⇒ state ⇒ state) ⇒ ty ⇒ env ⇒ bool"
(" ≤| � ::� " [71,71,71,71] 70)

"s≤|f�T::�E ≡
∀s’ w. Norm s’::�E −→ fst E,s’`w::�T −→ s≤|s’ −→ assign f w (Norm s’)::�E"

rconf :: "prog ⇒ lenv ⇒ st ⇒ term ⇒ vals ⇒ tys ⇒ bool"
(" , , ` � ::� " [71,71,71,71,71,71] 70)
"G,L,s`t�v::�T ≡ case T of

Inl T ⇒ if (∃vf. t=In2 vf)
then G,s`fst (the In2 v)::�T ∧ s≤|snd (the In2 v)�T::�(G,L)
else G,s`the In1 v::�T

| Inr Ts ⇒ list all2 (conf G s) (the In3 v) Ts"

end

150

(* Title: Isabelle/Bali/AxSem.thy
ID: $AxSem.thy,v 1.109 2000/11/25 23:58:27 oheimb Exp $
Author: David von Oheimb
Copyright 1998 Technische Universitaet Muenchen

Axiomatic semantics of Java expressions and statements (see also Eval.thy)

design issues:
* a strong version of validity for triples with premises, namely one that takes
the recursive depth needed to complete execution, enables correctness proof

* auxiliary variables are handled first-class (-> Thomas Kleymann)
* expressions not flattened to elementary assignments (as usual for axiomatic
semantics) but treated first-class => explicit result value handling

* intermediate values not on triple, but on assertion level (with result entry)
* multiple results with semantical substitution mechnism not requiring a stack
* because of dynamic method binding, terms need to be dependent on state.
this is also useful for conditional expressions and statements

* result values in triples exactly as in eval relation (also for xcpt states)
* validity: additional assumption of state conformance and well-typedness,
which is required for soundness and thus rule hazard required of completeness

restrictions:
* all triples in a derivation are of the same type (due to weak polymorphism)
*)

AxSem = Evaln + TypeSafe +

types res = vals (* result entry *)

syntax
Val :: "val ⇒ res"
Var :: "var ⇒ res"
Vals :: "val list ⇒ res"

translations
"Val x" => "(In1 x)"
"Var x" => "(In2 x)"
"Vals x" => "(In3 x)"

syntax
"Val " :: [pttrn] => pttrn ("Val: " [951] 950)
"Var " :: [pttrn] => pttrn ("Var: " [951] 950)
"Vals " :: [pttrn] => pttrn ("Vals: " [951] 950)

translations
"λVal:v . b" == "(λv. b) ◦ the In1"
"λVar:v . b" == "(λv. b) ◦ the In2"
"λVals:v. b" == "(λv. b) ◦ the In3"

151

(* relation on result value, state and auxiliary variables *)
types ’a assn = "res ⇒ state ⇒ ’a ⇒ bool"

translations
"res" <= (type) "AxSem.res"
"a assn" <= (type) "vals ⇒ state ⇒ a ⇒ bool"

constdefs
assn imp :: "’a assn ⇒ ’a assn ⇒ bool" (infixr "⇒" 25)

"P ⇒ Q ≡ ∀Y s Z. P Y s Z −→ Q Y s Z"

peek and :: "’a assn ⇒ (state ⇒ bool) ⇒ ’a assn" (infixl "∧." 13)
"P ∧. p ≡ λY s Z. P Y s Z ∧ p s"

assn supd :: "’a assn ⇒ (state ⇒ state) ⇒ ’a assn" (infixl ";." 13)
"P ;. f ≡ λY s’ Z. ∃s. P Y s Z ∧ s’ = f s"

supd assn :: "(state ⇒ state) ⇒ ’a assn ⇒ ’a assn" (infixr ".;" 13)
"f .; P ≡ λY s. P Y (f s)"

subst res :: "’a assn ⇒ res ⇒ ’a assn" (" ← " [60,61] 60)
"P←w ≡ λY. P w"

subst Bool :: "’a assn ⇒ bool ⇒ ’a assn" (" ←= " [60,61] 60)
"P←=b ≡ λY s Z. ∃v. P (Val v) s Z ∧ (normal s −→ the Bool v=b)"

peek res :: "(res ⇒ ’a assn) ⇒ ’a assn"
"peek res Pf ≡ λY. Pf Y Y"

peek st :: "(st ⇒ ’a assn) ⇒ ’a assn"
"peek st P ≡ λY s. P (snd s) Y s"

ign res :: " ’a assn ⇒ ’a assn" (" ↓" [1000] 1000)
"P↓ ≡ λY s Z. ∃Y. P Y s Z"

syntax
Normal :: "’a assn ⇒ ’a assn"

"@peek res" :: "pttrn ⇒ ’a assn ⇒ ’a assn" ("λ :. " [0,3] 3)
"@peek st" :: "pttrn ⇒ ’a assn ⇒ ’a assn" ("λ .. " [0,3] 3)

translations
"Normal P" == "P ∧. normal"
"λw:. P" == "peek res (λw. P)"
"λs.. P" == "peek st (λs. P)"

constdefs
ign res eq :: "’a assn ⇒ res ⇒ ’a assn" (" ↓= " [60,61] 60)
"P↓=w ≡ λY:. P↓ ∧. (λs. Y=w)"

152

RefVar :: "(state ⇒ vvar × state) ⇒ ’a assn ⇒ ’a assn" (infixr "..;" 13)
"vf ..; P ≡ λY s. let (v,s’) = vf s in P (Var v) s’"

Alloc :: "prog ⇒ obj tag ⇒ ’a assn ⇒ ’a assn"
"Alloc G otag P ≡ λY s Z.

∀s’ a. G`s −halloc otag�a→ s’−→ P (Val (Addr a)) s’ Z"

SXAlloc :: "prog ⇒ ’a assn ⇒ ’a assn"
"SXAlloc G P ≡ λY s Z. ∀s’. G`s −sxalloc→ s’ −→ P Y s’ Z"

type ok :: "prog ⇒ term ⇒ state ⇒ bool"
"type ok G t s ≡ ∃L T. (normal s −→ (G,L)`t::T) ∧ s::�(G,L)"

datatype ’a triple = triple (’a assn) term (’a assn) (** should be
something like triple = ∀’a. triple (’a assn) term (’a assn) **)

("{(1)}/ >/ {(1)}" [3,65,3] 75)
types ’a triples = ’a triple set

syntax

var triple :: "[’a assn, var ,’a assn] ⇒ ’a triple"
("{(1)}/ =>/ {(1)}" [3,80,3] 75)

expr triple :: "[’a assn, expr ,’a assn] ⇒ ’a triple"
("{(1)}/ ->/ {(1)}" [3,80,3] 75)

exprs triple :: "[’a assn, expr list ,’a assn] ⇒ ’a triple"
("{(1)}/ #>/ {(1)}" [3,65,3] 75)

stmt triple :: "[’a assn, stmt, ’a assn] ⇒ ’a triple"
("{(1)}/ . ./ {(1)}" [3,65,3] 75)

syntax (xsymbols)

triple :: "[’a assn, term ,’a assn] ⇒ ’a triple"
("{(1)}/ �/ {(1)}" [3,65,3] 75)

var triple :: "[’a assn, var ,’a assn] ⇒ ’a triple"
("{(1)}/ =�/ {(1)}" [3,80,3] 75)

expr triple :: "[’a assn, expr ,’a assn] ⇒ ’a triple"
("{(1)}/ -�/ {(1)}" [3,80,3] 75)

exprs triple :: "[’a assn, expr list ,’a assn] ⇒ ’a triple"
("{(1)}/ .=�/ {(1)}" [3,65,3] 75)

translations
"{P} e-� {Q}" == "{P} In1l e� {Q}"
"{P} e=� {Q}" == "{P} In2 e� {Q}"
"{P} e

.=� {Q}" == "{P} In3 e� {Q}"
"{P} .c. {Q}" == "{P} In1r c� {Q}"

153

constdefs
mtriples :: "(’c ⇒ ’sig ⇒ ’a assn) ⇒ (’c ⇒ ’sig ⇒ expr) ⇒

(’c ⇒ ’sig ⇒ ’a assn) ⇒ (’c × ’sig) set ⇒ ’a triples"
("{{(1)}/ -�/ {(1)} | }"[3,65,3,65]75)

"{{P} tf-� {Q} | ms} ≡ (λ(C,sig). {Normal(P C sig)} tf C sig-� {Q C sig})‘‘ms"

consts

triple valid :: "prog ⇒ nat ⇒ ’a triple ⇒ bool"
(" |= : " [61,0, 58] 57)

ax valids :: "prog ⇒ ’b triples ⇒ ’a triples ⇒ bool"
(" , ||= " [61,58,58] 57)

ax derivs :: "prog ⇒ (’b triples × ’a triples) set"

syntax

triples valid:: "prog ⇒ nat ⇒ ’a triples ⇒ bool"
(" ||= : " [61,0, 58] 57)

ax valid :: "prog ⇒ ’b triples ⇒ ’a triple ⇒ bool"
(" , |= " [61,58,58] 57)

ax Derivs:: "prog ⇒ ’b triples ⇒ ’a triples ⇒ bool"
(" , ||- " [61,58,58] 57)

ax Deriv :: "prog ⇒ ’b triples ⇒ ’a triple ⇒ bool"
(" , |- " [61,58,58] 57)

syntax (xsymbols)

triples valid:: "prog ⇒ nat ⇒ ’a triples ⇒ bool"
(" ||= : " [61,0, 58] 57)

ax valid :: "prog ⇒ ’b triples ⇒ ’a triple ⇒ bool"
(" , |= " [61,58,58] 57)

ax Derivs:: "prog ⇒ ’b triples ⇒ ’a triples ⇒ bool"
(" , |` " [61,58,58] 57)

ax Deriv :: "prog ⇒ ’b triples ⇒ ’a triple ⇒ bool"
(" , ` " [61,58,58] 57)

defs triple valid def "G|=n:t ≡ case t of {P} t� {Q} ⇒
∀Y s Z. P Y s Z −→ type ok G t s −→
(∀Y’ s’. G`s −t�−n→ (Y’,s’) −→ Q Y’ s’ Z)"

translations "G||=n:ts" == "Ball ts (triple valid G n)"
defs ax valids def "G,A||=ts ≡ ∀n. G||=n:A −→ G||=n:ts"
translations "G,A |=t" == "G,A||={t}"

"G,A|`ts" == "(A,ts) ∈ ax derivs G"
"G,A `t" == "G,A|`{t}"

154

inductive "ax derivs G" intrs

empty " G,A|`{}"
insert"[[G,A`t; G,A|`ts]] =⇒

G,A|`insert t ts"

asm "ts⊆A =⇒ G,A|`ts"

(* could be added for convenience and efficiency, but is not necessary
cut "[[G,A’|`ts; G,A|`A’]] =⇒

G,A |`ts"
*)
weaken"[[G,A|`ts’; ts ⊆ ts’]] =⇒ G,A|`ts"

conseq"∀Y s Z . P Y s Z −→ (∃P’ Q’. G,A`{P’} t� {Q’} ∧ (∀Y’ s’.
(∀Y Z’. P’ Y s Z’ −→ Q’ Y’ s’ Z’) −→

Q Y’ s’ Z))
=⇒ G,A`{P } t� {Q }"

hazard"G,A`{P ∧. Not ◦ type ok G t} t� {Q}"

Xcpt "G,A`{P←(arbitrary3 t) ∧. Not ◦ normal} t� {P}"

(* variables *)
LVar " G,A`{Normal (λs.. P←Var (lvar vn s))} LVar vn=� {P}"

FVar "[[G,A`{Normal P} .init C. {Q};
G,A`{Q} e-� {λVal:a:. fvar C stat fn a ..; R}]] =⇒

G,A`{Normal P} {C,stat}e..fn=� {R}"

AVar "[[G,A`{Normal P} e1-� {Q};
∀a. G,A`{Q←Val a} e2-� {λVal:i:. avar G i a ..; R}]] =⇒

G,A`{Normal P} e1.[e2]=� {R}"
(* expressions *)

NewC "[[G,A`{Normal P} .init C. {Alloc G (CInst C) Q}]] =⇒
G,A`{Normal P} NewC C-� {Q}"

NewA "[[G,A`{Normal P} .init comp ty T. {Q}; G,A`{Q} e-�
{λVal:i:. xupd (check neg i) .; Alloc G (Arr T (the Intg i)) R}]] =⇒

G,A`{Normal P} New T[e]-� {R}"

Cast "[[G,A`{Normal P} e-� {λVal:v:. λs..
xupd (raise if (¬G,s`v fits T) ClassCast) .; Q←Val v}]] =⇒

G,A`{Normal P} Cast T e-� {Q}"

Inst "[[G,A`{Normal P} e-� {λVal:v:. λs..
Q←Val (Bool (v6=Null ∧ G,s`v fits RefT T))}]] =⇒

G,A`{Normal P} e InstOf T-� {Q}"

155

Lit "G,A`{Normal (P←Val v)} Lit v-� {P}"

Super " G,A`{Normal (λs.. P←Val (val this s))} Super-� {P}"

Acc "[[G,A`{Normal P} va=� {λVar:(v,f):. Q←Val v}]] =⇒
G,A`{Normal P} Acc va-� {Q}"

Ass "[[G,A`{Normal P} va=� {Q};
∀vf. G,A`{Q←Var vf} e-� {λVal:v:. assign (snd vf) v .; R}]] =⇒

G,A`{Normal P} va:=e-� {R}"

Cond "[[G,A `{Normal P} e0-� {P’};
∀b. G,A`{P’←=b} (if b then e1 else e2)-� {Q}]] =⇒

G,A`{Normal P} e0 ? e1 : e2-� {Q}"

Call "[[G,A`{Normal P} e-� {Q}; ∀a. G,A`{Q←Val a} args
.=� {R a};

∀a vs D l. G,A`{(R a←Vals vs ∧.
(λs. D = target mode (snd s) a cT ∧ l = locals (snd s)) ;.
init lvars G D (mn,pTs) mode a vs) ∧.
(λs. normal s −→ G`mode→D�t)}

Methd D (mn,pTs)-� {set lvars l .; S}]] =⇒
G,A`{Normal P} {t,cT,mode}e..mn({pTs}args)-� {S}"

Methd "[[G,A∪ {{P} Methd-� {Q} | ms} |` {{P} body G-� {Q} | ms}]] =⇒
G,A|`{{P} Methd-� {Q} | ms}"

Body "[[G,A`{Normal P} .init D. {Q}; G,A`{Q} .c. {R}; G,A`{R} e-� {S}]] =⇒
G,A`{Normal P} Body D c e-� {S}"

(* expression lists *)

Nil "G,A`{Normal (P←Vals [])} []
.=� {P}"

Cons "[[G,A`{Normal P} e-� {Q};
∀v. G,A`{Q←Val v} es

.=� {λVals:vs:. R←Vals (v#vs)}]] =⇒
G,A`{Normal P} e#es

.=� {R}"

(* statements *)

Skip "G,A`{Normal (P←•)} .Skip. {P}"

Expr "[[G,A`{Normal P} e-� {Q←•}]] =⇒
G,A`{Normal P} .Expr e. {Q}"

Comp "[[G,A`{Normal P} .c1. {Q};
G,A`{Q} .c2. {R}]] =⇒

G,A`{Normal P} .c1;;c2. {R}"

156

If "[[G,A `{Normal P} e-� {P’};
∀b. G,A`{P’←=b} .(if b then c1 else c2). {Q}]] =⇒

G,A`{Normal P} .If(e) c1 Else c2. {Q}"
(* unfolding variant of Loop, not needed here
LoopU "[[G,A `{Normal P} e-� {P’};

∀b. G,A`{P’←=b} .(if b then c;;While(e) c else Skip).{Q}]]
=⇒ G,A`{Normal P} .While(e) c. {Q}"

*)
Loop "[[G,A`{P} e-� {P’}; G,A`{Normal (P’←=True)} .c. {P}]] =⇒

G,A`{P} .While(e) c. {(P’←=False)↓=•}"

Throw "[[G,A`{Normal P} e-� {λVal:a:. xupd (throw a) .; Q←•}]] =⇒
G,A`{Normal P} .Throw e. {Q}"

Try "[[G,A`{Normal P} .c1. {SXAlloc G Q};
G,A`{Q ∧. (λs. G,s`catch C) ;. new xcpt var vn} .c2. {R};

(Q ∧. (λs. ¬G,s`catch C)) ⇒ R]] =⇒
G,A`{Normal P} .Try c1 Catch(C vn) c2. {R}"

Fin "[[G,A`{Normal P} .c1. {Q};
∀x. G,A`{Q ∧. (λs. x = fst s) ;. xupd (λx. None)}

.c2. {xupd (xcpt if (x6=None) x) .; R}]] =⇒
G,A`{Normal P} .c1 Finally c2. {R}"

Done "G,A`{Normal (P←• ∧. initd C)} .init C. {P}"

Init "[[the (class G C) = (sc,si,fs,ms,ini);
G,A`{Normal ((P ∧. Not ◦ initd C) ;. supd (init class obj G C))}

.(if C = Object then Skip else init sc). {Q};
∀l. G,A`{Q ∧. (λs. l = locals (snd s)) ;. set lvars empty}

.ini. {set lvars l .; R}]] =⇒
G,A`{Normal (P ∧. Not ◦ initd C)} .init C. {R}"

rules (** these terms are the same as above, but with generalized typing **)

polymorphic conseq
"∀Y s Z . P Y s Z −→ (∃P’ Q’. G,A`{P’} t� {Q’} ∧ (∀Y’ s’.
(∀Y Z’. P’ Y s Z’ −→ Q’ Y’ s’ Z’) −→

Q Y’ s’ Z))
=⇒ G,A`{P } t� {Q }"

polymorphic Loop
"[[G,A`{P} e-� {P’}; G,A`{Normal (P’←=True)} .c. {P}]] =⇒

G,A`{P} .While(e) c. {(P’←=False)↓=•}"

end

157

(* Title: Isabelle/Bali/AxSound.thy
ID: $AxSound.thy,v 1.11 2000/11/19 19:09:35 oheimb Exp $
Author: David von Oheimb
Copyright 1999 Technische Universitaet Muenchen

Soundness proof for Axiomatic semantics of Java expressions and statements
*)

AxSound = AxSem +

consts

triple valid2:: "prog ⇒ nat ⇒ ’a triple ⇒ bool"
(" |= :: "[61,0, 58] 57)

ax valids2:: "prog ⇒ ’a triples ⇒ ’a triples ⇒ bool"
(" , ||=:: " [61,58,58] 57)

defs triple valid2 def "G|=n::t ≡ case t of {P} t� {Q} ⇒
∀Y s Z. P Y s Z −→ (∀L. s::�(G,L) −→ (∀T. (normal s −→ (G,L)`t::T) −→
(∀Y’ s’. G`s −t�−n→ (Y’,s’) −→ Q Y’ s’ Z ∧ s’::�(G,L))))"
defs ax valids2 def "G,A||=::ts ≡ ∀n. (∀t∈A. G|=n::t) −→ (∀t∈ts. G|=n::t)"

end

158

(* Title: Isabelle/Bali/AxCompl.thy
ID: $AxCompl.thy,v 1.32 2000/11/19 19:09:34 oheimb Exp $
Author: David von Oheimb
Copyright 1999 Technische Universitaet Muenchen

Completeness proof for Axiomatic semantics of Java expressions and statements

design issues:
* proof structured by Most General Formulas (-> Thomas Kleymann)
*)

AxCompl = AxSem +

constdefs

nyinitcls :: "prog ⇒ state ⇒ tname set"
"nyinitcls G s ≡ {C. is class G C ∧ ¬ initd C s}"

init le :: "prog ⇒ nat ⇒ state ⇒ bool" (" `init≤ " [51,51] 50)
"G`init≤n ≡ λs. card (nyinitcls G s) ≤ n"

consts (* Most General Triples and Formulas *)

remember init state :: "state assn" ("
.=")

MGF ::"[state assn, term, prog] ⇒ state triple" ("{ } � { →}"[3,65,3]62)
MGFn::"[nat , term, prog] ⇒ state triple" ("{=: } � { →}"[3,65,3]62)

defs

remember init state def "
.= ≡ λY s Z. s = Z"

MGF def
"{P} t� {G→} ≡ {P} t� {λY s’ s. G`s −t�→ (Y,s’)}"

MGFn def
"{=:n} t� {G→} ≡ { .= ∧. G`init≤n} t� {G→}"

end

159

(* Title: Isabelle/Bali/Example.thy
ID: $Example.thy,v 1.38 2000/11/23 09:57:30 oheimb Exp $
Author: David von Oheimb
Copyright 1997 Technische Universitaet Muenchen

The following example Bali program includes:
* class and interface declarations with inheritance, hiding of fields,

overriding of methods (with refined result type), array type,
* method call (with dynamic binding), parameter access, return expressions,
* expression statements, sequential composition, literal values,

local assignment, local access, field assignment, type cast,
* exception generation and propagation, try & catch statement, throw statement
* instance creation and (default) static initialization

interface HasFoo {
public Base foo(Base z);

}

class Base implements HasFoo {
static boolean arr[] = new boolean[2];
HasFoo vee;
public Base foo(Base z) {
return z;

}
}

class Ext extends Base {
int vee;
public Ext foo(Base z) {
((Ext)z).vee = 1;
return null;

}
}

class Example {
public static void main(String args[]) throws Throwable {
Base e = new Ext();
try {e.foo(null); }
catch(NullPointerException z) {
while(Ext.arr[2]) ;

}
}

}
*)

Example = Eval + WellForm +

datatype tnam = HasFoo | Base | Ext (** cannot simply instantiate tnam **)
datatype enam = arr | vee | z | e

160

consts

tnam :: "tnam ⇒ tnam"
enam :: "enam ⇒ ename"

rules (** tnam and enam are intended to be isomorphic to tnam and ename **)

inj tnam "(tnam x = tnam y) = (x = y)"
inj enam "(enam x = enam y) = (x = y)"

surj tnam "∃m. n = tnam m"
surj enam "∃m. n = enam m"

defs

Object mdecls def "Object mdecls ≡ []"
SXcpt mdecls def "SXcpt mdecls ≡ []"

syntax

HasFoo, Base, Ext :: tname
arr, vee, z, e :: ename

translations

"HasFoo" == "TName (tnam HasFoo)"
"Base" == "TName (tnam Base)"
"Ext" == "TName (tnam Ext)"
"arr" == "enam arr "
"vee" == "enam vee "
"z" == "enam z "
"e" == "enam e "

consts

foo :: mname

constdefs

foo sig :: sig
"foo sig ≡ (foo,[Class Base])"

foo mhead :: mhead
"foo mhead ≡ (False,[z],Class Base)"

constdefs

Base foo :: mdecl
"Base foo ≡ (foo sig, (foo mhead,([],Skip,!!z)))"

161

Ext foo :: mdecl
"Ext foo ≡ (foo sig, ((False,[z],Class Ext),

([],Expr({Ext,False}Cast (Class Ext) (!!z)..vee :=
Lit (Intg #1)),Lit Null)

))"

arr viewed from :: "tname ⇒ var"
"arr viewed from C ≡ {Base,True}StatRef (ClassT C)..arr"

constdefs

HasFooInt :: iface
"HasFooInt ≡ ([], [(foo sig, foo mhead)])"

BaseCl :: class
"BaseCl ≡ (Object, [HasFoo],

[(arr, (True, PrimT Boolean.[])),
(vee, (False, Iface HasFoo))],
[Base foo],
Expr(arr viewed from Base := New (PrimT Boolean)[Lit (Intg #2)]))"

ExtCl :: class
"ExtCl ≡ (Base , [],

[(vee, (False, PrimT Integer))],
[Ext foo],
Skip)"

constdefs

ifaces :: idecl list
"ifaces ≡ [(HasFoo,HasFooInt)]"

clsses :: cdecl list (** name not ’classes’ because of clash with thy token **)
"clsses ≡ [(Base,BaseCl),(Ext,ExtCl)]@standard classes"

test :: "(ty)list ⇒ stmt"
"test pTs ≡ e:==NewC Ext;;

Try Expr({ClassT Base,ClassT Base,IntVir}!!e..
foo({pTs}[Lit Null]))

Catch((SXcpt NullPointer) z)
(While(Acc (Acc (arr viewed from Ext).[Lit (Intg #2)])) Skip)"

consts
a,b,c :: loc

syntax
"classes" :: cdecl list
tprg :: prog

obj a, obj b, obj c :: obj
arr N, arr a :: (vn, val) table

162

globs1,globs2,
globs3,globs8 :: globs
locs3,locs4,locs8 :: locals
s0,s0’,s9’,
s1,s1’,s2,s2’,
s3,s3’,s4,s4’,
s6’,s7’,s8,s8’ :: state

translations

"classes" == "clsses"
"tprg" == "(ifaces,classes)"

"obj a" <= "(Arr (PrimT Boolean) #2, empty(Inr #07→Bool False)(Inr #17→Bool False))"
"obj b" <= "(CInst Ext,(empty(Inl (vee, Base)7→Null)

(Inl (vee, Ext)7→Intg #0)))"
"obj c" == "(CInst (SXcpt NullPointer),empty)"
"arr N" == "empty(Inl (arr, Base) 7→Null)"
"arr a" == "empty(Inl (arr, Base) 7→Addr a)"
"globs1" == "empty(Inr Ext 7→(arbitrary, empty))

(Inr Base 7→(arbitrary, arr N))
(Inr Object7→(arbitrary, empty))"

"globs2" == "empty(Inr Ext 7→(arbitrary, empty))
(Inr Object7→(arbitrary, empty))
(Inl a7→obj a)
(Inr Base 7→(arbitrary, arr a))"

"globs3" == "globs2(Inl b 7→obj b)"
"globs8" == "globs3(Inl c 7→obj c)"
"locs3" == "empty(Inl e 7→Addr b)"
"locs4" == "empty(Inl z 7→Null)(Inr()7→Addr b)"
"locs8" == "locs3(Inl z 7→Addr c)"
"s0" == " st empty empty"
"s0’" == " Norm s0"
"s1" == " st globs1 empty"
"s1’" == " Norm s1"
"s2" == " st globs2 empty"
"s2’" == " Norm s2"
"s3" == " st globs3 locs3 "
"s3’" == " Norm s3"
"s4" == " st globs3 locs4"
"s4’" == " Norm s4"
"s6’" == "(Some (StdXcpt NullPointer), s4)"
"s7’" == "(Some (StdXcpt NullPointer), s3)"
"s8" == " st globs8 locs8"
"s8’" == " Norm s8"
"s9’" == "(Some (StdXcpt IndOutBound), s8)"

end

163

(* Title: Isabelle/Bali/AxExample.thy
ID: $AxExample.thy,v 1.6 2000/11/23 09:57:30 oheimb Exp $
Author: David von Oheimb
Copyright 2000 Technische Universitaet Muenchen

*)

AxExample = AxSem + Example +

constdefs
arr inv :: "st ⇒ bool"
"arr inv ≡ λs. ∃obj a T el. globs s (Stat Base) = Some obj ∧

snd obj (Inl (arr, Base)) = Some (Addr a) ∧
heap s a = Some (Arr T #2,el)"

end

164

Bibliography

[ACR] Isabelle Attali, Denis Caromel, and Marjorie Russo. Oasis project: Java seman-
tics. http://www-sop.inria.fr/oasis/java/java_sem.html.

[ACR98] Isabelle Attali, Denis Caromel, and Marjorie Russo. A formal executable se-
mantics for java. In OOPSLA’98 Workshop on Formal Underpinnings of Java,
1998.

[Acz82] Peter Aczel. A system of proof rules for the correctness of iterative programs –
some notational and organisational suggestions. Unpublished, 1982.

[AFM97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parame-
terization to the Java language. In ACM Symp. Object-Oriented Programming:
Systems, Languages and Applications, 1997.

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java[tm] Programming
Language, Third Edition. Addison-Wesley, 2000. http://java.sun.com/docs/
books/javaprog/.

[AGKS99] David Aspinall, Healfdene Goguen, Thomas Kleymann, and Dilip Sequeira.
Proof General, 1999.

[AL97] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented programs.
In Theory and Practice of Software Development, volume 1214 of Lect. Notes in
Comp. Sci., pages 682–696. Springer-Verlag, 1997.

[And86] Peter Andrews. An Introduction to Mathematical Logic and Type Theory: to
Truth through Proof. Computer Science and Applied Mathematics. Academic
Press, 1986.

[Apt81] Krzysztof R. Apt. Ten years of Hoare logic: A survey — part I. ACM Trans.
on Prog. Languages and Systems, 3:431–483, 1981.

[Asp00a] David Aspinall. Proof General: A generic tool for proof development, 2000.
http://www.dcs.ed.ac.uk/home/proofgen/.

[Asp00b] David Aspinall. Protocols for interactive e-proof. Technical Report CSE 00-009,
Oregon Graduate Institute, 2000. TPHOLs 2000 Supplemental Proceedings;
paper available at http://zermelo.dcs.ed.ac.uk/~da/drafts/\#eproof.

[AZD00] Davide Ancona, Elena Zucca, and Sophia Drossopoulou. Overloading
and inheritance in Java. In S. Drossopoulou, S. Eisenbach, B. Jacobs,
G.T. Leavens, P. Müller, and A. Poetzsch-Heffter, editors, Formal Tech-
niques for Java Programs. Technical Report 269, Fernuniversität Hagen,
2000. Available from http://www.informatik.fernuni-hagen.de/import/
pi5/workshops/ecoop2000_papers.html.

165

http://www-sop.inria.fr/oasis/java/java_sem.html
http://java.sun.com/docs/books/javaprog/
http://java.sun.com/docs/books/javaprog/
http://www.dcs.ed.ac.uk/home/proofgen/
http://zermelo.dcs.ed.ac.uk/~da/drafts/#eproof
http://www.informatik.fernuni-hagen.de/import/pi5/workshops/ecoop2000_papers.html
http://www.informatik.fernuni-hagen.de/import/pi5/workshops/ecoop2000_papers.html

[BCM+93] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Allyn Di-
mock, and Robert Muller. Safe and decidable type checking in an object-oriented
language. In ACM Symp. Object-Oriented Programming: Systems, Languages
and Applications, volume 18 of ACM SIGPLAN Notices, pages 29–46, October
1993.

[Ber00] Stefan Berghofer. Prototyping functional logic specifications. Manuscript, 2000.

[BGG+92] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert,
and John Van Tassel. Experience with embedding hardware description lan-
guages in HOL. In V. Stavridou, T.F. Melham, and R.T. Boute, editors, Theo-
rem Provers in Circuit Design, pages 129–156. North-Holland/Elsevier, 1992.

[BGS95] Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-
safe polymorphic object-oriented language. In W. Olthoff, editor, Proc. Euro-
pean Conference on Object-Oriented Programming, volume 952 of Lect. Notes in
Comp. Sci., pages 27–51. Springer-Verlag, 1995.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Generic
Java specification. Manuscript, 1998.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

[Bru93] Kim B. Bruce. Safe type checking in a statically-typed object-oriented program-
ming language. In Proc. 20th ACM Symp. Principles of Programming Languages,
pages 285–298. ACM Press, 1993.

[BS99] Egon Börger and Wolfram Schulte. A programmer friendly modular definition of
the semantics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of
Java, volume 1523 of Lect. Notes in Comp. Sci., pages 353–404. Springer-Verlag,
1999.

[BW98] Martin Büchi and Wolfgang Weck. Java needs compound types. Technical
Report 182, Turku Center for Computer Science, May 1998. http://www.abo.
fi/~mbuechi/publications/CompoundTypes.html.

[BW99] Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL - lessons
learned in formal-logic engineering. In Y. Bertot et al., editor, Theorem Proving
in Higher Order Logics, volume 1690 of Lect. Notes in Comp. Sci., pages 19–36.
Springer-Verlag, 1999.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[CGQ98] Alessandro Coglio, Allen Goldberg, and Zhenyu Qian. Toward a provably-correct
implementation of the JVM bytecode verifier. In OOPSLA’98 Workshop Formal
Underpinnings of Java, 1998.

[Chu40] Alonzo Church. A formulation of the simple theory of types. J. Symbolic Logic,
5:56–68, 1940.

[CKRW97] Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. From
sequential to multi-threaded Java: An event-based operational semantics. In
Algebraic methodology and software technology: AMAST’97, volume 1349 of
Lect. Notes in Comp. Sci., pages 75–90. Springer-Verlag, 1997.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing, 7(1):70–90, 1978.

166

http://www.abo.fi/~mbuechi/publications/CompoundTypes.html
http://www.abo.fi/~mbuechi/publications/CompoundTypes.html

[Coo89] William Cook. A proposal for making Eiffel type-safe. In Proc. European Con-
ference on Object-Oriented Programming, pages 57–70. Cambridge University
Press, 1989.

[dB99] Frank de Boer. A WP-calculus for OO. In Foundations of Software Science
and Computation Structures, volume 1578 of Lect. Notes in Comp. Sci., pages
135–149. Springer-Verlag, 1999.

[DE97a] Sophia Drossopoulou and Susan Eisenbach. Is the Java type system sound? In
Proc. 4th Int. Workshop Foundations of Object-Oriented Languages, January
1997.

[DE97b] Sophia Drossopoulou and Susan Eisenbach. Java is type safe — probably. In
Proc. European Conference on Object-Oriented Programming, volume 1241 of
Lect. Notes in Comp. Sci., pages 389–418. Springer-Verlag, 1997.

[DE99] Sophia Drossopoulou and Susan Eisenbach. Describing the semantics of Java and
proving type soundness. In J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, volume 1523 of Lect. Notes in Comp. Sci., pages 41–82. Springer-Verlag,
1999.

[DFH+93] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin-
Mohring, and B. Werner. The Coq proof assistant user’s guide version 5.8.
Technical Report 154, INRIA, 1993.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a
formal modeling notation. In J. Bezivin and P.-A. Muller, editors, The Unified
Modeling Language. UML’98: Beyond the Notation, volume 1618 of Lect. Notes
in Comp. Sci., pages 330–348. Springer-Verlag, 1999.

[GH98] David Griffioen and Marieke Huisman. A comparison of pvs and isabelle/hol.
In J. Grundy and M. Newey, editors, Theorem Proving in Higher Order Logics,
volume 1479 of Lect. Notes in Comp. Sci., pages 123–142. Springer-Verlag, 1998.

[Gib94] W. Wayt Gibbs. Trends in Computing: Software’s chronic crisis. Scientific
American, pages 86–???, September 1994.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996.

[GM93] Michael J.C. Gordon and Thomas F. Melham, editors. Introduction to HOL:
a theorem-proving environment for higher order logic. Cambridge University
Press, 1993.

[GMW79] Michael J.C. Gordon, Robin Milner, and C.P. Wadsworth. Edinburgh LCF:
a Mechanised Logic of Computation, volume 78 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1979.

[Gor75] Gerald A. Gorelick. A complete axiomatic system for proving assertions about
recursive and non-recursive programs. Technical Report 75, Department of Com-
puter Science, University of Toronto, 1975.

[Gor85] Michael J.C. Gordon. HOL — a machine oriented formulation of higher-order
logic. Technical Report 68, University of Cambridge, Computer Laboratory,
1985.

[Gor89] Michael J.C. Gordon. Mechanizing programming logics in higher order logic.
In G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automated Theorem Proving. Springer-Verlag, 1989.

167

[HJ00] Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic
with abrupt termination. In Fundamental Approaches to Software Engineering,
volume 1783 of Lect. Notes in Comp. Sci., pages 284–303. Springer-Verlag, 2000.

[HM95] Peter V. Homeier and David F. Martin. A mechanically verified verification
condition generator. The Computer Journal, 38:131–141, 1995.

[HM96] Peter V. Homeier and David F. Martin. Mechanical verification of mutually
recursive procedures. In M.A. McRobbie and J.K. Slaney, editors, Proceedings
of the 13th Int. Conference on Automated Deduction, volume 1104 of Lect. Notes
in Comp. Sci., pages 201–215. Springer-Verlag, 1996.

[HO99] Martin Hofmann and David von Oheimb. Handling mutual recursion. Personal
Communication, April 1999.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969.

[Hof97] Martin Hofmann. Semantik und Verifikation. Lecture notes, in German, 1997.

[HOLa] The Isabelle/HOL library. http://isabelle.in.tum.de/library/HOL/.

[HOLb] HOL home page. http://www.cl.cam.ac.uk/Research/HVG/HOL/.

[Isa] Isabelle home page. http://isabelle.in.tum.de/.

[J+a] Bart Jacobs et al. Loop project. http://www.cs.kun.nl/~bart/LOOP/.

[J+b] Bart Jacobs et al. Project Verificard. http://www.cs.kun.nl/VerifiCard/.

[JBH+98] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum,
Ulrich Hensel, and Hendrik Tews. Reasoning about Java classes (preliminary
report). In ACM Symp. Object-Oriented Programming: Systems, Languages and
Applications, pages 329–340, 1998.

[Jon90] Cliff B. Jones. Systematic Program Development Using VDM. International
Series in Computer Science. Prentice-Hall, 2nd edition, 1990.

[JP00] Bart Jacobs and Eric Poll. A logic for the Java Modeling Language JML. Techni-
cal Report CSI-R0018, CSI, 2000. http://www.cs.kun.nl/csi/reports/info/
CSI-R0018.html.

[Kah87] Gilles Kahn. Natural semantics. In Proc. 4th Annual Symp. Theoretical Aspects
of Computer Science, number 247 in Lect. Notes in Comp. Sci., pages 22–39.
Springer-Verlag, 1987.

[Kar98] David A. Karp. Windows 98 Annoyances. O’Reilly, 1998. See also http:
//www.annoyances.org/.

[Kle98] Thomas Kleymann. Hoare logic and VDM: Machine-checked soundness and
completeness proofs. Ph.D. Thesis, ECS-LFCS-98-392, LFCS, 1998.

[KN00] Gerwin Klein and Tobias Nipkow. Verified lightweight bytecode verification.
In S. Drossopoulou, S. Eisenbach, B. Jacobs, G.T. Leavens, P. Müller, and
A. Poetzsch-Heffter, editors, ECOOP2000 Workshop on Formal Techniques for
Java Programs. Technical Report 269, Fernuniversität Hagen, 2000. http://
www4.in.tum.de/~nipkow/pubs/lbv.html.

[Kow77] Tomasz Kowaltowski. Axiomatic approach to side effects and general jumps.
Acta Informatica, 7:357–360, 1977.

[L+96] Jacques-L. Lions et al. Ariane 5 flight 501 failure report by the inquiry board.
http://java.sun.com/people/jag/Ariane5.html, July 1996.

168

http://isabelle.in.tum.de/library/HOL/
http://www.cl.cam.ac.uk/Research/HVG/HOL/
http://isabelle.in.tum.de/
http://www.cs.kun.nl/~bart/LOOP/
http://www.cs.kun.nl/VerifiCard/
http://www.cs.kun.nl/csi/reports/info/CSI-R0018.html
http://www.cs.kun.nl/csi/reports/info/CSI-R0018.html
http://www.annoyances.org/
http://www.annoyances.org/
http://www4.in.tum.de/~nipkow/pubs/lbv.html
http://www4.in.tum.de/~nipkow/pubs/lbv.html
http://java.sun.com/people/jag/Ariane5.html

[LY96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types
for Java. In Proc. 24th ACM Symp. Principles of Programming Languages, pages
132–145, 1997.

[Mil78] Robin Milner. A theory of type polymorphism in programming. J. Comp. Sys.
Sci., 17:348–375, 1978.

[MPH99] Peter Müller and Arnd Poetzsch-Heffter. Universes: A type system for control-
ling representation exposure. In A. Poetzsch-Heffter and J. Meyer, editors, Pro-
gramming Languages and Fundamentals of Programming. Fernuniversität Ha-
gen, 1999. Technical Report 263, http://www.informatik.fernuni-hagen.
de/pi5/publications.html.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

[Nip98] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171–186, 1998.

[Nip99] Tobias Nipkow. Isabelle/HOL. The Tutorial, 1999.

[Nip00] Tobias Nipkow. Verified bytecode verifiers. Technical report, Institut für Infor-
matik, TU München, 2000. Submitted for publication.

[NN92] Hanne R. Nielson and Flemming Nielson. Semantics with Applications: A For-
mal Introduction. Wiley, 1992. Revised edition (of 1999): http://www.daimi.
au.dk/~bra8130/Wiley_book/wiley.html.

[NO98] Tobias Nipkow and David von Oheimb. Java`ight is type-safe — definitely. In
Proc. 25th ACM Symp. Principles of Programming Languages, pages 161–170,
1998. http://isabelle.in.tum.de/Bali/papers/POPL98.html.

[NOP00] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava: Embedding a
programming language in a theorem prover. In F.L. Bauer and R. Steinbrüggen,
editors, Foundations of Secure Computation, pages 117–144. IOS Press, 2000.
http://isabelle.in.tum.de/Bali/papers/MOD99.html.

[NOPK] Tobias Nipkow, David von Oheimb, Cornelia Pusch, and Gerwin Klein. Project
Bali. http://isabelle.in.tum.de/Bali/.

[Nor98] Michael Norrish. C formalised in HOL. PhD thesis, University of Cambridge,
1998.

[Nor99] Michael Norrish. Deterministic expressions in C. In S.D. Swierstra, editor,
Programming Languages and Systems (ESOP ’99), volume 1576 of Lect. Notes
in Comp. Sci., pages 147–161. Springer-Verlag, 1999.

[NPW94] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s logics:
HOL. In Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in
Comp. Sci. Springer-Verlag, 1994. Up-to-date version: http://isabelle.in.
tum.de/doc/logics-HOL.pdf.

[NW98] Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification based
on record subtyping in higher-order logic. In J. Grundy and M. Newey, editors,
Theorem Proving in Higher Order Logics, volume 1479 of Lect. Notes in Comp.
Sci. Springer-Verlag, 1998.

169

http://www.informatik.fernuni-hagen.de/pi5/publications.html
http://www.informatik.fernuni-hagen.de/pi5/publications.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html
http://isabelle.in.tum.de/Bali/papers/POPL98.html
http://isabelle.in.tum.de/Bali/papers/MOD99.html
http://isabelle.in.tum.de/Bali/
http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://isabelle.in.tum.de/doc/logics-HOL.pdf

[NYT99] The year 2000 problem. The New York Times Company, http://www10.
nytimes.com/library/tech/reference/millennium-index.html, 1999.

[Ohe98] David von Oheimb. Operational semantics of Java and subject reduction, July
1998. Talk at the Colloquium “Logic in Computer Science” in Munich. Slides:
http://isabelle.in.tum.de/Bali/slides/EvalTrans.ps.gz.

[Ohe99] David von Oheimb. Hoare logic for mutual recursion and local variables. In
C. Pandu Rangan, V. Raman, and R. Ramanujam, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1738 of Lect.
Notes in Comp. Sci., pages 168–180. Springer-Verlag, 1999. http://isabelle.
in.tum.de/Bali/papers/FSTTCS99.html.

[Ohe00a] David von Oheimb. Axiomatic semantics for Java`ight. In S. Drossopoulou,
S. Eisenbach, B. Jacobs, G.T. Leavens, P. Müller, and A. Poetzsch-Heffter, edi-
tors, Formal Techniques for Java Programs. Technical Report 269, 5/2000, Fer-
nuniversität Hagen, Fernuniversität Hagen, 2000. http://isabelle.in.tum.
de/Bali/papers/ECOOP00.html.

[Ohe00b] David von Oheimb. Axiomatic semantics for Java`ight in Isabelle/HOL. Tech-
nical Report CSE 00-009, Oregon Graduate Institute, 2000. TPHOLs 2000
Supplemental Proceedings; paper available at http://isabelle.in.tum.de/
Bali/papers/TPHOLs00.html.

[Ohe01] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency: Practice
and Experience, 2001. Submitted for publication.

[ON99] David von Oheimb and Tobias Nipkow. Machine-checking the Java specification:
Proving type-safety. In J. Alves-Foss, editor, Formal Syntax and Semantics of
Java, volume 1523 of Lect. Notes in Comp. Sci. Springer-Verlag, 1999. http:
//isabelle.in.tum.de/Bali/papers/Springer98.html.

[ONO00] Martin Odersky, Tobias Nipkow, and David von Oheimb. Proving type-safety
of generic Java. Personal Communication, June 2000.

[OP98] David von Oheimb and Cornelia Pusch. Java — formal fundiert. In C.H. Cap,
editor, JIT’98 — Java-Informations-Tage 1998, Informatik Aktuell, pages 77–
86. Springer-Verlag, 1998. In German, http://isabelle.in.tum.de/Bali/
papers/JavaDays98.html.

[OSR92] Sam Owre, Natarajan Shankar, and John Rushby. PVS: A prototype verification
system. In D. Kapur, editor, Automated Deduction — CADE-11, volume 607 of
Lect. Notes in Comp. Sci. Springer-Verlag, 1992.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into
practice. In Proc. 24th ACM Symp. Principles of Programming Languages, pages
146–159, 1997.

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive Proof with Cambridge
LCF. Cambridge University Press, 1987.

[Pau90] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi,
editor, Logic and Computer Science, pages 361–385. Academic Press, 1990.

[Pau94a] Lawrence C. Paulson. Introduction to Isabelle. In Isabelle: A Generic Theorem
Prover, volume 828 of Lect. Notes in Comp. Sci. Springer-Verlag, 1994. Up-to-
date version: http://isabelle.in.tum.de/doc/intro.pdf.

[Pau94b] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect.
Notes in Comp. Sci. Springer-Verlag, 1994. For an up-to-date description, see
http://isabelle.in.tum.de/.

170

http://www10.nytimes.com/library/tech/reference/millennium-index.html
http://www10.nytimes.com/library/tech/reference/millennium-index.html
http://isabelle.in.tum.de/Bali/slides/EvalTrans.ps.gz
http://isabelle.in.tum.de/Bali/papers/FSTTCS99.html
http://isabelle.in.tum.de/Bali/papers/FSTTCS99.html
http://isabelle.in.tum.de/Bali/papers/ECOOP00.html
http://isabelle.in.tum.de/Bali/papers/ECOOP00.html
http://isabelle.in.tum.de/Bali/papers/TPHOLs00.html
http://isabelle.in.tum.de/Bali/papers/TPHOLs00.html
http://isabelle.in.tum.de/Bali/papers/Springer98.html
http://isabelle.in.tum.de/Bali/papers/Springer98.html
http://isabelle.in.tum.de/Bali/papers/JavaDays98.html
http://isabelle.in.tum.de/Bali/papers/JavaDays98.html
http://isabelle.in.tum.de/doc/intro.pdf
http://isabelle.in.tum.de/

[PB97] Roly Perera and Peter Bertelsen. The unofficial Java bug report. http://www2.
vo.lu/homepages/gmid/java.htm, June 1997.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequen-
tial Java. In S.D. Swierstra, editor, Programming Languages and Systems
(ESOP ’99), volume 1576 of Lect. Notes in Comp. Sci., pages 162–176. Springer-
Verlag, 1999.

[PHT+98] Benjamin Pierce, Haruo Hosoya, David Turner, Zhaohui Luo, Philip Wadler,
Kim Bruce, Sophia Drossopoulou, Vijay Saraswat, Robert O’Callahan, Matt
Timmermans, Anthony Dekker, Gary T. Leavens, Luo Gang Chen, Drew Dean,
Matthias Felleisen, Donald Syme, Carl Gunter, Robert Harper, and David von
Oheimb. Subject reduction fails in Java. e-mail discussion on the Types Forum,
archive: http://www.cis.upenn.edu/~bcpierce/types/archives/1997-98/
threads.html\#00400, June 1998.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Department of Computer Science, University of Aarhus,
1981.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Extended Cal-
culus of Constructions. PhD thesis, University of Edinburgh, 1994.

[Pus98a] Cornelia Pusch. Formalizing the Java Virtual Machine in Isabelle. Technical
Report TUM-I9816, Institut für Informatik, TU München, 1998.

[Pus98b] Cornelia Pusch. Proving the soundness of a Java bytecode verifier in Isabelle/
HOL. In OOPSLA’98 Workshop on Formal Underpinnings of Java, 1998.

[Pus99] Cornelia Pusch. Proving the soundness of a Java bytecode verifier specification
in Isabelle/HOL. In W.R. Cleaveland, editor, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1579 of Lect. Notes in Comp.
Sci., pages 89–103. Springer-Verlag, 1999.

[PVS] PVS home page. http://pvs.csl.sri.com/.

[Qia99] Zhenyu Qian. A formal specification of Java Virtual Machine instructions for
objects, methods and subroutines. In J. Alves-Foss, editor, Formal Syntax and
Semantics of Java, volume 1523 of Lect. Notes in Comp. Sci., pages 271–311.
Springer-Verlag, 1999.

[Sch97] Thomas Schreiber. Auxiliary variables and recursive procedures. In Theory and
Practice of Software Development, volume 1214 of Lect. Notes in Comp. Sci.,
pages 697–711. Springer-Verlag, 1997.

[Sli96] Konrad Slind. Function definition in higher order logic. In J. von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics,
volume 1125 of Lect. Notes in Comp. Sci., pages 381–397. Springer-Verlag, 1996.

[Str00] Christopher Strachey. Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation, 13(1–2):11–49, April 2000. http:
//www.wkap.nl/oasis.htm/257993.

[Sun99a] Smart Card overview. Sun Microsystems, http://java.sun.com/products/
javacard/smartcards.html, 1999.

[Sun99b] Java Card technology. Sun Microsystems, http://java.sun.com/products/
javacard/, 1999.

171

http://www2.vo.lu/homepages/gmid/java.htm
http://www2.vo.lu/homepages/gmid/java.htm
http://www.cis.upenn.edu/~bcpierce/types/archives/1997-98/threads.html#00400
http://www.cis.upenn.edu/~bcpierce/types/archives/1997-98/threads.html#00400
http://pvs.csl.sri.com/
http://www.wkap.nl/oasis.htm/257993
http://www.wkap.nl/oasis.htm/257993
http://java.sun.com/products/javacard/smartcards.html
http://java.sun.com/products/javacard/smartcards.html
http://java.sun.com/products/javacard/
http://java.sun.com/products/javacard/

[Sym97] Donald Syme. DECLARE: A prototype declarative proof system for higher order
logic. Technical Report 416, University of Cambridge Computer Laboratory,
1997.

[Sym99a] Donald Syme. Declarative Theorem Proving for Operational Semantics. PhD
thesis, University of Cambridge Computer Laboratory, 1999.

[Sym99b] Donald Syme. Proving Java type soundness. In J. Alves-Foss, editor, Formal
Syntax and Semantics of Java, volume 1523 of Lect. Notes in Comp. Sci., pages
83–118. Springer-Verlag, 1999.

[TJ97] L. Robert Tolley and Diane L. Johnson. Smart Card Handbook: Putting the
World at Your Fingertips. Smart Card International, Inc., 1997.

[Wal97] Charles Wallace. The semantics of the Java programming language: Preliminary
version. Technical Report CSE-TR-355-97, University of Michigan, 1997.

[Wen99a] Markus Wenzel. The Isabelle/Isar Reference Manual. Institut für Informatik,
TU München, 1999.

[Wen99b] Markus Wenzel. Isar – a generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery,
editors, Theorem Proving in Higher Order Logics, TPHOLs’99, volume 1690 of
Lect. Notes in Comp. Sci., pages 167–183. Springer-Verlag, 1999.

[Wen00] Markus Wenzel. A formulation of Hoare logic suitable for Isar. http:
//isabelle.in.tum.de/library/HOL/Isar_examples/Hoare.html, 2000.

[WF94] Andrew Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press,
1993.

[WK99] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1999.

172

http://isabelle.in.tum.de/library/HOL/Isar_examples/Hoare.html
http://isabelle.in.tum.de/library/HOL/Isar_examples/Hoare.html

Index

|, 12
#, 13
;, 18
ε, 12
[], 13
“ , 13
::, 12
•, 45
Γ, 24
Λ, 31
@, 13
×, 13
≡, 12
+, 13
++, 21
⊕⊕, 22
� , 57
[], 16
[], 20

!! , 20
:= , 19
:== , 20
? : , 19
{ , } .. , 20
{ , , } .. ({ }), 19
;., 67
∧., 67
λ :. , 67
λ : , 67
.;, 67
..;, 76
↓, 67
↓=, 67
←, 67
←=, 74
∃ ∈ : , 13
∀ ∈ : , 13
(+), 21
(7→), 21
([7→]), 21
` ; , 28

` ;1 , 28
` � , 30
` � , 29
` [�] , 29
` �? , 30
` �c , 28
` �i , 28
` ≺1

c , 28
` ≺1

i , 28
::� , 57
, ` ::� , 57
, , ` � ::� , 58
, ` ::�

√
, 57

, ` [::�] , 57
� � ::� , 58
` → � , 77
, |= :: , 31
, ` :: , 32
, ` ::

√
, 32

, |= ::
√

, 31
, ` ::– , 32
, |= ::– , 31
, ` ::= , 32
, |= ::= , 31
, ` ::

.
= , 32

, |= ::
.
= , 31

, ` fits , 48
, `catch , 48
` init≤ , 84
` − �→ , 45
` − �− → , 69
` − → , 45
` − –� → , 45
` − =� → , 45
` − .

=� → , 45
` −sxalloc→ , 49
` −halloc � → , 51
{ } � { }, 67
{ } . . { }, 68
{ } –� { }, 68
{ } =� { }, 68

173

{ } .
=� { }, 68

{{ } –� { } | }, 78
{ } � { →}, 82
{=: } � { →}, 84

, ` , 69
, |= , 69
, |` , 69
, ||= , 69
|= : , 68
||= : , 69

abrupt completion, 18
Acc, 19
Addr, 17
addresses, 17
Alloc, 76
appl methds, 34
arbitrary3, 47
Arr, 40
array problem, 60
array property, 61
ArrStore, 16
assertions, 63
assign, 50
assn, 66
atleast free, 51
auxiliary variables, 64
avar, 54

block, 18
Body, 19
body, 53
Bool, 17
Bool, 16
bool, 13
bytecode, 56
Bytecode Verifier, 56

Cast, 19
casting, 30
catch, 18
cbody, 24
cdecl, 24
cfield, 35
check neg, 52
chg map, 41
CInst, 40
Class, 16
class, 24
class, 24

class, 24
class initialization, 18
class objects, 39
class rec, 26
ClassCast, 16
classical reasoner, 13
ClassT, 16
cmethds, 25
cmheads, 34
conditional problem, 60
conformance, 56
constants, 12
constructor, 12
constructors, 24
conversions, 28

datatype, 12
default val, 17
definite assignment, 53
derivability judgments, 69
destructor, 12
direct implementation, 28
direct subclass, 25
direct subinterface, 25
dyn ty, 17
dyn ty, 57
dynamic binding, 77
dynamic type environment, 31

else, 18
embedding, 11
emhead, 34
empty, 21
empty statement, 18
empty dt, 31
EName, 20
ename, 15
env, 31
exceptions, 42
Expr, 18
expr, 19
expression names, 15
expression statements, 18
expressions, 18
expressiveness, 63

fdecl, 23
field, 23
field, 23
fields, 25

174

fields table, 40
finally, 18
first active use, 49
fspec, 35
fst, 13
fvar, 54

global extension, 57
globs, 41
globs, 41
gupd(7→), 41

Heap, 40
heap, 41
heap, 41
hiding entails, 21
hidings entails, 22
HOL, 11

ibody, 23
idecl, 23
identifiers, 15
if, 18
Iface, 16
iface, 23
iface, 24
iface rec, 26
IfaceT, 16
imethds, 25
implementation, 28
In1, 13
In1l, 13
In1r, 13
In2, 13
In3, 13
in bounds, 40
IndOutBound, 16
inheritance, 25
init, 18
init class obj, 42
init compy ty, 52
init lvars, 53
init vals, 42
initd, 43
inited, 43
Inl, 13
Inr, 13
instanceof, 19
Int, 17
int, 16

int, 13
interface, 23
IntVir, 19
inv mode, 19
invocation mode, 19
is class, 24
is iface, 24
is methd, 27
is stmt, 21
is type, 25
Isabelle/HOL, 11

Java, 5
Java Card, 6
Java Virtual Machine (JVM), 56
Java`ight, 6

L-values, 45
lcl, 31
length, 13
lenv, 31
list, 13
Lit, 19
literal values, 19
lname, 20
loc, 17
local environment, 31
locals, 41
locals, 41
locations, 17
logical variables, 64
lookup tables, 21
lookup obj, 41
lupd(7→), 41
LVar, 20
lvar, 53

map, 13
max spec, 34
mbody, 23
mdecl, 23
Methd, 19
methd, 23
method names, 15
mhead, 23
mheads, 34
mname, 15
modi, 23
modifier, 23
more specific, 34

175

more spec, 34
Most General Formula (MGF), 82
most specific, 34
mutual recursion, 77

names, 15
narrowing, 30
nat, 13
NegArrSize , 16
new, 19
new Addr, 51
new obj, 42
new xcpt var, 49
nodups, 13
None, 13
Norm, 43
Normal, 67
normal, 43
np, 43
NT, 16
Null, 17
null type, 16
NullPointer, 16
NullT, 16
nyinitcls, 84

o2s, 13
obj, 40
obj class, 40
obj tag, 40
obj ty, 40
Object, 16
object, 39
Object mdecls, 24
ObjectC, 24
op =, 82
option, 13
option map, 13
oref, 40
OutOfMemory, 16

Peano Arithmetic, 63
prg, 31
prim ty, 16
primitive types, 16
PrimT, 16
prog, 24
program, 24
program state, 43
proof engineering, 104

proof state, 13

raise if, 43
recursive depth, 69
ref ty, 16
reference types, 16
RefT, 16
relative completeness, 64
res, 66
resolution, 13
restore lvars, 43
result expression, 23
result values, 65
rewriting, 13

set, 13
set, 13
set locals, 41
set lvars, 43
sig, 20
signature, 20
simplifier, 13
Skip, 18
Smart Cards, 6
snd, 13
Some, 13
st, 41
st case, 41
standard classes, 24
standard exceptions, 24
standard classes, 24
Stat, 40
state, 43
state, 39
statements, 17
Static, 19
static environment, 31
static initializer, 24
statically typed, 55
StatRef, 19
StdXcpt, 42
stmt, 18
subclass, 28
subcls1, 25
subint1, 25
subinterface, 28
subject reduction, 55
supd, 43
super, 19
SuperM, 19

176

SXAlloc, 74
SXcpt, 16
SXcpt mdecls, 24
SXcptC, 24

table, 21
table of, 22
tables, 22
tacticals, 13
tactics, 13
target, 52
term, 21
terms, 17
the, 13
the Arr, 40
theories, 12
This, 20
this, 20
throw, 48
throw, 18
Throwable, 16
tnam, 16
tname, 16
triple, 67
triples, 68
triples, 67
try, 18
ty, 16
type error, 55
type names, 16
type soundness, 55
type-safe, 55
type ok, 68
typeof, 17
types, 12
tys, 31

Un tables, 22
Unit, 17
unit, 13
upd gobj, 41
upd obj, 40

Val, 66
val, 17
val this, 42
validity, 68
Vals, 66
vals, 45
value, 17

Var, 66
var, 20
var tys, 40
variable access, 19
variables, 20
vn, 40
void, 16
vvar, 45

weakest precondition, 73
well-formedness, 36
well-structuredness, 25
well-typedness, 31
wf cdecl, 37
wf fdecl, 36
wf idecl, 37
wf mdecl, 37
wf mhead, 36
wf prog, 38
while, 18
widening, 29
ws cdecl, 26
ws idecl, 26
ws prog, 26

xcpt, 42
xcpt if, 43
XcptLoc, 42
xname, 16
xopt, 42
xupd, 43

177

178

	Introduction
	Motivation
	Aims
	Formal Language Semantics
	Need for Machine Support
	Maturity of Machine Support
	Advances in Methodology
	Design Check
	Hoare Logic
	Direct Applications

	Related Work
	Overview
	Java-like Languages
	Java
	Java Card and Javaight
	Differences to Java

	Formalization
	Validation Problem
	Goals
	Principles
	Techniques
	Embedding Style

	Isabelle/HOL
	Presentation of Formal Content
	Theories
	HOL Library
	Proof Tools

	Static Semantics
	Names
	Types
	Primitive Types
	Reference Types

	Values
	Terms
	Statements
	Expressions
	Variables
	Combination

	Lookup Tables
	Unique Tables
	Non-functional Tables
	Alternatives

	Declarations
	Fields and Methods
	Classes and Interfaces
	Programs
	Hierarchy Traversal

	Type Relations
	Basic Relations
	Transitive Closures
	Widening
	Narrowing and Casting

	Well-Typedness
	Environments
	Judgments
	Statements
	Expressions
	Methods
	Variables
	Expression Lists
	Properties

	Well-Formedness
	Fields and Methods
	Interfaces
	Classes
	Programs
	Properties

	Operational Semantics
	State
	Objects
	Stores
	Exceptions
	Full State

	Evaluation
	Evaluation vs. Transition
	Judgments
	Exception Propagation
	Standard Statements
	Exception Handling
	Class Initialization
	Simple Expressions
	Memory Allocation
	Method Call
	Variables
	Expression Lists
	Properties

	Type Safety
	Notions
	Relevance
	Auxiliary notions
	Goal
	Proof
	Discussion
	Non-termination
	Alternative: Transition Semantics

	Problems with Transition Semantics
	Problem Origins
	Array Problem
	Conditional Problem
	Side Effects on Types

	Summary

	Axiomatic Semantics
	Assertions
	Logical Language
	Auxiliary Variables
	Result Values
	Assertion Type
	Combinators

	Triples
	Validity
	Single Triples
	Recursive Depth
	Liftings

	Structural Rules
	Handling Conclusions
	Handling Assumptions
	Rule of Consequence

	Universal Quantification
	Java-specific Rules
	Exception Propagation
	Standard Statements
	Exception Handling
	Class Initialization
	Simple Expressions
	Object Creation
	Variables
	Method Call
	Expression Lists
	Critical Review

	Soundness
	General Approach
	Method Implementation Rule
	Method Call Rule and Type safety
	Summary

	Completeness
	MGF Approach
	Mutual Recursion
	Static Initialization
	Main Induction
	Proof-theoretical Remarks
	Summary

	Example
	Program
	Model
	Names
	Method Declarations
	Class and Interface Declarations
	Test Program

	Properties
	Well-formedness
	Well-typedness
	Symbolic Execution
	Proof using Hoare Logic

	Summary

	Conclusions
	Achievements
	Experience
	Further Work
	Final Statement

