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Abstract

In this work, techniques for efficient operation execution on multidimensional
arrays in database management systems are developed. All the techniques de-
scribed here are implemented in the RasDaMan system, which provides a declar-
ative query language on multidimensional arrays. The operations specified in
this query language are executed using the operation execution engine developed
here.

Arrays of arbitrary base type, including user defined structures, are supported.
This implies the use of a dynamic type system supporting definition of types at
runtime of the server. The data can be of arbitrary dimensionality and size.
Operation execution must be flexible enough to cope with this data. At the same
time, efficiency is a key target, as the data volumes operated on are typically very
big.

Tiles are the basic unit of physical data storage for multidimensional arrays
in the RasDaMan DBMS. All operations specified on arrays in queries are finally
executed on tiles, so they form the basis for operation execution. A formalism
defining semantics of operations on multidimensional tiles is developed. This
formalism takes the basic properties of tiles into account: base type and spatial
domain. Semantics of operations and the applicability of operations are defined
on these properties.

Based on the formalism, the design for an operation execution engine for
multidimensional arrays is developed. This design has two major goals: Encap-
sulation of the actual implementation to present a clear interface to other mod-
ules of the system and efficiency when executing operations. An object-oriented
model is developed to provide for encapsulation. This model provides efficiency by
avoiding multiple iterations through cells when possible. Furthermore, the encap-
sulation enables the optimisation of algorithms for operation execution without
affecting other modules.

The efficiency of this implementation is evaluated using workloads from com-
mon application fields. A thorough performance analysis of the implemented
code is carried out based on an instrumentation of the system. Operation execu-
tion is proven to be a key component in efficient query execution. A performance
comparison with the current state of the art in data base technology is done.
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Chapter 1

Introduction

This chapter serves as a general introduction to the work presented here. In
section 1.1 a motivation for the in-depth analysis of operation execution on mul-
tidimensional arrays is given. The scope covered here is described in section 1.2.
Finally, in section 1.3 the UML syntax, as far as used in this work, is shortly
introduced.

1.1 Motivation

From a user’s point of view, the most important part of a database system is the
query language used to select data from the database. To be able to formulate
expressive queries, the query language of a DBMS has to offer a set of operations
on the data types supported by the system. All operations of the query language
have to be implemented inside the DBMS in an operation execution module.

Efficiency is a key criterion for a DBMS considering that most queries are
used to access data during interactive work with the system. Indexes are used
to speed up queries by retrieving only relevant data from disk. Unfortunately,
indexes can speed up only queries with a certain structure. The most common
index structure in database systems, the B-Tree [BM72], is efficient mainly for
1-D range queries.

In other cases, scanning of all potentially relevant data is necessary with
selection conditions to be evaluated in main memory by the operation execution
module. New applications, such as On-Line Analytical Processing (OLAP), have
query patterns calculating aggregate functions on large data sets. This commonly
involves reading the whole amount of data and calculating the operation in main
memory. All these factors lead to operation execution becoming a bottleneck in
overall system performance of a DBMS.

Another driving factor giving relevance to main memory processing of oper-
ations is the steadily increasing speed of disks for sequential access. Modern
disk technology utilising many disks in parallel such as RAIDs can easily satiate
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the processing power of a single CPU just with copying data into main memory
[RvIG97]. Processing power in main memory also becomes a problem if a large
amount of users is working with the system. In fact, as a general rule, every
database system that is well tuned regarding indexes employed and distribution
of data across multiple disks should be CPU bound [Har97].

Operation execution is even more relevant in the context of multidimensional
arrays than for standard DBMS technology. Problems in several application areas
are naturally expressed using multidimensional data models. Examples are geo-
graphic applications dealing with 2-D space, medical applications processing 3-D
tomograms, business applications analysing sales data in the form of multidi-
mensional cubes, or scientific applications storing experimental results in a high
dimensional property space.

The RasDaMan DBMS was developed to support multidimensional arrays
of arbitrary dimensionality and base type as a data type. About 15 reviewed
scientific publications focusing on the project stress the scientific relevance of a
DBMS for multidimensional arrays. A set of relevant operations is offered and
integrated with the system’s declarative query language, an extension of SQL.
These operations are executed on tiles, the basic unit of storage for RasDaMan.

Considering the huge amounts of data and its complex multidimensional struc-
ture, operation execution is more relevant in a multidimensional array DBMS
compared to other database systems. Providing efficient operation execution is
the most important factor in overall performance for managing multidimensional
arrays. Operation execution is a key component in query processing, as even sim-
ple operations such as subaccess, i.e. restrictions of the data read in one or more
dimensions, involve a considerable amount of computation. Research in the area
of efficient operation execution on multidimensional array data is a precondition
for building a database system managing this category of data efficiently.

1.2 Scope

The scope of this work is formal specification, design, efficient implementation,
optimisation, and performance evaluation of an efficient operation execution
engine for a database system managing multidimensional arrays. As precondition
for design and implementation of this operation execution engine, a formalism
is developed encompassing a comprehensive set of operations on arrays. These
formal definitions unequivocally define the semantics of operation execution inde-
pendent of the actual implementation. Therefore, the implementation can be
optimised without affecting code in other modules of the system. The formal-
ism is loosely based on the theoretical definition of an array algebra in [Bau98|.
Basic definitions for arrays and operations given there were simplified, and the
formalism was extended by the following two fundamental concepts needed for
operation execution:
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e Tiling: All operations in RasDaMan are eventually executed on tiles, i.e.
smaller subarrays used for physical storage of the array data. The formal-
ism developed here adds a definition of tiling and provides constructs for
breaking down operations to tile level.

e Base types: Cells of multidimensional arrays in RasDaMan are typed.
Meaningful definition of semantics for operation execution must be built
on a rigid type system.

Based on these definitions, rules defining the applicability of operations on
arrays or parts of them can be defined. Not all operations are defined on all
combinations of base types. The shape of multidimensional arrays also has to
be considered for determining applicability of operations. One example of an
illegal operation is addition of a 1-D array with a 3-D array. Another one is a
bit operation such as negation on a floating point value. Those rules are used to
test the correctness of queries specified by the user during query parsing.

The formalism is also used for theoretical performance analysis. Operations
accessing whole tiles can be executed very fast, as a simple copy operation is
applied. Access to parts of tiles, on the other hand, involves complex and expen-
sive operations to determine the relevant cells in a multidimensional structure
and map their position to a 1-D offset in main memory. A formal analysis on
the relevance of partial access to tiles for subselect queries based on probability
theory is done. As this problem proved to be difficult to tackle analytically due
to its discrete nature, this discussion is accompanied by a simulation.

Based on the formalism, the object-oriented design of the operation execution
module in the RasDaMan system is developed. Considerations for efficiency are
already of prime importance in the design phase'. While the formalism specifies
a set of atomic operations for each operation category, the design should optimise
operation execution by combining operations and thereby executing them in one
step. For example, subselects can be combined with arithmetic operations in this
way, as the subselect iterates through the relevant cells anyway and an arithmetic
operation can be applied in the same iteration. Operations in the formalism
modifying the shape or spatial domain of an array are mapped to copy operations
in the design. This greatly simplifies an efficient implementation, as it reduces
the number of functions that need to be optimised. Based on these principles, a
class model for operation execution is developed.

RasDaMan supports arbitrary base types for arrays including, e.g., structures
with a red, a green, and a blue component. The system enables the user to
define structured types during runtime of the server. This necessitates support
for a dynamic type system and precludes a direct mapping of RasDaMan types
to C++ types, the statically typed language chosen for implementation. A set

L“Tuning can always improve performance, but not as much as appropriate design can [...]”
[Smi90]
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of primitive types is offered for direct use as base types and as elements of user
defined structures. As basis for operation execution, a dynamic type system is
modelled in classes. This is used to check for applicability of operations depend-
ing on the base type as defined in the formalism at runtime. The base type is
also relevant to select the appropriate C++ object which actually executes the
operation in C++ code according to the semantics defined in the formalism.

Applicability has to be defined and checked depending on the spatial domain
of the tiles involved in an operation, too. The spatial domain of a tile can
be of arbitrary dimensionality in RasDaMan. Practically, this means that an
array could have up to 232 dimensions. Every part of operation execution is
implemented using a general concept for operations on multidimensional arrays,
as opposed to support for a limited number of fixed dimensionalities. The basic
algorithm used by operation execution is a general multidimensional iteration.
As efficiency is very important due to the huge amounts of data operated on, all
algorithms are optimised for improved performance.

A thorough performance analysis of the resulting system with a focus on the
key factor, operation execution, is carried out as part of this work. An inter-
nal instrumentation of the system is a precondition for a detailed performance
analysis. This instrumentation was performed in parallel with development and
used constantly to evaluate optimisations. An experimental analysis of the per-
formance gained by the different optimisation steps employed is carried out here.
The relevance of operation execution in overall system performance is analysed
with instrumentation code measuring the time spent in different modules of the
system. Finally, the performance of the RasDaMan system is compared with cur-
rent state of the art technology. Relational systems are dominating commercial

DBMS environments. Two basic techniques used to store multidimensional data
in RDBMSs are evaluated:

e mapping of the multidimensional structure to relations

e storing the data in BLOBES, i.e. unstructured 1-D arrays of bytes.

The work presented here has been used as a key component to build a com-
mercial database system for multidimensional arrays. Its scientific relevance lies
in forming a theoretical basis for implementation of operations on multidimen-
sional arrays in a DBMS. While operations on arrays (mainly 1-D vectors and
2-D matrices) are very common in scientific computing, research in the database
area does not give due importance to this category of information. Some of the
discussions are relevant not only to arrays, but to multidimensional data in gen-
eral. Sparse multidimensional data as opposed to arrays is an important topic in
current database research.
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1.3 UML Basics

The Unified Modelling Language (UML) has established itself as the standard
graphical notation for object-oriented programs. This modelling language was
developed in collaboration of three important people in the object-oriented com-
munity: Grady Booch, James Rumbaugh, and Ivar Jacobson. Each of these had
pioneered his respective modelling language (Booch, OMT, OOSE) competing
with a variety of other notations from several further authors. An overview of
UML history is given in [Rat97]:

The number of identified modeling languages increased from less than
10 to more than 50 during the period between 1989-1994. Many users
of OO methods had trouble finding complete satisfaction in any one
modeling language, fueling the “method wars.” By the mid-1990s,
new iterations of these methods began to appear, most notably Booch
93, the continued evolution of OMT, and Fusion. These methods
began to incorporate each others techniques and a few clearly promi-
nent methods emerged, including the OOSE, OMT-2, and Booch 93
methods. Each of these was a complete method, and was recognized
as having certain strengths. In simple terms, OOSE was a use-case
oriented approach that provided execellent support for business engi-
neering and requirements analysis. OMT-2 was especially expressive
for analysis and data-intensive information systems. Booch 93 was
particularly expressive for analysis and construction phases of projects
and popular for engineering-intensive applications.

Development of UML was started by Grady Booch and James Rumbaugh in
1994 with Ivar Jacobson joining the effort in 1995. The development of UML
was sponsored by a variety of companies including Microsoft, Hewlett-Packard,
Oracle, or IBM. It is also included in standardisation efforts by the Object Man-
agement Group (OMG). The method in its current state covers the whole devel-
opment process offering a variety of diagram types ranging from use cases for
analysis to sequence diagrams specifying timely interaction between objects. In
the context of this work, only the notation used in the class diagram is used.

The classes used for implementing operation execution on multidimensional
arrays are described in chapter 5 using the UML notation. The relevant subset of
UML used there is depicted in figure 1.1. Classes are represented as rectangular
boxes containing the class name. Optionally, attributes and methods (also called
member functions in C++) are in the same box. The attributes together with
their type are shown first in a separate subbox followed by the member functions.
To simplify the figures, the signature of member functions with parameters and
return values is not given in the class diagrams in chapter 5.

While simple attributes are given directly in the box for the class, attributes
describing associations with other classes in the diagram are depicted by actually
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ClassName

attrName1 : attrType1

attrName2 : attrType2 Class with attributes and

memberFunction1() member functions
memberFunction2()
Class1 o Class2 aggregation association
n
Class1 < o Class?2 general association
n
Class1
inheritance
Class2

Figure 1.1: Basic elements of the the Unified Modelling Language used in this
work.

drawing the associations in the diagram. A general association is drawn as a
simple line connecting the two classes. Aggregations are specialised associations
between an object composed out of subobjects and this subobjects. They are
shown as hollow shaped diamonds at the end of the association where the aggre-
gate object is. Aggregations depict a part-of relationship between two classes.
An arrow on one end of the line symbolises navigability of associations in only
one direction.

Additional information on associations is the cardinality of the relationship
written close to the respective ends of the association. Another optional element
is a so called “role name”. As associations are modelled as attributes in C++,
the names of the attributes actually implementing the association correspond to
their role names. UML supports a much more detailed classification of possible
associations between classes, but these two categories are sufficient in the context
of this work.

Another important relationship in object-oriented programming besides the
part-of relationship is inheritance. Inheritance symbolises an is-a relationship
between a superclass and a subclass, i.e. the subclass implements the same func-
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tionality as the superclass and potentially adds additional subclass specific func-
tionality. A subclass inherits all attributes and member functions of its superclass,
thus only additional attributes or member functions are depicted in the box of
the subclass. Inheritance is depicted as a line with a triangle shaped hollow arrow
head pointing to the superclass. More than one subclass can inherit from a given
superclass. In this case the lines join into one arrow. Multiple inheritance is legal
both in UML and C++, but not used in this work.
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Chapter 2

State of the Art

Multidimensional data is gaining increasing relevance within the database com-
munity. On the design level, a number of multidimensional data models have been
developed [BSHD98]| enabling users to represent problems from their application
domain directly in their multidimensional form. The storage of data, however,
is commonly carried out in RDBMSs mapping the multidimensional model to
relations [GL97]. A wide variety of application areas demands management of
multidimensional data in databases. Multidimensional data is common in scien-
tific applications, where, e.g., experiments in high energy physics produce data
sets with high dimensionalities [MM97]|. Geographic applications [MP94] com-
monly deal with collections of remote sensing images stored as 2-D arrays, while
3-D and 4-D data sets are produced in climate simulations. Medical applications,
such as hospital information systems [GY95, MKNS93], store 2-D x-ray images
together with 3-D volume tomograms. In business applications, multidimensional
data is the basis for decision support and OLAP [CD97].

Multidimensional arrays are the data type of choice for processing multidi-
mensional data in most programming languages. Support for multidimensional
arrays in a DBMS enables users to store data from their application area in a
database without mapping it to another data model. The focus of this work is
on the RasDaMan DBMS which was developed by a team including the author
at the Bavarian Research Centre for Knowledge-Based Systems (FORWISS) dur-
ing the ESPRIT Long-Term Research project of the same name. RasDaMan
supports storage of and operations on array data for a variety of application
areas [BFRW97, Fre99, FRS99, MFB98, RB96, WB97]. A declarative query
language supporting operations on arrays is offered combined with specialised
storage structures supporting efficient access to multidimensional arrays utilising
tiling. Among the operations expressible with the query language are geomet-
ric subselection, preprocessing such as classification of data, and content-based
selection.

Performance is a key factor when dealing with operations on array data, as
typically large amounts of data are stored and processed. Online archives for



10 CHAPTER 2. STATE OF THE ART

remote sensing data with a size of terabytes are planned [BS95], and data ware-
houses used as basis for OLAP applications storing hundreds of gigabytes are not
uncommon. To enable interactive explorative work with these amounts of data,
efficient execution of operations in the DBMS is of key importance.

The most commonly used technology today is storage in relational systems,
as these are the commercial state of the art in database systems at the moment.
There are two different relevant techniques for storing arrays in RDBMSs: stor-
age as an unstructured large object and storage in relations. More advanced
solutions should be possible when using systems extending the relational model
with support for abstract data types. These are currently entering the commer-
cial market and have been a research topic since the mid-80s. A performance
comparison of RasDaMan with state of the art DBMS technology focusing on
operation execution is presented in section 6.6.

Mainly in research, a variety of application specific DBMSs have been con-
structed supporting multidimensional data for a certain application area. Com-
mercially, specialised systems are available for multidimensional data in data
warehousing. Efficient execution of operations on data is also relevant in other
areas of computer science: scientific computing commonly operates on large mul-
tidimensional arrays and compiler technology provides for efficient operation exe-
cution in programming languages.

2.1 Storing Arrays in RDBMSs

The relational data model [Cod70] was designed mainly for modelling business
data, such as employee records and insurance contracts. In the following, we dis-
cuss two different techniques for storing multidimensional arrays using relational
DBMS technology as available in commercial systems on the market:

1. using binary large objects (BLOBs) [Lor82] for storing array data.

2. modelling arrays as relations storing coordinates together with values.

Another alternative used in applications is to store metadata in the relational
model, whereas the actual data is stored in operating system files. This technique
is not further evaluated, as all advantages of DBMS technology, e.g. access control
for concurrent access, transactional semantics, or centralised backup and recovery
in case of system failures, are lost when dealing with external files.

2.1.1 Binary Large Objects

Although not an integral part of the relational model or even the SQL-92 stan-
dard, most RDBMSs on the market offer a way to store binary data in rela-
tions. They support elements of tuples to be of type BLOB, which is basically
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an unstructured 1-D array of bytes. These BLOBs can be used as a container for
any kind of data which potentially can be very large compared to the size of a
tuple. Common in implementations is a limitation of BLOB size to 2 GB versus
some kB per tuple without BLOBs.

Standard SQL does not support operations on BLOBs. They can just be
used as elements of a result tuple. No conditions for selection whatsoever can be
specified on a BLOB, no operations on selected BLOBs are supported, and no
indexes can be built on their content. Usually not the whole BLOB is transmitted
to the client, therefore the RDBMS vendors provide a proprietary interface to
access linear subsets of BLOB data in their API or to copy BLOBs to local files
on the client.

Multidimensional arrays can be stored in BLOBs if their contents are lin-
earised and complex base types are mapped to bytes. Data interpretation then
is completely up to the application program: basic operations like conversion
between low and big endian and interpretation of the data as arrays have to
be implemented there and execution of operations is only possible on the client.
In the case of content based selection, as supported by an array DBMS such
as RasDaMan, this involves sending the whole data to the client, and not just
the selected arrays. Even simple spatial subselects are difficult to implement,
as no access to multidimensional parts of a multidimensional array is possible.
They have to be transformed into a potentially very large set of queries selecting
1-D parts in the unstructured BLOB involving a high amount of client/server
communication (see also section 6.6.3).

All operation execution has to be done on the client, as the DBMS has no
knowledge at all about the structure of the multidimensional array and no means
to execute operations on it. This involves a high amount of processing power
on the client resulting in a so called “fat” client. All operations reducing data,
like classification or selection of bands, transmit an unnecessarily large amount
of data to the client and therefore use a higher amount of network resources. In
a distributed environment like the Internet, this precludes some operations from
being executed because of bandwidth limitations. Maintenance of code involving
array operations is difficult, as all client applications have to be updated with
corresponding changes in the operation execution code.

On the other hand, a domain independent array DBMS supporting operation
execution in the DBMS makes management of multidimensional array data much
easier compared to BLOB-based storage. Certain operations are only feasible if
executed close to the data source on the server. In summary, while gaining some
of the advantages of DBMS technology, like access control and data integrity,
BLOBs are still a solution at a semantically low level. The DBMS has only
minimal knowledge of their content, and operation execution is still left to the
application programmer.



12 CHAPTER 2. STATE OF THE ART

(4,4,4)
X y z val
0|0
0 |0 1

. 2 |2 |0 |37

37 4 |4 |a

(0,0,0)

Figure 2.1: Mapping multidimensional arrays to relations.

2.1.2 Arrays in Relations

Multidimensional data models can be mapped to relations: the coordinates of
every cell are stored together with its value (see figure 2.1). If a relation contains
more than one multidimensional array, an identificator for every object has to
be additionally stored with every coordinates/value tuple. Assuming two bytes
for each coordinate of a multidimensional array, a 3-D array is stored with an
overhead of at least six bytes per cell. For efficient access to the cells, a further
penalty is required for indexes on the coordinates.

Using this representation declarative queries can be expressed on multidi-
mensional data. Mapping of simple queries like subselection on a 3-D image is
straightforward, as indicated by the following example:

SELECT x, y, z, val

FROM tomo

WHERE x BETWEEN O AND 118 AND
y BETWEEN O AND 118 AND
z BETWEEN O AND 71

Operations on the cell values can also be applied in the projection, and com-
plex cell values like structures can be modelled by adding columns to the table.
For other operations, expression in SQL is not that trivial. Imagine a set of 2-D
images stored as (id, x, y, val) tuples in a relation. A query should retrieve an
area of interest of all images where in a certain area at least one cell value is
greater than 250. One possible formulation in SQL is the following:

SELECT =*
FROM earth el
WHERE el.x <= 254 AND el.y <= 254 AND el.id IN (
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SELECT e2.id

FROM earth e2

WHERE e2.x <= 100 AND e2.y <= 200 AND e2.val > 250
)

This already involves a subquery, but still is comparatively simple way of
expressing the query. More complex queries, while most probably expressible in
SQL, involve much longer SQL statements. For a normal user and even for the
average application programmer the limits of SQL knowledge are easily reached
when querying arrays. Complex queries usually also involve a long execution
time of up to some hours, as the optimal query plan is not commonly found by
the query optimiser. No further measurements are done here, but some results
are given in [WB99]. An expressive query language efficiently supporting a set of
basic operations seems to be important for good performance characteristics.

The suitability of SQL for complex operations is also relevant in OLAP appli-
cations. Some vendors argue that SQL must be extended to be useful in the
OLAP area'. Note that these restrictions could often be circumvented by using
subqueries, but usually at the cost of worse performance. Other vendors argue
that it is sufficient to execute complex operations in separate SQL queries and
manage intermediate results in the OLAP tool.

Another factor leading to unacceptably high query execution times is the
substantial storage overhead involved in modelling array data in relations. The
coordinates not only have to be handled by the DBMS during query evaluation,
but they also have to be transmitted to the client as part of the query result.
Only the client can map the resulting set of tuples to array form again by using
the coordinates, as the DBMS just manages sets of cells. This necessitates the
transfer of all coordinate data over the network to the client (see also section
6.6.2). The storage overhead together with the necessity to maintain indexes
also results in extremely high loading times for the data when inserting — a
phenomenon well known in OLAP applications.

In summary, it is possible to store multidimensional array data in an RDBMS
and execute operations on it using standard SQL. As for BLOB-based storage,
the DBMS controls access to the data and guarantees data security and integrity.
But this still is a solution at a semantically low level, as the arrays are just
unstructured sets of coordinate/value tuples. This makes expression of operations
difficult and efficient execution impossible for all but the simplest queries.

The data managed in OLAP applications is of a different structure [BSHD9S|.
Usually the coordinates in dimensions are specified by alphanumeric keys such as
product names or sales districts. These dimension elements are often of a hierar-
chical structure like, e.g., product, product group, and product category. Usually
this data is modelled in a star or snowflake schema in the RBDMS resulting in

14l..] SQL is a remarkably deficient language for expressing and conducting advanced
business analysis.” [Red97]



14 CHAPTER 2. STATE OF THE ART

dimension tables and a fact table. In the fact table, the dimension tables with
information on the dimension hierarchy are commonly referenced using surrogate
keys [Kim98], which are typically integers.

Using this model for the fact table, it can be interpreted as a multidimensional
array with integer coordinates. The main difference between a 2-D remote sensing
image or a 3-D computer tomogram and an OLAP data set is sparsity. While the
image or the tomogram has a value for every coordinate combination, the OLAP
data commonly has values only for a small subset of the coordinate combinations.
Only these values have to be stored in the RDBMS, thus greatly reducing the
number of tuples in the fact table. Furthermore, the most common operations in
OLAP are aggregations along the dimension hierarchies, which can be expressed
more elegantly using grouping and aggregate functions in SQL.

Under these conditions, storage of data in relations promises to be more com-
petitive with storage in an array based system. Basically, the sparser the data
set is, the more viable storage in relations becomes. Operations on sparse data
can be efficiently processed; relational systems commonly are optimised for deal-
ing with OLAP data. Still, storage of OLAP data in arrays and execution of
operations on it is feasible and, in some cases, even more efficient than storage
in relations [ZDN97]. A performance analysis in this area is also done in chapter
6 using the APB-1 workload described in detail in section 6.7.

2.2 Extensible Database Technology

The limitations of relational database technology for “non-standard” applications
have been a widely discussed topic in database research since the first half of the
1980s [AMKPS85, CM84, SRG83|. Everything which did not follow the usual
record model used in typical business applications such as storage of customer
records or insurance contracts was declared “non-standard”. The main focus of
early papers was on Computer Aided Design (CAD) applications, ranging from
VLSI design to automotive engineering, storing data with a complex interlinked
hierarchical structure when compared to the simple data structures prevalent in
business applications.? With cost of disk storage decreasing at a high rate, man-
agement of high-volume array data with a comparatively simple structure became
feasible and is now a relevant application for DBMSs. All papers proposed to
augment the data model of the database with more powerful modelling capabili-
ties compared to the simple tuple/relation constructs supported in the relational
model. Integrating abstract data types in DBMSs enables users to define their
own data types for specific application areas. An overview on the topic is given
in [CDY6].

2«Rick Cattell characterizes such databases as having relatively rich inter-relationships, and
the transactions as navigating from one record to its many relatives” [Gra91]
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One way is to extend programming languages with persistent storage, thereby
unifying the powerful type system of a programming language with DBMS capa-
bilities such as transactional semantics or concurrent access to data. This resulted
in the development of a multitude of Object Database Management Systems
(ODBMSs) [Lo095], usually based on object-oriented programming languages
like C++ or Smalltalk.?> The main disadvantage of these systems, especially in
a C++ environment, is that execution of operations usually takes place on the
client. The server then works as a page server and provides only basic storage
functionality not including a declarative query language. For processing of high-
volume data, this approach has a great disadvantage because of extremely high
usage of network resources to execute queries on the client. Processing of data
on the client is generally getting less importance in DBMS applications accord-
ing to [CD96]: “[...] has led the dominant computing environment to be one
with thin clients and fat servers — which is the opposite of the design point for
object-oriented database systems.”

Another alternative is to extend the relational model with abstract data types,
which can be stored as elements of tuples in relations. Furthermore, they can be
queried using the declarative query language of the system, which is evaluated
on the server. First the term extensible RDBMSs was used and later the term
object-relational DBMSs was introduced for these systems. The most prominent
system in this area is Postgres. Development of Postgres started 1986 [SR86] at
the University of California, Berkeley, under direction of Michael Stonebraker.
It was developed further at UCB and is now under maintenance by a group of
volunteers and freely available in source code as PostgreSQL. Independently, a
commercial variant was developed and maintained which was first called Montage
[Ube94] and then Illustra [SM95]. Illustra Information Technology now is a wholly
owned subsidiary of Informix Software, Inc.; the Postgres technology is available
as the Universal Data Option for Informix Dynamic Server.

Postgres

Postgres supports large objects as in conventional RDBMS technology [SO93].
Its proprietary interface to access 1-D linear parts of BLOBs is modelled after
the Unix file system with analogues to functions like open or 1lseek [Pos98a].
Employing this capability, Postgres could be used as an alternative to RDBMSs
for storing multidimensional arrays in BLOBs. More interesting is the capability
to define abstract data types (ADTs) including user-defined functions embed-
ded in the relational model [RS87]. An ADT in Postgres is a fixed length 1-D
char array of up to 8192 bytes providing input and output functions converting
the internal representation from and into a string representation, respectively.

3“The coupling between an OODB and its application programming language tends to be

tight; most are single-language (most commonly C++) systems for all intents and purposes.”
[CDY6]
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Clearly this is too limited for modelling of multidimensional arrays. Another
possibility is using a large object with an appropriate set of functions defined
rather than implementing an explicit ADT for arrays [Sto86] . Storage of the
multidimensional array is then restricted to 1-D chunked storage as provided by
Postgres, and multidimensional tiling cannot be applied in this way.

One major drawback to extensible RDBMSs is the fact that the syntax of the
query language cannot be changed. Extension is only possible by implementing
user-defined functions having a fixed number of typed parameters and returning
a single value. It seems feasible to support a comprehensive set of operations
on arrays of a fixed dimensionality and base type using this technique. Support
for arbitrary dimensionality and base type, as offered in RasDaMan, cannot be
implemented without using string parameters parsed at runtime in user defined
functions. This precludes efficient optimisation of queries by the DBMS.

Another problem is the integration of optimised storage for user defined ADTs.
Postgres supports integration of ADTs into the query optimiser and even imple-
mentation of user defined access methods. The interface to this facility, however,
involves extensive knowledge of DBMS internals such as locking or the buffer
manager. Substantial programming effort has to be spent for implementing access
methods. The designers of Postgres acknowledge this in [SRH90]: “Our experi-
ence has consistently been that adding an access method is VERY HARD. [...]
it requires a highly skilled programmer to add a new access method. [...] We
failed to realise the difficulty of access method construction.” Implementation of
multidimensional tiling enabling efficient execution on subarrays seems to be at
least very difficult.

While storage of and operations on multidimensional array data in Postgres
seem limited, the concepts developed for Postgres are relevant to the work pre-
sented here. The general problem is efficient execution of operations on data
modelled using a dynamic type system and stored in a DBMS when executing
declarative queries on it. In Postgres, even primitive data types as supplied by
the system are modelled as ADTs internally. It uses system tables to dynamically
lookup type information when operations are executed, resulting in performance
problems [Lai90]. Rules for applicability and selection of functions are then used
together with type conversion to choose the correct function for application out of
either system supplied or user defined procedures [Pos98b]. For type conversion,
the “in” and “out” functions defined on every type are applied using a string
representation as an intermediate. While this conversion may be sufficient for a
relational DBMS; it is not a viable solution for an array DBMS where every cell in
a potentially very large array would have to be converted. Similar problems had
to be solved in the implementation of the RasDaMan system (see section 5.2).
Unfortunately, the published work on Postgres does not discuss this in detail,
but the freely available source code of PostgreSQL and its documentation are
available as a reference.

It is interesting to compare the performance of Postgres with a conventional
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system. Performance studies made with Postgres came to the conclusion that
the performance is much worse compared to commercial RDBMSs [SK91|. The
benchmarks used were mainly standard benchmarks [BDT83, Cat91] emphasising
storage performance over operation performance. The bad results were partly
due to the implementation of a “no-overwrite” storage manager [Sto87] relying
on non-volatile main memory for optimal performance not commonly found in
current computer systems. A specific analysis of operation execution performance
of Postgres on large amounts of data is not available.

PREDATOR

PREDATOR [SLR97]| is a database system supporting “Enhanced Abstract Data-
types” (E-ADTs). Development started at the University of Wisconsin and con-
tinues now at Cornell University. The basic idea is that the DBMS should know
about the semantics of the data type and use this knowledge for efficient query
processing. Giving the database system semantic knowledge for use in query
optimisation and operation execution is exactly what the RasDaMan project did
for one specific data type: multidimensional arrays. Can a general system such as
PREDATOR provide the same functionality as RasDaMan regarding operations
on multidimensional arrays?

The PREDATOR project could employ more advanced implementation tech-
niques than Postgres because of the time when it was implemented: the first
public release was in 1997. As opposed to Postgres, PREDATOR is completely
implemented in C++ like RasDaMan. Like RasDaMan, it uses another system for
basic database capabilities and persistent storage. In this case, it is the SHORE
storage manager [CDF794] developed at the University of Wisconsin. E-ADTs
are introduced into the system as C++ classes implementing a predefined set
of methods as required by the PREDATOR system [Ses97]. Additionally, the
system supports plug-in Query Processing Engines (QPEs). Even the relational
model is implemented as a QPE, and basic types are implemented as E-ADTs.
Although in theory they provide a high-degree of extensibility, the effort of writ-
ing an E-ADT or a QPE seems prohibitively high for most practical purposes.

PREDATOR is very much work-in-progress: only a limited set of primitive
types is supported; there is no support for NULL values; and the system compiles
only on Sun Solaris and Windows NT. In theory, the higher degree of extensi-
bility in PREDATOR, should make it feasible to implement efficient storage and
operations on multidimensional arrays comparative with RasDaMan. The effort
for implementing this can be expected to be not much less than the implementa-
tion of RasDaMan on top of an ODBMS. Also, as PREDATOR is not complete
yet, some important functions are missing, e.g. specialised indexing structures for
E-ADTs: only B+ and 2-D R*-trees are supported at the moment.

While not relevant as a system for comparison, scientifically PREDATOR
is a very interesting project. One basic conclusion of the project as published
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in [Ses97] is: “Often, the cost of a query execution is dominated by the exe-
cution of methods, not by joins or traditional database I/O.” The main focus
in the PREDATOR project currently is on high-level query optimisation choos-
ing optimal query plans in conjunction with E-ADTs and operations on them.
This work, on the other hand, focuses on operation execution in main memory,
which is highly relevant for complex data types storing high-volume data such as
multidimensional arrays.

In [CD96] two additional areas of research are listed: persistent program-
ming languages and database system toolkits/components. Both are described
as “casualities” between 1986 and 1996, as they were not gaining any practical,
i.e. commercial, relevance. While persistent programming languages were rele-
vant for development of ODBMSs*, database toolkits will be shortly discussed as
basis for application specific systems in the following section.

2.3 Application Specific DBMSs

Before extensible database systems were a topic in research and business, a variety
of application specific DBMSs had been designed for different areas. Even after
object-relational systems are available on the market, systems are still specifically
built for certain application areas such as OLAP. The extensibility mechanisms
of an ORDBMS offer not enough flexibility to provide sufficient support for all
application demands, as discussed in the previous subsections.

Regarding application specific DBMSs, there are two main lines of approach
to build such a system: One is to use a DBMS as a base system utilising its
capabilities, e.g., for concurrency or recovery; the other one is to build a complete
DBMS geared towards a certain type of applications. The second approach is
commonly supported by database toolkits or by the use of storage managers for
basic storage. The first approach was used for the implementation of RasDaMan.
It should be noted, however, that RasDaMan provides multidimensional array
support for a wide area of applications and therefore, strictly speaking, is not an
application specific DBMS.

One area where a lot of research has been done in application specific DBMSs
is scientific and statistical databases. An overview of the research issues in this
area is given in [SW85]. A conference series focusing on this topic was started
1981 at the Lawrence Berkeley Livermore Labs; it took place eleven times till
1999 and continues as an annual conference. Statistical databases store census
data and other statistical information, whereas scientific databases store results
of scientific experiments as generated, e.g., in high energy physics [MM97]. The
common element between these two topics is that the data is usually analysed to

44[..] the results from this area [...] have also been directly transferable to object-oriented
databases.” [CD96]
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discover patterns or rules in the data and that it typically has a multidimensional
structure.

For this purpose, statistical operations are applied to the data. Relational
systems offer only rudimentary support for these kind of operations in a very
limited set of aggregate functions®. More complex operations, such as regression
techniques or sampling, would have to be programmed explicitely by the user as
a database client resulting in a performance degradation®. Efficiency of statisti-
cal operations in databases has been a research topic for a long time [KBDS85].
Among the key topics are optimisation of buffer strategies to limit physical stor-
age accesses and tradeoffs between the I1/O costs and the CPU costs.

The main difference between research on operations in this work and the topic
in the context of SSDBs is that RasDaMan deals with dense multidimensional
arrays. Statistical data sets, on the other hand, are commonly sparsely populated.
Additionally, RasDaMan does not focus on complex statistical operations, but on
a comprehensive set of array operations relevant for a large set of applications.
Commonalities exist in basic principles like tradeoff between I/O and CPU or the
basic idea of executing operation close to the data source in the DBMS. Another
common question is which operations should be integrated within the DBMS.
Some scientific data sets can be modelled very well as multidimensional arrays,
such as results from detector arrays as used in high energy physics to analyse the
particles generated. It is interesting to note that the research done for more than
15 years in the SSDB area is gaining commercial relevance now for databases
in OLAP. A comprehensive discussion of similarities and differences is given in
[Sho97].

Another area where application specific DBMSs have been developed is man-
agement of geo-data. Geo-data encompasses both data stored as points, lines, or
polygons describing features like roads or rivers and remote sensing data, which
is basically 2-D raster data. One prominent system in database research in this
area is Paradise [DKL"94, PYK"97], which was developed at the University of
Wisconsin. Paradise is built with the database toolkit EXODUS and is based
on the SHORE storage manager [CDF194]. Paradise uses an SQL extended by

4] the inadequacy of commercial database management systems to support statistical
and scientific applications. [...] most of the commercial systems available today were designed
primarily to support transactions for business applications [...]. SSDB applications differ from
commercial applications both in the properties of the data and in the operations over the data.”
[SW85]

6«In order to achieve better efficiency, all important operators should be supported directly
by the [...] DBMS as close to the physical storage level as possible. For example, if the data are
compressed, then the operators should operate directly on the compressed data without having
to decompress them first, and then compress the results.” [SW85]

"“The primary difficulty with the proposed integrated approach to supporting these tech-
niques in a DBMS is that there are so many, and new ones are continually being created.
Therefore, it is difficult to define a “closed” or functionally complete statistical database man-
agement system.” [KBD85]
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functions similar to object-relational systems (see section 2.2) as a query lan-
guage. Arrays are supported and use a comparatively simple tiling scheme for
their storage.

The Paradise project has a different focus from RasDaMan. It supports vec-
tor data together with 2-D raster images in geographic applications. Besides,
the extension of SQL only with functions precludes an easy-to-read raster query
language with a comprehensive set of operations as supported by RasDaMan.
The set of operations focuses on simple cutout or subaccess operations, access to
single bands, e.g., is complicated. RasDaMan would have to be integrated into
a solution for general geo-data as a raster component, while Paradise in theory
could be used as the only storage system. However, RasDaMan is a more flexible
and powerful generic database system for multidimensional arrays.

Paradise was developed using a database system toolkit including, e.g., an
optimiser generator and a storage manager. RasDaMan, on the other hand,
was built based on an ODBMS used as a storage manager. The use of database
system toolkits does not result in a more efficient system process. Familiarisation
with the tools provided involves a steep learning curve®. No support is given by
the toolkit for implementing a type system and an operation execution engine.
Even implementing an extended relational system using e.g. EXODUS seems to
involve too much work to be a possible alternative?. It would probably have
been interesting to evaluate Shore as an alternative to O, for basic storage in the
RasDaMan project.

The general principle of RasDaMan is to replace a variety of specialised solu-
tions for different application areas by a general solution for multidimensional
array data. Instead of building specialised DBMSs for certain application areas,
RasDaMan can be combined with relational or object-oriented systems for tex-
tual or metadata to build a solution. No database implementation knowledge is
necessary, standard components can be used. Providing efficient execution of a
general set of array operations in one system seems preferrable to implementing
a set of operations specific for a particular application area in different systems.

2.4 Other Relevant Areas

All previous discussions on relevant research projects for this work concentrated
on database technology. Efficient operation execution on arrays is also relevant
in other areas of computer science. In scientific computing, arrays, usually called
meshes or matrices, are very important as the basic data structure used to solve
problems. Efficient operation execution is a key topic in compiler construction,

84One reason for this is that too much expertise ended up being requited to use them”
[CDY6]

9¢]...] there was still way too much to do in building such a system to declare EXODUS as
having succeeded in that regard.” [CD96]
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and a small set of operations on arrays are supported by most programming
languages. In the following sections, a short survey of relevant results from these
two research areas is given.

2.4.1 Scientific Computing

Scientific computing deals with efficiently solving problems from science or engi-
neering by means of a computer system. The basic problems and algorithms to
solve these problems commonly are much older than computer science. Time
efficient ways to solve them is the main contribution of computer science here.
Performance therefore is of key importance in this area, also because of the sheer
data size of some of the problems.

Arrays are a central data structure for scientific computing. Arrays are created
to discretise problems such as partial differential equations and solve them by
simulating time steps. A common example for this is simulation of weather
conditions, where a 3-D array or mesh is created to store certain characteristics
such as temperature or wind velocity in the earth’s atmosphere. Matrices are
used to implement general solutions to a wide range of problems ranging from
simple linear equations to complex simulations of fluid dynamics.

The main difference to database technology is that most problems from sci-
entific computing can be solved in main memory. This is mainly due to the
locality of problems: complex computations are executed on a comparatively
small number of array cells spatially quite close together. Database technology
with its support for efficiently accessing a subset of the data is mainly relevant in
analysing the final results of computation, potentially archived for a large number
of simulation steps and simulation parameters.

The main focus of this work, efficient operation execution, is also a topic in
scientific computing. There are two main techniques for solving problems in this
area: using an interpreted, interactive system such as MATLAB or IDL in com-
parison with implementing the algorithm in a compiled programming language
such as Fortran. An overview of these languages can be found in [FJSD95]. The
first approach is mainly relevant for smaller problems or for prototyping applica-
tions. However, it is interesting to examine the support for operations on arrays
in these systems. Both MATLAB and IDL offer arrays or matrices as a basic
data type similar to RasDaMan.

MATLAB supports three basic data types: scalar numbers, 1-D vectors of
scalar numbers, and 2-D matrices containing scalar numbers. MATLAB does
not support operations on general multidimensional arrays as RasDaMan does.
Furthermore, base types of arrays are always scalar floating point numbers. Struc-
tured base types, as supported by RasDaMan, are not allowed. Regarding sup-
port for base types and multidimensional array, RasDaMan offers much more
flexibility.

Regarding the operations allowed on arrays, MATLAB took a similar approach
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as RasDaMan (see chapter 4). The basic operators, such as addition or subtrac-
tion, including comparison operations are supported for elementwise application
to matrices. The same approach is also taken for binary operations with one
matrix and one scalar operand. Very similar is the syntax to access subsets of
matrices, i.e. executing trimmings or sections in RasDaMan. In addition to ele-
mentwise application, MATLAB also supports common matrix operations such
as matrix multiplication. Additionally, a comprehensive set of complex func-
tions is supported, e.g. polynomial curve fitting or eigenvalue calculation. With
regards to these matrix operations and complex functions, MATLAB offers more
functionality than RasDaMan. RasDaMan as a general array DBMS only offers
functionality applicable to all arrays regardless of dimensionality.

Checks for applicability of operations are executed based on the spatial domains
of the matrix similar to the rules defined in section 4.3. These checks are much
simpler for MATLAB, as only one base type is supported and only 2-D arrays
are possible. The implementation of an operation execution engine is also greatly
simplified due to these restrictions. MATLAB is an interpreted system, and the
spatial domains of matrices have to be dynamically checked during operation
execution. It would be interesting to analyse, what effects the more powerful
programming language as opposed to the RasDaMan query language and the
simplified type system has on performance. Unfortunately, no system was avail-
able for performance measurements.

IDL, the Interactive Data Language, is a system very similar to MATLAB. As
opposed to MATLAB, it is more of a general programming language and less of
a mathematical toolkit. Some functionalities directly available in MATLAB have
to be explicitely programmed in IDL, but the programming language available
seems to be more powerful. In this context, it is relevant to notice that IDL
supports matrices as a special case of an array just like RasDaMan does. It also
supports more than one base type, e.g. integers. In general, IDL has a close
resemblance to Fortran, but it is an interpreted language just like MATLAB.

Fortran still is the most common programming language for scientific com-
puting, starting with the first standard, Fortran 77, and continuing with the
newer Fortran 90 and HPF (High Performance Fortran) standards. Fortran is
a compiled language, as most programming languages used in modern software
development. The old versions lacked state of the art support for structured
programming such as separate namespaces for procedures. The main reason why
FORTRAN is still relevant is that it has been one of the first programming lan-
guages and has traditionally been used in scientific programming. It was and
still is taught to engineers and scientists from natural science at university level,
hence these professions tend to use FORTRAN as their language of choice. Other
reasons for its unstaggering popularity are the availability of highly optimising
compilers for specialised hardware such as vector computers and a large number
of libraries offering mathematical and scientific functionality.

Similar to other programming languages, common types such as integer or
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single and double precision floating point are supported by Fortran. Arithmetic
and comparison operations are offered on these types. As the language was geared
towards scientific programming, it offers multidimensional arrays as a data type.
Similar to the interpreted languages above, which actually were modelled after
the support for arrays in Fortran, access to parts of these arrays is possible.
Arbitrary index bounds are supported by Fortran, as is access to subarrays using
ranges specified for a dimension. The language itself does not offer high-level
functionality on arrays, but an abundance of libraries is available in this area.

All of the systems described here do not support persistent storage of results,
let alone database capabilities such as concurrent acccess or transactional seman-
tics. The most common form of persistent storage and input/output in general
for Fortran programs are flat files. Input files are read in a program specific
form and output files are generated for postprocessing such as visualisation or
further analysis. RasDaMan can add a great deal of functionality in this area.
On the other hand, RasDaMan can adapt some ideas regarding the syntax of
array handling and the basic functionality offered by these systems.

Regarding operation execution, the main difference between Fortran and Ras-
DaMan is a static type system and compilation of operations specified into
machine code vs. a dynamic type system and interpreted operation execution
in RasDaMan. The interpreted systems, especially Matlab, and also most of
the libraries offered for Fortran restrict operation support to 2-D matrices and
1-D vectors. RasDaMan, on the other hand, wants to support a broader range of
potential application areas. Therefore, it does not support the more complex and
specialised matrix operations for 2-D arrays with base type float, but concentrates
on functionality useful on general multidimensional arrays.

2.4.2 Compiler Construction

As mentioned in the previous section, basically all commercially relevant lan-
guages are compiled languages. Obviously in this case the compiler has to sup-
port the execution of operations. User defined operations, such as those offered
by libraries, are written by a programmer in the programming language in ques-
tion. The compiler then only has to support the general process of function or
procedure calls together with parameter handling. Of more interest in the context
of this work is the support of basic or so called intrinsic operations as supported
on primitive types directly by the programming language.

The general principles of compiler construction are presented in [ASUS6.
The basic principle for operation execution, as described there, is generation of
an intermediate code which is later compiled into assembler language by the
code generator. As an example for an intermediate language a three-address
code is used. This is based on the restriction that one instruction uses at most
three addresses for its execution: two operands and one result. The types of
statements needed as basic elements for compiling a programming language are
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given (see [ASU86] p. 467). For executing operations in a declarative database
query language as supported by RasDaMan, statements for conditional execution
or other procedural constructs are not necessary. The following are relevant:

binary arithmetic or logical operations

e unary operations

copy statements (or assignment statements)

indexed assignments

Interestingly, the authors advocate support for 1-D arrays through indexed
assignments directly in the intermediate code. This must be included to support
access to an element of an array where the position is the result of a previous
calculation. In the course of this work, a more detailed classification of opera-
tions is developed (see section 4.2.4) as formal basis for operation execution on
multidimensional arrays as offered by RasDaMan.

When defining the intermediate code, operations should be provided for all
primitive types supported by the language. So basic operations on scalar values
can be compiled into exactly one statement in the intermediate code. Type
casting instructions would have to be generated additionally, e.g., to convert a
16 bit integer into a 32 bit integer. In the code generation step, the capabilities
of the target machine must be matched with the types and operations supported
by the intermediate language. For example, RISC machines commonly do not
support three-address operations, but can execute operations only in registers.
So additional load and store instructions have to be added. Another issue are
the types supported by the target machine. While most CPUs support a variety
of integer operations, on older machines it was common that operations on float
could not be directly mapped into machine instructions. In this case, a call to a
library function would have to be inserted by the code generator.

Most relevant for RasDaMan in this context is the definition of a set of basic
categories for operations, which are then used as a form of intermediate code
for operation execution. Furthermore, the need for type conversion is essential
in the context of operation execution on multidimensional arrays. Optimisation
techniques are also applied based on the intermediate code in this work, though
different techniques are used for a dynamic interpreted system. Just-in-time com-
pilation of operations executed on a large number of cells would be an interesting
research issue, but is beyond the scope of this work. Operations on persistently
stored data are not generally a topic in compilers and neither are efficient oper-
ations on multidimensional arrays.



Chapter 3

The RasDaMan DBMS

The work presented here was done as part of the RasDaMan (Raster Data Man-
agement in Databases) project. The main objective of this project was to imple-
ment a DBMS for multidimensional array data of arbitrary dimensionality and
base type. The implementation of the DBMS was done at FORWISS (Bavar-
ian Research Center for Knowledge Based Systems) in the Research Group on
Knowlegde-Bases in Munich, Bavaria. End user input for potential application
areas was provided from project partners in Spain, namely the Centro Nacional
de Informacion Geografica and the Hopital General de Manresa. The project was
sponsored by the European Comission in the ESPRIT framework!.

The term “Multidimensional Discrete Data” (MDD) was introduced in the
database community [FT93] for multidimensional arrays of arbitrary base type.
It stresses the arbitrary dimensionality and separates this quantised information
from multidimensional vector data. In the following, preference is given to the
term multidimensional array. The RasDaMan system supports a query language
specifically geared towards this type of data. The syntax of this language is based
on SQL-92 [Ame92, CO93| and extends it with constructs for management of and
operations on multidimensional array data. While SQL supports only one type
constructor in the form of relations consisting out of columns of a certain type,
RasDaMan provides user defined structures as base types. A data definition
language based on the Object Database Management Group (ODMG) Object
Definition Language (ODL) supports this. Section 3.1 introduces both the data
maninpulation and the data definition parts of the RasDaMan query language.

Besides the abstract ODL, the ODMG also describes an object-oriented inter-
face to write applications for object DBMSs in C++. Both standards are defined
in the most current version 2.0 in [CBB797]. RasDaMan offers a programming
interface based on this standard, but extended with constructs for management
of multidimensional arrays. This is the topic of section 3.2. After this introduc-
tion to the interfaces to the RasDaMan system, in section 3.3 an overview of the

YESPRIT Domain 4: Long-Term Research, grant no. 20073.
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architecture of the system is given. The whole system is implemented in C++,
and the design of the operation execution engine is discussed in detail in chapter
5. Finally, section 3.4 shortly introduces the physical storage of multidimensional
arrays in tiles as applied in RasDaMan.

3.1 The RasDaMan Query Language

The RasDaMan query language is distributed into two parts: A data defintion
language and a declarative query language. This is based on the division of SQL
into a DDL and a DML (Data Manipulation Language). In the following, the
basic principles of these languages are introduced and an overview is given as far
as relevant for this work.

3.1.1 RasDL

The Raster Data Definition Language (RasDL) is used to specify types for the
RasDaMan system. The RasDaMan system supports a dynamic type system as
explained in detail in section 5.1.2. There are three entities in the RasDaMan
system which are typed: collections of multidimensional arrays, multidimensional
arrays, and cells of multidimensional arrays. The latter types are called the base
types of the corresponding arrays. The data definition language for these types
is modelled after the ODMG ODL, an abstract specification language for object
oriented programming.

The primitive types supported by both RasDL and ODL are based on com-
mon C/C++ types, and also the syntax of the language is modelled after these
languages. RasDL orients itself towards the C++ mapping available for the ODL.
A detailed list of the supported primitve types in RasDaMan is given in section
4.2.4. While ODL also supports the specification of classes, RasDL restricts itself
to structures. The following example serves to introduce the basic principles.

// Example 1

typedef marray <unsigned integer, 2> Greylmage;
typedef set<GreyImage> GreySet;

// Example 2

typedef struct {
unsigned char bandl, band2, band3,
band4, band5, band6,
band7
} LSPixel;
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typedef marray<LSPixel, [0:5759,0:7019]> LSImage;

typedef set<LSImage> LSSet;

The first example defines a type for 2-D multidimensional arrays using an
unsigned 16 bit integer as a base type with the name “Greylmage”. The C++
typedef construct is used to give names to types which later are used to create the
appropriate objects, i.e. multidimensional arrays or collections of them. The main
addition to ODMG ODL is the possibility to specify restrictions on the spatial
domain of an MDD in C++ template syntax. In the example, this restriction
says that any array of type Greylmage has to be 2-D. The collection GreySet
is restricted to multidimensional arrays of this type. These restrictions then are
enforced by the RasDaMan query parser and used by the query optimiser to
perform optimisations on the collection level.

The second example models data retrieved from the sensor on the Landsat
remote sensing satellite. While Greylmage uses a primitive type as a base type,
LSImage is defined on the user defined base type LSPixel. This type is a structure
LSPixel consisting of seven unsigned 8-bit integer values, one for each Landsat
sensor. The type for the array in this example is not only restricted to a specific
dimensionality, but has to have a specific spatial domain. Again, a type for sets
is defined which holds arrays of that type.

In general, the second parameter to the template defines either the dimension-
ality or a specific spatial domain. It can also be completely left out, in which case
arrays of any size or dimensionality can be inserted into a collection based on this
type. Even the base type is optional, collections in RasDaMan can hold arrays
of any type. One advantage of defining more specific types is error handling. As
defined in section 4.3, rules for applicability of operations depend on both spatial
domain and base type. If these are specified at the collection level, queries can
be checked before actually accessing data. Untyped collections can signal errors
only during query execution.

The ODL file is parsed by a precompiler, which introduces the type into the
DBMS and at the same time creates an include file for C++. The insertion of
types is done during runtime of the system, no shutdown or even recompile is nec-
essary to introduce new types into the DBMS. Schema evolution is not currently
supported by the system. Using the include file, the application programmer can
work with arrays based on the types defined in the ODL file. Otherwise only
access to arrays of unstructured bytes would be possible. Note that the tiling
strategy is specified independently from the type on an object by object basis as
mentioned in section 3.4.
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3.1.2 RasQL

The declarative query language of RasDaMan is strictly modelled after SQL.
The standard types of queries in the data manipulation part of SQL are sup-
ported: SELECT, UPDATE, INSERT, and DELETE. The following discussion
will restrict itself to SELECT queries, as everything relevant for operation exe-
cution can be explained using only these. Furthermore, the queries presented in
chapter 6 for performance evaluation are all of this type. Of course operations
can also be used as part of other query types.

RasQL SELECT queries can have three clauses: SELECT, FROM, and an
optional WHERE. The basic structure for managing array data in RasDaMan
are collections of arrays, which correspond to tables in relational systems. One
major difference between relational systems and the current implementation of
RasDaMan is that collections in RasDaMan are tables with exactly one column
containing the multidimensional array. No tables combining non-array and array
columns are possible. All arrays have an implicit primary key in the form of an
object identifier, which can be used in a WHERE clause to select a specific array.

The syntax of SQL is extended with constructs allowing to specify operations
on multidimensional arrays. The following example assumes a collection called
myLSImgSet of type LSImageSet as defined in the previous section.

SELECT img[712:1467, 112:968] .band7 + 10
FROM  myLSImgSet AS img
WHERE ALL_CELL (img[712:1467, 976:1762] .bandl > 127)

This query in plain language says: “Return band 7 in the specified area of
interest with intensity raised by 10 of all those Landsat images where the intensity
of every pixel of band 1 in another area of interest is greater than 127.” The
basic structure of the query follows the principles of SQL, the FROM clause is
a syntactically correct SQL FROM clause. The main difference is that instead
of expressions defined on tables RasQL allows expressions on multidimensional
arrays as elements of the query in both the SELECT and the WHERE clause.
The expressions in the WHERE clause have to return a boolean value to be legal.

The main syntactic additions to SQL are the edgy parentheses syntax to spec-
ify spatial domains to restrict arrays and the dot operator to access elements of
structured base types. Additionally, operations are provided on multidimensional
arrays, but they use the standard SQL syntax. The ALL_CELL operation in the
WHERE clause has the same syntax as an SQL aggregate function. The seman-
tics are different, however, as not a scalar value aggregating all tuples in the
relation is returned, but a set of scalar values each aggregated over the cells of
one multidimensional array. To evaluate this query, the following operations are
executed on multidimensional arrays:

e [712:1467,112:968]: select a 2-D part from a 2-D array.
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.band7 and .bandl: access an element of a structure for each cell of an
array. The result has the same spatial domain as the original array and
the type of the accessed element as base type (unsigned char for elements
bandl and band7 of a LSPixel structure).

e + 10: add a constant to every cell of an array.

e >127: apply this comparison to every cell. The result is an array with the
same spatial domain as the original array and base type bool.

e ALL_CELL: condense a boolean array to a scalar boolean value. The result
is TRUE if all cells of the array are TRUE.

All these operations are finally executed using the techniques developed in
this. The query above contains the most important principles of RasQL as rele-
vant for this work. A more detailed introduction including the complete syntax
can be found in [Rit99].

3.2 RasLib

RasLib (Raster Library) is the application programming interface (API) avail-
able for programmers to interface with RasDaMan. It is modelled after the C++
binding of the ODMG 2.0 standard [CBB*97] extended with constructs for han-
dling multidimensional arrays. While the ODMG specification already contains
a mapping to Java, RasLib is currently available only for C++. RasLib is not
directly relevant for operation execution, which is implemented inside the Ras-
DaMan server. Its main significance here is to demonstrate how RasDaMan users
could implement their own application specific functionality on top of RasDaMan.
The classes provided here coupled with the expressive power of RasQL make this
much easier compare with, e.g., an implementation on BLOBs (see also section
6.6.3).

The basic principle of the ODMG C++ binding is the support of persistent
pointers implemented as templates. In RasLib, all class names start with r_, so
this pointer class is called r Ref<T>. Persistent objects are always returned by
functions as persistent pointers to these objects. Modifications of these objects
are detected and written back into the database at commit time. Basic classes
symbolising databases and transactions are offered for administrative purposes.
A class r_0QL_Query is used to store RasQL queries, which are sent to the Ras-
DaMan server by calling the function r_oql_execute. The return value of this
function is a set of persistent pointers either to scalar values or to arrays. To cor-
rectly handle query results depending on their type, a class hierarchy for runtime
typing is included.
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The main extension to the ODMG standard are classes for handling multidi-
mensional arrays. As a basis for this, a class representing a multidimensional spa-
tial domain is provided: r_ Minterval. This class can deal with spatial domains
or multidimensional intervals of arbitrary dimensionality. It relies on a class
r_Sinterval for representing a single 1-D interval. Functionality such as access-
ing upper or lower borders of an interval at a certain dimension are provided.
The class r Point symbolises a multidimensional point. All these classes are also
used inside the server code (see section 5.3.1).

The class r Marray<T> is used to work with multidimensional arrays. It is a
template and is instantiated depending on the query result with either a C++
primitive type or a user defined structure as explained in section 3.1.1. If the
type of a query result is unknown, the class r_GMarray is used instead. In the
latter case, no C++ functions can be executed on the cells of the multidimensional
array, as they are just an unstructured number of bytes. If the type is known, the
template class together with the interval and point classes provides a high-level
interface to multidimensional arrays in RasLib. Access to the complete contents
in the C++ memory layout is also possible, of course.

The following example program serves to illustrate the basic concepts:

r_Database db;
r_Transaction ta;
db.set_servername( "sunwibasi1b5" );

db.open( "TestBase" );
ta.begin();

r_0OQL_Query query( "SELECT img FROM myLSImgSet AS img" );
r_Set< r_Ref<LSImage > result_set;
r_oql_execute( query, result_set );

r_Iterator<r_Ref<LSImage > > iter = result_set.create_iterator();

/...

ta.commit () ;
db.close();

Another important functionality of RasLib are storage layout classes enabling
the user to define a tiling for a multidimensional array to be inserted into the
DBMS. A short introduction to the general principles of tiling is given in section
3.4, and a detailed explanation of the different storage layout classes is given in
[Fur99]. In summary, RasLib seamlessly integrates persistent multidimensional
arrays into the C++ programming language.
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Figure 3.1: Architecture of the RasDaMan DBMS.

3.3 The RasDaMan System Architecture

The RasDaMan DBMS follows the classical client/server architecture, where the
client connects to the DBMS using RasLib to execute RasQL queries in the
DBMS from a potentially remote system. The communication mechanism is
implemented based on Sun ONC RPCs, which are available for the major Unix
systems and for Windows N'T. The core system itself is completely implemented
in C++ and running on a variety of Unix platforms including Sun Solaris and
Linux. The client software is additionally available for Windows NT.

An overview of the system architecture is given in figure 3.1. The RasDaMan
server provides the core functionality for the management of multidimensional
arrays. RasDaMan runs on top of a base DBMS, but it is more than a simple
middleware. Core functionality of a DBMS, such as query parsing, optimisation,
or operation execution, is implemented in the RasDaMan server. A common
configuration is to run the RasDaMan DBMS on the same system as the base
DBMS and therefore do all communication with the base DBMS locally on one
machine. RasDaMan clients connect over a network connection, perhaps even
over a slow wide area network.

Employing the operations defined on multidimensional arrays in RasDaMan
serves to reduce the amount of data transferred to the client to what is actually
needed there. The tiled storage helps to reduce the amount of data transferred
from the base DBMS. Consider the example query used in section 3.1.2. Of the
images in the myLSImgSet collection only the relevant 2-D area specified in the
WHERE clause has to be transferred from the base DBMS. The data transferred
to the client is even less, as only the area of interests of relevant images fulfilling
the condition in the WHERE clause are transferred.

The base DBMS is used as a storage manager providing low-level functionality
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such as transactional semantics or concurrency control. The Base DBMS' Inter-
face is put in a separate module to enable porting the system to a different base
DBMS with reasonable effort. The first version of RasDaMan was implemented
on top of the commercial object DBMS O, [BDK92|, and this version is also used
for the performance tests in chapter 6. Just recently a version for the relational
DBMS Oracle has become available with further relational systems to follow. All
classes relevant for operation execution as described in chapter 4 are independent
from the base DBMS and therfore used in both the O, and the relational versions
of RasDaMan.

The Query Processor of RasDaMan deals with parsing RasQL queries and
optimising them. It is described in detail in [Rit99]. To build and optimise a
query tree and to execute the operations in this query tree it uses the other
modules shown in the figure 3.1 (see also section 5.4). The Catalog Manager
provides persistent storage of type information as shortly introduced in section
3.1.1. The classes in the type system, as far as relevant for this work, are described
in section 5.1.2. The Storage Manager is responsible for the actual storage of array
data in tiles as described in the following section. It provides efficient access to
the tiles of an array using a spatial index. Both the type information and the
tiles are stored persistently in the base DBMS, so these modules interface with
the classes in the base DBMS interface.

The Operation Ezecution module is used to execute operation on multidimen-
sional data in RasDaMan. It is the focus of this work and its implementation is
described in detail in chapter 5. The query parser employs it for the tile based
execution of operations specified in the query. It retrieves information on types
from the Catalog Manager when needed, and it accesses the actual tile data over
the storage manager. All the relevant classes as described in chapter 5 were
designed and implemented by the author.

3.4 Tiled Storage

Multidimensional arrays in real-world applications typically have a very large
size, so a very common operation on these arrays is the access to a smaller subar-
ray. Storage of arrays in main memory, in files, or in databases typically simply
linearises the whole array. This is a reasonable approach in main memory, where
random access to data is very fast, when assuming the data fits into the actual
memory of the system and therefore not taking virtual memory into account. On
secondary storage, however, random access does incur a relevant overhead for
positioning the unit physically reading the data from the storage medium.

The main disadvantage of linearisation of storage is the loss of spatial prox-
imity. This results both in reading a larger amount of unnecessary data and/or
a higher number of random accesses for getting a subarray. The solution to this
problem is storage in tiles, i.e. smaller subarrays, and linearisation of these on
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Figure 3.2: Linear storage vs. tiled storage for a 2-D array.

secondary storage. Figure 3.2 shows a 2-D example accessing a query box in
linearised and tiled storage. The area shaded in grey is the query box. The areas
inside the rectangle bordered by lines are the transfer unit, e.g. a disk block or a
larger unit of transfer. The image exemplifies the larger amount of data trans-
ferred and the higher number of transfer units accessed using linear storage due
to loss of spatial proximity.

RasDaMan employs phyisical storage of data in multidimensional tiles. The
most common form of tiling is regular tiling, which is defined in section 4.1 and
used throughout this work. The tiling in figure 3.2, however, is not regular.
RasDaMan supports very flexible principles for tiling, which can be adapted to
application specific demands and are explained in detail in [Fur99]. To provide
for these more flexible tiling schemes, the access to tiles in an array is done over
a multidimensional index.

Tiles are the main unit of operation in RasDaMan and therefore are highly
relevant for operation execution. All array data is stored in tiles and the query
processor breaks down operations on arrays to operations on tiles (see section
5.4). For the users of RasDaMan, however, tiling is completely transparent when
executing queries. For them, operations are specified and executed on arrays.
This is the classical distinction between physical and logical data model com-
mon in DBMSs. The only contact the users have with physical storage is when
specifying a storage layout for arrays to be inserted into RasDaMan.
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Chapter 4

Formalism for Operations in
RasDaMan

A formal definition of semantics for operation execution is a precondition to
its implementation. A strict definition of semantics also furthers performance,
as the implementation can be optimised with the only restriction that the for-
mal semantics must be ensured. Based on the formalism, given the same input
identical results are guaranteed to other modules of the system before and after
optimisation of code.

In section 4.1 basic definitions for multidimensional arrays and operations on
them are given. Section 4.2 extends these definitions to accommodate concepts
indispensable for operation execution, namely, tiles and base types. Rules for
applicability of operations depending on base type and spatial domain of the tiles
involved are given in section 4.3. Finally, in section 4.4, a theoretical discussion of
the relevance of access to whole tiles against access to partial tiles follows. This
distinction affects efficiency to a large degree, as operations on whole tiles are
executed much more efficiently than operations on parts of tiles (see also section
5.3).

4.1 Basic Definitions

In the following, basic mathematical definitions are introduced, which will be
used as a basis for the formal treatment of operations in RasDaMan. These
definitions are based on the definitions in [Bau98], but are strongly modified to
be coherent with the formalism used in the remainder of this work.

4.1.1 Multidimensional Arrays

The coordinate set of a multidimensional array is called its spatial domain. Every
array must have a non-empty coordinate set. A spatial domain sd is a set of

35
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integer vectors X = (x1,...,24) € Z% bounded by two vectors £ = (I1,...,1q)
and H = (hl,...,hd)i

The following notation is used to specify sd through £ and H:
sd=1ly:hy,...,lq: hy]

It should be noted that using these definitions a spatial domain always con-
tains all elements in the multidimensional interval specified by the vector of lower
boundaries £ and the vector of higher boundaries 7. Thus, for example, the set
of 2-D vectors {(1,5), (4,2)} is not a legal spatial domain as it does not contain
all integer vectors bounded by the lower boundaries in dimensions one and two
L = (1,2) and the higher boundaries H = (4,5). The spatial domain [1: 4,2 : 5]
would also contain, e.g., the vector (2,4).

A set of functions is introduced on spatial domains:

dim(sd) d
low(sd) = L
high(sd) = #
extent(sd) = H—L+1
d
sd| = J[Wi—hi+1)

i=1

-
Il

The extent of a spatial domain is a vector containing the size of the spatial
domain in each dimension. It is calculated assuming usual vector arithmetics for
+ and — and defining 1 to be the unit vector. For ease of writing, the following
functions are defined to access the i-th element of the resulting vector: low(sd, 1),
high(sd, i), and extent(sd, 7).

A multidimensional array o with spatial domain sd,, is defined as a function
« : sdy, — T mapping each cell X € sd,, to the corresponding cell value a(X) € T.
The set T is called base type of the array. The basic definitions introduced
above are summarised in Figure 4.1 using a multidimensional array o with spatial
domain sd, = [0: 4,0 : 4,0 : 4]. It should be noted that not all definitions are
depicted in the figure and that the ordering of dimensions in the graphic was
chosen arbitrarily.

4.1.2 Operations

There are two basic kinds of operations on multidimensional arrays: spatial oper-
attons working on the spatial domain and induced operations working on the cell
values. Induced operations are defined on scalar values of the base type and
applied to all cell values of a multidimensional array.
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Figure 4.1: Summary of basic definitions.

Spatial Operations

There are three spatial operations: trimming, section, and translation. Formal
definitions for these three operations are given in the following.

A trimming o4, is a spatial operation delivering a new array o' with a
restricted spatial domain sd, from an array « with spatial domain sd,: o =

054, (a). The following conditions hold:

sdy C sd,
VX € sdy : ' (X) = a(X)

While trimming can reduce the extent of a dimension to one, it cannot change
the dimensionality of an array. The formal trimming operation on arrays corre-
sponds to a subselect or subaccess operation in databases resp. programming lan-
guages. To reduce the dimensionality of an array, a further operation explained
in the following is required.

The section operation 7, reduces the dimensionality d of a spatial domain
by one by fixing a dimension s to a value ¢ with [, <t < h,. It results in a new
array o/ with spatial domain sd, and dimensionality d — 1. Assuming the array
« has a spatial domain sd,, specified using £ = (ly,...,l3) and H = (hq,..., hq),
o' and its spatial domain are defined as follows:

VX € sdy 2 (21, .. 4-1)) = (@1, .o, Ts_1,t, Ty oo, Tg—1))
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Sdal = [ll . hl, .. -;ls—l . hs—l;ls+1 . hs+1; .. .,ld : hd]

The third spatial operation reduces neither the number of cells nor the dimen-
sionality of the array, but just adapts its spatial domain. A translation 7 moves
the spatial domain sd,, specified using £ = (Iy,...,ly) and H = (hy,..., hq) by a
vector T = (ty,...,t4) resulting in an array o/ with spatial domain sd:

VX € sdy : ' ((21,...,24)) = a(((x1 — t1), ..., (xa — ta)))
Sda/ = [(ll + tl) . (hl + tl), ey (ld + td) . (hd + td)]

Induced Operations

Induced operations are functions applied to the cell values of an array. There
are three basic kinds of induced operations: unary operations, binary operations
and condense operations. Applying a unary induced operation f, : T, — Ty
on an array « with base type T, results in a new array o’ with spatial domain
sdy = sd, and base type T,. It is defined as follows:

VX € sdy : o' (X) = fu(a(X))

Induced operations are applied on an element by element basis to each cell
value. The result of the induced function when applied to a cell value of « is the
corresponding cell value of the result array /. Binary operations f, : T,,, X Ty, —
T, are defined on two arrays a; and oy with sd,, = sdy, = sdq:

VX € sdy : o/ (X) = fy(ar(X), az(X))

For binary operations either one of the two operands can also be a constant
value v to enable, e.g., comparison of cell values with a constant value.

Condense operations are a higher level construct applying a commutative
and associative operation f. : T, x T, — T, on all cell values of an array «
accumulating the result. The result of a condense operation is a scalar value
veT,. If f.is written in infix notation v, o vy, the result v of condensing f,. over
a with sd, = {X1,..., X, } is defined as follows:

v = fela) = (X)) oa(Xy) o...0alX,)

4.2 Tile Based Operation Execution

The basic definitions in the previous section define multidimensional arrays and
operations on them. As basis for formal specification of operation execution this
is not sufficient. RasDaMan persistently stores array data in the base DBMS
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in tiles as described in section 3.4. A multidimensional array references its data
using a multidimensional index structure referring to tiles. The notion of tiling
is not included in the basic definitions for an array algebra. Tiles form the basic
unit for query processing in the RasDaMan system. Operations on arrays are
broken down to operations on tiles for operation execution. Another element
missing in the basic definitions is a clean definition of base types. All operations
are executed on types and their semantics are dependent on the types involved.

This section begins by introducing base types and extending the formalism
for structured base types. Then tiling is formally defined. Using this as a basis,
a formalism adequate for tile based operation execution is developed. Finally, a
summary of the formalism is given together with a short example.

4.2.1 Base Types

Meaningful definition of induced operations on cell values of arrays is only possible
if the base types of the operand arrays are taken into account. Operations were
formally defined as functions in subsection 4.1.2:

e Unary operations: f, : 71T, — Ty
e Binary Operations: fy: Ty, X Ty, = Ty
e Condense Operations: f.: T, x T, — T,

In subsection 4.1 no restrictions were set for the base type of a multidimen-
sional array, such that any set would be a legal base type. The formal model
for operations has to restrict and classify the base types in order to meaningfully
define operation semantics. Two basic categories of base types are supported:

1. primitive base types: a finite set of scalar values T, = {s1,..., s}

2. composite base types: user defined composite base types, where each ele-
ment is identified by a name and can be a primitive type or another com-
posite type. Formally, a composite base type T, is an ordered set of m pairs
(N;,T;) containing name and type of the element, i.e. T, defines a relation
between names and types.

A primitive base type is implemented as a fixed number of bytes which are
interpreted as a finite set of scalar values. Examples of primitive base types are
unsigned 32 bit integers or double floating point numbers stored in IEEE format
in 8 bytes. However, it could also be a fixed size string or an object identifier
referencing an object in the DBMS. All the primitive base types supported by the
RasDaMan system are listed in section 4.2.4 on page 48. The restriction to finite
base types is necessary to enable efficient access to elements of multidimensional
arrays using offset calculations (see section 5.3).
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The semantics of operations on primitive base types are defined using well
known mathematical operations like addition or comparison. These mathemati-
cal semantics are mapped to operations executable on computer systems accord-
ing to common conventions in computer science. The mathematical definition of
addition on integers, e.g., defines the semantics of the binary addition operation
in the formalism. In the computer, the addition mathematically defined on the
infinite set of integers is restricted to a finite base type, e.g. 16 bit signed integers
ranging from -32768 to 32767. As opposed to mathematical definitions, opera-
tions on finite base types can result in overflows. The semantics of operations on
finite types regarding overflows are defined to be as in the C/C++ programming
language.

According to the definitions of operations, the operands and the result can be
of different types. Not all type combinations are semantically meaningful. The
rules for applicability of operations regarding base types are developed in 4.3.2.
Another problem is the combination of similar base types with different sizes,
e.g. 16 bit and 32 bit integers. Again the rules in the C/C++ language are used
to resolve this: operations are executed in the highest precision base type of the
operands involved. If the result array has a base type with a lower precision,
the result is cast down to the lower precision base type after the operation is
executed. With these rules, semantics for the implementation of operations on
primitive types in RasDaMan are uniquely specified.

Operations on composite base types are executed element by element, as
opposed to the C/C++ language, where no operations except for element access
are possible on structures. Rules for applicability are again given in section 4.3.2.
It is necessary to forbid recursive definitions of composite base types in order to
ensure the requirement that all base types must be of fixed length. First, the
function types(7') is defined on all base types T as follows:

types(T') = T,if T is a primitive type
types(T) = (Jtypes(Ty), if T = {(N, T), ..., (Nu, T)}

Informally types(T") returns the set of all base types recursively contained in
T. Then, for a composite type T, to be legal, the following condition has to hold
to preclude recursive definitions:

T, ¢ types(T.)

Meaningful definition of operations on composite base types involves an exten-
sion of the definitions of operations given in section 4.1.2. Typically, operations
are executed not on all elements simultaneously, but only on one element of the
base type. Using the basic definitions of operations, specific operations would



4.2. TILE BASED OPERATION EXECUTION 41

have to be defined for each element. Assume a composite type with two elements
bandl and band2, each a 16 bit integer:

Topana = {(bandl, Tsyorr), (band2, Tsporr)}

By default, a binary addition operation adding two cells of base type Tspund
is defined as:

f+ : T2band7 T2band — T2band

Assuming the user wants to add only the first band of each cell, a specialised
function fy(pandipanar) Would have to be defined for this purpose:

J+(band1 pand1) * Tovand> Tovand — Tsuorr

Four of the these functions would be needed to cover all possible combinations
of elements of Thy,,q. Additional functions are needed for combinations with
constants, and even more functions would be needed if further composite base
types would be added. Obviously, selector functions for composite base types
have to be added to the formalism. This selector function returns the value in a
cell of a composite base type stored at the element with a certain name. For a
composite type T, = {(Ny,T1), ..., (Nn, T,)} the following selector functions are
defined:

fsel(Nl)  Te—=T

fsel(Nn) T — 1T,

Selector functions behave exactly as unary induced operations. An extension
of the formalism by a construct like the common dot notation a.N; is unnecessary.
Instead, the function call notation introduced for unary induced operations is
used. The appropriate selector functions for each composite base type are defined
by default. Using selector functions, the addition can be expressed as follows:

f+(band1,band1) (041; 042) = f (fsel(Nl) (041)7 fsel(Nl) (042))

These selector functions are very relevant functionality for a DBMS, as access
to an element substantially reduces the resulting amount of data. If only one
band is selected out of the composite base type Topena, €.8., the amount of data
retrieved is halved.
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4.2.2 Definition of Tiling

A tiling of an array o with spatial domain sd,, is defined as a set of n subarrays
or tiles o; with spatial domains sd,,. The sd,, have the same dimensionality as
o

Vi : dim(sdy,) = dim(sd,)

The spatial domains of the «; are disjoint. Spatial domains are defined as
sets, so the definition of disjointness for sets can be used:

Vi,Vj,i# j: X € sdo, = X ¢ sdg,

The union of the spatial domains of the tiles is sd,:

USdOéi = sd,

)

All tiles taken together describe the same function as a:

Vi,VX € sd,, : ;(X) = a(X)

Note that according to this definition for a tiling of « all tiles o; are trimmings
Osdy, (@) of the original array. All tiles of an array still have two multidimensional
intervals as boundaries, otherwise the sd,, would not be legal spatial domains
as defined in section 4.1.1. So for sd, = {(0,0),(0,1),(1,0),(1,1)} a tiling with
sda, = {(0,0),(1,1)} and sd,, = {(0,1),(1,0)} would be illegal as both sd,, and
sd,, are not legal spatial domains. They are not bounded by two integer vectors
L and H.

A special form of tiling is a reqular tiling of «. For all tiles 7 with spatial
domain sd, = [l : hs,...,l;, © hy] of @ with spatial domain sd, = [l,, :
hoys- -y lay © o, the following has to hold:

Vie{l,....d} : h;,—1,+1<g
Vie{l,....d} : h;, —1l,+1=¢Vh, =h,,

(2

Intuitively speaking, « is divided into tiles having the same extent C =
(€1,...,cq) except for tiles at the upper end of a dimension. A regular tiling
is uniquely specified by giving C. Figure 4.2 shows an example tiling of an array
a with sd, = [1:175,1 : 210] regularly tiled using C = (50, 50).

The formal model for operations in RasDaMan is general and applicable to
any form of tiling. Supporting different tiling strategies to make tiling adapt-
able to applications was one of the key design targets of the RasDaMan system.
This work uses regular tiling for performance calculations and studies. Using
application specific irregular tiling strategies for efficient storage and retrieval on
secondary media is discussed in [FB99].
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1 175

210

Figure 4.2: Example for regular tiling.

4.2.3 Developing a Formal Model

During query execution, RasQL queries are broken down to operations on tile
level by query processing in the RasDaMan system as described in section 5.4.
The exact mapping, especially the order in which operand tiles are read from
secondary storage and therefore in which operations are executed, is optimised
according to physical storage of the array [RB98]. Executing binary operations
on tiles results in operations to be executed on trimmings of tiles if the tilings
Co and Cg of two arrays o and 3 in an operation are not the same. Figure 4.3
gives an example using sd, = sdg = [1 : 200, 1 : 200] and tilings C, = (50, 50)
and Cz = (60, 40).

C =(50,50) C = (60,40)

Figure 4.3: Overlay of two regularly tiled arrays.

Tiling the result of a binary operation on two tiled arrays is also an issue of
optimisation. One possible solution is to use a single tile for the result. This is not
a general solution, as the result may be bigger than the virtual memory available
for query execution. Another possible solution would be to use an overlay of
the tiling of the two operands o and . As shown in Figure 4.3, this does not
generally result in regular tiling even if both operands are regularly tiled. For two
arrays o and [ with spatial domains sd, = sdg the overlay is regularly tiled only
if the following condition holds for C, = (¢q,, - - ., Cqa,) and Cz = (cs,, ..., Cs,) :
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Vi:dn € N ey = neg, Veg, = ncy,
The overlay in this special case is tiled according to:
C = (min(cqa,,€8,), - - -, min(ca,, cz,))

In the general case, a regular tiling with maximal tile size can be constructed
using the greatest common divisor (ged):

C = (ged(cay,csy), - - - ged(cq,, cs,))

This regular tiling has the advantage that new tiles for the result can be
calculated without reading additional overlapping tiles from disk. For each result
tile, exactly one tile of each of the operands a: and [ is needed. If another regular
tiling is chosen, an arbitrarily high number of tiles may be needed to calculate a
result tile. However, in the worst case, the extent of the result tiles in a dimension
may be one. In general, choosing the greatest common divisor may result in very
small tiles.

For operation execution to support the general tiling concepts of RasDaMan,
result tiles of arbitrary size and shape must be supported independently of the
tiling of operands. The most desirable tile size for regular tiling of arrays persis-
tently stored in RasDaMan is usually a multiple of the page size or the smallest
storage unit on secondary storage. If a more general tiling scheme is used, the
most desirable tiling may be much more complex, e.g. storing arbitrary areas of
interest in the array in one tile each.

As far as operations are concerned, two different cases have to be distin-
guished: Result tiles which are to be stored on secondary storage or result tiles
which are created temporarily as input for operations or for transfer to the client.
In the first case, the shape and size of tiles stored has to be optimised accord-
ing to application specific access patterns [FB99]. High performance for future
queries on the array usually outweighs the effort for retiling the result. In the
second case, it may be better to adapt the tiling of the result to the tiling of the
operands as this is more efficient than the effort involved in retiling.

In both cases, the formal model for tile based operation execution needs to
be expressive in the following two areas:

1. Support for operation execution on parts of tiles.

2. Constructs for retiling the result array.

To introduce the necessary extensions, a short example is used. An array «
with spatial domain sd, = [1 : 100,1 : 100] regularly tiled with C = (50, 50) is
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Array 3 Array o
1 100 1 51 100
1 1
O(.1 0
B = fuyor( 5 )
a3 a4
100 100

Figure 4.4: Tile based execution of an unary operation.

used as an operand. It has four tiles ay,...,as. The unary operation fyor is
applied to the tiles of the array. The result should be an array S with sdg = [1 :
100, 1 : 100] having only one tile 3. Figure 4.4 shows the operation graphically.

The operand « is a multidimensional array as defined in the basic definitions.
Each of the tiles aq, ..., a4 can be also treated as a mulidimensional array. The
correspondence between an array and its tiles is missing. To express this, the
following signature is introduced: a := {ay, ag, as, ay}.

In general, an array « is defined to consist of a set of tiles ay, . .., a,, using the
following syntax. As a precondition to this operation, the tiles «; have to form a
legal tiling according to section 4.2.2.

a:={ay,...,q;}

Multidimensional arrays are functions « : sd, — 71, mapping an element
of the spatial domain to an element of the base type. If these functions are
represented as sets of pairs, the union of sets corresponds to the semantics of an
array consisting of tiles expressed by this signature. So alternatively the union
notation for sets can be used:

n
Q= U Q;
i=1

Now the operation can be executed on the tiles o; resulting in tiles /;:

51 = fNOT(al), .- ;@'1 = fNOT(a4)

The result array ' is formed out of the (! using the syntax introduced before:

B = {B1, By, B3, By}
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The problem with this result array is that it is still consisting of four tiles
as opposed to one. To prevent the tiles from getting smaller and smaller when
executing operations as described in the beginning of this section the tiling of
an array has to be modified. As a solution to this problem, a function retile for
retiling an array to a different tiling with tiles ¢ is introduced into the formalism.
The new tiling is completely independent of an already existing tiling of « into
tiles sdq,, ..., Sd,,. The general form for retile is the following:

retile{sda'l,---:Sda;L}(O‘) = {O/D ceey 04;1}

The tiling is specified using a set of spatial dimensions sdy for the tiles. Note
that the tiles o; with spatial domains sd,, must again conform to the rules set
for a legal tiling for o given in section 4.2.2. This gives a set of restrictions on
the set of spatial domains given to retile. A simplified form to specify the new
tiling by giving C for regular tiling is the following:

retilec(a) = {a},...,al}

Thus, in the example the intermediate result array 4’ can be retiled into one
tile which then forms the final result array 3 using the following formal expression:

3 := {retilef.100,1:100) () }

After introducing formation of arrays out of tiles and tiling of arrays into tiles
of another shape the formalism is powerful enough to specify operation execution
for a multidimensional array DBMS.

4.2.4 Summary of Formal Model

The signature developed in the previous sections is used to list all operations
supported in the actual RasDaMan system. Additionally, all primitive base types
offered are listed. An example based on a RasQL query will be used to show
how the formalism is used in practice to formally describe an operation in a
multidimensional array DBMS.

Spatial Operations

The following spatial operations are supported on arrays:
e Trimming oy
e Section g,

e Translation 7
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Tiling
Tiling of multidimensional arrays is supported by the following constructs:

e Define an array « using a set of tiles o; with oo := U ; oy or v := {ayq, ..., }

e Retile an array « into n tiles o) with given spatial domains Sdy, using
retﬂe{Sda/lwdea%}(a)'

e Specify retiling for regular tilings using a vector C specifying the extent of
the tiles in all dimensions with retilec(c).

Induced Operations

Induced operations are divided into three categories: unary operations, binary
operations, and condense operations. Two unary operations are supported:

e bitwise or logical negation: fxor
e copying: fip
Binary operations are further subdivided into three categories:

1. arithmetic operations:

addition: f

subtraction: f_
e multiplication: f.
e division: f.
2. bit operations:
e bitwise “and” or logical conjunction: fx

e bitwise “or” or logical disjunction: f,

e bitwise or logical “exclusive or”: fxor

3. comparison operations:

equality: f_

e inequality: f

e comparison “greater”: f.
e comparison “less”: f.

e comparison “greater or equal”: f-
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e comparison “less or equal”: f<

In the current implementation, the binary operations f, fy, and f, are also
used as condense operations. These correspond to the following condense func-
tions:

e conjunction: ALL_CELL
e disjunction: SOME_CELL
e sum: ADD_CELL

Condense functions with no corresponding binary function are the following:

e number of non-zero cells: COUNT_CELL
e maximum: MAX_CELL

e minimum: MIN_CELL

Additionally, AVG_CELL is supported and calculated internally using
SUM_CELL together with the informaton on the spatial domain for which the
average is calculated. Note that this includes cells containing zero values in the
average as opposed to COUNT_CELL.

The semantics of operations are defined to be the commonly known mathe-
matical semantics for the appropriate operations. This is restricted by the fixed
byte size of the primitive types used in the system. Overflows are treated as
defined in the C/C++ language. The rules for determining the type conversions
necessary if operands and result have types of different precision are given in
section 4.3.

Base Types

Regarding primitive base types, the set of base types as defined in the ODMG
2.0 standard [CBB*97] is supported by the RasDaMan system. Implemented
base types are all base types specified in the standard as primitive base types
and additionally user defined structures built from the primitive types and other
structured types. Primitive base types are the following:

e floating point numbers: DOUBLE, FLOAT
e signed integers: LONG, SHORT, OCTET

e unsigned integers: ULONG, USHORT, CHAR, BOOL

As opposed to C/C++, the bit length of these data types is defined in the
ODMG standard: LONG and ULONG are 32 bit, SHORT and USHORT are 16
bit, and OCTET and CHAR are 8 bit. BOOL is a logical TRUE/FALSE value.
DOUBLE and FLOAT are defined according to the IEEE standard for floating
point numbers.
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Example

In the following, a RasQL example query is given and transformed into operations
on tiles specified using the array formalism defined in the previous sections. While
the formalism is defined on single arrays, RasQL as introduced in section 3.1.2
works on collections of arrays. The query used for this example accesses two
collections containing one array each: o2_conc and h2_conc. The two arrays 02
and h2 in these two collections have the same regular tiling structure: Cpy =
(50, 50) for collection h2_conc resp. Cpe = (25,100) for collection 02_conc. The
spatial domain of the two arrays in the collections is sdps = sdy = [1 : 1000, 1 :
1000], their base type is ULONG.

The cell values of the arrays store the concentration of oxygen O, resp. hydro-
gen Hs at a certain position in a factory. This query retrieves the Oy concentration
in an area of interest, namely [451 : 550, 451 : 550], if the sum of the O, and the
Hs, concentration in this area of interest is bigger than a threshold value in at
least one cell. This could be used to check the area around a machine potentially
emitting sparks for danger of causing an explosion if a critical concentration is
reached. This query is expressed in RasQL:

SELECT 02[451:550, 451:550]

FROM o2_conc AS 02, h2_conc AS h2

WHERE SOME_CELL( (02[451:550, 451:550] + h2[451:550, 451:550])
>= 200 )

During processing of this query a number of operations are executed on the
two arrays in the two collections. Note that the following list is a simplifica-
tion and does not take into account optimisation of the operator tree shortly
mentioned in section 5.4 and explained in detail in [Rit99].

1. Trimming of array h2 in the WHERE clause.

2. Trimming of array 02 in the WHERE clause.

3. Addition of the two trimmed arrays.

4. Comparison of the result with a scalar value.

5. Condense of the resulting boolean array to a boolean value.

6. Only if the previous operation returned TRUE: Trimming of array o2 in
the SELECT clause.

Tiling is uniform for each combination of arrays in the cross product, and
the spatial domains of the arrays are also fixed. All operations on the cross
product of the two collections have the same structure. Firstly, the addition of
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Figure 4.5: Tile based execution of a binary operation.

the two trimmed arrays in the WHERE clause is executed, i.e. the first three
operations. Binary addition of two trimmed arrays can be expressed with the
array formalism defined in section 4.1. Let the result array be « with domain
sd, = [451 : 550,451 : 550], the current elements of the involved collection
resp. v and f, an addition function. The operation can be written as follows:

a= fi(0sa,(B),0s4, (7))

This expression does not take into account the tiling of the arrays g and
v. Figure 4.5 shows the two arrays and their tiling. The array 3 corresponds
to the array in the collection h2_conc and is tiled according to Cp,. The array
v corresponds to the array in 02_conc tiled using C,,. Only the area around
[451 : 550,451 : 550] relevant for the operation execution is shown. The relevant
tiles for the addition operation are 3, s, 83, and (4 for 8 and ~; to g for ~.

The figure shows that the tiles do not exactly overlap, so the operations cannot
be executed on whole tiles. For operation execution on parts of tiles trimmings o
have to be added to execute the operations in the correct spatial domains. Eight
separate binary induced operations are needed to execute the array operation on
the relevant tiles:

ap = f+ (USdgl ﬂsd»,l (/61) ) O-Sdfg1 ﬂsd»yl (71)) Qg = f-l— (USdgl ﬂsd»yz (/61) ) O-Sdfg1 ﬂsd»yz (72))
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a3 = f1(Osdg,nsdyy (B2)s Osds, nsdy, (V3)) oy = f1(0sag,nsdy, (B2)s Osag, nsay, (V1))
a5 = f+(o-sdg3ﬂsd75 (63); O'sdg3 NSy (75)) Qg = f—l— (O-sd,33 Nsdg (63); O'sdg3 Nsdg (76))
Q7 = f+(0—sd54ﬂsd77 (B4), Osdg,Nsdy, (77)) g = f+(0—sd54ﬁsd78 (B4), Osdg,Nsdyg (78))

The result tiles «; form an intermediate result a:

8
o= U Q;
i=1

Each result tile has an extent of (25, 50), so each «; has half the size of one of
the original tiles 8; and vi: |sdo,| = 3|sdg,| = 3|sd,,|. Retiling could be applied
to get bigger tiles again. In this query this is not necessary, as « is only used
as an intermediate result for evaluating the WHERE clause. In the next step,
« is compared with a constant. The result is a boolean array o'. The binary
comparison operation is executed on each tile in combination with a scalar value:

ay = f>(au,200) oy = f5(az,200)
ay = f>(as,200) )y = f>(au, 200)
ay = f>(as,200) al = f> (ag, 200)
oy = f>(az,200) ag = f>(ag, 200)

The condense operation is also executed on the tiles o:

U1 = fSOME_CELL « Uy = fSOME_CELL o

(
v3 = fsomp_cern(a
(

Ve = fSOME_CELL o

(c))
Vg = fSOME_CELL(ail)
Us = fSOME_CELL « ( %)
!
8

)
3)
5)
U7 = fSOME_CELL(Of;) vg = fSOME_CELL(a )

Using the intermediate values v;, the final boolean result value v for use in
the WHERE clause of the query can be calculated (see section 4.1.2):

v=uv1 Ve VusVusVusVuoVurVug

Trimming of the result is done by applying trimming operations o on the
relevant tiles of 7. The main purpose of this example was to demonstrate the
formalism on a moderately complex query. As can be seen, even comparatively
short queries result in a large number of operations executed on tiles. This gives
a first hint on how important efficient execution of these operations is for overall
system performance.
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4.3 Applicability of Operations

In the previous sections, a formalism for expressing operations on tiles of multi-
dimensional arrays was developed and the semantics of operations were defined.
For an operation to be applicable to given operand tiles, the two fundamental
properties of a multidimensional array have to be taken into account: spatial
domain and base type. For example, no semantics were specified for a unary
induced operation applied to a tile with spatial domain [1 : 5,1 : 5] resulting in
a [50 : 100,100 : 200,0 : 1000] tile. Regarding the base type, addition of two
structured base types with a different number of elements, e.g., is not defined. A
formal definition of applicability of operations depending on spatial domain and
base type is an integral part of a formalism for operation execution on multidi-
mensional arrays. In the following, the rules for applicability of operations on
tiles as used as basis for implementation of the RasDaMan system are developed.

4.3.1 Rules for Spatial Domains

The two fundamental kinds of operations on multidimensional arrays are spatial
operations and induced operations. Applicability based on spatial domain is
relevant for both of these operation categories. RasDaMan supports the three
spatial operations trimming, section and translation. For a trimming operation
054, to be applicable to an array o with spatial domain sd, the following has to
hold: sd, C sd,. For implementation this condition is mapped to the lower and
higher boundaries £ and H resp. £' and H' of the spatial domains:

dim(sd,) = dim(sdy )

A trimming 7, of an array o with spatial domain sd, is applicable if the
following conditions hold:

1 < s < dim(sdy)
ls <t < hy

For a translation 77 of an array a with spatial domain sd, only the dimen-
sionality of vector 7 has to be the same as the dimensionality of sd,,.

Looking at induced operations, condense and unary induced operations on
tiles can be applied to operand tiles with any spatial domain. Binary induced
operations on two tiles o; and sy with spatial domains sd,, and sd,, can only
be applied if the they have the same spatial domain:

sdy, = 5dg,
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These rules are sufficient, if the domain of the result tile is determined from
the operand tiles and the operation. If operations are executed overwriting the
result tile, restrictions have to be placed on the domain of the result tile also.
These restrictions are straightforward:

e For spatial operations, the result has to have the result domain of the spatial
operation.

e Condense operations are still applicable to every domain, as the result is a
scalar value.

e For unary induced operations, the result must have the same domain as the
operand.

e For binary induced operations, both operands and the result must have the
same spatial domain.

4.3.2 Rules for Base Types

In order to define the semantics of functions, the base type has to be taken into
account. Not all functions can be applied to all base types, e.g. a bitwise AND
on two float operands does not give a meaningful result. Another restriction are
return types of functions, e.g. a comparison operation always returns a Boolean
result. The RasDaMan DBMS supports the set of primitive base types defined
in the ODMG standard as listed in subsection 4.2.4.

An important concept for defining applicability of operations depending on
the base types of operands and result is equivalence of two types: 17 = 15. The
equivalence of two primitive types 7T} and 75 is given if the two types are exactly
the same:

T'=T, <1, =1,

This implies that for primitive types FLOAT and DOUBLE, FLOAT = FLOAT
and DOUBLE = DOUBLE, but FLOAT # DOUBLE. While the equivalence of
primitive base types may look trivial, it is needed as a precondition to define
the equivalence of composite base types. Two structured types R and S are
equivalent (R = S) if the following conditions hold:

R = {(Ni,Ry),...,(Nm, Rp)}
S = {(MI,SI),...,(Mn,Sn)}
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The applicability of operations on primitive base types in RasDaMan to a
large degree follows the rules of the C/C++ programming language. The primi-
tive types supported in RasDaMan are based on the ODMG standard, which in
turn is based on the C++ programming language. Application programming in
RasDaMan is done in C++. It was therefore assumed, that by far most users
of RasDaMan have experience with C/C++ and therefore understand rules for
operations on primitive base types in these languages. As listed in subsection
4.2.4, there are three basic categories of primitive base types:

e floating point numbers 7%
e signed integers T

e unsigned integers T,

Additionally Tsoor is used for base type BOOL. One difference between the
ODMG type system and the C type system is the introduction of a type BOOL.
Similar to common practice in C, the value TRUE is treated as the integer value
1 and the value FALSE as the integer value 0. Using this interpretation, BOOL
can be treated as an unsigned integer for all operations except for logical ones.

Unary Operations

As in the previous section, the type of the result is also checked for applicability
of the operation to provide for destructive updates of tiles. First, applicability to
the unary operation fip is defined: all types are legal operands for this operation.
For the result type, the following restrictions have to be followed: A float operand
always has a float result. In RasDaMan it is not allowed to assign a FLOAT or
DOUBLE to an integer. This is a deviation from the rules of C/C++, were the
result would be cast into an integer. A complete list of possible combinations of
primitive base types for operand « with base type T}, and result § with base type
T on which fip is applicable is given in Table 4.1.

T, T, [T, [T, | T, | Ty | T, | T.
Ts = fio(To) | Tu | To | Tu | Ts | T; | Tf | Ty

Table 4.1: Applicability of fip on primitive types.

These rules do not preclude loss of precision. Loss of precision can happen by
assigning an unsigned integer to a signed integer or by assigning a DOUBLE to a
FLOAT. In the first case, the loss of precision is due to assignment between two
type categories, while, in the second case, a higher precision type is assigned to a
lower precision type in the same category. This conforms with the C philosophy
that the user has to know what he is doing in these cases. As explained later in
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this section, in case of temporary results there are rules to determine a preferred
result type to minimize potential loss of precision.

Applicability of fyor on primitive types is defined similarly, but as opposed
to fip negation is not applicable at all to floating point numbers. The semantics
of fnor are bitwise negation on all integer types except for Tgoor, and logical
negation on Tgoor.

One precondition for applying unary operations on composite base types is
that the composite base types must be equivalent:

Tg ETa

The second condition is that the rules for applicability to primitive types have
to be checked for all elements of the composite base type. So, e.g., the following
two conditions have to hold for applying fxor on an array with the composite
base type R resulting in an array with the composite base type S:

S=R
Vi: S, €eT,VS;,€lyVS; €T1Tpoor

Binary and Condense Operations

Applicability of binary operations on primitive base types is defined separately for
the three groups of operations listed in 4.2.4. Tables defining all rules for applica-
bility are omitted, as they would involve a large number of possible combinations
for two binary operands and a result. Arithmetic operations follow similar rules
as frp: the result must be float if at least one of the operands is float. Otherwise
all combinations are legal. Bit operations are only applicable to BOOL, signed
or unsigned integers similar to fxor. If all operands are boolean, logical seman-
tics for the operations are used, otherwise they are applied bitwise. Comparison
operations are applicable to all operand types, the result always must be of type
TsooL.

On arrays with composite base types, the rules for applicability of binary
operations must take into account the possibility that the base type of one of the
operands is a primitive type. As opposed to C, it is legal in RasDaMan to, e.g.,
multiply a struct { ("Red”, OCTET), (”Blue”, OCTET), (”Green”, OCTET) }
by 2. The binary operation with the scalar value is applied element by element
to the struct, therefore the result array must have a structured type with the
same number of elements as a base type. Using the notation defined in 4.2.1, the
semantics for the binary operation f, applied to an array « of structured base
type R = ((N1, Ry), ..., (INn, R,) and a scalar value v of base type S resulting in
an array [ of an equivalent structured base type is as follows:

5 = f-l—(aav) & Vi fsel(Ni)(ﬂ) = f-l—(fsel(Ni)(a)’v)
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In this case, a binary operation is executed on a tile with a composite base
type and a constant. Another option is combining a tile with a composite base
type R and a tile with a primitive base type S resulting in a tile of composite base
type T'. In both cases, for arithmetic or bit operations f, the following conditions
have to hold:

T'=R
Vi : fp is applicable to R; x S with result T;

In case of two structured operands R and S for an arithmetic operation or bit
operation, 7' = R = S must hold and the operations must be applicable to all
elements of the structures. For comparison operations on composite base types
the result 7' is always of type BOOL and R = S must hold. Only the comparison
operations f- and f. are legal on composite operands, and all elements have
to be equal resp. at least one element inequal. No other comparisons between
composite and primitive operands are allowed.

Condense operations are special applications of binary operations and there-
fore follow the same rules concerning applicability to base types. For condense
operations, the two operands always have the same type, as they are taken from
the same tile. The binary operation used for the condense has to be applicable
to this base type as result and both operands. Therefore, no specific treatment
of condense operations is necessary.

Determining Result Types

It is a common case during query processing in RasDaMan that the base type of
the result tile of an operation is not specified in the query. A typical example is
creation of a tile as a temporary result during query processing. In this case it is
desirable to choose an appropriate base type to avoid losing precision as much as
possible. For this case, rules to determe a result type from the operand types and
the operation are defined in the following. For unary and condense operations
this problem is trivial, the result should have the same base type as the operand.

For binary operations again the category of the operation has to be taken
into account. All comparison operations such as equality always have result type
BOOL. For the other binary operations, i.e. arithmetic and bit operations, the
following rules are given. These rules are checked in numerical order and the first
rule to hold is applied.

1. If both operands have the same primitive or structured type, it is used as
result type.

2. If one of the operands is a structure, the result must be an equivalent
structure, so the type of the structured operand can be used as a result

type.
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3. If the two operands have different primitive base types the “stronger” type
is used as a result type to minimize the loss of precision in converting the
result to this type. The rules for determining the stronger type are as
follows:

3.1. If one of the operand types is DOUBLE, the result is DOUBLE.
3.2. If one of the operand types is FLOAT, the result is FLOAT.

3.3. If one of the operand types is signed, the result is also signed. The bit
length of the result is the maximum of the bit length of the operands.

3.4. If both operands are unsigned, then the result has the unsigned type
with the longer bit length.

Rule 3.3 says that, e.g., addition of a SHORT and a ULONG should result in
a LONG, because the SHORT is signed and that makes the result also signed.
Note that these rules still allow overflows to happen when executing operations!
In this example —10 + 8 would give the correct result while, e.g., 100 4 23! would
result in an overflow.

4.4 Operation Execution on Parts of Tiles

In this section, the relevance of operation execution on parts of tiles as opposed to
access to whole tiles is evaluated. As will be shown in section 5.3, partial access
to tiles is a quite complex operation involving a much higher effort than access to
whole tiles. For the following discussion, regular tiling and random query boxes
are used. These restrictions are reasonable if nothing is known about the appli-
cation’s query patterns. For a general array DBMS such as RasDaMan, which
has to support a broad range of applications, this is a reasonable assumption.
Optimised storage for specific application areas and query patterns is discussed
e.g. in [FB99] or [Fur99.

A common operation on a multidimensional array « is a trimming o, result-
ing in an array 3 with spatial domain sdg. In most application areas, the terms
“subselect” or “range query” are used for this operation. A subselect in remote
sensing is the selection of a subimage or general multidimensional subarray from
a remote sensing image by restricting the coordinate set in one or more dimen-
sions to an area of interest for the scientist. In OLAP, a range query restricts
one or more dimensions by specifying a range, e.g. a time period or a range of
postal codes. Both these operations are trimmings of a multidimensional array as
defined in section 4.1.2. Actual examples for RasQL queries in application areas
executing subselects can be found in section 6.3.

As described in previous sections, operations are executed on the tiles «; with
spatial domains sd,, of array c. To minimize processing effort, it is desirable
that the result array 8 can be built directly from these tiles. In order to do this,
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the «; are copied as a whole into a spatially corresponding f; if possible. The
precondition for tiles c; to be copied directly is: sd,, C sdg. On all tiles o
which only partially overlap sdg, a trimming to spatial domain sd,, N sds has
to be applied. Note that the resulting tiling for 5 is not regular according to
the definition given in 4.2.2, except for special cases. Tiles can be smaller than
specified by C on both the lower and upper borders of dimensions. This way of
executing a trimming operation is expressed formally as follows:

o = Uaia63: Uﬁz’
i=1 i=1
Vie{l,...,m}:3j €{l,...,n}: sdg, = sda, N sdg
Case 1: sdg, = sdy,, then 3; = fip(a;)
Case 2: sdg, # sda; A sdg, C sdq;, then 3; = fID(O'SdBZ_ (a;))

The execution of fip(0sa, (@) is much more expensive than executing the
trivial fip(c;), which simply copies a whole tile (see section 5.3). To evaluate the
relevance of an optimised implementation for this operation for overall perfor-
mance, an estimate of the number of tiles that have to be trimmed vs. tiles that
are accessed as a whole is developed in the following. A summary of parameters
introduced and then used in the remainder of this section is given in table 4.2.

In section 4.4.1 the problem is tackled by trying to make a probabilistic model
and analytically calculating characteristics of this model. To be able to calculate
properties of the model, a number of simplifying restrictions are introduced over
the course of the discussion. The key restrictions are explained in detail in section
4.4.1 and listed here for reference:

e Quadratic, cubic, etc. shape of tiles, query box, and the whole array.

e Assumption of indepedence of events happening at the lower and upper
border of dimensions.

e Continuous instead of discrete calculations based on size of tiles, query box,
and array.

The probability calculation with these assumption results in some relevant
general conclusion about the problem discussed, but the restrictions still may be
too limiting. One major property of the problem is its discrete nature exemplified
in figure 4.14. A simulation of the discrete problem is done in section 4.4.2.
Finally, the major conclusions are summarised in section 4.4.3.

4.4.1 Probability Modelling

A mathematical formula for the number of partially accessed tiles in the worst
case is developed for a restricted set of arrays. We assume an array « of dimen-
sionality d with n, cells. In the following, three restrictions on the shape of arrays
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‘ Parameter ‘ Description

d Dimensionality.
c Size in number of cells of a tile in one dimension.
t Size in number of tiles of an array in one dimension.

« Original multidimensional array.

o] Result of the trimming.

Puw Number of partially accessed tiles in the worst case.
Random experiment: number of surfaces of 5 on which
tiles were accessed partly.

X =2d | corresponds to the worst case, all surfaces are accessed
partially.

ts average number of tiles per surface.

i Number of cells in one tile.

Na Number of cells in the original multidimensional array.

ng Number of cells accessed by the trimming.

P Probability for hitting a tile border in one dimension.

ny the number of fully accessed tiles in the simulation.

np the number of partially accessed tiles in the simulation.

T the total number of tiles of the original array in the
simulation.

ng average tile size over all tiles including border tiles in
the simulation.

Table 4.2: Important parameters in section 4.4.

99
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and their tiling are given. These are then used as preconditions for developing a
probability model. The first restriction is that the array is of quadratic, cubic,
etc. shape:

Vie {1,...,d} : extent(sd,, i) = /nq

Note that this restricts n, to integers where /n, is an integer. The second
restriction is that the array is regularly tiled according to C = (c¢,...,c), i.e.
all tiles also have quadratic shape. The third restriction is that there are no
incomplete border tiles, i.e. 3m € N : ¢/n, = mec.

This array « is trimmed to a spatial domain sdg C sd, with ng cells which
also has quadratic shape:

Vie {1,...,d} : extent(sds, i) = ¢/ng

Worst Case Estimate

The number of tiles accessed partially is calculated dimension by dimension by
analysing the projection of tiles onto a given dimension. As one of the restrictions
is quadratic, cubic, etc. shape of array, tiles, and query box the same calculation
applies to all dimensions. As a first step, a worst case estimate for the number of
tiles accessed in one dimension is calculated by analysing the projections of tiles
on this dimension:

t:[d—‘/m1+1

c

This assumes that both the lower and higher boundaries of the trimming in
this dimension do not “hit” a tile border. The total number of tiles in the d-
dimensional array « accessed in the worst case therefore is t?. The tiles accessed
form a multidimensional quadratic, cubic, etc. shape where, in the worst case, all
tiles on the surface are accessed only partially. Picture a second cube inside this
cube containing (¢t — 2)¢ tiles which are always accessed as a whole. This is only
possible if more than one tile is accessed in each dimension: ¢ > 2. Otherwise,
trivially exactly one tile is accessed in the trimming and this only partially in the
worst case. Only the non-trivial case is discussed in the following section. Note
that the trivial case here corresponds to a query box smaller than the actual tile
size in a real-life workload. The number p,, of partially accessed tiles in the worst
case given the number of tiles ¢ accessed in each dimension is calculated as:

pw =t — (t —2)¢

The parameter ¢ can also be calculated from the easily accessible parameters
tile size in cells n; = ¢* and number of cells accessed in the trimming ng. Refer to
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table 4.2 on page 59 for a summary of the most important parameters introduced
in this section. Given n; and ng, p,, is calculated as follows:
np np

pr([dn—tPrl)d—([dn—tW—l)d

Assuming the common case ng > ny, i.e. the selected area is bigger than one
tile, /72 — 1 for d — oo. As @72 > 1 holds for all d, an estimate for large d

for [/72] is 2. So for large d the following holds: p,, ~ 3?. This shows that the
number of partially accessed tiles in the worst case generally grows exponentially
with dimensionality for a given n; and a given ng.

Assuming a fixed dimensionality d and a fixed tile size n;, the growth of
partially accessed tiles in the worst case with ng can be estimated. Given d = 2
the formula for p, consists of two simple binomial expressions of degree two.

The result for d = 2 is p,, = 4[,/2—61, i.e. polynomial growth with ng of degree 3.
Using general binomial formulas, the highest degree for ng is %, as degree % =1

is subtracted away. For high dimensionalities this approaches 1. Therefore, an
upper estimate for growth of p,, with ng is linear growth.

By fixing ng and varying n; similar conclusions can be drawn. The highest
degree in this case is calculated as follows:

n - _
(¢ —’B)d— 1= nﬁa{i—lnf{i_l
1y
The degree —% = % for large d approximates —1, i.e. the number of

partially accessed tiles in the worst case gets smaller with tile size n;.

In summary, the worst case estimate p,, grows exponentially with dimension-
ality and linearly with the size of the query box. The bigger the tiles are, the
smaller p,, gets. Overall, it is important to notice, that high-dimensional appli-
cations involve an extremely large number of partial accesses to tiles. Note that
these coarse estimates as developed here are only valid for the restrictions given
in the beginning of this subsection and only for the worst case. To evaluate their
relevance in a more realistic case, a simulation will be used later in this section.

Probability Worst Case

To evaluate the relevance of a worst case estimation for a real application, the
probability for the worst case at a given dimensionality d and a tile size in cells n;
is calculated. The two restrictions on quadratic shape of the array and the tiles
as defined above are taken into account, so tiling is a regular tiling specified as
C = (c,...,c). For this analysis, a random experiment X is defined as the number
of surfaces of the multidimensional cube 3. The worst case, as defined above,
corresponds to the probability for all surfaces of the multidimensional cube to be
built by partial accesses to tiles.
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The restriction for a vector X = (z1,...,x4) to be on a surface of a multidi-
mensional cube with sd = [l; : hy,...,l4: hq| is as follows: 30 : z; = ; V o; = h;.
A surface of a multidimensional cube in this context is defined to be a d — 1
dimensional subcube, which is placed either at the upper or lower end of one
dimension. The number of surfaces of a multidimensional cube therefore is the
number of lower or upper bounds of all dimensions: 2d.

The worst case, as defined above, therefore is equivalent to X = 2d, i.e. all
surfaces are accessed partially. Given the probability p with which on one surface
tiles are accessed partly, X can be modelled as a binomial distribution P(2d, p).
The question is how to calculate p, the probability for the selected array g to fall
on an upper or lower tile border in one dimension.

One tile border in one dimension is “hit” by the selected cube with a prob-
ability of % The probability for a tile border to be not “hit” therefore is 1 — %
corresponding to one surface accessed partially. Using the fixed tile size n; c is
calculated as &/n;.

In reality, hits on the upper and lower border of a dimension are not indepen-
dent events. If the first border is hit, then a hit on the second border depends on
ng and n;. If ng is smaller than n, i.e. the trimmed array is smaller than one tile,
the probability is 0. We assume the more usual case that the trimmed array is
bigger than one tile. Then, if there exists an integer m so that [ ¢ng] = m[y/n;]
the probability for the second border to be hit is 1, in any other case it is 0.

As an average case probability calculation is done, the results for ¢ are not
discretised to integers. This is the main difference to the previous worst case
discussion. Furthermore, the events of hitting the upper or lower border in the
two borders of a dimension are assumed to be independent of one another and
happen with probability % each. In this case, the result of random experiment X
is independent of the size of the trimmed array; it is assumed to be bigger than
the tiles. Using these assumptions, the probability for the worst case depending
on n; and d is calculated as follows:

p=01-

P(X = 2d) = (1 — —)

To evaluate the relevance of a worst case estimation for the number of tiles
accessed partially its probability is plotted against d in Figure 4.6. Plots for three
different tiles sizes n; are given. The tile size does not change the basic shape
of the curve. For low dimensionalities the probability for the worst case is high.
For higher dimensionalities, however, the probability gets lower to almost zero
for d > 9.

There are two intuitive reasons for this:
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Figure 4.6: Probability of worst case P(X = 2d) depending on dimensionality d
for different tile sizes n;.

1. As the dimensionality gets higher, the extent of tiles in each dimension ¢
calculated as &/m gets smaller making the probability to “hit” a tile border
higher.

2. As the dimensionality gets higher, also the number of dimensions where a
tile border must be “hit” for the worst case is getting larger.

As the worst case seems to be an unreasonable estimate for higher dimen-
sionalities, a calculation for the average case is desirable. As X is a binomial
distribution, it is trivial to calculate E(X) as shown in Figure 4.7. Unfortu-
nately, calculation of the number of tiles accessed partially from the number of
surfaces is not easily possible in the general case. An exact result can only be
obtained for the worst case X = 2d, for X = 2d—1, for X = 1, and for the trivial
best case X = 0. In all other cases the exact number of tiles depends on which
surfaces are chosen as tiles can be part of more than one surface.

As a side note, it is possible to exactly calculate how many tiles are part of k
surfaces. This is based on a simple probability calculation: A surface tile is either
at the lower or upper border of at least one dimension. If it is the lower or upper
tile of exactly one dimension, it is part of exactly one surface. At most a tile can
be part of d surfaces; in that case it is a tile at the corner of the multidimensional
cube. Two examples are shown in figure 4.8. Note that in the 3-D example there
is exactly one tile which is on no surfaces, but as it is inside the 3-D cube it is
not visible in the drawing.

Now a random experiment is defined: For each dimension it is decided if a
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Figure 4.7: E(X) (average number of surfaces accessed partially) depending on
dimensionality d for different tile sizes n,.

tile is on an upper or lower border. This can be modelled as drawing one tile
out of c tiles. There are 2 border tiles and ¢ — 2 non-border tiles to draw from.
This experiment only makes sense for the non-trivial case ¢ # 1. This is repeated
d times with putting back the tile after each draw. We define a function f(k)
giving the number of possibilities to draw exactly k& border tiles over the course
of this experiment.

Some special cases are alread known: f(0) = (¢ — 2)?, which is exactly the
number of tiles inside the cube, i.e. part of no surface. f(d) = 2¢, which is the
number of corners of the multidimensional cube. In the general case, f(k) is
calculated as follows:

= ()2 -2

As a test of correctness of this formula, we try to calculate the total number
of tiles in the multidimensional cube, which should be as follows:

zgf(i)

This can be easily proven using the formula for calculating general binomial
expressions:

= ((c—2)+2) :i() c—2)%

)
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Figure 4.8: Example for multidimensional arrays showing the number of surfaces
of which a tile is part of.

4.4.2 Simulation

The random experiment defined in the previous section used a lot of precondi-
tions to make probability calculations manageable. Besides, continuous instead
of discrete variables were used. To test the validity of these calculations in reality,
a computer simulation of the problem was done additionally. A simulation pro-
gram was written using the functions for multidimensional interval arithmetics
provided by the RasDaMan system in RasLib (see section 3.2).

The following values are used as inputs for the simulation program (see also
table 4.2 on page 59):

e dimensionality d: dimensionality of the original multidimensional array «
(and therefore also the dimensionality of the trimmed array § and the tiles
a; of a).

® n,: size of the original array « in cells.
e tile size n; of the tiles of the original array a.

e ng: size of the trimmed array 3 in cells.

From these input variables the simulation program calculates the following
output variables:

e ny: the number of fully accessed tiles, which can be copied as a whole from
« into f3.

e n,: the number of partially accessed tiles.

e 1. The total number of tiles in o depending on d, n,, and n;.
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The values for ny and n, are calculated as average values after executing 100
random experiments with a given parameter combination. For each experiment,
the trimmed array [ was placed randomly inside «. Figure 4.9 contains an
example for a trimming  showing partially and fully accessed tiles.

array o

P| P p
p| f f
p| f f

trimmed |array|

Figure 4.9: Example for accessing a trimmed subarray /5 in « (p marks partially
accessed tiles, f fully accessed ones).

In the simulation, the extents of all tiles have to be integer numbers to form
legal multidimensional arrays according to the definitions in 4.1. It is impossible
to create a spatial domain sd of quadratic shape with |sd| ~ n for d > 2, except
for special cases where n is close to a quadratic (cubic, etc.) number. Note that
for d > 2 it is generally impossible to create a spatial domain with exactly n
cells, e.g. if n is a prime number. Therefore, the restriction for quadratic shape
of tiles, query box, and array is loosened in the simulation:

Vi, j,i # j : |extent(sd, i) — extent(sd, j)| <1

With this loosened restriction, it is possible to calculate spatial domains which
have approximately n cells and still retain a roughly quadratic shape. In the
following, an algorithm is developed determining a spatial domain sd coherent
with the restriction given above where |sd| < n and n — |sd| is minimized. As a
first approximation the algorithm starts with a quadratic spatial domain sd:

Vi : low(sd,i) =0
Vi : extent(sd, i) = |¢/n| = high(sd,i) + 1

It then increments the extent by one dimension by dimension starting with
dimension zero as long as |sd| < n:
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1. Start with dimension i = 0.

2. Increment the extent of the current dimension by one, i.e. add 1 to high(sd, 7).
3. If |sd| > n undo the previous step and finish.

4. Otherwise increment the current dimension ¢ and go back to step 2.

The algorithm above terminates, because the following trivially holds:

|sdy| < n < |sdy, if Vi : extent(sdy, i) = |/n], extent(sdy, i) = [/n]

Exactly the same algorithm is used for the spatial domains created based on
nt, ng and n,. The following holds for all spatial domains sd created with the
algorithm:

Vi, j,i < j: extent(sd, i) > extent(sd, j)

It is important that all spatial domains have this property, as this ensures the
following two properties:

Na > ng = Vi : extent(sd,, 1) > extent(sdg, 1)
ng > ng = Vi : extent(sdg, i) > extent(sd, 1)

Without this property, domains for sd, and sdg could be created, where the
extent of sdg is bigger than sd, in certain dimensions. This would make the
trimming operation illegal to execute according to the definition of trimming.
This special case is probable for higher dimensionalities. Similar things can be
said for sdg and sd,.

After the domains are calculated, the simulation creates a regular tiling of the
multidimensional array a based on the spatial domain sd;:

C = {extent(sd;, 1),. .., extent(sdy, d)}

After this is done, the spatial domains of the actual tiles are created and the
total number of tiles 7" is calculated. Using this regular tiling, n; and n, are
determined by placing sdg = [0 : hy,...,0: hy| randomly inside the multidimen-
sional array . The random placement of 3 is done using a random offset vector
X = (x1,...,24) calculated for each experiment. The resulting spatial domain
sdg, has to be completely inside the array «:

Sdﬂi = [(0+JZ1) : (hl +ZL‘1), . ..,(0+[L‘d) : (hd—i-l’d)] g Sda

For each sdg,, the tiles of « intersecting the spatial domain are determined
and classified. The resulting numbers of partial and fully intersecting tiles n, and
ny are averaged over all experiments 7 and then output as simulation results.
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Measurement Points

The simulation was carried out for a number of different values given to the input
parameters as defined in table 4.2 on page 59. The following measurement points
were simulated:

e dimensionality d: 1, 2, ..., 15.
e tile size n;: 16,384, 65,536, 262,144.

e size of original array n,: 10,485,760, 1,073,741,000. Assuming one byte
cells, this corresponds to 10 MB resp. 1 GB of data, which will be used for
referencing the different n, in the text.

e size of trimmed result array ng in cells: 262,144, 1,048,576, 4,194,304. The
1,048,576 cells correspond to 1 MB of data or 10% resp. 0.1% of the total
data from .

In the following, the simulation results are discussed and compared with the
theoretical results given above. To evaluate the relevance of partial access to
tiles, the percentage of partially accessed tiles is analysed: I%f' According to
theory, the end result should be independent of n, and only depend on d and
n; for a fixed ng. Figure 4.10 shows that in the simulation this is only true for
dimensionalities up to 10 with substantial differences between the 10 MB and the
1 GB data set for the higher dimensionalities.

The main reason for this is that theoretical results were calculated without
actually determining the spatial domains involved. For higher dimensionalities
and small n, the selected area covers the whole cube in some dimensions:

Ji : extent(sd,, i) = extent(sdg, 1)

Obviously, in this case none of the two surfaces in this dimension is partially
accessed, reducing the number of partially accessed tiles. For n, = 10,485, 760,
d = 13 and n; = 65,536 the following domains are calculated by the algorithm
described above:

sde=100:3,0:3,0:3,0:3,0:3,0:3,0:2,0:2,0:2,0:2,0:2,0:2,0: 2]
sdg=10:2,0:2,0:2,0:2,0:2,0:2,0:2,0:2,0:2,0:2,0:2,0:1,0: 1]

In dimensions 7 to 11 no partial accesses can happen, as the full extent of sd,, is
contained in sdg. The simulation shows that this reduces the amount of partially
accessed tiles by about 2% as shown in Figure 4.10. For higher dimensionalities,
this effect gains relevance. It is questionable, if very high-dimensional arrays
with only about 10 millions cells are common in applications. Therefore, in the
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Figure 4.10: Comparison for different sizes of the original array n, using a fixed
tile size n, = 65,535 and a fixed size of the trimmed array ng = 1, 048, 576.

following simulations only results from the larger data set are discussed. For
the parameter combinations used for the measurements, the effect of decreasing
partial accesses for high dimensionalities cannot be observed in this case.

Figure 4.11 plots the percentage of partially accessed tiles in the average
case for different tile sizes up to dimensionality 8. The main conclusion is that
partial access to tiles is highly relevant for high dimensional data starting with
dimensionality three. Another conclusion is that bigger tiles lead to a higher
amount of accesses to parts of tiles. This corresponds to the higher probability
for the worst case for larger tile sizes as depicted in figure 4.6. Another conclusion
is that dimensionality is the most important factor for the extent of partial access,
while tile size is only a relevant factor for low dimensionalities. In both cases,
the basic conclusions drawn from the probability calculation and the simulation
correspond.

What comes very unexpected is the extent in which partial accesses take
place for higher dimensionalities. Looking at figure 4.6 again, one conclusion is
that the probability of the worst case gets smaller for higher dimensionalities.
The simulation results give a different picture: basically 100% of tile accesses
are partial for d > 5. In theory, this should correspond to the worst case as
defined in the probability calculation. While this seems to be a contradiction,
it actually is a result of defining the random experiment used for analysis of the
worst case on the number of surfaces. Almost 100% of partial accesses to tiles
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Figure 4.11: Comparison for different tile sizes n, using a fixed size of the original
array ne = 1,073,741,000 and a fixed size of the trimmed array ng = 1, 048, 576.

does not correspond to 100% of surfaces accessed partially. In high dimensional
cubes it is very probable that a tile is a member of a lot of surfaces, as discussed
at the end of section 4.4.1. It is already partially accessed, if it is partially
accessed on only one surface of the multidimensional cube. So even if one surface
does not require partial access, the tiles on it may still be partially accessed
tiles because of other surfaces. One conclusion from the average case simulation
is that this effect overcompensates the lower probability of the worst case for
higher dimensionalities.

In general, the simulation indicates that partial accesses to tiles take place
in a very high extent for high dimensionalities. This is another form of the
“dimensional curse” discussed, e.g., in [WSB98] for similarity search. The fol-
lowing analysis of simulation results discusses the impact of ng on the relative
amount of partial accesses. A diagram for the experiment of varying ng and
holding the other parameters constant is shown in figure 4.12. For smaller result
sizes, a larger percentage of tiles is accessed only partially. This outcome is as
expected, as obviously a larger result can contain more tiles fully. The effect is
only noticeable for lower dimensionalities, as for higher dimensionalities again
basically 100% of the accesses are partial.

When optimising partial access to tiles it is relevant to know how much data is
needed from a partially accessed tile on average. This information is not directly
one of the output parameters of the simulation. The calculation of this value
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Figure 4.12: Comparison for different result sizes ng using a fixed size of the
original array n, = 1,073, 741,000 and a fixed tile size n; = 65, 536.

has to take into account that tiles do not have the same size throughout the
multidimensional array. Tiles falling on upper limits of one or more dimensions
in regular tilings can be smaller than defined by C (see section 4.2.2). The value
can be estimated based on the average tile size in cells n; of the array «. This
can be calculated based on the input parameter n, giving the size in cells of
the original array and the output parameter 7' giving the total number of tiles
created for the current parameter combination:
— na
ne=
The average number of bytes selected from a partially accessed tile can be
estimated using ng, the size in cells of the trimmed array ng, the number of fully
accessed tiles ny and the number of partially accessed tiles n,:

nNg —nygng
My

Now the result can be calculated from input and output parameters of the
simulation. As percentage of average tile size, n; it is plotted in Figure 4.13.
The main conclusion is that the average amount of data read is between 5% and
50%. For commonly used dimensionalities between 2 and 5, roughly between
20% and 40% are accessed. So it seems not worthwhile to optimise algorithms
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Figure 4.13: Average amount of data read per tile from a partially accessed tile for
different tile sizes n; using a fixed size of the original array n, = 1,073,741, 000
and a fixed size of the trimmed array ng = 1, 048, 576.

for very small partial accesses, e.g., less than 1% of the tile size. This is one
of the reasons, why the algorithm developed in section 5.3.2 promises better
performance compared to other algorithms. A higher setup time for the algorithm
results in a better performance while accessing cells, which only makes sense if a
reasonable high number of cells is accessed in a given tile.

Another conclusion is that the data accessed per partially accessed tile gets
smaller with higher dimensionalities. This trend is not true for some tile sizes for
dimensionalities 7 and 8. There are peaks at dimension 7 for n, = 262,144 and
dimension 8 for n;, = 16,384 and n; =65,536. To explain this phenomenon, the
total number of tiles generated for the regular tiling of array « using the tile size
n,; is analysed in figure 4.14.

Note that the simulation for 10 GB arrays and 16 kB tiles was only done
up to dimensionality 8 because the unoptimised simulation program had severe
difficulties managing more than 200,000 tiles. The minimal number of tiles needed
to store the data can be easily calculated as = resulting in 65,536 resp. 16,384
resp. 4,096 tiles for the different tile sizes. As shown on the diagram, this value is
only met for 1-D arrays. For higher dimensionalities, up to 10 times the number
of theoretically needed tiles are created. The reason for this are border tiles
created at the upper borders of dimensions when doing a regular tiling of «.
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Figure 4.14: Total number of tiles in « for different tile sizes n; using a fixed size
of the original array n, = 1,073,741,000 and a fixed size of the trimmed array
ng = 1,048, 576.

Back to the unusual behaviour in figure 4.13. The unexpected peaks in the
diagram occured at dimension 7 for n, = 262,144 and dimension 8 for n; =
16,384 and n; = 65,536. Checking the corresponding tile sizes and dimensions
in figure 4.14 shows that exactly at these points jumps in the amount of tiles
generated occur. It seems that a high number of tiles generated leads to a high
percentage of cells accessed in a partially accessed tile. The main reason for this
behaviour may be the reduced average tile size n; due to the higher number of
tiles generated. Therefore, a higher percentage of data of these smaller tiles is
accessed on average.

Given the unexpectedly large number of tiles for high-dimensional arrays, it is
an interesting question how many of these have to be read from disk to build the
trimmed array . This question is also relevant for index structures. Figure 4.15
shows the percentage of tiles accessed including both partially and fully accessed
tiles. The array [ with a size of 1 MB just contains 0.1% of the cells in the 10
GB array. With regular tiling and completely random placement of the query
box always some unnecessary data is read. A larger tile size generally results in
a larger percentage of tiles read.

Up to dimensionality 9 the number of tiles accessed remains within reasonable
boundaries, 98% of the data remain unaccessed. The 2% of tiles read for n; =
262144 and dimensionalities 6, 8, and 9 are already a factor of 200 more than
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Figure 4.15: Average percentage of total tiles accessed depending on dimension-
ality d for different tile sizes n;.

what in theory would have to be read. For even higher dimensionalities, the
amount of tiles read is growing extremely fast up to more than 14%. This shows
that for very high dimensionalities more complex tiling schemes than a simple
regular tiling are necessary to retain spatial proximity and minimize the number
of tiles read [Fur99]. The more data read from secondary storage, the more
relevant operation execution in main memory gets. This gives another hint that
operation execution gets more relevant for high dimensionalities.

4.4.3 Summary of Results

The main purpose of section 4.4 was to give an estimate on the importance of
operations on parts of tiles for operation execution on multidimensional arrays.
In order to do this analysis, both a probability calculation and a simulated exper-
iment was carried out. The basic knowledge gained is that access to parts of tiles
is very relevant. Even for simple queries executing only a trimming, operation
execution is relevant, as a high number of tiles are accessed only partially.

The key insights gained in the analysis are summarised in the following:

1. Partial access gets more common if higher dimensional arrays are operated
on (see figures 4.10 and 4.11). For dimensionalities greater 4 almost all
accesses are partial.
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2. The worst case (defined as partial access necessary for all surfaces of the
trimmed array () gets less probable with higher dimensionalities (see figure
4.6). Nevertheless, for high dimensionalities basically all accesses to tiles
are partial (see figure 4.11). The low probability for the worst case is
overcompensated by the higher number of surfaces of which a given tile can
be part of in the higher dimensional case. So even if not all surfaces are
accessed partially, still basically all tiles are accessed partially.

3. A larger tile size n; increases both the probability of the worst case (see
figure 4.6) and the amount of partial accesses to tiles in the average case
(see figure 4.11).

4. The number of tiles created using the restrictions specified above to generate
a regular tiling of « for a given n, and n; gets very unsteady for higher
dimensionalities (see figure 4.14).

5. The number of tiles which have to be accessed to calculate the trimmed
array [ gets larger for higher dimensionalities (see figure 4.15).

Using the results of this analysis, hints for efficient implementation of opera-
tion execution can be deduced.

1. For lower dimensionalities (1-D, 2-D, 3-D), a substantial number of tiles
are accessed as a whole. Optimising this access as opposed to using partial
access seems worthwhile.

2. For higher dimensionalities, almost all tiles are accessed partially. It is
of crucial importance for overall system performance to implement this
operation efficiently.

3. On average, 10% to 50% of the data are retrieved from a partially accessed
tile. An algorithm with higher setup costs for more efficient execution per
cell promises good performance.

4. Large dimensionalities result in a high number of tiles and a higher percent-
age of the data in each tile is accessed. Almost all of the data is retrieved by
partial access. This leads to an enormous number of tiles and cells that have
to be operated on for higher dimensionalities, emphasizing the relevance of
efficient operation execution.

Some of the results of this analysis are only applicable to higher dimensionali-
ties. It is a general question if arrays of very high dimensionalities are relevant for
real-world applications. There are data models using up to hundreds of dimen-
sions, e.g. in scientific applications. Usually these systems have little commercial
relevance and are only applied to a very limited set of problems. Most effects for
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high dimensionalities, however, already have considerable effect for dimensional-
ities starting at five, which are very common in data warehousing applications.

RasDaMan aims to support a wide set of application areas of multidimen-
sional data. These results give a solid basis for designing and implementing effi-
cient operation execution on multidimensional arrays in this context. The main
preconditions for the simulation are a partitioning of space parallel to the coor-
dinate axes. The problem of partial access being more expensive than full access
is relevant even for sparse data, as this has to be filtered in partially accessed
partitions of space. It is a topic of further research, if some of the findings here
can be transferred to other areas in database technology like the implementation
of OLAP systems or general multidimensional index structures.



Chapter 5

The Operation Execution Engine

In the previous chapter, the basic formalism for implementing operations on
multidimensional arrays was presented. Based on this formalism, the object-
oriented design for the operation execution component in the RasDaMan system
will be developed in section 5.1. As RasDaMan is implemented in C++, this
design could be mapped to the implementation directly. All interfaces in the
RasDaMan system are classes; the main interface to operation execution as visible
to other components of the system is the class Tile.

In the implementation, operations on RasDaMan base types are mapped to
C++ operations. The ODMG 2.0 primitive types, on which operations are exe-
cuted in RasDaMan correspond to C++ types. Selection of the correct opera-
tion on cells for this mapping depend on the RasDaMan base types involved as
explained in section 5.2. This section also defines the exact mapping of Ras-
DaMan types to C++ types and the implementation of applicability. The design
and implementation of multidimensional iteration for executing operations on
parts of multidimensional tiles is presented in section 5.3. This is highly relevant
for overall system performance as discussed already in section 4.4. Finally, the
integration of operation execution in the query evaluation process of the Ras-
DaMan system is presented in section 5.4. In [WB98] the implementation of
operation execution is discussed with a special focus on efficiency.

5.1 Object-Oriented Design

The RasDaMan DBMS is a complex software system, which has been developed
by a team of four to six persons over four years. It consists of about 170,000 lines
of C++ code at the time of writing. To manage development of this system, state
of the art software engineering techniques were applied. The important goals in
the design of the system are described below:

e Portability between different operating systems and base DBMSs.

7
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e Maintainability and extensibility of the code, as the system is constantly
being improved and extended.

e Modularisation into units with a concise, easy to use interface to enable
parallel development of different modules.

e Efficiency in dealing with huge amounts of data.

Currently, the object-oriented programming paradigm seems to be the most
adequate for reaching these goals. The four major properties of the object model
are the following [Boo91]:

e Abstraction: “describes the essential characteristics of an object that dis-
tinguishes it from all other kinds of objects”. In this context, an abstraction
is a useful entity in RasDaMan represented as a class.

e Encapsulation: “the process of hiding all of the details of an object that do
not contribute to its essential characteristics”. According to encapsulation,
the public interface of a class should include only member functions relevant
to execute the desired functionality; internal processing should be in the
private or protected interface.

e Modularity: “Modularity is the property of a system that has been decom-
posed into a set of cohesive and loosely coupled modules”. In RasDaMan,
classes are grouped into modules or components to attain modularity as
presented in section 3.3.

e Hierarchy: “hierarchy is the ranking and ordering of abstractions”. This
encompasses both grouping classes in an inheritance hierarchy (is-a rela-
tionship) and classes used as abstractions inside classes (part-of hierarchy).

By applying techniques of object-oriented design, as introduced in [Boo91],
[BRJ99], [JCJO92], [RBP*91], and others, the properties of the object model can
be used to achieve the design goals set for the RasDaMan system. Maintainability
and modularisation are core advantages gained through use of thorough object-
oriented design. This design was then implemented in C++, offering a direct
mapping of object-oriented concepts to the implementation language. Portability
between different C++ compilers is supported by the ANSI standard for C++
[Ame97], but some elements like template instantiation still cause substantial
porting effort. If used with care, the language produces efficient executables.
To leverage the use of C++, not only the basic C++ features [Str97] were used,
but also higher level concepts like design patterns [GHJV94] or idioms [Cop92]
were applied. Data structures from the Standard Template Library were used
[MS96] and the developers were familiar with state of the art C++ programming
techniques [Mey92, Mey96].
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5.1.1 Tiles as Basic Units for Operations

The basic unit for operation execution is the tile; the class Tile is also the
main interface for executing operations. Tiles encapsulate all array data stored
in the RasDaMan system and have two fundamental properties describing the
data: a spatial domain and a base type. The spatial domain is encapsulated in
r_-Minterval, a basic class from RasLib (see section 3.2 also used for RasDaMan
client programming. It offers basic functionality on multidimensional intervals
including retrieving upper and lower bounds of dimensions or basic interval arith-
metic. The base type is stored as a pointer to the appropriate object, which can
be a user defined instance of the class representing composite types or one of
the predefined primitive types. The object-oriented design of the type system is
explained in the next subsection.

As tiles are the basic unit of operations, the class Tile has to offer a member
function for executing operations. One alternative would be to provide a member
function for every possible operation like f. or fyor. This was not done for the
following reasons:

e The addition of a new operation to the system would involve modification
of the Tile class.

e There would be a great amount of code duplication between the different
operation execution methods

e The code for actually executing operations in C++ is closely tied to the
primitive base types supported by the RasDaMan system. The class Tile
would have to be modified, if new data types were to be added to the
system.

Since all the above points violate basic principles of the object model, such
as encapsulation or abstraction, it was decided to offer a set of generic execution
functions getting the operation to execute as a parameter. Multidimensional
iteration is used in these execution functions to apply the operation on operand
and result cells. The code actually executing operations on a combination of cells
is part of another module together with the classes for the type system. The
basic semantic categories for induced operations are unary operations, binary
operations, and condense operations. Operation execution for these categories
differs algorithmically, as they operate on a different number of operands or
return a different type of result. Binary operations have two operands, while
unary operations have one. Both return an array, while condense operations
return a single scalar value.

Signature for Operations

To determine the relevant parameters for execution functions, the formal model
is used as a basis. In the formalism, a binary function adding two whole tiles is
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expressed as follows:

Q= f+(57'7)

A consequent mapping of mathematical semantics to the programming lan-
guage would result in a member function getting one tile as parameter and return-
ing a newly created tile:

resTile = oplTile.execBinaryOp([...], op2Tile, [...])

In case of an update, this tile would have to be assigned to the tile to be
updated and then would have to be destroyed. Creating and destroying tiles is
an expensive operation, which would have to be carried out for a large number
of intermediate result tiles. To avoid this unnecessary memory handling, the
operation execution functions are called on the result tile, getting the operand
tiles as a parameter. Using these calling semantics, destructive updates on a tile
are possible without creating a result tile first and then assigning it to modify a
tile. In C++, these calling semantics are expressed as follows:

resTile.execBinaryOp([...], oplTile, op2Tile, [...1);

The discussion on operation execution on parts of tiles in section 4.4 shows
that when executing a subselection operation on arrays a large number of tiles are
accessed only partially. This corresponds to frequent application of the trimming
operation o,y in the course of operation execution. When two operand arrays
and a result array are involved in a binary operation, it is very common that
the tiling patterns do not match. In this case, it is even more probable that
trimming operations are necessary to extract matching parts of tiles to execute
the operation (see also figure 4.3). In figure 5.1, the example shown in figure
4.5 is extended. The result array « should consist of only one tile. With this
extension, the tiling structure cannot be taken directly from the operands, but it
has to be adapted for the result.

Using the formalism, the operation as specified on the arrays is divided into
steps to be executed on tiles. First, the f, are broken down to tile level and
executed together with trimmings to extract the relevant areas out of the tiles
(see page 50). This generates a set of result tiles ;. Then an array is created
out of the tiles and retiling returns one tile that forms the result array «:

o = {I’etile[451:500,451;500] ({1, ... an})}

If the formalism would be implemented directly, this operation would involve
16 separate trimming operations and a retile operation creating the result array
with one tile out of eight intermediate tiles. Using the result tile as a starting
point for the operation similar to the function call in the C++ implementation
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Figure 5.1: Example of a binary operation.

offers a more efficient way of doing this. The implementation starts with an empty
result tile «. It is overwritten piece by piece by executing the eight necessary
binary operations between the 3; and «; and storing their result directly in .
To be able to do this, the spatial domain where the result tile is destructively
updated has to be a parameter of the execution function.

Using the same principle, the 16 trimming operations can be optimised. Each
of these involves a separate function call and creation and deletion of a separate
tile. If these trimming operations could be executed together with the binary
operations, this overhead would be significantly reduced. For this purpose, three
further parameters are added to the signature for binary operation execution: a
spatial domain for both operands and the result specifying where the operation
is executed. Using these parameters, implicit trimming can be executed together
with the binary operation without generating intermediate tiles. Therefore, the
signature for the member function of class Tile executing binary operations is as
follows:
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virtual void

execBinaryOp( BinaryOp* op, const r_Minterval& areaRes,
const Tile* opl, const r_Minterval& area(pl,
const Tile* op2, const r_Minterval& areaOp2 );

Spatial domains specifying the area where the operation is executed are given
for all tiles involved: for the result tile in areaRes, for the first operand tile
in areaOpl, and for the second operand in areaOp2. The class BinaryOp is
explained in detail in subsection 5.1.3: it encapsulates the type of operation and
the base types involved and applies the operation to one combination of cells at a
time. Using execBinaryOp to execute the example operation, only the minimal
eight function calls are necessary. The sixteen trimming operations are integrated
within execution of the binary operation and the result array is created as one
tile and partially updated. The execution functions for the other basic operation
categories are defined similarly:

virtual charx*
execCondenseOp( CondenseOp* op, const r_Minterval& areaOp );

virtual void
execUnaryOp( UnaryOp* op, const r_Minterval& areaRes,
const Tilex op, const r_Minterval& areaOp );

Unary operations have exactly the same signature as binary operations, but
only one operand. The result of a condense operation is no tile, but a scalar
value. In this case, the member function is called on the operand, and the result
is returned as a char pointer corresponding to a cell (see subsection 5.1.2). The
neutral value of the operation as an initial value is needed to start applying a
condense operation, e.g. TRUE for f,. It is encapsulated in the function object
representing the condense operation (see subsection 5.1.3). This also helps to
calculate a condense operation over more than one tile by carrying on the inter-
mediate result to the next tile: the same operation object is simply used for all
combinations of tiles involved.

An additional function is needed for executing binary operations involving a
constant instead of an array. An example would be the following RasQL query:

SELECT a + 10 FROM image AS a

Therefore, the additional function execBinaryConstOp() was introduced: it
gets the constant and the position of the constant, i.e. if it is the first or the
second operand, as parameters. Providing a specialised function for operations
on constants eases implementation and improves performance. If operation exe-
cution would be possible only on tiles, temporary tiles would have to be created
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for operations involving constants. In a specialised function, only one multidi-
mensional iteration (see subsection 5.3) has to be carried out, as only one tile
is involved. The operation is executed on each cell in the relevant area and the
constant.

Another relevant element are composite base types, where execution of oper-
ations on elements of the base type has to be possible. In section 4.2.1, the
function fee(n;) was introduced for this purpose. It could be implemented as a
specialised unary induced operation getting the name of the element as an addi-
tional parameter. Furthering the idea of optimisation, another possibility is to
integrate access to elements of a structured base type with operation execution.
The name of the element maps to an offset applied to the adress of a cell in mem-
ory. As only non-recursive base types are allowed, this can always be calculated
for a whole array independent of the contents of a specific cell.

One possibility would be to extend the signature for operations by optional
parameters getting offsets for access to elements to structured base types. This
would make the call to the execution functions quite lengthy in the case of one
or more operands with structured base types. A more elegant way is to integrate
the offsets with the operation object given as parameter to the execution func-
tions. This also makes calculation of these offsets only necessary once per array
and not once per operation execution on a combination of tiles of the operands.
The constructor for the operation object gets the necessary offsets as optional
parameters. For unary operations it looks as follows:

UnaryOp( BaseType* newResType, BaseType* newOpType,
unsigned int newResOff = O, unsigned int newOpOff = 0 );

By applying this technique, access to elements of structured base types can
usually be integrated with operation execution. Therefore, no additional overhead
is caused by operating on structures. Only if no additional operations besides
element access are to be executed, it is necessary to use an frp operation with
the correct offsets to access the elements. This identity operation with correct
offsets then directly corresponds to fe(n;) defined in the formalism.

Spatial Operations

Using the member functions developed above, all induced operations defined in
section 4.1.2 can be applied to tiles. Missing are execution functions for spatial
operations: trimming, section, and translation. In the following, these spatial
functions will be mapped to the unary induced function f;p, so that no specialised
functions are necessary. To be able to do this, the conditions for applicability as
given in section 4.3 have to be relaxed.

Trimming operations are included with execution of induced operations as
already described in the previous section. Explicit trimming operations oy, not
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combined with an induced operation can be executed by simply applying the
unary operation frp and giving sd as parameter areaOp. No modification of
rules for applicability is necessary for trimming operations.

The translation operation 77 can be executed directly by simply setting a
new spatial domain using a member function of class Tile, if whole tiles are
translated. If the translation is combined with a trimming, it has to be executed
using f;p by setting the domain of the result tile to the translated domain. The
multidimensional iteration developed in section 5.3 can be used with translated
domains for operands and incurs no additional overhead. In the second case, the
conditions for applicability of induced operations must be weakened. Assuming a
unary induced operation, let the spatial domains where the operation is applied
be sd,.s for the result and sd,, for the operand. Then the weakened condition
for applicability is:

X € Z%: sdpes = Tx (5dgp)

The applicability condition is reduced from equality of the domains to allow
also translated domains for operand or result. Another way of formulating this
condition would be to base it on the extent of the spatial domains:

extent(sd,es) = extent(sd,,)

Thus, equality of the domains is reduced to equality of the extents. For
binary operations, the spatial domains for both operands and the result are rele-
vant. Both operands can be translated in this case. The weakened applicability
condition is specified as follows:

X € 243V € Z% : 8dyes = Ta(5d0p,) = Ty(5dop,)

For the section operation 7,; reducing the dimensionality of the operand,
this weakened applicability condition is not enough. The restriction that the
result and the operand must have the same dimensionality must be relaxed in
this case. For the implementation, the memory layout of a tile with a reduced
dimensionality and a tile with an extent of one in the dimension s fixed by
the section operation is the same. Thus it is possible to use f;p to copy higher
dimensional tiles into lower dimensional tiles by setting upper and lower boundary
of the spatial domain to ¢ in dimension s. In this case, operand and result
have to have the same shape regardless of dimensionality, i.e. the extents in all
dimensions which are not set to extent one have to be the same. For writing
down the applicability condition, a function reduce is introduced. It reduces a
spatial domain sd, to a spatial domain sdg containing only dimensions 7 where
extent(sd,, i) # 1.
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n = |{ilextent(sdy,i) # 1}|
sdg reduce(sd,) <
Vie{l,...,n} = g =lay Nhg = hay, A
J(i) =i — |{{|l <iANextent(sdy,l) =1}

n is the number of dimensions where the extent of sd, is bigger than one, so
it is also the dimensionality of sdg = reduce(sd,). In all these dimensions, the
low and high values of sd, are used for sds (in the correct order). The definition
of n uses the common |...| notation for determining the amount of elements in
a set. Using the reduce function, the condition regarding spatial domains for
applicability of a unary induced operation applied to spatial domains sd,., and
sd,p 1s very short:

reduce(sd,es) = reduce(sd,p)

Using the formalism, the transformation of the section operation o/ = 7, ()
to an induced unary operation frp is expressed as follows:

Sdal = [ll . hl, .. .,ls,1 : hsfl,t : t, l5+1 : h5+1, .. .,ld . hd]

Osd,, = 71-s,t(a)

Note that formal equality of the functions is not given here, as the result of
the section operation has a lower dimensionality than the corresponding result of
the trimming. It is only a functional equivalence in the implementation, as the
memory layouts of the results are the same.

In summary, the spatial operations trimming, translation, and section can
be either integrated with execution of induced operations or expressed as unary
induced operation f;p by appropriately adjusting the parameters specifying the
spatial domains where the operations are executed. So the execution functions as
listed above are a sufficient interface to execute all operations specified in the for-
mal specification. Using an object-oriented architecture, it is possible to keep the
interface to operation execution very small. This minimizes maintenance effort
and enables optimisations to be performed locally inside this module. Changes
to the algorithms used to execute operations do not affect other modules, as long
as the implementation conforms to the semantics specified in chapter 4.

The Class Hierarchy for Tiles

Based on the previous discussions, an interface for the class Tile providing oper-
ation execution to other components in the system can be specified. In the
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Figure 5.2: Class hierarchy for tiles.

following, an overview of the class hierarchy for tiles as used in implementing the
RasDaMan system is given. It is depicted in figure 5.2 using the UML notation
introduced in section 1.3. All classes relevant for implementing the class Tile and
their subclasses are shown. All implementation details explained in the following
are internal to the operation execution module, as Tile is the main class used in
other components of the RasDaMan system.

All data stored in tiles is accessible as a 1-D C++ char array for internal pro-
cessing in the RasDaMan system. Pointers to these arrays are returned by the
access functions, e.g. getContents(). The implementation of operation execu-
tion in class Tile relies on these access functions. The actual storage of the tile
data is different for persistent and transient tiles. The latter store their contents
in main memory and are deleted after a transaction commits. They are used
to store temporary results and data transferred to or from the client. Persistent
tiles are stored in the base DBMS and written to secondary storage after commit,
if they were newly created or modified during the transaction. Both subclasses
of Tile support the interface defined in class Tile, the access functions are over-
loaded. For external modules it is only necessary to distinguish between transient
and persistent storage at time of creation, as during lifetime of the object only
member functions defined in Tile are applied.
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While TransTile internally uses a C++ char pointer for storage of cells, Pers-
Tile provides persistent storage of its contents. This is done by referring to an
instance of the class BLOBTile using a smart pointer class called BLOBTileld.
These two classes completely encapsulate persistence and are implemented differ-
ently for relational and object base DBMSs. Internally in these classes, pointer
swizzling strategies [WD92, Whi94] are applied to determine when tiles are loaded
into main memory from the base DBMS. In the implementation on top of an
ODBMS, the O, library class d_Ref<T> is used and the optimisation of pointer
swizzling is left to the base DBMS. For a relational base DBMS, a smart pointer
class was implemented, which, for the time being, fetches a tile whenever its con-
tents are accessed the first time. A more elaborate pointer swizzling including,
e.g., optimisation by prefetching tiles into a cache could be implemented in this
smart pointer class without affecting other RasDaMan modules including the
implementation of operation execution.

Compression of Tiles

Compression is used to optimise storage space needed for persistent storage and,
at the same time, transfer times to and from the base DBMS. Compression is
especially relevant for sparse data common in OLAP applications (see section
6.7). As the current implementation of operation execution is based on the mem-
ory layout of cells, the data has to be decompressed, if operations are executed
on it. For the RasDaMan user, compressed arrays show the same behaviour
as uncompressed ones. When an array is created, the user can specify that it
should be stored in compressed form. Decompression is done transparently, and
the query language treats compressed arrays in exactly the same way as uncom-
pressed ones. Currently, no compression is done for client /server transfer between
the RasDaMan client and server. It is possible to use the class Compression and
its subclasses on the client and thereby reuse code for compression algorithms.

Compression algorithms are implemented in subclasses of class Compression.
Lossless prefix compression using the deflate algorithm as implemented in the
freely available C library “zlib” [Nel97] is supported by the subclass ZLibCom-
pression. Tiles can also be stored in the standard image format TIFF using Tiff-
Compression as an example for storage in a common image interchange format.
The compression effect is less relevant here. Fast storage and retrieval of whole 2-
D images in a standard image format is more interesting. Additional compression
techniques or image exchange formats could be implemented by simply creating
new subclasses of Compression.

The actual storage of the compressed data is performed in the same way
as for uncompressed data, i.e. in a 1-D C++ char array for transient and in
class BLOBTile for persistent tiles. The member functions of class Compression
provide for automatic compression and decompression of contents on demand
without need for explicit function calls. For uncompressed tiles, dummy functions
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implemented in the subclass NoCompression are called. For compressed tiles,
the contents are decompressed as needed and stored in a transient buffer. This
decompression is carried out whenever access functions are called for the first
time.

For both zlib compression and TIFF, it is much better to decompress the whole
data in the tile for all accesses, as reading one element would involve decompres-
sion up to this element. Access to elements directly in the compressed data would
be possible when applying simpler compression schemes such as chunk-offset com-
pression [ZRTN97]. In this case it would even be possible to execute a restricted
set, of operations directly on the compressed data. Currently, this is not sup-
ported in the RasDaMan system. Compression is done for all decompressed and
then modified tiles on transaction commit to have the current state of the tile in
the base DBMS. Compression using zlib is more expensive than decompression.
As only modified tiles are written, the effort spent for compression of tiles is
minimized. In the case of read-only queries, no compression is done at commit
time.

As compression is implemented transparently using the member variable comp-
Alg of class Tile, other components of the RasDaMan system do not have to care
for compressed tiles. They work with the normal interface of class Tile and
decompression is done when necessary for execution of operations or access to
contents. When new tiles are created, the form of compression to be used for
this tile has to be specified. By default, the class NoCompression is used, i.e. the
contents are stored as is.

Overall, the object-oriented design provides a good integration of compression.
The other components of the RasDaMan system work on tiles independently of
transient or persistent and compressed or uncompressed storage. Only at creation
time of the objects the storage parameters have to be specified. The interface
to operation execution consists of only four functions providing the functionality
needed to execute all operations specified in the formalism. Optimisations of
storage and operation execution can be done internally without changing the
interface and thereby without causing code changes in other components.

5.1.2 The RasDaMan Type System

One key target in the design of the RasDaMan system was support for user defined
composite base types in the DBMS. Structured base types are common when
looking at the typical application areas of multidimensional arrays. Examples are
colour images with a red, a green, and a blue component or remote sensing images
containing different wavelength bands. By employing these structured base types,
only relevant components can be retrieved from multi-band multidimensional
arrays or operations can be executed on them. This is an important functionality
for a DBMS, as, e.g., selecting only one band out of an eight band Landsat sensor
reduces the amount of data transferred over the net to a client by a factor of eight.
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Figure 5.3: Class hierarchy for MDDType and its subclasses.

Support for user defined types in a DBMS necessitates a dynamic type system.
Otherwise, adding a user defined type would involve shutdown and recompilation
of the server, precluding continuous service as demanded from a DBMS.

A set of classes in the catalog manager component of the RasDaMan system

(see section 3.3) implements this dynamic type system. There are three basic
categories for type information, which are all subclasses of the abstract superclass
Type.

e CollectionType: In RasDaMan, collections of arrays are typed and thereby

potentially restrict the types of arrays that can be inserted into a collection.
Using this type information, the query optimiser can optimise, e.g., access
to arrays of a specific dimensionality. These optimisations can be done at
collection level instead of array level. The actual type information is stored
in subclasses of MDDType. Checks for correctness of queries are also done
at this level.

MDDType: This class represents the type of a multidimensional array
(the term MDD was introduced in chapter 3). Every MDD object has
an instance of MDDDomainType as a member variable storing both its
domain and base type. MDDType and all its subclasses (see figure 5.3) can
be used as members of CollectionType. MDDDimensionType restricts only
the dimensionality of arrays inserted into a collection, while MDDBaseType
restricts only the base type. The class MDDType itself does not restrict the
type of arrays inserted into a collection. All these classes support checks for
type conformity to decide if a specific array can be inserted into a collection.

BaseType: This class represents a primitive or a user defined base type and
is used as a member of MDDBaseType and MDDDomainType. Subclasses
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exist for composite and specific atomic base types.

The abstract base class Type defines the functionality common to all types.
The function getTypeName () returns the name of a type, which is the ODMG
name of the base type for primitive types and a user defined name for composite
base types (see section 3.1.1). An enumeration type is returned by getType ()
representing the exact subclass of type of the current object is an instance of.
A complete string representation of the type including elements of composite
types is returned by getTypeStructure (). This is used for client/server transfer
of type information, where types with the same structure are then created on
the RasDaMan client. Checks for type conformity are done by the function
compatibleWith(). It follows the rules for equivalence of types defined in the
formalism on page 53 as far as base types are concerned. For MDDTypes, the
rules for compatibility when inserting are as follows:

e CollectionType is MDDType: All subclasses of MDDType can be inserted
into the collection.

e CollectionType is MDDBaseType: The basetype for the collection is spec-
ified. All MDDBaseType subclasses with an equivalent base type are com-
patible.

e CollectionType is MDDDimensionType: Additionally the dimensionality
is specified. MDDDimensionType and MDDDomainType with the same
dimensionality are compatible.

e CollectionType is MDDDomainType: The exact domain is specified. Only
MDDDomainType with compatible same spatial domain and equivalent
base type are compatible. If a domain has open bounds in some dimensions,
arrays with fixed bounds in this dimension can also be inserted into the
collection. Also arrays with a smaller domain in a certain dimension are
compatible with this MDDDomainType.

In the following, the focus will be set on BaseType and its subclasses, as these
are mainly relevant for operation execution. CollectionType and MDDType are
used for optimisation of queries on collection level in the query processor com-
ponent of the RasDaMan system. The class hierarchy for BaseType is shown
in the class diagram in figure 5.4. There are two basic categories of base types:
AtomicType representing a primitive base type like an unsigned integer and Com-
positeType supporting user defined types. One restriction that RasDaMan sets
on all base types is that they must have a fixed size in bytes to enable fast off-
set calculations in multidimensional tiles. Therefore it is necessary to explicitely
forbid recursive structs as done in section 4.2.1 on page 40.

The abstract base class BaseType defines the interface common to all base
types. The following functionality is defined there:
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Figure 5.4: The dynamic RasDaMan type system for base types.
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elementOf

e retrieving the size in bytes of the base type. This function is used as a
basis for all offset and size calculations, e.g. the multidimensional iteration
described in section 5.3.

e printing a cell of this type. This is used mainly for debug output in the
server or for test programs.

e conversion to C++ types.

A set of functions is available for this.

principles are explained in section 5.2.1.

The

Specific primitive types are represented as subclasses of class AtomicType.
For each primitive type defined by the ODMG as listed in subsection 4.2.4 there

is a specific subclass.

The main reason why this modelling was chosen over

an implementation as separate instances of the class AtomicType is that the
conversion functions are implemented differently for each primitive base type.
Using separate subclasses, the compiler chooses the correct conversion function
by resolving virtual function calls. Otherwise the code would have been cluttered
with runtime tests on which specific primitive type is represented by a given
instance of AtomicType. The virtual function calls are also more efficient, as they
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are better optimised by the compiler internally. There is exactly one persistent
instance of each subclass of AtomicType.

User defined base types are modelled in the abstract base class Composite-
Type, which, at the moment, has exactly one subclass: StructType. In the future,
since a dynamic type system including operation execution is already integrated
in the system, the composite types supported might be extended with types sup-
porting execution of user defined methods. A StructType is identified by a name
specified by the user in the RasDL statement used to create the type (see sec-
tion 3.1.1). Each instance of StructType has a set of elements, each referenced
by its name or number; the type of each element is a pointer to a subclass of
BaseType. For building a new base type, the class supports adding new elements
to which numbers are assigned according to order of insertion. Each element has
an associated offset inside the structured base type, which is used to access the
element, given a cell of the composite base type. Once used as a base type of an
array, a composite base type may not be modified anymore, as schema evolution
is not supported. Modifying the base type would involve reorganising all mul-
tidimensional arrays using this base type, which is a very expensive operation.
Functions are provided to retrieve the base type of an element by name or by
number and to retrieve the offset of an element. The total number of elements
can be retrieved, and the total size in bytes of the composite base type is given
by the overloaded function getSize () defined in class Type.

The offsets are necessary for executing operations on elements of a composite
base type. Unfortunately, the offsets of elements cannot be calculated simply by
adding up the size of base types. During operation execution, primitive base types
are cast to C++ types and alignment restrictions of the respective C++ compilers
and processor architectures have to be taken into account. Fortunately, common
32 bit systems all follow the same alignment strategy, so the current version sup-
ports Solaris on UltraSPARC, HP-UX on HP-PA, and both Linux and Windows
NT on Intel with the same code. For more exotic architectures, adaptations in
this part of the code may be necessary. Due to the fully object-oriented design of
the RasDaMan system, these changes are limited to the subclasses of Composite-
Type. Note that little endian vs. big endian is also a problem in this context. In
RasDaMan, this conversion is done in the code for client/server communication.
Implementing a dynamic type system for a DBMS involves a lot of very low level
issues.

Clearly, the catalogue information described here has to be stored persistently
in the base DBMS. For the implementation of RasDaMan on top of an ODBMS
this is straight forward: persistence for C++ classes as offered by O, is used
to store instances of the class hierarchy shown in figure 5.4. Multidimensional
arrays and collections of arrays stored in RasDaMan reference their types using
persistent references offered by O,. In the class hierarchy for tiles developed in
the previous section and shown in figure 5.2 only instance of the class BLOBTile
are stored persistently. In the type system, on the other hand, all classes have
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to be stored in the base DBMS. The amount of data in bytes, however, is much
smaller than the actual array data stored in instances of class BLOBTile.

This is relevant when porting the system to a relational base DBMS, since
in this case all persistence capable classes have to be re-implemented. Even
considering the large number of classes, this is not too difficult for the type
system. As the total amount of data stored in the type system is small, main
memory caching is a viable solution. When a database is opened, the whole type
data is read and transient instances of the appropriate classes are created. As
porting to another base DBMS can be done with reasonable effort, the higher
expressive power of a completely object-oriented model was chosen for the type
system.

The most relevant functionality in the type system for efficient operation
execution is conversion to C++ types. All operations on cells are finally executed
on C++ types. Another important purpose of the type system, in this context,
are tests for operation applicability and selection of operation objects. Basic
functionality such as retrieving the size of base types or the offset of an element
in a composite base type is also required. In summary, an expressive type system
is a precondition for implementing operation execution. As far as efficiency is
concerned, the most relevant functions are the conversion functions as these must
be called for each cell if operations other than f;p are carried out. Calls to other
functions offered by classes in the type system are done only once per tile or even
less.

5.1.3 Operation Execution on Cells

All array operations are ultimately executed on cells of a primitive type, includ-
ing those on arrays with structured base types. In the latter case, operations
are done recursively element by element until primitive types are reached. This
execution on cells is carried out inside a multidimensional iteration in the exe-
cution functions of class Tile as described in section 5.1.1. The C++ operation
that is finally executed depends on the types of cells; this decision process is
not trivial as described in subsection 5.2.2. To reduce this overhead by applying
the same operation to all relevant cells of a tile or even an array, the operation
selection process is separated from the actual execution. The functions choosing
which function to apply to the cells of an array are implemented as part of the
catalogue manager module of the RasDaMan system (see section 3.3). This also
serves to make the code in the multidimensional iteration less cluttered and more
readable.

To implement operation selection separate from operation execution, a func-
tion which returns a function is needed, i.e. a higher level function as supported
for example in dynamic languages like Lisp [Ste90] or Smalltalk [GR89]. In the
form of function objects C++ enables a direct implementation of an adequate
design pattern [Cop92, Kiih97]. Function objects are classes with an overloaded
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Figure 5.5: Hierarchy of function objects for binary operations.

operator (), so objects of these classes can be used in a function call syntax
blurring the distinction between a function and an object. This allows a clean
and readable syntax to be used for applying operations on cells, as demonstrated
by the following example:

BinaryOp* myOp;
myOp = Ops::getBinaryOp( op, resType, oplTile->getType(),
op2Tile->getType () );

(*myOp) (cellRes, cellOpl, cellOp2);

C provides function pointers as a means to implement higher level functions.
The main advantage of function objects in C++ is that they have a state, as
member variables can be defined. An example for this state encapsulated inside
functions objects in RasDaMan are pointers to base types of result and operands.
These are used to call conversion functions to C++ types when executing an
operation on a cell. Another application is an internal accumulator for keeping
temporary results of condense operations. Function objects are similar to closures
from functional programming languages or blocks in Smalltalk in this respect.

There are three different types of function objects coherent with the execution
functions in class Tile:

e BinaryOp: representing binary operations involving two operand cells and
one result cell.
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e UnaryOp: representing unary operations involving one operand cell and
one result cell.

e CondenseOp: representing condense operations involving one operand cell
and accumulating the result internally.

These classes are abstract base classes defining the basic interface for opera-
tion execution on cells as used in the corresponding execution functions in class
Tile. Part of the class hierarchy for BinaryOp is shown in figure 5.5. The main
functionality of the top level classes is support for the function call syntax offered
by operator (). Additionally, CondenseOp provides access to the internal accu-
mulator used, e.g., by the query evaluator to optimise f, as a condense function
and stop evaluation when the first tile results in FALSE. A variety of subclasses
exists for the different operations on different types. Using the abstract base
classes as the interface, implementations can be either general by using the con-
version functions of the type system or efficient by providing specialised classes
for combinations of types. This complexity is effectively shielded from both query
evaluation and operation execution and only relevant locally in the Catalog Man-
ager module. Query evaluation can rely on the formal semantics defined in section
4.1 and use a high-level interface to operation execution. This design minimizes
code changes caused by, for example, adding a new primitive type to the Ras-
DaMan system.

Applying the function object idiom, execution of operations on composite
base types needs minimal additional code. The function objects for operations
on structures retrieve function objects for each element of the structure and then
simply apply these objects on all elements. It is not necessary to implement func-
tion objects specific for each user defined structure. This is only possible because
the structures involved must conform to the applicability rules for operations on
structures as defined in subsection 4.3.2. The class OpBinaryStruct, a subclass
of the abstract base class BinaryOp, is responsible for executing binary opera-
tions on structured base types. As RasDaMan supports operations combining
structures with primitive types, two further subclasses are needed: OpBinaryS-
tructConst and OpBinaryConstStruct, depending on the position of the primitive
value.

Inside the function objects, operations are executed on the appropriate C++
types for operands and result. Considering the primitive types supported in
the RasDaMan system, there are several possible type combinations for binary
operations which must be supported. The ODMG defines nine primitive types,
every binary operation takes two types for the operands and one for the result.
Thus, there are 9% possible type combinations for each of the 13 binary operations,
i.e. a total of 9477 possible type and operation combinations. Although offering
a specific function object for all these would result in optimal performance, it is
not practical to implement so many classes in a program. Even if the source code
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would be generated automatically, the object code would get an unpractical size,
and compilation and linking times would be excessively long.

Therefore it is necessary to use dynamic conversion of operands to the appro-
priate C++ types in operation execution. This is provided by the implementation
of the type system in RasDaMan and discussed in detail in section 5.2.1. Func-
tion objects for all operations are provided for the three basic categories of types
supported, namely floating point numbers, signed integers, and unsigned integers.
Operands and result then must be converted into the highest precision type of
these categories. Conversion functions are called before operation execution on
the base types of operands and result, which are stored in the internal state of
the function object representing the operation. Using dynamic conversion, imple-
menting the 13 binary operations supported in RasDaMan requires 39 classes for
the function objects. Additionally, optimised implementations can be provided
for frequently used types. Currently they are implemented for 8 bit unsigned
integers used, for example, in 24 bit RGB images.

In summary, the introduction of function objects to the object-oriented design
separates the application of operations on cells from the implementation of mul-
tidimensional iteration used for executing operations on tiles. Selection of oper-
ations is performed independently and local to the Catalog Manager module.
Therefore optimisations for specific base types are possible without causing any
code changes to the operation execution module. The dynamic type system of
RasDaMan necessitates a dynamic component in operation execution. Applying
the concept of function objects, this results in a virtual function call, which can
be efficiently handled by the C++ compiler.

5.1.4 Evaluation of Design Decisions

The RasDaMan project started early 1996. With practical implementation run-
ning for more than three years, enough experience has been accumulated to
re-evalulate the design decisions taken. One key decision was to use object-
oriented techniques for both design and implementation of the system. The
object-oriented principle is currently the single most important programming
paradigma for implementing commercial applications. The main alternative to
C++ as an implementation language for new projects is Java, which integrates
several principles from C++ into a dynamic language. A critical evaluation of the
experiences gained during the course of the RasDaMan project gives a very pos-
itive impression of object-oriented design techniques. The following key benefits
were gained:

e High system modularity allows highly independent and concurrent devel-
opment of modules by different developers.

e The design enables performance optimisation of code without affecting the
interfaces defined.



5.1. OBJECT-ORIENTED DESIGN 97

e Abstraction is supported also inside modules by applying inheritance and
polymorphism. Interfaces are commonly manifested in abstract base classes,
while subclasses provide the actual functionality for persistent and transient
storage or different base types, for example.

e The C++ code offers optimal performance as discussed further in chapter
6.

Choosing an object-oriented implementation language made it possible to
retain the first three design benefits throughout the implementation process.
Mapping the design to a procedural language would have lost many of these
and would have involved higher programming effort. Only the last benefit is
directly connected to the C++ language, but at the time of writing there was
still no relevant alternative to C++. A powerful interface to ODBMS used as a
base DBMS was of key importance for the first version of RasDaMan and only
available for C++. The implementation environment unfortunately introduced
some problems:

e Templates or generic programming were used as an additional tool to sup-
port abstraction. In the current C++ implementations, however, templates
introduce some problems. Firstly, template code is generally not easily
portable between different C++ compilers by different vendors (e.g. HP vs.
Sun vs. GNU). Secondly, using templates generally results in much higher
compile times.

e For basic data types such as strings or vectors, the Standard Template
Library (STL) was used. In the course of the project, the STL was stan-
dardised and included in the C++ ANSI standard as the Standard C++
Library. Unfortunately, small changes were made between the STL and the
standard version of the STL, which partly affected the RasDaMan code.

e The system was developed on Unix. The 170,000 lines of code are spread
over roughly 700 source files. About 60 makefiles are used for building the
system. A lot of effort had to be invested in writing these makefiles. When
porting to a non-Unix platform, they would pose the biggest problem. One
potential solution are environments providing a Unix shell together with a
make tool on, e.g., Windows NT.

e The compile times for completely building the whole system from a source
tree are high. Unfortunately, using C++ it is necessary to rebuild larger
parts of the source tree quite commonly. Examples are modifications in
inline functions or extension of a class by an internally used protected mem-
ber variable.
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Some of these problems are common C++ language problems. Only recently,
after some 15 years of language development, the C++ language including libraries
for basic data types is being standardised. Nevertheless, compiler vendors only
support the standard at varying degrees. This causes a variety of problems regard-
ing portability of code between different C++ compilers. Several problems origi-
nate in the evolutionary development of C++ from C. One example is the concept
of relying on header files included as plain text in other modules, which leaves
much to be desired in terms of modularisation.

An interesting question is if another language would be a viable alternative
to C++ if the development of RasDaMan started now. While Java resolved some
problems present in the C++ language, it also has a number of drawbacks. The
relevant ones in the context of RasDaMan are lack of performance and imma-
turity of the language. The performance might improve if compilers from Java
to machine code are available, but a virtual machine interpreting a byte code
is not an acceptable platform for a database system. The specification of Java
is led by Sun, and it includes a set of libraries for specific purposes like GUIs
or visualisation. Unfortunately, the most current virtual machine supporting the
latest versions of these libraries is usually only available on Windows N'T and Sun
Solaris, with other operating system following much later. Moreover, these library
specifications have proven to change significantly between different releases of the
Java language.

Overall, object-oriented design is a mature technology and should be applied
to all larger software projects where a trained development team is available.
It provides a means to control the inherent complexity of large software sys-
tems. As an implementation language, C++ is the current state of the art, with
Java increasingly gaining relevance. Unfortunately, both come with their disad-
vantages and a silver bullet solution is nowhere in sight. In most projects, the
implementation language will be determined by external factors such as skills of
the implementors or availability of software components anyway.

5.2 Operation Selection

Operation execution finally has to be done by the CPU on which the RasDaMan
server is running, and exactly how to execute operations on a variety of data
types is specific to each processor type. Execution of a single operation can be
potentially very complex, if, e.g., floating point types are not directly supported
by the hardware. It is not feasible to implement operations specifically for each
platform without compromising easy portability of the system and investing a
very large effort into implementation of operations. For these reasons, all opera-
tions in RasDaMan are implemented in C++ using only C++ types as basis for
operation execution. ANSI C++ offers a uniform standard regarding data types
supported and semantics of operations on them on all platforms offering a C++
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compiler. The machine specific instructions for operation execution are gener-
ated by the compiler. Once compiled to machine code, these operations can be
efficiently executed on the types specified in the C++ code.

RasDaMan offers a dynamic type system, i.e. code does not have to be recom-
piled when new types are added. Of key importance for operation execution
performance in RasDaMan is mapping this dynamic RasDaMan type system to
static C++ types. The basic strategy to accomplish this is described in sec-
tion 5.2.1. Section 5.2.2 describes how the correct function objects are chosen.
During this process, applicability of operations as defined in section 4.3 is also
checked. Optimisations in operation execution regarding the mapping of types
are discussed in subsection 5.2.3.

5.2.1 Mapping RasDaMan Types to C+-+

The RasDaMan type system is modelled after the ODMG 2.0 standard [CBB*97],
which in turn is based on the C++ type system. The primitive types specified in
the standard are listed in section 4.2.4. Due to the similarity between the ODMG
and the C++ type system, each atomic type in RasDaMan has an equivalent
representation in C++. For composite types, operations are executed on the
elements of the type, potentially recursively until atomic types are reached. For
reasons cited in section 5.1.3, direct implementation of function objects for all
possible type combinations of atomic types is impossible due to the sheer number
of combinations.

In case of operands with different types, C and C++ convert these operands
to the higher precision type. This requires precedence rules for types to be
defined. RasDaMan applies a similar strategy in this respect. Each base type
knows how to convert itself to a higher precision type. As opposed to C++, in
RasDaMan operations are generally executed only on the highest precision type
of the three basic categories of primitive base types (float, signed integer, and
unsigned integer), even if all operands are of a lower precision type of the same
category. The only exception are optimised implementations for specific atomic
types using C++ casts directly to execute the operations on common types more
efficiently. The result is not taken into account when choosing the operation,
just as in C++. Hence the result of an operation potentially loses precision when
assigned to a lower precision result cell.

The highest precision C++ types used for executing operations in the three
type categories are: double, long, and unsigned long. For each operation, exactly
one implementation exists for each type category to which it is applicable. It
works on the highest precision base type in the respective category. The binary
operation f,, e.g., is executed using the following three C++ classes: OpPLUS-
CDouble, OpPLUSCLong, and OpPLUSCULong. Instances of these classes are
used as function objects inside the multidimensional iteration to execute the
operation on cells. When instantiated during operation selection, the function
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Figure 5.6: Converting RasDaMan types to C/C++ types.

objects get the base types of result and operands as parameters. All atomic
base types offer conversion functions to the highest precision base types (see
figure 5.4): convertToCDouble, convertToCLong, and convertToCULong. The
strategy for conversion is shown in figure 5.6. It should be noted that the default
implementation of convertToCDouble calls convertToCLong and then converts
the result to a double. The conversion to long relies on conversion to unsigned
long, if it is not implemented in a certain type. Using this delegation, a primitive
type just has to implement the lowest of the three conversion functions applicable
to it.

By converting only to stronger types, no precision should be lost when execut-
ing operations. A problem also particular to C or C++ concerns the conversion
of unsigned long to long which potentially causes an overflow. Using 32 bit
integers as defined by ODMG, a long can have values between -2147483648 and
2147483647, while an unsigned long has a value range between 0 and 4294967295.
It is impossible to calculate correct results for all possible operands and opera-
tions between these two types without support for higher precision integers. In
this case, RasDaMan follows common C++ practice and gives mathematically
incorrect results in the case of overflows.

5.2.2 Interface to Operation Selection

When users execute a RasQL query, they specify it as a string which is then passed
as a parameter to a function in the client API RasLib (see section 3.2) and sent to
the RasDaMan server. On the server, parsing of the query takes place and a query
tree is built and is subsequently optimised. Only when evaluating the query tree
are actual operations executed by calling the execution functions of class tile. The
type of operation to be executed is specified directly in the query string using
an operator such as + or a function such as some_cell. The query processor
deals with collections of multidimensional arrays and with multidimensional array
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objects as data sources during parsing. These entities are typed using the classes
CollectionType and MDDType as mentioned in section 5.1.2.

In the course of building the operator tree, the appropriate function object
has to be chosen according to the types involved in the operation. This function
object will later be used to actually execute the operation when tile-based evalu-
ation of the operator tree takes place. To choose an appropriate function object,
the operation, the types of operands, and the result type is needed. As the tiles
of an array have the same base type as the array and the collection type possibly
restricts the type of arrays in a collection, this higher level type information can
be used to choose the appropriate function as opposed to choosing it for each
combination of tiles in on which the operation is executed.

General functionality for operation execution, such as identifying the appro-
priate function object, is supported in the class Ops by static member func-
tions. Basically, these are global functions encapsulated in the namespace of
class Ops. An enumeration type is defined in this class for specifying opera-
tions. This enumeration type is used inside the query language parser to store
the operation before the types of operands and result are known. Once these
types are known, the parser checks applicability of operations using the function
Ops:isApplicable(). If an operation is applied to an unsuitable base type, an
error is sent to the client. RasQL, like SQL, is a typed language and performs
type checks during query parsing.

Another functionality provided in class Ops is the retrieval of an appropriate
return type for an operation. Commonly, results of operations are not used to
update another array, but are used as intermediate results for further operations
or simply sent to the client as part of the final result. In this case, the base type
of the result array is unknown and should be appropriately chosen according to
the operation and the base types involved. The class Ops is an essential part
of the interface of operation execution. While the execution functions of class
Tile are used during query evaluation, these functions are called during query
parsing. In summary, the class Ops provides the following functions and defines
an enumeration type:

e Ops::0P_PLUS, Ops::0P_SOME, etc.: elements of an enumeration type rep-
resenting operations in the query tree and used to retrieve function objects
after the necessary types are known.

e Ops::getUnary0Op(), Ops: :getBinaryOp(), Ops: :getCondenseOp(): func-
tions to retrieve function objects executing operations on cells depending
on operation, type of operands, and type of result.

e Ops::isApplicable(): function to check applicability of an operation
depending on operand types and result type used for error handling. The
result type is optional. If it is not given, getResultType () is used to chose
a result type.
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e Ops::getResultType(): returns a suggested result type for a given oper-
ation with given operand types.

e Ops::execUnaryConstOp(), Ops: :execBinaryConst0Op(): execute an oper-
ation on constant operands specified verbosely in the RasQL query.

The basic structure of the get functions to retrieve operations is a multi-level
case statement. First, the type of operation is checked and then the types of
operands and results. The minimum number of cases are the type categories
to which the operation is applicable. If optimised function objects for specific
type combinations are offered, these have to be added to the case statement.
Ultimately, the appropriate function object for operations on primitive types is
instantiated and returned. Structured types are a special case: the general func-
tion object for operations on structures is instantiated, which calls the appropri-
ate get function again to retrieve function objects for each of the elements of the
structure. All this is not performance critical, as it is called only once per object
or, if the type information is detailed enough, only once per collection.

The test for applicability relies on the get functions if all operand types and the
result type are available. The get functions return a NULL pointer, if an appro-
priate function object cannot be found for a given combination. If the result
type is unspecified, the function in theory could use Ops::getResultType()
to retrieve the result type and then use the same strategy. Unfortunately,
Ops::getResultType () uses Ops::isApplicable(), e.g., to get the result type
for structured base types as operands. In this case, it uses the following strategy:

e [f an operation is applicable to two structs, then the struct types have to
be equivalent. The result type then is the given structure for all operations
except for comparison operations, where the result type is always Boolean.
Otherwise there is no legal result type.

e If an operation is applicable to a struct and a constant, then the opera-
tion with the constant must be applicable to all members of the structure.
Again, the result type is the given structure resp. Boolean or otherwise
there is no legal result type.

Since these circular calls cannot be easily solved, a straightforward implemen-
tation of both Ops::getResultType() and Ops::isApplicable() is not possi-
ble. At least one of the two functions has to use a set of case statements to
check the rules for applicability as defined in section 4.3 or to get the result type
as needed for testing applicability using the get functions. In the current imple-
mentation, three functions had to be adapted if a new operation would be added
to the formalism: the appropriate get function and both Ops: : getResultType ()
and Ops: :isApplicable(). As these functions are quite complex, even with the
current set of operations, it would be very difficult to keep them coherent with
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the formalism when new operations were added. In future work, consideration
should be given to offer an abstract specification language for operations and the
base types on which they are legal and then automatically generate the actual
C++ code from this abstract specification.

All the functions for operation selection are not performance critical for oper-
ation execution, as they are only applied during query parsing. They are very
important to ensure correctness of operation execution, as the formal seman-
tics defined in chapter 4 are mainly implemented here. Error handling during
parsing RasQL queries relies on these functions when base types are concerned.
Optimisations are possible without affecting the interface by integrating addi-
tional function objects for specific type combinations into the operation selection
process. Moreover, code maintenance, essential when new operations are to be
added, would prove problematic. An abstract specification language used as basis
for actual C++ code would be a better solution in this regard.

5.2.3 Optimisations

Optimised implementations of function objects are very relevant for overall oper-
ation execution performance. The general implementation always dynamically
casts operands and result to a specific type. This process involves three casts
for a binary operation, which results in three calls to virtual functions due to
the RasDaMan implementation of a dynamic type system. As this is performed
on a potentially very large number of cells, the overhead due to type casting
significantly affects performance. Choosing the most efficient function object to
execute an operation on certain base types is therefore vital.

A very common base type in a variety of application areas are 8 bit unsigned
integers. Examples include images in medical applications storing grey values
between 0 and 255, or RGB images utilising a 24 bit colour space with 8 bits for
each component. If operations on such arrays involve the same base type for result
and operands, no cast is necessary. A specialised implementation of function
objects for this type could therefore save up to three virtual function calls for
each cell operated on. Due to the high importance of this base type, specialised
implementations for all operations are provided on 8 bit unsigned integers. In
these function objects, the dynamic cast as implemented in the RasDaMan type
system is not used. A simple static C/C++ cast is applied instead. In this case,
the compiler can generate the code directly and no additional function calls are
involved in operation execution on cells.

Another important opportunity for optimisation is f;p. As described in sec-
tion 5.1.1, frp is used to execute the spatial operations defined in the formalism.
One of the most common operations in basically all application areas is trim-
ming, whereby parts of a multidimensional array are selected by restricting the
coordinates in one or more dimensions. This common operation is also executed
by applying f;p to the relevant tiles. The general implementation of this oper-
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ation supports mixed base types for operand and result and therefore uses the
assignment operator in C++ after dynamically casting the operand and then the
result. This is not necessary to execute frp on homogeneous base types, and a
simple copy operation without casts would suffice.

This is especially relevant in two cases:

1. The operand and the result have a structured base type.

2. The operation is applied to a whole tile and the result tile has the same
spatial domain (probably translated).

It is much faster to simply copy a data block with the size of the struct
than to execute the operation element by element. In the second case, no cell
based operation execution by using a multidimensional iteration is necessary at
all. Merely copying the whole memory block results in equivalent functionality.
Unfortunately, the second optimisation cannot be done based only on catalogue
information. The spatial domain in which the operation is executed has to be
known and this information is passed as a parameter to the execution functions
described in section 5.1.1. In the first case, a specialised function object is an
appropriate solution.

Clearly, the text above lists just a few examples for optimisations. There are a
multitude of further possibilities. Optimisations usually involve tradeoffs between
code complexity and size of the code against execution performance. Every opti-
misation for a special case makes the code more complicated and more difficult
to maintain. Therefore, the relevance of optimisations for overall performance
has to be evaluated to make an educated decision on whether the optimisation is
worthwhile, which is done in section 6.5.

5.3 Multidimensional Iteration

As explained in subsection 5.1.1, operations are executed on tiles by higher level
modules. Functions are called on the result tiles and obtain the operand tiles
as parameters. Additionally, a spatial domain specifies in which part of the tiles
the operation is executed. This view is the abstraction level visible to the rest of
the system for operation execution. As defined in subsection 4.1.2, all induced
operations are finally executed on the cell values stored in the tiles.

This is done in a 1-D array of bytes as explained in subsection 5.1.1. One
key element of operation execution is mapping the spatial domains in which
operations are executed to 1-D offsets inside the operand tiles. For this pro-
cess, an algorithm carrying out a multidimensional iteration has been developed
and implemented. It iterates through spatial domains sd; with the same extents
extent (sd;) and maps the current coordinate to a 1-D offset inside the correspond-
ing array. As this is one of the key processes during operation execution, it has
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to be performed efficiently. In the following, first the general multidimensional
iteration is developed and later optimised.

5.3.1 Basic Algorithm

The algorithm for multidimensional iteration is developed based on the RasLib
class r_Minterval, which is used to work with multidimensional intervals on the
RasDaMan client and inside the RasDaMan server. This class was designed
to represent multidimensional intervals of arbitrary dimensionality using 32 bit
signed integers as lower and upper border. Open borders are also supported.
Basically this class is the C++ representation of a spatial domain as defined
in subsection 4.1.1. Functionality offered by the class r_Minterval includes the
following things relevant for multidimensional iteration:

e constructors taking the number of dimensions or a string representation of
a spatial domain.

e the member function dimension() returning the dimensionality.

e the overloaded operator[] for access to an r_Sinterval for the respective
dimension. The class r_Sinterval supports low() and high() for access to
lower and upper bound of the spatial domain in the respective dimension.

e the member functions get_origin() for retrieving low(sd) and get_high()
for high(sd). The result is returned as an r_Point corresponding to a vector
X in the formalism.

e the member function get_extent() for retrieving extent(sd). Again, an
r_Point is returned.

e the member function cell_offset() to calculate the offset in cells of an
r_Point from the origin of the interval according to the linearisation used
inside tiles in RasDaMan.

e the member function intersection_with() to calculate the intersection of
two spatial domain sd, N sdg. Similarly, a function intersects_with()
exists returning a boolean value as opposed to a new r_Minterval.

The class r_Point also provides an overloaded operator[] to access the ele-
ments of the vector for read and write. For the implementation of multidimen-
sional iteration it is not sufficient to merely nest for loops. This would only
support multidimensional iteration through a fixed number of dimensions. As
RasDaMan supports arbitrary dimensionalities, one algorithm should cope with
all dimensionalities. Therefore the dimensionality must be a loop variable, too.
A textual description of this algorithm for a binary operation « = f(f,7) is as
follows:
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1. Initialise X,, X3, X, with the origins of the spatial domains to be operated
on for result, first operand, and second operand, respectively.

2. Increment the lowest dimension of all vectors.
3. If high(sdg, 7) in the current dimension i is not exceeded, go to step 6.

4. Otherwise increment the next higher dimension of all vectors and set the
previous dimension to the lowest index. Check 3 again.

5. If the dimension to increment is outside the dimensionality, the iteration has
already iterated through all cells in the interval. Terminate the algorithm.

6. Execute the operation after calculating the 1-D offsets of the vectors in
their respective tiles. Start again with 2.

Depending on the type of operation (condense, unary, or binary), different
implementations of the algorithm have to be written as, e.g., for condense oper-
ations only one interval has to be iterated through. Note that the number of
vectors does not affect the check in step 3. This has to be done only once, as the
extents of the intervals are the same as a precondition for the algorithm.

Using the classes r_Minterval and r_Point, this algorithm was implemented
resulting in about 80 lines of C++ code. Performance analysis using a profiler
indicated that most of the time is spent calculating the offsets in step 6. The
calculation of offsets is a member function of class r_Minterval. This function iter-
ates through the d dimensions of the spatial domains and executes the following
operations:

2d — 1 subtractions
d additions

d — 1 multiplications

For a binary operation, the calculation of offsets has to be repeated three
times, namely for result, first operand, and second operand, for each cell. Clearly
this causes significant overhead per cell. This process is much more expensive
compared to a solution with nested for loops for a fixed dimensionality. There
the process of offset calculation is integrated with the for loops, in the lowest
dimension only an addition is needed to calculate the next offset. Simple addi-
tions for the lowest dimension 7 = 1 is also sufficient in the case of arbitrary
dimensionalities, as the tiles are linearised in the lowest dimension. This is the
first optimisation applied to the algorithm:
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6. If a higher dimension was incremented in step 4, then recalculate the off-
sets. Otherwise add the size of the corresponding base type to the offsets.
Execute the operation. Start again with 2.

If extent(sd,1) of the operation domains is quite large, this optimisation
results in substantial performance gains. The number of operations for offset
calculation per cell is reduced to:

2d — 1 .
subtractions
extent(sd, 1) — 1
d
1 additi
extent(sd, 1) — 1 1 additions
d—1

multiplications
extent(sd, 1) — 1 P

The calculation is valid only for extent(sd, 1) > 1. No performance is gained if
the extent in the lowest dimension happens to be 1. While this may appear like an
improbable case, it unfortunately corresponds exactly with the implementation
of a section operation 7,y as an unary operation fip. In this case, a slice with
dimensionality reduced by one out of a multidimensional array is built by fixing
the lowest dimension. In order to obtain a more general reduction in execution
time, the algorithm was rewritten as described in the next subsection.

5.3.2 Precomputation of Increments

The main problem with the algorithm described above is the necessity of multipli-
cations to calculate the 1-D offsets. As opposed to an addition, a multiplication
takes at least a factor of ten longer: on an Intel 80486, a 32 bit addition of two
registers takes 1 cycle, while a multiplication takes between 12 and 42 cycles
depending on the multiplier [Hum92]. While this factor is reduced for pipelined
superscalar processors, there is still a substantial overhead to pay for multiplica-
tions. Ideally, the multidimensional iteration would not need any multiplications
at all.

To completely avoid multiplications inside the multidimensional iteration,
some precalculations are necessary. In section 4.4 it was explained that com-
monly a substantial percentage over 10% of a partially accessed tile is read.
This reduces the impact of precomputations for an efficient implementation. In
the following, these precomputations will be developed using a tile o with spatial
domain sd, and a spatial domain inside the tile sd,. Assume Vi : low(sd,, i) =0,
i.e. the tile starts at the origin, for the purpose of simplifing the calculations in
the following. If a tile o does not start at the origin, both sd, and sd, can be
translated by (—1) = low(sd,) without affecting the results of the calculations.
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Assuming linearised storage of «, the 1-D distance in cells between a vector
Xy = (21,...,%i...,24) € sd, and a vector Xy = (x1,..., 2, +1,...,24) € sd,
is a constant integer value. If the linerarisation is done in dimension 1 first, this
distance or increment A\; in cells can be calculated as follows:

Alzl

d
Vi,2 <i<d:A; = [](high(sd,, i)+ 1)
i=1
To get the actual offset in memory, A; has to be multiplied with the length of
the base type. By precalculating the A; for all dimensions, the algorithm devel-
oped in the previous subsection could be modified to use the correct A; whenever
the corresponding dimension is incremented. This iteration would work directly
on the offset, thereby making offset calculation inside the multidimensional iter-
ation superfluous. The classes r_Minterval and r_Point, however, would still be
used for checking the boundaries of the iteration. Reapplying the principle of
precalculation, the number of repetitions per dimension r; can also be stored and
used in the iteration. They are easily calculated as r; = extent(sdy,7). Both
results are stored in a C++ struct together with the current repetition:

typedef struct {
int repeat; // total number of repetitions
int inc; // increment per repetition
int curr; // current repetition

} incArrElem;

Stored inside an C++ array with d elements, this is all that is needed to
execute a multidimensional iteration once the offset of the starting point low(sd,,)
is known. This 1-D offset is the only offset calculated using the member function
of r_Minterval. Only in the precalculation step are multiplications required. In
the iteration, only simple operations like access to array elements, additions, and
increments are used. This algorithm has been factored out into a class r_Miter
getting sd, and sd, as parameters to the constructor. Additionally, the cell size
of the array in bytes and the memory address of low(sd,,) is needed. Both can
be retrieved from class Tile directly without any calculations (see section 5.1.1).
The constructor of class r_Minterval performs all necessary precomputations as
described. For iterating, the member function nextCell() is offered. It returns
the memory address of the current cell and increments the iterator. The end of
the iteration can be checked with the member function isDone(), which returns
TRUE once the iteration is complete. Internally, the member variable currCell
stores the address of the current iterator position, and done stores a flag signalling
the end of the iteration. The actual C++ code calculating the address of the next
cell in the iteration is as follows:
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inline charx

r_Miter: :nextCell()

{
// return the current cell
charx retVal = currCell;
int i;

if (done)
return retVal;

// increment addresses
currCell += incArrIter[0].inc;
incArrIter[0].curr++;
if (incArrIter[0].curr == incArrIter[0].repeat) {
incArrIter[0] .curr = 0;
// increment other dimensions
for(i=1; i < arealter->dimension(); i++) {
incArrIter[i].curr++;
currCell += incArrIter[i].inc;
if (incArrIter[i].curr < incArrIter[i].repeat) {
// no overflow in this dimension
break;
} else {
// overflow in this dimension
incArrIter[i] .curr = 0;

}
}
if( 1 == arealter->dimension() ) {
// overflow in last dimension
done = 1;
currCell = retVal;
}
}
return retVal;

}

The most noteworthy consideration in this code is the lack of complex oper-
ations. All calculations involve just increments or additions. By coding the
functions inline, the overhead of putting the iteration code in a separate class
could be reduced. Otherwise, this code would have to be replicated in all exe-
cution functions of class Tile, as that is where the iteration is actually applied.
By offering a general class, other parts of the RasDaMan system can make use
of this algorithm, as in the case of the code for tiling multidimensional arrays.
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Performance Comparison

To evaluate and compare the different implementation alternatives for multidi-
mensional iteration, a test program was written. The program executes a multi-
dimensional iteration through about 1 million cells, each containing a 4 byte long
integer. Spatial domains sdg, of dimensionalities 1 to 7 were calculated to have a
roughly quadratical shape according to the algorithm developed in section 4.4.1.
Around each of these intervals, a tile with spatial domain sd,, was modelled:

Vi :low(sda,,i) = low(sdg,,i) —1
Vi : high(sd,,,i) = high(sdg,, i)+ 1

The basic idea is to make the actual tile larger than the area to be iterated
through in all dimensions. This was necessary to avoid iterating through a whole
tile, where no offset calculation would be necessary at all and a simple 1-D C++
for loop could have been used.

The measurements were executed on a Intel PII with 233 MHz having 64 MB
of main memory and running Linux 2.0.33. Compilation was done using the egcs
C++ compiler in version 2.91.60 with compiler optimisation level set to 2. The
measurements taken measure only CPU performance and are therefore sensitive
to load on the machine. In order to minimize the influence of the system load on
the results, a machine without a network connection was chosen. Three different
implementations of multidimensional iteration were evaluated:

e an optimised implementation of the old algorithm without precomputation
based on r_Minterval, as described in section 5.3.1.

e an implementation using the class r_Miter encapsulating precomputation.

e a direct implementation of the precomputation algorithm without encap-
sulating it in a class

The measurements were taken to evaluate the overhead of multidimensional
iteration rather than the operation execution performance on single cells. There-
fore, a simple C++ long addition was performed inside the multidimensional
iterations, so the dynamic type system of RasDaMan was not used. The multidi-
mensional iterations were executed 100 times inside a C++ for loop, the resulting
times as shown in figure 5.7 are already scaled down by factor 100.

For comparison, a 1-D iteration implemented as a simple for loop in C++
executing the same addition operation takes about 25ms compared to about 50ms
for a 1-D iteration executed with the direct implementation of multidimensional
iteration. This difference of a factor of two can be attributed to two reasons:
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Figure 5.7: Performance comparison of different implementations of multidimen-
sional iteration.

e The C++ compiler can optimise a simple for loop much better, e.g. by
unrolling the loop, than a more complex algorithm as needed for multidi-
mensional iteration. A test run without compiler optimisation resulted in
an execution 1.8 times longer for the for loop than the 1.5 times for the
multidimensional iteration, which hints at a better optimisation in the first
place.

e The for loop needs a significantly smaller number of instructions and vari-
ables than the precomputation algorithm. Therefore, all code easily fits in
first level cache and all variables can be stored in registers.

This performance advantage of factor 2 makes it still worthwhile to optimise
the special case of access to a whole tiles by using a for loop instead of the
optimised multidimensional iteration.

Looking at the diagram, the first noteworthy consideration is the performance
of the old iteration algorithm. For small dimensionalities it performs better than
the implementations using precomputations, thus contradicting the arguments
given above. This may be attributed to the optimisation of not recalculating the
offset for every cell of the lowest dimension, but instead using a simple for loop in
this dimension. For a dimensionality of 1, only one offset calculation is necessary,
1,024 for dimensionality 2, and about 10,000 for dimensionality 3. This simple
optimisation is very effective at low dimensionalities, considering that without
the optimisation roughly 1,000,000 offset calculations are needed.

This leads to the second observation: the poor scalability of the old iteration
regarding dimensionality. Iteration through roughly the same amount of cells
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takes more than eight times as long for dimensionality 7 compared to dimen-
sionality 1. This is clearly because of the optimisation using the for loop for
the lowest dimension, which becomes overproportionally less effective for higher
dimensionalities. Then it becomes very relevant that the offset calculation is a
complex operation and therefore expensive.

The implementation with precalculated increments scales very well with dimen
sionality: about 80ms for 1-D vs. 100ms for 7-D using the implementation based
on r_Miter. The higher effort for precalculation is incured only once, as opposed to
offset calculation, which has to be repeated whenever another dimension except
for the first is incremented. Comparing the r_Miter implementation with the
direct implementation, the latter is about 20ms faster over all dimensionalities.
The overhead was not anticipated to be so large, given that the r_Miter class uses
inline functions. As the algorithm used is identical, it seems that the compiler
cannot optimise the more complex code created by inserting the inline functions
as well as the direct implementation. The functions were indeed inlined: When
compiled without optimisation, which also suppresses inlining, the r_Miter imple-
mentation took about 3 times longer, while the direct implemenation took only
1.5 times longer.

To summarise, precalculation of increments makes multidimensional iterations
scalable regarding the dimensionality of the tile to be iterated through. However,
optimisations for whole tile access are still relevant. The measurements indicate
that it may even have been worthwhile to compromise maintainability for per-
formance and implement multidimensional iteration directly instead of using the
class r_Miter. A general principle that can be deduced from these measurements
is that compiler optimisations are most effective with simple code. Complex loop
structures and inserted inline functions cannot be optimised that well by com-
pilers. It should be noted, however, that testing has been carried out with one
compiler only, i.e. egcs.

Besides being beneficial to performance, the precalculation of increments also
opens up a number of possibilities to extend the functionality provided by oper-
ation execution. By modifying the incrementation steps, the code as developed
above can also be used for scaling or sampling of arrays. Assume a scaling by
factor 4 is desired. A naive approach here is to simply multiply the inc element
of the structure with four and divide repeat by four. This works, if the itera-
tion domain sd, has the correct shape: Vi : extent(sd, ) mod 4 = 0. Note that
the result array must use another array of precomputed increments still iterating
through every cell.

To support sampling for all spatial domains, an extension of the array used
to store the precomputed increments is needed. It is necessary to give up the
correspondence of the index in the array of precomputed structs with the dimen-
sion in the spatial domain. This involves adding an element dim to the struct.
Then, if the shape of sd, is not as specified above, an additional increment in
the same dimension could be used to skip the border elements in computation.
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Assuming that in the lowest dimension the modulo calculation results in three, a
precomputed array similar to the following would work:

‘ dim ‘ repeat ‘ inc ‘ curr ‘
0 42 4 0
0 1 3 0

More complex iteration algorithms are possible. Using two different precom-
putation arrays for result and operand together with negative increments allows
mirroring of arrays. As only the operations defined in subsection 4.1.2 are relevant
here, further investigation was beyond the scope of this work. If RasDaMan is to
be extended by, e.g., a scaling operation, it seems to be worthwhile to modify the
precomputation appropriately. The general principle of precomputation as devel-
oped here is applicable to a much wider range of multidimensional operations as
the ones treated in this work.

5.4 Integration in Query Processing

Operation execution is a key component to make a DBMS functional and efficient.
The user, however, interacts with the system using a text based query language.
In the case of RasDaMan, this is the RasDaMan Query Language RasQL as
introduced in section 3.1.2. In the following, a short overview will be given on
how operations specified in RasQL are evaluated by the query evaluation engine
and finally executed using the software modules described in the previous sections
of this chapter.

The main interface to a DBMS is basically ASCII text, through which queries
are specified. This text is entered by the user or generated by a client program
and then sent to the server. To execute these queries in the DBMS, they have
to be interpreted, i.e. transferred into steps which can be executed using the
functionality provided inside the RasDaMan system. Generally, this requires
transforming the query into a tree-based representation. A set of basic building
blocks is used to construct these trees:

The query tree of an arbitrary array query consists of set trees and ele-
ment trees as subtrees. Set trees incorporate relational operations [...]
as inner nodes and [multidimensional array| relations as leafs, whereas
element trees consist of [multidimensional array| operations [...] and
logical operations as nodes and [multidimensional array| iterators and
constants as leafs. Element trees connected to the application node
represent [multidimensional array| expressions, they are called opera-
tion trees. Element trees attached to selection nodes represent multi-
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dimensional boolean expression, they are named condition trees.

[Rit99]

The set trees represent the flow of data based on collections of multidimen-
sional arrays. Actual operation execution is specified in the element trees in the
form of operation trees and condition trees. Out of the query string, a direct
representation as a tree is generated. Before evaluation, this tree is optimised
both regarding access to data on persistent storage and regarding execution of
operations. This optimisation process of queries in the context of array data is
discussed in detail in [Rit99]. One example for the potential elimination of an
operation is execution of the same trimming in both the projection (SELECT
clause) and the condition (WHERE clause) of a RasQL query on the same data.
The optimised tree then is evaluated:

Execution of the query tree follows a demand-driven strategy [Gra93].
One result item after another is computed on request keeping memory
requirements of intermediate results at a minimum which is of special
interest when dealing with huge amounts of data as we do.

[Rit99]

As discussed in previous sections, operation execution is strictly based on
tiles, as tiles are the basic units of data storage. Evaluation of the query tree also
tries to follow this paradigm as much as possible. Commonly, the evaluation of
operations can be done in pipelined fashion on tiles:

In the element trees, where operations are applied to [multidimen-
sional arrays|, execution can partly be based on tiles. Pipelining on
tile granularity is possible within Dimensional Data Areas (DDAs |...])
of the element trees. This means that the execution process is driven
by tile demand, so the result of the DDA is computed tile by tile |...].

[Rit99]

The concept of DDAs is explained in detail in [Rit99]. One example for
interruption of tile based execution is execution of a condense operation such as
fave_cerr used in a comparison with a constant. In this case, to calculate the
result of the operation all necessary tiles have to be available, which obviously
interrupts pipelining. The general principle is to minimize the size of intermediate
results by using pipelined execution.

In the following, a query tree is taken from [Rit99] and used as an example
showing the use of operation execution during evaluation of element trees. Basis
for the query tree is the following query:
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|Cytoarch(a)| | PET(d) |

Figure 5.8: Example query tree taken from [Rit99).

SELECT ((a>100) AND b>200)) [voil
FROM Cytoarch AS a, PET AS b
WHERE count_cell( ((a>100) AND (b>200))[voil ) > 0

7

Cytoarch and PET are two collections of 3-D multidimensional arrays; “voi
represents a multidimensional domain specifying a volume of interest. The opti-
mised query tree is shown in figure 5.8. The set tree is coloured white and the
element trees are grey. In the element trees, nodes containing multidimensional
arrays or operations on them are coloured in dark grey, while scalar values or
scalar operations are coloured in light grey. The set tree uses the standard opera-
tors from relational theory, while in chapter 4 some of these symbols were used for
multidimensional array operations. In the set tree, the two collections of arrays
are used as data sources, which are represented as two rectangles at the bottom.
All tiles on which operations are executed originate from there.

The element trees contain six operations on multidimensional tiles: 2 spatial
operations, 3 binary induced operations, and 1 condense operation. The nota-
tion used is different from the one defined here. The following list shows the
correspondence to the operations defined here:

e

cand b, .
=[voi] =[voi]
operation execution of the binary operations of which they form the input
(see 5.1.1). Otherwise they would have to be executed as separate unary
operations f;p.

correspond to trimmings 0,,;. These can be integrated with
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e The binary operations are denoted as >f;_ing and andyp_inqg. These corre-
spond to fs and fanp.

e The condense operation count_cell corresponds to fecounr_cELL-

During interpretation of the query tree as tiles are pipelined up to the top,
functions for operation execution are called. The operations are executed using
calls to the execution functions on tiles currently in the pipeline. Result types of
intermediate results are determined using the rules defined on page 56. Looking
at the already optimised query tree, it can be observed that operation execution
is a key component of the overall query evaluation process. The classes and
functions defined in this chapter serve the integration of operation execution into
the DBMS by providing a clear interface for query evaluation. Efficient operation
execution is relevant for overall efficient evaluation of query trees.



Chapter 6

System Performance Evaluation

Efficiency of operations is a major design goal for the RasDaMan system because
of its importance for the management of huge multidimensional arrays in databases.
Even simple subselects involve operation execution code to a large extent as dis-
cussed theoretically in section 4.4. Furthermore, operations are commonly exe-
cuted on a very large number of cells. To evaluate the degree to which this goal
was met in developing and implementing operation execution in the RasDaMan
system, the performance of the actual running system has to be evaluated.

Firstly, the tools used for the performance evaluation process will be described
in section 6.1. Section 6.2 evaluates common standard bechmarks on their rel-
evance for multidimensional array DBMSs. In section 6.3, the test environment
and the workloads used in this chapter will be described in detail. A quantitative
evaluation on the relevance of operation execution for overall performance of the
system is the focus of section 6.4. Performance evaluation of the optimisations in
the implementation of operation execution as described in chapter 5 can be found
in 6.5. A comparison of the system with current state of the art technology in
database management systems is given in section 6.6. Finally, the performance
of RasDaMan in an OLAP environment is evaluated in section 6.7.

6.1 Tools for Performance Measurement

benchmark (a) n mark (carved permanently into, eg, stone) to indi-
cate a point of known height, used as a reference for measuring other
heights for a survey, etc. (b) n,adj (fig) (standard) against which
other things can be measured, accessed: Take that job as the bench-
mark. A benchmark job.

Ozford Advanced Learner’s Dictionary of Current English

In the English language, “benchmark” is a general expression for any standard
used for measuring by comparing. Computer science has adopted this general

117
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expression and given it a narrower meaning. The author of the AS?AP benchmark
for relational database systems explains benchmarking as follows:

Benchmarking consists of running a set of well known programs on
a computer system to evaluate its performance [DMWS87]. Hence,
benchmarking is an approach to performance evaluation [Ben84, Fer78|
that is dependent on the maturity of the technology involved. [...]
With any new technology, benchmarks are the last to be used because
they require the components of the system tested to be implemented
and functioning.

[Tur87]

As the development process of the RasDaMan system followed the approach
to get a running system very fast, benchmarking has constantly accompanied
the development process. Even early in the development process, small test
programs were used to evaluate design choices regarding performance for separate
components of the system. A running system with limited functionality was
available about one year into the project, making benchmarking of the whole
system possible. One step in the process of performance evaluation is deciding
which benchmark to use or which criteria to apply when designing a special
benchmark for the tests. The synonymous use of benchmark and workload used
in the following quotation is not adhered to in this work. The term “workload” is
used to describe both the data set and the queries executed on it. The expression
“benchmark” describes the whole measurement process including the bechmark
program and the workload.

The quantitative comparison starts with the definition of a benchmark,
or workload. [...] To be useful, a domain-specific benchmark must
meet four important criteria. It must be:

1. Relevant: It must measure both peak performance and price vs.
performance ratio of systems when performing typical operations
within that problem domain.

2. Portable: It should be easy to implement the benchmark on
many different systems and architectures.

3. Scalable: The benchmark should apply to small and large com-
puter systems. It should be possible to scale the benchmark up
to larger systems and to parallel computer systems as computer
performance and achitecture evolve.

4. Simple: The benchmark must be understandable, otherwise it
will lack credibility.

[Gra91]
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This text was written for developers and users of standard benchmarks, which
are applied to a broad variety of systems. The definition of a standard benchmark
for multidimensional array data is not a target for this work. For performance
evaluation of RasDaMan, workloads from standard benchmarks were used, but
also workloads designed specifically for evaluation of operation execution perfor-
mance or representing a specific application area where no standard benchmark
could be found. Thus, the criteria listed above are also important for this chapter:

e Benchmarks have to be domain-specific, there is no workload covering all
potential application domains at the same time.

e Relevance of the workloads is important for gaining meaningful results. In
the context of this work, a workload can be relevant for a certain application
area or it can be relevant to test a part of the system where a design decision
affecting performance has to be taken.

e Portability is mainly important when comparing RasDaMan with state of
the art systems, where a mapping of array data and queries to other data
models has to be done.

e Scalability is less relevant for this work, as the benchmarks are not designed
to be used over a long period of time, but mainly for the specific purposes
of this work.

e Simplicity is a key criteria almost everywhere in computer science. Here it
is important to keep the workload understandable and to limit the number
of parameters varied in a series of benchmark executions. Simplicity is a
precondition for thorough analysis to gain meaningful insights into perfor-
mance characteristics.

Choosing a workload or designing a specific one is discussed in sections 6.2
and 6.3. For the remainder of this section, the focus is set on the measurement
process done while executing the workload in the benchmark. It is easily possible
to measure total execution time using, e.g., the time command on Unix systems,
but this is hardly enough as a basis for performance evaluation. To get more
detailed information on performance characteristics of software systems, a variety
of tools are available. A basic categorisation of these tools is given in the following
according following [Smi90]:

e System monitors: observation of overall operating system performance coun-
ters. Examples are the Windows N'T' Performance Monitor or the sar com-
mand available on a number of Unix systems. Typical measurements are
idle time of CPU or average number of pages swapped out and in per second.
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e Program monitors: monitor performance information on the process level.
Typical measurements are maximum amount of memory used or overall
processor time.

e System event recording: analysis of logging information provided by the
operating system. This is usually not relevant for performance analysis.

e Internal event recorders: Software such as DBMSs internally also log events
usable for performance measurement. An example would be the number of
SQL queries executed by a client program.

These tools can provide useful information supporting performance analy-
sis, but their measurements are not sufficient. Much more detailed performance
information is needed on performance characteristics of parts of the system than
external tools can provide. The most flexible solution is instrumentation! of
the software system while it is built to enable detailed performance measure-
ments. Using instrumentation, the granularity of the measurement results can
be adapted as needed. This reduces the problem of getting too detailed mea-
surement results, e.g. from profiling tools which deliver the percentage of total
execution time spent in each function. Meaningful analysis is only possible if the
results are manageable and understandable by the performance analyst. With
instrumentation, measurements are only generated for key measurement points
in the system.

Since Heisenberg, it is well known that measuring always affects the system
measured. This also holds for software systems, where instrumentation affects
the performance characteristics of the system to be tested. The central goal
of instrumenting a software system therefore has to be to reduce this effect.
The central component for measurement in the RasDaMan system is the class
RMTimer. It uses the Unix library function gettimeofday resp. the Windows
NT library function time to get the current time from the operating system,
the actual timing measurements are done by calculating time differences. The
values returned by these functions usually have a theoretic precision of 1us, but
the actual update of the operating system counters is not done so frequently.
Precision for these counters is commonly in the order of ms. This is sufficient
for all purposes here, as larger units such as operations on tiles as opposed to
operations on cells are measured.

! “Instrumenting software means inserting code at key probe points to enable measurement
of pertinent execution characteristics. The principle is: [...] Instrument systems as you build
them to enable measurement and analysis of workload scenarios, resource requirements, and
performance goal achievement. This principle does not itself improve performance, but it is
essential in controlling performance. It has its foundations in engineering, particularly process
control engineering. Their rule of thumb is: “If you can’t measure it, you can’t control it.””
[Smi90]
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RMTimer offers the functions commonly provided by a timer: start, stop,
pause, and resume. This class is initialised with the name of the function and
the class where the function is defined. Additionally, an integer representing
a benchmarking level is provided. The benchmarking level is used to switch
measurement points on and off as needed. The function name and the class name
are printed together with the time taken when stop is called into an output file
for benchmarking. Usually the function name does not correspond to one single
function but rather to a group of functions executing similar functionality. For
example, output for timing operation execution done in the execution functions
as described in section 5.1.3 looks as follows:

T: Tile::execXXX0Op: 16819152us

The timer is stopped and the result printed when the destructor is called.
This is done to enable easily timing whole functions by inserting only one line
at the start of the function body. While a C++ function can have multiple exit
points, the start of the function is unique. There a local RMTimer object can
be created and the timer implicitly started. This is then destroyed on exit of
the function and the timing measurement is printed. By applying this technique,
instrumentation of functions could be automatically generated.

To reduce the overhead incurred in timing measurements, all functions in class
RMTimer are declared inline. As there are no superclasses, no virtual functions
are defined. Therefore, the compiler can inline all functions of the class and
timing measurements do not need any function calls. The only action done when
starting, resuming, pausing or stopping the timer is to copy the current time
retrieved from the operating system into a variable. All difference calculations
to compute the actual measurements and printing them are done after the timer
has been stopped or paused and, therefore, are not included in the measurement.

By default, all output is done to a file. As this is buffered by the C++
runtime environment, the overhead is minimal. Even when the output is flushed,
it is usually just put into the OS cache, so no actual disk accesses take place
until the OS deems it appropriate to write the page to disk. Some measurements
are summed up over a transaction using pause and resume and only printed on
commit. Overhead due to output of timing measurements is further reduced by
this technique.

The actual benchmarking process of the RasDaMan system is executed as
follows:

1. An instrumented server is created by setting a compile time option, as the
code used for measuring is by default not included in a productive system.

2. A RasDaMan database containing the data for the measurement is created
and populated. The data sets used are specified in section 6.3.
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3. The queries to be measured are written to a query file. They are also part
of the workloads defined in section 6.3.

4. A RasDaMan client program is used to execute the queries using RMTimer
to measure overall execution time at the client.

5. A script compiles the accumulated timing information and creates a spread-
sheet file for further analysis.

Usually, the last two steps are automated by another script enabling measure-
ment of a set of query files on potentially different server executables. After the
server executable, the database, and the query files have been created (i.e. steps
1 to 3 above), benchmarking involves only one call to this script. This automated
measurement process makes repeated execution of benchmarks or measurements
varying more than one parameter very efficient and easy.

A set of measurement points was defined over the course of the project to
obtain timing information essential for the optimisation and evaluation of the sys-
tem. The generated spreadsheet lists averages of all these measurements in one
line for the repeated executions of each query. Some measurements in the spread-
sheet are actually derived values calculated from other measurement points. The
formulas for calculating them are inserted directly into the spreadsheet by the
script. In the following, the abbreviations used for the relevant timing measure-
ments in the remainder of this work are listed.

e t.: Total query evaluation time measured at the client. This is the time
spent for executing the query using the r_oql_execute () function of RasLib.
It includes transfer of the result to the client, but does not include starting
or committing the transaction or opening or closing the datbase.

® lyans: Time for transfer of query result to client.

® i, Time for optimisation of the query. A detailed performance analysis
on this can be found in [Rit99].

® lepq: Time for query evaluation on the server excluding ?,,;, but including
all other times measured on the server.

® ly0c: Total query processing time on the RasDaMan server calculated as
tproc - topt + Leval-

e t,: Time for reading tile data from the base DBMS. This is an approxi-
mation generated by measuring the first call to an access function for each
persistent tile. For the Oy base DBMS, all data is transferred between the
base DBMS and the RasDaMan server at this time. The time for decom-
pression of data is explicitely excluded.
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® ldgecomp: Time for decompressing tiles. Currently done for all compressed
tiles from which cells are read.

® lcomp: Time for compressing tiles. Done at commit point in update transac-
tions for all compressed tiles which were potentially modified by retrieving
their contents for writing.

e ;.. Total time spent for index accesses to retrieve identifiers for tiles inter-
secting a spatial domain. A detailed analysis on this can be found in [Fur99].
The actual transfer of the tile data is done later and measured in ¢,.

® 1,,: Time spent for executing operations in main memory. All the exec
funtions of class Tile as described in section 5.1.1 are timed.

® 1,50 A residual component of server processing calculated as tpyoc — top —
t,. This contains, e.g., time for query optimisation ¢,, or time for index
accesses t;,, which are beyond the focus of analysis here.

The total time for client execution is measured separately on the client, but
it can be calculated as:

te = tirans + tproc = tirans + topt + teval

The total time for server processing t,,,. cannot be derived from the other
measures given above:

tproc - topt + Leval
teval 7A to + tdecomp + tcomp + ti:l: + top

Some of the tasks done in the server are not explicitely measured, e.g. the
time spent for loading the catalog data from the base DBMS or the overhead
incured by pipelined evaluation of a query tree besides reading the tiles from the
base DBMS and executing operations. For this reason, the derived component
tres was introduced. It encompasses all elements of server processing time not
directly relevant for analysis in this work. The following trivially holds:

tproc = tres T top + 1o

Using this toolset as a base makes executing benchmarks a simple task. Inter-
nal instrumentation provides exact measurements relevant for performance evalu-
ation of the RasDaMan system. Analysis of the results is comfortably carried out
in a spreadsheet software, where diagrams can be easily created, using the output
of the benchmark toolkit as a base. Commonly, the diagrams show the selectivity

of a query in percent on the x axes. Selectivity in this context is defined for an
|sdg|
[sdal

original array « and a result array [ as
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6.2 Evaluation of Standard Benchmarks

Setting up complex software systems in a given system environment and evaluat-
ing their performance is a labour intensive process. When a software development
team is selecting a database system to be used as a basis for their project, they
typically compare a set of candidate systems. All these systems must be obtained,
perhaps as a time limited test licence, and installed. This includes tasks such as
providing large amounts of disk space and careful configuration of operating sys-
tem parameters according to demands of the databases systems in question. A
performance critical part of the project must be implemented on top of all rele-
vant systems, potentially involving simulation of multiuser access to the system.
Measurements must be executed, and performance tuning of the database sys-
tems must be carried out to get a realistic result. The effort involved in these
tasks is high.

It would be much easier to be able to choose the system based on published
benchmark results, which then could be used to compare the systems in question.
This is one of the main reasons for the development of standard benchmarks:
to get comparable results when different teams evaluate different systems. For
this purpose, the standard benchmarks specify both a workload (usually scalable
in size) and rules on how to execute the benchmark and how to publish the
results. These rules try to ensure comparability of results, which often give a
single number summarising the performance characteristics for easy comparison.
A small survey on standard benchmarks in the DBMS area is included in [Wid94],
while [Gra91] gives detailed explanations on the more relevant ones.

Executing a standard benchmark according to its specification, sometimes
demanding external reviewers to certify results, is a very expensive process?. Usu-
ally the tests are carried out by software or hardware vendors and then results are
published for a wide audience. Undoubtedly the most relevant standard bench-
marks in the DBMS area are the ones specified by the Transaction Processing
Council (TPC). The TPC was founded after heavy discussions, often referred to
as “benchmark wars”3, following publication of the first widely published “stan-
dard” benchmark in the DBMS area: the DebitCredit [Ano85]. Under the aegis
of the TPC, the DebitCredit became the TPC-A, which is the direct predecessor
to the current standard benchmark for OLTP systems, the TPC-C.

24[...] the substantial costs of conducting and auditing a TPC-D (or similar) benchmark can
exceed $1 million [...]” [BO97]

3“When comparative numbers were published by third parties or competitors, the losers
generally cried foul and tried to discredit the benchmark. Such events often caused benchmark
wars. Benchmark wars start if someone loses an important or visible benchmark evaluation.
The loser reruns it using regional specialists and gets new and winning numbers. Then the
opponent reruns it using his regional specialists, and of course gets even better numbers. The
loser then reruns it using some one-star gurus. This progression can continue all the way up to
five-star gurus. At a certain point, a special version of the system is employed, with promises
that the enhanced performance features will be included in the next regular release” [Gra9l]
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A fully conformant execution of a standard benchmark is ruled out in a
research environment, due to financial and equipment restrictions and because
of inappropriatness of the results generated for detailed insight into the perfor-
mance characteristics of the system under test. It is common in publications,
however, to use at least the workloads of standard benchmarks, which are poten-
tially representative for the application area modelled. Usually the data set and a
reduced and simplified (especially regarding multiuser requirements) set of queries
is taken from a standard benchmark and implemented on the system to be eval-
uated. This implementation then is not conformant with all the rules set in the
benchmark specification. Hence, comparison of these results with published and
audited results of the standard benchmark would be misleading. If comparison
with other systems is intended, then the chosen subset of the benchmark would
also have to be executed in a comparable non-standard implementation on these
systems.

Commonly accepted standard benchmarks are available only for the most
common application areas of databases in business. Of particular interest for the
evaluation of operation execution on multidimensional arrays are benchmarks
in OLAP working on multidimensional data structures. Two relevant standard
benchmarks have been developed: The TPC-D by the TPC and the Analytical
Processing Benchmark-1 (APB-1) by the OLAP council. In the following a short
overview on these benchmarks will be given, together with an evaluation of their
relevance for this work.

The TPC-D [Tra99b] models a decision support environment in which complex
business-oriented queries are submitted against a large database. The expression
“decision support”, in this case, is used mainly to separate the TPC-D from
on-line transaction processing (OLTP) applications, which are covered by the
TPC-C benchmark. According to the TPC, decision support applications issue
mainly retrieval queries on complex data accessing a large number of rows. OLTP
applications, on the other hand, issue simple queries accessing or updating just a
few rows. Decision support is often used synonymous with OLAP. The TPC-D,
however, differs from common OLAP applications in the following respects:

e The schema seems to be more useful in an OLTP context, as the fact table
contains so called “lineitems” making up orders. These orders are not
typically modelled as dimension attributes for lineitems. Thus, the data
is not easily modelled as a star or snowflake schema commonly used by
OLAP applications implemented on top of RDBMSs. This makes mapping
the data to a multidimensional data structure difficult. It is even explicitely
forbidden in the benchmark specification®.

4“An implementor of TPC-D is not allowed to change the schema. While it is recognized that
in real-life situations an implementor would change the schema to optimize system performance,
the benchmark is designed to exercise certain functions of a DBMS which may be avoided if
changes to the database definition were allowed.”[Tra99a]
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e The benchmark as specified absolutely requires its queries to be in standard
SQL without multidimensional extensions®.

For these reasons the TPC-D seems not appropriate to evaluate the perfor-
mance of operations on multidimensional arrays. Criticism of the TPC-D bench-
mark [BO97] led to development of the OLAP Council’s APB-1 [OLA98]. The
members of the TPC are mainly “big players” in relational databases, operat-
ing systems, hardware, or system integration. The OLAP Council, on the other
hand, is dominated by companies specialising in OLAP such as Applix, Business
Objects, Cognos, or Hyperion Solutions. While the TPC is an established insti-
tution with about eighty members, the OLAP Council was formed only 1995 and
currently has about twelve members.

The APB-1 centres around a 4-D fact table storing two measures for each fact.
The dimensions are the following: product supporting a 7-level hierarchy, cus-
tomer with a 3-level hierarchy, channel with a 2-level hierarchy, and time stored
as year/month and supporting quarter and year as hierarchical levels. A detailed
description of the benchmark data can be found in subsection 6.7. Addition-
ally, the notion of “scenarios” is supported: actual, budget, and forecast. Ten
queries are part of the workload in the benchmark; their specification is abstract
and allows a variety of implementations. As usual for standard benchmarks, a
data generation program is provided getting parameters specifying sparsity and
amount of data.

Due to its obviously multidimensional data structure, the APB-1 seems much
more relevant for evaluating RasDaMan performance than the TPC-D. Currently,
the TPC-D is still attracting more commercial attention: As of April 1999, there
were 71 published TPC-D results, but there were only seven published APB-1
results as of November 1998. These seven APB-1 results were published by three
companies only, it seems no newer results were available in April 1999. Still,
a real multidimensional data model as used in the APB-1 promises to be more
relevant for future applications.

6.3 Workloads and System Environment

A controlled system environment is important to ensure comparability of mea-
surements executed at different times. A Sun Ultra [/140 with 256 MB of main
memory running Solaris 2.6 was used for the benchmarking process. All data
and the software were stored on one local 4 GB disk. All processes, RasDaMan
client and server and the base DBMS, were running on this machine to avoid
network transfer. The RasDaMan server V3.5 was used together with O, Version
5.0.2P17. When measuring, the cache size of the O, server was reduced to 100

4...] you can only implement this thing in ANSI 92 SQL or something very close to it.”
[SRS95]
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Figure 6.1: Different tilings for the 3-D volume tomogram. Note that the tiles
depicted here are much larger than in reality.

kB, as opposed to the standard 4 MB. Repeated executions with varying random
parameters further reduced the effect of caching.

The most important parts of the test enviroment are the workloads used in the
benchmarks. In the following subsections, the benchmark data and the queries
applied to it will be described. Section 6.3.1 introduces a medical data set, while
the Sequoia 2000 benchmark as described in section 6.3.2 is used for geographic
applications. The APB-1 and its mapping to multidimensional arrays is presented
together with the measurement results in section 6.7.

All queries follow a coherent naming scheme: dquery_storage, where d rep-
resents the data set. The available data sets are encoded as follows: t for the
volume tomogram and s for the Sequoia 2000 raster data. Directly after the letter
follows a description of the query, e.g. cubemov, cubeavg, or numbered queries
from published benchmarks. The last part is separated by an underscore and
encodes the storage technique used for the query. For RasDaMan, this typically
is the tile size in kilobytes (e.g. _16), optionally with an added z for compressed
storage (e.g. 64z); _s is also used for storage in slices. For relational systems, the
density is used: _d10 for data with a density of 10% stored in relations. Storage
in BLOBs is encoded as _blob.

6.3.1 3-D Volume Tomogram

A 3-D volume tomogram was used to represent a typical application scenario in
the medical area. The volume tomogram contains a 3-D voxel representation of
a human head. The data set uses an unsigned 8 bit integer as base type for the
cells, which are interpreted as grey values with a brightness from 0 to 255 in the
graphical representation. Its spatial domain is [0 : 255,0 : 255,0 : 153]. The raw
size of the data set is 256 x 256 x 154 bytes ~ 9.6 MB.
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The data was stored using different physical storage layouts to analyse the
effect of tile size on the performance of operation execution. Regular tiling
schemes (see section 4.2.2) were used with different tile sizes and shapes: 16
kB, 32 kB and 64 kB cubic tiles and 256 slices of thickness one (see figure 6.1).
The last tiling simulates storage slice by slice as encountered when creating the
tomogram. The tomogram with a given storage layout was stored as a single
array in a collection:

e tomo_sliced: tiles with 256 x 154 x 1 = 39, 424 bytes
e tomo_cubed_16: tiles with 25 x 25 x 25 = 15, 625 bytes
e tomo_cubed_32: tiles with 32 x 32 x 32 = 32, 768 bytes

e tomo_cubed_64: tiles with 40 x 40 x 40 = 64,000 bytes

A very common query on multidimensional arrays in basically all applica-
tion areas is subselect of an area of interest. Subselects correspond to trimming
operations in RasDaMan, which can be expressed directly in RasQL. Subselec-
tion is common in medical applications, e.g. when a doctor wants to retrieve
only the relevant part of a patient’s volume tomogram onto his personal work-
station. Subselects were executed on the volume tomograms with the following
set of selectivities: 0.5%, 1%, 2%, 5%, 10%, 20%, and 50%. Different variants of
subselects were tested using RasDaMan:

1. selecting query boxes sized proportional to the shape of the volume tomo-
gram starting from the origin (cubesel)

2. asin 1, but placing the query box randomly inside the tomogram (cubemov)

3. selecting query boxes consisting out of a number of 256 x 154 slices starting
from 0 on the z-axes (slicesel)

4. as in 3, but starting from a random point on the z-axes (slicemov)

If query boxes always start from the origin, the resulting times heavily depend
on the exact storage layout chosen. If a given selectivity accidentally hits a tile
border with its query box, no operation execution takes place at all, as all tiles
are accessed fully. Furthermore, the same number of cells is always read from
partially accessed tiles for a given selectivity. This results in a unsteady curve
of timing measurements over selectivity as plotted in figure 6.2. Meaningful
interpretation of these results is difficult. Therefore, the more realistic case of
a randomly moving query box over repeated measurements is used as basis for
analysis in the following subsections as shown, e.g., in figure 6.8.

A 10% subselect in the tomogram (tcubemov_16) can be expressed in the
following RasQL query:
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Figure 6.2: Measurement results for selecting query boxes starting at the origin
with varying selectivities from tomo_cubed_64.

SELECT img[100:218,100:218,20:91]
FROM  tomo_cubed_16 AS img

Note that the selectivities cannot be exactly met, as the query box has to have
a rectangular shape. Selecting a set of slices out of the tomogram is expressed as
follows (tslicemov_32):

SELECT img[*:*,%:%,42:57]
FROM  tomo_cubed_32 AS img

Alternatively, a query executing the condense operation AVG_CELL on the
selected data was tested. Retrieving the average cell value in a region of interest
is probably not directly relevant for medical applications. It may be useful,
however, to select only a potentially relevant tomogram out of a set using a
WHERE clause based on a condense operation. The condense operation gives
more relevance to operation execution. The time for transfer of the result to the
client application is greatly reduced, as only a single scalar value is transferred
to the client. The condense operation is simply added to the projection in the
SELECT clause (tsliceavg_64):

SELECT avg_cell(img[*:*,%:%,0:15])
FROM  tomo_cubed_64 AS img
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The tomogram data set was also used for comparing RasDaMan with rela-
tional systems in section 6.6. It was stored in a relation and as a BLOB in the
RDBMS. The general principles of storing arrays in RDBMSs were explained in
section 2.1. A detailed discussion of storing the dataset in a relational DBMS is
given in section 6.6.

6.3.2 Sequoia 2000 Raster Images

The Sequoia 2000 benchmark has been used by a number of research teams as
a benchmark for databases in geographic applications [SS94, BQK96, PYK™97].
It has been developed as one activity in the “Mission to Planet Earth” program
in the USA. The Sequoia 2000 had the purpose to build a better computing
environment for global change researchers [Sto94] and is therefore relevant for
geographic applications in general. Databases were a central component in this
effort, and the benchmark has been designed to test database performance in this
environment [SFGM93]. According to the authors, the workload is representative
for global change research and earth scientists. This application area is highly
relevant, a lot of activities are going on in both the United States [AP94] and
Europe [CEO95].

Geographic applications as modelled in the Sequoia 2000 benchmark manage
four different categories of data: raster data, point data, polygon data, and
directed graph data. The benchmark supports three scaling factors: regional,
national, and world. As in most other implementations of the benchmark, the
regional data set is used in the context of this work. This data set encompasses an
area of 1280 km x 800 km covering California and Nevada in the United States.

The most relevant part of the Sequoia 2000 for RasDaMan is the inclusion
of a set of 2-D raster images in the data set. These images were provided by
the United States Geological Survey (USGS). The data was gathered through a
sensor with a resolution of 1 km x 1 km by the Advanced Very High Resolution
Radiometer (AVHRR) on board of the NOAA satellites. To simulate higher
resolution sensors, as already widely used, the data was oversampled by a factor
of 2 in each dimension, resulting in a resolution of 0.5 km x 0.5 km. For each cell,
the data of five wavelength bands was recorded, each stored as a 16 bit unsigned
integer. Twenty-six images were stored, simulating biweekly data over a year.
Altogether, the raster images of the Sequoia 2000 benchmark on the regional
scaling level have the following size:

2560 x 1600 x 10 bytes x 26 ~ 1 GB

In RasDaMan, the data was stored in one collection containing 26 arrays. The
data set was stored using tiles of approximately 64 kB in size: 80x 80 x 10 bytes =
64000 bytes. Out of the eleven queries listed in the specification, three queries
execute operations on 2-D raster data. These three queries (query 2 to query 4)
were formulated using RasQL and used to benchmark RasDaMan.



6.3. WORKLOADS AND SYSTEM ENVIRONMENT 131

Query 2 involves selection of AVHRR data for a given wavelenght band and
rectangular region. No restriction on time is given, so all 26 images are accessed.
The original query involves ordering the images by time, which is not done in
RasDaMan. It could easily be done on the client after the arrays are retrieved.
The number of the band retrieved is varied randomly. The rectangle selected has
a size of 100 km x 100 km, i.e. 200 x 200 cells placed randomly in the image.
This corresponds to a selectivity of about 0.98% of the cells or 0.20% of the data
in each image.

Mapped to RasQL, this query involves two operations on each array: a trim-
ming to the specified rectangle and access to an element of a structured base
type. Using a fixed wavelength band and rectangle, the query is as follows:

SELECT img[1130:1329,453:652] .bandb
FROM  sequoia AS img

Query 3 selects one array for a given time, retrieves a rectangle from this
array, and calculates the average of the five wavelength bands for each cell in
this rectangle. While it is possible to calculate the average value of all cells of
an array or subarray using the avg_cell operations, it is not possible to do this
with a function over the wavelength bands of an image for each cell in RasDaMan.
Therefore, for this query access to elements has to be done five times separately
for each band and an arithmetic operation is executed between these five bands
and a constant.

Additionally, a WHERE clause selecting one array out of the collection is
used. In RasQL, one array is selected using a random OID. This OID could be
retrieved using the time as specified in the benchmark with a separate query in
a real application. Putting all these operations together results in the following

query:

SELECT (img[1130:1329,453:652] .band1+img[1130:1329,453:652] .band2+
img[1130:1329,453:652] .band3+img[1130:1329,453:652] .band4+
img[1130:1329,453:652] .band5) / 5

FROM  sequoia AS img

WHERE O0ID(img) = 0815

The fourth query inserts a new image into the database containing a scaled
down version of a random 200 x 200 rectangle of one random band of one random
image selected by time. The scaling factor is 64 resulting in a 25 x 25 image,
which represents a small quicklook image of the actual data. The reference imple-
mentation on Postgres [SFGM93] uses a user defined function to scale down 2-D
images by an integer factor. RasDaMan does currently not yet support scaling
as an operation, therefore the query would have to be split into two: selection
of the original rectangle and insertion of the quicklook. As the insertion process
does not involve operation execution in this case and the selection corresponds
to the ones tested above, this query was not executed using RasDaMan.
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6.4 Relevance of Operation Execution

The relevance of operation execution for overall performance in a database system
for multidimensional arrays has already been theoretically discussed in section
4.4. In this section, benchmark measurements taken on workloads from medical
and geographic applications are analysed to determine the relevance of operation
execution in a working system. The 3-D volume tomogram described in 6.3.1
and the Sequoia 2000 benchmark discussed in 6.3.2 are used in this section. An
explanation of the measurement points shown in the figures can be found on page
122.

Firstly, the relevance of operation execution in a selection query is evaluated.
For the reasons discussed in section 6.3.1, workloads defining a moving query
box were used (tcubemov, tslicemov, etc.). A comparison of the four different
tiling schemes described in that section is shown in figure 6.3 for the tcubemov
workload. Storage in slices is less efficient for low selectivities, but better for
higher selectivities. The cubic tiling schemes show a more balanced peformance,
so the best of these tiling schemes with a tile size of 64 kB was chosen for further
tests in this section. Note that the figure is in logarithmic scaling on both axes,
which optically moves the plots closer to each other. The differences in overall
execution time are significantly high. A discussion of the effects of tiling on
operation execution can be found in section 6.4.3.
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Figure 6.3: Client query execution time ¢, for different tiling schemes using a
randomly moving query box (tcubemov).

6.4.1 Relative Relevance

The main question is the actual time spent in operation execution in relation to
overall query execution time shown in figure 6.3. Client query execution time
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t. includes time for transfer of the result to the client #;.4,s and processing time
on the server t,.,.. Obviously ¢4, is mainly dependent on the amount of data
transferred to the client. The relative relevance of t;.,,s for a set of selectivities
is shown in figure 6.4 for measurement tcubemov_64. Even though the mea-
surements were executed on one machine running both RasDaMan client and
server, the relative importance of ¢4, is 50% already for selectivities of only 2%
(corresponding to a query result of about 200 kB).
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Figure 6.4: Relative time of client query execution time ¢, used for client/server
transfer #;,4n5 vs. processing time on the server ¢,,,. in workload tcubemov_64.

The high amount of time spent in client/server communication even if client
and server are running on one machine came unexpected. RasDaMan uses an
RPC protocol for client/server communication (see chapter 3). This introduces
a certain overhead for every transfer, since the RPC mechanism involves sending
a code for the function to be called to the server, decoding it, marshalling and
unmarshalling parameters, etc. The RPC protocol as a connection-based protocol
also involves handshakes between client and server resulting in context switches
on a local machine. The communication between RasDaMan client and server is
tile based, so this overhead is incured for each tile in the query result. The number
of tiles transferred is not an output parameter of the benchmark instrumentation,
but it should be about 30 or 40 for a selectivity of 20%. All these factors lead to
a significant percentage of time spent in client/server communication.

The significance of t.4,s would be even higher for the more ubiquitous case of
a distributed client/server configuration. As operation execution is only relevant
for performance on the server, the further analysis concentrates on ¢,,,.. This
server execution time is divided into three components as described in section
6.1:

e the actual time for operation execution t,,.
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e the time for loading data from the base DBMS ¢,.

e a residual component t,.; encompassing the server processing time beyond
these two times.

A comparison of the impact of these three components of server execution
time is shown in figure 6.5. The relative duration of operation execution varies
between 8.7% and 40% of overall query processing time on the server depending
on selectivity. The workload tcubemov_64 used for these measurement executes
only trimmings; there are no further operations involved. The percentage of
time used for the base DBMS remains remarkably constant over selectivity. The
residual component t,.; becomes less important for higher selectivities. These
effects will be analysed later when actual instead of the relative times are shown.
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Figure 6.5: Relative time of server query processing time ?,,,. used for operations
top vs. base DBMS access t, vs. other in workload tcubemov_64.

This first analysis of relative times shows that operation execution has a high
relevance even at small selectivities when operating on a 3-D data set. The theo-
retic results from section 4.4 on the relevance of operation execution for subselect
queries seem to hold in real-life applications. Note that these measurements were
based on a highly optimised code including the optimisations developed in sec-
tion 5.2.3 or section 5.3.2. For an unoptimised implementation, the relative time
spent for operation execution in selection queries would be even higher (see also
6.5).

Measurements were also executed to compare the relative significance of oper-
ation execution in subselects containing a condense operation. The workload
tcubeavg 64 contains exactly the same queries as tcubemov_64, but adds an
AVG_CELL condense operation and returns a single scalar value as a result. The
condense operation is executed exactly once on every cell in the trimming. All
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other components of ¢,,,. on the server are not affected, except for a minimal
impact on t,.s due to slightly longer query parsing and query optimisation times.

If a condense operation is executed on the result, operation execution becomes
the single most important component with 72% of total query processing time
on the server for high selectivities (see figure 6.6). In general, execution of a
condense operation makes operation execution much more important. Even for
low selectivities like 0.5% it takes up alread 24% of server processing time. Con-
sidering that this is a relatively simple type of operation, the critical relevance of
operation execution for overall system performance is evident.
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Figure 6.6: Relative time of server query processing time ?,,,. used for operations
top for workloads tcubemov_64 and tcubeavg_64.

In comparison with these results, queries from the Sequoia 2000 benchmark
were executed. The main differences of this geographic data set are in dimen-
sionality, size, and base type. The Sequoia 2000 data is 2-D, each image has a
size of about 40 MB, and the base type is a structure with five 2 byte elements.
Both queries described in section 6.3.2 were used for evaluation. To be able to
compare the results, query 2 was executed only on one image as opposed to the
whole collection as specified. The resulting relative times are shown in figure 6.7.

Query 2 executes a trimming with a selectivity in cells of 0.98% and selects
one band out of the five available. This query needs 6.4% of t,,,. for operation
execution. The two operations are executed at the same time as described in
section 5.1.1, resulting in one operation executed on the selected data. Only for
tiles accessed fully, the selection of a band out of the structured base type would
cause additional overhead. Due to the low selectivity of the query, basically all
accesses to tiles are partial, so no additional overhead for operation execution
compared to a simple subselect query is introduced.

All Sequoia 2000 queries select about 0,98% of the total cells, i.e. 40,000 cells,
from each 2-D image. The lowest selectivity of 0,5% on the tomogram shown in
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Figure 6.7: Relative time of server query processing time ?,,,. used for operations
top vs. base DBMS access t, vs. other in queries 2 and 3 of the Sequoia 2000
benchmark.

figure 6.5 selects about 50,000 cells. Comparing 6,4% of total server processing
time on 40,000 cells and 8,7% on 50,000 cells shows a reasonable correlation
between relative time spent for operation execution and number of cells selected.
Note that this is only relevant for very low selectivities, where only partial accesses
to tiles occur because the query box is smaller than one tile. Looking at figure 6.5
again shows that there is a less than linear correlation between relative time for
top and selectivity because access to whole tiles involves no operation execution.

Query 3 executes a comparatively complex operation on the selected data, as
it calculates an average value over the five bands for each cell. Thus the following
operations are executed on each cell in the trimming: 5 unary operations selecting
the relevant bands out of the structured base type, 4 additions summing the values
up, and one division to calculate the average. The trimming and the access to
elements of the structure are executed in combination with the binary operations
incurring no additional overhead. Therefore a total of 5 operations is executed
on each selected cell to get the result. The additional 4 operations as compared
to query 2 result in 56% of server execution time spent in operation execution.
This emphasizes the critical relevance of operation execution for overall query
execution performance in the case of executing more complex operations on the
array data.

6.4.2 Analysis of Absolute Times

Further analysis focuses on the absolute times in seconds for the relevant mea-
surement points. Due to the relative scaling used before, the relationship between
selectivity and operation execution time is not evident. Figure 6.3 already depicted
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absolute client query execution time t., showing that the absolute times range
from much less than one second for 0.5% selectivity to over 10 seconds for 50%
selectivity. To be able to analyse the range of absolute times measured, most of
the following diagrams employ logarithmic scaling on both axes.

Figure 6.8 shows the absolute time needed for different components in the
query evaluation process for workload tcubemov_64. The three components of
query processing on the server as used above are included, and additionally the
client/server transfer time ;45,5 is shown. In the following, the effect of selectiv-
ity on these times will be discussed. A limited amount of selectivities was used to
minimize the time used for executing measurements. A variety of lower selectiv-
ities was tested as typical application queries commonly have comparatively low
selectivities. The diagram shows that both #;..,s and t,, have a roughly linear
relationship to selectivity, i.e. the number of cells in the query result. It can
also be seen, that t;,4,s is much higher than ¢,, (about a factor of 5) for simple
subselect queries, even when client and server run on the same machine.
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Figure 6.8: Absolute time of different query evaluation components for workload
tcubemov_64.

The time for loading tiles from the base DBMS ¢, shows non-linear behaviour
for low selectivities, but gets linear for higher selectivities. This can be explained
by comparing the tile size with the size of the query box. For a tile size of 64
kB the tiles are shaped 40 x 40 x 40. Table 6.1 lists the shape of the query
box and the minimum number of tiles needed for retrieving the query box for
the different selectivities. Clearly this minimum number is reached only with a
certain probability, as it depends on the exact placement of the query box. The
same minimum number of tiles, however, for 0,5% and 1% selectivity is the reason
for the nonlinear behaviour of t, for these two selectivities.

Intuitively, this behaviour is due to a better approximation of the query box
by the tiling for higher selectivities. Smaller tile sizes should lead to a more linear
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‘ Selectivity ‘ Shape of query box ‘ Tiles needed ‘

0,5% 44 x 44 x 26 2x2x1=4
1,0% 55 X 55 x 32 2x2x1=4
2,0% 70 x 70 x 41 2X2%x2=28

Table 6.1: Shape of query box and minimum number of tiles accessed depending
on selectivity for workload tcubemov_64.

behaviour for smaller selectivities, as these smaller tiles approximate the query
box better. This effect is overcompensated, even for small selectivities, by the
management overhead due to the higher number of tiles. Figure 6.3 shows that
overall query evaluation time on the client ¢, is worse for smaller tile sizes, even
for very low selectivities.

Another effect shown in figure 6.8 is linear growth for higher selectivities of
tres- This is mainly attributed to the increase in index access time for larger query
boxes, as more tiles are found by the index. Another reason is the pipelined struc-
ture of query evaluation as described in [Rit99]: additional tiles going through
the pipeline introduce some overhead in query processing. The gradient of linear
growth is quite small, so these effects are not very significant compared to the
other elements of t,,,.

Figure 6.9 shows a comparison of the two relevant components between the
tcubemov_64 and the tcubeavg_64 workloads. The main results are:

® tyans 1S constant and very small for tcubeavg_64 as only one scalar value
is transmitted as a query result to the client for all selectivities.

e The gradient of t,, is larger for tcubeavg_64 than for tcubemov_64. This
corresponds to the additional condense operation that has to be executed
for all cells, while in tcubemov_64 only partially accessed tiles are relevant.

6.4.3 Effects of Tiling

The effect of tiling on overall performance was already shown in figure 6.3. In
the following, the effect of tiling on the performance of operation execution will
be examined. Figure 6.10 shows t,, for the different tiling schemes in which
the tomogram dataset was stored. In this figure, the tcubemov workload was
used. Due to the non-logarithmic scaling of the axes, the large difference in time
spent on operation execution depending on tiling for higher selectivities is clearly
visible. The reason is again the better approximation of the query box with
smaller tiles: for better approximations, fewer cells have to be accessed partially.
This results in a lower number of cells that have to be operated on to obtain the
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Figure 6.9:
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Comparison of .4, and t,, for workloads tcubemov_64 and

result. This effect is overcompensated by the effort to handle the higher number
of smaller tiles when total client execution time is plotted as shown in figure 6.3.
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Figure 6.10: Time for operation execution ,, for different tiling schemes measured
using a randomly moving query box (tcubemov).

Even when only t,, is analysed, smaller tile sizes do not lead to better opera-
tion performance ad infinitum. There is always a certain fixed overhead per tile
to prepare the multidimensional iteration (see section 5.3). If tile size decreases,
the amount of tiles increases. Therefore, this overhead per tile is incured more
times. At some point the higher overhead offsets the better approximation of the
query box and the lower number of cells to be operated on. In the pathological
case of tiles containing only one cell, no operation execution is measured for a
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subselect query, as all tiles are accessed as a whole. Clearly this would incur
unbearable overheads for tile management in all other modules of the RasDaMan
system.

In general, the highest ¢,, is measured for the sliced tiling scheme, as all tiles
are accessed partially for all selectivities. Obviously tiles with a thickness of one in
one dimension covering the whole array in the other two do not approximate cubic
query boxes very well. It is amazing that even though the highest ¢,, is measured
for this tiling scheme for all higher selectivities, the total client execution time
given in figure 6.3 gives a different picture.

If the workload tslicemov is used, the result is very different. Here the query
box restricts exactly the dimension of the multidimensional array, where the tiles
in the sliced tiling scheme have a thickness of one. In this case, the result always
consists of whole tiles for storage as slices. Consequently, t,, for this tiling layout
is 0 as shown in figure 6.11.
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Figure 6.11: Time for operation execution ¢,, for different tiling schemes measured
using a query box growing in one dimension (tslicemov).

The other tiling schemes basically show similar relative performance as in
figure 6.10, as smaller tile sizes again approximate the query box better. The
absolute times are much smaller compared to the tcubemov workload, as with this
shape of the query box partial access to tiles can only happen in one dimension.
This results in less time spent on operation execution. Very unexpected are two
effects in the diagram in figure 6.11:

e The high ¢,, for a selectivity of 10% and a tilesize of 32 kB. It is higher
than t,, for 64 kB tiles, which appears to contradict the effect of better
approximation of the query box with smaller tile sizes.

e The low t,, for selectivity 50% and tilesizes 16 kB and 32 kB. This also
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apparently contradicts the effect of more cells that have to be operated on
for larger query boxes.

A potential cause for the first effect is the non-independence of partial accesses
on both upper and lower border of one dimension, as already shortly discussed in
section 4.4.1. If a tile border is hit by the query box at one end of a dimension, it
depends on the shape of the tiles and the query box whether a tile border is hit
on the other end of this dimension. If this happens, measured times for ¢,, are
statistically lower than what is to be expected. The reason for this is that then
each hit leads to accesses to full tiles only, as both borders in the dimension are
hit. In this case, ¢,, is 0. This effect is much more important if partial accesses
are possible only in one dimension rather three.

Another effect of restricting the query box only in one dimension is the second
unusual phenomenon observed. The fast growth for low selectivities is due to the
impossibility to access any tile fully, as the size of the query box in the restricted
dimension is smaller than the tiles in this dimension. If there is a probability
greater than 0 to access a full tile, the gradient for ¢,, shown in the figure gets
smaller. For fully accessed tiles no operation execution is necessary, resulting in
a much lower number of cells to be operated on compared to the total number
of cells selected. For higher selectivities and smaller tiles, the number of fully
accessed tiles increases. This effect is much more important for a query box
restricting only one dimension, as partial accesses to tiles are only possible in
this dimension.

The different components of query evaluation for the t_slicemov_s workload
are shown in figure 6.12. The time for operation execution is 0 again, as only
whole tiles are accessed for this workload. Due to the logarithmic scaling of the
time axes this is not visible in the diagram. The other components show similar
behaviour as in the t_cubemov_64 workload shown in figure 6.8: t,., gets linear
with selectivity starting at a certain selectivity and #4.q,s is linear with query
result size. As opposed to t_cubemov_64, t, is linear for the whole selectivity
range. This is also due to the fact that only whole tiles are accessed, which
implies that all query boxes are perfectly approximated by the tiles stored in the
base DBMS.

The basic conclusion of this analysis is that an adapted tiling algorithm taking
query patterns of the application into account not only reduces the transfer of
data from the base DBMS, but also the amount of time spent for operation
execution. While this work concentrates on simple regular tilings, an elaborate
discussion of more complex tiling strategies can be found in [Fur99]. The sliced
tiling does not come without disadvantages, though. Figure 6.13 shows a similar
query restricting the spatial domain only in one dimension. The main difference is
that this time the restriction does not follow the tiling. In this case, all slices are
accessed partially for all selectivities resulting in a high ¢,, for the sliced tiling
scaling linearly with selectivity. Comparison with figure 6.10 illustrates that
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Figure 6.12: Absolute time of different query evaluation components for workload
tslicemov_s.

the other tiling strategies still gain the benefits by a query restricting only one
dimension discussed above. This implies, that a cubic tiling promises to be more
adequate for general queries regarding the performance of operation execution.
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Figure 6.13: Time for operation execution ,, for different tiling schemes measured
using a query box growing in one dimension not following the tile borders of the
sliced tiling layout.

6.5 Evaluation of Optimisations

Due to the high relevance of operation execution for overall system performance as
discussed in the previous section, it is worthwhile to optimise operation execution
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code. Some optimisations and their integration in the system were described in
section 5. Optimisations in the code do not come without disadvantages. One
common optimisation technique is to improve performance in special cases, where
a more general algorithm is not necessary. In order to do this, it is necessary to
introduce code checking for these special cases, which makes the system more
complicated and difficult to maintain. Thus, it is worthwhile to evaluate the
implemented optimisations regarding their effects on performance and then decide
if they are to be integrated in the final code.

To this end, the RasDaMan code has been enhanced with compile time options
to enable or disable certain optimisations. These options will be used later in
this section to reference the relevant optimisations:

e NO_OPT_ITER: If this is defined, operations on whole tiles are executed
using the same algorithms as operations on partial tiles. Otherwise, a simple
for loop is used as opposed to a multidimensional iteration (see section 5.3).

e NO_OPT_OPS: Specialised operations for special data types such as char
are turned off when this symbol is defined. Otherwise, these operations
are executed using C casts directly and not the dynamic type system of
RasDaMan (see section 5.2.1) if all operands and the result have the same
data type.

e NO_OPT_IDENTITY_STRUCT: The unary operation fip is used in the
implementation to execute trimming operations (see section 5.1.1). As this
is the most common operation, an optimised implementation is provided
on structs just copying a certain number of bytes instead of copying the
elements of the struct element by element using f;p. If this symbol is set,
this optimisation is turned off. Precondition for this optimisation is that
all tiles involved in the operation have the same structured base type.

e OPT_INLINE: If this is set, the operator[] of class r Minterval is declared
inline. In this case, it is impossible to raise exceptions in the function,
thereby adversely affecting error handling inside the RasDaMan system.
This class is used as a basis for multidimensional iteration in its original
form (see section 5.3).

Additionally to these compile time switches, an old code version was used
to compare with the old implementation of multidimensional iteration using the
class r_Minterval. This implementation decision is described in detail in section
5.3, where already some isolated performance measurements have been done.
All these optimisations are evaluated using the tomogram workload described in
section 6.3.1. The overall best tile size of 64 kB is used for all tests (see figure
6.3). The instrumented RasDaMan system is used to compare the relevant ¢,
where available. For some older code parts this instrumentation was not available
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yet, so comparison is based on t. in that cases. There are two basic categories for
opimisation described in separate sections: Optimisation regarding the base type
of operations, i.e. relevant for the execution per cell, and optimisations regarding
the multidimensional iteration, i.e. affecting execution per tile.

The measured performance gains are depicted in the diagrams as both abso-
lute times gained in seconds and relative speedups. The relative speedup is
defined as the quotient between the time measured without the optimisation and
the time measured with the optimisation. A speedup of one (or even less) there-
fore corresponds to no performance gain by the optimisations, while speedups
greater than one represent worthwhile optimisations.

6.5.1 Base Type Optimisations

RasDaMan supports a dynamic type system as described in section 5.2 for exe-
cuting operations on cells in a multidimensional array. Usually this involves
dynamic conversion of base types into C++ types for operation execution on cells
according to the types involved in the operation. In some cases, these conversions
are absolutely necessary, e.g. when the operands and result are of different base
types. This is extensively discussed in section 5.1.3. Some special cases, however,
can use the more efficient solution of using static C++ casts not involving any
function calls as discussed in section 5.2.3.

In the following measurements, the effects on operation execution performance
of an optimised implementation of operations on base type char are evaluated.
This optimisation is controlled by the compile time switch NO_OPT_OPS. The
tomogram uses char as a base type and therefore is an appropriate data set for
showing the effect of this optimisation. In general, unsigned integers with a size of
8 bit are a common base type in a variety of application areas for multidimensional
arrays.

Figure 6.14 shows a comparison of ?,, for the workload tcubemov_64. The
speedup achieved by this optimisation is substantial, resulting in on average about
1.8 times better operation execution performance for the optimised version. In
this workload, the unary induced operation frp is used to select the relevant cells
out of partially accessed tiles. A unary induced operation in the unoptimised
implementation involves two calls to conversion functions, one each for operand
and result. The optimised version simply executes an assignment between to 8
bit variables.

The speedup over selectivity is non-uniform due to the number of cells copied
from partially accessed tiles. This number depends on how well the query box
approximates the tiling structure of the array. Tiles that are accessed as a whole
do not require any operation execution at all, they are simply passed to the client
directly. So the measurements for selectivity 100% are not given, as speedup and
absolute time difference would be 1 resp. 0 seconds in this case. Relevant for the
speedup is the number of cells actually copied. The operation execution time has
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Figure 6.14: Comparison of t,, between fullOpt and noOptOps for workload
tcubemov_64.

two components: a fixed overhead per tile and a variable cost incured per cell.
Only the variable cost per cell is reduced by this optimisation.

Figure 6.15 shows the same measurements for workload tcubeavgi_64. This
workload is defined in detail in section 6.6.2. It integrates an induced binary addi-
tion with a constant insided the condense operation. For workload tcubeavg_64,
the speedup is 1, as this workload is executed by calculating a SUM_CELLS
aggregate operation. This operation is defined only on 32 bit integers, since its
result usually is larger than what can be stored in an 8 bit integer, even if the
operands are only 8 bit. The number of cells accessed, which is also required to
calculate the average, is determined directly from the spatial domain in which the
operation is executed. So the average operation involves dynamic type conversion
independent of the optimisation.

The speedup shown in figure 6.15 therefore only covers the induced addition
in workload tcubeavgi_64. As the total operation execution time contains both
an induced addition and the average condense operation, the speedup is smaller
than in figure 6.14. At the same time, the absolute difference is bigger, as all cells
in the query cube independent of whole or partial access are operated on. Thus,
speedup is also attained for selectivity 100% and the speedup is more uniform
over selectivities.

Another optimisation on cell based operation execution is a special treat-
ment of structured base types for f;p represented by the compile time switch
NO_OPT_IDENTITY_ITER. If this optimisation is not turned off, identity oper-
ations on structures are executed by just copying the relevant number of bytes
instead of executing an f;p on each element of the struct. To evaluate the speedup
attained by this optimisation, an additional workload tcubemov_rgb is defined.
Instead of an 8 bit unsigned integer, in this case a tomogram with a structure of
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Figure 6.15: Comparison of t,, between fullOpt and noOptOps for workload
tcubeavgi_64.

three 8 bit unsigned integers is created. The tiles are adapted, so that the tile
size is still 64 kB.

The measurement results are given in figure 6.16. Again a significant speedup
is gained by the optimisation. The speedup is much smaller than for optimisation
noOptOps in figure 6.14. The main reason for this is that the specialised operation
execution for base type char is used in the fully optimised server with which the
optimisation for structures is compared. So the speedup shown in figure 6.16 is
just the additional speedup of just copying the bytes vs. an optimised f;, for base
type char on a structure with three char elements. The main gain in efficiency
is the elimination of the three function calls used when the operation is applied
element by element.

In summary, the optimisations evaluated here regarding specific base types
result in significant speedup in operation execution performance. The workloads
used obviously are geared towards the optimisations, as no speedup would be
attained for operations on arrays with base type long, for example. Although
base type specific implementations of operations currently exist only for char,
extension with other base types is trivial. It would make the code more compli-
cated and difficult to maintain, however. The base type char was chosen because
of its significance as a base type for arrays in a large number of application areas.
The high performance gains justify the optimisation also for other relevant base
types. To keep complexity of the operation execution module at manageable lev-
els, however, an automated generation of this code from an abstract specification
language would be preferrable (see also section 5.2.2).
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Figure 6.16: Comparison of t,, between fullOpt and noOptOps for workload
tcubemov_rgb.

6.5.2 Multidimensional Iteration Optimisations

In the following, the speedup of alternative implementations of multidimensional
iteration is discussed. The multidimensional iteration is started separately for
each tile accessed during query processing which is not directly sent to the client
as a whole without further processing. As all cells are iterated through, some
cell based overhead is also created for calculating the next cells. A detailed
description of the techniques evaluated here is given in section 5.3. The old mul-
tidimensional iteration using the r_Minterval class directly is referred to as oldIter
in the following. The fully optimised version of the server uses an implementation
of precalculation in the class r_Miter. No direct implementation of precalculation
is measured here, so refer to section 5.3 for performance information about this
alternative.

In the following figures, client execution time t. is compared between the
old iteration and the new iteration and between different optimisations to the
old iteration. Unfortunately, the fully instrumented code was not available for
the old implementation of multidimensional iteration. The attained speedups
are therefore much smaller than the ones that would be measured for ¢,, only,
especially if a substantial amount of result data is transferred to the client. Still,
significant conclusions are drawn from this analysis.

The speedup of t. for workload tcubemov_64 is show in figure 6.17.
Client/server transfer takes up a substantial part of ¢. for this workload as dis-
cussed in section 6.4.1 and shown in figure 6.4. The significant speedup of about
1.16 for all selectivities hints at a much higher speedup if it would be measured
for t,, only. Comparing the absolute times gained with figure 6.14 would lead to
the conclustion that speedup of Z,, also is in the area of 1.8.
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Figure 6.17: Comparison of t. between fullOpt and oldIter for workload
tcubemov_64.

The result for workload tcubeavg_64 is given in figure 6.18. Compared with
tcubemov_64, the absolute time differences are smaller. The reason for this is
that f;p as an induced unary operation needs two iterations, one for the result
and one for the operand. Since result and operand can have potentially different
shapes, 1-D offsets must be recalculated twice in this case. A condense operation,
on the other hand, only iterates through the operand and accumulates its result
in a scalar value, so only half the recalculations are needed. Due to this lower
amount of recalculations, the speedup regarding ¢. is not much higher than for
tcubemov_64, even if the client/server transfer is greatly reduced.
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Figure 6.18: Comparison of t. between fullOpt and oldIter for workload
tcubeavg_64.
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The reduced client/server transfer helps making another effect visible: The
speedup for the iteration using precalculation gets lower for higher selectivities.
There are two reasons for this:

e Recalculations of the 1-D offset are only done if a dimension besides the
lowest one is incremented. When the size of the selected area in this dimen-
sion gets larger, the number of recalculations relatively to the total number
of cells gets lower. This was discussed theoretically in section 5.3.

e For whole tiles, the operation is executed in a simple for loop as opposed
to a multidimensional iteration. This optimisation is not yet included in
the code for the new iteration using r_Miter.

The second factor becomes more obvious when the version using the old imple-
mentation of multidimensional operation is compared with the optimisation for
whole tile operations turned off. The performance results for this are shown in
figure 6.19. There is no speedup up to a selectivity of 10%. The actual slowdown
with a “speedup” of 0.99 probably is caused by the cost of the added test for the
special case of an iteration through a whole tile. This involves a comparison for
equality of multidimensional domains executed for each tile.

A speedup is visible starting at selectivity 20%, where a significant number
of tiles are accessed as a whole on average. A very high speedup is reached for
selectivity 100%, where all tiles are operated on as a whole. This optimisation is
irrelevant for workload tcubemov_64, as whole tiles in this case are sent directly
to the client and no multidimensional iteration is needed anyway.
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Figure 6.19: Comparison of t. between oldlter and noOptlter for workload
tcubeavg_64.

The optimisation of reducing the number of recalculations in the multidimen-
sional iteration using r_Minterval due to not calculating the 1-D offset from the
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interval if only the lowest dimension is incremented is discussed in detail in sec-
tion 5.3. The actual effects of this optimisation compared with the optimised
implementation of the iteration using r_Miter are shown in figures 6.20 and 6.21.
This optimisation is referred to as nolD in the diagrams.
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Figure 6.20: Comparison of ¢. between oldlter and nolD for workload
tcubemov_64.

The first thing that strikes the eye is that both diagrams have extremely high
speedups, sometimes larger than 6, and high absolute time differences in the area
of tens of seconds. Note that these speedups are calculated based on t., speedups
for t,, would be even higher. This experimentally proves the theoretic discussion
in section 5.3. It should be noted, however, that the tcubemov workloads with
their cubic query boxes growing simultaneously in all dimensions are quite well
suited for this optimisation. The tslicemov workloads would perform worse
(assuming they would grow in the lowest dimension), as their growth in this
dimension would be slower. Given a selectivity s < 1, for tcubemov growth is
with /s, while for tslicemov it is linear.

Highly interesting is the development of speedup over selectivity. For both
workloads, a maximum speedup is reached for a selectivity smaller than 100%,
and then the optimisation gets less efficient again. This limit is reached earlier for
the tcubeavg workload. The following items should help to explain this effect.

e The speedup grows over selectivity, as the 1-D intervals which can be
accessed without recalculating the 1-D offset grow with /s for a given
selectivity s. This is an effect at the level of the query box. Relevant for
the speedup is the level of tiles. Generally speaking, a larger query box in a
dimension gives a higher probability for a large part of a tile to be accessed
in this dimension.
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Figure 6.21: Comparison of t. between oldlter and nolD for workload
tcubeavg_64.

e There is no speedup for both workloads for tiles accessed as a whole. These
tiles are just copied for tcubemov_64 and accessed using a simple for loop
for tcubeavg_64. As the remaining tiles partially accessed tiles get smaller
so does the speedup for this optimisation.

e The tcubemov_64 workload executes two iterations, while tcubeavg_64 exe-
cutes only one.

There is always a mixture of tiles being accessed as a whole and tiles being
accessed partially. Since tcubemov_64 executes two iterations, the partially
accessed tiles have a higher relevance with this workload. This is the reason for
the maximum speedup being reached only at selectivity 20%, while tcubeavg_64
reaches the maximum already at 5%. At selectivity 10% it is highly probable
already that one tile is accessed as a whole. The query box for this selectivity
has a size of 119 x 119 x 79, while the tiles have a size of 40 x 40 x 40.

Another optimisation tested is the implementation of the old iteration based
on class r_Minterval with the functions for offset calculation being defined inline.
The speedups for workload tcubemov_64 as shown in figure 6.22 are compara-
tively small at around 1.03. This optimisation only affects the recalculations of
1-D offsets, so it is slightly more efficient for low selectivities, where more recalcu-
lations take place due to a smaller size of the query cube in the lowest dimension.
The optimisation would be more efficient for a workload involving an induced
operation such as tcubeavgi_64, but still it is not too much of an improvement.

A general rule that can be deduced from this results is that algorithmic opti-
misations are usually much more efficient than optimisation by the C++ compiler
such as inline functions. Especially inline functions come with some severe dis-
advantages adversely affecting modularity and turnaround times for recompiles.
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Figure 6.22: Comparison of t. between oldIter and an implementation of oldIter
using inline functions in class r_Minterval for workload tcubemov_64.

In some cases they are useful, of course, but mainly for simple, small member
functions which are not modified much. The class r_Miter utilises inline functions
as discussed in section 5.3.

Basically all other optimisations evaluated in this section result in substantial
speedups for operation execution in the RasDaMan system. The optimisations
regarding base types are integrated in the current code base. Most of the opti-
misations discussed for the multidimensional iteration only applied to the old
iteration. The new code using precomputation of increments encapsulated in
class r_Miter is much smaller and clearer than the previous code incorporating all
these optimisations. The most important conclusion from this chapter is the fact
that optimisations in the two areas described are highly relevant for operation
execution performance and due to the high relevance of operation execution for
the RasDaMan system (see section 6.4) also for overall system performance. The
implementation described in chapter 5 together with the optimisations forms a
solid basis for an efficient system.

6.6 Comparison with Relational Technology

In this section, the overall system performance of RasDaMan is evaluated in
context with the current state of the art in database technology, i.e. relational
databases. This paradigm is dominating the market and is commonly used for
storage of multidimensional data. A schema for multidimensional arrays in rela-
tional databases can be developed based on two techniques: BLOBs and mapping
to relations. These techniques were discussed in section 2.1. Their performance is
evaluated and compared with the specialised multidimensional array DBMS Ras-
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DaMan here. The main focus of this work is operation execution, and therefore a
specific comparison of operation execution performance would be of prime inter-
est in this context. Unfortunately, the performance measurement tools available
for DB2 do not give results as detailed as the ones gained with an instrumented
RasDaMan system (see section 6.1). Thus, overall measurement results have to
be used as a basis for comparison and analysis.

Performance is not the only relevant topic in the context of operation exe-
cution on multidimensional arrays, however. It is also important what kind of
operations can be expressed and how much effort is needed to formulate queries.
This topic is addressed in section 2.1. Simple trimmings or subselect queries can
be easily mapped to standard SQL, as the restriction of the spatial domain is
simply transferred into a range query. They can also be implemented with a
reasonable programming effort on BLOB:s.

For comparison with relational systems, the IBM DB2 Universal Server Ver-
sion 5.0 was used. It was installed according to the instructions in the manual
with no special tuning efforts. It was run on the same machine as RasDaMan, a
Sun Ultra 1/140 with 256 MB of main memory running Solaris 2.6 (see section
6.3). The queries specified in the workloads were executed using the db2batch
program. This utility executes a set of SQL queries and returns the overall exe-
cution times including client/server transfer. As with RasDaMan, both client
and server were run on the same machine. For both systems, the connect to
and disconnect from the database are not included in the measurements. For
DB2, even the TA handling is done only once for each set of repeated queries and
not measured. Queries with a given selectivity were repeated five or ten times,
depending on the overall runtime of the query, with different random parameters
for the spatial domain. The times reported here are average times, no unusual
high or low measurements were observed during repeated execution of the queries.
Consequently, the standard deviations were very low hinting at a good quality of
the benchmarking process.

6.6.1 Workloads

For performance comparisons, the 3-D volume tomogram as introduced in section
6.3.1 is used. Fortunately, all queries defined in this workload can be easily
mapped to storage in relations. To store the array in a relation, the coordinates
have to be stored with each cell. No identifier for the array is stored, as the
relation contains only one tomogram. A more general implementation would
need additional storage overhead for each cell. Since DB2 does not support one
byte integers, the three coordinates for each cell and its value have to be stored
as two byte integers. The total size of each cell in the relation is as follows: 3
coordinates at 2 bytes each and a value with 2 bytes result in 8 bytes. Table 6.2
shows the structure of the table in the RDBMS.

The storage overhead required by the coordinates results in a total size of
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Table 6.2: Relational table storing a 3-D volume tomogram.

about 76.8 MB for the table. Array storage in RasDaMan uses about 9.6 MB
and a negligible amount of additional data for tiled storage. Due to this high
storage overhead, a performance disadvantage is to be expected just because of
the larger amount of data to be managed. Additionally, indexes were built on
each coordinate and on the concatenation of all coordinates. This may speed up
queries with a very small selectivity and does not cause a performance overhead,
as only retrieval queries are measured.

Besides being stored in relations, the data is also stored in a BLOB. In this
case the tomogram is stored as the single column in a relation with a single tuple.
This BLOB contains the whole tomogram data in linearised form and therefore
does not incur any storage overhead compared to RasDaMan. Inside the BLOB,
the data is stored uncompressed in dense form just as with RasDaMan.

Relational systems are commonly used for sparse data as opposed to the
dense data stored in a DBMS for multidimensional arrays. Examples are OLAP
applications, where sparsities of 95% or more are common (see section 6.7). As
an array DBMS only supports storage of dense data, this originally sparse data
has to be mapped to dense arrays. To compare the performance on sparse data
in a relational system with dense data in an array DBMS, artificial sparsity
was introduced in the tomogram data set. Data sets with a density of 10%
resp. 2% were generated by just storing the respective percentage of cells in
the relation. The cells stored were chosen randomly and evenly distributed in
the spatial domain of the volume tomogram. This also reduces the substantial
storage overhead: a sparsity of 90%, i.e. only 10% of the data are actually stored,
already more than compensates the storage overhead of factor eight. As far as
operation execution is concerned, less operations have to be executed as less cells
are stored in the RDBMS, too.

Storage in relations with varying sparsity and storage as BLOBs results in a
set of relations to be created. In summary, the 3-D volume tomogram workloads
are executed on the following data sets:

e tomo_d100: The dense tomogram stored as a relation containing 10,092,544
tuples.
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e tomo_d10: The tomogram with an artificial sparsity of 90% stored as a
relation containing about 1,000,000 tuples.

e tomo_d2: The tomogram with an artificial sparsity of 98% stored as a
relation containing about 200,000 tuples.

e tomo_blob: The dense tomogram stored as a BLOB in a relation containing
one tuple with a BLOB column containing the whole tomogram in linearised
form.

The parts after the underscore will reference the form of storage used for a
certain workload as in tcubeavg_d10.

6.6.2 Storage in Relations

RasQL queries on the 3-D volume tomogram were already used in section 6.4
to experimentally evaluate the relevance of operation execution for overall per-
formance in the RasDaMan system. Relational systems such as DB2 support
standard SQL-92, so RasQL queries must be mapped to SQL queries. The subs-
election queries specified in workload tcubemov can be easily mapped:

SELECT x, y, z, val

FROM tomo_d100

WHERE x BETWEEN 20 AND 91 AND
y BETWEEN 100 AND 218 AND
z BETWEEN 30 AND 148

The coordinate information is needed to rebuild the array on the client from
a set of tuples and therefore has to be included in the projection. Transfer
of coordinates to the client incurs more data being transmitted in client/server
communication compared to RasDaMan. The process of rebuilding the array on
the client causes additional overhead, but this is not measured by the db2batch
utility. The queries from workload tslicemov can be mapped even easier, as the
condition is specified on only one coordinate:

SELECT x, y, z, val
FROM tomo_d100
WHERE z BETWEEN O AND 15

Calculating the average of cell values, as required by workload tcubeavg, can
also be easily done in SQL by just adding an aggregate operation:

SELECT AVG(val)

FROM tomo

WHERE x BETWEEN 20 AND 91 AND
y BETWEEN 100 AND 218 AND
z BETWEEN 30 AND 148
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No coordinates are required on the client, as only a single value is retrieved.
Thus, they are not included in the projection. Although the coordinates are
required for specifying the selection condition, a better performance for this work-
load is expected compared to tcubemov.

The subselect queries specified in workload tcubemov applied to the 3-D vol-
ume tomogram stored in relations with varying sparsity are shown in figure 6.23.
The measurements for RasDaMan were done using tcubemov_64, i.e. tiles with
approximately cubic shape and a tile size of 64 kB. This tiling strategy showed
the best overall performance for RasDaMan in figure 6.3. For these simple subs-
elect queries, RasDaMan is more than two orders of magnitude faster then DB2
on dense data. The client query execution time for DB2 is between 120 and 300
times higher than for RasDaMan (see also figure 6.25).
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Figure 6.23: Client query execution time t. for storage in relations with different
degrees of data density and RasDaMan using 64 kB tiles for workload tcubemov.

It takes more than 35 minutes to access all tuples in the relation with density
100% compared to 9.4 seconds using RasDaMan. For this selectivity, the rela-
tional system applies a full table scan, where a filtering step is needed to ensure
only tuples meeting the condition are selected. For this form of access, 5,000
tuples per second are a typical performance resulting in this high evaluation time
for a relation containing 10,000,000 tuples. Clearly, interactive access to images
in the RDBMS is out of question. RasDaMan is also faster on dense data than
DB2 on data with a sparsity of 90% resp. 98%. Note that figure 6.23 has log-
arithmic scale on both axes. On data with a density of 10%, RasDaMan is still
about 25 times faster compared to DB2. Remember that this sparsity already
offsets the storage overhead for coordinates and 2 byte integers of factor eight.
Even for a sparsity of 98%, RasDaMan performs better by a factor of roughly 5.
This also holds for small selectivities, where relational storage could make use of
an index at least on one coordinate.
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It can be observed that the plot for RasDaMan has a higher gradient than the
ones for storage in relations. Looking at figure 6.8 showing the time components
making up ¢, for RasDaMan, the linear dependency is mainly caused by t.4,s and
top- Assuming that #;.4,s shows similar behaviour for DB2 and for RasDaMan,
the higher gradient must be caused by more time spent for operations per cell
for RasDaMan. One possible reason for this is the overhead for multidimensional
iteration when tiles are accessed partially in RasDaMan. For storage in relations,
no multidimensional iteration takes place, but the condition has to be checked
for every tuple in a simple 1-D iteration. This interpretation is also supported
by the fact that for selectivity 100%, RasDaMan performs better relative to the
relational storage again. In that case, no operation execution and therefore no
multidimensional iteration is performed.

The overall times for workload tcubeavg are plotted in figure 6.24. The main
idea of this workload is to compare its operation execution time ¢,, with the one
for workload tcubemov resulting in the time needed to execute a condense or
aggregate operation (see figure 6.6). Unfortunately, db2batch does not provide
measurements at this level of detail. Based on the overall client execution time
it is very difficult to make any conclusions regarding operation execution per-
formance by comparing tcubeavg and tcubemov. The tcubeavg workload only
returns one value, while tcubemov returns a large number of cells resp. tuples.
Thus, tcubemov has a longer client execution time just because of the transfer
time to the client for a huge amount of data.

1000,0

100,0

10,0 /./\-/.
./‘/'/‘/’/\’/‘

tcins

0,1

selectivity in %

‘ tcubeavg_64 —e— tcubeavg_d2 —m— tcubeavg_d10 tcubeavg_d100 ‘

Figure 6.24: Client query execution time ¢, for storage in relations with different
degrees of data density and RasDaMan using 64 kB tiles for workload tcubeavg.

Still, there are two interesting observations to be made in figure 6.24. Firstly,
RasDaMan is again faster than the RDBMS for data at all sparsity levels except
for very high selectivities and 98% sparsity. In this case, DB2 has to operate on
only 2% of the cells of the dense data. RasDaMan is faster than DB2 by a factor
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up to 500 for a density of 100% stored in the relation. As transfer to the client is
not relevant for this workload, comparison of client execution times is basically
equivalent to the server execution time. The relevant factors affecting this are
operation performance and storage performance.

The second noteworthy effect is that the overall time for relational storage
is less for selectivities 50% and 100% than for 20%. Analysis of the DB2 query
tree with the EXPLAIN command shows that the reason for this phenomenon is
the optimiser. Up to a total selectivity of 20% it chooses an index scan strategy
based on the z-coordinate, while starting with 50% it employs a full table scan.
Looking at the diagram, this is obviously a mistake, as a full table scan selecting
50% of the data is even faster than an index scan selecting only 20%. The main
reason for this is that the tuples were inserted in x, y, z order. Thus, an index
scan on the x-coordinate would at least select the tuples in order, but the index
scan on z results in a large number of random accesses. It is amazing that DB2
uses an index scan considering that the selectivity on one coordinate is already
58%. All necessary statistics were generated on the table with the RUNSTATS
command and the predictions for selectivities given by the EXPLAIN command
were correct.

Compared with figure 6.23, the gradient of ¢, for the RasDaMan measure-
ments is again higher than for DB2, at least for selectivities up to 20% after
which the DB2 measurements show non-linear behaviour as discussed above. To
further analyse this phenomenon, figure 6.25 shows the relative times compared
to RasDaMan for workloads tcubeavg_d100 and tcubemov_d100 in DB2. The
relative times are calculated as the overall client execution time for DB2 divided
by t. for the corresponding workload on RasDaMan with a tile size of 64 kB. As
only relative times are compared and client/server transfer time is assumed to
behave similarly with selectivity for DB2 and RasDaMan, this relative compari-
son analyses mainly the server processing time %, ..

The effect discussed before regarding the higher gradient of measurments for
RasDaMan is visible here: the factor between DB2 and RasDaMan gets smaller
with higher selectivities for both workloads. For tcubeavg the effect is much
clearer, while the plot for tcubemov does give a non-uniform impression. One
possible reason for that is the high relevance of client/server transfer time for the
latter workload. It is plausible that this process is affected by external system
conditions to a higher degree than the other measures. A detailed analysis,
however, can give more reasonable explanations. All effects in the diagram can
be explained by examining the execution process:

e Both systems need a certain overhead for query parsing and optimisation
independent of selectivity. Assuming this overhead is greater for DB2 than
for RasDaMan, the reason for the improving performance relative to Ras-
DaMan would be distribution of this overhead over a higher number of
cells.
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Figure 6.25: Relative client query execution times for workloads tcubeavg_d100
and tcubemov_d100 compared with tcubeavg 64 and tcubemov_64 for Ras-
DaMan.

e The good performance for RasDaMan resulting in a higher relative time
for DB2 for tcubemov at selectivity 100% is because no tiles are accessed
partially if all tiles are accessed, i.e. no operation execution takes place.

e The better performance for RasDaMan for selectivity 1% compared to 0.5%
is due to the fact that for both selectivities usually the same number of
tiles must be read. Thus, RasDaMan is relatively worse for selectivity 0.5%
compared to selectivity 1.0%.

e The jump in performance for DB2 between 20% and 50% resulting in a
lower average time for tcubeavg is the switch from index scan to full table
scan as discussed above.

In general, DB2 has a better relative performance for the tcubeavg workload
for higher selectivities and for tcubemov for lower selectivities. For tcubemov, in
RasDaMan operation execution only takes place for the cells selected in partially
accessed tiles. For higher selectivities, more tiles are accessed as a whole resulting
in less operation execution for RasDaMan. DB2, on the other hand, still has the
same effort per cell. For tcubeavg, operations have to be executed on every cell
for all selectivities, therefore RasDaMan has no advantage for high selectivities.

Unfortunately, DB2 does not give more information in order to be able to
analyse these effects in detail. This again emphasizes the need for a thoroughly
instrumentated system as a precondition for in-depth performance analysis. The
workload tslicemov on the volume tomogram specifies the condition only on
one coordinate. Resulting times for density 100% in DB2 in comparison with
tcubemov are shown in figure 6.26. They are compared to RasDaMan with 64
kB cubic tiles for both workloads and storage in slices for tslicemov.
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Figure 6.26: Client query execution time t. for workloads tslicemov and
tcubemov on relations with density 2%. RasDaMan uses the best tiling for the
respective workloads, i.e. slices of thickness one vs. 64 kB cubic tiles.

DB2 shows much better performance on tslicemov compared to tcubemov
for low selectivities. The reason for this is that specifying the condition in only
one dimension results in a smaller selectivity for the index on this coordinate.
Remember that indexes were built on each coordinate. For an overall selectivity
of 10%, the tcubemov workload results in a selectivity of 46% on each coordinate.
Clearly, the tslicemov workload can be computed more efficient using an index
with a selectivity of 10% on one coordinate. For higher overall selectivities, the
tslicemov workload also has a high selectivity on one coordinate, so it does not
pay off to use the index. This is the point where the plots for both workloads
meet at a selectivity of 50%. Here the selectivity on one index for tcubemov is
79% vs. 50% for tslicemov. Both are too high to make advantageous use of an
index on one coordinate.

Even on the tslicemov workload, where the relational system can apply its 1-
D index with a good selectivity, RasDaMan is faster. The tcubemov_64 workload
on tiles with 64 kB and cubic shape was already plotted in figure 6.23. The tiling
strategy is optimised according to the query box in workload tslicemov_s: the
tomogram is stored as 1-D slices of thickness 1, only whole slices are selected by
the query box. In this case, RasDaMan is much more efficient at low selectivities.
The main reason for this is that no additional data besides the query box has to
be read from disk resulting in no overhead for access to the base DBMS (see also
figures 6.11 and 6.12). Consequently, no multidimensional iteration is needed as
no tiles are only partially overlapped by the query box. For high selectivities, this
effect is reduced, as the cubic tiles also approximate their query box better. The
worse performance for tslicemov_s compared to tcubemov_64 at selectitivity
100% is caused by overhead due to the smaller tile size of about 40 kB vs. 64 kB.
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A nice coincidence is the observation that the comparison between tcubemov_64
and tslicemov_s for RasDaMan and tcubemov_d100 and tslicemov_d100 results
in very similar plots, but caused by two different effects.

Since the DB2 benchmarking tool does not allow a detailed analysis of the
CPU time at the server, the only way to analyse operation performance is to
make difference calculations based on overall client time. For this purpose, the
tcubemov workload was extended with an induced operation resulting in a work-
load referenced as tcubemovi in the following. The queries in this workload
conform to the following pattern:

SELECT x, y, z, val+10

FROM tomo_d100

WHERE x BETWEEN 20 AND 91 AND
y BETWEEN 100 AND 218 AND
z BETWEEN 30 AND 148

By using queries like this and comparing them with queries without the
induced operation on the cell value, the time spent for operation execution in
the DB2 server can be calculated. To compare this with RasDaMan, an induced
operation was introduced in a similar fashion to the RasQL queries. To attain
the best possible basis for comparison, the difference calculation of overall client
execution times was also applied to the measurement results generated by Ras-
DaMan. A comparison between the results gained by this process and a difference
calculation based on t,, for RasDaMan showed only negligible differences. This
hints at the viability of this process based on client execution times to estimate
operation execution time in the RDBMS.

The results gained are plotted in figure 6.27. For DB2, only the relation with
density 100% was used, as only in this case operations have to be executed on
the same number of cells as for RasDaMan. The overhead for storing the rela-
tion should be eliminated by calculating differences between tcubemov_d100 and
tcubemovi_d100. Adding the induced operation did not change the strategy used
to access the data on disk, which was checked using the EXPLAIN statement.
The general result is that operation execution performance for DB2 is much worse
than for RasDaMan.

Unfortunately, the measurement results do not give plausible results for very
small selectivities with RasDaMan. The calculated times are negative for selec-
tivity 1.0% and extremely small for selectivity 0.5%. The reason for this are very
small execution times for operation for these selectivities as explained later. If
operation execution takes up only a very small percentage of overall client exe-
cution time, difference measurements are difficult. Therefore, in figure 6.27 these
values have been set 0.01s to not distort the scaling of the diagram. Further
analysis is based only on measurements with a selectivity of 2% or higher.

The times for operation execution are given per cell in figure 6.28. The main
result is that for DB2 the operation execution gets more efficient as more cells
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Figure 6.27: Comparison of operation execution time t,, between DB2 with a
density of 100% and RasDaMan with 64 kB tiles for workload tcubemovi.

are accessed, i.e. the time spent per cell gets smaller with higher selectivities. For
RasDaMan, on the other hand, the times get worse for higher selectivities. Both
effects are explainable. DB2 reads blocks of tuples, but the selected tuples are
randomly distributed. Assuming a fixed overhead per block for operation execu-
tion, a higher number of tuples per block is operated on for higher selectivities
resulting in better performance per cell. The same line of argumentation can be
used for a fixed overhead per query or per relation. The jump in performance
per cell between selectivities 20% and 50% probably is a result of switching from
index based access to a full table scan resulting in reduced overhead for operation
execution.

The worse performance for a larger number of cells for RasDaMan is due to
the way the operation execution is measured in this case. For small selectivities,
even the tcubemov workload employs a substantial amount of operation execution
to retrieve cells from partially accessed tiles. In this case, the execution of the
induced operation can be combined with the access to partial tiles causing only
minimal additional overhead. For high selectivities this is not possible, as more
tiles are accessed fully requiring no operations at all for the trimming only. So
the induced operation in workload tcubemovi has to be executed additionally
for these fully accessed tiles causing a higher overhead. As the execution times
for the induced operation are calculated by building the difference between these
two workloads, it seems that the induced operation has more overhead per cell
for higher selectivities.

Similar measurements as for the tcubemov workload also have been done
for tcubeavg calculating a condense operation. The cell value used inside the
condense operation was incremented by 10 again. Fortunately, neither the DB2
not the RasDaMan optimiser applies the optimisation to calculate the aggregate
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Figure 6.28: Comparison of operation execution time ¢,, per selected cell between
DB2 with a density of 100% and RasDaMan with 64 kB tiles for workload
tcubemovi.

function average as usual and add the increment to the result value. An analysis of
the query trees shows in fact that both systems calculate the average by applying
the aggregate functions sum and count. Obviously, in this case pulling out the
increment is not easily possible. This is a general hint that optimisation of
aggregate functions is a topic for further extension of both systems, as potentially
complex aggregates are an important topic in OLAP and statistical applications.
The resulting measurements are given in figure 6.29. RasDaMan shows better
operation execution performance for all selectivities again. The differences are
not as big, though, as the DB2 measurements are much better than for the
tcubemovi workload. A relative comparison of operation execution time for the
additional induced operation in both workloads is shown in figure 6.30. Some
potential explanations for the resulting factors are given in the following:

e The very good performance of RasDaMan for tcubemovi and low selectiv-
ities is due to minimal additional overhead for the induced operation when
tiles are accessed partially. Instead of an unary operation to access the
cells of these tiles, the binary operation with the constant is executed caus-
ing minimal additional overhead. Problems with measuring this minimal
overhead also caused the distortions in figure 6.27 for selectivities 0.5% and
1.0%.

e The same argumentation holds for the relatively bad performance for high
selectivities. In that case, most tiles are accessed as a whole causing no
operation execution for a simple select query. So the induced operation
incurs a high overhead compared to this.
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e The more uniform picture of relative times for the tcubeavgi is due to the
fact that calculating the condense operation average has to be executed on
every cell anyway, therefore it is of no concern if tiles are accessed as a
whole or in part.

e A reason for the relatively better performance of DB2 for all selectivities
on the tcubeavgi workload compared to tcubemovi may be the smaller
projection. As already mentioned, in the first case the coordinates are not
necessary in calculating the result.
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Figure 6.29: Comparison of operation execution time t,, between DB2 with a
density of 100% and RasDaMan with 64 kB tiles for workload tcubeavgi.

6.6.3 Storage in BLOBs

As an alternative to storage in relations, the tomogram data was also stored in
a BLOB. This BLOB is basically a 1-D array of bytes which can be accessed in
C++ by using embedded SQL. All operations on BLOBs must be implemented
in a programming language, while interactive access using a declarative query
language is not possible. So the whole functionality on data stored in BLOBs
must be explicitely implemented in C++. Only the tcubemov workload was
implemented on BLOB data, as further workloads would involve additional pro-
gramming effort for each query. Operations would have to be executed on the
client, which is not comparable with execution in the DBMS server. Since queries
have to be explicitely programmed anyway, the client could use static casts to
C++ types, while a server based implementation in RasDaMan or DB2 always
has to use some form of a dynamic type system.

Even implementing the subselect query is not trivial. One way of implemen-
tation would be to just read the whole BLOB and do the trimming operation
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Figure 6.30: Relative operation execution times for workloads tcubeavgi_d100
and tcubemovi_d100 compared with tcubeavgi_64 and tcubemovi_64 for Ras-
DaMan.

on the client. While this is feasible for the 9.6 MB of data in the tomogram, it
is not possible for arrays with a size of gigabytes. Therefore, in the tcubemov
workload only the relevant data is transferred to the client. The implementation
of the core part of the program accessing the BLOB is as follows:

EXEC SQL BEGIN DECLARE SECTION;
long beginLoc;
long endLoc;
SQL TYPE IS BLOB_LOCATOR tomoLoc;
short tomo_ind;
SQL TYPE IS BLOB(256) blobBuf;
EXEC SQL END DECLARE SECTION;

int 1i,j;

// storing result

r_Marray<char>* result = new r_Marray<char>(sd);
charx resBuf = result->get_array();

EXEC SQL CONNECT TO sample;

EXEC SQL DECLARE cursl CURSOR FOR
SELECT blob_col
FROM tomo_blob;

EXEC SQL OPEN cursi;
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EXEC SQL FETCH cursl INTO :tomolLoc :tomo_ind;
if (SQLCODE !'= 0) {

cout << "FETCH cursil: " << SQLCODE << endl;
}

if (tomo_ind < 0)
cout << "No BLOB there!" << endl;

// iterating through the Minterval
for(i=sd[0].low(); i<=sd[0].high(); i++) {
for (j=sd[1].low(); j<=sd[1].high(Q); j++) {
beginLoc = sd[2].low() + j*256 + i*256%256;
endLoc = sd[2].high() + j*256 + i*256%256;
unsigned long rowSize = endLoc - beginLoc + 1;
EXEC SQL VALUES (SUBSTR( :tomoLoc, :beginLoc,
rendLoc - :beginLoc + 1))
INTO :blobBuf;

memcpy (resBuf, blobBuf.data, rowSize);
resBuf += rowSize;

EXEC SQL CLOSE cursli;
EXEC SQL CONNECT RESET;

return result;

This piece of code is integrated in a function getting an r_Minterval sd spec-
ifying the domain to be selected and returning an r_Marray containing the data.
The main reason for giving the code here is to demonstrate the following things:

1. This code is much longer than a comparable SQL or RasQL query, even if
these queries would be embedded in a programming language using ESQL
or RasLib.

2. If a different query is to be executed, the program has to be changed, as a
lot of things are hard-coded into it. This includes the dimensionality and
the domain of the tomogram, the size of the base type, or the fact that
only one tomogram is stored in the relation. Changing the code involves
recompilation of all client applications.

3. The C++ code is much more difficult to understand and therefore to main-
tain compared to a declarative query.
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In general, a low-level implementation based on BLOBs can never give the
necessary amount of flexibility to the user for interactively exploring data. The
question is if these disadvantages are set off by a performance gain. The results
of performance measurements on the BLOB data are shown in figure 6.31, where
storage in relations with a density of 2% is also given for reference in comparison
with figure 6.27.
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Figure 6.31: Comparison of t. between RasDaMan and storage in BLOBs for
workload tcubemov.

The general result is that storage of 100% dense data in a BLOB has com-
parable performance to storage of 2% dense data in relations. This also implies
that RasDaMan is still faster by a factor of five on dense data. As both systems
access binary data in the DBMS and do not read an excessive amount of unnec-
essary data from secondary storage this comes unexpected. When the three-tier
architecture of RasDaMan is compared with a simple client/server architecture
for DB2, the result appears even more amazing. As the RasDaMan server is a
client of the base DBMS server, transfer of data to the RasDaMan client involves
two levels of client/server communication, including overhead for handshakes,
context switches, etc.

The main reason for the worse performance of BLOBs may be the smaller
unit of transfer in the client/server communication. While RasDaMan operates
on tiles, the program for BLOB based storage has to access 1-D subintervals in
the BLOB. Compared to the tile size of 64 kB, these subintervals are at most 154
bytes long. The number of 1-D sub-arrays gets larger with selectivity, but at the
same time the subintervals also get larger. Looking at the time per cell in figure
6.32, this explanation seems reasonable. The time per cell gets smaller as the
selectivity gets higher, and this corresponds to the larger subarrays. Due to the
linearised storage for all selectivities, the data accessed is basically spread across
the whole block. For comparison purposes, the inverse of the size of the z-interval
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is also plotted in the figure with a different scaling. Comparing tcubemov_blob
with this also hints at an inverse proportional relationship of time per cell with
size of the interval.
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Figure 6.32: Client execution time per cell in comparison between RasDaMan
and storage in BLOBs for workload tcubemov.

As an upper estimate for the performance of BLOB based storage, figure
6.31 also contains measurements for access to 1-D subintervals with the same
selectivity as for the multidimensional subintervals. For very small selectivities
RasDaMan is still better hinting at quite some overhead when establishing the
client/server communication for the RDBMS. Over selectivity, however, the time
measured is almost constant. There are two reasons for this:

e The 1-D intervals can be sequentially accessed on disk. Transfer speeds of
disks are in the area of 6 MB/s currently, so the sequential access to 2 MB
of data takes only about 1/3 of a second.

e [t seems that DB2 utilises a very fast transfer method once the commu-
nication is established, as it is not a relevant factor. As all processes are
running on a local machine, potentially the data read from disk is mapped
directly into client memory.

The tests could only be executed up to 20% selectivity, as DB2 did not allow
the transfer of units greater than 4 MB. Note that this 1-D access is only useful
for very small arrays, as otherwise client memory is a limiting factor and even
with sequential access transfer times from disk would be a significant factor.
Additional effort would have to be spent on the client to extract the relevant
multidimensional subinterval after accessing the whole BLOB. This corresponds
to the time spent in the RasDaMan server for simple subselect queries as discussed
in 6.4. The good performance of 1-D accesses to BLOBs is another hint that tiling
of multidimensional intervals to retain spatial proximity is a good idea.
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6.6.4 Summary of Results

The aim of this section was to compare different storage techniques for mul-
tidimensional array data, especially concerning the effort for operation execu-
tion. The general result is that storage of dense arrays as relations in relational
databases is not a viable alternative. The overhead for additionally storing the
coordinates per cell is much too high resulting in an unacceptable performance.
Amazing is the fact that RasDaMan can compete with relational systems also on
multidimensional data with a density of only 2%, i.e. only 1 in 50 cells is actually
stored.

Operation execution performance of RasDaMan per cell is better. This also
came unexpected considering that relational systems usually offer only a simple
type system. While RasDaMan generally supports user defined structures as base
types of arrays, the relational systems only allow primitive types as elements of a
tuple. The good performance of RasDaMan is partly due to the fact that a fully
optimised version of the server was used and some optimisations result into quite
large speedups as discussed in section 6.5.

A realistic implementation of BLOB based storage for multidimensional array
data also shows worse performance compared to RasDaMan. Access to multidi-
mensional arrays stored completely linearised in BLOBs causes a high overhead in
client/server communication and a large number of random disk accesses. Only
for arrays small enough to fit completely in client memory, BLOB based storage
shows better performance for high selectivities.

Apart from the performance discussion, expressive power of the tools used to
query the respective storage strategy is also a topic. While storage in relations
allows standard SQL to be used as a query language, for BLOBs everything has
to be implemented in the client program in a programming language. Even using
SQL results in quite lengthy and complex queries for operations such as induced
binary addition easily expressed in RasQL. Unacceptable runtime is a result of the
limited expressive power (see section 2.1.2. An appropriate query language and
an efficient operation execution engine as a core part of its implementation seems
to be a precondition for reasonable performance on multidimensional arrays.

6.7 Management of OLAP Data

For simulating the multidimensional array data common in a business environ-
ment, the data from the standard benchmark APB-1 was chosen (see section
6.2). As basis for these tests, the release II of the benchmark from November
1998 [OLA98| was used. A generator program for a test data set is provided as a
Windows executable. This program generates a set of 12 so called “initialisation
data files”. Eight of these files describe the dimension hierarchies for the four
dimensions, while four contain the actual data (“measures”) used as basis for the
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benchmark.

The application modelled in the benchmark is a sales and marketing analysis
system storing sales of products to customers over a channel at a certain time.
This is a typical schema for OLAP applications; [MRB99] uses a similar 4-D
schema for sales of fruit juice from an actual project partner. The four dimensions
used in the APB benchmark are structured as follows:

e Product: The product dimension stores the ID of the product modelled in
the benchmark as an alphanumeric field of size 12. The hierarchy modelled
on products has seven levels from code to top. The top level has exactly
one element, and the hierarchy is a tree.

e Customer: The customer again is modelled as an alphanumeric field of size
12. The hierarchy has three levels: store, retailer, top. Again, the top level
has exactly one element, and the hierarchy is a tree.

e Channel: The standard modelling as an alphanumeric field of size 12 is
used. The hierarchy has two levels: base, top. This hierarchy also has
exactly one element in the top level and is structured as a tree.

e Time: The time is stored at the level of months in a six digit numerical field
containing month and year. A hierarchy over time is used at the quarter
and the year level.

The scaling factor of the benchmark is determined by the number of elements
in the channel dimension. In terms of the APB-1, the number of elements in a
dimension is the sum of the number of elements at all hierarchical levels. In all
dimension hierachies except for the time hierarchy, 90% of all elements are at the
lowest level. The lowest level of scaling has nine elements in the lowest level of
the channel hierarchy. The customer hierarchy has 100 times as much, i.e. 900,
and the product hierarchy 1000 times as much, i.e. 9000. The time hierarchy
always has 18 elements at the lowest level ranging from January 1995 to June
1996.

As some queries aggregate on higher hierarchical levels, it is interesting to
analyse the shape of these hierarchies. For this purpose, the number of elements
in each hierarchy level was counted. In the following it is listed from lowest to
highest hierarchical level for the four dimensions:

e Product: 9000, 605, 300, 75, 15, 4, 1.
e Customer: 900, 99, 1.
e Channel: 9, 1.

e Time: 18, 6, 2.
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Figure 6.33: Mapping of lowest level elements to integers in the APB-1 data.

For mapping the alphanumeric IDs or the six digit numerical representation of
time to integer indexes as used in multidimensional arrays, a simple numbering of
the elements was done. To still enable access to the hierarchy information using
simple trimming operations in the array, the numbering was done after sorting
the elements in the lowest level according to the tree structure as shown in figure
6.33.

A different ordering scheme was used for mapping dimensional elements to
an integer representation in [MRB99]. It reserves a certain number of bits for
each hierarchical level and then counts each level separately. The numbering used
there can also be applied to dimension hierarchies that are not tree-structured,
i.e. hierarchies where one element can have multiple associated elements in the
next higher hierarchy level. The advantage of the scheme used here is that all
numbers in the numbering range actually correspond to dimension elements in
the lowest level.

The APB-1 has four different fact tables storing measures. Out of these four,
only one is 4-D: the HISTSALE table storing unit sales and dollar sales of a
product to a customer over a channel in a certain month. This table was chosen
for performance measurements. Using the numbering scheme described above,
the size of the multidimensional array storing this table is:

9000 products x 900 customers x 9 channels x 18 months = 1,312,200, 000 cells

The data in the APB benchmark is highly sparse, not all cells contain mean-
ingful information. One parameter of the data generation program is the density
of the data, which can be set from 0.1% to 40%. The published measurements
commonly use densities 0.1% and 5%. For this work, a data density of 5% was
chosen, i.e. 19 in 20 cells contain 0. Each cell stores two measures and each mea-
sure is stored as a 16 bit integer. The actual measurement data without dimension
information therefore has a size of 250 MB: 1, 312, 200, 000 cells x 5% x 4 bytes.
Uncompressed dense storage in RasDaMan would require about 20 times that
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much, resulting in a 4-D array of 5 GB size. The output of the data generator
program containing an ASCII representation of the two values and the four inte-
gers used as keys for the dimensions has about 4 GB. A relational system using
a binary representation of 16 bit integers for the four coordinates and the values
would have to store about 750 MB of data for the 65,610,000 tuples.

To reduce storage requirements, the data was inserted into RasDaMan using
zlib-based compression of tiles as described in section 5.1.1. Tiles were defined
to have a size of 1000 x 100 x 1 x 2 cells, which corresponds to an uncompressed
storage size of about 800,000 bytes. The total data size of the compressed data
is about 180 MB, which is even less than the raw data size for the measurement
data of 250 MB. The reason for this is that compression reduces the data for the
measurements due to redundancies such as using only a small subset of the actual
value range of 16 bit integers. The compressed tiles range from a few hundred
bytes for areas where basically only empty data is stored to about 60,000 bytes
for tiles with a large amount of measures. In total, about 6,000 tiles are created.

Only the raw data is stored in a 4-D array, while information about dimension
hierarchies is not put into RasDaMan. This would cause a negligible additional
overhead, as the alphanumeric representation of the dimension hierarchies takes
up only about 700 kB. A typical OLAP tool like Hyperion Essbase requires 5.9 GB
to store the APB-1 data set in the same configuration [HS98]. This most probably
includes overhead like indices and precomputed aggregates. The specification of
the APB-1 does explicitely not require any specific storage®, so all the possibilities
described are legal.

One key property of the APB-1 is a non-uniform data distribution, which
is supposed to be typical for real-life applications as stressed by the authors
of the benchmark. To analyse this non-uniformity, 1-D histograms were built
on the four dimensions while converting the data for RasDaMan as shown in
figure 6.34. The histograms depict the amount of cells with measures for a given
dimension element. A uniform distribution can be observed for time and channel,
i.e. for every month and over every channel approximately the same amount of
transactions took place. For both customers and products, the distribution is
non-uniform, i.e. some products were not sold at all and to some customers no
products were sold. While the non-uniform distribution would have no relevance
for RasDaMan if dense storage were used, it has an effect on compressed storage.
Different tiles are compressed with different rates depending on the amount of
measures stored in their respective domain.

The queries in the APB-1 are designed to model advanced business queries.
Most of them are very complex and utilise the functionality offered by the OLAP
tools for which the benchmark was designed. A set of 10 queries is given, which

6“The database design has no structural requirements. The varied nature of database tech-
nologies (multidimensional and relational) and the lack of generally accepted design criteria

(denormalization is the rule) would make any structural requirements prejudicial in nature”
[OLA9g]
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Figure 6.34: Histograms for the four dimensions in APB-1.

are executed with a different relative importance for the overall result of the
benchmark as shown in table 6.3.

Some of the queries are too complex to be easily implemented in a raster
DBMS such as RasDaMan: Query 4, e.g., calculates a moving average. All
queries could be implemented using RasDaMan as a storage system only and
putting most of the operation execution in the client program. This would involve
substantial programming effort for each query and violates the spirit of the bench-
mark. The APB-1 specification stresses that calculations must be done on the
OLAP server and not in the client program. Queries 1 to 3 can be implemented
directly in RasDaMan using RasQL. Summing up their relative importance they
make up 35% of the benchmark (see table 6.3).

Query 1 calculates total units sold, total dollar sales, and average price for
a given channel. Additionally, restrictions for time, customer, and product are
given at different hierarchical levels. The RasDaMan implementation restricts
this query to units sold and dollar sales, as these are stored in the HISTSALE
table and this is the only table imported into the RasDaMan system. Further-
more, in violation of the benchmark specifications, the mapping of the restrictions
in time, customer, and product from the dimension hierarchy to a range query in
RasDaMan is done before executing the benchmark. Using these simplifications,
the APB-1 query 1 results in a RasQL query conforming to the following pattern:
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‘ Query ‘ Name ‘ Importance ‘
1 Channel Sales Analysis 10%
2 Customer Margin Analysis | 10%
3 Product Inventory Analysis | 15%
4 Time Series Analysis 3%
5 Customer Budget 5%
6 Product Budget 5%
7 Forecast Analysis 15%
8 Budget Performance 20%
9 Forecast Performance 15%
10 Ad Hoc 2%

Table 6.3: Queries in the APB-1 benchmark.

SELECT sum_cell(cube[351:357,870:891,1,3:5])
FROM  apb AS cube

The dimensions were stored in order of product, customer, channel, time in
RasDaMan. The hierarchical restrictions were mapped to trimming operations
in RasQL. The restriction to one channel results in a section operation in RasQL.
The condense operation sum_cell is applied to the base type of the array and
returns the same type: a structure with the two elements units and dollars. Thus,
the elements of the structure do not have to be explicitly mentioned in the query.
Decompression from compressed storage is carried out transparently as needed
when executing the query.

The second query calculates total units sold, total dollar sales, cost, and
margin for a given customer for a given range of products (hierarchical restriction)
in a given month for all channels. Again, the query is simplified and gives only
sales in dollars and units. Only one hierarchical restriction is given this time, and
in the channel dimension all elements are selected. Two dimensions are fixed to
one element resulting in two section operations. This query in RasQL looks as
follows:

SELECT sum_cell(cube[351:357,234,*:%,7])
FROM  apb AS cube

In the third query, the total units sold, total dollar sales, cost, and inventory
of a certain product over the whole time and all channels for a set of customers are
selected. One section operation is done on the product dimension, no restrictions
are given on time and channel, and a hierarchical restriction is given on customer.
Using the same simplifications as above this results in the following query:
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SELECT sum_cell(cube[712,100:112,%:% *:x])
FROM apb AS cube

Generally, the implemented queries of the APB-1 benchmark concentrate on
using condense operations on subsets of the cube. These subsets usually have
a reduced dimensionality, i.e. at least one dimension is fixed to a certain value.
Hierarchical restrictions resulting in range queries are common; these usually
select only a small part out of the total cube. But dimensions with no restrictions
are also used, thereby selecting the whole data in this dimension.

Queries 1 to 3 from the APB-1 will be used in the following as a basis to anal-
yse the performance of RasDaMan in the management of OLAP data. One part
of this is a comparison with a relational system. In contrast to all other mea-
surements presented in this chapter, the measurements for the APB-1 dataset
were executed on a different machine. The main reason for this is the limited
availability of secondary storage on the machine used for the other tests. The
measurements were carried out on a Sun Enterprise 450 with two 300 MHz Ultra-
SPARC processors running Solaris 2.6 connected to a 90 GB RAID system util-
ising RAID level 0. The system was available exclusively for the measurements,
and, as usual, all processes were running on the same machine.

Due to the necessity of using a different system for benchmarking, availability
of IBM DB2 also was a problem. As an Oracle 8i installation was available,
this was used for executing the APB-1 queries in comparison with RasDaMan.
As all tested queries are simple subselect queries combined with an aggregate
operation, the same techniques used for mapping the tcubeavg workload to DB2
can be used here (see section 6.6.1). Oracle only supports NUMBER as a data
type for integers, so the storage has to be mapped accordingly. For comparison
purposes, the same numbering scheme as for RasDaMan was used for Oracle.
Assuming a 4 bit BCD storage with the minimum number of digits required for
each measure or coordinate, this results in 16 bytes per tuple or in about 1 GB
of total storage. Secondary B-tree indexes were defined on all four coordinates.

The benchmark generator program for the APB delivers the specification for
queries in the form of query streams. The idea is to simulate concurrent access by
executing these streams in parallel. The minimum number of streams generated
is ten, but only one of these was used to create the queries for the tests. The
streams contain a mixture of all 10 query types defined in the specification. Only
the three relevant queries were extracted. The query streams specify restrictions
using the alphanumeric representation of the corresponding hierarchical levels
in the dimension hierarchies, which were mapped to integers or integer ranges
beforehand both for RasDaMan and Oracle. Table 6.4 summarises key charac-
teristics of the queries generated from this query stream.

The table is read as follows: There are 375 variants of Query 3 in the query
stream with an average overall selectivity of 0.11 - 1073%, whereby product is
restricted on the lowest hierarchical level and customer on the second level.
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‘ Amount ‘ Query No. ‘ Avg. Selectivity ‘ Dimension ‘ Level ‘

250 1 0.91-10*% Product 2-6
Customer 2
Channel 1
Time 2-3
250 2 0.010-1073% | Product
Customer
Time

375 3 0.11-103% Product
Customer

DN | = =N

Table 6.4: Characteristics of queries 1 to 3 in the APB-1 benchmark.

A hierarchical level of 1 corresponds to exactly one element in the dimension.
Dimensions not specified are not restricted at all, which corresponds to a restric-
tion at the highest hierarchy level, the top of the tree. The average selectivity is
calculated over all variants of a query and it is based on the selectivity in cells
of the array after the mapping of dimensions to integers, not the selectivity in
tuples of the sparse dataset.

What is amazing for decision support queries are the extremely low selectivi-
ties. Assuming equally distributed cell values, the queries select roughly 600, 7,
and 74 non-zero values out of the roughly 65 million, respectively. Since Ras-
DaMan operates on dense data, about 20 times as many cells are operated on.
Still, these at most 12,000 cells are a very small number of cells resulting in only
a small time spent for executing operations on them. So a detailed analysis of
operation execution performance is not possible with this workload. These low
selectivities should be advantageous for the relational system. Note that the
actual number of values selected is slightly higher due to the non-uniform distri-
bution of the data shown in figure 6.34, as the benchmark generation program
seems to not query areas which do not contain any tuples.

The comparison of performance between RasDaMan and Oracle on this work-
load is shown in figure 6.35. The result is that RasDaMan shows better perfor-
mance for all three queries. Amazingly high is the execution time for Oracle for
the first query. This can be explained by looking at the shape of the query box
for that case. The relational system makes best use of its indexes for very small
selectivities on one of the four indexes on the coordinates. For query 1, on the
other hand, restrictions are placed on all four coordinates simultaneously. Oracle
decides to go for a full table scan in that case, which is not a good solution con-
sidering the size of the whole relation of about 1 GB. The resulting evaluation
time is quite good for this strategy, as the system processes about 13,000 tuples
per second. It seems that Oracle by default always employs a table scan if a
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greater number of range restrictions is given in the WHERE clause.
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Figure 6.35: Client execution time in comparison between RasDaMan and Oracle
for the first three queries in the APB-1 benchmark.

On the other hand, for RasDaMan a restriction in all dimensions at the same
time is the best case. Even as the selectivity of query 1 is higher than for the
other two, RasDaMan shows the best performance. If the condition is specified
simultaneously in all four dimensions, the tiling used for the APB data has to
read the least number of tiles. The bad performance for query 3 for RasDaMan is
caused by the two dimensions time and channel being not restricted at all. In this
case, at least 81 tiles have to be accessed to read a given 2-D plane specified by
the other two dimensions. The high ¢. is caused by the overhead for managing the
high number of tiles. Another factor is of course the ten times higher selectivity
of query 3 vs. query 2.

Oracle seems to use indexes for both query 2 and query 3. The performance
for query 3 is better than expected considering the higher selectivity compared
to query 2. One factor is a fixed overhead for query execution independent of
selectivity when t,. is measured. Another factor is the fact that query 3 has the
highest selectivity on a single index of all three queries. Since only one element of
the product dimension is accessed, the selectivity in this dimension is ﬁ. Still,
RasDaMan is significantly faster by a factor of roughly 3. The low ¢, for queries
1 and 2 (0.50s and 0.68s) even makes interactive work possible using RasDaMan.

Note that the tests on Oracle were executed without further tuning, perhaps
an experienced administrator can get better results. But the general problem are
the 1-D index structures of the RDBMS vs. the multidimensional data stored. In
the Mistral project [Mar99], a multidimensional index structure called UB-Tree
(universal B-Tree) was developed promising a significantly better performance for
this type of query [BM95]. A performance two to three orders of magnitude better
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than multiple indexes, as measured for the UB-Tree, would give far better results
than RasDaMan. As the UB-Tree just recently has been integrated with a com-
mercial DBMS, a comparison is a topic of future work. Published performance
measurements currently are available only based on the TPC-D dataset and using
a library implementation of the UB-Tree on top of an RDBMS [MZB99].

An analysis of operation execution performance based on the workload depicted
in figure 6.35 is not too promising. Firstly, the selectivities are extremely low
resulting in a very small number of cells to be operated on. And secondly, the
queries are a mixture of different selectivities, therefore making analysis of the
effect of selectivitiy on operation execution impossible. To gain more informa-
tive results, the specific queries executed in the APB query 1 were categorised
according to their selectivity. As listed in table 6.4, the restriction placed on the
product dimension varies from hierarchical level 2 to 6 resulting in a large variety
of selectivities. Table 6.5 groups the variants of query 1 according to this level.

‘ Amount ‘ Level ‘ Avg. Selectivity ‘

115 2 0.046 - 1073%
41 3 0.11-1073%
46 4 0.36-107%%
28 5 2.2-1073%
20 6 6.9-1073%

Table 6.5: The queries in one query stream for Query 1 in the APB-1 benchmark
grouped according to the hierarchical level of the restriction on product.

The selectivities in these queries still have some variance, as restrictions can be
placed on different hierarchical levels of the time dimension and not all restrictions
at the same level have the same selectivity. The grouping process, however,
greatly reduced this variance. Based on these queries, an analysis of relative
execution time for the different tasks on the server is done analogously to figure
6.5. The results of these measurements are given in figure 6.36.

The relative time spent for accessing the base DBMS is quite small, which
corresponds to the very low selectivities and the high sparsity, as the amount
of data transferred from the base DBMS is small because of compression. The
relative time for operation execution is insignificant for small hierarchical levels
and grows to about 13% for the highest level. Note that the original form of query
1 has an average selectivity between levels 4 and 5, which would correspond to
about 5% of t,,,. for operation execution. The relative time for ¢,, corresponds
quite well with selectivity except when comparing level 5 and 6. Remember that
the selectivity is varied only on the product dimension, corresponding to the
tscliceavg workload in section 6.3.1. The tile size in this dimension is 1,000
cells. The size of the query box in level 5 is about 500 cells, while it is about
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Figure 6.36: Relative time of server query processing time t,,,. used for operations
top vs. base DBMS access t, vs. other for the grouped query 1 of the APB-1.

2,400 cells in level 6. The leads to roughly twice the number of tiles accessed,
resulting in a higher overhead in server processing time for managing these tiles
measured as part of £..;. Furthermore, the probability for whole tile accesses is
greatly increased, which leads to less effort for operation execution.

The query execution on the server for these queries is dominated by .,
however. There are two intuitive reasons for this: The effort spent for the index
due to the high number of tiles in the array and decompression of the tiles. Both
factors were analysed in detail and do not justify the 80% of time spent for #,;.
The relative index access time is only up to 40% of ¢,,,.. The actual relative time
for decompression is much too small to be even visible on the diagram, much
under 1%. This was very surprising, but it seems that zlib extremely efficiently
decompresses very sparse data. The majority of the time in %, is not accounted
for in the detailed measurements generated by the instrumentation. The most
plausible explanation is a relatively large fixed overhead compared to the very
low query execution times in the area of tenths of seconds.

Alternatively to the original queries from the APB benchmark, an artificial
set of queries was defined with varying selectivities. The selectivities tested there
were chosen between 0.02% and 1%, which is about 2 orders of magniture larger
than the ones in the original queries. The query box was generated analogously
to the tcubeavg workload on the tomogram (see section 6.3.1): The query box is
shaped proportional to the extent of the dimensions and placed randomly inside
the cube. The main differences are that the amount of data is higher, that the
dataset is 4-D, and that the data is compressed. The diagram in figure 6.37
contains the relative query execution time on the server again.

The main conclusion from this diagram is that for a large data set even for
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Figure 6.37: Relative time of server query processing time t,,,. used for operations
top vs. base DBMS access t, vs. other for an artificial workload on the APB-1.

low selectivities operation execution dominates execution time on the server. The
number of cells operated on is roughly a factor 100 larger than for the tomogram
workload for the same selectivity. Applying this factor, the selectivities chosen
here can be compared with the corresponding ones for workload tcubeavg in
figure 6.6. In comparison, the relative time spent for operation execution is
significantly smaller. The reason potentially is the higher overhead spent for #,.s.
The relative significance of ¢, is comparatively small in figure 6.37, which is is an
effect of the compression.

Considering the much larger amount of data read for this workload, it is
even more amazing that decompression is completely insignificant compared to
other factors. As shortly mentioned before, the reason is that sparse data is
decompressed extremely fast. When examining the decompression times, there
are differences of almost two orders of magnitude depending on the sparsity of the
tile decompressed. Empty tiles containing no useful values are stored in about
800 bytes. The decompression process in this case basically has to fill 200,000
cells with value zero, which can be done simply and efficiently. If all tiles are
empty, the total time for decompression is only a few hundred us. For data
volumes which are not fully sparse it can go up to one tenth of a second. Since
absolute query execution time on the server for higher selectivities is about 10
seconds, this is still completely irrelevant for overall 7.

In summary, the performance of RasDaMan on OLAP data is very good
compared to a standard RDBMS and the storage space required is very small
by applying compression. The basic queries of the APB-1 are supported very
well by RasQL, but it is not possible to implement the full functionality of all
APB queries using only RasQL. Substantial extension of the query language
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would be necessary to support OLAP functionality at that level. It would be
interesting, however, to integrate RasDaMan with a client based OLAP solution
as an intelligent storage manager. While RasDaMan performs significantly better
than a standard RDBMS, the comparison with specialised index structures is not
expected to give such a favourable picture. In [ZDN97], a comparison between
compressed storage in arrays and storage in relations in the context of OLAP is
carried out for the Paradise system with similar results.

Another factor is that in order to answer queries aggregating data at high
hierarchical levels accessing larger parts of the DBMS precalculation seems to
be the most reasonable strategy. For the selectivities in the APB, the total
query evaluation time is short enough to allow interactive work with the data.
But if high selectivities above 10% were required to calculate aggregates, the
evaluation time would go up to minutes. For RasDaMan, tile based precalculation
of aggregates and integration of this with the operation execution engine would
be a worthwhile research topic in this context.
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Chapter 7

Conclusions

The scope of this work was formal specification, design, efficient implementa-
tion, optimisation, and performance evaluation of an efficient operation execution
engine for a database system managing multidimensional arrays. The results of
this work have been implemented during the course of the RasDaMan (Raster
Data Management) project. The main result of the project is a specialised DBMS
for efficient storage and retrieval of multidimensional arrays. The system was
developed to meet industrial software quality standards; it is sold as a commer-
cial product. The current code comprises about 170,000 lines of C++. The work
presented here is a key component in the running system and delivers all opera-
tion execution functionality needed as a basis for a powerful and efficient DBMS
for multidimensional arrays.

While the work documented here already is sufficient to support operation
execution in a commercial system, there is a set of areas where further scientific
work is promising. These areas including some concrete ideas on future work are
presented in section 7.1. The key contributions of this work are summarised in
section 7.2. Finally, section 7.3 gives a final assessment of the work presented.

7.1 Future Work

During the scientific work carried out in the course of this project, some promis-
ing ideas were not pursued. Partly this was due to lack of ressources, partly due
to lack of direct relevance for the focus of this work. In the following, some points
relevant for future work will be listed. None of these points are critical for prac-
tical work with the RasDaMan system, but they promise increased functionality
or performance for the user.

Abstract Specification Language

One key conclusion from designing and implementing the set of operations sup-
ported by the RasDaMan system on cells of arrays is that it involves a large

183
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amount of code to write and maintain. This is significantly increased by opti-
misations for specific base types as discussed in section 5.2.3. The current state
of the code implementing these cell based operations comprises about 4,500 lines
of C++. Extending the code with new operations, new base types, or new opti-
misations not only involves adding classes for function objects. It also involves
changing functions for testing applicability of operations and for retrieving func-
tion objects depending on base types of operands and result.

An abstract specification language for specifying the operations available on
base types at a higher level would be a way to solve this maintenance problem.
Most of the code follows quite simple and repetitive structures and could be easily
generated by a program. The main effort is designing a specification language
providing sufficient functionality for expressing all operations necessary for imple-
mentation of the system together with the possibility to specify optimised ways
of executing them in C++. A potential source for specification languages may
be the research area of compiler construction, where similar problems have to be
solved by scientists and implementors.

Application Specific Operations

The current set of operations defined in section 4.1.2 is geared towards func-
tionality applicable to multidimensional arrays in general independent of the
application area. No complex functionality geared towards certain applications
is supported currently. Customer demand, however, shows a need for more func-
tionality to be implemented in the server. One example from geographic appli-
cations is the efficient management of data of varying resolutions covering the
same geographic area and accessing it using geographic coordinates instead of
cell coordinates. For comprehensive support of OLAP, more complex operations
are needed as already mentioned in section 6.7. The main relevant questions are
the following:

e Which functionality is best implemented in the DBMS server and which is
left to the client? Very complex operations like advanced filters in image
processing take up a high amount of CPU time and may adversely affect
performance for other users of the DBMS.

e Which functionality can be easily integrated with tile based operation exe-
cution? What extensions to the principles explained here are necessary
to provide for other operations? Examples for functionality not trivially
integrated in a tile based concept of operation execution are operations
involving a local context of cells which may cross tile borders, like general
filters in image processing.
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Parallelisation of Operation Execution

The tile based architecture of operation execution lends itself very well to paral-
lelisation of operation execution. Parallel architectures in database systems are
an important direction in research. In [Rah94] an overview of the topic is given.
Parallel database systems are segmented in three major categories in this book.
While further categories, such as federated database systems, are discussed there,
here the simplified scheme in table 7.1 is used. The categories defined will be
dicussed regarding their potential for parallelism in RasDaMan.

Processor
close coupling ‘ loose coupling
. shared shared everything shared disk
Disk -
non-shared — shared nothing

Table 7.1: Classification scheme for parallel database architectures.

The shared everything architecture is the one most easily implemented. Firstly,
symmetric multiprocessor (SMP) systems are widely used in commercial envi-
ronments and can be bought as a commodity product. And secondly, designing
parellel applications for this architecture needs a comparatively small effort, as
the only modification involves the addition of threads to execute CPU intensive
operations. The operating system distributes these threads to multiple processors
as far as they are available. Communication between threads is simple, as they
share a common adress space. More difficult is the synchronisation of concur-
rently working threads. Modifications to shared variables should be guarded by
semaphores to ensure consistency. These semaphores obviously limit the degree
of parallelisation.

For the tile based operation execution described here, the concurrent access
to cells while executing one operation is ruled out if the result is a different array
from the operand. If an array is operated on, each unary or condense operation
is executed on a tile independently from any other tile of the same array. Thus,
the execution of the same operation on a set of tiles of an array can be done
concurrently without any need for synchronisation. For binary operations this
does not hold for tiles, but it does hold for the unit of execution which is an
overlapping of the two tilings of the arrays involved (see section 5.1.1).

The problem of synchronisation is at a higher level, namely the operator tree
used to evaluate a RasQL query (see section 5.4). On this level, precautions have
to be taken to avoid concurrency problems, as the same data can be operated on
multiple times in the query tree. One example is a different operation executed
on the same area of an array in the SELECT and the WHERE clause of a RasQL
query as, e.g., in the example query given in section 3.1.2.
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While parallelisation has not been a topic yet, the somewhat related problem
of pipelining is discussed in [Rit99]. For the problem of parallelism, only units of
the query tree that can be executed in one pipeline have to be taken into account,
as the further execution can only continue after this unit has been completely
evaluated. This precludes concurrency problems of this unit with other units.
Perhaps similar rules to the breaking up of the query tree into units that can
be executed in one pipeline can be formed to break up the tree in units that
can be executed in parallel. A discussion of parallelisation and concurrency in
the context of aggregate functions in object-relational databases can be found in
[JM98].

Besides finding units without concurrency problems to be executed in par-
allel, another solution would be to include synchronisation code into operation
execution. Synchronisation on the level of tiles would be easily possible, but
may hinder parallel execution for more complex queries. The next smaller unit
currently supported is the cell. Synchronisation on the cell level would be far to
expensive, as a very high number of cells is involved. An intermediate solution
would be locking of arbitrary spatial domains in a tile. The main question is if
the synchronisation effort is worth the added performance by parallelisation for
typical queries.

While shared everything provides the easiest implementation of parallel imple-
mentation, it has one major performance bottleneck: The concurrent access to
a single disk. While the non-parallel version of RasDaMan commonly is CPU
bound (see section 6.4), this is expected to change with a parallel implementa-
tion. In that case the transfer speed of a single disk may become the limiting
factor due to the large amounts of data commonly involved in management of
multidimensional array data. The shared disk architecture with an even higher
degree of parallelisation and a shared disk therefore seems not to be a good solu-
tion for operations on multidimensional arrays. An extensive analysis or even a
prototype would be needed, however, to confirm this.

More promising is a high degree of parallelism together with independent
disks as used in the shared nothing architecture. Shared disks provide a high
throughput when accessing high-volume data. Tiles would be well suited for
distributing the storage of an array over a multitude of disk. In the context of
regular tiling, [SWC99] discusses distribution techniques for attaining a high level
of concurrency in access. One problem here would be the spatial index used in
RasDaMan to support arbitrary tiling. It should be considered, however, that
the index is quite small compared to the actual data stored in the tiles, so maybe
it is not a limiting factor in parallelism.

A general problem with loosely coupled processors in both the shared disk
and the shared nothing architectures is communication between processing nodes.
Depending on the specific architecture of the system, which could be a network
of workstations or an MPP system, this communication link has a certain latency
and a certain throughput rate. Compared with SMP systems, both the latency
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is commonly higher and the throughput lower. The higher latency could be
compensated by larger tile sizes, if tiles are managed on the disk connected to
the processing node executing the operation. Then the higher setup time for
operation execution is matched with a larger data volume to be processed. The
lower throughput, however, poses a problem for all induced operations, as the
result has to be potentially transferred to another node. For condense operations
this would not be a problem, as the result per tile is only a single scalar value.

This discussion mainly serves to give hints for further research in the area.
The general conclusion is that further work on parallel operation execution on
multidimensional array data seems worthwhile for both the shared everything
and the shared nothing approach. A shared disk architecture seems not to be
well suited for tiled storage of multidimensional arrays. Since currently opera-
tion execution is CPU bound, the utilisation of more than one processor seems
to promise better performance of the system. An implementation on a shared
everything architecture seems to be possible with a limited effort.

7.2 Contribution

The following list summarises the main contributions of this work.

e Definition of a formalism specifying the semantics of tile-based execution
of operations on multidimensional arrays.

e Definition of rules defining the applicability of operations on tiles depending
on base types and spatial domains of operands and results.

e Theoretic discussion of the relevance of partial accesses to tiles in execution
of subselect queries on multidimensional arrays.

e Development of an object-oriented design for an operation execution engine
in a DBMS for multidimensional arrays. This includes a dynamic type sys-
tem, classes encapsulating persistence and compression of tiles, and classes
representing operations on cells.

e Design and implementation of the operation selection process for operation
execution on cells depending on the base type of operands and result, which
implements the rules defined in the formalism. This includes functions
checking the applicability of operations on given operands and result.

e Efficient implementation of a multidimensional iteration executing opera-
tions on tiles or multidimensional parts of them.

e Design and implementation of an instrumentation supporting performance
analysis of the implemented classes for operation execution.



188 CHAPTER 7. CONCLUSIONS

e Definition of workloads from different application areas relevant for opera-
tion execution on multidimensional arrays.

e Experimental evaluation of the relevance of operation execution for overall
performance of a DBMS for multidimensional arrays.

e Performance evaluation of the optimisations for operation execution on mul-
tidimensional arrays developed over the course of this work.

e Performance comparison of the implemented system with the current state
of the art in database technology focusing on operation execution perfor-
mance.

e Evaluation of the suitability of a multidimensional array DBMS for the
management of OLAP data using an industry standard benchmark.

7.3 Assessment

The principles and techniques for operation execution on multidimensional arrays
presented in this work are implemented and working in a commercially marketed
system: the RasDaMan DBMS. This system serves as the main proof of concept
for the content of this work. Much more than an isolated prototype, the imple-
mentation of an operation execution module in this system serves to demonstrate
the viability of the core principles and the design. The integration of operation
execution with a query parser and optimiser and an advanced storage manager
is supported by the formalism and the object-oriented design developed here.

A comprehensive formalism for operation execution on tiles is a precondition
for a system of this scale. The work presented in chapter 4 forms a solid basis
for the implementation of the RasDaMan system with operation execution as a
core functionality. It is necessary as a specification of the semantics for the oper-
ation execution module and helps to guarantee a well-defined functionality. The
formalism was developed with the implementation in mind and therefore takes
the core properties base type and spatial domain into account. The formalism
proved to be very well suited for use in the design and implementation process.

The system was designed and implemented in an object-oriented way. The
design model developed in chapter 5 offers an encapsulation of the actual imple-
mentation of operation execution for other modules of the system. Optimisations
and even reimplementations of functionality proved to be possible without affect-
ing code in other modules of the system. Of prime importance in the design
process was efficiency. This is highly important, as typical applications operate
on large data volumes.

A comprehensive performance evaluation in chapter 6 of the system proved
this target to be reached at a high degree. The performance of the system beats
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the current state of the art in database technology both for dense array data and
even for sparse data with a sparsity of up to 2%. The workloads were chosen
from potential application areas and prove the viability of the work there. The
optimisation and new algorithms in the code resulted in substantial speedups for
overall performance.
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Signature

X,L,H,...: Vectors.

X = (x1,29,...,24): Specification of a d-dimensional vector.
N: Set of all natural numbers.

Z: Set of all integers.

n,d,...: Integers or natural numbers.

«, B,7,...: Multidimensional arrays.

a(X): Cell value of multidimensional array « at position X.
sd,: Spatial domain of multidimensional array a.

sdo = [l1 : hy, ..., lq: hg]: Specification of the spatial domain of a d-dimensional
multidimensional array a.

R, S, T: Base types.
T,: Base type of multidimensional array c.

Composite Base Types

T.= (N, T1),...,(Np,T,) : Composite base type as set of ordered pairs of
names and types.

N1, Ny, ...: Used for names of members of a composite base type T..

T1,T,,...: Used for member types of a composite base type T..
Spatial Operations

0sa(a): Trimming to spatial domain sd.
ms¢(a): Section at dimension s, fixing it at ¢.

t
77(): Translation of sd, by vector T.
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Induced Operations

fu: Ty — Ty: Unary induced operation.
fo: T, X Ty, = Ty Binary induced operation.
fe: Ty, xT, — T,: Condense operation.

fes f=ys [as f=, .. .2 Operations for addition, subtraction, bitwise or logical
conjunction, equality, etc.

Tiling
a1, o, . ... Used for tiles of a multidimensional array a.
retile{sda,l,m,sda%}(a): Return a set of n tiles o, ..., o/, with spatial domains
Sl s - . . Sdg, for the multidimensional array « independent of its for-
mer tiling.

a = Uj-; a;: Construct a multidimensional array a formed by the tiles
Ap,y...,0,.
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