
Institut für Informatik
der Technischen Universität München

Optimization and Evaluation of Array Queries
in Database Management Systems

Roland Ritsch

Institut für Informatik
der Technischen Universität München

Optimization and Evaluation of Array Queries
in Database Management Systems

Roland Ritsch

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Manfred Paul

Prüfer der Dissertation:

1. Univ.-Prof. Rudolf Bayer, Ph.D.

2. Univ.-Prof. Dr. Burkhard Freitag, Universität Passau

Die Dissertation wurde am 27.05.1999 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 04.11.1999 angenommen.

Acknowledgements

I am grateful to all people who made this work possible. Foremost, I thank my

supervisor, Prof. Rudolf Bayer, Ph.D., for his support and for the time spent reading and

commenting on my doctoral thesis.

Especially, I would like to thank all people of the RasDaMan team for their pleasant and

successful collaboration. In particular, I thank Dr. Peter Baumann in his role as project

initiator and technical manager. Further, I gratefully acknowledge the valuable work of

Paula Furtado in the area of specialized physical storage management and fast access of

large multidimensional arrays as well as of Norbert Widmann for his benchmarking

results and efficient implementation of elementary operations on array tiles.

I also thank my master students Andreas Haftmann and Michael Ammermüller. We had

numerous inspiring discussions and their implementation and benchmarking

contributions are an essential part of my work.

I am also very grateful to many further students, colleagues and friends for discussions,

ideas, and proofreading of the thesis. Here I especially thank Markus Blaschka, Andreas

Dehmel, Carsten Finis, Dr. Volker Markl, Frank Ramsak, and Martin Zirkel.

In particular, I thank my parents, Edeltraud and Alexander, who encouraged my early

efforts with building blocks. As for many other things, I am indebted to them for raising

me in an environment where my education was encouraged, but never forced, and for

supporting me financially through to the end of my studies at university.

Finally, I would also like to thank my girlfriend Andrea Schwendiger who has

supported me morally throughout this entire process. She always was ready with words

of understanding and encouragement.

Roland Ritsch Munich, November 1999

Abstract

Arrays of arbitrary size and dimensionality appear in a large variety of database

application fields, e.g., medical imaging, geographic information systems, scientific

simulations, and also business-oriented applications like Online Analytical Processing

(OLAP) and data mining. Recently, integration of an application domain-independent

and dimensionality-independent type constructor for such Multi-dimensional Discrete

Data (MDD) into Database Management Systems receives growing attention. Current

scientific contributions in this area mainly focus on MDD algebra and specialized

storage architectures.

Since MDD values may occur in the scale of several megabytes and, compared to scalar

values, operations on these values are very complex, their efficient evaluation becomes

a critical factor for the overall query response time. Although the management of MDD

values shifts the demands on query processing fundamentally, there has never been a

systematic study on specific query optimization on both logical and physical level

combined with efficient evaluation of MDD queries.

In this thesis, we want to close this gap: We develop a generic Abstract Data Type

(ADT) for MDD and integrate it into an adapted relational model by allowing the newly

introduced MDD expressions in selection conditions and as parameters of the novel

application operation which is an extension of relational projection. With this model

serving as a formal base, a comprehensive list of algebraic transformation rules together

with an optimization heuristics is provided. Specialized evaluation algorithms based on

a tiled storage layout are presented which optimize array query processing both in terms

of speed and memory usage. We proceed with an examination of the MDD specific cost

structure for array query processing. The main responsible parameters are summarized

in the Array Cost Model which, e.g., is used to make cost-based decisions for different

alternative evaluation plans.

The techniques presented are implemented in the operational Array DBMS RasDaMan.

We provide an outline of the system architecture. The integration of the MDD ADT into

the query language as well as the query processing module including optimizer and

executor are described in more detail.

Finally, a performance study based on synthetic data as well as on real-life data from

the European Computerized Human Brain Database Project (ECHBD) proves practical

benefits of the presented techniques.

Table of Contents 1

Chapter 1 Introduction 5
1.1 Array DBMSs ...5
1.2 Application Areas ...9
1.3 Outline ..11

Chapter 2 Related Work 13
2.1 Systems Supporting Multi-dimensional Data ...13

2.1.1 Image DBMSs...13
2.1.2 Specialized DBMSs ..14
2.1.3 Statistical and Scientific DBMSs..14
2.1.4 Array DBMSs ...14
2.1.5 Extensible DBMSs..15
2.1.6 OLAP DBMSs ..15

2.2 Specialized Optimization and Evaluation Techniques ...16
2.3 Summary...18

Chapter 3 Data Model 19
3.1 Logical MDD Model ..19

3.1.1 Multi-dimensional Intervals..19
3.1.2 MDD Structure..20
3.1.3 Elementary Operations..21
3.1.4 On the Complexity of Cell Expressions..23
3.1.5 Derived Operations ...25

3.1.5.1 Geometric Operations ...25

3.1.5.2 Induced Operations ...26

3.1.5.3 Aggregation Operations..26
3.1.6 Multi-dimensional Expressions ..28

3.2 Physical MDD Model ...29
3.3 Extended Relational Model ..30

Chapter 4 Array Query Processing 35
4.1 Query Tree ..35
4.2 Rewriting ..38

4.2.1 Algebraic Transformation Rules...38
4.2.1.1 Geometric Operations ...39

4.2.1.2 Induced Operations ...42

4.2.1.3 Aggregation Operations..43

4.2.1.4 Extended Relational Operations ...44
4.2.2 Standardized Query Form ...49
4.2.3 Rewriting Heuristics ...49
4.2.4 Exploitation of Multi-dimensional Common Subexpressions..........................51

2

4.3 Transformation..53
4.3.1 Physical Plan Operators for MDD Operations..54

4.3.1.1 Elementary Operations ...54

4.3.1.2 Unary Induced Operations ..55

4.3.1.3 Binary Induced Operations ...55

4.3.1.4 Aggregation Operations..58
4.4 Execution ..59

4.4.1 Tile-based Execution (inter-operator)...59
4.4.2 Runtime Idempotencies ..60

4.5 Integration of Array Query Processing into Relational Query Processing...................60
4.6 Summary...61

Chapter 5 Array Cost Model 63
5.1 Costs of Multi-dimensional Expressions ..65

5.1.1 Cost Producers and Dependencies ..66
5.1.2 System and Query Parameters ..68
5.1.3 Cost Formulas ...70
5.1.4 Experimental Validation ...71

5.2 Selectivity of Multi-dimensional Predicates...73
5.2.1 Approximating MDD values with Histograms ...74
5.2.2 One-dimensional Histograms..78

5.2.2.1 Conventional Histograms ...78

5.2.2.2 Error Minimization Histogram ...80

5.2.2.3 Experimental Evaluation...81

5.2.2.4 Conclusions...85
5.2.3 Multi-dimensional Histograms ...86
5.2.4 Experimental Validation ...87
5.2.5 Implementation Aspects..89

5.3 Summary...90

Chapter 6 RasDaMan Implementation 91
6.1 System Architecture..92
6.2 Query Language..95

6.2.1 Data Definition Language...95
6.2.2 Data Manipulation Language..98

6.3 Query Processing Modules ...103
6.3.1 Internal Query Representation ..104
6.3.2 Query Analysis..105
6.3.3 Optimization Phases..106
6.3.4 Execution Process ...107

6.4 Summary...108

Table of Contents 3

Chapter 7 Performance Studies 109
7.1 Benchmarking Testbed ...109
7.2 Synthetic Scenarios...110

7.2.1 Time Components of Retrieval Array Queries ...110
7.2.2 Time Components of Computational Array Queries113
7.2.3 Performance Increase of MDD Expression Rewriting115
7.2.4 Performance Increase of Extended Relational Rewriting...............................116
7.2.5 Performance Increase of Common Subexpression Exploitation118

7.3 The Human Brain Database..119
7.3.1 Data Description ...119
7.3.2 Queries ..119

7.4 Summary...123

Chapter 8 Conclusion and Future Work 125

References 128

Appendix A Notation 134

Appendix B List of Algebraic Transformation Rules 136
B.1 General Definitions...136
B.2 Geometric Operations ...136
B.3 Induced Operations ...137
B.4 Aggregation Operations..139
B.5 Extended Relational Operations ...139

Appendix C RasML Grammar 141

Appendix D Abbrevations 143

Appendix E List of Definitions 144

Appendix F List of Figures 145

Appendix G List of Tables 147

Appendix H List of Examples 148

Introduction 5

Chapter 1
Introduction

1.1 Array DBMSs

After a long phase where arrays have largely been neglected among the database community,

very recently a growing interest in database support for such structures can be observed. This

is more than justified by the large variety and number of different application fields in which

this single data abstraction appears: Arrays of arbitrary size and dimensionality, so-called

Multi-dimensional Discrete Data (MDD), span a remarkably rich manifold – from 1-D time

series and 2-D images to OLAP data cubes with maybe dozens of dimensions and sizes from

a few kilobytes to several gigabytes, as spatio-temporally discretized natural phenomena or as

artificially generated data sets. MDD values play a major role in a variety of database

applications fields: earth and space sciences, census, medical imaging, physical experiments

(wind channels, high-energy physics), multimedia, and OLAP comprise but a few

representatives (see Section 1.2).

An Array DBMS supporting application domain-independent MDD structures allows to move

array business logic to the DBMS (see Figure 1) which has several advantages: (1) DBMS

services for MDD, i.e., safe multi-user access, crash recovery, client-server environment, ad-

hoc query facilities with optimizations on logical as well as on physical level; (2) standardized

management of MDD; (3) MDD is manipulated close to its location on disk which potentially

leads to less network traffic; (4) small client programs and less application programming

effort which means less error prone code.

The scientific starting point when developing database services for new information

categories is to set up an algebra; some steps into this direction have already been made

[Bau94, Mar97]. Next, query languages are set up and implemented; this is a field where only

6 Chapter 1

very few results are reported, e.g.,

[Feg95, Lib96, Bau97a, Mar97].

Due to the enormous extent of MDD

values compared with classical data

structures, new storage techniques

are required. Work reported in this

area can be found, for instance, in

[Fur93, Sar94]. It is here where

query evaluation and optimization,

at the bridge between logical and

physical level, are of primary

importance.

Table 1 shows the fundamental

differences between conventional

data types and the MDD type

concerning their size, their operation

complexity, their disk storage, and

their role in tuple selections.

Conventional Data
Types

MDD Type

Size of single values small huge

Costs for operations on single values cheap expensive

Storage of values on disk n values per disk page n disk pages per value

Search for attributes within relations supported by indexes scan

Table 1 Conventional Types vs. MDD Type

The size of single MDD values varies from the scale of megabytes to gigabytes whereas

conventional data types occupy a couple of bytes. If we consider a comparison operation on

an MDD value, it will cost number of cell times more than an operation on a single value

which, again, might be in the scale of several millions. This is one of the reasons why queries

based on MDD values are, in the majority of the cases, CPU-bound (this is discussed in detail

in Section 4.5). Further, storage and evaluation of relational queries is based on the fact that

one disk page consists of several tuples. This does not hold for MDD values. Finally,

selection on relations based on attributes of conventional types might be supported by indexes

on these attributes whereas MDD values do not have a natural order and, consequently, they

Figure 1 Architecture Example for an
Array DBMS Migration

Presentation Logic

Business Logic

 Array Logic

DB Logic

DBMS

Scalar

DatabaseFile System

Presentation Logic

Business Logic

Array DB Logic

Array DBMS

Arrays Scalar Data

Database

Introduction 7

are not suitable for index support. The case that an index is built on attributes calculated from

MDD values is called feature extraction and is addressed in the area of content-based retrieval

systems which is beyond the scope of this thesis (see Section 0). In summary, due to the

different properties of MDD values, the requirements on query optimization and evaluation

have been shifted and, therefore, MDD query processing requires reconsideration. As we will

point out in detail in Chapter 2, this field within array database research has received little

attention up to now. With this thesis, we want to close this research gap.

This work strictly distinguishes between logical and physical data model for MDD. On the

logical level, multi-dimensional arrays receive the rank of a first-class data abstraction in the

sense of a generic type constructor parameterized with the array’s spatial domain (array index

range) and cell base type. The spatial domain provides the point set where cell values are

defined, e.g., number of dimensions and lower and upper bound (fixed or variable) for each

dimension. For the cell base type both primitive and complex types are admissible. As

operations on MDD values, we choose the two low-level, second-order functions described in

[Bau98a, Bau99]: the first function enables to construct multi-dimensional arrays with cell

values being defined by the result of an arbitrary function; the second function allows to

generally aggregate the cell values of a multi-dimensional array to a scalar result value by

specifying a function able to combine two cells. Due to the generality of these functions, they

are very powerful but lead to rather complex expressions. The functions utilized most

frequently in applications consist of function parameters following some restrictions. At query

processing time, exactly these restrictions allow more advanced optimization and the

application of more efficient physical evaluation algorithms. In order to facilitate the

employment of frequently used functions and to achieve a better starting point for query

processing, we, additionally, derive some high-level MDD operations. They can be divided

into three categories. Geometric operations modifying the spatial domain while leaving the

cell values unchanged, induced operations operating on cell values only, and aggregation

operations condensing information to a scalar value. As our operations on arrays are of

declarative nature, they provide a huge optimization potential. On the physical level, a

specialized storage structure for large MDD objects is adopted which is composed of tiles,

obtained by subdividing MDD objects into multi-dimensional subrectangels, and spatial

indexes for efficient coordinate-based access of the tiles [Bau97a, Fur99].

Integration of the MDD type constructor into an object-oriented system means that sets of

MDD objects may arise either as extents or as explicit collections whereas MDD values in

relational systems occur as attributes in tables. Both situations make it necessary to process

sets of MDD values. For the purpose of demonstrating optimization and evaluation

techniques, the MDD model is integrated into a simplified relational model in the sense that

no explicit join but a cross product operation is supported. On the other side, the relational

model is extended by providing a generalized projection operation called application

operation which is able to apply general MDD expressions to MDD tuples. We would like to

8 Chapter 1

emphasize that the described optimization techniques are independent of the database

paradigm and, therefore, prove usefulness in both relational and object-oriented systems.

As already pointed out above, demands on Array Query Processing (AQP) have some

essentially different aspects compared to the demands on standard Relational Query

Processing (RQP). With RQP, tuples are very small compared to relation size and operations

on single tuples are very cheap (e.g., string comparison on equality) with respect to CPU

costs. The main effort has to be spent on processing large sets of tuples. In contrast, single

MDD objects already can reach the scale of gigabytes, and MDD operations, such as

consolidation in 4-D climate simulations, become extremely complex and time consuming.

Hence, the optimization problem is on two levels, on the level of MDD sets (inter-MDD

operation optimization) and on the level of single MDD values (intra-MDD operation

optimization). In order to achieve efficient AQP, we follow two approaches: First, as

processing sets of MDD objects is similar to RQP, we adopt as many techniques as possible

from conventional RQP, adapting them where necessary. Second, we develop new techniques

for MDD processing which exploit the characteristics of the logical MDD model and a tiled

storage architecture. Following the RQP framework, we take over the phases rewriting,

transformation, and execution for the integration of our new techniques.

Summarizing, the thesis concentrates on the following points:

• Definition of an Array-ADT (based on the work reported in [Bau98a, Bau99]) and choice

of application relevant, optimizable high-level array operations.

• Integration of the Array-ADT into the Relational Model by introducing multi-dimensional

attributes with different restriction levels. MDD expressions are allowed in the selection

condition and in the newly introduced application operation which is an extension of

relational projection.

• Establishment of a comprehensive list of algebraic transformation rules derived from

MDD operations, relational operations, and their combinations. Presentation of an

optimization heuristics on the transformation rules.

• Array-specific exploitation of common subexpressions.

• Development of specialized execution strategies for MDD expressions based on a tiled

storage layout.

• Examination of MDD-specific evaluation costs and establishment of an Array Cost Model

with histogram-based selectivity estimation.

• Description of implementation aspects of the presented techniques which show their

feasibility. Integration of the algebra into an SQL-based query language.

• Presentation of performance studies based on synthetic data as well as on real-life data in

order to support the theoretical concepts.

Introduction 9

The work reported has its roots in the RasDaMan1 project, where a domain-independent,

client-server Array DBMS for MDD of arbitrary size and dimensionality is developed.

RasDaMan offers a declarative query language, RasQL, which is an extension of SQL-92

with high-level MDD operations. All of the functionality described in Chapter 3 on the data

model is supported by RasDaMan. Our ultimate goal is to efficiently support OLAP,

statistical, and imaging queries up to the power of the Discrete Fourier Transformation

[Bun93]. Queries are evaluated in the RasDaMan server which relies on a specialized storage

architecture. We have implemented a variety of logical and physical query optimization

techniques which have proved their accelerating impact in practical environments. The

RasDaMan DBMS is being used in several projects for medical, neuroscientific, and

geoscientific raster data management. Chapter 6 gives on overview on the implementation of

RasDaMan modules correlated to this work.

1.2 Application Areas

Quantifying natural spatio-temporal phenomena mostly leads to multi-dimensional data

representations; likewise, data sets generated from simulations and experiments frequently are

analyzed in a multidimensional model. Indeed, a broad range of data sets can be naturally

stored in general arrays which means arrays of arbitrary size, cell type, and dimensionality.

The data sets range from 1-D time series (e.g., seismographic sensor data, ECGs) and audio

data, 2-D raster images (e.g., satellite images, picture archives), 3-D volume data (e.g.,

temperature distributions) and video data to 4-D spatio-temporal data (e.g., climate

simulations). Such arrays appear in a variety of application fields, such as medical imaging,

lab document management (e.g., for chemical and pharmaceutical industry), earth

observation, oil/gas/water exploration, simulation and experimental data management (e.g., in

automotive, shipbuilding, and aerospace industry), and statistic applications. In this section,

we concentrate on some typical application scenarios in the areas of Medical Information

Systems and Geographic and Geoscientific Information Systems.

Medical Information Systems

In the medical environment, digital archival of data in the form of fully digital patient records

with their high potential for efficient access, extensibility, transparence and hence high

service quality and cost savings is becoming more and more standard. Data is produced in a

wide variety of forms, such as 1-D curves (e.g., ECG), 2-D images (e.g., x-ray and ultrasound

images), and 3-D volumetric data (e.g., volume computer tomograms). In this environment,

an Array DBMS allows to uniformly model and maintain digital dimensional data

independent of its size, dimensionality, and cell type structure while providing query

functionality to retrieve geometric parts of the data, to manipulate the data, and to search the

1 RasDaMan has partly been sponsored by the European Commission in the ESPRIT IV

program under grant no. 20073.

10 Chapter 1

data based on its content. Typical queries which can be answered by an Array DBMS look

like:

− Give me the ECG recording of patient X with its amplitude multiplied by two.

− Give me the most recent x-ray image of patient X restricted to the area of his right knee.

− Give me the axial slices at position z = 50 of all CT recordings of patient X.

− Give me a specific 3-D brain area of the most recent CT recording of patient X.

− Give me the maximal intensity value occurring in a specific area of a CT recording.

− Within a radiological case study, give me a certain area of all CT recordings which

consist of intensity values exceeding a threshold of 127 in some specified regions of

interest.

The Array DBMS RasDaMan and its deployment in the medical area is further described in

[Rit96, Bau97a].

Geographic and Geoscientific Information System

Raster data gains increasing importance in the area of Geographic Information Systems (GIS).

With technological advances in storage, network and processing power, maintaining raster

data on a large scale is getting less expensive and providing online access to the data sets is

becoming feasible. Although most of the data supported today is two-dimensional (e.g.,

satellite images, digital elevation models), geoscientific data occurs from 1-D (e.g.,

seismographic data) to 4-D (e.g., spatio-temporal climate simulations). Thereby, the array

cells encompass binary and grayscale pixels, multi-spectral pixels, voxels containing floating

point temperature values, and many others. In the following, we give some examples for

Array DBMS queries emerging within this context:

− Give me a rectangular region of all Landsat images recorded in year 1990.

− Give me bands 1, 3 and 7 of all Landsat images with the intensity value of band 7 raised

by 5.

− Give me all satellite images of a certain area with less than 10% clouds.

− Give me the area in percentage where, in a specific region, band 7 consists of intensity

values between 100 and 200 for all Landsat images recorded in year 1990.

− Given a 3-D temperature distribution, give me the temperature distribution over a given

location (x,y).

− Give me a thematic map of height 500m of a 3-D temperature distribution with areas

exceeding 40° C marked in red.

Further insight into the application of Array DBMSs in the area geographic and geoscientific

information systems is given in [Wid97, Bau97a].

Introduction 11

1.3 Outline

This thesis is organized as follows. Chapter 2 recapitulates work in areas related to the

research described in this thesis. In Chapter 3, we introduce the MDD model and its

integration into the relational model as well as an MDD storage model. Operations of the data

model are described by some examples and examined from an optimization point of view.

Chapter 4 discusses the different phases in raster data query processing. It contains a

comprehensive list of algebraic transformation rules, an optimization heuristics, and

algorithms for efficient evaluation of MDD operations. Chapter 5 develops a cost model for

array queries in order to get more insights into the cost structure and to be able to predict

evaluation time and result set size of array queries. A description of the implementation is

given in Chapter 6 and Chapter 7 presents practical performance studies. Finally, Chapter 8

summarizes the conclusions drawn in this work and identifies the scope of future research in

this topic.

Related Work 13

Chapter 2
Related Work

Related work to this thesis can be divided into two categories: first, systems dealing with the

problem of multi-dimensional raster data and, second, work reporting on optimization and

evaluation techniques addressing the problem of large data sets and expensive methods. Both

are discussed in the following sections.

2.1 Systems Supporting Multi-dimensional Data

The discussion in this section concentrates on systems supporting at least two-dimensional

raster data. We want to record that nesting one-dimensional arrays, e.g., in object-oriented

systems, as well as nesting relations as allowed by the NF2 data model described in [Dad86] is

not a convenient solution for supporting arbitrary multi-dimensional raster data of large size

neither in terms of operational support nor in terms of efficient query processing.

2.1.1 Image DBMSs

Image database systems are dealing with two-dimensional raster data. These systems focus on

selection and retrieval of images, or parts of images, based on image content. As explained,

e.g., in [Fal95], features are extracted at insertion time and a multi-dimensional index is built

for fast response of queries based on the extracted features. This is the major difference to our

approach, as we allow queries utilizing the array structure and the cell content at querying

time.

14 Chapter 2

2.1.2 Specialized DBMSs

Specialized DBMSs are dedicated to high-level operations on data for particular application

areas. Paradise [DeW94] is an example for handling two-dimensional raster data in

applications in the area of Geographic Information Systems (GIS). MDD is modeled in the

object-relational model of SHORE [Car94]. Efficient storage of the raster ADTs is provided

in Paradise by tiling the data into a set of SHORE objects and optimization of data handling is

achieved by compression. Paradise neither provides a general MDD query language nor

advanced optimization techniques for MDD operations. Another interesting but similar

approach in the area of medical imaging is QBISM described by [Ary94]. QBISM is a

prototype for querying and visualizing 3-D medical images built on top of the Starburst

DBMS. In order to preserve spatial clustering, the 3-D data is linearized along the Hilbert

curve; compression of the byte stream reduces memory requirements. Spatial operations, e.g.,

partial access to 3-D data is supported by a spatial index. As Paradise, QBISM does not

provide MDD operations which are independent of application domains and dimensionality.

2.1.3 Statistical and Scientific DBMSs

The OPTIMASS storage system [Che95] can be mentioned as a representative of Statistical

and Scientific DBMSs (SSDBMSs). OPTIMASS partitions multi-dimensional datasets into

clusters based on device characteristics and an analysis of data access patterns. Nevertheless,

the system is not tightly integrated with a DBMS that has general-purpose MDD query

capabilities or specialized optimization techniques.

2.1.4 Array DBMSs

There are several proposals for domain-independent query languages manipulating arrays

[Feg95] but only a few are considering special query optimization techniques. One of its

representatives is the recent work of [Mar97] which introduces the array manipulating

language AML supporting comparable operations to our MDD operations. Some example

rewriting rules are presented as well as an optimized evaluation of the operations

SUBSAMPLE (comparable to our geometric operations) and MERGE (comparable to the

general condenser statement). The work lacks a comprehensive examination of logical

optimization techniques. Another interesting work is provided by [Lib96] which introduces

the powerful Array Query Language (AQL) based on a calculus providing four very low-level

primitives. The work also discusses rewriting rules for its primitives. High level array

operations, comparable to ours, can be composed. Optimization of these operations is

performed at the level of the calculus primitives and it is questionable, whether the optimizer

will find practical relevant rewriting rules or not. None of the proposals integrates its array

language into a set-based model or discusses optimization and evaluation together with a

Related Work 15

specialized storage structure which both turned out to be of major importance in our

operational Array DMBS RasDaMan [Bau98b].

2.1.5 Extensible DBMSs

The requirement for DBMS integration of a new type, which supports MDD efficiently and

on a high semantic level, leads to extensible DBMSs. Object-relational database management

systems (ORDBMS), among them several commercial systems like Informix Universal

Server [Ols96], Oracle, and IBM’s DB2, as well as research systems [Lin88, Sto90], provide

support for user-defined data types. Most of these systems are not able to integrate a type

constructor needed for MDD in a satisfying way. Usually, it is not possible to extend their

query language for arbitrary array operations (e.g., user defined functions are restricted to a

fixed number of parameters) or to efficiently optimize and execute expensive predicates.

These systems can optimize relational expressions in which user defined functions appear, but

they generally do not optimize user-defined functions themselves which is of primary

importance when dealing with huge MDD values. A recent exception is PREDATOR [Ses97]

which allows to introduce, along with an ADT, dedicated query (sub) languages, optimizer

components, and storage layout policies which means that user defined expressions can be

passed to an optimizer that can handle them. It may turn out that systems like PREDATOR

indeed offer the necessary mechanisms required for the implementation of an MDD ADT

which is as powerful and efficient as the one described in this thesis.

2.1.6 OLAP DBMSs

Currently, many investigations can be observed in the area of Online Analytical Processing

(OLAP). Optimization techniques for its specific operations are strongly dependent on

whether the model is mapped to a relational structure (ROLAP) or to a multi-dimensional

structure (MOLAP). For example, [Agr96] defines a hypercube based data model with

algebraic operations. Ultimately, the model is mapped to relations using conventional

optimization. It is obvious that efficiency is strongly dependent on the mapping strategy. In

this area, most effort is spent on optimizing the aggregation operation; [Aga96] gives an

example of optimizing the CUBE operator.

If we compare our definition of Array DBMSs with OLAP systems, three major differences

emerge:

− Array DBMSs integrate multi-dimensional data in the form of a new attribute type

constructor called multi-dimensional array into traditional relational or object-oriented

DBMSs whereas OLAP systems use a multi-dimensional data model (on logical level) to

represent the whole database content.

− Array DBMSs are primarily designed to support densely populated, multi-dimensional

domains whereas OLAP data usually is very sparsely populated (in the scale of 10-4). To

16 Chapter 2

overcome data explosion of fully materialized OLAP data cubes in multi-dimensional

arrays, one can use compression techniques on tiled arrays as described, e.g., in [Zha98].

− Array DBMSs do not support the typical classification hierarchies defined on OLAP

dimensions which are used for characteristic operations like drilling.

As the work described in this thesis is not complete in order to support OLAP applications,

we clearly want to differentiate ourselves from OLAP systems. Nevertheless, as our array

data model and the OLAP core data model (fact table) are similar with respect to their

structural and operational properties, we shortly want to draw attention to the following

approach:

Recent work reported in [Zha98] uses a similar approach to our physical storage model to

store the fact table of an OLAP system. It shows impressively that multi-dimensional arrays

can be more efficient both in terms of storage space and retrieval performance than relational

tables for multi-dimensional OLAP data sets. This confirms our opinion that Array DBMSs,

as presented in this thesis, in combination with specialized compression for efficient handling

of sparse data, are also very promising for an OLAP core system. However, further

investigations in this very interesting area are out of scope for this thesis.

2.2 Specialized Optimization and Evaluation Techniques

An increasingly large body of work addresses the problem of traditional relational query

processing, e.g., [Jar84] but also specialized query optimization and evaluation, e.g., [Gra93].

There are various aspects in which Array Query Processing can benefit from both of them

and we refer to the relevant work in their specific context throughout the whole thesis. In this

section, we just want to discuss work on query processing in the face of array supporting

systems and expensive predicates because this, in particular, is tightly coupled to our

situation.

Optimization of array queries in the context of object-oriented query languages

As (one-dimensional) arrays are a basic information structure of object-oriented query

languages, their optimization is considered in some work reported in this area.

For instance, [Van91] supports one-dimensional arrays on arbitrary types together with nine

array operations comparable to the one-dimensional restriction of our operations. The work

considers algebraic optimization and presents some transformation rules but leaves the

application heuristics of the rules an open question. Further, the function used in the APPLY

operation, which involves the function on each element of an array, is not optimized which

turned out to be the bottle-neck in our application fields.

The authors of [Bee90] suggest an algebraic optimization framework based on bulk data (data

collections) including one-dimensional arrays. Several generic algebraic optimization rules

Related Work 17

concerning operations on bulk data as well as optimization rules for function parameters

(functions are described in their algebra) are presented. The work lacks specific support for

arrays and practical evaluation of the presented concepts.

Handling of redundant method invocation during query processing

Object-Oriented and Object-Relational Database Management Systems support user-defined

methods in their queries which can be compared to operations on multi-dimensional arrays

with respect to their computation costs. In case these methods are very time consuming and

run on data with duplicates, time is wasted by redundantly computing methods on the same

values. The work described in [Hel96] compares three different techniques to avoid redundant

method invocation: (1) memoization, known in the context of programming languages, stores

the method results in a main memory hash-table indexed by the method’s parameters; (2)

sorting the input parameters was first described in [Sel79] to avoid redundant computation of

correlated subqueries on identical inputs; and (3) Hybrid Cache which basically does

memoization but keeps the hash-table at a maximum size by staging tuples with previously

unseen tuples to disk and rescanning them later.

Reconsidering this problem with respect to large multi-dimensional arrays, one can state that,

first, array duplicates should not be stored in the database because of the their enormous

storage waste and, second, methods applied on intermediate duplicates produced, e.g., by a

cross product operation should be pushed into the cross product as described in Section

4.2.1.4.

Migration of expensive predicates during query processing

The commonly used heuristics to push down projections and to order joins with decreasing

selectivity may not lead to optimal query plans in case of expensive selection and join

predicates. [Hel98] develops a cost framework that incorporates both selectivity and cost

estimates for selection and join predicates to rank selections and join operations in a way that

minimizes overall evaluation costs for purely conjunctive predicates. [Kem94] presents the so

called bypass processing able to avoid the evaluation of expensive predicates whenever the

result of the selection predicate can already be determined by testing other, less expensive

predicates.

On the one hand, our work extends these thoughts in the sense that we do not just migrate

expensive predicates (or user defined functions) but even sub-predicates which is described in

Section 4.2.1.4. As in our transformation cases, the optimization effect is obvious, we base

our transformation decisions on some heuristics. Nevertheless, it would be straightforward to

use the cost model described in Chapter 5 for cost-based decisions.

On the other hand, the techniques presented by [Kem94] and [Hel98] are of primary

importance when Array Query Processing is integrated into Relational Query Processing

which in detail is beyond the scope of this work.

18 Chapter 2

2.3 Summary

Table 2 gives an overview on the functionality of systems supporting multi-dimensional data

together with their optimization techniques employed to optimize array handling.

Image
DBMSs

Specialized
DBMSs

Statistical
Scientific
DBMSs

Array
DBMSs

[F
al

95
]

[D
eW

94
]

[A
ry

94
]

[C
he

95
]

[M
ar

97
]

[L
ib

96
]

O
ur

 W
or

k

array support 2-D 2-D 3-D n-D n-D n-D n-D

application domain-independent

operation support
no no no no yes

low-
level yes

declarative array query language no no no no yes yes yes

arrays embedded in relations yes yes no no no yes

algebraic query optimization yes yes no yes yes yes

algebraic query optimization of

array operations
no no no yes yes yes

specialized storage structure tiling

H
ilb

er
t

cu
rv

es

tiling no no tiling

specialized array plan operators fe
at

ur
e

ex
tr

ac
ti

on
 a

t i
ns

er
ti

on
tim

e;
 m

ul
ti-

di
m

en
si

on
al

in
de

x
su

pp
or

t

no no yes yes no yes

implementation available yes yes yes yes no yes yes

Table 2 Systems Supporting Multi-dimensional Data

OLAP systems are not further discussed as our approach of Array DBMSs cannot compete

with their specific functionality. The employment of Array DBMSs as basic storage systems

for OLAP solutions is left open for future work.

To sum up, at this time there is no comprehensive, practically proven approach for multi-

dimensional arrays of any dimensionality, cell type and size supporting specialized

optimization on both logical and physical level as well as adapted evaluation of application

domain-independent queries. Nevertheless, several existing systems as well as a broad range

of research work provide partial solutions to array support in DBMSs and hence we try to

adapt known techniques whenever possible.

Data Model 19

Chapter 3
Data Model

The Logical Data Model distinguishes the MDD Model describing typed, multi-dimensional

arrays, elementary MDD operations, three categories of derived high-level MDD operations,

and an adapted Relational Model. The latter serves to embed the MDD Model into a common

set-based model in order to be able to express MDD optimizations occurring in combination

with set-based operations. The Physical Storage Model introduces a tiled storage structure for

MDD values which is the base for physical optimizations.

3.1 Logical MDD Model

The logical data model supports multi-dimensional arrays of arbitrary types denoted by τ. The

set of types τ consists of atomic (unsigned integers 0, integers , real numbers , and

boolean values) and complex types which are composed of atomic and complex types. A

multi-dimensional array (in our nomenclature an MDD) is defined as a function which maps a

point set X to a value set F where the point set X is restricted to form axis-parallel data cubes.

3.1.1 Multi-dimensional Intervals

The point set X (often denoted as definition or index domain of an array) is described more

precisely as a multi-dimensional interval called Spatial Domain.

By convention we use x to denote vectors and (x1,...,xn) for ordered n-tuples, their

components being addressed by a subscripted index.

20 Chapter 3

Definition 3.1 (Spatial Domain) A spatial domain D over points l, h with l, h∈ d, li ≤ hi for

i=1...d is defined as

D
d

1=
×
i

{ x | li ≤ x ≤ hi, x∈ } = [l1:h1] × ... × [ld:hd]

The functions low and high deliver upper and lower bound vectors respectively and function

dim refers to the dimensionality of the spatial domain:

low(D) l

high(D) h

dim(D) d

As a more convenient notation, a spatial domain over points l, h is denoted by:

[l1:h1, ..., ld:hd] ◊

Remark: A spatial domain is an axis-parallel rectangular and compact subset of the d-

dimensional Euclidean space D ⊂ Ed = × ... × defined over integer numbers.

Definition 3.2 (Spatial Domain Type) The set of admissible d-dimensional domains δd ⊆
(Ed) (with denoting the power set) is called spatial domain type. It is defined as

δd { D | l, h∈ d, D is Spatial Domain over points l, h }.

δ denotes the set covering spatial domains of any dimensionality:

δ ∪d δd ◊

We now define the so called slice operation on spatial domains which is able to extract multi-

dimensional hyperplanes thereby decreasing the dimensionality by one.

Definition 3.3 (Slice) Let spatial domain D∈δd, 1 ≤ i ≤ d and low(D)i ≤ v ≤ high(D)i, then the

operation slice: δd × × → δd-1, which cuts out a hyperplane with dimensionality reduced

by one, is defined as

slice(D, i, v) { x∈ d-1 | (x1, ..., xd)∈D, xi = v, x = (x1, ..., xi-1, xi+1, ..., xd) } ◊

More informally, the functions intersection, union, and difference of spatial domains are

defined by means of the usual set operations ∩, ∪, and / on the condition that the result again

is a spatial domain according to our definition. In other cases (e.g., union of disjoint sets), the

operations are not defined.

3.1.2 MDD Structure

Next, we introduce MDD values, MDD types and their constructor.

Data Model 21

Definition 3.4 (MDD value) An MDD value a over base type T and spatial domain D with

T∈τ and D∈δ is a set of (coordinate, value)-tuples defined by a mapping function a: D → T:

a { (x, a(x)) | a(x)∈T, x∈D }

The following functions are defined on a:

base(a) T

sdom(a) D ◊

The reader should be aware of the difference between a and a: a denotes a multi-dimensional

value (array) in our logical MDD model whereas function a describes the array contents in the

(meta-) set notation used do describe the meaning of a.

Synonyms for the term MDD value are multi-dimensional data, multi-dimensional array or

simply array. They are used interchangeably in this document.

Definition 3.5 (MDD type) An MDD type M with base type T and spatial domain D with

T∈τ and D∈δ is defined as

M { a | a is MDD value over base type T and spatial domain D, T∈τ, D∈δ }

As a shorthand, we denote an MDD type with base type T and spatial domain D by [[T, D]].

The corresponding MDD type constructor is written as [[τ, δ]]. ◊

Array elements are referred to as cells. Single cells can be accessed using the subscript

operator []:

Definition 3.6 (Cell Access) Let a = { (x, a(x)) | a(x)∈T, x∈Dd } ∈ [[T, Dd]] be an MDD

value and x∈Dd be a d-dimensional point, then the access operator []: [[T, Dd]] × d → T is

defined as:

a[x] a(x) ◊

3.1.3 Elementary Operations

According to [Bau98a, Bau99], two elementary functionals form the base for high-level array

operations. The first function to be defined is the MDD constructor, called marray, which

allows to create arbitrary multi-dimensional arrays:

Definition 3.7 (Marray Constructor) Consider a spatial domain D∈δ, a point variable x

which iterates through the spatial domain, and a so called cell expression ex containing free

occurrences of x and resulting in a value of type T∈τ. Then the constructor marrayD,x(ex)

evaluates to an MDD value of type [[T, D]]. It is defined as:

marrayD,x(ex) { (x, ex) | x∈D } ◊

22 Chapter 3

Expression ex contains a free variable x (indicated by its subscript) of type d. marray

evaluates expression ex for each point x of spatial domain D and stores the resulting value in

the cell with coordinates x of the newly created MDD value.

It should be noted that mapping function a: D → T and cell expression ex: D × ... → T are

similar in the sense that both describe array values depending on their coordinates.

Nevertheless, function a is used to describe the array meaning using the (meta-) set notation

whereas expression ex is used as a parameter in the logical MDD algebra.

Example 3.1 The following marray call creates a thumbnail from image m∈[[T, [0:r,0:s]]]

with both dimensions scaled down by a factor of 4. The example uses ‘/‘ to denote division

on integer numbers and ‘*‘ to multiply each component of vector x:

marray[0:r/4, 0:s/4], x(m[x*4])

Remark: One could now argue that it is sufficient to store domain and cell expression to

keep the information of a multi-dimensional array. In practice, most MDD values cannot be

described by a short functional description but only by an enumeration of the cell values (e.g.,

images) which restricts the functional definition of arrays to the theoretical model. Physically,

arrays are described by some enumeration of their cell values (cf. Section 3.2. on the physical

MDD model).

The second elementary function consolidates the cell values of a multi-dimensional array to a

scalar value. It iterates over a spatial domain while combining the result values of the cell

expressions through the indicated condensing function.

Definition 3.8 (Condenser) With : T×T→T being a commutative and associative operation,

D = { x1,...,xn }∈δ indicating a spatial domain with n = |D| points, x being a point variable

which iterates through the spatial domain, and em,x being an expression of result type T

containing free occurrences of an MDD variable m∈[[T, D]] and point variable x, the

condenser function is defined as:

cond ,D,x(em,x)
Dx∈
o em,x = em,x1 ... em,xn

◊

Again, expression em,x is evaluated for each point x of spatial domain D. The result values are

aggregated using the condensing function .

Example 3.2 Given a sales table t∈[[�, [1:52, 1:8]]] with 52 week columns and 8 product

rows, the following condense statement results in the total sales value of the first product:

cond+, [1:52], x(t[(x,1)]) 




= ∑

=

52

1

)]1,[(
x

xt

Data Model 23

The next statement delivers the total sales values for each product in a one-dimensional array

with domain [1:8]:

a = marray[1:8], y(cond+, [1:52], x(t[(x,y)])) 




 == ∑

=

1...8for)],[(][
52

1

yyxtya
x

Example 3.3 A combination of the elementary operations can be used in order to perform a

matrix multiplication. Let m1∈[[T, [1:m,1:n]]] be an m×n matrix and m2∈[[T, [1:n,1:p]]] an

n×p matrix over type T∈τ. Then, the m×p matrix product can be expressed as following:

marray[1:m, 1:p], i(cond+, [1:n], j(m1[(i1, j)] * m2[(j, i2)]))

Concerning optimization, the second-order, elementary functions are very difficult to handle.

Due to their generality, expressions become very complex leading to very bad straightforward

evaluation performance. Therefore, we will derive high-level operations motivated by two

criteria: First, domain-independent operations which are frequently used in order to make

usage of the algebra easier and, second, operations with restrictions allowing to perform

sophisticated optimization techniques. The choice of derived operations is additionally

motivated by the following discussion on the complexity of cell expressions. As this is not

essential for the basic understanding, the reader may skip this section and continue with

Section 3.1.5.

3.1.4 On the Complexity of Cell Expressions

This subsection discusses the complexity of general cell expressions used in the elementary

operations Marray Constructor and Condenser. Systematic restrictions on the structure of cell

expressions allow us to establish operation categories with characteristic functionality,

evaluation complexity, and optimization potential. As functionality of some of the identified

operation categories is of special interest for a broad range of applications, they motivate the

derivation of specialized MDD operations which is formally described in Section 3.1.5.

We start with the examination of cell expression ex used in the marray constructor

marrayD,x(ex). Table 3 presents the operation categories ranging from M1 to M7 with a

decreasing restriction degree for the cell expression. For each category, the table presents an

informal and a formal description of the cell expression, application examples, and their

corresponding derived operations if available. Without a more formal introduction, we use a

constant function c: n → T returning any constant of type T, an unary function f: T → T

changing cell values of type T, a binary function f’ : T ×T → T combining two cell values of

type T, a function g: n → n defined on the points of a spatial domain describing a cluster-

preserving transformation (e.g., mirroring), and a function g’: n → n returning points within

a small neighborhood of the input points.

24 Chapter 3

No Expression Description Expression
ex

Application
Examples

Derived
Operations

M1 constant c(x)
initialization of

constant MDD values
-

M2
cell access with probing point

x
a[x]

copy operation,

selection of subareas

trimming,

section2

M3
simple expression on cell at

probing point x
f(a[x])

intensity increase,

plane selection

unary induced

operations3

M4
cell access with cluster

preserving index expression
f(a[g(x)]) flipping -

M5
access to small neighborhood

of probing point x
f(a[g’(x)])

filtering, scaling,

moving average
-

M6
simple expression on two

cells at probing point x

f’ (a[x],

b[x])

combination of MDD

values

binary induced

operations3

M7 general expression general ex - -

Table 3 Operation Categories of the Marray Constructor

The first category M1 uses a constant to initialize an MDD value which means that evaluation

of ex needs constant time. Category M2 uses the probing point x to access the corresponding

cell of MDD value a which results in copying cells. Optimization has to be performed in the

sense that connected areas are copied in one step. As copy operations of MDD parts are used

frequently, we derive the specialized operations trimming and section. Operations of category

M3 change cell values by applying a function defined on one cell to all cells of a spatial (sub-)

domain. We derive a special operation for this category and call it unary induced operation

which can be optimized by an adapted iteration sequence of points x and a precompilation of

function f, both is described in 4.3.1.2.

Operation category M4 additionally uses a cluster preserving function g to transform the

probing points x before accessing cells of MDD value a, whereas category M5 delivers points

within the neighborhood of probing point x. Although the restrictions of both categories can

be exploited in order to optimize the iteration sequence with respect to access complexity to

MDD value a, they are not of primary importance for our current application fields and hence

derivation of operations is left open for future work. Category M6 uses a function f’ to

combine corresponding cells of two MDD values a and b. We call this sort of functions

binary induced operations and their optimization goal is to read data of a and b in a sequence

that minimizes disk access. This is described in Section 4.3.1.3. Finally, category M7

represents the general cell expression with no special optimizations possible.

2 Defined in Section 3.1.5.1.
3 Defined in Section 3.1.5.2.

Data Model 25

The same restriction levels can be applied to the cell expression of the elementary condenser

function, even so, Table 4 presents just operation categories identified to be relevant. The

practically most important category is C2 which aggregates cell values of a certain area

depending on a given condensing function. The corresponding derived operation is called

reduce which is used to further derive aggregation functions such as quantifiers, minimum,

maximum, summarization, and others (cf. Section 3.1.5.3).

No Expression Description Expression
ex

Application
Examples

Derived
Operations

C2
cell access with probing point

x
a[x]

aggregation of cell

values
reduce4

C3
simple expression on cell

with probing point x
f(a[x])

aggregation of cell

values depending on

a condition

-

C7 general expression general ex - -

Table 4 Operation Categories of the Condenser Operation

A formal definition of the derived operations is given in the next section and characteristic

optimization and evaluation techniques are discussed in Section 4.3.1.

3.1.5 Derived Operations

The following derived MDD operations are divided into Geometric Operations, Induced

Operations, and Aggregation Operations.

3.1.5.1 Geometric Operations

The characteristics of geometric operations is that cell values are not changed, but the spatial

domain is manipulated by selecting a subset of cells, which is the case for trimming

(rectangular cutouts) and section (extraction of multi-dimensional subarrays with

dimensionality decreased by one).

Definition 3.9 (Trimming) Let value m be of type [[T, D]] and spatial domain D’ ⊆ D. With

non-MDD arguments written as subscript, the function trimming: [[T, D]] × δ → [[T, D’]] is

defined as:

trimmingD’(m) marrayD’ ,x(m[x]) ◊

4 Defined in Section 3.1.5.3.

26 Chapter 3

Definition 3.10 (Section) Let spatial domain D ∈ δd, value m be of type [[T, D]], 1 ≤ i ≤ d

and low(D)i ≤ v ≤ high(D)i. Again, with non-MDD arguments written as subscript, the

function section: [[T, Dd]] × × 0 → [[T, Dd-1]] is defined as:

sectioni,v(m) marrayslice(D,i,v),x(m[x]) ◊

3.1.5.2 Induced Operations

For each operation available on the MDD cell type, a corresponding so-called induced

operation is provided which simultaneously applies the base operation to all cells of an MDD.

Induced operations operate on cell values while leaving the spatial domain unchanged. Both

unary and binary operations can be induced whereby with binary operations, either one or

both operands can be multi-dimensional.

Definition 3.11 (Induced Operations) Let T1, T2, Tr ∈ τ be types, D ∈ δ, un: T1 → Tr and

bin: T1 × T2 → Tr functions to be induced, and m1 ∈ [[T1,D]], m2 ∈ [[T2,D]], s1 ∈ T1, s2 ∈ T2.

Then the following induced operations are defined:

un_ind: [[T1,D]] → [[Tr,D]], un_ind(m1) marrayD,x(un(m1[x]))

bin_ind: [[T1,D]] × [[T2,D]] → [[Tr,D]], bin_ind(m1, m2) marrayD,x(m1[x] bin m2[x])

left_ind: [[T1,D]] × T2 → [[Tr,D]], left_ind(m1, s2) marrayD,x(m1[x] bin s2)

right_ind: T1 × [[T2,D]] → [[Tr,D]], right_ind(s1, m2) marrayD,x(s1 bin m2[x]) ◊

Common operations to be induced are the binary operations +, -, *, /, and, or, <, �, >, �, =,

� and the unary operations -, not. Atomic operations on composite types can be applied

element by element. Another unary operation which can be induced is the record selector

denoted by the dot operator ‘.’. It can be used, e.g., to select the red plane of an RGB image.

Induced operations do not prescribe any sequence in which the cells have to be visited. This

property can be exploited for intra-MDD and also for inter-MDD operation optimization as

described in Section 4.3.1.4.

Note: Induction of scalar multiplication is different from matrix multiplication as it just

multiplies corresponding cells. Matrix multiplication can be expressed using the elementary

MDD operations as described in Example 3.3.

3.1.5.3 Aggregation Operations

The elementary condenser operation, defined in Section 3.1.3, is very difficult to be executed

efficiently because the functional needs, first, to evaluate a general expression for each point

of the spatial domain indicated and, second, to combine the expression results by a general

condensing operation. For many aggregation operations, it is sufficient to combine the

original cell values to a final scalar value according to a given condensing operation. Since

Data Model 27

this class of aggregations is of primary importance and evaluation can be optimized

considerably as shown in Chapter 4, a restricted aggregation operation, called reduce

operation, is introduced.

Definition 3.12 (Reduce Operation) The reduce operation takes three parameters, an

associative and commutative condensing operation : T × T → T with T ∈ τ being a type, a

spatial domain D’ ⊆ D ∈ δ and an MDD value m ∈ [[T,D]]. Then the operation is defined as

follows:

reduce,D’(m) cond ,D’,x(m[x]) ◊

Compared to the elementary condenser cond, which gets two function parameters, the reduce

operation fixes the arbitrary cell expression thereby eliminating one function parameter.

Reduce remains a functional accepting the condensing operation indicated by an operation

symbol. It iterates over a (sub)set of cells of an MDD item, combining all cell values through

the operation indicated. The reduce operation is used to further derive the following

commonly used aggregates, which are no functionals anymore:

Definition 3.13 (MDD Aggregates) Consider a multi-dimensional value m of type [[T,D]]

and let functions +, *, /, min, and max be defined on type T. Then following aggregates are

defined:

sum_cells(m) reduce+, D(m)

mult_cells(m) reduce*, D(m)

avg_cells(m) reduce+, D(m) / |D|

min_cells(m) reducemin, D(m)

max_cells(m) reducemax, D(m) ◊

Note: The result of avg_cells usually is of type float. Here it depends on the definition of the

division operation.

Another practically relevant operation is to count the number of cells satisfying a condition.

As the condition can be expressed using induced operations, we just need an operation

counting the true values of a boolean MDD leading to the following definition of count_cells:

Definition 3.14 (MDD Cell Counter) Given a boolean MDD b of type [[,D]], then the

operation count_cells is defined as:

count_cells(b) cond+,D,x(if b[x] then 1 else 0 fi) ◊

It should be noted that count_cells can also be defined in terms of the reduce operation if we

assume operation + to be defined on boolean values.

28 Chapter 3

Of special interest in the optimization process are the quantifiers some_cells and all_cells

which aggregate boolean MDD values into a scalar truth value. They can be defined in terms

of the reduce statement:

Definition 3.15 (MDD Quantifiers) Given a boolean MDD b of type [[,D]], then the

quantifiers are defined as:

some_cells(b) reduceor, D(b)

all_cells(b) reduceand, D(b) ◊

Note: Due to the fact that the number of cells never is null, the usual quantifier definitions for

empty arguments known from relational quantifiers can be omitted.

Due to associativity and commutativity of , the sequence in which cells are condensed is not

fixed and, further, it is possible to parallelize computation of subareas. It is up to the query

optimizer to choose the most efficient strategy depending on expression context and physical

storage parameters (see Section 4.3.1.4).

3.1.6 Multi-dimensional Expressions

By combining MDD operations with operations on scalar types (e.g., logical connectives and,

or, not, arithmetic operations +, -, *, /) complex expressions can be built. We call expressions

consisting of at least one multi-dimensional operation Multi-dimensional Expressions. In the

following, expressions are named together with the type of their result. For instance, a multi-

dimensional boolean expression evaluates to a boolean value and carries at least one MDD

operation.

Example 3.4 We consider an example for a multi-dimensional integer expression from the

medical area (cf. Section 1.2). Let ct_cube ∈ [[�, [1:512, 1:512, 1:512]]] be a volume

computer tomogram (CT) scan and hypothalamus_mask ∈ [[, [1:512, 1:512, 1:512]]] be a

binary mask carrying ‘1’ in the hypothalamus area and ‘0’ otherwise; then the multi-

dimensional integer expression

count_cells((ct_cube >left_ind 127) andbin_ind hypothalamus_mask)

determines the number of intensity values in the hypothalamus area exceeding the threshold

value of 127.

Notes:

1. The notation of induced operations can be simplified by overloading the particular scalar

operation symbol. The algebra keeps up the more detailed notation to point out the

difference of scalar and multi-dimensional operations in terms of computation costs.

Data Model 29

However, the Raster Data Query Language described in Section 6.2.2 makes use of this

simplification.

2. Multi-dimensional expressions are evaluated for each tuple of a relation. As they are very

expensive compared to, for instance, attribute comparison predicates in the relational

model, optimization is of primary importance. Multi-dimensional expressions may even

occur as cell expressions which means that they are evaluated for each cell of an MDD

(see Section 3.1.3 on elementary MDD operations).

3.2 Physical MDD Model

The potentially huge size of MDD values demands specialized physical storage structures for

their efficient access. In order to minimize the number of pages read when an operation is

executed on an MDD or part of it and to preserve a better spatial proximity, tiling (also called

chunking), which is the subdivision of the data into multi-

dimensional rectangular tiles, has been suggested by several

authors [Fur93, Sar94]. As a basis for the following

optimization discussions, and in particular for the tile-based

execution strategy of Section 4.4.1, we assume a

subdivision of d-dimensional arrays into arbitrary d-

dimensional, possibly nonaligned rectangular tiles. An

example for a valid 2-dimensional tiling layout is given in

Figure 2. More formally, we define a general tiling layout as

following:

Definition 3.16 (Tiling Layout) For a given d-dimensional spatial domain D∈δd, a set of n

spatial domains KD = { D1,...,Dn } with n∈ and Di∈δd defines a valid tiling layout for spatial

domain D if the following conditions hold:

{ } jinjiDD

DD

ji

i
i

≠∈∅=∩

=
=

 , ,...,1 ,for .2

.1
n

1
U

The set of admissible tiling layouts for spatial domain D is denoted by κD and the set of all

possible tiling layouts which is also called the tiling layout type is indicated by κ. ◊

As tiles are the unit of storage and access, disk pages belonging to one tile can be clustered

and hence reading tiles can profit from sequential disk access. In order to exploit this effect

significantly, the number of disk pages occupied by one tile should be at least in the scale of

16 (e.g., corresponds to tiles of 64 kB with a page size of 4 kB [Fur99]).

Figure 2 Arbitrary Tiling

30 Chapter 3

One can think of different tiling strategies able to tune different types of retrieval. For

instance, the work reported in [Fur99] examines the following strategies: directional tiling

which optimizes accesses along given dimension partitionings, tiling according to areas of

interest which optimizes access to a given set of query regions, and statistical tiling which

optimizes access given the statistics of access to an MDD object.

As a special case of arbitrary tiling, we frequently use a regular tiling layout, i.e., all tiles are

of the same shape and size except of border tiles which adapt to the original spatial domain.

Regular tiling can be specified by providing starting point and tile length in cells for each

dimension; we usually use the notation regular[l1:h1, ..., ld:hd] with li, hi∈ . li fixes the

starting point in dimension i and hi-li+1 denotes the tile length in dimension i.

Due to the fact that tiles are rectangular and non-overlapping, fast coordinate-based access to

tiles can easily be supported by a specialized spatial access method [Fur98].

Note: Although it is not relevant for this work, it should be noted that rectangular tiling may

be inefficient for sparse data. One can think of two solutions to this problem:

− Tiles are stored in a different format (e.g., as a set of points in relations) or they are

compressed. It would be desirable to use a compression technique supporting basic

operations without really decompressing (cf. chunk-offset compression described in

[Zha98]).

− Tiles use arbitrary shapes adapting to sparsely populated (sub-) domains while preserving

spatial proximity. Besides the traditional approach of using, e.g., an R tree for indexing

arbitrary spatial regions, it seems to be very promising to use the UB tree technique

described in [Bay97].

It should be remarked that tiling may be either fixed for complete rows of MDD attributes, or

it may depend on the arrays content and, therefore, be different for each MDD value. This fact

is described in more detail in the following section.

3.3 Extended Relational Model

In order to examine MDD specific optimization techniques in combination with set based

query processing, the MDD Model is integrated into an adapted Relational Model.

The attribute domain of multi-dimensional values can be specified on four different levels.

The more restrictive the specification is given, the more knowledge about the data structure is

available to the optimizer and the more specific and, potentially, the more efficient evaluation

plans can be generated. Table 5 lists the four attribute domain specification levels supported

together with their properties. At all levels, at least the base type (τ) of the attribute has to be

specified which is important to be able to perform any kind of operation. Level 2 additionally

restricts the MDD values of one column to have a fixed number of dimensions () whereas

Data Model 31

level 3 fixes their spatial domain (δ). As a violation of the principle to hide physical

representations, on level 4, the tiling layout (κ) is specified for the whole column. The

provision of tiling information on schema level can be compared with the specification of

indexes in RDBMSs.

No Attribute Type
Constructor

Base Type Spatial Domain Tiling
Layout

Example

1 [[τ]] fixed variable variable [[0]]

2 [[τ,]] fixed dimensionality

fixed

variable [[0, 2]]

3 [[τ,δ]] fixed fixed variable [[0, [1:640,1:480]]]

4 [[τ,δ,κ]] fixed fixed fixed [[0, [1:640,1:480],

aligned[0:99,0:99]]]

Table 5 Specification Levels for Multi-Dimensional Attribute Domains

The examples of Table 5 specify images of size 640×480 over unsigned integer numbers

subdivided into regular, aligned tiles of size 100×100. The tiles at the right border are cut to

0:39 and at the bottom to 0:79. A comprehensive description of different tiling layouts κ and

their performance implications can be found in [Fur98]. One could think of other

combinations for specifying MDD properties (e.g., [[τ, ,κ]]) but they did not turn out to be

of practical relevance so far.

Now we are ready to define relations which are able to carry multi-dimensional attributes. As

a basis for our notation, we take the original one described in [Cod70]:

Definition 3.17 (MDD Relations) Let Di∈δ be spatial domains, Ti∈τ be types, di∈ be

unsigned integers, and Ki∈κ be tiling layout specifications. Further, let Ai be attributes with

their domains being either multi-dimensional (with a certain specification level) or scalar, i.e.,

dom(Ai) ∈ { [[Ti]], [[Ti,di]], [[Ti,Di]], [[Ti,Di,Ki]], Ti }. Then the relational schema R(A1,...,An)

is defined as

R(A1,...,An) dom(A1) × ... × dom(An)

An instance of schema R(A1,...,An), denoted by R, is a finite subset of the schema:

R ⊆ R(A1,...,An) ◊

32 Chapter 3

Three relational operations are provided: the usual selection (σ) supporting multi-dimensional

boolean expressions as selection conditions; the cross product (×) instead of the usual join

because MDD values do not appear as join attributes and for our investigations just MDD

values are of interest (see Chapter 1 for a more detailed discussion on this); and, as a

generalized projection operation, the so called application (α) which is able to apply general

multi-dimensional expressions to the elements of each tuple of a relation.

Definition 3.18 (Relational Operations) Let R ⊆ R(A1,...,Ar) and S ⊆ S(B1,...,Bs) be relations,

cond: R(A1,...,Ar) → and opi: R(A1,...,Ar) → νi for i=1...s and νi∈{ [[Ti,Di]], Ti } being

(multi-dimensional) expressions with cond resulting in a boolean value and opi delivering

either a multi-dimensional or a scalar value. Then the operations semantics is defined as

following:

σcond(R) {t | t∈R, cond(t) }

×(R,S) {t | t = (u1,...,ur, v1,...,vs), (u1,...,ur)∈R, (v1,..., vs)∈S }

αop1,...,ops
(R) {t | t = (op1(u),...,ops(u)), u∈R } ◊

Operations σ and × describe usual selection and cross product respectively. The application

operation α applies (multi-dimensional) expressions opi to each tuple and fills the result

relation with tuples where the i-th element contains the expression result. We just want to

mention that, by using an identity operation idi: ν1 ×...× νi ×...× νn → νi with

νi∈{ [[Ti,Di]], Ti } which passes through its i-th operand, usual projection selecting the

ordered attributes A1,...,Am of relation R can be expressed using the new application

operation as follows:

πA1,...,Am
(R) = αid1,...,idm

(R)

The operations are closed in the sense that their results are again relations of MDD tuples.

Summarizing, it is important to record that attribute domains for multi-dimensional values can

be specified on different restriction levels. Further multi-dimensional expressions, as

introduced in Section 3.1.6, may occur as boolean multi-dimensional expressions in the

condition of a selection operation and as general multi-dimensional expressions in the

operations of the newly introduced application operation.

Example 3.5 This example demonstrates a typical application of multi-dimensional arrays in

the medical area (cf. Section 1.2). It is based on the following relation schemes:

MRI(cube , id) with dom(cube) = [[�, [1:512, 1:512, 1:512]]],

dom(id) = �

ROI(mask) with dom(mask) = [[, [190:310, 20:100]]]

Data Model 33

Relation MRI consists of the multi-

dimensional attribute cube holding

Magnetic Resonance Imaging cubes and

the scalar attribute id carrying their

corresponding integer identifiers. The

multi-dimensional attribute of relation

ROI (Regions Of Interest), named mask,

defines 2-dimensional regions using

binary masks. The following query

delivers subimages of sections in the xy-

plane at position 300 of the MRI cubes

which have in at least one region of

interest an intensity value exceeding 127.

The query uses the attribute names to

identify tuple elements of the cross

product.

α trimming[1:100, 1:200](section3,300(cube)) (

σsome_cells(trimming[190:310,20:100](section3,300 (cube >left_ind 127)) andbin_ind mask)(MRI × ROI)

)

The selection expression of σ, first, compares each cell of cube with the threshold value 127

resulting in a boolean MDD and cuts out a 2-dimensional subarea matching the spatial

domain of mask and, second, performs a conjunctive induced operation combining the result

with mask values before condensing the boolean MDD with some_cells to a scalar boolean

value used for selection decision. Finally, the application carries out the section to 2-

dimensional slices followed by a trimming operation cutting out top left subimages of size

100×200 which defines the result area.

Figure 4 presents the corresponding operator graph. The spatial domains attached to multi-

dimensional variables denote their so called load domain which identifies the data area loaded

from the storage system. Already at first glance, one can imagine its optimization potential.

Algebraic optimizations, such as pushing down section and trimming operations, moving

multi-dimensional (sub-) expressions of the application operation into the cross product, and

exploitation of common subexpressions comprise just a few of them. Comprehensive

optimization techniques of such queries as well as advanced execution strategies are discussed

in the next chapter.

Figure 3 Examples for
Collections MRI and ROI

x

z

300 190 310
20

100

MRI ROI

100

200

1

mask arearesult area

34 Chapter 3

Figure 4 Operator Graph for Example Query

α

σ

×

MRI(cube) ROI(mask)

some_cells andbin_ind

trimming[190:310,20:100]

section3,300

mask[190:310, 20:100]

127

>left_ind

cube[1:512, 1:512, 1:512]

trimming[1:100,1:200] section3,300 cube[1:512, 1:512, 1:512]

Array Query Processing 35

Chapter 4
Array Query Processing

Next, we present an operator-based graph for query representation and define the terms

Relational Data Area, Scalar Data Area, and Dimensional Data Area which play a central

role in array query processing. Taking into account the conventional differentiation of various

phases in query processing [Jar84], we identify the phases rewriting, transformation, and

execution. Each of the three phases and its peculiarities concerning array query processing are

described in the subsequent sections.

4.1 Query Tree

This section gives a description of the operator-based query tree which will be used to

represent our algebraic queries. This notation will be used frequently in order to visualize the

structure of queries, to define partitions of the query representation used in the optimization

algorithms, to be able to use algorithms based on graph theory, and, finally, as a framework

for the evaluation algorithm.

The query tree of an arbitrary array query consists of set trees and element trees as subtrees.

Set trees incorporate relational operations (see Section 3.3) as inner nodes and MDD relations

as leafs, whereas element trees consist of MDD operations (see Section 3.1) and logical

operations as nodes and MDD iterators and constants as leafs. Element trees connected to the

application node represent MDD expressions, they are called operation trees. Element trees

attached to selection nodes represents multi-dimensional boolean expressions, they are named

condition trees.

The Raster Data Query Language (RasQL) of the RasDaMan Array DBMS, which is defined

in Section 6.2.2, follows the select-from-where paradigm of SQL [ISO92] with the restriction

36 Chapter 4








=
 valuesldimensiona-multi single carries if

uesscalar val single carries if

relations carries if

)(_

kdd

ksd

krd

ktypeedge

that it does not support nested select-from-where statements. As a consequence, query trees

representing RasML queries only consist of one set tree. As an example, Figure 4 shows the

initial tree schema built from a RasML multiple target array query on relations S1 to Sn with

targets op1 to opm and selection predicate cond.

At execution time, the query tree generally is much more complicated, as preceding

transformations are adding nodes.

From an execution point of view, edges

between operation nodes can be interpreted

as dataflow edges. Depending on the type of

the data transported, edges are divided into

relational data edges carrying relations,

dimensional data edges carrying multi-

dimensional data (arrays), and scalar data

edges carrying non-dimensional or scalar

values. According to this classification, one

can identify maximal subgraphs containing

only one sort of edges, called relational data

areas (RDAs), dimensional data areas

(DDAs) and scalar data areas (SDAs).

As the described partitioning of the query graph is of special interest for several optimization

algorithms, a more formal definition of relational, dimensional, and scalar data areas is given

in the following:

Definition 4.1 (Query Tree) Given a set of nodes V representing operators and a set of edges

E ⊆ V2 depicting directed dataflow edges between the operators, the query tree Gq is defined

by

Gq (V, E) ◊

Definition 4.2 (Edge Type) Let k be an edge of set E. Function edge_type: E → { rd, sd, dd }

is defined as

◊

Note: The edge type can be derived from the concerned nodes’ signatures. Relational data

edges (rd) differ from scalar data (sd) and dimensional data (dd) edges in the sense that they

carry tuples of scalar and multi-dimensional attributes whereas sd and dd edges carry single

attributes.

Figure 5 Initial Query Tree

op1

set
tree

α

σ

×

S1 Sn...

opm

cond

element
trees

...

Array Query Processing 37

Definition 4.3 (Connection Relation) Let ka = (va,wa) and kb = (vb,wb) be edges of set E with

nodes va, vb being the sources and wa, wb being the destinations of the dataflow. Then the

connection relation is defined by

ka kb ⇔ edge_type(ka) = edge_type(kb) ∧ (va = vb ∨ va = wb ∨ wa = vb ∨ wa = wb) ◊

Definition 4.4 (Area Relation) Let ka and kb be edges of set E. Then the area relation is

defined by

ka kb ⇔ ka kb ∨ (k1, ..., kn ∈ E with ka k1 ... kn kb) ◊

Theorem 4.1 Area relation is an equivalence relation. ◊

Proof: The proof is omitted because the properties of an equivalence relation are obvious.

Corollary 4.1 Let E/ ⊆ (E) (with denoting the power set) be the set of equivalence

classes of relation . Then E/ is a partition P of E with

(1) none of the sets of P is empty,

(2) any two sets of P are disjoint,

(3) each element of E is included in exactly one set of P. ◊

Proof: This follows directly from the properties of an equivalence relation.

In other words, one can say that the query tree is partitioned by changes of function

edge_type().

Definition 4.5 (Data Areas) Consider a query tree Gq = (E,V) with edge partition P = E/ .

Then the Relational Data Areas (RDAs), Scalar Data Areas (SDAs), and Dimensional Data

Areas (DDAs) are defined as

RDAs { S | S ∈ P ∧ ∀ k ∈ S : edge_type(k) = rd }

SDAs { S | S ∈ P ∧ ∀ k ∈ S : edge_type(k) = sd }

DDAs { S | S ∈ P ∧ ∀ k ∈ S : edge_type(k) = dd } ◊

Example 4.1 Figure 5 gives an example for an element tree divided into DDAs (marked by

dark gray areas) and SDAs (marked by light gray areas). The graphical notation used for

visualizing query trees is described in Appendix A.

38 Chapter 4

It has to be remarked that the transition from a DDA to

an SDA is performed by the condense operation or any

derived aggregation operation whereas the one from an

SDA to a DDA stems from the marray constructor or

any derived induced operation. At the leafs, a scalar

constant and variable respectively starts an SDA,

whereas a multi-dimensional constant or variable starts a

DDA.

DDAs are of special interest for the description of

rewriting heuristics (described in Section 4.2.2) as well

as for tile-based execution (described in Section 4.4.1).

4.2 Rewriting

In the rewriting phase, algebraic transformations which preserve semantic equivalence take

place. The goals of algebraic transformations are threefold: (1) the achievement of a

standardized query form, (2) elimination of redundancy and evaluation of constant

subexpressions, and (3) the construction of optimized expressions with respect to evaluation

performance and memory usage.

In the following, we first derive equivalence preserving transformation rules from the data

model introduced. Employing a subset of the transformation rules, some kind of standardized

starting point for query optimization is obtained, which is explained in the subsequent section.

Next, some rewriting heuristics used to optimize the algebraic query expression are presented.

Finally, exploitation of common subexpressions and its peculiarities concerning multi-

dimensional values are discussed.

4.2.1 Algebraic Transformation Rules

In this subsection, we present equivalence preserving transformation rules. It will turn out that

their application in the rewriting phase only makes sense in one direction. Therefore, they are

described in the form lhs → rhs. Used as rewriting rule, the lhs of an equivalence is rewritten

to its rhs. Some of the rules are expected to optimize the query in terms of evaluation time

and memory usage. This class of rules is called optimization rules. The reverse application of

an optimization rule is contra-productive. It has to be remarked that the main effort is spent on

eliminating operations on multi-dimensional values as this turned out to be the primary bottle-

neck. All of the rules are standardization rules in the sense that they are used in order to

achieve a standardized query form. The application of rules leading to a standardized form is

described in Section 4.2.2.

Figure 6 Dimensional and
Scalar Data Areas

some_cells

=right_ind

m2count_cells

m1

<left_ind

2

Array Query Processing 39

The discussion of transformation rules is divided into four parts, namely our MDD operation

categories geometric, induced, and aggregation operations, and relational operations. The

following discussion just presents the optimization rules (numbered with ORn); a complete

list of transformation rules is given in Appendix B.

4.2.1.1 Geometric Operations

Geometric operations reduce the data set of an MDD by cutting out d-dimensional subcubes.

In order to optimize disk I/O and computation time of operations, the aim is to perform

geometric operations as early as possible (cf. Section 4.2.2 about optimization heuristics). For

this purpose, geometric operations can be pushed into every operation delivering a multi-

dimensional result, i.e., marray constructor and its derived induced operations.

Let D, D’∈δ be spatial domains with D’ ⊆ D, i∈ 0, and v∈ , then the transformation rules

look like

trimmingD’(marrayD,x(ex)) → marrayD’ ,x(ex) (OR1)

sectioni,v(marrayD,x(ex)) → marrayslice(D,i,v),x(ex) (OR2)

Proofs for these rules can simply be done by substituting the operation definitions. As an

example we will provide the proof for rule OR1:

Proof (OR1)

trimmingD’(marrayD,x(ex)) = (Definition 3.9 Trimming)

marrayD’ ,y(marrayD,x(ex)[y]) = (Definition 3.4 MDD Value)

marrayD’ ,y({ (x, ex) | x∈D }[y]) = (Definition 3.6 Cell Access and y∈D’⊆D)

marrayD’ ,y(ey) =

marrayD’ ,x(ex) q.e.d.

Combining rules OR1 and OR2 with induced operations, we can derive 4 generic rules for

pushing geometric into induced operations. With e1∈T1, e2∈T2 being scalar expressions and

e1∈[[T1, D]], e2 ∈[[T2, D]] being MDD expressions, D’∈δ a spatial domain with D’ ⊆ D, and

: T1×T2→Tr an operation to be induced, the rules look as follows:

trimmingD(un_ind(e1)) → un_ind(trimmingD(e1)) (OR3)

trimmingD(e1 bin_ind e2) → trimmingD(e1) bin_ind trimmingD(e2) (OR4)

trimmingD(e1 left_ind e2) → trimmingD(e1) left_ind e2 (OR5)

trimmingD(e1 right_ind e2) → e1 right_ind trimmingD(e2) (OR6)

sectioni,v(un_ind(e1)) → un_ind(sectioni,v(e1)) (OR7)

sectioni,v(e1 bin_ind e2) → sectioni,v(e1) bin_ind sectioni,v(e2) (OR8)

sectioni,v(e1 left_ind e2) → sectioni,v(e1) left_ind e2 (OR9)

sectioni,v(e1 right_ind e2) → e1 right_ind sectioni,v(e2) (OR10)

40 Chapter 4

These rules can be proven analogously to the proof of OR1. Rules OR3 to OR10 are generic

in the sense that they can be instantiated for each induced operation supported. For the unary

operations -, not we get the rule instantiations OR3.1, OR3.2 and OR7.1, OR7.2. For the

binary operations +, -, *, /, and, or, <, �, >, �, =, � we get instantiations OR4.1 to OR4.12,

OR5.1 to OR5.12, OR6.1 to OR6.12, OR8.1 to OR8.12, OR9.1 to OR9.12, and OR10.1 to

OR10.12. They are listed in Appendix B.

We call the procedure of pushing down geometric operations to multi-dimensional sources

(MDD variables, constants, or marray constructors) within multi-dimensional expressions

load optimization (see also Section 4.2.3 on geometric optimization). At the end of this

process, MDD constants are cut out, the spatial domain of marray constructors is adapted, and

MDD variables are augmented with their so called load domains (attached to MDD variable

nodes as subscript) which is the smallest spatial domain sufficient for evaluating the whole

expression.

The geometric operations trimming and section are also commutable in the sense that they can

be exchanged with each other (by adapting their parameters). Nevertheless this property is not

exploited by our optimization techniques.

Figure 7 Load Optimization I: Move Down Geometric Operations

α

σ

×

MRI(cube) ROI(mask)

some_cells

andbin_ind

trimming[190:310,20:100]

section3,300

mask[190:310, 20:100]

127

>left_ind

cube[1:512, 1:512, 1:512]

trimming[1:100,1:200]

section3,300

cube[1:512, 1:512, 1:512]

α

σ

×

MRI(cube) ROI(mask)

some_cells

andbin_ind

trimming[190:310,20:100]

section3,300

mask[190:310, 20:100]

>left_ind

cube[1:512, 1:512, 1:512]

trimming[1:100,1:200]

section3,300

cube[1:512, 1:512, 1:512]

127

I II

Array Query Processing 41

Example 4.2 Figure 7 and Figure 8 demonstrate load optimization of the query introduced in

Example 3.5. Figure 7 I moves down the section operation by applying rule OR9. Then rule

OR5 switches trimming and induced operations which is demonstrated in Figure 7 II.

After section and trimming operations have been moved down the tree to variable cube, the

load domains of cube (written as subscripts) can be merged with section and trimming

operations one after the other. This is shown in Figure 8.

Figure 8 Load Optimization II: Merge Geometric Operations with Access Nodes

When data is accessed at execution time, the load domain is passed to the storage system in

order to read the minimal amount of data, which is absolutely needed for computation of the

final result, from secondary storage keeping disk I/O at a minimum. This technique is similar

to accessing data from the storage system in RDBMSs taking into account simple selection

predicates described, e.g., in [Sel79]. Further, the load domain is used for the detection of

common subexpressions (see Section 4.2.2).

It should be remarked that the query can be further optimized by moving the subexpression

cube[190:310, 20:100, 300] >left_ind 127 into the cross product operation. This is demonstrated in

Example 4.3.

α

σ

×

MRI(cube) ROI(mask)

some_cells

andbin_ind

trimming[190:310,20:100]

section3,300

mask[190:310, 20:100]

127

>left_ind

cube[1:512, 1:512, 1:512]

trimming[1:100,1:200]

section3,300

cube[1:512, 1:512, 1:512]

α

σ

×

MRI(cube) ROI(mask)

some_cells

andbin_ind

mask[190:310, 20:100]>left_ind

cube[190:310, 20:100, 300]

cube[1:100, 1:200, 300]

127

I II

42 Chapter 4

4.2.1.2 Induced Operations

Rules for optimizing induced operations can be derived from mathematical laws of the cell

operations.

Theorem 4.2 (Associativity of Induction) Consider a scalar associative operation : T×T→T,

then the corresponding induced operations bin_ind, left_ind, and right_ind, as defined in

Definition 3.11, are associative as well. ◊

Proofs for the induction of associativity, commutativity, distributivity, idempotency, double

negation, and De Morgan’s rules can be obtained by inserting the induction definition into the

respective rule. As an example, we provide the proof for binary induction of Theorem 4.2.

Proof (Associativity of Binary Induction) Let : T×T→T be an associative operation with

T∈τ, bin_ind: [[T, D]] × [[T, D]] → [[T, D]] the corresponding binary induced operation with

D∈δ, and m1, m2, m3 ∈ [[T, D]]. Then the following holds:

m1 bin_ind (m2 bin_ind m3) = (Definition 3.11 Induced Operations)

marrayD,x(m1[x] marrayD,y(m2[y] m3[y])[x]) = (Definition 3.6 Cell Access)

marrayD,x(m1[x] (m2[y] m3[y])) = (Associativity of)

marrayD,x((m1[x] m2[y]) m3[y]) = (Definition 3.6 Cell Access)

marrayD,x(marrayD,y(m1[y] m2[y])[x] m3[y]) = (Definition 3.11 Induced Operations)

(m1 bin_ind m2) bin_ind m3 q.e.d.

Exploitation of associativity of induced operations like +, *, /, and, or leads to two optimizing

rules each. Given a scalar associative operation : T×T→T with its induced operations defined

according to Section 3.1.5.2 and with e1, e2∈T and e∈[[T, D]], the generic rules can be written

as

(e left_ind e1) left_ind e2 → e left_ind (e1 e2) (OR11)

e1 right_ind (e2 right_ind e) → (e1 e2) right_ind e (OR12)

Obviously, both rules reduce computation effort significantly as one multi-dimensional

operation (left_ind and right_ind) can be substituted by a scalar operation (). The potential

speed-up for this kind of optimizations is demonstrated in Section 7.2.3.

Using rule templates OR11 and OR12, we can instantiate rules OR11.1 to OR11.7 and

OR12.1 to OR12.7 for the associative operations supported (+, *, /, and, or, =, �). They are

listed in detail in Appendix B.

It should be noted that, due to the limited float precision and the restricted integer domain of

machine representations, general associativity can never be guaranteed. Therefore, practical

application of associativity rules always has to be decided considering overflows and

computation precision.

Array Query Processing 43

Further optimizing rules are derived from distributivity of two operations used for induction.

Theorem 4.3 (Distributivity of Induction) Consider a pair of scalar operations 1, 2: T×T→T

obeying distributivity (s1 2 s3) 1 (s2 2 s3) = (s1 1 s2) 2 s3 with si∈T. Then the

corresponding induced operations 1bin_ind, 1left_ind, 1right_ind and 2bin_ind, 2left_ind, 2right_ind, as

defined in Definition 3.11, are distributive as well. ◊

With the operands p1, p2, p3 ∈ { T, [[T, D]] } being either scalar or MDD expressions, and

(1, 2) ∈ { (+, *), (or, and), (and, or) } being, according to their operands, either scalar or

multi-dimensional operations, 24 rules of the following structure can be set up:

(p1 2 p3) 1 (p2 2 p3) → (p1 1 p2) 2 p3 (OR13)

In 15 of the 24 cases, reduction of computation effort is significant because not just a scalar

but an expensive multi-dimensional operation can be eliminated. We enumerate these rules

with OR13.1 to OR13.24.

Analogously, the rules of De Morgan can be induced and used for obtaining optimizing rules.

Theorem 4.4 (Induction of De Morgan’s Law) Consider a pair of scalar operations 1, 2:

T×T→T fulfilling De Morgan’s Law not(s1) 1 not(s2) = not(s1 2 s2) with si∈T. Then the

corresponding induced operations 1bin_ind, 1left_ind, 1right_ind and 2bin_ind, 2left_ind, 2right_ind, as

defined in Definition 3.11, are following De Morgan’s law as well. ◊

With the operands p1, p2∈{ T, [[T, D]] } and the operation pairs (1, 2)∈{ (and,or),

(or,and) } being, according to their operands, either scalar or multi-dimensional operations,

the application of De Morgan’s rules delivers 8 optimizing rules of the following form:

notind(p1) 1 notind(p2) → notind(p1 2 p2) (OR14)

The rule instantiations are enumerated with OR14.1 to OR14.8.

At this place, we omit 26 rather trivial optimization rules based on induction idempotency

(OR15.* to OR24.*) as well as on double negation (OR25.1 and OR25.2) and refer to

Appendix B for the comprehensive list.

4.2.1.3 Aggregation Operations

The category of aggregation operations leads to optimizing rules in combination with induced

operations. With p1, p2∈{ , [[T, D]] }, b∈[[, D]], the quantifiers some_cells and all_cells

as defined in Section 3.1, and the operations or and and being, according to their operands,

either scalar or multi-dimensional operations, the following rules are of special interest:

some_cells(p1 or p2) → some_cells(p1) or some_cells(p2) (OR26)

all_cells(p1 and p2) → all_cells(p1) and all_cells(p2) (OR27)

44 Chapter 4

The rules hold for the assumption that for a scalar boolean value b∈ , the quantifiers are

defined as some_cells(b) b and all_cells(b) b.

Rule OR26 pulls out disjunctions while condensing using logical or. This eliminates a multi-

dimensional operation and, additionally, leads to a potentially shorter execution time as the

scalar disjunction or can terminate the evaluation of the expression for such occasions where

the first operand delivers true (‘lazy evaluation’). Analogously, rule OR27 saves time when

the first operand delivers false. Additionally, both rules are an important preparation for

pushing down selection and application operations as it is described in Section 4.2.1.4.

Instantiation of the rule templates leads to rules OR26.1-OR26.4 and OR27.1-OR27.4.

some_cells(b) or all_cells(b) → some_cells(b) (OR28)

some_cells(b) and all_cells(b) → all_cells(b) (OR29)

some_cells(notind(b)) → not(all_cells(b)) (OR30)

all_cells(notind(b)) → not(some_cells(b)) (OR31)

Rules OR28 and OR29 save an expensive aggregation whereas rules OR30 and OR31

substitute the induced not operation by a less expensive scalar one.

Proofs for rules OR26 to OR31 can be given by substituting the operation definitions

analogously to the proof of rule OR1.

CPU time needed to compute the reduce operation is in the scale of unary induced operations.

Performance measurements and especially the time saved by the elimination of a quantifier

operation can be found in Section 7.2.2.

4.2.1.4 Extended Relational Operations

Conventional heuristic optimization rules for relational operators (e.g., described in [Jar84]

and [Ull89]) can be adapted to our relational model accordingly. For instance, consider

pushing selections into the cross product. A simplified rule with R ⊆ R(A1,...,Ar) and

S ⊆ S(B1,...,Bs) being relations of MDD tuples, condR: R(A1,...,Ar) → and condS: S(B1,...,Bs)

→ being multi-dimensional boolean expressions depending on just relation R and S, resp.,

looks like

σcondR and condS
(R × S) → σcondR

(R) × σcondS
(S) (OR32)

Its performance impact is potentially intensified compared to the conventional case because

evaluation of the multi-dimensional expressions condR and condS by far dominates the overall

response time (see Section 7.2.2).

Remark: The technique of dividing predicates into sub-predicates which have a minimal set

of input relations (e.g., condR,S = condR and condS), that is each input relation consists of at

Array Query Processing 45

least one attribute used in the predicate, is called predicate splitting and described, e.g., in

[Ull89].

Rules concerning the generalized projection operation can be derived analogously.

Comparable to the rule of pushing relational projections into joins, rules for moving the

corresponding application operation into the cross product can be set up. In the following, we

present three rules with their preconditions concerning the application’s operations getting

less restrictive but, at the same time, the rules becoming more complicated. The first rule is

able to move whole application operations into the cross product; the second one just moves

individual multi-dimensional expressions into the cross product; and the third one may move

multi-dimensional subexpressions into the cross product. It should be remarked that the first

two rules are specializations of the third one. Nevertheless, they are useful because their

application is rather simple compared to the third rule.

Movement of application α into the cross product ×
Let R ⊆ R(A1,...,Ar) and S ⊆ S(B1,...,Bs) be relations of MDD tuples. In case the application’s

operations opi with i=1...n just depend on relation R, which means that multi-dimensional

expressions opi are of type R(A1,...,Ar) → νi with νi∈{ [[Ti,Di]], Ti } being either scalar or

multi-dimensional result types, the optimization rule is simply written as

αop1,..., opn
(R × S) → αid1,..., idn

(αop1,..., opn
(R) × S) (OR33)

A similar rule can be set up for the case that expressions opi just depend on relation S. See

rule OR34 in Appendix B.

Movement of individual expressions of application α into the cross product ×
If the application operation consists of expressions depending just on relation R and S

respectively as well as on expressions depending on both relations, the optimization rule for

moving individual expressions into the cross product gets more complicated:

Let IR and IS be the sets of indices of MDD expressions opi just depending on relation R and S

respectively. Then the expressions’ signatures, for i=1...n, look like

opi: R(A1,...,Ar) → νi for i ∈ IR

opi: S(B1,..., Bs) → νi for i ∈ IS

opi: R(A1,...,Ar) × S(B1,..., Bs) → νi otherwise

Now operations opi with i∈IR can be moved to input stream R and operations opi with i∈IS to

input stream S of the cross product. With c(IR, i) and c(IS, i) delivering the i-th index element

of set IR and IS, respectively, sorted in any order, the optimization rule can be written as

αop1,..., opn
(R × S) →

αop’1,..., op’n
(αopc(IR, 1),..., opc(IR, |IR|), id1,..., idr

(R) × αopc(IS, 1),..., opc(IS, |IS|), id1,..., ids
(S)) (OR35)

46 Chapter 4

Identity operations idi pass the original attributes of R and S because they might be needed by

MDD expressions not just depending on attributes of relations R or S (opi with i∉IR ∪ IS).

After the cross product is computed, the operations op’1,..., op’n are responsible for passing

the precomputed expression results to the right positions and for computing the remaining

expressions.

With ai∈dom(Ai), bi∈dom(Bi), ti∈νc(IR,i) for i=1...|IR| and ui∈νc(IS,i) for i=1...|IS|, operations op’i:

νc(IR, 1) × ... × νc(IR, |IR|) × R(A1,..., Ar) × νc(IS, 1) × ... × νc(IS, |IS|) × S(B1,..., Bs) → νi are defined as

Movement of individual subexpressions of application α into the cross product ×
In the following, we assume that not complete multi-dimensional expressions of the

application operation depend on single inputs of the cross product but at least subexpressions

fulfill this condition. This means that operations opi: R(A1,...,Ar) × S(B1,..., Bs) → ωi may be

decomposed into operations oprj,i: R(A1,...,Ar) → µj,i with j=1...nri and opsk,i: S(B1,...,Bs) → νk,i

with k=1...nsi depending just on attributes of relation R and S respectively. nri and nsi denote

the number of isolated subexpressions of operation i depending just on R and S respectively

and µj,i ∈ { [[Tj,i,Dj,i]], Tj,i }, νk,i ∈ { [[Tk,i,Dk,i]], Tk,i }, ωi ∈ { [[Ti,Di]], Ti } represent either

scalar or multi-dimensional types. Further, we assume functions opfi: µ1,i × ... × µnri,i
 ×

R(A1,...,Ar) × ν1,i × ... × νnsi,i
 × S(B1,...,Bs) → ωi being able to combine the results of functions

oprj,i and opsk,i to the original functions opi.

With ai∈dom(Ai) and bi∈dom(Bi) the decompositions of opi can be described as following:

opi(a1,...,ar, b1,...,bs) =

opfi(opr1,i(a1,...,ar),...,oprnri,i
(a1,...,ar), a1,...,ar, ops1,i(b1,...,bs),...,opsnsi,i

(b1,...,bs), b1,...,bs)

Besides the results of functions opri and opsi the original attributes are passed to the

combining functions opfi in order to be able to compute the final results. The final

optimization rule is written as

αop1,..., opn
(R × S) →

αop’1,..., op‘n
(α�opr1,1,...,oprnr1,1),...,(opr1,n,...,oprnrn,n),id1,..., idr

(R) ×

α�ops1,1,...,opsns1,1),...,(ops1,n,...,opsnsn,n),id1,..., ids
(S)) (OR36)

After the cross product of expressions depending just on R and S respectively are computed,

operations op’i ensure correct invocations of opfi in order to compute the final results. With

tj,i∈µj,i, uk,i∈νk,i for j=1...nri, k=1...nsi, and i=1...n, they are defined as

()
()





∪∉
∈
∈

= −

−

++

SRsri

SiIcrI

RiIc

sIrIi

IIibbaaop

Iiid

Iiid

bbuuaattop’
SR

R

SR

for,...,,,...,

for

for

 : ,...,,,...,,,...,,,...,

11

),(

),(

1111 1

1

Array Query Processing 47

op’i((t1,1,..., tnr1,1),..., (t1,n,..., tnrn,n), a1,...,ar, (u1,1,..., uns1,1),..., (u1,n,..., unsn,n), b1,...,br) =

opfi(t1,i,..., tnri,i
, a1,...,ar, u1,i,..., unsi,i

, b1,...,bs.)

Determination of functions oprj,i and opsk,i is performed using the element trees of the query

tree. Starting at the leafs, expressions are simply extended until the subtrees depend on more

than one input stream of the cross product.

The speed-up of the optimized plan directly depends on the evaluation costs of expressions

oprj,i and opsk,i and on the ratios of the cross product cardinality to the input stream

cardinalities because each subexpression moved into the cross product just has to be evaluated

for each tuple of the input stream and not for each element of the cross product anymore.

Detailed examinations on the speed-up can be found in Section 7.2.4.

Movement of individual subexpressions of selection σ into the cross product ×
Movement of subexpressions into the cross product makes sense for boolean multi-

dimensional expressions of selection operations as well.

Again, we assume selection condition cond: R(A1,...,Ar) × S(B1,..., Bs) → being

decomposable into subexpressions oprj: R(A1,...,Ar) → µj with j=1...nr and opsk: S(B1,...,Bs) →
νk with k=1...ns depending just on attributes of relation R and S respectively. nr and ns denote

the number of isolated subexpressions depending just on R and S respectively and

µj∈{ [[Tj,Dj]], Tj }, νk∈{ [[Tk,Dk]], Tk } represent either scalar or multi-dimensional types.

Further we assume functions opf: µ1 × ... × µnr × R(A1,...,Ar) ×ν1 × ... × νns × S(B1,...,Bs) →

being able to combine the results of functions oprj and opsk to the original condition cond.

With ai∈dom(Ai) and bi∈dom(Bi) the decomposition of cond can be described as

cond(a1,...,ar, b1,...,bs) =

opf(opr1(a1,...,ar),...,oprnr(a1,...,ar), a1,...,ar, ops1(b1,...,bs),...,opsns(b1,...,bs), b1,...,bs)

Now we are able to define the optimization rule as

σcond(R × S) → σopf(αopr1,...,oprnr,id1,..., idr
(R) × αops1,...,opsns,id1,..., ids

(S)) (OR37)

Example 4.3 We illustrate the application of rule OR37 using the query tree which is

introduced in Example 3.5 and rewritten with regard to load optimization in Example 4.2.

Subexpression cube[190:310, 20:100, 300] >left_ind 127 is moved to input stream MRI(cube) of the

cross product operation.

48 Chapter 4

Figure 9 Example for Extended Relational Rewriting

Again, these rules are very promising as MDD operations in application expressions are much

more expensive than scalar operations. As evaluation of MDD expressions is usually very

time consuming, the CPU time optimization factor evaluation_time_per_tuple(

cube[190:310,20:100,300] >left_ind 127) / |S| is of high impact on the overall query response time.

Benchmarking results of the described scenario are presented in Section 7.2.4.

Further optimization techniques, as for example premature termination of the some_cells

aggregation, are considered by the tile-based execution strategy and described more detailed

in Section 4.4.1.

Since the application of each optimization rule produces an evaluation plan with reduced

costs either by reducing the number of multi-dimensional operations or by shrinking the set of

tuples on which multi-dimensional operations have to be applied, the rule system consisting

of our optimization rules is terminating. However, as we can not guarantee confluence for the

presented rule system and hence potentially rewritten plans are not unique, we present some

heuristics for the application of the rule system in order to achieve a standardized plan in the

first step and an optimized plan in the second one.

α

σ

×

MRI(cube)ROI(mask)

some_cells andbin_ind

mask[190:310, 20:100]c

cube[1:100, 1:200, 300]

127

>left_ind

cube[190:310, 20:100, 300]

α

c

idcube

α

σ

×

MRI(cube) ROI(mask)

some_cells andbin_ind

mask[190:310, 20:100]

127

>left_ind

cube[190:310, 20:100, 300]

cube[1:100, 1:200, 300]

Array Query Processing 49

4.2.2 Standardized Query Form

Concerning the relational operations, we do not have any demand for a standardized form

and, therefore, leave it open to adapt standardized query representations used in conventional

RQP (e.g., described in [Jar84]). On the contrary, for our multi-dimensional expressions it is

rather important to have some kind of common starting point for the application of the

optimization heuristics described in 4.2.3. The standardization process consists of the

following steps:

1. Evaluate as many constant subexpressions as possible. In the first step, it is the aim to

evaluate as many constant and potentially multi-dimensional subexpressions as possible in

order to simplify the query. This is of primary importance, especially since cell

expressions (used in the operations marray and condense) have to be evaluated for each

cell of each MDD value. In a bottom up process through the query tree, constants are

grouped together using commutative, associative, and distributive laws in order to be able

to pre-evaluate them. In this context, constant means invariant regarding the inner most

loop. Operations consisting only of constant operands are evaluated and replaced by the

resulting constant.

2. Prepare boolean expressions for the application of optimization rules. In order to be able

to frequently apply rule OR26, operands of the quantifier some_cells() are transformed to

disjunctive normal form (DNF), whereas for the employment of rule OR27, it is important

to transform operands of all_cells() to conjunctive normal form (CNF). Further, for

applying rule OR32 we transform boolean multi-dimensional expressions to CNF.

Normalization of the expressions is rather straightforward using De Morgan’s rules, the

distributive rules, and the rule of double negation (see Appendix B).

3. Prepare induction expressions for the application of optimization rules. The precondition

for optimization rules OR11 and OR12 is to have a sequence of unary induced operations

of the same type which is either left induced (multi-dimensional operand on the left side)

or right induced (multi-dimensional operand on the right side) operations. In many cases,

this can be achieved by simply using the commutative law.

4.2.3 Rewriting Heuristics

In our rewriting phase, transformations are driven by heuristic rules which are supposed to

improve evaluation in terms of speed and memory usage. There is no guarantee to produce the

optimal expression to a given one, but adhering to the following principles turned out to be

generally useful:

50 Chapter 4

1. Perform geometric operations as early as possible. As geometric operations reduce data,

they have an high impact on disk access, memory usage of intermediate results, and

evaluation time of MDD expressions. Therefore, they are moved down as far as possible

which means to the lower borders of Dimensional Data Areas (DDAs, defined in Section

4.1). This starting point of a DDA is either (1) an access node, (2) an MDD constant, or

(3) an marray constructor. In case (1), the geometric operation is accomplished in

combination with storage access, which means that disk access is reduced. Necessary

steps are described more detailed in Section 4.2.1.1. This mechanism is similar to the

index and segment scans of System R described in [Sel79], which allow the specification

of selection predicates in order to reduce calls to the Storage System Interface. Case (2)

means to cut the constant and, in case (3), the definition domain of the marray constructor

is reduced leading to less storage requirements for the intermediate result and less

computation effort for the generated MDD value. We call the process of pushing down

geometric operations and merging them with the starting node of the DDA load

optimization. It is first introduced in Section 4.2.1.1.

2. Reduce number and overall cardinality of Dimensional Data Areas as much as possible.

Dimensional Data Areas (DDAs) connect expensive operations on multi-dimensional

values. From an optimization point of view, it is the aim to reduce the number of multi-

dimensional operations by either removing multi-dimensional operations (e.g., rules

OR13, OR28, OR29) or transforming multi-dimensional operations into scalar ones (e.g.,

rule OR11, OR12, OR26, OR27) which leads to shrinking or splitting the involved DDAs.

In both cases, the overall cardinality of the resulting DDAs, which is the number of

dimensional data edges, is smaller than the cardinality of the original DDA. Additionally,

the overall reduction of DDAs leads to better preconditions for a tile-based execution

strategy (see Section 4.4.1). More formal, it is the aim to minimize |DDAs| and ∑
∈DDAsp

p .

The following heuristic principles are well known in RQP [Ull89], but their importance

increases with AQP because of the difference of operand size and operation complexity they

are dealing with (see Section 1.1):

3. Perform applications as early as possible. Usually, the most time consuming part of AQP

is the evaluation of MDD operations. These operations are combined to MDD expressions

and executed on each tuple by the application operation. Therefore, the primary goal of

heuristic rewriting is to perform these MDD operations on as few tuples as possible.

Similar to the rule of pushing down projections in RQP, our aim is to push down the

application operation especially into the cross product (OR33 to OR36).

4. Perform selections as early as possible. As with RQP, selections are moved towards the

leafs of the operator graph in order to reduce the result set as early as possible (e.g.,

OR32). If the selection predicate depends on a multi-dimensional attribute, the relation

Array Query Processing 51

will have to be read by a table scan and the selection predicate will have to be evaluated

for each tuple. Selection (sub-) predicates formulated on scalar values should be cascaded

and moved over multi-dimensional selection predicates to retain the chance on an index

supported selection/join.

5. Look for common subexpressions. Particularly since disk access costs with MDD

expressions, in most cases, are by far dominated by CPU costs, it would be sensible to

precompute common subexpressions (CSEs) once and store them as an intermediate result

if necessary. It is even more efficient to integrate CSEs by means of the application

operation and use a pipelined evaluation technique for the whole expression in order not

to materialize the intermediate result. This is described in more detail in Section 4.2.4.

4.2.4 Exploitation of Multi-dimensional Common Subexpressions

As it is shown in Section 7.2.2, the performance of array queries carrying at least one MDD

operation, which is different from the geometric ones, is CPU-bound. Therefore, detection

and exploitation of multi-dimensional common subexpressions (CSEs) is of primary

importance for a convenient query response time. CSEs are examined after load optimization

rewriting (cf. Section 4.2.1.1) because, at this stage, geometric operations have been pushed

down to the leafs of the query tree and merged with the load domains of MDD variables

which enables to exploit similar expressions on overlapping load domains. This technique is

described in the following.

The basic algorithm for finding CSEs follows the one described in [Hal76] which compares

structural equality of sub-trees of the query tree. Moreover, MDD variables of multi-

dimensional expressions suggest to additionally exploit their spatial domains in order to

increase the probability for the presence of CSEs. As described in Section 4.2.1.1, during the

rewriting phase, geometric operations are pushed down to multi-dimensional sources (MDD

variables, constants, and marray constructors) which are augmented with their so called load

domain. The load domain of an MDD variable is the smallest spatial domain, which means

data area, sufficient to determine the result of the query tree branch and it is used to minimize

access to the storage manager. The load domain is introduced in Section 4.2.1.1. With this, we

are ready to formulate the basic idea:

Two multi-dimensional expressions will be equal with respect to their usability as CSE if they

are of the same structure, which means that they realize the same function depending on

MDD variables, and if the load domains of their corresponding MDD variables are

overlapping. Now the CSE is computed using their joint function but with MDD variables

carrying the union of the original load domains. The original functions are then substituted by

the CSE together with an additional geometric operation isolating their relevant part again.

52 Chapter 4

Definition 4.6 (Equal Structure for CSEs) Let ui, vi∈[[Ti,Di]] be MDD variables and

consider function ld: [[τ,δ]] → δ denoting the load domain of an MDD variable. Then, for a

multi-dimensional expression e: [[T1,D1]] × ... × [[Tn,Dn]] → ν with ν∈{ [[Tr,Dr]], Tr } being

either a multi-dimensional or a scalar result type, equal structure for CSEs is defined as

follows:

equal_structure(e(u1,..., un), e(v1,..., vn)) ⇔ ui = vi ∧ ld(ui) ∩ ld(vi) ≠ 0 for i=1..n ◊

Evaluation of CSEs is done for the union or the minimal bounding box of the spatial

domains: cse e(m1,..., mn) with mi ui and ld(mi) ld(ui) ∪ ld(vi) for i=1...n. In case that

the union is not rectangular, it is filled with null-values. The computed CSE gets an internal

attribute name and it is attached to the intermediate relation by an application operation. In the

upper tree, the CSE can be accessed by its name. The original load domains of the substituted

expressions are used as load domains for the CSE variable.

The decision on whether detected CSEs should be exploited or not has to be taken based on a

cost function (we suggest to use the Array Cost Model developed in Chapter 5) because

evaluation of CSEs on the union of their original spatial domains may cause significant

overhead.

Finally, CSEs are integrated on the logical level by using the application operation. In case

the CSE does not consist of any sort operation, its evaluation can be pipelined without any

additional disk I/O. However, as CPU time is dominating, usually it is worth exploiting CSEs

even in case of their intermediate storage on disk.

Example 4.4 In order to demonstrate CSE exploitation, we consider the following query on

relations R(a) and S(b):

α trimming[1:200, 1:200](a *bin_ind b)(σsome_cells(trimming[1:150,1:150](a *bin_ind b) >left_ind 127) (R × S))

After load optimization, the trimming operations are eliminated and the MDD variables carry

their load domains written as subscripts:

α(a[1:200,1:200] *bin_ind b[1:200,1:200])
(σsome_cells(a[1:150,1:150] *bin_ind b[1:150,1:150]

) >left_ind 127) (R × S))

Expression e(m1, m2) = m1 *bin_ind m2 is detected as a potential CSE and as equal_structure(

e(a[1:200,1:200], b[1:200,1:200]), e(a[1:150,1:150], b[1:150,1:150])) holds, the CSE can be exploited.

Necessary rewriting of the query tree is shown in Figure 10:

Array Query Processing 53

Figure 10 Common Subexpression Integration Rewriting

Exploitation of multi-dimensional CSEs turned out to be extremely relevant for the overall

query performance in a practical environment because CPU time of multi-dimensional

expressions dominates the overall response time and the same multi-dimensional expressions

used to prepare the query result (in the application operation representing the SQL select

clause) are usually used to phrase the selection condition (sometimes with different spatial

domains). An example query processing speed-up for CSE exploitation can be found in

Section 7.2.4.

4.3 Transformation

At the shift from logical to physical level, which is the transformation phase, usually several

different evaluation plans are generated by mapping logical operators to physical plan

operators. Afterwards, an optimal plan is chosen using cost functions based on physical

figures.

As our relational model does not support joins on MDD attributes explicitly (see Definition

3.18) and selection predicates on multi-dimensional expressions are not supported by indices

(see discussion on indices which are defined on attributes derived from MDD values in

Section 1.1), accessing a relation (with just multi-dimensional selection predicates) means

scanning the relation in any case and the only way to realize cross product operations is by

nested loops. Consequently, there are no alternatives of physical algorithms for the relational

operations, which means that transformation is straightforward and no plan has to be chosen.

If the selection condition is a conjunctive or disjunctive combination of predicates on scalar

α *bin_ind

σ

×

R(a)

a[1:200,1:200] b[1:200,1:200]

S(b)

some_cells

<left_ind

α

α

×

R(a)

c[1:200,1:200]

c[1:150,1:150]

S(b)

some_cells

<left_ind

σ

cse as c

*bin_ind

a[1:150,1:150] b[1:150,1:150]

*bin_ind

a[1:200,1:200] b[1:200,1:200]

127 127

54 Chapter 4

attributes and multi-dimensional expressions, the first group of predicates can be supported by

indexes (see Section 5.2.4 on Integration of Array Query Processing into Relational Query

Processing).

Efficient execution algorithms for MDD operations have to take into account the tiling layout

of the MDD values which indeed has a large optimization potential. For the first three

specification levels of multi-dimensional attribute domain types (see Section 3.3), the tiling

layout is different for each MDD item of a table column. In these cases, the tiling structure

cannot be considered at this stage but only in the execution phase, where the execution

algorithm dynamically adapts to the current tiling layout. The fourth specification level fixes

the tiling layout for table columns which means that all MDD values of one table column

share the same tiling layout. Hence, the scheduling of tile reads can be determined already in

the transformation phase.

The following subsections describe different plan operator algorithms together with their

specific tile read strategies for our logical MDD operations. As outlined above, it depends on

the attribute’s domain specification level whether the algorithms taking into account tiling

structures can be fixed already in the transformation or just in the execution phase.

4.3.1 Physical Plan Operators for MDD Operations

We start with a short description of straightforward evaluation algorithms for the elementary

operations and continue to describe evaluation aspects of the derived operations considering

particular optimization techniques, e.g., choice of tile access sequence. A detailed description

of evaluation algorithms performed on single tiles is given in [Wid98]. We want to remark

that geometric operations (trimming and section) are not considered at this stage anymore

because these operations are moved down within dimensional data areas (DDAs) and merged

with their particular starting nodes during load optimization which is described in Section

4.2.1.1.

4.3.1.1 Elementary Operations

Basic evaluation algorithms for both elementary operations Marray Constructor and

Condenser as defined in Section 3.1.3 are straightforward. The constructor marrayD,x(ex)

iterates through spatial domain D in any order and evaluates cell expression ex for each point

of D. Analogously, operation cond ,D,x(em,x) iterates through spatial domain D in any order,

evaluates cell expression em,x for each point of D and aggregates the expression results using

function .

Cell expressions usually consist of one or more cell accesses to multi-dimensional values,

coordinate computations, and other scalar operations. Our experiences show that the

described evaluation techniques together with dynamic interpretation of the cell expressions

Array Query Processing 55

lead to poor performance compared to the specialized evaluation algorithms of the derived

operations. To achieve more convenient evaluation performance for the elementary

operations, one has to analyze the cell expressions in order to be able to optimize cell accesses

to tiles of multi-dimensional values and to compile the cell expressions. Both is left open for

future work.

4.3.1.2 Unary Induced Operations

Unary induced operations un_ind(m) as defined in Section 3.1.5.2 get one multi-dimensional

operand. Each cell of the multi-dimensional value is processed according to operation

independently of each other. Therefore, each tile of m∈[[T,D]] can be processed individually

which is expressed more formally by the following equation assuming KD = { D1,...,Dn }∈κD

being the tiling layout of multi-dimensional value m and the union operator ∪ able to merge

multi-dimensional values:

U
4444 34444 21

oo
n

1
__

))(()(

domainwith
on tileoperation

=
=

i

i

Dindunindun

D

mtrimmingm
i

The proof can be produced by substituting the definitions of unary induction (Definition 3.11)

and trimming (Definition 3.9). The free choice of the tile access sequence can be exploited by

following techniques:

− In case the induced operation takes part of a dimensional data area (DDA) with a tile-

based execution strategy, the tile sequence can be prescribed by its input stream

(described in Section 4.4.1).

− In case the induced operation is the first operation to read tiles from disk, tiles can be read

most efficiently in the sequence corresponding to their physical storage (bulk load).

− Tile granularity can be used for intra-operator parallelization which means that unary

induced operations on tiles can be performed simultaneously.

Due to the limited set of operations suitable for the condensing operation (e.g., +, -, *, /,

min, max, and, or), the evaluation algorithm needs not to interpret a general function but can

employ precompiled code which is essential for operations invoked on cell level with respect

to performance.

4.3.1.3 Binary Induced Operations

With binary induced operations (which means operations with two multi-dimensional

operands), corresponding, overlapping tiles have to be in main memory at the same time. As

the tiling scheme for MDD values is not fixed (see Section 3.2), it is very complex to find the

optimal tile read sequence with respect to I/O costs. The following ideas are based on the

work described in the Diplomarbeit (master thesis) of A. Haftmann [Haft97].

56 Chapter 4

The problem can be modeled as a bipartite graph G = (V,E) where the node set V can be

divided into two distinct subsets X and Y, so that no edge connects two nodes of X or two

nodes of Y, which means E ⊆ X × Y. Each node of X corresponds to one tile of the first

operand and each node of Y to one of the second operand. The nodes are connected with an

edge in case the tiles they are representing have an overlapping spatial domain. A particular

read sequence of the tiles can now be expressed as an order defined on the edges. Figure 11

shows the tiling scheme of two 2-dimensional MDD values, the corresponding tiling graph

and an exemplary order on the edges.

Figure 11 Tiling Graph for two MDD Objects

The problem is now to find an order Omin = <k1,...,k|E|> with ki∈E and ∪i=1...|E|{ki} = E (i.e.,

ki�kj for i�j) on the edges which leads to an evaluation with minimal disk access.

We will now concentrate on the determination of the occurring I/O costs. At first, we present

a cost function depending on the number of edges and, afterwards, we will show how the

number of edges depends on the number of tiles. Assuming that tiles are approximately equal

in size, costs can be expressed in the number of tiles which have to be accessed. If further no

cache is available and, hence, a maximum of two tiles is kept in memory, evaluation of one

edge needs at least one and at most two tiles to be read except of the first edge which always

needs to read two tiles. This leads to the following recursive definition of a cost function on

an evaluation order < k1,...,k|E| >:

This means that, depending on the scheduling algorithm and its evaluation order, the number

of disk accesses is between E+1 and 2*E. The lower limit is reached, e.g., with an

Hamilton circle which is a path starting at one node, passing each node exactly once, and

() () () () () ()

() 2cost

otherwise2

for 1
costcost

1

2t21t1t11t
1-t1t1

=


 =∨=

+= −−

k

kkkk
,...,kk,...,kk

y3

y1

y4

y2

x1

x2

x3

y1

y2

y4

y3

x4

1

x1 x2

x3

3

2
4

5

6
x4

Array Query Processing 57

ending at the start node again. One can also think of other graph structures with the

characteristics that an edge enumeration exists where two edges following each other have

one node in common. Not fully connected graphs are decomposed into n connected subgraphs

with E+ n as the new lower limit.

The problem of finding the optimal edge enumeration with respect to minimization of the cost

function given above is isomorphic to the scheduling problem of a join operation in a paging

environment which is very well described in [Mer81]. The paper shows that determination of

the existence of an optimal solution is NP-complete. It gives two sufficient conditions for the

existence of a solution reaching the lower limit which are based on the Hamilton path

condition and the Euler path condition. It further shows that these conditions can be used to

derive heuristic procedures for near optimum solutions.

It can be observed that the cost function given above depends on the tiling graph and in

particular on the number of edges |E|. In order to be able to formulate a more convenient cost

function on the number of tiles, we will now discuss different potential tile configurations and

their implications on tile overlaps and hence on the number of edges in the tiling graph.

Figure 12 shows four different tile configurations a) to d) of multi-dimensional operands used

for a binary induced operation. Light and dark gray areas represent the tiling of the first

operand (X) and dashed lines depict tile borders of the second operand (Y).

Figure 12 Tile Configurations for Binary Induced Operations

Configurations a) and b) use tiles of constant size and shape. The simplest case one can think

of is configuration a) where tile borders of both operands are matching exactly leading to |X|

and |Y| edges respectively. The number of overlapping tiles of configurations b) and c) depend

on the number of dimensions referred to as d. We get |X|*2d edges for b) and |X|*3d edges for

c). Configuration d) represents the worst case with |X|*|Y| edges in the tiling graph.

Theoretically, one can state that the number of edges may vary between max(|X|, |Y|) and

|X|*|Y|. Practical observations suggest that configuration d) is a pathological case and that

configuration c) represents a more realistic limit with |X|*3d edges leading to an upper limit of

2*|X|*min(|Y|, 3d) for tile accesses. Without loosing generality we assume that |X| ≤ |Y| holds.

a) b) c) d)

58 Chapter 4

This limit still assumes a cache size of two tiles which leads to the question about the

necessary cache size which is large enough to reduce the number of tile accesses to |X|+|Y|.

Now if we consider a scan line sequence on the tiles of the first operand, the cache has to be

large enough to store all tiles of the corresponding scan line of the second operand which is

similar to the problem of determining the necessary cache size for the Tetris algorithm

described in [Mar99a]. In our case, cache requirements may be reduced by following a space

filling curve instead of a scan line. However, more specific statements on the necessary cache

size require a more detailed specification of the tiling layout which is not within the scope of

this thesis. We refer to [Fur99] for detailed information on this topic.

Summarizing, one can state that the heuristic scheduling algorithm is cheap compared to I/O

costs of multi-dimensional tiles. In case of multi-dimensional attributes with fixed tiling

layouts (this corresponds to specification level four of multi-dimensional attributes described

in Section 3.3), scheduling for all tuples can be determined already in the transformation

phase which even more justifies the computation overhead. On the other hand, practical

experiences have shown that, in the majority of the cases, the working tile set of both

operands can be kept in main memory when following a scan line. Further, considering the

fact that computation time of induced operations extremely dominates the overall query

processing time (this is shown in Sections 5.1 and 7.2.2), optimization of the scheduling

algorithm is not of primary importance anymore. CPU time becomes even more dominating

in case of huge MDD values which are exactly the candidates for a too small cache.

It should be noted that sequential disk access is not of primary importance as well because

tiles consist of several disk pages already (usually between 20 to 80) which are clustered and

read sequentially. Therefore, positioning time per tile may be neglected.

4.3.1.4 Aggregation Operations

All derived aggregation operations described in Section 3.1.5.3 depend on the reduce

operation reduce ,D(m) which provides the basic evaluation template parameterized with an

associative and commutative condensing operation : T × T → T with T ∈ τ.

The reduce operation does not prescribe any sequence to visit and aggregate the cells of

spatial domain D because the condensing operation is associative and commutative. Given an

arbitrary tiling layout KD = { D1,...,Dn }∈κD of multi-dimensional value m∈[[T,D]] consisting

of n∈ tiles with Di∈δ, the reduce operation can be written as:

reduce ,D(m) reduce ,D1
(m) ... reduce ,Dn

(m)

Considering again associativity and commutativity of , the equation shows that even the

sequence in which involved tiles are read can be chosen freely. The proof for this equation

can easily be produced by substituting the definitions of reduce (Definition 3.12) and tiling

layout (Definition 3.16).

Array Query Processing 59

Analogously to unary induced operations, we can record that aggregation can be performed

tile by tile with no order prescribed. Again, this degree of freedom can be exploited by the

following execution techniques:

− In case the aggregation operation takes part of a dimensional data area (DDA) with a tile-

based execution strategy, the tile sequence can be prescribed by its input stream

(described in Section 4.4.1).

− Tile read sequence can be adapted to physical storage order which allows bulk loading.

− Tile granularity can be used for intra-operator parallelization which means that

aggregation on tiles can be performed simultaneously. It should be remarked that the

reduce operation owns the so called distributivity property introduced by [Gra96] which is

a sufficient parallelization criterion for user-defined SQL aggregates [Jae98].

4.4 Execution

Execution of the query tree follows a demand-driven strategy [Gra93]. One result item after

another is computed on request keeping memory requirements of intermediate results at a

minimum which is of special interest when dealing with huge amounts of data as we do. Each

set tree node represents a processing unit supporting the open-next-close protocol in order to

initialize the unit, compute the next result item, and, finally close the unit and free used

resources again.

As our tuple elements can be of huge size, it is of primary importance to keep the processed

data units small in order to save main memory for intermediate results, to keep the disk swap

rate at a minimum, and to increase the pipelining degree of execution. Therefore, the demand-

driven execution strategy is performed on different data granularities:

− tuple granularity within Relational Data Areas (RDAs),

− scalar granularity within Scalar Data Areas (SDAs), and

− tile granularity within Dimensional Data Areas (DDAs).

Considering that execution on tuple/page and scalar/page granularity is well known in RQP,

the next subsections concentrate on the examination of problems and optimization potentials

emerging with tile-based execution.

4.4.1 Tile-based Execution (inter-operator)

In contrast to element trees, evaluation granularity in the set tree corresponds to MDD items

at any time. In the element trees, where operations are applied to tuples of MDD items,

execution can partly be based on tiles. Pipelining on tile granularity is possible within

Dimensional Data Areas (DDAs, defined in Section 4.1) of the element trees. This means that

the execution process is driven by tile demand, so the result of the DDA is computed tile by

60 Chapter 4

tile which leads to the term Tile-based Execution. This finer execution granularity has several

benefits:

− Memory requirements of intermediate results within DDAs are reduced because not the

whole MDD has to be materialized anymore but just one tile at a time, and, at the

transition to the upper SDA or RDA, the aggregation value has to be stored.

− In case the aggregation result can be determined without reading the whole tile stream,

disk access and computation time are reduced. This occurs mainly with the quantifiers

some_cells and all_cells which, on the other side, are used at least once in each condition

clause of a selection operation.

− In many cases, tile iteration sequence can be chosen taking into account tiling layout and

physical storage order thereby optimizing disk access. Whether the sequence in which

tiles from an MDD object are read can be chosen freely or not, depends on the MDD

operations involved which is explained in Section 4.3.1.

4.4.2 Runtime Idempotencies

Further, as operations on usually very large MDD values are very expensive, application of

idempotency rules at runtime is of primary importance for fast execution. For instance, the so

called lazy evaluation of boolean expressions can spare the evaluation of whole

subexpressions especially if the rewriting phase has ordered the operations in a sequence most

probable to support premature evaluation termination (see example in Section 4.1).

4.5 Integration of Array Query Processing into Relational Query

Processing

Usually, multi-dimensional expressions are part of queries operating on both conventional

attributes and multi-dimensional attributes. Although this thesis concentrates on Array Query

Processing (AQP), this section provides some thoughts concerning the integration of AQP

into traditional Relational Query Processing (RQP). The discussion is structured according to

the processing phases rewriting, transformation, and execution.

In the rewriting phase, the conventional heuristics of moving down selections and projections

(our application operation) and perform most restrictive joins first may not lead to efficient

plans in the presence of expensive multi-dimensional expressions, e.g., in case the most

restrictive join consists of an expensive, CPU-bound multi-dimensional expression. The first

approach for a solution of this problem is to extend the heuristics and to perform operations

on scalar values first. In the presence of several multi-dimensional predicates, this heuristics

is not sufficient. An appropriate technique solving the problem is to order the operations in a

sequence taking into account their relative selectivity and evaluation costs which needs to

employ a cost model, e.g., the Array Cost Model of Chapter 5.

Array Query Processing 61

In the transformation phase, logical operations are mapped to physical plan operators. Since

multi-dimensional operations are mapped to exactly one physical operator (see Section 4.3),

the overall search space for an optimal plan is not extended. At this stage, there is almost no

interdependence between relational and array operations and hence the set of physical plan

operators just has to be extended by the multi-dimensional plan operators described in Section

4.3.1.

In the execution phase, the usually tuple- or page-based execution strategy has to be extended

by the tile-based execution strategy introduced in Section 4.4.1 which turned out to be

essential for efficient array query execution.

It should be remarked that much work reported in the area of object-oriented and object-

relational systems and in particular in connection with processing of expensive user-defined

functions deals with similar problems, e.g., processing of expensive predicates (e.g., [Hel98])

and large objects which are physically stored outside of a tuple’s physical record (e.g.

[OCo98]).

4.6 Summary

In the discussion of the traditional query processing phases, on logical level, transformation

rules derived from the adapted relational model as well as from the MDD model, an

optimization heuristics, and adequate exploitation of common subexpressions were presented.

As array queries including any operation on cells are strongly CPU-bound, it is the aim of the

rewriting phase to reduce the number of array operations on the one hand, and, on the other

hand, to minimize the number of tuples on which the expensive operations have to be

evaluated. It emerged that efficient execution algorithms, exploiting the physical storage

layout, can just be selected in the transformation phase in case of attribute definitions with a

fixed tiling layout. In the case of individual tiling on MDD value level, algorithms are chosen

dynamically while executing the query. Special plan operators minimizing tile reads and cell

iteration are discussed for the derived MDD operations. The execution strategy presented uses

data granularities as small as possible in order to reduce memory requirements for

intermediate results and to obtain a high pipelining degree. Besides the tuple/page granularity

between relational operations, we use scalar value and tile granularity to evaluate multi-

dimensional expressions.

An analytical examination of the cost savings achievable by the optimization techniques

presented can be derived from the Array Cost Model introduced in Chapter 5 whereas Chapter

7 gives an experimental demonstration of typical speed-ups.

Array Cost Model 63

Chapter 5
Array Cost Model

The main purpose of a query processing cost model is to provide a priori knowledge of

quantities, such as the time taken for running a query and characteristics of the query result

like its size and distribution. As in most cases, accurate computation of these parameters

requires actually running the query, the cost model just gives estimates. These predictions can

be exploited by several applications:

− Optimization With declarative query languages such as SQL, the DBMS has the

responsibility of selecting an execution plan to answer a query which is as efficient as

possible. Therefore, a cost-based optimizer enumerates a set of semantically equivalent

execution plans for a query which potentially differ in operation order, operation

implementation, and available index structures. Employing a cost model, estimates, for

example, on the overall query execution time, are used as a metric in order to select the

plan with least cost.

− Load Distribution Similarly, accurate knowledge about the cost of executing queries or

parts of them can be used by the dispatcher of parallel DBMSs to get an optimized load

balance.

− User Feedback Accurate predictions of the time taken by a DBMS to answer a query and

of the expected query result size can be used by the DBMS user in the query design phase

to avoid extremely long running queries and to optimize the whole DBMS application at

an early stage.

Further, elaboration of a cost model is highly beneficial for Performance Engineering of the

query engine. In order to develop a cost model, it is necessary to analyze the cost structure, to

identify the main responsible cost producers, and to formally describe their behavior. The new

64 Chapter 5

insight and knowledge gained in this process can be used for specific optimizations of

algorithms and implementations.

For query optimization and load distribution, it is enough to rate different execution plans

according to the order of their real execution time which can be managed by a relative cost

model. On the other hand, performance engineering and especially user feedback requires an

absolute cost model which is able to deliver predictions about query execution times.

The purpose of this Section is to develop a cost model for the array queries introduced in

Chapter 3. We call this model Array Cost Model (ACM) which allows to predict execution

time and result size of queries on multi-dimensional attributes without really executing them.

At first, let us distinguish between retrieval and computational array queries because it will

turn out that composition of their overall response time is absolutely different.

Definition 5.1 (Retrieval Array Query) An array query is called retrieval array query, if it

just consists of relational operations and multi-dimensional geometric operations. ◊

Definition 5.2 (Computational Array Query) An array query is called computational array

query, if it consists of at least one multi-dimensional non-geometric operation, i.e.,

aggregation or induced operations. ◊

It follows directly from Definition 5.1 that retrieval array queries have no selection condition

on multi-dimensional attributes because at least one multi-dimensional aggregation would be

necessary. Therefore, multi-dimensional selection queries are computational array queries

according to Definition 5.2.

In order to explain the next actions, let us again consider the query of Example 3.5:

α trimming[1:100, 1:200](section2,300(Cube)) (

σsome_cells(trimming[190:310,20:100](section2,300 (Cube)) >left_ind 127 andbin_ind Mask) (MRI × ROI)

)

In order to predict the query cost, mainly two questions have to be answered. First, what are

the costs of multi-dimensional expressions (as defined in Section 3.1.6) in the application

operation (α) and in the selection operation (σ) and, second, on how many tuples have multi-

dimensional expressions to be applied. More specifically, the second question asks for the

selectivity of multi-dimensional selection predicates which is the percentage of tuples

satisfying the condition.

Array Cost Model 65

5.1 Costs of Multi-dimensional Expressions

The costs for processing database queries usually consist of secondary storage access costs,

computation costs, costs for storage of intermediate results, and communication costs. While

many cost models are based on the number of secondary storage accesses, e.g., described in

[Mer77], just a few reports consider working environments or CPU costs [Sel79].

In our case, communication costs just arise for the client-server transfer of the query result

and, therefore, are independent of the execution plan. We also omit costs for the storage of

intermediate results because computation of multi-dimensional expressions follows a

continuously pipelined execution strategy, described in Section 4.3.1.4, without any blocking

operations. This means that just the final result is potentially made persistent. However, the

comparatively complex operations on MDD values make it necessary to consider both CPU

and IO costs. Performance measurements described in Chapter 7 even show that AQP is

already CPU-bound with the presence of at least one multi-dimensional non-geometric

operation. Parameters influencing IO costs are index size, tile size, tile location, tiling layout,

tile clustering (random vs. sequential access), buffer size, and disk page size, whereas CPU

costs are determined by the type of operation, the number of involved cells, the cells’ type,

and the cell access strategy (offset calculation vs. sequential access).

Since arbitrary tiling is beyond the scope of this work and described in more detail in [Fur99],

we restrict our cost model to regular d-dimensional tiles of constant size and shape. Only tiles

overlapping with the border of MDD values are allowed to be of different size. Anyway,

experimental results described in Chapter 7 show that in the presence of at least one multi-

dimensional non-geometric operation, query costs become CPU-dominated which means that

tiling layout (regular, aligned, non-aligned) and tile size is not of primary importance

anymore. Further, it should be remarked that within the ACM the cost for applying any of the

derived multi-dimensional operations is independent of the MDD content which means that

content dependent optimizations of the execution plan, as for example lazy evaluation of

quantifiers (see Section 4.4.2), cannot be modeled. Further, the ACM does not explicitly

model neither the time needed to access the index identifying the tiles belonging to a range

query nor the time needed to access meta data because they are both not of primary

importance for the overall processing time. A more detailed examination of the index time

can be found in Chapter 7 and [Fur98].

The basic difficulty is now to identify the main responsible cost producers and to describe

them formally. In the following, we examine I/O and CPU times for the different multi-

dimensional operations and support our choice of main factors and our description of the

functional dependencies from their input parameters by some experimental results.

66 Chapter 5

5.1.1 Cost Producers and Dependencies

I/O times

Our experiments have shown that I/O time is the same for trimming, unary induced, and

reduce operations which is plausible because it directly depends on the size of their operands’

spatial domain. It increases stepwise with the number of tiles to be read. As one tile covers

several disk pages (typically between 20 and 50 pages), I/O time directly depends on the

number of pages to be read, which are read sequentially. Therefore, whether tiles are read in a

sequence or randomly is of minor importance as the amount of data read sequentially is

already in the scale of 64 kilobytes (typical tile size suggested in [Fur99]). It can be

summarized that I/O time depends on the number of tiles to be read and their size. Figure 13

gives a qualitative impression of I/O time behavior. As absolute figures are not of primary

interest at this point, the detailed description of underlying system and query parameters is

given in Chapter 7.

Figure 13 I/O and CPU Times of different Operations

In case of binary induced operations on two different operands, the I/O time depends on the

tiling layout of the two multi-dimensional operands. On the assumption that overlapping tiles

can be read in a sequence which allows to combine all corresponding cells without reading

any tile twice, the I/O times of both operands are simply summed up. It is very likely that the

assumption holds because, e.g., in a regular tiling scheme of a d-dimensional array one tile

has a maximum of 3d-1 neighbor tiles5. These tiles can be kept in main memory up to a

5 For the derivation of the number of neighbors, we consider a d-dimensional cube with an

edge length of three which has altogether 3d elements. Subtraction of the central element
delivers its overall number of neighbor elements.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 200 400 600 800 1.000 1.200 1.400 1.600 1.800 2.000

#cells [1000]

ti
m
e
 [
s
e
c
]

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

ti
m
e
 [
s
e
c
]
C
P
U
 T
ri
m
m
in
g

IO (one operand)

CPU Unary Induce

CPU Binary Induce

CPU Reduce

CPU Trim m ing

Array Cost Model 67

dimensionality of about four to five if we assume the tile size being in the scale of 100

kilobytes. A more detailed discussion on tile read strategies can be found in Section 4.3.1. If

the binary induced operation works on one single MDD value, the I/O time will equal the one

of an unary induced operation.

The I/O time of the section operation depends on the number and sizes of the tiles intersected

by the section dimension and hence increases stepwise with the number of tiles to be read as

well.

CPU times

Besides the I/O time, Figure 13 shows several CPU times. CPU of the trimming operation

increases in a saw-tooth manner. Note that the ordinate of the trimming CPU time is on the

right side. The CPU time is minimal in case the query box consists of complete tiles

exclusively, which can be copied very efficiently in one block. Tiles overlapping with the

query box have to be cut which means that each cell lying inside the query box has to be

visited using an expensive multi-dimensional iteration. As an optimization, cells of the

densely stored dimension are copied in groups which is more efficient. This is the reason why

the CPU time increases linearly between local minima and maxima depending on the number

of cells within the so called border tiles. For optimal performance, tiles have to match the

query box exactly. If this is not possible, the section areas between border tiles and query box

have to be minimal. The trimming CPU time can be approximated by a simple function

getting tile size, tiling origin, and the query box.

The CPU times of unary induced, binary induced, reduce, and section operations rise strictly

linearly with the number of cells visited.

The reduce operation has the smallest gradient because the cell values just have to be read

once and the result of the cell function can be kept in a CPU register. Additional CPU time is

needed by unary induced operations to perform a copy operation necessary to store the result

of the cell function in a multi-dimensional array. For binary induced operations, the gradient

is even larger because the cell function needs to read two values and to store the result for

each cell.

Our experiments show that the operation type, as introduced in sections 3.1.5.2 and 3.1.5.3,

for both induced and reduce operations is not important. The gradient of the linear

dependency is mainly determined by the type of the operands, i.e., operations on floats are

more expensive than operations on integers and the CPU time of operations on complex cell

types increases with the number of type components. Hence, CPU time of unary/binary

induced and reduce depends on the number of cells involved and their type.

68 Chapter 5

CPU time of the section operation shows a linear dependency on the number of cells read as

well but the gradient is much larger which is mainly because of two reasons. First, almost all

cells have to be visited using single cell access. An optimization can just be performed in case

the section is along the densely stored dimension. Second, the number of cells read from one

tile is comparatively small because just one dimension is read and, therefore, the number of

tiles to be visited is much bigger than for the other operations. Nevertheless, it turned out that

considering the number of cells is enough to get accurate estimation results.

It should be remarked that the dimensionality of MDD values has almost no impact on the

CPU time of multi-dimensional operations because an increasing number of dimensions

causes just slightly more computation effort for the cells’ addresses and the CPU time remains

to be dominated by the computation effort of multi-dimensional operations per cell.

5.1.2 System and Query Parameters

The input parameters used for the cost functions can be divided into two groups. The first

group is called system parameters and consists of hardware and operating system dependent

parameters, such as disk page size, I/O time for sequential read access to disk pages, and CPU

time constants for different elementary operations. The system parameters are determined

once for a specific query execution environment (hardware configuration, operating system,

DBMS configuration) and they are valid for all queries run in this environment. Table 6 gives

an overview on the system parameters used in the ACM.

System Parameters Explanation

spage size of disk pages in bytes

iopage I/O costs for reading a disk page sequentially

cpucells CPU costs for copying single cells (single cell access)

cpufbcells / cpuvbcells fixed/variable CPU costs for copying cells with block access

cpufsect / cpuvsect fixed/variable CPU costs for copying one cell with the section

operation

cpufuind / cpuvuind fixed/variable CPU costs for applying an unary operation to one cell

(depend on operand types)

cpufbind / cpuvbind fixed/variable CPU costs for applying a binary operation to two cells

(depend on operand types)

cpufred / cpuvred fixed/variable CPU costs for aggregating one cell

(depend on operand types)

Table 6 System Parameters for the ACM

Array Cost Model 69

Some of the elementary CPU times are described by a fixed and a variable time parameter.

The fixed costs appear once per MDD operation and the variable costs have to be calculated

per cell. Parameters depending on the operand types are just marked as such but not listed for

all operand types.

In order to determine the system parameters, a special set of queries is executed on different

amounts of data whereby I/O and CPU times are measured. Then the parameters are

computed by analyzing the gained results with linear regression techniques. The

determination procedure is described more detailed in the Diplomarbeit (master thesis) of M.

Ammermüller [Amm99].

The second group of parameters can be derived from the queries themselves and hence is

called query parameters. In contrast to the system parameters, they have to be determined for

each MDD operation individually. Among these parameters are the number of cells inspected

by the operation, the number of tiles intersected, and the number of tiles completely enclosed

by the query box. The latter two parameters can be computed from the current tiling layout

and the query box. Depending on the tiling policy, this step can be rather complicated and

time consuming. For instance with arbitrary tiling, the complete list of tiles and their spatial

domains has to be known and dealt with. As we assume regular tiling starting at zero in each

dimension, the parameters can be computed using the tile configuration, which is the tile

width for each dimension. With tsi being the tile width in dimension i and the query box being

a d-dimensional spatial domain over points ql, qh ∈ d, the number of intersected and

enclosed tiles can be computed with the formulas in Figure 14. The graphics shows a two-

dimensional example although the formula holds for an arbitrary number of dimensions.

Figure 14 Calculation of Intersected and Enclosed Tiles with Regular Tiling

The complete list of query parameters used in our ACM is given in Table 7. The number of

cells #cells can be calculated from the query box and #cellsborder is computed using the

number of cells and the tiles enclosed.

()

()()∏

∏

=

=








 −−=








 +=

d

1
enclosed

d

1
dintersecte

mod
tiles#

mod
tiles#

i i

iiii

i i

iii

ts

tsqltsqs

ts

tsqlqs
ql

qh

ts1

ts2

qs2

qs1

70 Chapter 5

Query Parameters Explanation

stile size of tiles in cells

scell size of cells in bytes

#cells number of cells to operate on

#tilesintersected number of tiles intersected by the query box

#tilesenclosed number of tiles completely enclosed by the query box

#cellsborder number of cells lying inside the query box but not within completely

enclosed tiles (#cells - #tilesenclosed * stile)

Table 7 Query Parameters for the ACM

5.1.3 Cost Formulas

Using the described system and query parameters, the basic cost formulas can be established

for each operation. They are listed in Table 8.

Operation Cost Type Cost Formula

all6 I/O #tilesintersected * stile * scell / spage * iopage

trimming CPU cpufbcells + #tilesenclosed * stile * cpuvbcells +

#cellsborder * cpucells

section CPU cpufsect+ #cells * cpuvsect

unary induced CPU cpufuind+ #cells * cpuvuind

binary induced CPU cpufbind+ #cells * cpuvbind

reduce CPU cpufred + #cells * cpuvred

Table 8 Cost Functions on Operation Level

The overall cost of a multi-dimensional expression is computed using the cost approximations

on operation level. Basically, I/O costs are just considered in the leafs of the operator tree,

which are the nodes reading data from disk. In contrast, CPU costs are aggregated from

bottom to top over all nodes of the tree until the root node holds the overall costs.

6 I/O time has to be multiplied by two for binary induced operations on two different

operands.

Array Cost Model 71

5.1.4 Experimental Validation

This section demonstrates some experiments which compare measured I/O and CPU times of

executed multi-dimensional expressions with the corresponding computed costs of the ACM.

System parameters used for calculations of the cost model are listed in Table 9. Besides their

main function as cost model constants, the system parameters characterize the efficiency of

the query execution environment which, in this case, is a Sun Ultra 1 with 140 MHz and

256 MB of main memory.

System Parameter

spage 4096 bytes

iopage 1159 µs

cpucells 678 ns

cpufbcells / cpuvbcells 14786 µs / 2 ns

cpufsect / cpuvsect 9843 µs / 5906 ns

cpufuind / cpuvuind 23706 µs / 641 ns

cpufbind / cpuvbind 17030 µs / 820 ns

cpufred / cpuvred 8939 µs / 540 ns

Table 9 System Parameters of specific
Query Execution Environment

The multi-dimensional expressions are executed on an MDD object a of type [[char,

[1:2000,1:2000], regular[1:100,1:100]]], i.e., the multi-dimensional value consists of 4

million one-byte cells and is subdivided into 400 equally shaped tiles of size 10 kB each.

Figure 15 shows the application of trimming operations trimming[1:i*25, 1:2000](a) with i=1...40

and compares measured I/O and CPU times, respectively, with computed ones. Considering

the specified tiling layout, queries with i mod 4 = 1 have to read 20 additional tiles compared

to queries i-1 resulting in a stepwise increase of the I/O time. The intersected tiles of the

queries with i mod 4 = 0 are completely covered by the query box which makes them the most

efficient ones concerning CPU time. The error curve represents the absolute difference

between measured and computed sums of I/O and CPU times. It is mainly caused by the I/O

component with a difference resulting from warm accesses of the underlying storage system

and some irregular machine load from the operating system which both are not modeled in the

ACM. Nevertheless, the error made is rather small with an average of about 3%.

72 Chapter 5

Figure 15 Measured vs. Computed CPU and I/O Times of the Trimming Operation

Analogously, the plots of Figure 16 present the cost model approximations of the CPU times

for reduce, unary/binary induced, and section operations. One can observe that the linear

dependency on the number of cells is rather strong with a correlation coefficient above 0.992.

The small error produced can be traced back to ‘system noise’ again.

Figure 16 Measured vs. Computed CPU Times of different Operations

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

#cells [1000]

ti
m
e
 [
s
e
c
]

IO

IO com puted

CPU

CPU com puted

error

R
2
 = 0,9995

R
2
 = 0,9982

R
2
 = 0,9926

R
2
 = 0,9985

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

#cells [1000]

ti
m
e
 [
s
e
c
]

0

2

4

6

8

10

12

ti
m
e
 [
s
e
c
]
S
e
c
ti
o
n

Reduce

Unary Induced

Binary Induced

Section

Section com puted

Reduce com puted

Unary Induced com puted

Binary Induced com puted

Array Cost Model 73

5.2 Selectivity of Multi-dimensional Predicates

As multi-dimensional expressions can appear in selection conditions, some selectivity

estimation has to be performed in order to be able to predict complete query costs.

As a first try, we assume that no statistical information is available, i.e., we assume the cell

values to be uniformly distributed, and that the value independence assumption holds for the

cells of an MDD value. Let m ∈ [[byte7, [1:800,1:600]]] be an MDD value, then the

selection expression all_cells(a <left_ind 127) has the probabilistic selectivity factor

(127/256)(800*600) which is almost 0. This small example already shows that, in order to get

more useful results, rather accurate MDD content information has to be considered. It should

be remarked that the value independence assumption is highly unrealistic for almost all MDD

values, e.g., time series, images, videos, and even for most of the neighboring values in an

OLAP data cube.

In Relational Query Processing (RQP), three different approaches to base cost computations

on the database content are well known: Sampling, Parametric, and Non-parametric

Techniques.

− Sampling Techniques read random samples from the database on demand in order to build

the data distribution. As these techniques do not rely on any precomputed data, any

accuracy of the distribution estimate can be achieved, no additional disk storage is

required, and database updates have no impact on the estimates. Several techniques are

presented in the area of relational databases, e.g., [Olk86] and [Lip90]. The main

disadvantages are that all sampling methods have considerable I/O and CPU overhead at

runtime and computed distributions are not reused.

− Parametric Techniques use parameterized mathematical distributions, such as the

uniform, normal, or χ2 distributions, in order to approximate the original data distribution.

For example [Sel79] describes statistical information based on a normal distribution. The

main advantage is that the distributions just have a small storage overhead. The problem is

that, typically, real distributions and, in particular, distributions of operation results do not

follow any of the mathematical distributions. Some researchers try to overcome this

problem by using polynomial functions with regression techniques to describe the data

distribution. For example, [Che94] uses a six degree polynomial with dynamically

adapting coefficients based on query feedback. However, the problem seems to remain if

the original data distribution consists of a considerable number of peaks which turned out

to be the case, for instance, with images.

− Non-Parametric or Histogram-based Techniques use precomputed tabular information

called histograms to represent data distributions. A variety of different histogram types,

such as Equi-width and Equi-depth, single-attribute and multi-attribute, one-dimensional

7 We are following the ODMG 2.0 standard by using type char to represent 8 bit integers.

74 Chapter 5

and multi-dimensional histograms, etc., can be found in the literature. The work of

[Poo97a] develops a taxonomy to arrange the different types and gives an excellent

overview on the current state of the art. Histogram-based techniques are highly adaptable

to special needs concerning the type of information to store, the desired accuracy, storage

requirements, and operation compatibility.

Considering the work reported, histogram-based techniques are our choice to approximate

MDD values. It should be remarked that simple histograms, like Equi-width histograms, are

used in many commercial systems, such as DB2, Informix, Ingres, Microsoft SQL-Server,

Oracle, or Sybase. A discussion on specific histogram types appropriate to model MDD

values is given in Sections 5.2.2 and 5.2.3. Next, we identify the information content of an

MDD value necessary to approximate the result of multi-dimensional operations and we give

an overview on different possible histogram applications, so called histogram models.

5.2.1 Approximating MDD values with Histograms

As a simple example, we consider a one-dimensional histogram approximating the intensity

distribution of an 8bit grayscale image. Figure 17 shows a so called Equi-Width histogram

which divides the value domain into eight disjoint classes of constant width and records the

average frequency for the values of each class.

Figure 17 Equi-Width Histogram

If we reconsider the selection predicate all_cells(a <left_ind 127) together with the histogram

information, the predicate can be evaluated to false already. On the other hand, if the

histogram does not represent the cell value distribution of one image but of a whole set of

images, the selectivity of the predicate will be about 50%8. In summary, the binary induction

and reduce operations of the condition predicate are well supported by this kind of

histograms. In contrast, the selectivity of the same selection condition extended with a

geometric operation, such as all_cells(a[100:199,200:299] <left_ind 127), cannot be

determined at all because the histogram does not have any spatial information about the cell

values.

8 value 127 represents the 0.5 quantile of the given value distribution

fr
eq

ue
nc

y

0 31 63 95 127 159 191 223 255
dom(char)

Array Cost Model 75

After this short introduction on histograms, the following definition introduces the terms

value dimensions and space dimensions on MDD values which will be used afterwards for the

development of a comprehensive overview on different histogram models.

Definition 5.3 (Value and Space Dimensions) Let value m be of type [[Tc, D
d]] with Tc = (T1,

..., Tp) being a complex base type with p components and D ∈ δd being a spatial domain with

dimensionality d. Then value m can be represented by a multi-dimensional boolean value of

type [[, Dd × dom(T1) × ... × dom(Tp)]] with dimensions 1 to d called space dimensions and

dimensions d+1 to d+p called value dimensions. ◊

Figure 18 MDD Value with 3 Space and p Value Dimensions

Notes:

1. In the area of Online Analytical Processing (OLAP), the term dimensions corresponds to

our space dimensions and the term measures to our value dimensions.

2. If dom(Ti) is not a subset of � the spatial domain of the normalized MDD will not satisfy

Definition 3.1 anymore. In these cases, dom(Ti) has to be mapped to a finite subset of

which is easily possible because all domains represented in a computer system are finite.

However, this has no impact on the following thoughts.

3. With fully populated MDD values, the space dimensions are to 100% dense and unique

which means that each point in the space spanned by the space dimensions has exactly

one value. In contrast, the space spanned by the value dimensions is usually very sparse

and points are not unique.

4. The work reported in [Agr95] follows a similar approach. Their logical OLAP data model

treats all dimensions and measures in a symmetric way, i.e., any dimension may be

converted to a measure by using the push operation and, on the other hand, pull allows to

create dimensions from any measure data. The normalized form represents data with d

dimensions and one measure by a (d+1)-dimensional cube with boolean values. A cell

with value true indicates that the tuple specified by the cell’s coordinates exists, whereas

false means that the corresponding tuple is not in the database.

5. In the OLAP area, our space dimensions are usually partitioned by dimension hierarchies

which are used for aggregation and range queries. As a consequence, the choice of space

dimensions for storing an OLAP fact table in an Array DBMS is essential because of two

(T1, ..., Tp)

d1

d2

d3

76 Chapter 5

reasons: First, typically just access to value dimensions (measures) is supported by indices

on space dimensions but not on value dimensions. Second, multi-dimensional clustered

storage of value dimensions with respect to the dimension hierarchies defined on space

dimensions can improve OLAP access performance considerable which described in

[Mar99b].

Depending on whether space dimensions are considered in the histogram approximation or

not, we distinguish between so called Position-Independent Histograms (PIHs), which simply

approximate the cell value distribution along the value dimension, and the so called Position-

Dependent Histograms (PDHs) which take into account space dimensions as well.

Further, we distinguish whether value dimensions are represented by separate histograms or

as additional dimensions of one histogram. The former means that we assume that the value

independence assumption holds between the cell value components. This class is referred to

as Simple Histograms (SHs) whereas the latter histogram type, which considers the inter-

component dependencies, is named Complex Histograms (CHs).

Employing these two orthogonal classifications, we end up with four different histogram

models. Table 10 summarizes them together with their characteristics and dimensionalities

using d for the number of space dimensions and p for the number of value dimensions:

S-PIH C-PIH S-PDH C-PDH

Value Dimensions (p) p separate

histograms

p histogram

dimensions

p separate

histograms

p histogram

dimensions

Space Dimensions (d) not

considered

not

considered

d histogram

dimensions

d histogram

dimensions

Number of Histograms and

Dimensions

p * (1D) pD p * (d+1)D (d+p)D

Table 10 Table of different Histogram Models

As an example, we consider an RGB color image of type [[(byte, byte, byte), [1:800,1:600]]]

with an 8bit value for the color components red, green, and blue. An S-PIH of the RGB image

consists of 3 one-dimensional histograms each of them approximating the intensity

distribution of one color plane red, green, and blue, respectively. The C-PIH uses one three-

dimensional histogram thereby preserving inter-component dependencies. None of the two

stores information on the geometric position of the RGB values. This penalty is overcome

with PDHs. The S-PDH uses a three-dimensional histogram for each color component and the

C-PDH applies one five-dimensional histogram.

In the following, we examine the suitability of the different histogram models for the

application of MDD operations.

Array Cost Model 77

As we have seen already in the introduction example of Section 5.2.1, information about the

cell value distribution is sufficient for unary induced and aggregation operations. Even inter-

component dependencies of complex base types are not of interest which means that all

histogram models are good candidates for these operations.

Binary induced as well as geometric operations strongly depend on location information

stored in the space dimensions because typically cell values are not uniformly distributed over

the spatial domain of multi-dimensional values. As inter-component dependency information

is not used by these operations, any PDH leads to accurate results.

For binary induced operations between two base type components, referred to as inter-

component binary induction, the inter-component dependency information is of primary

importance which is well supported by any CH. The necessary dependency information can

be derived from S-PDH as well but just with the granularity of the histogram classes put up

by its space dimensions. As an example, we again consider the RGB color image. An

operation like image.red + image.green is very well supported by a CH as the value

dimensions considered in the histogram store the information about corresponding red and

green values. The S-PDH still knows about the red and green distributions in different areas

of the image which can be used to approximate the operation result.

Table 11 summarizes the compatibility of the different histogram models with our operation

categories.

Operations Examples S-PIH C-PIH S-PDH C-PDH

geometric operation m[0:10, 0:10] no no yes yes

unary induction m + c yes yes yes yes

binary induction m1 + m2 no no yes yes

inter-component binary

induction

m.red + m.green no yes yes yes

aggregation some_cells(b) yes yes yes yes

Table 11 Compatibility of Histogram Models and MDD Operations

With an increasing number of dimensions and histograms, the models provide more support

for MDD operations but, at the same time, they get more complex in terms of creation time,

memory requirements, and operational performance. Indeed, if a histogram contains

dimensions which are useless for a specific operation, evaluation time will increase

substantially. For example, the aggregation of one base type component in a C-PDH needs to

aggregate over all histogram dimensions. Summarizing, one can say that if the operation is

known in advance, the histogram with the least complexity sufficient to support the operation

should be chosen (marked gray for each operation in Table 11). If no operation information is

78 Chapter 5

available, S-PDHs will be the best choice. They deliver high quality distribution estimates for

all operations and have minimal CPU and disk requirements at the same time.

5.2.2 One-dimensional Histograms

Histograms are well known approximations to data distributions in the statistical area.

Basically, a histogram is constructed by partitioning the original data distribution into disjoint

subsets called buckets and approximating the value frequencies in some specific way.

Usually, one makes the uniform frequency assumption and approximates the frequencies in a

bucket by their average. Depending on how the bucket borders are chosen, one can think of a

variety of different computation techniques. [Poo97a] gives an overview on different

histograms together with a study on their effectiveness in providing accurate estimations. In

order to be able to rate different histograms according to their accuracy, we define the

absolute histogram error as the difference between the original data distribution and the

histogram distribution.

Definition 5.4 (Absolute Histogram Error) Let ∆ be the original data distribution of a set of

values with type T∈τ and ∆’ be the estimated histogram distribution. With fi and f’ i being the

frequencies of distributions ∆ and ∆’, respectively, the absolute histogram error is defined as

◊

Section 5.2.2.1 shortly describes the most important histograms from our requirement’s point

of view and Section 5.2.2.2 introduces a new histogram type, called Error Minimization

Histograms (EMHs), especially developed to minimize the estimation error defined in

Definition 5.4. Based on some experimental results, Section 5.2.2.3 identifies the most

appropriate one-dimensional histogram type for the approximation of MDD values.

5.2.2.1 Conventional Histograms

− Equi-Width histograms divide the value domain into n buckets of constant width and

count the number of values in each bucket leading to a uniform distribution over all values

lying within each bucket. Equi-Width histograms have low storage needs as the bucket

borders can be computed, they are easy to calculate, and they have valuable properties

such as additivity, but they adapt poorly to highly oscillating distributions. As an example,

Figure 17 shows an Equi-Width histogram approximating the distribution of an 8 bit

integer value9 using eight buckets.

9 We use char to denote 8 bit integers following the ODMG 2.0 standard.

∑
∈

−=
)(i

abs i
’

i
:

Tdom

ffe

Array Cost Model 79

− Equi-Depth histograms choose the bucket borders in a way that all bucket frequencies are

similar, i.e., the total number of values associated with each bucket is approximately the

same. Figure 19 shows an Equi-Depth histogram of an 8 bit integer9 distribution. This

type of histograms still needs a small amount of memory, is easy to compute, and is much

more flexible in adapting to specific distributions. They already loose the additivity

property but, nevertheless, they are used in many commercial products, like DBS-MVS

from IBM, Oracle7 from Oracle, and Online Data Server from Informix.

Figure 19 Equi-Depth Histogram

− V-Optimal histograms The idea of V-Optimal histograms is to minimize the variance of

the overall frequency approximation. These histograms are optimal regarding the

estimation error based on the squared frequency differences between the original and the

histogram distribution. The construction algorithm has to enumerate all possible

partitionings, calculate the corresponding variances, and choose the best one which would

have exponential complexity. Other algorithms potentially leading to sub-optimal

solutions are proposed, e.g., in [Poo97a]. In our work, V-Optimal histogram are just of

theoretical importance.

− MaxDiff histograms In MaxDiff histograms the frequency differences between

neighboring values are considered. This means that, in order to construct a histogram with

n buckets, the n-1 bucket borders are set between the values with the n-1 biggest

frequency differences. These histograms are easy to compute, have low storage

requirements, and have a small approximation error in case of value peaks and rectangular

distributions.

It should be remarked that the taxonomy used in [Poo97a] distinguishes between frequency

and area values for the height of histograms. The area of a value is computed by the product

of its frequency and its spread while spread represents the distance to the next existing value

in a sparsely populated value domain. Since in our experiments, value domains are densely

populated, spread values equal one and the two parameters, frequency and area, become

identical.

fr
eq

ue
nc

y

0 31 63 95 127 159 191 223 255

dom(char)

80 Chapter 5

5.2.2.2 Error Minimization Histogram

Our experimental results, which are described in Section 5.2.2.3, have shown that the quality

of the described techniques strongly depends on the nature of the underlying distribution.

None of the techniques delivers high quality results for distributions with different properties.

This is mainly because their criteria to find bucket borders are not targeted to the

minimization of the approximation error. This drawback is the origin for the development of

the Error Minimization Histograms (EMHs) described in the following.

Starting with the original distribution where each value frequency represents one bucket, the

algorithm iteratively merges the two neighboring buckets which result in the smallest error in

terms of any local error metric. In case the value domain has cardinality n and we want to

compute a histogram with b buckets, the EMH algorithm needs to merge n-b buckets. If the

computation algorithm maintains a heap structure sorted by increasing potential merge errors,

the complexity of the creation algorithm can be reduced to n log n. A more detailed

description of EMHs can be found in the Diplomarbeit (master thesis) [Amm99] where the

author uses the name LEUNA (least error unification algorithm).

Figure 20 shows the computation of the potential error ei for the merge of buckets bi and bi+1

using the absolute histogram error defined in Definition 5.4.

Figure 20 Computation of Potential Absolute Histogram Errors

Instead of using the absolute histogram error, any local error metric can be used. For example,

the sum of the squared frequency differences would put more weight on large deviations

which means that the absolute error may increase in favor of smaller local errors. It is even

conceivable to optimize the histogram in terms of efficient operation support if the error

formula takes into account the error produced by an operation which is thought to be applied

on the histogram. In terms of operations, both the absolute and the squared histogram error

would reduce the error made by a point query whereas the optimization of range queries

requires global error formulas which would raise the complexity of the histogram

computation algorithm to O(n2).

e‘‘

e‘

bi

bi+1

fi

si

fi+1

si+1

f‘ i111

1

11

’’’’’

)()(
’

+++

+

++

⋅−+⋅−=+=
+

⋅+⋅=

iiiiiii

ii

iiii
i

sffsffeee

ss

sfsf
f

Array Cost Model 81

It should be mentioned that the EMH algorithm does not deliver any global optimum as for

example V-Optimal histograms but our experiments described in the next section have shown

that the algorithm delivers excellent results and is very robust concerning peculiarities of the

original data distribution.

5.2.2.3 Experimental Evaluation

In our experiments we apply the histogram techniques Equi-Width, Equi-Depth, MaxDiff, and

EMH to four different artificial as well as real-life data distributions which are explained in

the following:

− Normal distribution As a representative of good-natured distributions with a small

number of soft and continuous oscillations frequently occurring with images and in the

statistical area, we have chosen the normal distribution.

− Random distribution Random distributions are distinguished by many irregular peaks

and no continuous ranges.

− Zipf distribution A common claim in database literature is that many attributes in real-

life databases contain a few domain values with high frequencies and many with low

frequencies. This phenomenon can be modeled well by Zipf distributions [Poo97a,

Fed81]. With n being the number of cells and m being the value domain size, the

frequencies are computed as follows:

The z parameter, which is usually between 0 and 2, determines the distribution’s

steepness.

− CT distribution The CT distribution stands for the intensity distribution of a typical

computer tomography recording which usually have a high number of black values and

some smaller peaks in the remaining intensity domain.

Figure 21 shows the experimental distributions over an 8 bit value domain with about 24500

cells for the normal and the random distribution and about 40500 cells for the Zipf and the CT

distributions. Experiments with several millions of cells have demonstrated that the scale of

the amount of cells has almost no impact on the quality of the results. We have chosen two

Zipf distributions with the z parameter being 1 and 2, respectively, because the quality of

some histograms strongly depends on the gradients of the distributions.

∑
=

=≤≤
⋅

=
m

1
m

m

1
 withand m1for

n

j
zzi j

Gi
Gi

f

82 Chapter 5

Figure 21 Experimental Cell Value Distributions

We have observed that all histograms except MaxDiff can approximate the normal

distribution with rather small errors depending on the number of buckets b. The continuous

frequency function with its moderate gradients and just one maximum leads to very poor

results in case of MaxDiff because the b-1 largest frequency differences are close together

around the two points of inflexion where all bucket borders are used. This phenomenon is

shown in Figure 23.

Figure 22 Histogram Example: Normal Distribution with 16 Buckets

0

50

100

150

200

250

0 50 100 150 200 250
value range

n
o
rm
a
l d
is
tr
ib
u
tio
n
 f
re
q
u
e
n
cy

0

500

1000

1500

2000

2500

ra
n
d
o
m
 d
is
tr
ib
u
tio
n
 f
re
q
u
e
n
cy

Norm al Distribution

Random Distribution

1,E-01

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

0 50 100 150 200 250
value range

fr
e
q
u
e
n
cy

Zipf Distribution z=1

Zipf Distribution z=2

CT Distribution

0

50

100

150

200

250

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

Equi-W idth

Equi-Depth

0

50

100

150

200

250

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

M axDiff

EM H

Array Cost Model 83

Figure 23 shows the different histograms with 16 buckets each approximating the random

distribution. In order to get convenient results, the buckets have to be used to approximate

large peaks primarily. MaxDiff and EMH adapt much better than Equi-Width and Equi-

Depth. Of course, the random distribution is the most difficult one to handle as there is no

dependency between neighboring values.

Figure 23 Histogram Example: Random Distribution with 16 Buckets

Figure 24 shows histograms with 32 buckets approximating the Zipf distribution with z=2 and

Figure 25 plots histograms with 32 buckets for the CT distribution. Equi-Width histograms

deliver poor results for both of them because their characteristics is that a few domain values

occur with high frequencies which cannot be modeled by the Equi-Width technique. Equi-

Depth histograms deliver good estimations for Zipf distributions with low z parameters which

means a moderate gradient. Their quality gets worse with extreme gradients as in case of z

parameters greater than one or the CT distribution. In contrast, MaxDiff histograms use too

small buckets for the moderate gradient of Zipf distributions with small z parameters which is

the same problem as they have with the normal distribution. On the other hand, they deliver

good estimates for extreme gradients as occurring with higher z parameters and in the CT

distribution respectively. Their quality is just surpassed by EMHs which deliver good results

for small gradients (Zipf with z=1) and excellent ones for extreme gradients (Zipf with z=2).

0

500

1000

1500

2000

2500

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

Equi-W idth

Equi-Depth

0

500

1000

1500

2000

2500

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

M axDiff

EM H

84 Chapter 5

Figure 24 Histogram Example: Zipf Distribution (z=2) with 32 Buckets

Figure 25 Histogram Example: CT Distribution with 32 Buckets

0,1

1

10

100

1000

10000

100000

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

Equi-W idth

Equi-Depth

0,1

1

10

100

1000

10000

100000

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

M axDiff

EM H

0,1

1

10

100

1000

10000

100000

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

Equi-W idth

Equi-Depth

1

10

100

1000

10000

100000

0 32 64 96 128 160 192 224

value range

fr
e
q
u
e
n
cy

original distribution

M axDiff

EM H

Array Cost Model 85

Table 12 gives an overview on our experimental results. The presented measurements are the

squared error (esq), the absolute error (eabs), and its percentage of the overall value sum. The

four different histogram types namely Equi-Width, Equi-Depth, MaxDiff, and EMH were

used to approximate the distributions Normal, Zipf 1 (z=1), Zipf 2 (z=2), Random, and CT

with 8, 16 and 32 buckets respectively.

Normal Zipf 1 Zipf 2 Random CT

Parameters m=200, s=60 z=1 z=2

#Cells 24576 40561 40561 24576 40561

Buckets

Histograms esq eabs % esq eabs % esq eabs % esq eabs % esq eabs %

Equi-Width 8 33413 2143 8,8 5E+7 23966 59,3 6E+8 60579 150 8E+6 19198 78,1 6E+8 51218 126

Equi-Depth 8 92532 3590 14,7 8E+5 5791 14,3 4E+5 4529 11,2 7E+6 18972 77,2 3E+5 6639 16,4

MaxDiff 8 2E+5 5914 24,2 3E+6 17830 44,1 4E+5 4529 11,2 2E+6 12900 52,5 4E+5 7255 17,9

EMH 8 24332 1932 7,9 7E+5 5993 14,8 2E+5 2082 5,1 2E+6 12879 52,4 2E+5 4563 11,2

Equi-Width 16 8514 1073 4,4 4E+7 17864 44,2 6E+8 52941 131 7E+6 19123 77,8 5E+8 48444 119

Equi-Depth 16 27583 1927 7,9 73287 2291 5,7 45370 1819 4,5 7E+6 16857 68,6 2E+5 4752 11,7

MaxDiff 16 2E+5 5323 21,8 1E+6 11814 29,2 45370 1819 4,5 8E+5 9963 40,5 1E+5 4016 9,9

EMH 16 5292 916 3,7 1E+5 2391 5,9 7033 544 1,3 8E+5 10045 40,9 83594 2998 7,4

Equi-Width 32 2123 544 2,2 3E+7 12344 30,5 5E+8 43553 108 7E+6 18495 75,3 5E+8 44971 110

Equi-Depth 32 8278 1043 4,3 6409 831 2,1 4510 671 1,7 6E+6 17767 72,3 1E+5 3722 9,2

MaxDiff 32 1E+5 4421 18,1 4E+5 6871 17,0 4510 671 1,7 4E+5 7248 29,5 41412 2425 6,0

EMH 32 1388 460 1,9 7770 808 2,0 180 81 0,2 4E+5 7583 30,9 31821 1991 4,9

Table 12 Histogram Error Results for different Distributions

The one with the smallest error in per cent for each group is marked with gray background. It

can be observed that the EMHs deliver the best results for almost all distributions and with

any tested number of buckets. In the remaining groups, they are at least on the second position

and their difference to the respective group winner is below 1.4%.

5.2.2.4 Conclusions

Our experimental results, based on synthetic as well as on real-life data distributions with

different peculiarities, show that the estimation quality of Equi-Width, Equi-Depth, and

MaxDiff histograms strongly depends on the original data distribution. In contrast, the EMH

algorithm demonstrates high stability and delivers accurate estimates independently of the

source data’s properties. It should be noted that we omit an examination of the different

histograms concerning updateability while preserving their characteristic properties because

further processing does not exploit the histogram-specific properties.

86 Chapter 5

Before we can make a final suggestion, we take a look at computation complexities. The

creation of Equi-Width and Equi-Depth histograms just requires one scan of the frequencies

whereas MaxDiff needs to get the #buckets-1 largest frequency differences which lies within

O(#domain values * log #buckets). Computation of EMHs even lies within O(#domain

values * log #domain values).

Nevertheless, the fact that histograms used in the cost model are made persistent and hence

are built rarely makes EMHs the best candidate for our application of approximating MDD

values.

5.2.3 Multi-dimensional Histograms

In accordance with one-dimensional histograms, we again need to divide the value domain

into disjoint classes, i.e., we have to partition the d-dimensional space into disjoint d-

dimensional regions. Different techniques can be employed to approximate the frequencies of

the regions:

− Average Frequency As in the one-dimensional case, this technique uses the uniform

frequency assumption by setting all frequencies of a region to their average.

− Min-Max Frequencies In order not to loose variance information one could also store the

minimum and maximum frequencies.

− One-dimensional Histograms In case of heterogeneous frequency distributions within the

regions, it would be admissible to store a one-dimensional histogram per region.

Potentially, any of the described ones can be used.

Basically, the spatial partitions should be chosen with regard to homogenous frequencies

within the partitions; if the partitioning is successful in the sense that frequencies within

partitions are homogeneous, storing the average frequency will be sufficient.

As a first approach, one can use any space filling curve in order to define a total order on the

d-dimensional domain values while preserving their spatial proximity [Jag90]. This can be

used as a basis for any one-dimensional histogram. Other approaches, such as rectangular

partitioning driven by heuristics or by Equi-Depth and MaxDiff criteria and decomposition of

the joint frequency matrix into vectors being approximated by one-dimensional histograms

are described and evaluated in [Poo97b]. Their experiments have shown that the MaxDiff

approach delivers the most promising results.

For our following thoughts, we will use Simple Position-Dependent Histograms (S-PDH)

introduced in Section 5.2.1. This histogram model uses p times (d+1)-dimensional histograms

with p being the number of value and d the number of space dimensions. As space dimensions

have the property of being densely populated, we suggest to apply the spatial partitioning just

along the space dimensions and approximate the remaining value dimension per spatial

Array Cost Model 87

region. Then the frequencies of the regions correspond to their size and the value dimension is

approximated by the average of the regions’ values.

As the iterative EMH is very successful in the one-dimensional case, we have extended its

basic idea to multi-dimensional conditions. This means that spatial partitions are chosen with

regard to minimization of the histogram error. We are using a Quadtree to partition the d-

dimensional space which sub-divides regions with large errors. The detailed description of

our construction algorithm with a complexity of O(#domain values * log #buckets) can be

found in the Diplomarbeit (master thesis) [Amm99].

Our multi-dimensional EMH algorithm uses the sum of absolute differences between the

original cell values and the average value of the regions as local error metric.

Figure 26 Visualization of Multi-dimensional Error Minimization Histograms

To give an example, Figure 26 shows an 8bit grayscale image of size 512*512 on the left

side. The other images are visualizations of the adapted S-PDHs with two dimensions

representing the space dimensions and an average intensity value per spatial region. The

histograms consist of 4096 and 512 buckets respectively computed with the multi-

dimensional EMH technique. The pictures suggest the relationship to lossy compression

algorithms. Indeed, using such multi-dimensional histograms for compression purposes is an

interesting approach because value coherence can be exploited in more than two dimensions.

In order to achieve a considerable storage compression rate, pointer references of the

Quadtree have to be transformed into an array arrangement.

5.2.4 Experimental Validation

The experiment described in this section compares measured result sizes, CPU times, and I/O

times of a set of selection queries with the corresponding results of the cost model. The

experimental data set consists of 200 single-tile images of type [[char10, [0:300,0:300]]]

resulting in a total database size of about 18 megabytes. The cell value distributions follow

10 We are following the ODMG 2.0 standard by using type char to represent 8 bit integers.

88 Chapter 5

slightly modified normal distributions which means that the frequency maximum moves from

left to right over the 200 images. The distribution is visualized in Figure 27.

Figure 27 Synthetic Data Distribution for Selection Experiment

The queries retrieve all images where the number of cell values exceeding a certain threshold

x is above approximately 20% (~18000 of 3012). The threshold value x takes every fourth

value in the range from 0 to 255 forming a total number of 64 queries of the following form:

σcount_cells(image >left_ind x) > 18000 (Images) with x = 0, 4, 8, ..., 252

The selection criterion is a multi-dimensional expression consisting of an unary induced and a

reduce operation. Considering the operation-histogram compatibility matrix of Table 11, we

use the simple position-independent histogram (S-PIH) model which we realize by a one-

dimensional error minimization histogram (EMH) with 32 buckets to compute the selectivity

of the selection criteria.

On the one hand, sizes of the result sets as well as I/O and CPU times are taken from a real

query execution and, on the other hand, they are computed by means of the cost model. The

results are plotted in Figure 28.

0

200

400

600

800

1000

1200

1 64 128 192 256

fr
eq

ue
nc

y

dom(char)

im age 1 im age 200im age i

Array Cost Model 89

Figure 28 Measured vs. Computed Result Size, I/O and CPU Time

If we assume that the expression ‘> 18000’ is not optimized, the selection criteria will require

to visit all cells independently of their contents. This results in a constant I/O and CPU time

which can be well approximated by the cost model. Concerning the result size, all images

fulfill the selection condition for a threshold value up to 100. Then the number of accepted

images decreases almost linearly till the result size is empty for threshold values over 208.

The ACM delivers an exact prediction of the result size which confirms the adequate

modeling properties of S-PIHs for unary induced and reduce operations.

5.2.5 Implementation Aspects

The approximation of multi-dimensional values with histograms is performed in two steps.

First, the source data distribution has to be calculated and, second, the histogram can be built.

Depending on the value domain, different techniques, such as hash or table counting, can be

employed to get the source data distribution. With potentially large domains (e.g., 64 bit

integer), the number of different domain values is limited by the number of cells. In order to

reduce computation time, one should consider to approximate the source data distribution by

the distribution of a data subset.

Another interesting question deals with the granularity of the data to be approximated. One

can think of histograms on tile, MDD value, class of MDD values, and set of MDD values

level. For efficient computation of the cost model, it is recommendable to approximate classes

of MDD values or to support histograms on different levels. Histogram types used for multi-

level histograms should respect some kind of additivity property to be able to compute

histograms of higher levels based on the ones of lower levels.

0

5

10

15

20

25

0 50 100 150 200 250
threshold value x

ti
m
e
 [
s
e
c
]

0

50

100

150

200

250

re
s
u
lt
 s
iz
e
 [
tu
p
le
s
]

I/O m easured

CPU m easured

I/O com puted

CPU com puted

result size m easured

result size com puted

90 Chapter 5

At first sight, it could be beneficial to use the spatial partitioning of the tiling as a basis for

multi-dimensional histograms, i.e., histogram buckets correspond to tiles. However, this may

lead to poor quality histograms because the tiling strategy depends on access patterns and it

does not try to minimize the histogram error.

It should be noted that histograms can be modeled as one-dimensional arrays again which

facilitates their implementation in an Array DBMS environment.

5.3 Summary

The cost structure analysis of array queries carried out within the context of the Array Cost

Model has delivered the following results:

− I/O time increases step-wise with the number of tiles to be loaded and tile load time

depends on the number of pages read sequentially.

− CPU time of retrieval queries grows in a saw-tooth manner which is due to an efficient

copy operation of enclosed tiles and a much slower copy process of border cells because

of the multi-dimensional iteration necessary to access specific cells. For minimizing both

I/O and CPU time of retrieval queries it is highly relevant to use a tiling scheme with

borders matching the query box as close as possible. Our experiments with regular tiling

have shown that the overall response time of retrieval queries is I/O-bound.

− In case of computational queries, the CPU time used for performing multi-dimensional

operations has a strong linear dependence on the number of cells concerned. CPU time of

non-geometric operations (except elementary operations) can be derived from the

operand’s size and type, it is independent of the cell’s content. One can observe that query

response time for computational queries is absolutely CPU-bound.

Considering the presented results, the Array Cost Model incorporates cost formulas for the

prediction of I/O and CPU time needed to evaluate multi-dimensional expressions.

The cost prediction of complete multi-dimensional selection queries additionally needs

selectivity computation based on statistical information. Experiments with different data

distributions have shown that the quality of histogram approximations strongly depends on

the properties of the original data distribution. However, practical evaluation of the newly

introduced Error Minimization Histograms have proved their outstanding applicability for the

approximation of multi-dimensional values in different application areas. Finally, we have

proposed several histogram models in order to represent the information content necessary for

the application of different multi-dimensional operations.

Experimental confrontations of real-life cost measurements with computation results of the

cost model have demonstrated its satisfactory prediction quality.

RasDaMan Implementation 91

Chapter 6
RasDaMan Implementation

RasDaMan (Raster Data Management in Databases) started as a basic research project

sponsored by the European Community11 in 1996. The aim of the project was to develop

comprehensive database support for multi-dimensional arrays driven by real-life requirements

from the end user partners, namely Centro Nacional de Informatión Geográfica and Hospital

General de Manresa. The Array DBMS RasDaMan was developed by the Bavarian Research

Center for Knowledge-Based Systems.

The extension of a DBMS for multi-dimensional array support to an extent that realizes the

techniques presented in this work means extension of query language (Data Definition

Language and Data Manipulation Language), application programming interface (API),

communication modules, query processor (optimizer and executor), and storage manager. At

first glance, one would think of using the extension facilities of an object-relational database

management system (ORDBMS), such as Informix Universal Server [Ols96]. Unfortunately,

these systems are not flexible enough, e.g., to extend their query language for arbitrary array

operations (e.g., user defined functions get a fixed number of parameters) or to efficiently

optimize and execute expensive predicates (see also discussion on Extensible DBMSs in

Section 2.1.5).

Considering all this, we finally decided for a vertical implementation of RasDaMan which

means that we have realized all necessary modules specifically for multi-dimensional arrays

and their characteristic operations. As we were not able to integrate the modules into the core

11 RasDaMan has partly been sponsored by the European Commission in the ESPRIT IV

program under grant no. 20073.

92 Chapter 6

of an operating DBMS, RasDaMan is built on top of a DBMS which is used as a basic storage

and transaction manager.

As a first approach, one could think of implementing the RasDaMan functionality as a simple

library built on top of the base DBMS. This implicates client-side execution of queries with

the base DBMS acting as a tile server. As this is not convenient for queries processing many

tiles before selecting a comparable small result set and following the SQL-based shared-

server architecture of RDBMSs, we decided to provide server-side query execution which

made it necessary to implement our own client-server architecture within RasDaMan.

As a result of the vertical implementation approach, the data model of RasDaMan is restricted

to relations carrying just multi-dimensional attributes. Storage of conventional attributes

together with advanced, index-based retrieval functionality are out of scope for RasDaMan. In

order to reduce implementation effort and in correspondence to collections/extents of the

ODMG 2.0 standard [Catt97], persistent relations are even restricted to carry just one single

multi-dimensional attribute each. These relations are referred to as MDD collections. On

MDD collections, RasDaMan supports all of the MDD operations introduced together with

most of the optimization techniques presented.

Persistent data in the RasDaMan DB can be manipulated either by associative access using

the Raster Data Query Language (RasQL) or by navigational access using the C++ interface

based on the ODMG 2.0 standard [Catt97].

The first section of this chapter shows the system architecture together with a short

description of its components. We continue with an introduction to the RasDaMan query

language and a more detailed design description of the query processing modules which are

both part of this thesis.

6.1 System Architecture

RasDaMan realizes a two-tier client-server DBMS based on an object server (or more

specifically an MDD server) and server-side query execution. RasDaMan client and server are

two different processes and are possibly located on different, heterogeneous machines. The

linkage of RasDaMan and the so called base DBMS, which serves as storage and transaction

manager, can either be via function calls to a single-process base DBMS or via another client-

server communication, which indeed makes the whole system a three-tier architecture. The

latter system architecture is presented in Figure 29.

RasDaMan Implementation 93

Figure 29 RasDaMan System Architecture

Each of the architecture’s components and its interaction with other components is outlined in

the following. As the Query Processor component is of primary interest for this work, it is

described in more detail in Section 6.3.

− Raster Data Library (RasLib) The C++ library RasLib constitutes the Application

Programming Interface (API) to the RasDaMan DBMS. It implements the C++ binding of

the ODMG 2.0 standard for ODBMSs. The library consists of system classes for handling

of databases and transactions, persistency classes for maintenance of persistent objects,

query classes for creation and submission of declarative queries, and schema access

classes for provision of runtime type information in order to support query results of

arbitrary types. The key characteristics of the ODMG binding is its smooth integration of

database objects into the programming language by (1) using the programming language

data model as database data model at the same time and by (2) providing a smart pointer

which behaves like a normal C++ pointer capable of managing transient and persistent

data in a user transparent way. This leads to the elimination of the so called impedance

mismatch which is one of the disadvantages of RDBMSs.

As built-in support for arrays in C++ is rather poor (pointer to cells), RasDaMan extends

the ODMG binding with classes capable of representing multi-dimensional points,

intervals, and arrays including a comprehensive set of operations on these data structures.

Base DBM S

Base DBM S Interface

M DD

M anager

Index

M anager

Tile

M anager

Operation

M anager

Catalog

M anager

System

M anager

Query Processor

Server Com m unication Layer

Client Com m unication Layer

RasLib (API)

94 Chapter 6

Further, a set of so called Storage Layout Classes is used to specify tiling and

compression properties for multi-dimensional arrays, which is developed in [Fur98].

− Client-Server Communication Modules The communication modules are responsible for

data transfer and data transformation between client and server processes which possibly

reside on different, heterogeneous machines.

− Query Processor The Query Processor evaluates query statements expressed in the Raster

Data Query Language. Therefore, it performs syntax checking and builds an operator-

based query tree which serves as internal representation of the query. In the semantic

analysis phase, the query tree is augmented with type information received from the

Catalog Manager and it is examined for semantic correctness. After the optimization

process, which is described in detail in Section 6.3.3, the final query plan is executed by

retrieving collections of MDD identifiers from the MDD Manager, tile identifiers from the

Index Manager, and tile data from the Tile Manager. Operations on scalar values and on

multi-dimensional tiles are provided by the Operation Manager.

− MDD Manager This module provides access to collections of MDD identifiers together

with iterators enabling to scan the collections.

− Index Manager The Index Manager maintains a spatial index per MDD value in order to

identify the relevant tiles for a specific region of the MDD’s spatial domain.

− Tile Manager The array data which is subdivided into tiles can be accessed using the Tile

Manager. The Tile Manager also maintains a tile cache in order to speed-up tile operations

with locality.

− Operation Manager The final query plan consists of operations on scalar values and

multi-dimensional tiles which are both executed in the Operation Manager. Tile

operations are executed based on information about MDD and cell type stored in the

Catalog Manager.

− Catalog Manager The Catalog Manager stores schema information about collection,

MDD, and cell types specified with the Raster Data Definition Language (RasDL)

introduced in Section 6.2.1.

− System Manager The System Manager provides methods to start and stop sessions, to

open and close databases, and to start, commit, and abort transactions. Implementation of

the system functionality depends on the base DBMS’s properties. For instance the

RasDaMan implementation on top of O2 [Ban92] realizes its own session management

whereas RasDaMan databases and transactions are simply mapped to databases and

transactions of the base DMBS.

RasDaMan Implementation 95

− Base DBMS Interface This layer interfaces the manager modules to the underlying

storage manager and it is designed to ease RasDaMan portability between different base

DBMSs.

6.2 Query Language

The Query Language of RasDaMan, called Raster Data Query Language (RasQL), is divided

into the Data Definition Language allowing to create and maintain schema information on

multi-dimensional attributes and the Data Manipulation Language enabling users to

formulate retrieval and update queries. Both are described in this section.

6.2.1 Data Definition Language

The RasDaMan system maintains schema information on MDD collection types, MDD types

and cell types. The so called Raster Data Definition Language (RasDL) allows the database

user to add new types to the system. RasDL follows the idea of the Object Definition

Language of ODMG 2.0 [Catt97] but restricts the language to atomic and composite types for

the definition of cell types and to the set template for MDD collection types. MDD types are

described by a language extension allowing to specify multi-dimensional attribute domains

with different specification levels, e.g., with different restrictions as defined in Section 3.3.

In the following, we describe the RasDL language by means of a language grammar.

Grammar rules consist of a non-terminal on the left-hand side of the colon operator and a list

of symbol names on the right-hand side. Character | introduces a rule with the same left-hand

side as the previous one. It is usually read as or. Terminals are written in bold.

Cell Types

Cell types are used to define the base type of MDD type definitions. They can be either

atomic, composite or a previously defined composite type:

<cell_type> : <atomic_type> | <complex_type> | <struct_name>

RasDaMan supports the following atomic types by default which means that they do not have

to be inserted into the schema explicitly.

<atomic_type> : octet | char | short | unsigned short
| long | unsigned long | float | double
| boolean

Following the ODMG 2.0 standard, Table 13 summarizes all atomic types and gives a

description on their content and length in bits.

96 Chapter 6

RasDL name Description Length

octet signed integer 8 bit

char unsigned integer 8 bit

short signed integer 16 bit

unsigned short unsigned integer 16 bit

long signed integer 32 bit

unsigned long unsigned integer 32 bit

float single precision floating point 32 bit

double double precision floating point 64 bit

boolean true (nonzero value), false (zero value) 1 bit12

Table 13 RasDL: Atomic Types

Complex cell types are built using the keyword struct followed by a new type name and a

list of attributes specified by a name and a type each while complex types may be nested. The

following grammar defines the syntax of a composite type definition:

<complex_type> : struct <struct_name> { <attribute_list> };

<attribute_list> : <attribute_list> , <attribute_spec>
| <attribute_spec>

<attribute_spec> : <attribute_name> <cell_type>

MDD Types

MDD types are used to define collection element types which correspond to the definition of

multi-dimensional attribute domains introduced in Section 3.3. According to Table 5 we

distinguish between four different specification levels. In the following, we describe the

RasDL definition of the first three levels. The fourth level deals with setting of tiling layout

which is beyond the scope of this thesis. We refer to [Fur98] concerning the fourth level.

<mdd_type> : typedef marray
< <cell_type> , <domain_spec> >
<mdd_type_name>;

<domain_spec> : (specification level 1)
| <unsigned_integer_literal> (specification level 2)
| <spatial_domain> (specification level 3)

The keyword typedef is used to give names to arbitrary types. The MDD type constructor is

identified by the keyword marray. It gets the parameters cell type and domain specification.

Depending on the specification level the domain specification can either be empty, an

unsigned integer value or a spatial domain. The spatial domain consists of a list of intervals

with either fixed or open bounds:

12 memory usage is one byte per pixel

RasDaMan Implementation 97

<spatial_domain> : [<interval_list>]

<interval_list> : <interval_list> , <interval_spec>
| <interval_spec>

<interval_spec> : <bound_spec> : <bound_spec>

<bound_spec> : <integer_literal> | *

MDD Collection Types

Collection types correspond to the schema definition of relations with one single MDD

attribute. Their specification decides about possible assumptions which can be made by the

query processor while performing queries on collections. RasDL uses the usual set template to

define the collection type:

<collection_type> : typedef set< <mdd_type_name> >;

Several type definitions can be combined in a RasDL description which has the following

structure:

<rasdl_description> : <definition_list>

<definition_list> : <definition_list> <definition_spec>
| <definition_spec>

<definition_spec> : <complex_type>
| <mdd_type>
| <collection_type>

Example 6.1 This example defines cell, MDD, and collection types for a collection of RGB

images of type [[(char, char, char), [1:800,1:600]]].

struct RGBCell { char red, char green, char blue };

typedef marray< RGBCell, [1:800,1:600] > RGBImage;

typedef set< RGBImage > RGBSet;

Note: Conventional, descriptive attributes as for instance identifiers used in Example 3.5 are

not supported in this implementation.

RasDL descriptions are inserted into the RasDaMan DBMS using the RasDL processor which

produces C++ type definitions to be used in the DBMS application as well as schema

information in the database. The workflow of client application development is outlined in

Figure 30.

98 Chapter 6

Figure 30 RasDaMan Application Development Workflow

6.2.2 Data Manipulation Language

The Data Manipulation Language of RasDaMan, called Raster Data Manipulation Language

(RasML), follows the syntax of SQL-92 [ISO92]. This section introduces its syntax and its

mapping to the algebraic operations introduced in Section 3.1. The complete language

grammar can be found in Appendix C.

Retrieval Queries

A basic RasML query consists of three clauses: the select-clause, which specifies the target

(output) attributes to be returned; the from-clause, which specifies the collections involved in

the query; and the where-clause, which specifies the conditions to be satisfied by the result of

the query. Expressions in both the select-clause and the where-clause may be multi-

dimensional as defined in Section 3.1.6 on base of our algebraic operations.

RasDL Processor

RasDL Description

Generated C++
Header/Source

User-defined C++
Header/Source

C++ Compiler

Object Code RasDaMan Libraries

Linker

RasDaMan
Application

Meta Data Array Data

RasDaMan Implementation 99

select <mdd_exp1>, ..., <mdd_expn>

from <coll1>, ..., <collm>

where <mdd_boolean_exp>

The RasML query skeleton above is semantically equivalent to the following algebraic

expression:

α<mdd_exp1>,...,<mdd_expn>
(σ<mdd_boolean_exp>(<coll1> × ... × <collm>))

Persistent DBMS relations in RasDaMan are restricted to carry one single multi-dimensional

attribute each. These relations are referred to as MDD collections or simply collections. The

above query statement calculates the cross product of collections <coll1> to <collm> and

passes the resulting m-tuples to the selection operation σ. Computation of arbitrary multi-

target query results specified in the select-clause are directly supported by the newly

introduced application operation α (see Section 3.3).

Multi-dimensional Expressions

Multi-dimensional expressions <mdd_exp1> to <mdd_expn> and <mdd_boolean_exp> may

consist of operations on scalar types as well as of multi-dimensional operations (cf. Section

3.1.6 on multi-dimensional expressions). The following tables present the RasML syntax of

these multi-dimensional operations and fix their semantics through providing their

corresponding algebraic operations defined in Section 3.1.

RasML MDD Algebra

marray <var> in <minterval_exp>

values <scalar_exp>

marray<minterval_exp>, <var>

(<scalar_exp>)

condense <condense_op> over

<var> in <minterval_exp>

using <scalar_exp>

cond<condense_op>, <minterval_exp>, <var>

(<scalar_exp>)

Table 14 RasML: Elementary Operations

Table 14 presents the RasML syntax of the two elementary operations cond and marray

together with their counterparts from MDD Algebra. In this connection, multi-dimensional

point variable <var> can be any identifier, <minterval_exp> represents an expression

resulting in a spatial domain, expression <scalar_exp> evaluates to a scalar value and

<condense_op> stands for an operation out of { +, -, *, /, min, max, and,

or }. Usually, <scalar_exp> depends on variable <var> and a multi-dimensional value as

demonstrated in the next example:

100 Chapter 6

Example 6.2 We repeat Example 3.2 which is based on a sales table t of type [[�, [1:52,

1:8]]] with 52 week columns and 8 product rows. The following RasML statement results in

the total sales value of the first product:

condense + over i in [1:52] using t[i,1]

t[i,1] denotes access to the cell with coordinates (i,1) of the two-dimensional array t.

The next statement combines all sales values for each product in a one-dimensional array with

domain [1:8]:

marray j in [1:8] values

 (condense + over i in [1:52] using t[i,j])

We continue the introduction to RasML with the description of derived multi-dimensional

operations and start with geometric operations:

RasML MDD Algebra

<mdd_exp> <minterval_exp> trimming<minterval_exp>(<mdd_exp>)

<mdd_exp> <section_exp>

with <section_exp> =

] ,, [*:...,* *,:*scalar_exp*:...,* *,:* 44 344 2144 344 21
d-i times timesi-

><

1

sectioni,<scalar_exp>(<mdd_exp>)

Table 15 RasML: Geometric Operations

Again <minterval_exp> evaluates to a spatial domain value whereas <section_exp>

contains open bounds specification *:* for all dimensions except for dimension i.

<scalar_exp> fixes the sectioning position in dimension i. Trimming and sectioning

operations may be combined using one RasML expression as demonstrated in the following

example:

Example 6.3 The algebraic expression trimming[l1:h1, ..., ld-1:hd-1](sectioni,v(m)), which takes

the d-dimensional value m and first cuts out one slice in dimension i at position v and second

performs a trimming operation, can be expressed using the following RasML statement:

m[l1:h1, ..., li-1:hi-1, v, li:hi, ..., ld-1:hd-1]

It should be remarked that cell access and section operation use the same syntax because cell

access to the cell with coordinates (x1, ...,xd) of multi-dimensional value m is similar to the

following sequence of section operations: section1,x1(section2,x2(... sectiond,xd(m) ...)). As

demonstrated in the example, this can be combined to m[x1, ..., xd] in RasML.

RasDaMan Implementation 101

RasML MDD Algebra

- <mdd_exp> -un_ind(<mdd_exp>)

<mdd_exp1> + <mdd_exp2> +bin_ind(<mdd_exp1>, <mdd_exp2>)

<mdd_exp1> + <scalar_exp2> +left_ind(<mdd_exp1>, <scalar_exp2>)

<scalar_exp1> + <mdd_exp2> +right_ind(<scalar_exp1>, <mdd_exp2>)

Table 16 RasML: Induced Operations (excerpt)

Table 16 comprises minus as an example for unary induced operations and addition as a

representative for binary induced operations. RasML overloads the same operation symbol for

binary, left and right induced as well as for scalar operations. Their specific algorithms are

chosen depending on the operands’ types. RasML supports the following scalar and induced

operations respectively: +, -, *, /, not, and, or, =, <, >, <= (for �), >= (for

�), != (for �)

The selection of single elements of a composite type is performed using the so called dot

operator. As this operation can be induced as well, RasML supports the operator in

combination with multi-dimensional expressions.

RasML MDD Algebra

sum_cells(<mdd_exp>) sum_cells(<mdd_exp>)

mult_cells(<mdd_exp>) mult_cells(<mdd_exp>)

avg_cells(<mdd_exp>) avg_cells(<mdd_exp>)

min_cells(<mdd_exp>) min_cells(<mdd_exp>)

max_cells(<mdd_exp>) max_cells(<mdd_exp>)

some_cells(<mdd_boolean_exp>) some_cells(<mdd_boolean_exp>)

all_cells(<mdd_boolean_exp>) all_cells(<mdd_boolean_exp>)

count_cells(<mdd_boolean_exp>) count_cells(<mdd_boolean_exp>)

Table 17 RasML: Aggregation Operations

Table 17 summarizes RasML statements for derived aggregation operations. The first ones

take general MDD expressions <mdd_exp> as parameters whereas the last three depend on

102 Chapter 6

expressions resulting in MDD values with base type boolean denoted by

<mdd_boolean_exp>.

Additionally to the presented multi-dimensional operations, RasML supports conventional

operations on scalar values as well as scalar and multi-dimensional constants in order to build

multi-dimensional expressions.

Example 6.4 In the following, we repeat the algebraic expression of the query introduced in

Example 3.5 and show the corresponding RasML statement:

α trimming[1:100, 1:200](section3,300(cube)) (

σsome_cells(trimming[190:310,20:100](section3,300 (cube >left_ind 127)) andbin_ind mask) (MRI × ROI)

)

select cube[1:100,1:200,300]

from MRI as cube, ROI as mask

where some_cells((cube > 127)[190:310,20:100,300] and mask)

Update Queries

According to SQL-92, RasML supports so called update queries able to change the state of a

database. The following statements are used to create and drop collections respectively.

create coll <coll> <type_name>

drop coll <coll>

Both statements get the collection name <coll> whereas the collection type name

<type_name> only has to be provided to the creation statement. The type name must match a

collection type name available in the RasDaMan schema (see Section 6.2.1).

MDD elements are inserted into the collection using the insertion statement. It has the

following syntax:

insert into <coll> values <mdd_exp>

The result of the MDD expression <mdd_exp> is inserted into the collection with name

<coll> provided that the attribute domain specification is fulfilled.

Deletion of specific elements of a collection can be performed using the following delete

statement which deletes the elements of collection <coll> evaluating boolean expression

<mdd_boolean_exp> to true.

RasDaMan Implementation 103

delete from <coll> where <mdd_boolean_exp>

The RasML update statement allows partial updates on MDD values. It has the following

syntax:

update <coll>

set <attribute> <minterval_exp> assign <mdd_exp>

where <mdd_boolean_exp>

The statement updates MDD values of collection <coll> fulfilling the selection predicate

<mdd_boolean_exp>. <attribute> stands for the multi-dimensional attribute of the target

collection to be updated. In case dimensionalities of <attribute> and the multi-

dimensional result of <mdd_exp> are equal and the attribute domain specification is not

violated, the cells of <mdd_exp> are copied to the corresponding cells of the update target.

<minterval_exp> is optional and can be used to specify the update layer of a multi-

dimensional target attribute in case that its dimensionality is higher than the dimensionality of

the source expression.

Example 6.5 An application scenario is, for instance, piece-wise insertion of two-

dimensional computer tomogram records into a three-dimensional reconstruction of the data

cube within the array database. Let CT be a collection of three-dimensional tomograms and

variable $slice carry the next image in plane xy produced by the CT device. The following

query updates slice 80 of the CT cube identified by object identifier $id.

update MRI as cube

set cube[*:*, *:*, 80] assign $1

where oid(cube) = $id

Note: Function oid(cube) returns the object identifier of the collection element referred to

by cube. As the function is not relevant for this work a more precise definition is omitted.

6.3 Query Processing Modules

RasDaMan is designed and implemented solely using object-oriented design methods and

C++ as object-oriented programming language [Fur97]. This section describes the object-

oriented design of query processing modules responsible for internal query representation

and for the query processing phases query analysis, optimization, and execution.

104 Chapter 6

6.3.1 Internal Query Representation

RasDaMan uses an operator-based query tree

similar to the one defined in Section 4.1 for

internal, procedural representation of RasML

queries. The decision for an operator-based

query tree instead of, e.g., an object-based

representation was supported by suggestions

made in [Mit95]. The nodes of the query tree

are instantiations of classes of the Query Tree

Class Hierarchy. Following the distinction

between set trees and element trees made in Section 4.1, the class hierarchy is partitioned into

classes derived from QtONCStream responsible for set trees and into classes derived from

QtOperation building element trees. All classes are derived from QtNode which provides

general tree functionality, such as different traversal strategies (pre-order, in-order, post-

order) or consistency checking for father-son relationships, as well as definitions of virtual

interfaces for semantic analysis, optimization and execution phases. These interfaces are

described more detailed in sections 6.3.2, 6.3.3, and 6.3.4.

Set trees consist of relational operations (see Section 3.3) as inner nodes and nodes

representing MDD collections as leafs. All set nodes support the so called open-next-close

protocol (described in Section 6.3.4) which is offered by class QtONCStream and passed to

its subclasses. Figure 32 shows the corresponding class hierarchy. Classes QtSelection,

QtApplication, and QtCrossProduct represent relational operations. They are put

together under class QtIterator in order to support their common input signature which is

tuples of MDD values.

Figure 32 Class Sub-Hierarchy for Set Trees

Element trees represent multi-dimensional expressions and consist of MDD and logical

operations as nodes and MDD iterators and constants as leafs. An excerpt of the class

hierarchy used for node instantiations in element trees is presented in Figure 33. Their

QtNode

QtONCStream QtOperation

Figure 31 Root Part of the
Query Tree Class Hierarchy

QtCollAccess QtIterator

QtSelection QtApplication QtCrossProduct

QtONCStream

RasDaMan Implementation 105

common super class QtOperation defines an interface for the evaluation of general

expressions getting the probing tuple as input parameter. Operation classes are partitioned

into unary, binary, and n-ary operations which allows functionality depending on the number

of their input parameters to be defined in a common super class. All of the multi-dimensional

operations defined in sections 3.1.3 and 3.1.5 have their counterpart in the class hierarchy.

Classes QtPointOp, QtIntervalOp, and QtMintervalOp are used to define dynamic

points, intervals and multi-dimensional intervals respectively.

Figure 33 Class Sub-Hierarchy for Element Trees (excerpt)

6.3.2 Query Analysis

In the first step, the lexical analyzer transforms the query string into a sequence of tokens

while checking on lexical correctness. Then the language parser checks for syntactical

correctness with respect to the grammar description. During the parsing process, the query

tree is constructed. From that point on, all remaining actions for evaluation of the query are

performed on the operator-based query tree.

The next step is the so called semantic analysis phase. First, existence and validity of

collection and attribute names as well as of variable names is examined and, second, the

query tree is augmented with type information received from the Catalog Manager in order to

be able to check type correctness of multi-dimensional expressions. The complete semantic

analysis process is performed within one post-order traversal of the query tree. The necessary

interface is provided in class QtNode and looks like:

QtNaryOpQtVariable QtUnaryOp QtBinaryOp

QtReduce

QtUnaryInduce

QtPointOpQtMintervalOp

QtIntervalOp

QtGeometricOp

QtBinaryInduce

QtConst

QtOperation

106 Chapter 6

QtType QtNode::checkSemantics(QtTypeTuple)

Each node triggers semantic checking of its descendants (input streams) by passing a type

tuple (QtTypeTuple) for type information on free variables which will be bound during

execution. The returned types (QtType) are used for semantic analysis of the node itself. In

case that the semantic analysis fails, an exception is raised.

6.3.3 Optimization Phases

Query optimization in RasDaMan is currently divided into four levels (0 to 3) with the

meaning that the higher the optimization level the more optimization techniques are

employed. Higher optimization levels include optimization techniques of lower ones. The

following table gives an overview on the techniques applied at each level:

Level Description

0 Load optimization.

1 Standardization and heuristic rewriting.

2 Simplification of constants and elimination of redundant terms.

3 Exploitation of common subexpressions.

Table 18 RasDaMan Optimization Levels

The optimization level can be specified as a command line argument of the server which

restricts the optimization level for all queries processed by the server. It can be further

restricted on query level stating a so called optimization hint embedded in a RasML query

comment.

Transformation rules are hard-wired and, following the object-oriented paradigm, each rule is

attached to the particular operation class corresponding to the root class of the subtree

representing the query pattern of the rule. This means that each query node possesses the

information on how its subtree can be rewritten. This design ensures easy maintenance of

inherently complicated code and comfortable extensibility of the rule system although no

optimizer generator is used (e.g., [Gra87]).

Level 0

Load optimization (cf. Section 4.2.1.1) of level 0 is achieved by moving geometric operations

to the leaf nodes of Dimensional Data Areas (DDAs, defined in Section 4.1). This starting

point of a DDA is either (1) an MDD variable, (2) an MDD constant, or (3) an marray

constructor. In case (1), MDD variables are augmented with their so called load domains

which is the smallest spatial domain sufficient for evaluating the whole expression. Case (2)

means to cut the constant and, in case (3), the definition domain of the marry constructor is

RasDaMan Implementation 107

reduced. Therefore, all nodes support an interface for pre-order traversal called

QtNode::preOptimize() which, right now, just takes care for top-down load

optimization.

Level 1

Optimization level 1 consists of query rewriting for standardization and heuristic optimization

purpose. The standardization process basically follows the one described in Section 4.2.2

except of the evaluation of constant subexpressions which, right now, is performed in

optimization level 2. The interface QtNode::standardize() supports a pre-order traversal

for top-down application of standardization rules. Additionally, the standardization process

produces a unique tree structure for associative and commutative operations by building left

deep trees and by defining a total order on subtrees. This ensures a higher detection rate for

common subexpressions exploited on level 3. The rewriting process applies some of the

optimization rules described in sections 4.2.1.1 to 4.2.1.3 following the heuristics described in

4.2.3 except for the movement of geometric operations as they were treated at optimization

level 0 already. The interfaces used are QtNode::rewriteOps() for top-down application

of rules and QtNode::checkIdempotency() which is used bottom-up. Optimization rules

concerning relational operations described in Section 4.2.1.4 are not supported yet.

Level 2

Simplification of constants is performed using interface QtNode::simplify() which

performs a post-order traversal. Subtrees which are just composed of constants and operations

are evaluated using the evaluation strategy described in the next section and substituted by a

constant representing the result of the evaluation. This substitution process is performed

bottom-up thereby evaluating all constant subexpressions.

Level 3

Level 3 performs exploitation of common multi-dimensional subexpressions as described in

Section 4.2.4. The detailed algorithm for detection of common subexpressions can be found in

the Diplomarbeit (master thesis) of A. Haftmann [Haft97]. Basically, the interface

QtOperation::seeSubexpression() tries to extend equal leaf nodes of the element

trees in order to get a set of expressions occurring at least twice. The final decision for

employing a common subexpression, as well as its integration into the query tree, follows the

technique described in Section 4.2.4.

6.3.4 Execution Process

The query execution strategy in RasDaMan follows the demand-drive strategy described in

Section 4.3.1.4. Right now, the operator based query tree is used for execution as well. The

object-oriented paradigm suggests to attach execution algorithms (equal to physical plan

operators) directly to operation nodes of the query tree. Set trees and element trees follow

108 Chapter 6

different execution strategies. While set trees evaluate on tuple granularity, element trees pass

scalar or multi-dimensional values. The tile-based execution strategy developed in Section

4.4.1 is not supported yet.

Each node in the set tree realizes the so called open-next-close protocol by implementing the

following interface derived from class QtONCStream:

void QtONCStream::open()

void QtONCStream::next()

QtTuple QtONCStream::close()

void QtONCStream::reset()

First, method open() is invoked on the root node. In a post-order traversal, the method

invocation is propagated through the query tree while initializing stream inputs, collection

iterators, and other resources. Then, method next() is invoked repeatedly on the root node

which again is propagated in a post-order traversal through the complete tree. Each time the

method completes, this bottom-up process returns one element of the result collection. It

indicates the end of the evaluation process through an exception. At the end, method

close() is called to clean up resources allocated during execution. Method reset() is used

to put back the data stream of a node.

Nodes of element trees support the interface QtData evaluate(QtDataTuple) derived

from QtOperation. The method is called from set nodes of type QtApplication and

QtSelection. It takes the probing tuple in order to be able to bind free variables and

evaluates the expression represented by the element tree from bottom to top.

6.4 Summary

We have presented an SQL-based query language which realizes the functionality of our

embedded array algebra developed in Chapter 3. Further, we have described the query

processing modules of the running Array DBMS RasDaMan implementing optimization and

evaluation techniques of Chapter 4. Both demonstrate practical feasibility of our theoretic

work.

Performance Studies 109

Chapter 7
Performance Studies

The aim of this chapter is to demonstrate the practical impact of the presented array

optimization and evaluation techniques. For this purpose, we describe several performance

studies performed with the Array DMBS RasDaMan of which we have described the

implementation of components relevant to our work in the previous chapter. The first

subsection introduces the benchmarking testbed. It is followed by two subsections describing

application scenarios based on synthetic and real-life data/queries respectively. Finally, the

experimental results are summarized.

7.1 Benchmarking Testbed

The benchmarks are performed on a Sun Ultra 1 with 140 MHz and 256 MB main memory

running the RasDaMan DBMS version 3.5 [Ras99]. As the focus of our measurements is set

on query processing time and not on network transfer time, all processes, which means base

DBMS, RasDaMan server, and RasDaMan client, are running on the same machine. The

system configuration allows to measure query preparation and optimization time (topt), index

search time (tindex), tile I/O time (tio), CPU processing time (tcpu), and network transfer time

(ttrans). The total time needed to process a query, called query processing time (tqp), as well as

the overall query response time (tresponse) are calculated from its time components above. Table

19 summarizes measured and calculated time components respectively.

110 Chapter 7

Time Description

topt Time used for parsing, analyzing and optimizing the query.

tindex Time spent in the index module.

tio Time used for loading tiles from the base DBMS.

tcpu CPU-time used for query execution.

tqp Total time needed for query processing (topt+tindex+tio+tcpu).

ttransport Time needed to transport the query result to the client.

tresponse Overall query response time (tqp+ttransport)

Table 19 Query Processing Time Components

We assess optimization benchmark scenarios with the so called speed-up parameter which is

the relative processing time acceleration in percent achieved by the optimization process. It is

defined as follows:

Definition 7.1 (Speed-up) Let t denote the original time and t’ be the new time value, then the

speed-up spt,t’ is defined as:

100
’

1’, ⋅




 −=

t

t
sp tt ◊

7.2 Synthetic Scenarios

The synthetic benchmarking scenarios use artificially generated data sets and queries. The

queries are mainly chosen with regard to their demonstration suitability for specific array

optimization techniques. Nevertheless, the applied queries use operations typical for many

application areas because the choice of our optimization techniques has been driven by

deficiencies observed in practice.

At first, we present a typical time composition diagram for retrieval array queries followed

by an examination of CPU times occurring with computational array queries. It follows an

evaluation of the optimization impact of MDD expression rewriting, extended relational

rewriting, and CSE exploitation on the query processing performance.

7.2.1 Time Components of Retrieval Array Queries

The first class of queries to be examined are the so called retrieval array queries. In

accordance with Definition 5.1, these queries just consist of relational operations and multi-

dimensional geometric operations, i.e., trimming or section operations. As a consequence of

this definition, retrieval array queries have no selection condition on multi-dimensional

attributes.

Performance Studies 111

The MDD collection bm1 used for this benchmark holds 100 MDD objects of type [[char,

[1:2000,1:2000], regular[1:100,1:100]]], i.e., their size is 4 MB and they are subdivided into

400 equally sized and shaped tiles of size 10 kB each (20 tiles in each direction) leading to an

overall database size of 400 MB.

Figure 34 shows the applied query configuration. The retrieval query performs a trimming

operation on each MDD object of collection bm1. The right border of the query box depends

on variable x which takes values from 1 to 1000 in steps of 25.

Figure 34 Benchmark Configuration for Retrieval Array Queries

The purpose of Figure 35 is to present an overview on the composition of the response time

for retrieval array queries. The composition diagram includes all time components of Table 19

depending on the number of cells per MDD object belonging to the query result set.

Figure 35 Query Response Time Composition for Retrieval Queries

We can observe that the query response time is dominated by the client-server transport time.

ttransport increases step-wise because of block transfer but its gradient is nearly linear with a

throughput of about 1 MB per second. The time needed by the index (tindex) is comparatively

small. Basically, tindex jumps with the number of tiles to read and its level depends on the

selectivity occurring in each dimension. More detailed examinations about the spatial index

select a[1:x,1:2000]

from bm1 as a

topttindex

tio

tcpu

ttransport

0

50

100

150

200

250

50 200 350 500 650 800 950 1100 1250 1400 1550 1700 1850 2000

#cells [1000] per M DD

ti
m
e
 [
s
e
c
]

ttransport

tcpu

tio

tindex

topt

112 Chapter 7

used in RasDaMan can be found in [Fur98]. The remaining time components, namely topt, tio,

and tcpu, are of special interest for this work and, hence, they are examined more detailed in

the following. As topt is independent of the amount of data processed and both tcpu and tio scale

almost linearly with the number of MDD objects, we restrict the following benchmark

presentations to times needed to process single MDD objects.

Figure 36 plots the time components topt, tio, and tcpu together with the number of tiles (#tiles)

to be read in dependence on the number of cells to be processed.

Figure 36 Query Processing Time Components for Retrieval Queries

The following observations can be made:

− Parsing, analyzing, and optimizing retrieval queries (summarized in time topt) takes

constant time in the scale of 9 ms. As a rough approximation, topt depends linearly on the

number of operations used in multi-dimensional expressions:

topt ≈ 2 ms * #operations + 7 ms

− tio depends on the number of tiles to be read. Due to the load optimization described in

Section 4.2.1.1, the number of tiles to be read is independent of MDD or database size. It

rather depends on the number of tiles sufficient to compute the result of the query. In our

configuration, reading one 10 kB tile needs 3 ms on average. It should be remarked that

larger tiles would be more appropriate with respect to sequential disk access. As our

configuration uses 4 kB disk pages, one tile consists of only 2.5 disk pages which is not

enough to compensate the performance penalty of random disk access. A detailed

examination of different tile sizes as well as a discussion on sequential vs. random tile

reading is given in [Fur99]. The peaks at the beginning of ranges with constant tile

numbers are due to cache load (cold access) of the base DBMS server. Reads directly

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
#cells [1000]

ti
m
e
 [
s
e
c
]

0

20

40

60

80

100

120

140

160

180

200

#
ti
le
s

tcpu [sec]

tio [sec]

topt [sec]

#tiles

Performance Studies 113

following the peaks are warm accesses. The cache effect is small and hence neglectable

because the cache size of the base DBMS was set to a minimum.

− tcpu increases in a saw-tooth manner depending on the number of tiles lying completely in

the query box and the number of cells lying in the query box but not within completely

enclosed tiles, the so called border tiles. Completely enclosed tiles can be processed very

efficiently as just whole memory blocks can be copied. Border tiles have to be trimmed

which means that cells intersected by the query box have to be copied with an expensive

multi-dimensional iteration. At the local minimums of the plot, the query box consists of

completely enclosed tiles exclusively which are copied most efficiently. Then the CPU

time increases linearly with the number of cells lying within border tiles until they are

completely overlapped by the query box again. Therefore, best performance is achieved if

the query box just overlaps complete tiles (no border tiles) while the worst performance

occurs if tiles slightly jut out the query box (border tiles with maximal size).

Further it should be mentioned that the time needed to trim border tiles depends on the

selectivity in each dimension. As multi-dimensional tiles are linearized in main memory,

the densely stored dimension can be copied most efficiently. As this is the highest

dimension in RasDaMan, the operation is the more efficient the less selective the

trimming is in the highest dimension and the more selective it is in the rest of the

dimensions.

As a rough approximation valid for this system and tiling configuration, the CPU time

increases linearly with an average gradient of 20 ns per cell.

A detailed examination of the CPU time is given in Section 5.1.1.

Summarizing, it can be stated that query processing time for retrieval queries is clearly

dominated by I/O costs. The time strongly depends on the tiling layout which should

minimize the area difference between the union of concerned tiles and the query box. For

further reading about tiling we refer to [Fur99].

7.2.2 Time Components of Computational Array Queries

Computational array queries, as defined in Definition 5.2, consist of at least one multi-

dimensional non-geometric operation, i.e., aggregation or induced operation. Now we present

an examination of computational array queries with exactly one non-geometric MDD

operation, namely unary induce operation, binary induce operation and reduce operation. For

this purpose, we use the database introduced in Section 7.2.1 and apply the following queries:

114 Chapter 7

Figure 37 Benchmark Configuration for Computational Array Queries

The computational query applies function f on a subarea of each MDD object of collection

bm1. The right border of the subarea depends on variable x which again takes values from 1

to 1000 in steps of 25. Function f stands for a non-geometric function. We use a+1 as a

representative for unary induced operations, a+a for binary induced operations, and

some_cells(a) for reduce operations.

Figure 38 plots the measured I/O and CPU times while processing one MDD value for each of

the three query types.

Figure 38 I/O and CPU Time for Computational Array Queries

− Since the amount of data to be read is the same for each query type, they all share the

same I/O time. Analogously to Figure 36, the I/O time depends on the number of tiles

overlapped by the query box. One 10 kB tile is read in approximately 3 ms.

− As already observed in Section 5.1.1, the CPU times of unary induced, binary induced,

and reduce operations rise strictly linearly with the number of cells visited. The binary

induced operation has the largest gradient (820 ns per cell) because it has to perform more

expensive tasks per cell values: (1) read the current cell values from its operands, (2)

compute the result, (3) store the result in a multi-dimensional array. Unary induced

select f(a[1:x,1:2000])

from bm1 as a

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

#cells [1000]

ti
m
e
 [
s
e
c
]

IO (one operand)

CPU Unary Induce

CPU Binary Induce

CPU Reduce

Performance Studies 115

operations are slightly faster (641 ns per cell) because task (2) just needs to read one cell

and the gradient of reduce operations is even smaller (540 ns per cell) because the final

result is kept in a CPU register and has not to be copied to an array in task (3) [Wid98].

If we compare the gradients of CPU times for computational array queries with their I/O time,

we can record that I/O is faster by a factor of about 1,8 to 2,7. Just in case a computational

query operates on very view cells (with this query environment in the scale of 1500 cells) the

I/O time gets larger than the CPU time which is almost a pathological case for our

applications. Therefore we state that query processing becomes CPU-bound already in the

presence of at least one non-geometric multi-dimensional operation.

7.2.3 Performance Increase of MDD Expression Rewriting

MDD expression rewriting as described in Section 4.2.1 aims at eliminating multi-

dimensional operations or at replacing multi-dimensional operations by scalar ones. As an

example for the potential speed-up of MDD expression rewriting, we consider the application

of the associative law for induced operations as described by optimization rule OR11. We

again use the query configuration of Figure 37 with computation function f being equal to

expression (a *lef_ind 5) *left_ind 2. During optimization, f is rewritten to a *left_ind (5 * 2)

thereby replacing one of the two multi-dimensional operations by a scalar one. Figure 39 plots

the query processing time per MDD value necessary for evaluation of the non-optimized and

the optimized query plan in dependence on the number of cells processed together with the

relative speed-up in percent.

Figure 39 Query Processing Speed-up of MDD Expression Rewriting

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500 3000 3500 4000

#cells [1000]

ti
m
e
 [
s
e
c
]

0

5

10

15

20

25

30

35

40

45

[%
]

tqp non-optim ized

tqp optim ized

speed-up [%]

116 Chapter 7

As query processing time of computational array queries is dominated by the CPU time of

multi-dimensional operations, the replacement of one multi-dimensional operation out of two

with a scalar one results in an overall speed-up converging to about 50%.

7.2.4 Performance Increase of Extended Relational Rewriting

For demonstration of the performance increase achievable by extended relational rewriting,

we take up again Example 4.3 which describes the movement of the selection subexpression

cube[190:310, 20:100, 300] >left_ind 127 into the cross product × using rule OR37.

The benchmark database consists of the collections MRI and ROI:

− MRI with 1 MDD object of type [[char, [1:512, 1:512, 1:512], regular[1:32,1:32,1:32]]]

− ROI with 400 MDD objects of type [[boolean, [190:310, 20:100], regular[1:121,1:81]]]

One object of collection MRI has 134 MB and is tiled using a regular grid with edges of

length 32 resulting in 4096 tiles of size 32 kB. The masks of collection ROI are stored in one

tile each with about 10 kB in size. The original query statement for the benchmark looks as

following:

select cube[1:100, 1:200, 300]

from MRI as cube, ROI as mask

where some_cells(cube[190:310, 20:100, 300] > 127c and

 mask[190:310,20:100])

The benchmark query set varies the cardinality of collection ROI because the performance

increase mainly depends on the ratio of the cardinality of collection ROI to the cardinality of

the cross product. Figure 40 plots CPU time (tcpu) and query processing time (tqp) for the non-

optimized plan as well as for the optimized plan rewritten according to Figure 9, together with

their corresponding speed-ups.

Performance Studies 117

Figure 40 Query Processing Speed-up of Extended Relational Rewriting

The CPU time necessary for the computation of expression cube[190:310, 20:100, 300] >left_ind 127 is

about 24 ms which is saved |MRI| * (|ROI| - 1) = (|ROI| - 1) times. The CPU time

improvement of about 33% with 400 masks in ROI leads to an overall query processing

speed-up of about 28%. This result can be supported theoretically using the Array Cost Model

of Chapter 5. Based on the experience that query processing time of computational queries is

determined by the CPU time of multi-dimensional operations, we just take into account the

variable time component of the CPU time for multi-dimensional operations in order to

calculate the CPU time t necessary for evaluation of the non-optimized plan and t’ for the

optimized plan:

t = |ROI| * |MRI| * (cpuvred + cpuvuind + cpuvbind)

t’ = |ROI| * |MRI| * (cpuvred + cpuvbind) + |MRI| * cpuvuind

Using the query environment described by Table 9 the asymptotic speed-up13 spt,t’ is

computed as following:

As the number of cells being processed per tuple is comparatively small (about 10000) the

difference between query processing time speed-up and CPU time speed-up is in the scale of

5%. It is the smaller the more cells are involved in the computation.

13 as introduced with Definition 7.1

() %32100
ROI

lim
ROI

’, ≈⋅





++⋅

−
++

=
∞→ binduindred

uind

binduindred

uind

cpuvcpuvcpuv

cpuv

cpuvcpuvcpuv

cpuv
ttsp

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

| ROI |

ti
m
e
 [
s
e
c
]

0

5

10

15

20

25

30

35

40

[%
]

tqp non-optim ized [sec] tqp optim ized [sec]

tcpu non-optim ized [sec] tcpu optim ized [sec]

tqp speed-up [%] tcpu speed-up [%]

118 Chapter 7

7.2.5 Performance Increase of Common Subexpression Exploitation

In order to demonstrate the performance increase achievable by exploiting common multi-

dimensional subexpressions as described in Section 4.2.4 we again use the database

introduced in Section 7.2.1 and apply the following query configuration with variable x

ranging from 1 to 2000 with increasing steps:

Figure 41 Benchmark Configuration for Common Subexpression Exploitation

Exploitation of the common subexpression (a * b)[1:x,1:2000] leads to a query plan

similar to the one described in Figure 10. Query processing time per MDD value necessary to

evaluate the non-optimized plan as well as the optimized plan in dependence on the number

of cells processed is plotted in Figure 42.

Figure 42 Query Processing Speed-up of CSE Exploitation

The non-optimized query consists of one unary induced, two binary induced and one reduce

operation. The optimized query plan saves the computation of one binary induction. Detection

of the CSE and query rewriting just takes about 6 ms. As query processing time is dominated

by the CPU cost for multi-dimensional operations, the optimization reduces the overall

select (a * b)[1:x,1:2000]

from bm1 as a, bm1 as b

where some_cells((a * b)[1:x,1:2000] >= 2)

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

#cells [1000]

ti
m
e
 [
s
e
c
]

0

5

10

15

20

25

30

35

40

[%
]

tqp non-optim ized [sec]

tqp optim ized [sec]

speed-up [%]

Performance Studies 119

processing time asymptotically to (cpuvred + cpuvuind + cpuvbind) / (cpuvred + cpuvuind +

2*cpuvbind) ≈14 0,7. In other words, the speed-up converges to about 30%.

7.3 The Human Brain Database

In order to present some real-life experiences, we choose the European Computerized Human

Brain Database (ECHBD) described in [Fre99]. Within this EC Biotech project, a central

research database primarily consisting of 3-dimensional raster data images collected from

experiments and measurements on the brain is established on top of the Array DBMS

RasDaMan. The database offers some advanced, content-based query functionality to groups

of scientists all over Europe.

The database stores structural as well as functional data of the brain. The structural or

microstructural data in the ECHBD consists of cytoarchitecture and myeloarchitecture

information collected from post-mortem brains, basically by cutting the dead brains. The main

in vivo techniques used to produce functional data are Positron Emission Tomography (PET),

Functional Magnetic Resonance Imaging (fMRI), and MagnetoEncephaloGraphy (MEG).

One of the central research tasks is now to spatially correlate functional maps with structural

densities of the brain to determine the structural/functional relationship, e.g., to detect where

the working memory is located. As brains of different sizes and shapes are not comparable a

priori, they are first transformed to a standardized brain format by the BrainFit algorithm

[Lin96] which uses continuous mappings, guaranteeing that the environment of each point is

mapped to the environment of the transformed point, thereby preserving the topology.

7.3.1 Data Description

Our experimental database holds one data cube representing cytoarchitectural areas

(collection Cytoarch) and a collection of 20 different 3-dimensional data cubes representing

PET studies (collection PET). Each cube has a spatial domain of [0:140, 0:149, 0:184] and 2-

byte cell values resulting in 7.8 MB per cube and about 160 MB for the database.

7.3.2 Queries

The majority of queries appearing in the ECHBD application first computes areas exceeding a

certain threshold and then combines corresponding structural and functional data by set-

algebraic operations before they filter out studies where the resulting area is below a certain

percentage. The queries can be described by the following skeleton:

14 using the query environment described by Table 9

120 Chapter 7

select ((a>ta) op (b>tb))[voi]

from Cytoarch as a, PET as b

where count_cells(((a>ta) op (b>tb))[voi])

 / |voi| * 100 > tmin

with voi ... volume of interest (spatial domain)

|voi| ... number of cells within voi (integer)

ta ... threshold for cubes a (integer)

tb ... threshold for cubes b (integer)

op ... set-algebraic operation:

intersection (and), union (or),

difference (and not), symmetric difference (xor)

tmin ... minimal percentage of the result area (integer)

Based on the experience gained in Section 5.1.1 that costs are independent of the type of

binary induced operations, we restrict our experiments to the following simplified query set

with voi denoting the spatial domain [0:107,36:107,0:x]. The query set varies x within 0 and

180 in steps of 10.

select ((a>100) and (b>200))[voi]

from Cytoarch as a, PET as b

where count_cells(((a>100) and (b>200))[voi] > 0

The query set suggests the several optimizations which are examined in the following:

1. Load Optimization Trimming operations [voi] can be moved down to MDD sources,

i.e., variables a and b. Both the initial query tree and the load optimized query tree are

presented in Figure 43. Note that load domains of MDD variables are written as subscript.

2. CSE Exploitation The expensive subexpression ((a>ta) op (b>tb))[voi] occurs

twice and can be evaluated just once. The rewritten plan exploiting the multi-dimensional

CSE is depicted by the left query tree of Figure 44.

3. Extended Relational Rewriting Sub-expressions a>ta and b>tb can be moved into the

cross product operation. The right query tree of Figure 44 shows the query tree after the

application of extended relational rewriting using rule OR37.

Performance Studies 121

Figure 43 ECHBD Query: Initial Query Tree & Load Optimization

Figure 44 ECHBD Query: CSE Exploitation & Extended Relational Rewriting

α

σ

×

Cytoarch(a) PET(b)

andbin_ind

ta

>left_ind

a

trimmingvoi

trimmingvoi

count_cells

>

0

tb

>left_ind

b

andbin_ind

ta

>left_ind

a tb

>left_ind

b

α

σ

×

Cytoarch(a) PET(b)

andbin_ind

ta

>left_ind

a[voi]

count_cells

>

0

tb

>left_ind

b[voi]

andbin_ind

ta

>left_ind

a[voi] tb

>left_ind

b[voi]

α

σ

×

Cytoarch(a) PET(b)

α c

α

σ

×

Cytoarch(a) PET(b)

andbin_ind

a‘ b‘

c

>

0

α c

αα

ta

>left_ind

a[voi]

a‘ b‘

andbin_ind

ta

>left_ind

a[voi] tb

>left_ind

b[voi]

tb

>left_ind

b[voi]

c
c

count_cells

c

>

0count_cells

122 Chapter 7

For practical examination of the three query plans, we ensure that the evaluation strategy does

not make use of any runtime-idempotency optimization or lazy-evaluation technique, i.e., all

data is processed in any case independently of its particular content. Figure 45 presents the

query processing times of the three different optimized query plans together with the relative

speed-up resulting from their individual optimization technique. The size of the query box and

with it, the number of result cells are varying on the abscissa.

Figure 45 Query Processing Speed-up of Human Brain Database Application

Evaluation of the query tree without any optimization, i.e., the initial query tree, takes about

419 seconds almost independently of the number of cells in the query result. This means that

in this case, the speed-up of the load optimized query plan ranges from 50% to 98%

depending on the size of the query box.

CSE optimization provides an additional asymptotic speed-up of about 42%. This observation

can be proved using the Array Cost Model of Chapter 5: As CSE exploitation eliminates two

unary and one binary induced operation, the overall asymptotic speed-up computes to

(cpuvred + 2*cpuvuind + cpuvbind) / (cpuvred + 4*cpuvuind + 2*cpuvbind) ≈15 0,56 which

corresponds to 44%. It should be noted that in this case the speed-up gained through CSE

exploitation depends only on the number of cells processed and not on the number of MDD

values processed.

On the other hand, the speed-up of about 15% resulting from extended relational rewriting

depends on the number of MDD values processed. With n1 = |Cytoarch| and n2 = |PET|, we

save exactly (n1*n2-n1) + (n1*n2-n2) unary induced operations. For our benchmark scenario,

we have n1=1 and n2=20 resulting in an asymptotic speed-up of (20*(cpuvred+

15 using the query environment described by Table 9

0

50

100

150

200

250

300

0 5000 10000 15000 20000 25000 30000

#result cells [1000]

ti
m
e
 [
s
e
c
]

0

10

20

30

40

50

60

[%
]

tqp after load optim ization [sec] tqp after CSE optim ization [sec]

tqp after relational rewriting [sec]

speed-up CSE optim ization [%] speed-up relational rewriting [%]

Performance Studies 123

cpuvuind+cpuvbind) + cpuvuind) / 20*(cpuvred+2*cpuvuind+cpuvbind) ≈16 0,77 or 23%. In

order to come closer to the asymptotic speed-up, more MDD tuples would have to be

involved.

7.4 Summary

We have presented performance measurements of retrieval array queries, computational array

queries, and selected optimization scenarios using the RasDaMan Array DBMS. The results

confirm that retrieval array queries are I/O-bound which makes the tiling layout crucial for

their response time. Computational array queries are dominated by the CPU time which

increases with the number of multi-dimensional operations and the number of cells being

processed. The synthetic benchmarking scenarios concerning optimization techniques use

representative queries out of the optimization categories MDD expression rewriting, extended

relational rewriting and CSE exploitation. Their common aim is either to eliminate multi-

dimensional operations or to reduce the amount of data the operations have to be applied on.

The achievable asymptotic speed-ups are proportional to the ratio of the remaining to the

original number of multi-dimensional operations per data.

Further, we have presented a real-life application, namely the Computerized Human Brain

Database, which makes use of the array functionality and query optimization presented. The

applied optimizations are load optimization, CSE exploitation, and extended relational

rewriting. The speed-up resulting from load optimization directly depends on the ratio of

MDD size to query box size, in our case between 50% and 98%. CSE exploitation achieved

additional 42% and extended relational rewriting additional 15% speed-up which proves

practical relevance of the presented optimization techniques.

It has been demonstrated that the measured performance speed-ups can be proved

theoretically by using the Array Cost Model developed in Chapter 5.

Database sizes used for our practical evaluations are in the scale of several 100 MB. The

observations made on I/O and CPU time scale almost linearly for larger databases. Query

processing in RasDaMan has the restriction that query result and cross product operands have

to fit into main memory. As a consequence, I/O for intermediate results occurring with very

large databases is not considered yet. It is left open for further investigations.

16 using the query environment described by Table 9

Conclusion and Future Work 125

Chapter 8
Conclusion and Future Work

In an increasing number of occasions, multi-dimensional arrays are recognized as the natural

data structure for a broad range of structured information, such as time series, images, audio,

video, sensor, simulation data and many more. As these data sets are usually huge in size and

require advanced access functionality in multi-user environments, application domain-

independent array services have to be integrated into conventional database management

systems.

In this thesis, we have presented an Abstract Data Type (ADT) for such multi-dimensional

arrays of any cell type supporting a comprehensive set of operations essential and common

for various application fields. On the logical level, we have formally developed a novel

integration of multi-dimensional arrays into an adapted relational data model which explicitly

considers expensive expressions on arrays. On the physical level, a specialized storage

architecture based on arbitrary tiling of the array data has been assumed. Both together serve

as the basis for the development of diverse optimization and execution strategies enabling for

fast array processing and retrieval. The main optimization and evaluation techniques

developed in this thesis can be summarized as follows:

− We have proposed a comprehensive list of algebraic transformation rules together with an

application heuristics which aim at reducing the number of array operations and

minimizing the number of tuples on which expensive predicates have to be evaluated. We

present some practical query scenarios where these optimizations lead to an overall query

processing speed-up between 30 and 40%.

126 Chapter 8

− We have developed an advanced technique for the exploitation of multi-dimensional

subexpressions, again, reducing expensive operations on multi-dimensional arrays. A

typical query scenario shows an additional speed-up of about 30% compared to

straightforward evaluation.

− We have presented specialized physical plan algorithms for multi-dimensional operations

together with the novel tile-based execution strategy of multi-dimensional (sub-)

expressions. Their benefits are (1) optimization of tile access sequences in order to

minimize tile reads and to maximize sequential disk access; (2) reduction of memory

requirements to a minimum; and (3) potential premature termination of expensive

expression evaluation.

− In order to be able to examine and describe the cost composition of array query

processing, we have established a dedicated Array Cost Model. It includes a novel

histogram-based approach for adequate selectivity estimation of expressions containing

operations on multi-dimensional arrays.

The techniques discussed are independent from any DB paradigm, they can be integrated in

both relational systems, where MDD-valued attributes become available, and in object-

oriented systems where they enable for MDD-valued objects.

Performance measurements in synthetic as well as in real-life environments showed that

geometric operations, i.e., retrieval array queries, are I/O-bound. If any cell changing or

aggregating operation is involved, occurring in so called computational array queries, query

processing will become CPU-bound with a strong linear dependency on the number of cells to

be processed. The measurements demonstrate that the benefits gained by the described

optimization techniques are considerable.

Practical usefulness of the techniques presented is proven by their integration into the

operational array DBMS RasDaMan [Bau97a, Bau98b]. The DBMS is currently used in some

international projects for medical, neuroscientific, and geoscientific raster data management.

While developing the work presented, several interesting research topics have emerged.

Among them are the following:

− Examination of intra-MDD operation parallelization considering the work reported in

[Jae98] to achieve better performance for computational array queries.

− Additional acceleration of CPU-bound computational array queries can be achieved by

moving expensive query subexpressions to the client which are responsible for the final

preparation of the query result (array computations in the select-clause), thereby relieving

the DBMS server.

Considering the work described in [DeW90], one should move even more responsibility

to the client in case that expensive methods are supported (cf. object-oriented and object-

Conclusion and Future Work 127

relational systems). As a consequence, a DBMS architecture employing a tile server with

client-side query processing should be examined in more detail.

− Query processing can be further accelerated by providing additional specialized physical

plan operators. Demands have been identified for operation categories M4 and M5

(described in Section 3.1.4) and for specific combinations of the elementary operations

Marray Constructor and Condenser, e.g., for histogram computation.

− Since the current Array Cost Model is restricted to densely populated data and aligned

tiling schemes, future work may also investigate in relaxing these restrictions.

− As it seems to be promising to employ multi-dimensional arrays for storing the fact table

of OLAP systems [Zha98], compression of sparse arrays and MDD operations

performable on the compressed data as well as precomputation of aggregates and their

consideration in the optimization process are of special interest.

Another approach to deal with sparse data would be to apply different clustering

techniques than rectangular ones, e.g., UB clustering described in [Bay97].

− Performance comparisons in the area of Array DBMSs suffer from the fact that no

standard benchmark is available. The definition of a standard workload (data and queries)

for Array DBMSs considering different application areas would be desirable and useful.

Array DBMSs with extended functionality appropriate for OLAP applications can be

examined using the TCP-D [Rab95] and APB-1 [Ola98] benchmarks.

− Array queries asking for the coordinates of cells with some specific property (e.g.,

maximum, ranking) require some kind of array sort operation as described in [Bau99]. Its

integration into the MDD model and into the RasML query language as well as its

consideration in the optimization and evaluation framework is left open for future work.

128

References

[Aga96] S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R.

Ramakrishnan, S. Sarawagi: On the Computation of Multi-dimensional

Aggregates. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB),

Mumbai, India, 1996.

[Agr95] R. Agrawal, A. Gupta, S. Sarawagi: Modeling Multi-dimensional Databases.

Research Report, IBM Almaden Research Center, San Jose, USA, 1995.

[Amm99] M. Ammermüller: Konzeption und Realisierung eines Kostenmodells für Array-

basierte Datenbankanfragen. Diplomarbeit supervised by Roland Ritsch,

Technical University of Munich, Munich, Germany, 1999.

[Ary94] M. Arya, W. Cody, C. Faloutsos, J. Richardson, A. Toga: QBISM: Extending a

DBMS to Support 3D Medical Images. In Proc. of the Int. Conf. on Data

Engineering (ICDE), Houston, USA, 1994.

[Ban92] F. Bancilhon, C. Delobel, P. Kanellakis: Building an Object-Oriented Database

System. Morgan Kaufmann Publishers, San Mateo, USA, 1992.

[Bau94] P. Baumann: On the Management of Multi-dimensional Discrete Data. VLDB

Journal, 4(3)1994, Special Issue on Spatial Database Systems, pp. 401-444.

1994.

[Bau97a] P. Baumann, P. Furtado, R. Ritsch, N. Widmann: Geo/Environmental and

Medical Data Management in the RasDaMan System. In Proc. of the Int. Conf.

on Very Large Data Bases (VLDB), Athens, Greece, 1997.

[Bau97b] P. Baumann, P. Furtado, R. Ritsch, N. Widmann: The RasDaMan Approach to

Multi-dimensional Discrete Data. In Proc. of the ACM Symposium on Applied

Computing’97, San Jose, USA, 1997.

[Bau98a] P. Baumann: An Algebra for Domain-Independent Array Management in

Databases. RasDaMan Internal Project Report, Munich, Germany, 1998.

[Bau98b] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann: The Multi-

dimensional Database System RasDaMan. In Proc. of the ACM SIGMOD Conf.

on Management of Data, Washington, USA, 1998.

[Bau99] P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond.

Accepted for publication at 4th International Workshop on Next Generation

Information Technologies and Systems (NGITS), Zikhron Yaakov, Israel, 1999.

References 129

[Bay97] R. Bayer: The universal B-Tree for multidimensional Indexing: General

Concepts. In Proc. of World-Wide Computing and Its Applications (WWCA),

Lecture Notes on Computer Science, Vol. 1274, Springer Verlag, Tsukuba,

Japan, 1997.

[Bee90] C. Beeri, Y. Kornatzky: Algebraic Optimization of Object-Oriented Query

Languages. In Proc. of the 3rd International Conference on Database Theory

(ICDT), Paris, France, 1990.

[Bun93] P. Buneman: The Discrete Fourier Transform as a Database Query. Technical

Report MS-CIS-93-37/L&C 60, University of Pennsylvania, 1993.

[Car94] M. Carey, D. DeWitt, M. Franklin, N. Hall, M. McAuliffe, J. Naughton, D.

Schuh, M. Solomon, C. Tan, O. Tsatalos, S. White, M. Zwilling: Shoring up

Persistent Objects. In Proc. of the ACM SIGMOD Conf. on Management of

Data, Minneapolis-Minnesota, USA, 1994.

[Catt97] R. Cattell: The Object Database Standard: ODMG 2.0. Morgan Kaufmann

Publishers, San Mateo-California, USA, 1997.

[Che94] C.M. Chen, N. Roussopoulos: Adaptive selectivity estimation using query

feedback. In Proc. of the ACM SIGMOD Conf. on Management of Data,

Minneapolis-Minnesota, USA, 1994.

[Che95] L. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, A. Shoshani: Efficient

Organization and Access of Multi-dimensional Datasets on Tertiary Storage

Systems. Information Systems Journal, 1995.

[Cod70] E. Codd.: A Relational Model for Shared Large Data Banks. Communications of

ACM, 13:6, pp. 377-387, 1970.

[Dad86] P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe: A DBMS prototype to

support extended NF2 relations: an integrated view on flat tables and

hierarchies. In Proc. of the ACM SIGMOD Conf. on Management of Data,

Washington, USA, 1986.

[DeW90] D. DeWitt, D. Maier, P. Futtersack, F. Velez: A Study of Three Alternative

Workstation –Server Architectures for Object-Oriented Systems. In Proc. of the

Int. Conf. on Very Large Data Bases (VLDB), Brisbane, Australia, 1990.

[DeW94] D. DeWitt, N. Kabra, J. Luo, J. Patel, J. Yu: Client Server Paradise. In Proc. of

the Int. Conf. on Very Large Data Bases (VLDB), Santiago, Chile, 1994.

[Fal95] C. Faloutsos: Fast Searching by Content in Multimedia Databases. Data

Engineering Bulletin 18(4), 1995

130

[Fed81] J. Fedorowicz: The theoretical foundations of zipf’s law and its application to

the bibliographic database environment. Journal of American Society for

Information Science, 1981.

[Feg95] L. Fegaras, D. Maier: Towards an effective calculus for object query languages.

In Proc. of the ACM SIGMOD Conf. on Management of Data, San Jose, USA,

1995.

[Fre99] J. Fredriksson, Per Roland, Per Svensson: Rationale and Design of the European

Computerized Human Brain Database System. To appear in Proc. of the Conf.

on Statistical and Scientific Database Management (SSDBM), Cleveland, USA,

1999.

[Fur93] P. Furtado, J. Teixeira: Storage Support for Multi-dimensional Discrete Data in

Databases. Computer Graphics Forum – Special Issue on Eurographics ’93

Conference, vol. 12, no. 3, pp. 89-100, 1993.

[Fur97] P. Furtado, R. Ritsch, N. Widmann, P. Zoller, P. Baumann: Object-Oriented

Design of a Database Engine for Multi-dimensional Discrete Data. In Proc. of

Conf. on Object-Oriented Information Systems (OOIS), Brisbane, Australia,

1997.

[Fur98] P. Furtado, P. Baumann: A Storage Manager for Multi-dimensional Discrete

Data based on Arbitrary Multi-dimensional Tiling. RasDaMan Internal Project

Report, Munich, Germany, 1998.

[Fur99] P. Furtado, P. Baumann: Storage of Multidimensional Arrays Based on Arbitrary

Tiling. In Proc. of the Int. Conf. on Data Engineering (ICDE), Sydney, Australia,

1999.

[Gra87] G. Graefe, D. J. DeWitt: The EXODUS Optimizer Generator. In Proc. of the

ACM SIGMOD Conf. on Management of Data, San Francisco, USA, 1987.

[Gra93] G. Graefe: Query Evaluation Techniques for Large Databases. ACM Computing

Surveys, 25(2), 1993.

[Gra96] J. Gray, A. Bosworth, A. Layman, H. Pirahesh: Data Cube: A Relational

Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In

Proc. of the Int. Conf. on Data Engineering (ICDE), New Orleans, USA, 1996.

[Haft97] A. Haftmann: Optimierung und Auswertung von deklarativen Rasterdaten-

anfragen. Diplomarbeit supervised by Roland Ritsch, Technical University of

Munich, Germany, 1997.

[Hal76] P. A. V. Hal:. Optimization of Single Expressions in a Relational Data Base

System. IBM Journal of Research and Development, 20(3), 1976.

References 131

[Hel96] J. M. Hellerstein, J. F. Naughton: Query Execution Techniques for Caching

Expensive Methods. In Proc. of the ACM SIGMOD Conf. on Management of

Data, Montreal, Canada, USA, 1996.

[Hel98] J. M. Hellerstein: Optimization Techniques for Queries with Expensive Methods.

In ACM Transactions on Database Systems, Vol. 23, No. 2, June 1998, pages

113-157, 1998.

[ISO92] The International Organization for Standardization (ISO): Database Language

SQL. ISO 9075, 1992(E), 1992.

[Jae98] M. Jaedicke, B. Mitschang: On Parallel Processing of Aggregate and Scalar

Functions in Object-Relational DBMS. In Proc. of the ACM SIGMOD Conf. on

Management of Data, Washington, USA, 1998.

[Jag90] H.V. Jagadish: Linear Clustering of objects with multiple attributes. In Proc. of

the ACM SIGMOD Conf. on Management of Data, Atlantic City, USA, 1990.

[Jar84] M. Jarke, J. Koch: Query Optimization in Database Systems. In ACM

Computing Surveys, 16(2), 1984.

[Kem94] A. Kemper, G. Moerkotte, K. Peithner, M. Steinbrunn: Optimizing Disjunctive

Queries with Expensive Predicates. In Proc. of the ACM SIGMOD Conf. on

Management of Data, Minneapolis-Minnesota, USA, 1994.

[Lib96] L. Libkin, R. Machlin, L. Wong: A Query Language for Multi-dimensional

Arrays: Design, Implementation, and Optimization Techniques. In Proc. of the

ACM SIGMOD Conf. on Management of Data, Montreal, Canada, 1996.

[Lin88] V. Linnemann et al.: Design and Implementation of an Extensible Database

Management System Supporting User Defined Data Types and Functions. In

Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Los Angeles, USA,

1988.

[Lin96] T. Lindeberg: A framework for handling image structures at multiple scales.

Proc. CERN School of Computing, Egmond aan Zee, The Netherlands, 1996.

[Lip90] R.J. Lipton, J.F. Naughton, D.A. Schneider: Practical selectivity estimation

through adaptive sampling. In Proc. of the ACM SIGMOD Conf. on

Management of Data, Atlantic City, USA, 1990.

[Mar97] A. P. Marathe, K. Salem: A Language for Manipulating Arrays. In Proc. of the

Int. Conf. on Very Large Data Bases (VLDB), Athens, Greece, 1997.

132

[Mar99a] V. Markl, M. Zirkel, R. Bayer: Processing Operations with Restrictions in

RDBMS without External Sorting: The Tetris Algorithm. In Proc. of the Int.

Conf. on Data Engineering (ICDE), Sydney, Australia, 1999.

[Mar99b] V. Markl, F. Ramsak, R. Bayer: Improving OLAP Performance by Multidi-

mensional Hierarchical Clustering. To appear in Proc. of the Int. Database

Engineering and Application Symposium (IDEAS), Montreal, Canada, 1999.

[Mer77] T.H. Merret: Database cost analysis: A top-down approach. In Proc. of the

ACM SIGMOD Conf. on Management of Data, New York, USA, 1977.

[Mer81] T.H. Merret, Y. Kamayashi, H. Yasuura: Scheduling of Page-Fetches in Join

Operations. In Proc. of the Int. Conf. on Very Large Data Bases (VLDB),

Cannes, France, 1981.

[Mit95] B. Mitschang: Anfrageverarbeitung in Datenbanksystemen: Entwurfs und

Implementierungskonzepte. Vieweg, Wiesbaden, Germany, 1995.

[Mur88] M. Muralikrishna, D.J. DeWitt: Equi-Depth Histograms For Estimating

Selectivity Factors For Multidimensional Queries. In Proc. of the ACM

SIGMOD Conf. on Management of Data, Chicago, USA, 1988.

[Ola98] OLAP Council APB-1 OLAP Benchmark, Release II, Price Public Relations,

http://www. olapcouncil.org, USA. 1998.

[OCo98] W. O’Connel, F. Carino, G. Lindermann: Optimizer and Parallel Engine

Extensions for Handling Expensive Methods Based on Large Objects. In Proc. of

the Int. Conf. on Very Large Data Bases (VLDB), New York, USA, 1998.

[Olk86] F. Olken, D. Rotem: Simple random sampling from relational databases. In

Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Kyoto, Japan,1986.

[Ols96] M. A. Olson, W. Hong, M. Ubell, M. Stonebraker: Query Processing in a

Parallel Object-Relational Database System. In Data Engineering Bulletin 19

(4), 1996.

[Poo97a] Viswanath Poosala: Histogram-based Estimation Techniques in Database

Systems. Ph.D. Thesis, University Of Wisconsin – Madison, 1997.

[Poo97b] Viswanath Poosala, Yannis E. Ioannidis: Selectivity Estimation Without the

Attribute Value Independence Assumption. In Proc. of the Int. Conf. on Very

Large Data Bases (VLDB), Athens, Greece, 1997.

[Rab95] F. Raab: TPC Benchmark D-Standard Specification, Revision 1.0. Transaction

Processing Performance Council, 1995.

References 133

[Ras99] RasDaMan version 3.5, Documentation version 1.0. Published by Active

Knowledge GmbH, Orleansstr. 34, D-81667 Munich, Germany, 1999.

[Rit90] G. Ritter, J. Wilson, J. Davidson: Image Algebra: An Overview. Computer

Vision, Graphics, and Image Processing, 49 (1) 1990, pp. 297-331, 1990.

[Rit96] R. Ritsch, P. Baumann: RasDaMan – Innovative PACS Technology. In Proc. of

10th International Symposium and Exhibition on Computer Assisted Radiology

(poster session), Paris, France, 1996.

[Sar94] S. Sarawagi, M. Stonebraker: Efficient Organization of Large Multi-dimensional

Arrays. In Proc. of the Int. Conf. on Data Engineering (ICDE), pp. 328-336,

Houston, USA, 1994.

[Sel79] P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, T.G. Price:

Access Path Selection in a Relational Database Management System. In Proc. of

the ACM SIGMOD Conf. on Management of Data, Boson, Massachusetts, USA,

1979.

[Ses97] P. Seshadri, M. Livny, R. Raghu: The Case for Enhanced Abstract Data Types.

In Proc. of the Int. Conf. on Very Large Data Bases (VLDB), Athens, Greece,

1997.

[Sto90] M. Stonebraker, L. Rowe, M. Hirohama: The implementation of POSTGRES. In

Proc. of IEEE Transactions and Knowledge and Data Engineering, 1990 Volume

2, 1990.

[Ull89] Jeffrey D. Ullmann: Principles of Database and Knowledge-Base Systems,

Volume II: The New Technologies. Computer Science Press, USA, 1989.

[Van91] S. L. Vandenberg, D. J. DeWitt: Algebraic Support for Complex Objects with

Array, Identity, and Inheritance. In Proc. of the ACM SIGMOD Conf. on

Management of Data, Denver, USA, 1991.

[Wid97] N. Widmann, P. Baumann: Towards Comprehensive Database Support for

Geoscientific Raster Data. In Proc. of ACM Conf. on Geographic Information

Systems (GIS), Las Vegas, USA, 1997.

[Wid98] N. Widmann, P. Baumann: Efficient Execution of Operations in a DBMS for

Multidimensional Arrays. In Proc. of the Conf. on Statistical and Scientific

Database Management (SSDBM), Capri, Italy, 1998.

[Zha98] Y. Zhao, K. Ramasamy, K. Tufte, J. F. Naughton: Array-Based Evaluation of

Multi-Dimensional Queries in Object-Relational Database Systems. In Proc. of

the Int. Conf. on Data Engineering (ICDE), Orlando, USA, 1998.

134 Appendix A

Appendix A Notation

In order to facilitate reading of the document, the following character formats are used to

reflect semantics of identifiers:

− Functions and variables are written in italic lower case: sect, sdom, dim, i, ...

− Constants are written in non-italic lower case: n, m, wcpu, ...

− Types and spatial domain instances are written in italic upper case: T, D, Ccpu

− Tuples (or vectors) are written underlined: x

− Multi-dimensional values are written double underlined: a

− Function arguments which are of non-MDD type may be written as subscript:

marrayD,x(ex)

− Type constructors and the spatial domain type are written using Greek letters.

In the following, we give a list of frequently used identifiers:

... positive integer numbers without zero

0 ... positive integer numbers including zero

... integer numbers

... real numbers

... boolean values { 0, 1 } with 0 = false and 1 = true

δ ... set of spatial domains (spatial domain type)

τ ... set of scalar, i.e., atomic (0, , ,) and complex types

κ ... set of tiling layouts

T ... atomic or complex type ∈ τ
D ... spatial domain ∈ δ
R, S ... relations

A, B ... scalar of multi-dimensional attributes ∈ { T, [[T,D]] }

d ... number of dimensions ∈ 0

p ... number of cell elements ∈ 0

s ... scalar value ∈ T

a, b, m ... multi-dimensional values ∈ [[T,D]]

x, l, h ... vectors ∈ d

m, n, r, s ... constants ∈ 0

Notation 135

Table 20 gives an overview on notations used for type constructors, types, instances, and

element accesses.

tuple set list

spatial
domain

MDD
value relation

type

constructor

(τn) {τ} <τ> [[τ,δ]]

type (T1,...,Tn),

with Ti∈τ
{T}

with T∈τ
<T>

with T∈τ
δ [[T,D]]

with T∈τ,

D∈δ

R(A1,...,An) =

dom(A1)×..×dom(An)

dom(Ai)∈{[[τ,δ]], τ}

instance t=(t1,...,tn),

with ti∈Ti

{t1,...,tn},

with ti∈T

<t1,...,tn>,

with ti∈T

D∈δ a∈[[T,D]] R ⊆ R(A1,...,An)

element

access

ti∈Ti - ti∈T - a[x]∈T

with x∈D

t=(t1,...,tn)∈R

ti∈dom(Ai) or

t[Ai]∈dom(Ai)

Table 20 Notation of Type Constructors, Types, Instances

Figure 46 presents the graphical notation used for visualizing query trees.

Figure 46 Query Tree Notation

α

*bin_ind

*

multi-dimensional operation

relational operation

scalar operation

dataflow of relations

dataflow of single
multi-dimensional values

dataflow of single
scalar values

dimensional data area (DDA) scalar data area (SDA)

136 Appendix B

Appendix B List of Algebraic Transformation Rules

B.1 General Definitions

The description of algebraic transformation rules use the following identifiers:

Di, Di,j, D, D’ ∈ δ ... spatial domains with D’ ⊆ D

Ti, Ti,j ∈ τ ... atomic or complex types

i ∈ 0, v ∈ ... integer numbers

ei ∈ [[Ti,Di]] ... expression resulting in a multi-dimensional value with base type Ti

ei ∈ Ti, ... expression resulting in a scalar value of type Ti

b ∈ [[,Di]] ... expression resulting in a boolean multi-dimensional value

b ∈ ... expression resulting in a boolean value

Ai, Bi ... attributes with scalar or multi-dimensional domains

R ⊆ R(A1,...,Ar),

S ⊆ S(B1,...,Bs) ... relations

µi∈{ [[Ti,Di]], Ti },

µi,j∈{ [[Ti,Di,j]], Ti,j },

νi∈{ [[Ti,Di]], Ti },
νi,j∈{ [[Ti,j,Di,j]], Ti,j },
ωi∈{ [[Ti,Di]], Ti } ... scalar or multi-dimensional types

We use the operation symbols un_ind, bin_ind, left_ind, right_ind for induced operations as

introduced in Definition 3.11. Operation symbols without any subscript (e.g., , and, or, not)

are overloaded, i.e., operation semantics depends on their operands’ type.

As introduced in Section 4.2.1, the list of transformation rules consists of standardization

rules numbered with Rn and optimization rules numbered with ORn. Both standardization and

optimization rules can be templates. In case rule Rn and ORn respectively represents a

template, its instantiations are numbered with Rn.m and ORn.m respectively.

B.2 Geometric Operations

trimmingD’(marrayD,x(ex)) → marrayD’ ,x(ex) (OR1)

sectioni,v(marrayD,x(ex)) → marrayslice(D,i,v),x(ex) (OR2)

trimmingD(un_ind(e1)) → un_ind(trimmingD(e1)) (OR3)

trimmingD(-un_ind(e1)) → -un_ind(trimmingD(e1)) (OR3.1)

trimmingD(notun_ind(e1)) → notun_ind(trimmingD(e1)) (OR3.2)

trimmingD(e1 bin_ind e2) → trimmingD(e1) bin_ind trimmingD(e2) (OR4)

with bin_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR4.1-OR4.12)

List of Algebraic Transformation Rules 137

trimmingD(e1 left_ind e2) → trimmingD(e1) left_ind e2 (OR5)

with left_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR5.1-OR5.12)

trimmingD(e1 right_ind e2) → e1 right_ind trimmingD(e2) (OR6)

with right_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR6.1-OR6.12)

sectioni,v(un_ind(e1)) → un_ind(sectioni,v(e1)) (OR7)

sectioni,v(-un_ind(e1)) → -un_ind(sectioni,v(e1)) (OR7.1)

sectioni,v(notun_ind(e1)) → notun_ind(sectioni,v(e1)) (OR7.2)

sectioni,v(e1 bin_ind e2) → sectioni,v(e1) bin_ind sectioni,v(e2) (OR8)

with bin_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR8.1-OR8.12)

sectioni,v(e1 left_ind e2) → sectioni,v(e1) left_ind e2 (OR9)

with left_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR9.1-OR9.12)

sectioni,v(e1 right_ind e2) → e1 right_ind sectioni,v(e2) (OR10)

with right_ind ∈ { +, -, *, /, and, or, <, �, >, �, =, � } (OR10.1-OR10.12)

B.3 Induced Operations

Commutative Rules

e1 bin_ind e2 → e2 bin_ind e1 (R1)

with bin_ind ∈ { +, *, and, or, =, � } (R1.1-R1.6)

e1 left_ind e2 → e2 left_ind e1 (R2)

with left_ind ∈ { +, *, and, or, =, � } (R2.1-R2.6)

e1 right_ind e2 → e2 right_ind e1 (R3)

with right_ind ∈ { +, *, and, or, =, � } (R3.1-R3.6)

Associative Rules

(p1 p2) p3 → p1 (p2 p3) (R4)

with ∈ { +, *, /, and, or, =, � },

p1 ∈ { e1, e1 }, p2 ∈ { e2, e2 }, p3 ∈ { e3, e3 } (R4.1-R4.56)

The optimizing rules saving one multi-dimensional operation look like

(e1 left_ind e2) left_ind e3 → e1 left_ind (e2 bin e3) (OR11)

with left_ind ∈ { +, *, /, and, or, =, � } (OR11.1-OR11.7)

e1 right_ind (e2 right_ind e3) → (e1 bin e2) right_ind e3 (OR12)

with right_ind ∈ { +, *, /, and, or, =, � } (OR12.1-OR12.7)

138 Appendix B

Distributive Rules

(p1 2 p3) 1 (p2 2 p3) → (p1 1 p2) 2 p3 (OR13)

with p1 ∈ { e1, e1 }, p2 ∈ { e2, e2 }, p3 ∈ { e3, e3 },

(1, 2) ∈ { (+, *), (or, and), (and, or) } (OR13.1-OR13.24)

De Morgan’s Rules

not(p1) 1 not(p2) → not(p1 2 p2) (OR14)

with p1, p2 ∈ { b, b },

(1, 2) ∈ { (or, and), (and, or) } (OR14.1-OR14.8)

Idempotency Rules

p1 or p1 → p1 (OR15)

with p1 ∈ { b, b } (OR15.1-OR15.2)

p1 and p1 → p1 (OR16)

with p1 ∈ { b, b } (OR16.1-OR16.2)

p1 or not(p1) → true (OR17)

with p1 ∈ { b, b } (OR17.1-OR17.2)

p1 and not(p1) → false (OR18)

with p1 ∈ { b, b } (OR18.1-OR18.2)

p1 or false → p1 (OR19)

with p1 ∈ { b, b } (OR19.1-OR19.2)

p1 and true → p1 (OR20)

with p1 ∈ { b, b } (OR20.1-OR20.2)

p1 or true → true (OR21)

with p1 ∈ { b, b } (OR21.1-OR21.2)

p1 and false → false (OR22)

with p1 ∈ { b, b } (OR22.1-OR22.2)

p1 and (p1 or p2) → p1 (OR23)

with p1, p2 ∈ { b, b } (OR23.1-OR23.4)

p1 or (p1 and p2) → p1 (OR24)

with p1, p2 ∈ { b, b } (OR24.1-OR24.4)

Note: true and false can either be scalar or multi-dimensional boolean constants.

List of Algebraic Transformation Rules 139

Double Negation Rule

not(not(p1)) → p1 (OR25)

with p1 ∈ { b, b } (OR25.1-OR25.2)

B.4 Aggregation Operations

Rules for Quantified Expressions

some_cells(p1 or p2) → some_cells(p1) or some_cells(p2) (OR26)

with p1, p2 ∈ { b, b } (OR26.1-OR26.4)

all_cells(p1 and p2) → all_cells(p1) and all_cells(p2) (OR27)

with p1, p2 ∈ { b, b } (OR27.1-OR27.4)

Note: Quantifiers on scalar values are defined as some_cells(b) = b and all_cells(b) = b.

some_cells(b1) or all_cells(b1) → some_cells(b1) (OR28)

some_cells(b1) and all_cells(b1) → all_cells(b1) (OR29)

some_cells(notun_ind(b1)) → not(all_cells(b1)) (OR30)

all_cells(notun_ind(b1)) → not(some_cells(b1)) (OR31)

Note: The number of cells of an MDD value never is zero. Therefore, the usual quantifier

definitions for no elements can be omitted.

B.5 Extended Relational Operations

σcondR and condS
(R × S) → σcondR

(R) × σcondS
(S) (OR32)

with condR: R(A1,...,Ar) → , condS: S(B1,...,Bs) →

αop1,..., opn
(R × S) → αid1,..., idn

(αop1,..., opn
(R) × S) (OR33)

with opi: R(A1,...,Ar) → νi and νi ∈ { [[Ti,Di]], Ti }

αop1,..., opn
(R × S) → αid1,..., idn

(R × αop1,..., opn
(S)) (OR34)

with opi: S(A1,...,Ar) → µi and µi ∈ { [[Ti,Di]], Ti }

αop1,..., opn
(R × S) →

 αop’1,..., op’n
(αopc(IR, 1),..., opc(IR, |IR|), id1,..., idr

(R) × αopc(IS, 1),..., opc(IS, |IS|), id1,..., ids
(S)) (OR35)

with opi: R(A1,...,Ar) → νi for i ∈ IR,

opi: S(B1,..., Bs) → νi for i ∈ IS,

opi: R(A1,...,Ar) ×S(B1,..., Bs) → νi for i∉IR ∪ IS,

c(I, i) delivering the i-th index element of set I sorted in any order,
ai∈dom(Ai), bi∈dom(Bi), ti ∈ νc(IR,i) for i=1...|IR|, ui ∈ νc(IS,i) for i=1...|IS|

140 Appendix B

()
()





∪∉
∈
∈

= −

−

++

SRsri

SiIcrI

RiIc

sIrIi

IIibbaaop

Iiid

Iiid

bbuuaattop’
SR

R

SR

for,...,,,...,

for

for

 : ,...,,,...,,,...,,,...,

11

),(

),(

1111 1

1

αop1,..., opn
(R × S) →

αop’1,..., op‘n
(α�opr1,1,...,oprnr1,1),...,(opr1,n,...,oprnrn,n),id1,..., idr

(R) ×

α�ops1,1,...,opsns1,1),...,(ops1,n,...,opsnsn,n),id1,..., ids
(S)) (OR36)

with opi: R(A1,...,Ar) × S(B1,..., Bs) → ωi,

nri number of subexpressions of operation i depending on R

nsi number of subexpressions of operation i depending on S

oprj,i: R(A1,...,Ar) → µj,i for j=1...nri

opsk,i: S(B1,...,Bs) → νk,i for k=1...nsi,

opfi: µ1,i × ... × µnri,i
 × R(A1,...,Ar) × ν1,i × ... × νnsi,i

 × S(B1,...,Bs) → ωi,

opi(a1,...,ar, b1,...,bs) =
opfi(opr1,i(a1,...,ar),...,oprnri,i

(a1,...,ar), a1,...,ar,

ops1,i(b1,...,bs),...,opsnsi,i
(b1,...,bs), b1,...,bs),

tj,i ∈ νj,i, uk,i ∈ µk,i for j=1...nri, k=1...nsi, and i=1...n,

op’i((t1,1,..., tnr1,1),..., (t1,n,..., tnrn,n), a1,...,ar,

(u1,1,..., uns1,1),..., (u1,n,..., unsn,n), b1,...,br) =

opfi(t1,i,..., tnri,i
, a1,...,ar, u1,i,..., unsi,i

, b1,...,bs.)

σcond(R × S) → σopf(αopr1,...,oprnr,id1,..., idr
(R) × αops1,...,opsns,id1,..., ids

(S)) (OR37)

with cond: R(A1,...,Ar) × S(B1,..., Bs) → �
nr number of subexpressions of condition cond depending on R

ns number of subexpressions of condition cond depending on S

oprj: R(A1,...,Ar) → µj for j=1...nr,

opsk: S(B1,...,Bs) → νk for k=1...ns,

opf: µ1 × ... × µnr × R(A1,...,Ar) ×ν1 × ... × νns × S(B1,...,Bs) → �

cond(a1,...,ar, b1,...,bs) =

opf(opr1(a1,...,ar),...,oprnr(a1,...,ar), a1,...,ar,

ops1(b1,...,bs),...,opsns(b1,...,bs), b1,...,bs)

In summary, we have 240 standardization rules from which 168 are supposed to optimize the

algebraic expression in terms of memory usage and evaluation speed. Type casts are not

considered.

RasML Grammar 141

Appendix C RasML Grammar

This appendix presents a simplified list of the main RasML grammar rules used in the

RasDaMan system. The grammar is described as a set of production rules. Each rule consists

of a non-terminal on the left-hand side of the colon operator and a list of symbol names on the

right-hand side. Symbols enclosed in squared brackets like [where <general_exp>]

are optional. Character | introduces a rule with the same left-hand side as the previous one. It

is usually read as or. Symbol names can either be non-terminals enclosed in pointed brackets

or terminals written in bold. Terminals either represent keywords of the language or stand for

identifiers and number literals respectively. Symbol names use the following abbreviations:

exp for expression, lit for literal, op for operator, ident for identifier, coll for collection,

var for variable, and spec for specification. It should be remarked that the language syntax

does not ensure any type safety.

<query> : <select_exp>
| <update_exp>

<select_exp> : select <result_list>
from <coll_list>
[where <general_exp>]

<update_exp> : update <coll_spec>
set <update_spec> assign <general_exp>
[where <general_exp>]

| insert into <coll_name>
values <general_exp>

| delete from <coll_spec>
where <general_exp>

| drop coll <coll_name>
| create coll <coll_name> <type_name>

<result_list> : <result_list> , <general_exp>
| <general_exp>

<update_spec> : <var> [<minterval_exp>]

<general_exp> : <marray_exp>
| <condense_exp>
| <geometric_exp>
| <reduce_exp>
| <induced_exp>
| <integer_exp>
| <minterval_exp>
| <interval_exp>
| <var>
| <general_lit>

<integer_exp> : <general_exp> .lo
| <general_exp> .hi

<minterval_exp> : [<spatial_exp_list>]
| sdom(<general_exp>)

142 Appendix C

<spatial_exp_list> : <spatial_exp_list> , <spatial_exp>
| <spatial_exp>

<spatial_exp> : <integer_exp> | <interval_exp>

<interval_exp> : <bound_spec> : <bound_spec>

<bound_spec> : <general_exp> | *

<condense_exp> : condense <condense_op>
over <var>
in <minterval_exp>
using <general_exp>

<condense_op> : + | - | * | / | min | max | and | or

<marray_exp> : marray <var>
in <minterval_exp>
values <general_exp>

<geometric_exp> : <general_exp> <minterval_exp>

<induced_exp> : <unary_induced_op> <general_exp>
| <general_exp> <binary_induced_op> <general_exp>
| (<general_exp>)
| <general_exp>.<element_name>

<unary_induced_op> : not | -

<binary_induced_op> : + | - | * | / | and | or
< | <= | > | >= | = | !=

<coll_list> : <coll_list> , coll_spec>
| <coll_spec>

<coll_spec> : <coll_name> as <var>

<reduce_exp> : <reduce_op>(<general_exp>)

<reduce_op> : sum_cells | mult_cells
| min_cells | max_cells
| some_cells | all_cells
| avg_cells | count_cells

<general_lit> : <scalar_lit> | <mdd_lit>

<mdd_lit> : < <minterval_exp> <dim_lit_list> >

<dim_lit_list> : <dim_lit_list> ; <scalar_lit_list>
| <scalar_lit_list>

<scalar_lit> : <atomic_lit> | <complex_lit>

<atomic_lit> : boolean | integer | float

<complex_lit> : { <scalar_lit_list> }

<scalar_lit_list> : <scalar_lit_list> , <scalar_lit>
| <scalar_lit>

<coll_name> : ident

<var> : ident

<element_name> : ident

<type_name> : ident

Abbrevations 143

Appendix D Abbrevations

ACM Array Cost Model

ADBMS Array Database Management System

ADT Abstract Data Type

AQP Array Query Processing

CNF Conjunctive Normal Form

CSE Common subexpression

C-PDH Complex Position-Dependent Histogram

C-PIH Complex Position-Independent Histogram

DNF Disjunctive Normal Form

DBMS Database Management System

DDA Dimensional Data Area

EMH Error Minimization Histogram

MDBMS Multi-dimensional Database Management System

MDD Multi-dimensional Discrete Data

ODBMS Object (-Oriented) Database Management System

OR Optimization Rule

ORDBMS Object-Relational Database Management System

RasDL Raster Data Definition Language

RasML Raster Data Manipulation Language

RasQL Raster Data Query Language

RDMBS Relational Database Management System

RQP Relational Query Processing

RDA Relational Data Area

SDA Scalar Data Area

SSDMBS Statistical and Scientific Database Management System

S-PDH Simple Position-Dependent Histogram

S-PIH Simple Position-Independent Histogram

144 Appendix E

Appendix E List of Definitions

Definition 3.1 Spatial Domain... 20

Definition 3.2 Spatial Domain Type.. 20

Definition 3.3 Slice.. 20

Definition 3.4 MDD value... 21

Definition 3.5 MDD type... 21

Definition 3.6 Cell Access... 21

Definition 3.7 Marray Constructor .. 21

Definition 3.8 Condenser... 22

Definition 3.9 Trimming.. 25

Definition 3.10 Section.. 26

Definition 3.11 Induced Operations .. 26

Definition 3.12 Reduce Operation... 27

Definition 3.13 MDD Aggregates ... 27

Definition 3.14 MDD Cell Counter ... 27

Definition 3.15 MDD Quantifiers.. 28

Definition 3.16 MDD Quantifiers.. 29

Definition 3.17 MDD Relations .. 31

Definition 3.18 Relational Operations... 32

Definition 4.1 Query Tree.. 36

Definition 4.2 Edge Type .. 36

Definition 4.3 Connection Relation... 37

Definition 4.4 Area Relation.. 37

Definition 4.5 Data Areas .. 37

Definition 4.6 Equal Structure of CSEs... 52

Definition 5.1 Retrieval Array Query.. 64

Definition 5.2 Computational Array Query... 64

Definition 5.3 Value and Space Dimensions... 75

Definition 5.4 Absolute Histogram Error .. 78

Definition 7.1 Speed-up... 110

List of Figures 145

Appendix F List of Figures

Figure 1 Architecture Example for an Array DBMS Migration.. 6

Figure 2 Arbitrary Tiling ... 29

Figure 3 Examples for Collections MRI and ROI ... 33

Figure 4 Operator Graph for Example Query..34

Figure 5 Initial Query Tree .. 36

Figure 6 Dimensional and Scalar Data Areas.. 38

Figure 7 Load Optimization I: Move Down Geometric Operations..................................40

Figure 8 Load Optimization II: Merge Geometric Operations with Access Nodes41

Figure 9 Example for Extended Relational Rewriting...48

Figure 10 Common Subexpression Integration Rewriting ..53

Figure 11 Tiling Graph for two MDD Objects ..56

Figure 12 Tile Configurations for Binary Induced Operations..57

Figure 13 I/O and CPU Times of different Operations ...66

Figure 14 Calculation of Intersected and Enclosed Tiles with Regular Tiling....................69

Figure 15 Measured vs. Computed CPU and I/O Times of the Trimming Operation.........72

Figure 16 Measured vs. Computed CPU Times of different Operations.............................72

Figure 17 Equi-Width Histogram ..74

Figure 18 MDD Value with 3 Space and p Value Dimensions ...75

Figure 19 Equi-Depth Histogram ..79

Figure 20 Computation of Potential Absolute Histogram Errors ..80

Figure 21 Experimental Cell Value Distributions ...82

Figure 22 Histogram Example: Normal Distribution with 16 Buckets82

Figure 23 Histogram Example: Random Distribution with 16 Buckets..............................83

Figure 24 Histogram Example: Zipf Distribution (z=2) with 32 Buckets...........................84

Figure 25 Histogram Example: CT Distribution with 32 Buckets84

Figure 26 Visualization of Multi-dimensional Error Minimization Histograms.................87

Figure 27 Synthetic Data Distribution for Selection Experiment..88

Figure 28 Measured vs. Computed Result Size, I/O and CPU Time...................................89

Figure 29 RasDaMan System Architecture ...93

Figure 30 RasDaMan Application Development Workflow ...98

Figure 31 Root Part of the Query Tree Class Hierarchy.. 104

Figure 32 Class Sub-Hierarchy for Set Trees ..104

Figure 33 Class Sub-Hierarchy for Element Trees (excerpt) ..105

Figure 34 Benchmark Configuration for Retrieval Array Queries111

Figure 35 Query Response Time Composition for Retrieval Queries...............................111

Figure 36 Query Processing Time Components for Retrieval Queries112

Figure 37 Benchmark Configuration for Computational Array Queries...........................114

Figure 38 I/O and CPU Time for Computational Array Queries114

146 Appendix F

Figure 39 Query Processing Speed-up of MDD Expression Rewriting115

Figure 40 Query Processing Speed-up of Extended Relational Rewriting........................117

Figure 41 Benchmark Configuration for Common Subexpression Exploitation118

Figure 42 Query Processing Speed-up of CSE Exploitation ...118

Figure 43 ECHBD Query: Initial Query Tree & Load Optimization................................121

Figure 44 ECHBD Query: CSE Exploitation & Extended Relational Rewriting..............121

Figure 45 Query Processing Speed-up of Human Brain Database Application122

Figure 46 Query Tree Notation..135

List of Tables 147

Appendix G List of Tables

Table 1 Conventional Types vs. MDD Type..6

Table 2 Systems Supporting Multi-dimensional Data..18

Table 3 Operation Categories of the Marray Constructor ..24

Table 4 Operation Categories of the Condenser Operation..25

Table 5 Specification Levels for Multi-Dimensional Attribute Domains31

Table 6 System Parameters for the ACM...68

Table 7 Query Parameters for the ACM...70

Table 8 Cost Functions on Operation Level...70

Table 9 System Parameters of specific Query Execution Environment...........................71

Table 10 Table of different Histogram Models..76

Table 11 Compatibility of Histogram Models and MDD Operations................................77

Table 12 Histogram Error Results for different Distributions ...85

Table 13 RasDL: Atomic Types...96

Table 14 RasML: Elementary Operations..99

Table 15 RasML: Geometric Operations ...100

Table 16 RasML: Induced Operations (excerpt) ..101

Table 17 RasML: Aggregation Operations ..101

Table 18 RasDaMan Optimization Levels ...106

Table 19 Query Processing Time Components ..110

Table 20 Notation of Type Constructors, Types, Instances ...135

148 Appendix H

Appendix H List of Examples

Example 3.1 Marray Constructor .. 22

Example 3.2 Condenser... 22

Example 3.3 Matrix Multiplication with Marray and Condenser 23

Example 3.4 Multi-dimensional Expression ... 28

Example 3.5 Array Query.. 32

Example 4.1 Dimensional and Scalar Data Areas... 37

Example 4.2 Load Optimization ... 40

Example 4.3 Extended Relational Rewriting .. 47

Example 4.4 Common Subexpression Exploitation.. 52

Example 6.1 RasDL Schema Definition ... 97

Example 6.2 RasML: Marray Constructor and Condenser ... 100

Example 6.3 RasML: Geometric Operations .. 100

Example 6.4 RasML: Query.. 102

Example 6.5 RasML: Update .. 103

