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Abstract

Arrays of arbitrary size and dimensionality appear in a large variety of database
application fields, e.g., medical imaging, geographic information systems, scientific
simulations, and also business-oriented applications like Online Analytical Processing
(OLAP) and data mining. Recently, integration of an application domain-independent
and dimensionality-independent type constructor for such Multi-dimensional Discrete
Data (MDD) into Database Management Systems receives growing attention. Current
scientific contributions in this area mainly focus on MDD algebra and specialized
storage architectures.

Since MDD values may occur in the scale of several megabytes and, compared to scalar
values, operations on these values are very complex, their efficient evaluation becomes
acritical factor for the overall query response time. Although the management of MDD
values shifts the demands on query processing fundamentally, there has never been a
systematic study on specific query optimization on both logica and physical level
combined with efficient evaluation of MDD queries.

In this thesis, we want to close this gap: We develop a generic Abstract Data Type
(ADT) for MDD and integrate it into an adapted relational model by allowing the newly
introduced MDD expressions in selection conditions and as parameters of the novel
application operation which is an extension of relational projection. With this model
serving as aformal base, a comprehensive list of algebraic transformation rules together
with an optimization heuristics is provided. Specialized evaluation algorithms based on
atiled storage layout are presented which optimize array query processing both in terms
of speed and memory usage. We proceed with an examination of the MDD specific cost
structure for array query processing. The main responsible parameters are summarized
in the Array Cost Model which, e.g., is used to make cost-based decisions for different
alternative evaluation plans.

The techniques presented are implemented in the operational Array DBMS RasDaMan.
We provide an outline of the system architecture. The integration of the MDD ADT into
the query language as well as the query processing module including optimizer and
executor are described in more detail.

Finaly, a performance study based on synthetic data as well as on real-life data from
the European Computerized Human Brain Database Project (ECHBD) proves practical
benefits of the presented techniques.
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Chapter 1
| ntroduction

1.1 Array DBMSs

After along phase where arrays have largely been neglected among the database community,

very recently a growing interest in database support for such structures can be observed. This

is more than justified by the large variety and number of different application fields in which

this single data abstraction appears. Arrays of arbitrary size and dimensionality, so-called
Multi-dimensional Discrete Data (MDD), span a remarkably rich manifold — from 1-D time
series and 2-D images to OLAP data cubes with maybe dozens of dimensions and sizes from
a few kilobytes to several gigabytes, as spatio-temporally discretized natural phenomena or as
artificially generated data sets. MDD values play a major role in a variety of database
applications fields: earth and space sciences, census, medical imaging, physical experiments
(wind channels, high-energy physics), multimedia, and OLAP comprise but a few
representatives (see Section 1.2).

An Array DBMS supporting application domain-independent MDD structures allows to move
array business logic to the DBMS (see Figure 1) which has several advantages: (1) DBMS
services for MDD, i.e., safe multi-user access, crash recovery, client-server environment, ad-
hoc query facilities with optimizations on logical as well as on physical level; (2) standardized
management of MDD; (3) MDD is manipulated close to its location on disk which potentially
leads to less network traffic; (4) small client programs and less application programming
effort which means less error prone code.

The scientific starting point when developing database services for new information
categories is to set up an algebra; some steps into this direction have already been made
[Bau94, Mar97]. Next, query languages are set up and implemented,; this is a field where only
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very few results are reported, e.g.,
[Feg95, Lib96, Bau97a, Mar97].
Due to the enormous extent of MDD Business Logic Business Logic

Presentation Logic Presentation Logic

values compared with cIassucal. data Array Logic Array DB Logic
structures, new storage techniques .
are required. Work reported in this DB Logic
area can be found, for instance, in [>
[Fur93, Sar94]. It is here where
query evaluation and optimization, DBMS Array DBMS
at the bridge between logica and
. . Scalar Arrays Scalar Date
physical level, are of primary "
importance.
' - CX 5
Table 1 shows the fundamental Database
Ne—}

differences between conventional

data types and the MDD type Figurel Architecture Example for an
concerning their size, their operation Array DBMS Migration
complexity, their disk storage, and

thelir rolein tuple selections.

Conventional Data MDD Type
Types

Size of single values small huge

Costs for operations on single values cheap expensive
Storage of values on disk n values per disk page n disk pages per value
Search for attributes within relations supported by indexes scan

Table1l Conventiona Typesvs. MDD Type

The size of single MDD values varies from the scale of megabytes to gigabytes whereas
conventional data types occupy a couple of bytes. If we consider a comparison operation on
an MDD value, it will cost number of cell times more than an operation on a single value
which, again, might be in the scale of several millions. This is one of the reasons why queries
based on MDD values are, in the magjority of the cases, CPU-bound (thisis discussed in detail
in Section 4.5). Further, storage and evaluation of relational queriesis based on the fact that
one disk page consists of several tuples. This does not hold for MDD values. Finaly,
selection on relations based on attributes of conventional types might be supported by indexes
on these attributes whereas MDD values do not have a natural order and, consequently, they
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are not suitable for index support. The case that an index is built on attributes calculated from
MDD valuesis called feature extraction and is addressed in the area of content-based retrieval
systems which is beyond the scope of this thesis (see Section 0). In summary, due to the
different properties of MDD values, the requirements on query optimization and evaluation
have been shifted and, therefore, MDD query processing requires reconsideration. As we will
point out in detail in Chapter 2, this field within array database research has received little
attention up to now. With this thesis, we want to close this research gap.

This work strictly distinguishes between logical and physical data model for MDD. On the

logical level, multi-dimensional arrays receive the rank of a first-class data abstraction in the

sense of a generic type constructor parameterized with the array’s spatial domain (array index
range) and cell base type. The spatial domain provides the point set where cell values are
defined, e.g., number of dimensions and lower and upper bound (fixed or variable) for each
dimension. For the cell base type both primitive and complex types are admissible. As
operations on MDD values, we choose the two low-level, second-order functions described in
[Bau98a, Bau99]: the first function enables to construct multi-dimensional arrays with cell
values being defined by the result of an arbitrary function; the second function allows to
generally aggregate the cell values of a multi-dimensional array to a scalar result value by
specifying a function able to combine two cells. Due to the generality of these functions, they
are very powerful but lead to rather complex expressions. The functions utilized most
frequently in applications consist of function parameters following some restrictions. At query
processing time, exactly these restrictions allow more advanced optimization and the
application of more efficient physical evaluation algorithms. In order to facilitate the
employment of frequently used functions and to achieve a better starting point for query
processing, we, additionally, derive some high-level MDD operations. They can be divided
into three categories. Geometric operations modifying the spatial domain while leaving the
cell values unchanged, induced operations operating on cell values only, and aggregation
operations condensing information to a scalar value. As our operations on arrays are of
declarative nature, they provide a huge optimization potential. On the physical level, a
specialized storage structure for large MDD objects is adopted which is composed of tiles,
obtained by subdividing MDD objects into multi-dimensional subrectangels, and spatial
indexes for efficient coordinate-based access of the tiles [Bau97a, Fur99].

Integration of the MDD type constructor into an object-oriented system means that sets of
MDD objects may arise either as extents or as explicit collections whereas MDD values in
relational systems occur as attributes in tables. Both situations make it necessary to process
sets of MDD values. For the purpose of demonstrating optimization and evaluation
techniques, th&1DD model is integrated into a simplifiecelational model in the sense that

no explicit join but a cross product operation is supported. On the other side, the relational
model is extended by providing a generalized projection operation cagigldcation
operation which is able to apply general MDD expressions to MDD tuples. We would like to
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emphasize that the described optimization techniques are independent of the database
paradigm and, therefore, prove usefulness in both relational and object-oriented systems.

As dready pointed out above, demands on Array Query Processing (AQP) have some
essentially different aspects compared to the demands on standard Relational Query
Processing (RQP). With RQP, tuples are very small compared to relation size and operations
on single tuples are very cheap (e.g., string comparison on equality) with respect to CPU
costs. The main effort has to be spent on processing large sets of tuples. In contrast, single
MDD objects aready can reach the scale of gigabytes, and MDD operations, such as
consolidation in 4-D climate simulations, become extremely complex and time consuming.
Hence, the optimization problem is on two levels, on the level of MDD sets (inter-MDD
operation optimization) and on the level of single MDD values (intraiMDD operation
optimization). In order to achieve efficient AQP, we follow two approaches: First, as
processing sets of MDD objects is similar to RQP, we adopt as many techniques as possible
from conventional RQP, adapting them where necessary. Second, we develop new techniques
for MDD processing which exploit the characteristics of the logical MDD model and a tiled
storage architecture. Following the RQP framework, we take over the phases rewriting,
transformation, and execution for the integration of our new techniques.

Summarizing, the thesis concentrates on the following points:

» Definition of an Array-ADT (based on the work reported in [Bau98a, Bau99]) and choice
of application relevant, optimizable high-level array operations.

* Integration of the Array-ADT into the Relational Model by introducing multi-dimensional
attributes with different restriction levels. MDD expressions are allowed in the selection
condition and in the newly introduced application operation which is an extension of
relational projection.

» Establishment of a comprehensive list of algebraic transformation rules derived from
MDD operations, relational operations, and their combinations. Presentation of an
optimization heuristics on the transformation rules.

» Array-specific exploitation of common subexpressions.

* Development of specialized execution strategies for MDD expressions based on a tiled
storage layout.

» Examination of MDD-specific evaluation costs and establishment of an Array Cost Model
with histogram-based selectivity estimation.

» Description of implementation aspects of the presented techniques which show their
feasibility. Integration of the algebrainto an SQL-based query language.

» Presentation of performance studies based on synthetic data as well as on real-life datain
order to support the theoretical concepts.
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The work reported has its roots in the RasDaMan® project, where a domain-independent,
client-server Array DBMS for MDD of arbitrary size and dimensionality is developed.
RasDaMan offers a declarative query language, RasQL, which is an extension of SQL-92
with high-level MDD operations. All of the functionality described in Chapter 3 on the data
model is supported by RasDaMan. Our ultimate goal is to efficiently support OLAP,
statistical, and imaging queries up to the power of the Discrete Fourier Transformation
[Bun93]. Queries are evaluated in the RasDaMan server which relies on a specialized storage
architecture. We have implemented a variety of logica and physica query optimization
techniques which have proved their accelerating impact in practical environments. The
RasDaMan DBMS is being used in severa projects for medical, neuroscientific, and
geoscientific raster data management. Chapter 6 gives on overview on the implementation of
RasDaMan modules correlated to this work.

1.2 Application Areas

Quantifying natural spatio-temporal phenomena mostly leads to multi-dimensional data
representations; likewise, data sets generated from simulations and experiments frequently are
anayzed in a multidimensional model. Indeed, a broad range of data sets can be naturally
stored in general arrays which means arrays of arbitrary size, cell type, and dimensionality.
The data sets range from 1-D time series (e.g., seismographic sensor data, ECGs ) and audio
data, 2-D raster images (e.g., satellite images, picture archives), 3-D volume data (e.g.,
temperature distributions) and video data to 4-D spatio-tempora data (e.g., climate
simulations). Such arrays appear in a variety of application fields, such as medical imaging,
lab document management (e.g., for chemical and pharmaceutical industry), earth
observation, oil/gas/water exploration, simulation and experimental data management (e.g., in
automotive, shipbuilding, and aerospace industry), and statistic applications. In this section,
we concentrate on some typical application scenarios in the areas of Medical Information
Systems and Geographic and Geoscientific Information Systems.

Medical Information Systems

In the medical environment, digital archival of datain the form of fully digital patient records
with their high potential for efficient access, extensibility, transparence and hence high
service quality and cost savings is becoming more and more standard. Data is produced in a
wide variety of forms, such as 1-D curves (e.g., ECG), 2-D images (e.g., x-ray and ultrasound
images), and 3-D volumetric data (e.g., volume computer tomograms). In this environment,
an Array DBMS adlows to uniformly model and maintain digita dimensiona data
independent of its size, dimensionality, and cell type structure while providing query
functionality to retrieve geometric parts of the data, to manipulate the data, and to search the

! RasDaMan has partly been sponsored by the European Commission in the ESPRIT 1V
program under grant no. 20073.
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data based on its content. Typical queries which can be answered by an Array DBMS look
like:

— Give me the ECG recording of patient X with its amplitude multiplied by two.

— Give me the most recent x-ray image of patient X restricted to the area of his right knee.

- Givemetheaxial dicesat position z= 50 of all CT recordings of patient X.

— Giveme a specific 3-D brain area of the most recent CT recording of patient X.

— Give me the maximal intensity value occurring in a specific area of a CT recording.

— Within a radiological case study, give me a certain area of all CT recordings which
consist of intensity values exceeding a threshold of 127 in some specified regions of
interest.

The Array DBMS RasDaMan and its deployment in the medical area is further described in
[Rit96, Bau974].

Geographic and Geoscientific Information System

Raster data gains increasing importance in the area of Geographic Information Systems (GIS).
With technological advances in storage, network and processing power, maintaining raster
data on a large scale is getting less expensive and providing online access to the data sets is
becoming feasible. Although most of the data supported today is two-dimensiona (e.g.,
satellite images, digital elevation models), geoscientific data occurs from 1-D (e.g.,
seismographic data) to 4-D (e.g., spatio-temporal climate simulations). Thereby, the array
cells encompass binary and grayscale pixels, multi-spectral pixels, voxels containing floating
point temperature values, and many others. In the following, we give some examples for
Array DBMS queries emerging within this context:

— Giveme arectangular region of all Landsat images recorded in year 1990.

— Giveme bands 1, 3 and 7 of all Landsat images with the intensity value of band 7 raised
by 5.

- Giveme all satelliteimages of a certain area with less than 10% clouds.

— Give me the area in percentage where, in a specific region, band 7 consists of intensity
val ues between 100 and 200 for all Landsat images recorded in year 1990.

— Given a 3-D temperature distribution, give me the temperature distribution over a given
location (X,y).

— Give me a thematic map of height 500m of a 3-D temperature distribution with areas
exceeding 40° C marked in red.

Further insight into the application of Array DBMSs in the area geographic and geoscientific
information systemsis given in [Wid97, Bau97a).
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1.3 Outline

This thesis is organized as follows. Chapter 2 recapitulates work in areas related to the
research described in this thesis. In Chapter 3, we introduce the MDD model and its
integration into the relational model as well as an MDD storage model. Operations of the data
model are described by some examples and examined from an optimization point of view.
Chapter 4 discusses the different phases in raster data query processing. It contains a
comprehensive list of agebraic transformation rules, an optimization heuristics, and
algorithms for efficient evaluation of MDD operations. Chapter 5 develops a cost model for
array queries in order to get more insights into the cost structure and to be able to predict
evaluation time and result set size of array queries. A description of the implementation is
given in Chapter 6 and Chapter 7 presents practical performance studies. Finally, Chapter 8
summarizes the conclusions drawn in this work and identifies the scope of future research in
this topic.
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Chapter 2
Related Wor k

Related work to this thesis can be divided into two categories. first, systems dealing with the
problem of multi-dimensional raster data and, second, work reporting on optimization and
evaluation techniques addressing the problem of large data sets and expensive methods. Both
are discussed in the following sections.

2.1 Systems Supporting Multi-dimensional Data

The discussion in this section concentrates on systems supporting at least two-dimensional
raster data. We want to record that nesting one-dimensional arrays, e.g., in object-oriented
systems, aswell as nesting relations as allowed by the NF? data model described in [Dad86] is
not a convenient solution for supporting arbitrary multi-dimensional raster data of large size
neither in terms of operational support nor in terms of efficient query processing.

2.1.1 Image DBM Ss

Image database systems are dealing with two-dimensional raster data. These systems focus on
selection and retrieval of images, or parts of images, based on image content. As explained,
e.g., in [Fal95], features are extracted at insertion time and a multi-dimensional index is built
for fast response of queries based on the extracted features. Thisis the major difference to our
approach, as we allow queries utilizing the array structure and the cell content at querying
time.
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2.1.2 Specialized DBM Ss

Speciaized DBMSs are dedicated to high-level operations on data for particular application
areas. Paradise [DeW94] is an example for handling two-dimensional raster data in
applications in the area of Geographic Information Systems (GIS). MDD is modeled in the
object-relational model of SHORE [Car94]. Efficient storage of the raster ADTs is provided
in Paradise by tiling the datainto a set of SHORE objects and optimization of data handling is
achieved by compression. Paradise neither provides a general MDD query language nor
advanced optimization techniques for MDD operations. Another interesting but similar
approach in the area of medical imaging is QBISM described by [Ary94]. QBISM is a
prototype for querying and visualizing 3-D medica images built on top of the Starburst
DBMS. In order to preserve spatial clustering, the 3-D data is linearized aong the Hilbert
curve; compression of the byte stream reduces memory requirements. Spatial operations, e.g.,
partial access to 3-D data is supported by a spatial index. As Paradise, QBISM does not
provide MDD operations which are independent of application domains and dimensionality.

2.1.3 Statistical and Scientific DBM Ss

The OPTIMASS storage system [Che95] can be mentioned as a representative of Statistical
and Scientific DBMSs (SSDBMSs). OPTIMASS partitions multi-dimensional datasets into
clusters based on device characteristics and an analysis of data access patterns. Neverthel ess,
the system is not tightly integrated with a DBMS that has general-purpose MDD query
capabilities or specialized optimization techniques.

2.1.4 Array DBMSs

There are severa proposals for domain-independent query languages manipulating arrays
[Feg95] but only a few are considering special query optimization techniques. One of its
representatives is the recent work of [Mar97] which introduces the array manipulating
language AML supporting comparable operations to our MDD operations. Some example
rewriting rules are presented as well as an optimized evauation of the operations
SUBSAMPLE (comparable to our geometric operations) and MERGE (comparable to the
general condenser statement). The work lacks a comprehensive examination of logical
optimization techniques. Another interesting work is provided by [Lib96] which introduces
the powerful Array Query Language (AQL) based on a calculus providing four very low-level
primitives. The work aso discusses rewriting rules for its primitives. High level array
operations, comparable to ours, can be composed. Optimization of these operations is
performed at the level of the calculus primitives and it is questionable, whether the optimizer
will find practical relevant rewriting rules or not. None of the proposals integrates its array
language into a set-based model or discusses optimization and evauation together with a
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specialized storage structure which both turned out to be of maor importance in our
operational Array DMBS RasDaMan [Bau98b].

2.1.5 Extensible DBM Ss

The requirement for DBMS integration of a new type, which supports MDD efficiently and

on a high semantic level, leads to extensible DBMSs. Object-relational database management

systems (ORDBMS), among them severa commercia systems like Informix Universal

Server [OIs96], Oracle, and IBM’s DB2, as well as research systems [Lin88, Sto90], provide
support for user-defined data types. Most of these systems are not able to integpate a
constructor needed for MDD in a satisfying way. Usually, it is not possible to extend their
qguery language for arbitrary array operations (e.g., user defined functions are restricted to a
fixed number of parameters) or to efficiently optimize and execute expensive predicates.
These systems can optimize relational expressions in which user defined functions appear, but
they generally do not optimize user-defined functions themselves which is of primary
importance when dealing with huge MDD values. A recent exception is PREDATOR [Ses97]
which allows to introduce, along with an ADT, dedicated query (sub) languages, optimizer
components, and storage layout policies which means that user defined expressions can be
passed to an optimizer that can handle them. It may turn out that systems like PREDATOR
indeed offer the necessary mechanisms required for the implementation of an MDD ADT
which is as powerful and efficient as the one described in this thesis.

2.1.6 OLAP DBMSs

Currently, many investigations can be observed in the ar@mlafe Analytical Processing
(OLAP). Optimization techniques for its specific operations are strongly dependent on
whether the model is mapped to a relational structure (ROLAP) or to a multi-dimensional
structure (MOLAP). For example, [Agr96] defines a hypercube based data model with
algebraic operations. Ultimately, the model is mapped to relations using conventional
optimization. It is obvious that efficiency is strongly dependent on the mapping strategy. In
this area, most effort is spent on optimizing the aggregation operation; [Aga96] gives an
example of optimizing the CUBE operator.

If we compare our definition of Array DBMSs with OLAP systems, three major differences
emerge:

— Array DBMSs integrate multi-dimensional data in the form of a new attribute type
constructor called multi-dimensional array into traditional relational or object-oriented
DBMSs whereas OLAP systems use a multi-dimensional data model (on logical level) to
represent the whole database content.

— Array DBMSs are primarily designed to support densely populated, multi-dimensional
domains whereas OLAP data usually is very sparsely populated (in the scal8.6fd.0



16 Chapter 2

overcome data explosion of fully materialized OLAP data cubes in multi-dimensional
arrays, one can use compression techniques on tiled arrays as described, e.g., in [Zha9§].

— Array DBMSs do not support the typical classification hierarchies defined on OLAP
dimensions which are used for characteristic operations like drilling.

As the work described in this thesis is not complete in order to support OLAP applications,
we clearly want to differentiate ourselves from OLAP systems. Nevertheless, as our array
data model and the OLAP core data model (fact table) are similar with respect to their
structural and operational properties, we shortly want to draw attention to the following
approach:

Recent work reported in [Zha98] uses a similar approach to our physical storage model to
store the fact table of an OLAP system. It shows impressively that multi-dimensiona arrays
can be more efficient both in terms of storage space and retrieval performance than relational
tables for multi-dimensional OLAP data sets. This confirms our opinion that Array DBMSs,
as presented in this thesis, in combination with specialized compression for efficient handling
of sparse data, are also very promising for an OLAP core system. However, further
investigations in this very interesting area are out of scope for thisthesis.

2.2 Specialized Optimization and Evaluation Techniques

An increasingly large body of work addresses the problem of traditional relational query
processing, e.g., [Jar84] but also specialized query optimization and evaluation, e.g., [Gra93].
There are various aspects in which Array Query Processing can benefit from both of them
and we refer to the relevant work in their specific context throughout the whole thesis. In this
section, we just want to discuss work on query processing in the face of array supporting
systems and expensive predicates because this, in particular, is tightly coupled to our
situation.

Optimization of array queriesin the context of object-oriented query languages

As (one-dimensional) arrays are a basic information structure of object-oriented query
languages, their optimization is considered in some work reported in this area.

For instance, [Van9l] supports one-dimensional arrays on arbitrary types together with nine
array operations comparable to the one-dimensional restriction of our operations. The work
considers algebraic optimization and presents some transformation rules but leaves the
application heuristics of the rules an open question. Further, the function used in the APPLY
operation, which involves the function on each element of an array, is not optimized which
turned out to be the bottle-neck in our application fields.

The authors of [Bee90] suggest an algebraic optimization framework based on bulk data (data
collections) including one-dimensional arrays. Several generic algebraic optimization rules
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concerning operations on bulk data as well as optimization rules for function parameters
(functions are described in their algebra) are presented. The work lacks specific support for
arrays and practical evaluation of the presented concepts.

Handling of redundant method invocation during query processing

Object-Oriented and Object-Relational Database Management Systems support user-defined
methods in their queries which can be compared to operations on multi-dimensional arrays

with respect to their computation costs. In case these methods are very time consuming and

run on data with duplicates, time is wasted by redundantly computing methods on the same

values. The work described in [Hel96] compares three different techniques to avoid redundant

method invocation: (1) memoization, known in the context of programming languages, stores

the method results in a main memory hash-table indexed by the method’s parameters; (2)
sorting the input parameters was first described in [Sel79] to avoid redundant computation of
correlated subqueries on identical inputs; and (3) Hybrid Cache which basically does
memoization but keeps the hash-table at a maximum size by staging tuples with previously
unseen tuples to disk and rescanning them later.

Reconsidering this problem with respect to large multi-dimensional arrays, one can state that,
first, array duplicates should not be stored in the database because of the their enormous
storage waste and, second, methods applied on intermediate duplicates produced, e.g., by a
cross product operation should be pushed into the cross product as described in Section
4.2.1.4.

Migration of expensive predicates during query processing

The commonly used heuristics to push down projections and to order joins with decreasing
selectivity may not lead to optimal query plans in case of expensive selection and join
predicates. [Hel98] develops a cost framework that incorporates both selectivity and cost
estimates for selection and join predicates to rank selections and join operations in a way that
minimizes overall evaluation costs for purely conjunctive predicates. [Kem94] presents the so
called bypass processing able to avoid the evaluation of expensive predicates whenever the
result of the selection predicate can already be determined by testing other, less expensive
predicates.

On the one hand, our work extends these thoughts in the sense that we do not just migrate
expensive predicates (or user defined functions) but even sub-predicates which is described in
Section 4.2.1.4. As in our transformation cases, the optimization effect is obvious, we base
our transformation decisions on some heuristics. Nevertheless, it would be straightforward to
use the cost model described in Chapter 5 for cost-based decisions.

On the other hand, the techniques presented by [Kem94] and [Hel98] are of primary
importance wherArray Query Processing is integrated intdRelational Query Processing
which in detail is beyond the scope of this work.
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2.3 Summary

Table 2 gives an overview on the functionality of systems supporting multi-dimensional data
together with their optimization techniques employed to optimize array handling.

Image | Specialized | Statistical |

DBMSs, DBMSs Scientific DBM Ss
_ _ 7 DBM Ss 7 _ |

4
o
=
S
I O
array support 2-D 2-D | 3-D n-D n-D | n-D | n-D
lication domain-independent -
applc. ion domain-independen o o o o yes IIOV\(/EI yes
operation support ev
declarative array query language no no no no yes | yes | yes
arrays embedded in relations 5 yes | yes no no no | yes
algebraic query optimization § = yes | yes no yes | yes | yes
: - £ c
algebraic qqery optimization of 5 S o o o yes | yes | yes
array operations S é
838 g 8
specialized storage structure S 2|tiling| 2 2 tiling no no |tiling
o E B T 3
S w
specialized array plan operators E E E no no yes yes | no | yes
implementation available yes yes | yes yes no | yes | yes

Table 2 Systems Supporting Multi-dimensional Data

OLAP systems are not further discussed as our approach of Array DBMSs cannot compete
with their specific functionality. The employment of Array DBMSs as basic storage systems
for OLAP solutionsis left open for future work.

To sum up, at this time there is no comprehensive, practically proven approach for multi-
dimensional arrays of any dimensionality, cell type and size supporting specialized
optimization on both logical and physical level as well as adapted evaluation of application
domain-independent queries. Nevertheless, several existing systems as well as a broad range
of research work provide partial solutions to array support in DBMSs and hence we try to
adapt known techniques whenever possible.
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Chapter 3
Data M odéel

The Logical Data Model distinguishes the MDD Model describing typed, multi-dimensional
arrays, elementary MDD operations, three categories of derived high-level MDD operations,
and an adapted Relational Model. The latter serves to embed the MDD Model into a common
set-based model in order to be able to express MDD optimizations occurring in combination
with set-based operations. The Physical Sorage Model introduces a tiled storage structure for
MDD values which is the base for physical optimizations.

3.1 Logical MDD Modd

Thelogical data model supports multi-dimensional arrays of arbitrary types denoted by 1. The
set of types 1 consists of atomic (unsigned integers N, integers Z, rea numbers R, and
boolean values 3B) and complex types which are composed of atomic and complex types. A
multi-dimensional array (in our nomenclature an MDD) is defined as a function which maps a
point set X to avalue set F where the point set X is restricted to form axis-parallel data cubes.

3.1.1 Multi-dimensional Intervals

The point set X (often denoted as definition or index domain of an array) is described more
precisely as amulti-dimensional interval called Spatial Domain.

By convention we use x to denote vectors and ( X,....X,) for ordered n-tuples, their
components being addressed by a subscripted index.
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Definition 3.1 (Spatial Domain) A spatial domain D over pointsl, h with |, hOZ¢, I; < h; for
i=1...disdefined as

d
D= X{x[li<x<h,X0Z} =[lsh] x .. x [ Igha]

The functions low and high deliver upper and lower bound vectors respectively and function
dimrefersto the dimensionality of the spatial domain:

low(D) = |
high(D) == h
dim(D) = d

As amore convenient notation, a spatial domain over points|, h is denoted by:

[1ih, .y lghg ] 0

Remark: A spatial domain is an axis-parale rectangular and compact subset of the d-
dimensional Euclidean space D 0 E?= 7 x ... x Z defined over integer numbers.

Definition 3.2 (Spatial Domain Type) The set of admissible d-dimensional domains & O
P(E?) (with P denoting the power set) is called spatial domain type. It is defined as

3= { DI, h0Z% D is Spatial Domain over points|, h}.
0 denotes the set covering spatial domains of any dimensionality:
8 = Ogend” 0

We now define the so called dlice operation on spatial domains which is able to extract multi-
dimensional hyperplanes thereby decreasing the dimensionality by one.

Definition 3.3 (Sice) Let spatial domain D&, 1 <i < d and low(D); < v < high(D);, then the
operation slice: 3 x N x Z —. 3™, which cuts out a hyperplane with dimensionality reduced
by one, is defined as

dice(D,i,Vv) ={ x0dz%* | (X1, ooy Xg )AD, X =V, X = (X1, «oey Xic1, Xit1, s Xd ) } %

More informally, the functions intersection, union, and difference of spatial domains are
defined by means of the usual set operations n, [1, and / on the condition that the result again
isaspatia domain according to our definition. In other cases (e.g., union of digoint sets), the
operations are not defined.

3.1.2 MDD Structure

Next, we introduce MDD values, MDD types and their constructor.
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Definition 3.4 (MDD value) An MDD value a over basetype T and spatial domain D with
TOt and DS isaset of (coordinate, value)-tuples defined by a mapping functiona: D - T:
a:={ (x a(x)) |a(x)UT, xtID }

The following functions are defined on a:

base(a) :
sdom(a) :

T
D 0

The reader should be aware of the difference between a and a: a denotes a multi-dimensional
value (array) in our logical MDD model whereas function a describes the array contentsin the
(meta-) set notation used do describe the meaning of a.

Synonyms for the term MDD value are multi-dimensional data, multi-dimensional array or
simply array. They are used interchangeably in this document.

Definition 3.5 (MDD type) An MDD type M with base type T and spatial domain D with
TOt and DO is defined as

M:={ alaisMDD vaue over basetype T and spatial domain D, TUt, D[ }

As a shorthand, we denote an MDD type with base type T and spatial domain D by [[T, D]].
The corresponding MDD type constructor iswritten as[[T, 9]]. O

Array elements are referred to as cells. Single cells can be accessed using the subscript
operator []:

Definition 3.6 (Cell Access) Let a={ (x, a(X)) |a(X)OT, x0D®} O[[T, DY] be an MDD
value and x(D? be a d-dimensional point, then the access operator []: [[T, D] x Z* = T is
defined as:

a[x = a( 0

3.1.3 Elementary Operations

According to [Bau98a, Bau99], two elementary functionals form the base for high-level array
operations. The first function to be defined is the MDD constructor, called marray, which
allowsto create arbitrary multi-dimensional arrays:

Definition 3.7 (Marray Constructor) Consider a spatiad domain D19, a point variable x
which iterates through the spatial domain, and a so called cell expression e, containing free
occurrences of x and resulting in a value of type TOt. Then the constructor marrayp,x( &)
evaluates to an MDD value of type[[T, D]]. It isdefined as:

marrayp,x( &) = { (X, &) [xUD } ¢
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Expression e, contains a free variable x (indicated by its subscript) of type Z%. marray
evaluates expression g, for each point x of spatial domain D and stores the resulting value in
the cell with coordinates x of the newly created MDD value.

It should be noted that mapping function a: D —» T and cell expression e: D x ... - T are
similar in the sense that both describe array values depending on their coordinates.
Nevertheless, function a is used to describe the array meaning using the (meta-) set notation
whereas expression e is used as a parameter in the logical MDD algebra.

Example 3.1 The following marray call creates a thumbnail from image mO[[T,[0:r,0:5] ]
with both dimensions scaled down by a factor of 4. The example Adsesdenote division
on integer numbers and ** to multiply each component of vector

marrayo.a, o.g4), x{ M[x*4] )

Remark: One could now argue that it is sufficient to store domain and cell expression to
keep the information of a multi-dimensional array. In practice, most MDD values cannot be
described by a short functional description but only by an enumeration of the cell values (e.qg.,
images) which restricts the functional definition of arrays to the theoretical model. Physically,
arrays are described by some enumeration of their cell values (cf. Section 3.2. on the physical
MDD model).

The second elementary function consolidates the cell values of a multi-dimensional array to a
scalar value. It iterates over a spatial domain while combining the result values of the cell
expressions through the indicated condensing function.

Definition 3.8 (Condenser) With o: TXT - T being a commutative and associative operation,
D = { x1,...% }[Jd indicating a spatial domain with nB||points,x being a point variable
which iterates through the spatial domain, @@ being an expression of result tyfje
containing free occurrences of an MDD varialh&l[[ T, D]] and point variablex, the
condenser function is defined as:

Condo,Dyx( ernx) = X% ernyz( = ern,xl 0...0 ernyz(n <>

Again, expressiogny is evaluated for each poirtof spatial domaiD. The result values are
aggregated using the condensing function

Example 3.2 Given a sales tabtél[[ No, [1:52, 1:8] ]] with 52 week columns and 8 product
rows, the following condense statement results in the total sales value of the first product:

Cond+, [1:52], X( L[(X, 1)] ) E: 52—2£[(X’1)] E
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The next statement delivers the total sales values for each product in a one-dimensional array
with domain [1:8]:

a = marrayug, o cond, sz, 1)) Hy)= 3 Oy for y=1..8

Example 3.3 A combination of the elementary operations can be used in order to perform a
matrix multiplication. Let myO[[T, [1:m,1:n] ]] be an mxn matrix and mpO[[ T, [1:n,1:p] ]] an
nxp matrix over type TOt. Then, the mxp matrix product can be expressed as following:

marrayiim, v:p),i( €ond. 1, j( M (ia, )] * Me[(, i2)] ) )

Concerning optimization, the second-order, elementary functions are very difficult to handle.
Dueto their generality, expressions become very complex leading to very bad straightforward
evauation performance. Therefore, we will derive high-level operations motivated by two
criteriac First, domain-independent operations which are frequently used in order to make
usage of the algebra easier and, second, operations with restrictions allowing to perform
sophisticated optimization techniques. The choice of derived operations is additionally
motivated by the following discussion on the complexity of cell expressions. As this is not
essential for the basic understanding, the reader may skip this section and continue with
Section 3.1.5.

3.1.4 Onthe Complexity of Cell Expressions

This subsection discusses the complexity of general cell expressions used in the elementary
operations Marray Constructor and Condenser. Systematic restrictions on the structure of cell
expressions allow us to establish operation categories with characteristic functionality,
evauation complexity, and optimization potential. As functionality of some of the identified
operation categories is of special interest for a broad range of applications, they motivate the
derivation of specialized MDD operations which isformally described in Section 3.1.5.

We start with the examination of cell expression e used in the marray constructor
marrayp,x( & ). Table 3 presents the operation categories ranging from M1 to M7 with a
decreasing restriction degree for the cell expression. For each category, the table presents an
informal and a formal description of the cell expression, application examples, and their
corresponding derived operations if available. Without a more formal introduction, we use a
constant function c¢: Z" - T returning any constant of type T, an unary function f: T - T
changing cell values of type T, a binary function f': T XT - T combining two cell values of
type T, afunction g: Z" — 7" defined on the points of a spatial domain describing a cluster-
preserving transformation (e.g., mirroring), and afunction g': Z" — 7" returning points within
asmallneighborhood of the input points.
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No Expression Description Expression Application Derived
- ___¢° ___ ___Examples ___Operations

M1 | constant o) initialization of
B constant MDD values
cell access with probing point copy operation, trimming,
M2 a[x] . )
X selection of subareas | section
M3 simple expression on cell at fald ) intensity increase, unary induced
probing point x T plane selection operations®

cell access with cluster

M4 preserving index expression f(alg)]) |flipping -

access to small neighborhood filtering, scaling,

M5 of probing point x f(alg'1) moving average )

M6 simple expression on two f(alx], |combinationof MDD |binary induced
cells at probing point x b[x] ) values operations’

M7 | general expression general g - -

Table 3 Operation Categories of the Marray Constructor

Thefirst category M1 uses a constant to initialize an MDD value which means that evaluation
of e needs constant time. Category M2 uses the probing point x to access the corresponding
cell of MDD value a which results in copying cells. Optimization has to be performed in the
sense that connected areas are copied in one step. As copy operations of MDD parts are used
frequently, we derive the specialized operations trimming and section Operations of category
M3 change cell values by applying a function defined on one cell to all cells of a spatial (sub-)
domain. We derive a special operation for this category and call it unary induced operation
which can be optimized by an adapted iteration sequence of points x and a precompilation of
function f, both is described in 4.3.1.2.

Operation category M4 additionally uses a cluster preserving function g to transform the
probing points x before accessing cells of MDD value a, whereas category M5 delivers points
within the neighborhood of probing point x. Although the restrictions of both categories can
be exploited in order to optimize the iteration sequence with respect to access complexity to
MDD value a, they are not of primary importance for our current application fields and hence
derivation of operations is left open for future work. Category M6 uses a function f' to
combine corresponding cells of two MDD values a and b. We call this sort of functions
binary induced operationand their optimization goal is to read data of a and b in a sequence
that minimizes disk access. This is described in Section 4.3.1.3. Finadly, category M7
represents the general cell expression with no special optimizations possible.

2 Defined in Section 3.1.5.1.
3 Defined in Section 3.1.5.2.
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The same restriction levels can be applied to the cell expression of the elementary condenser
function, even so, Table 4 presents just operation categories identified to be relevant. The
practically most important category is C2 which aggregates cell values of a certain area
depending on a given condensing function. The corresponding derived operation is called
reduce which is used to further derive aggregation functions such as quantifiers, minimum,
maximum, summarization, and others (cf. Section 3.1.5.3).

No Expression Description Expression Application Derived
Examples Operations
o2 cell access with probing point alx] aggregation of cell reduce’
X values
ation of cell
simple expression on cell eggregaton o . ©
C3| . . . f(a[x]) |vauesdepending on -
with probing point x .
acondition
C7 | general expression genera e - -

Table 4 Operation Categories of the Condenser Operation

A formal definition of the derived operations is given in the next section and characteristic
optimization and evaluation techniques are discussed in Section 4.3.1.

3.1.5 Derived Operations

The following derived MDD operations are divided into Geometric Operations, Induced
Operations, and Aggregation Operations.

3.1.5.1 Geometric Operations

The characteristics of geometric operations is that cell values are not changed, but the spatial
domain is manipulated by selecting a subset of cells, which is the case for trimming
(rectangular cutouts) and section (extraction of multi-dimensional subarrays with
dimensionality decreased by one).

Definition 3.9 (Trimming) Let value m be of type [[T, D]] and spatial domain D’ O D. With
non-MDD arguments written as subscript, the function trimming [[T, D]] x & — [[T,D’]] is
defined as:

trimmingy (M) = marrayp »( mx] ) 0

4 Defined in Section 3.1.5.3.
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Definition 3.10 (Section) Let spatial domain D 0 &°, value m be of type [[T,D]], 1<i<d
and low(D); < v<high(D);. Again, with non-MDD arguments written as subscript, the
function section: [[T, D] x N x Zy — [[T, D*Y]] is defined as:

section; (M) = marraysicep,vx( M ) 4

3.1.5.2 Induced Operations

For each operation available on the MDD cell type, a corresponding so-called induced
operation is provided which simultaneously applies the base operation to all cells of an MDD.
Induced operations operate on cell values while leaving the spatial domain unchanged. Both
unary and binary operations can be induced whereby with binary operations, either one or
both operands can be multi-dimensional .

Definition 3.11 (Induced Operations) Let Ty, T,, T, O T be types, D 09, oyr: T2 —» T, and
opin: T1 X To - T, functions to be induced, and my O [[T1,D]], mp O [[T2,D]], 1 O T, S O To.
Then the following induced operations are defined:

ounind:  [[T1,D]] - [[T,DI1], cun_ina( M) = marraypx( oun( M[X] ))
opin_ind:  [[TwD]] X [[T2,D]] - [[Tr.D]], ©bin_ina( My, My ) == marrayp x( M[X] opin Mp[X] )
ot ind:  [[T1,D]] x T — [[TDI], etett ind( My, S2) = marraypx( M[X] opin S2)

Oright ind: 11 x [[T2,D]] - [[TwDI], eright_ind( S1, Mp ):= marraypx( St obin Mp[X] ) 0

Common operations to be induced are the binary operations +, -, *, /, and, or, <, <, >, >, =,

#+ and the unary operations -, not. Atomic operations on composite types can be applied

element by element. Another unary operation which can be induced is the record selector

denoted by the dot operator ‘.". It can be used, e.g., to select the red plane of an RGB image.
Induced operations do not prescribe any sequence in which the cells have to be visited. This
property can be exploited for intra-MDD and also for inter-MDD operation optimization as
described in Section 4.3.1.4.

Note: Induction of scalar multiplication is different from matrix multiplication as it just
multiplies corresponding cells. Matrix multiplication can be expressed using the elementary
MDD operations as described in Example 3.3.

3.1.5.3 Aggregation Operations

The elementary condenser operation, defined in Section 3.1.3, is very difficult to be executed
efficiently because the functional needs, first, to evaluate a general expression for each point
of the spatial domain indicated and, second, to combine the expression results by a general
condensing operation. For many aggregation operations, it is sufficient to combine the
original cell values to a final scalar value according to a given condensing operation. Since
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this class of aggregations is of primary importance and evaluation can be optimized
considerably as shown in Chapter 4, a restricted aggregation operation, caled reduce
operation, isintroduced.

Definition 3.12 (Reduce Operation) The reduce operation takes three parameters, an
associative and commutative condensing operation o: Tx T — T with T 0 T being a type, a
gpatial domain D’ 00 D 0 & and an MDD value m O [[T,D]]. Then the operation is defined as
follows:

reduce p () = conde pr ,( M[X] ) 4

Compared to the elementary condenser cond, which gets two function parameters, the reduce
operation fixes the arbitrary cell expression thereby eliminating one function parameter.
Reduce remains a functiona accepting the condensing operation indicated by an operation
symbol. It iterates over a (sub)set of cells of an MDD item, combining all cell values through
the operation indicated. The reduce operation is used to further derive the following
commonly used aggregates, which are no functionals anymore:

Definition 3.13 (MDD Aggregates) Consider a multi-dimensional value m of type [[T,D]]
and let functions +, *, /, min, and max be defined on type T. Then following aggregates are
defined:

sum _cells(m) = reduce. p(m)

mult_cells(m) = reduce: p(m)

avg_cels(m) := reduce. p(m)/|D|

min_cells(m) = reducenin, o(m)

max_cells(m) =  reducemey, o(m) 0

Note: The result of avg_cells usually is of type float. Here it depends on the definition of the
division operation.

Another practically relevant operation is to count the number of cells satisfying a condition.
As the condition can be expressed using induced operations, we just need an operation
counting the true values of a boolean MDD leading to the following definition of count_cells:

Definition 3.14 (MDD Cell Counter) Given a boolean MDD b of type [[8B,D]], then the
operation count_cellsis defined as:

count_cells(b) := cond. px( if b[X] then 1 else O fi ) 0

It should be noted that count_cells can also be defined in terms of the reduce operation if we
assume operation + to be defined on boolean values.
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Of gpecia interest in the optimization process are the quantifiers some _cells and all_cells
which aggregate boolean MDD values into a scalar truth value. They can be defined in terms
of the reduce statement:

Definition 3.15 (MDD Quantifiers) Given a boolean MDD b of type [[8B,D]], then the
quantifiers are defined as:

some_cells(b) :
all_cells(b)

reduceyr, p(b)
reduceand, p(b) 0

Note: Due to the fact that the number of cells never is null, the usual quantifier definitions for
empty arguments known from relational quantifiers can be omitted.

Due to associativity and commutativity of o, the sequence in which cells are condensed is not
fixed and, further, it is possible to parallelize computation of subareas. It is up to the query
optimizer to choose the most efficient strategy depending on expression context and physical
storage parameters (see Section 4.3.1.4).

3.1.6 Multi-dimensional Expressions

By combining MDD operations with operations on scalar types (e.g., logical connectives and,
or, not, arithmetic operations +, -, *, /) complex expressions can be built. We call expressions
consisting of at least one multi-dimensional operation Multi-dimensional Expressions. In the
following, expressions are named together with the type of their result. For instance, a multi-
dimensional boolean expression evaluates to a boolean value and carries at least one MDD
operation.

Example 3.4 We consider an example for a multi-dimensional integer expression from the
medical area (cf. Section 1.2). Let ct_cube O [[ No, [1:512, 1:512, 1:512] ]] be a volume
computer tomogram (CT) scan and hypothalamus_mask [ [[ B, [1:512, 1:512, 1:512] ]] be a
binary mask carrying ‘1’ in the hypothalamus area and ‘O’ otherwise; themmtiie-
dimensional integer expression

count_cells( (ct_cube >t ing 127 )andyin ing hypothalamus_mask )

determines the number of intensity values in the hypothalamus area exceeding the threshold
value of 127.

Notes:

1. The notation of induced operations can be simplified by overloading the particular scalar
operation symbol. The algebra keeps up the more detailed notation to point out the
difference of scalar and multi-dimensional operations in terms of computation costs.
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However, the Raster Data Query Language described in Section 6.2.2 makes use of this
simplification.

2. Multi-dimensional expressions are evaluated for each tuple of arelation. Asthey are very
expensive compared to, for instance, attribute comparison predicates in the relational
model, optimization is of primary importance. Multi-dimensional expressions may even
occur as cell expressions which means that they are evaluated for each cell of an MDD
(see Section 3.1.3 on elementary MDD operations).

3.2 Physical MDD M odel

The potentialy huge size of MDD values demands specialized physical storage structures for
their efficient access. In order to minimize the number of pages read when an operation is
executed on an MDD or part of it and to preserve a better spatial proximity, tiling (also called
chunking), which is the subdivision of the data into multi-
dimensional rectangular tiles, has been suggested by several
authors [Fur93, Sar94]. As a basis for the following
optimization discussions, and in particular for the tile-based
execution strategy of Section 4.4.1, we assume a
subdivision of d-dimensiona arrays into arbitrary d-
dimensional, possibly nonaligned rectangular tiles. An
example for a valid 2-dimensional tiling layout is given in
Figure 2. More formally, we define a general tiling layout as
following:

Figure2 Arbitrary Tiling

Definition 3.16 (Tiling Layout) For a given d-dimensional spatial domain D&, a set of n
spatial domains Kp = { Dy,...,Dn } with nON and D;03" defines a valid tiling layout for spatial
domain D if the following conditions hold:

1. |Jb, =D

i=1

2. D,nD; =0 fori,jO{L..n}, i#]

The set of admissible tiling layouts for spatial domain D is denoted by kp and the set of all
possible tiling layouts which is also called the tiling layout type is indicated by K. 0

As tiles are the unit of storage and access, disk pages belonging to one tile can be clustered
and hence reading tiles can profit from sequential disk access. In order to exploit this effect
significantly, the number of disk pages occupied by one tile should be at least in the scale of
16 (e.g., corresponds to tiles of 64 kB with a page size of 4 kB [Fur99]).
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One can think of different tiling strategies able to tune different types of retrieval. For
instance, the work reported in [Fur99] examines the following strategies: directional tiling
which optimizes accesses along given dimension partitionings, tiling according to areas of
interest which optimizes access to a given set of query regions, and statistical tiling which
optimizes access given the statistics of accessto an MDD object.

As aspecial case of arbitrary tiling, we frequently use a regular tiling layout, i.e., al tiles are
of the same shape and size except of border tiles which adapt to the original spatial domain.
Regular tiling can be specified by providing starting point and tile length in cells for each
dimension; we usually use the notation regular[l;:hy, ..., lg:hg] with I;, hON. |; fixes the
starting point in dimension i and hj-l;+1 denotes the tile length in dimensioni.

Due to the fact that tiles are rectangular and non-overlapping, fast coordinate-based access to
tiles can easily be supported by a specialized spatial access method [Fur98].

Note: Although it is not relevant for this work, it should be noted that rectangular tiling may
be inefficient for sparse data. One can think of two solutions to this problem:

— Tiles are stored in a different format (e.g., as a set of points in relations) or they are
compressed. It would be desirable to use a compression technique supporting basic
operations without really decompressing (cf. chunk-offset compression described in
[Zha98]).

— Tiles use arbitrary shapes adapting to sparsely populated (sub-) domains while preserving
gpatial proximity. Besides the traditional approach of using, e.g., an R tree for indexing
arbitrary spatial regions, it seems to be very promising to use the UB tree technique
described in [Bay97].

It should be remarked that tiling may be either fixed for complete rows of MDD attributes, or
it may depend on the arrays content and, therefore, be different for each MDD value. This fact
is described in more detail in the following section.

3.3 Extended Relational M odel

In order to examine MDD specific optimization techniques in combination with set based
guery processing, the MDD Model isintegrated into an adapted Relational Model.

The attribute domain of multi-dimensional values can be specified on four different levels.
The more restrictive the specification is given, the more knowledge about the data structure is
available to the optimizer and the more specific and, potentially, the more efficient evaluation
plans can be generated. Table 5 lists the four attribute domain specification levels supported
together with their properties. At al levels, at least the base type (1) of the attribute has to be
specified which isimportant to be able to perform any kind of operation. Level 2 additionally
restricts the MDD values of one column to have a fixed number of dimensions (N) whereas
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level 3 fixes their spatial domain (0). As a violation of the principle to hide physical
representations, on level 4, the tiling layout (k) is specified for the whole column. The
provision of tiling information on schema level can be compared with the specification of
indexesin RDBMSs.

No Attribute Type Base Type | Spatial Domain Tiling Example
Constructor L ayout

1 |[[T]] fixed variable variable |[[Ng]]
2 [[[t,N]] fixed dimensionality variable |[[No, 2]]
fixed
3 [[[t,9]] fixed fixed variable |[[Ny, [1:640,1:480] ]]
4 ([[1,0K]] fixed fixed fixed [[No, [1:640,1:480],
aligned[0:99,0:99] 1]

Table5 Specification Levelsfor Multi-Dimensiona Attribute Domains

The examples of Table 5 specify images of size 640x480 over unsigned integer numbers
subdivided into regular, aligned tiles of size 100x100. The tiles at the right border are cut to
0:39 and at the bottom to 0:79. A comprehensive description of different tiling layouts k and
their performance implications can be found in [Fur98]. One could think of other
combinations for specifying MDD properties (e.g., [[T,N,k]]) but they did not turn out to be
of practical relevance so far.

Now we are ready to define relations which are able to carry multi-dimensional attributes. As
abasisfor our notation, we take the original one described in [Cod70]:

Definition 3.17 (MDD Relations) Let D;[1d be spatial domains, T;(Jt be types, di[ON be
unsigned integers, and Kk be tiling layout specifications. Further, let A; be attributes with
their domains being either multi-dimensional (with a certain specification level) or scaar, i.e.,
dom(A) O { [[Ti], [[Ti,d1, [[Ti,Dill, [[Ti,Di,Kill, Ti }. Then the relational schema R(Ay,...,An)
isdefined as

R(Aq,...,An) = dom(A;) % ... x dom(Ay)

An instance of schema R(A,...,An), denoted by R, is afinite subset of the schema:

RO RAL,...An) 0
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Three relational operations are provided: the usual selection (o) supporting multi-dimensional
boolean expressions as selection conditions; the cross product (x) instead of the usual join
because MDD values do not appear as join attributes and for our investigations just MDD
values are of interest (see Chapter 1 for a more detailed discussion on this); and, as a
generalized projection operation, the so called application (a) which is able to apply general
multi-dimensional expressions to the elements of each tuple of arelation.

Definition 3.18 (Relational Operations) Let R [0 R(Ay,...,A) and S §Ba,...,Bs) be relations,
cond: R(A,...,.A) - B and opi: R(Ay,....A) - v; for i=1...s and vi(} [[T;,Di]], Ti} being
(multi-dimensional) expressions with cond resulting in a boolean value and op; delivering
either a multi-dimensional or a scalar value. Then the operations semantics is defined as
following:

Ocond(R) = {t|tUR, cond(t) }
x(R,S = {t|t=(uy...,U, V1,....Vs), (Ug,...,Ur )OR, (vy,..., Vs )OS}
Gopy..op(R) = {t]t=(0ps(u),...ops(u) ), uOR} 0

Operations o and x describe usual selection and cross product respectively. The application
operation a applies (multi-dimensional) expressions op; to each tuple and fills the result
relation with tuples where the i-th element contains the expression result. We just want to
mention that, by using an identity operation id:v; X..xVv; X..Xv, - V; with
vill{ [[Ti,Di]], Ti} which passes through its i-th operand, usual projection selecting the
ordered attributes A1,....Aqm of relation R can be expressed using the new application
operation as follows:

The operations are closed in the sense that their results are again relations of MDD tuples.

Summarizing, it isimportant to record that attribute domains for multi-dimensional values can
be specified on different restriction levels. Further multi-dimensional expressions, as
introduced in Section 3.1.6, may occur as boolean multi-dimensional expressions in the
condition of a selection operation and as general multi-dimensional expressions in the
operations of the newly introduced application operation.

Example 3.5 This example demonstrates atypical application of multi-dimensiona arraysin
the medical area (cf. Section 1.2). It is based on the following relation schemes:

MRI( cube, id) with dom(cube) = [[ No,[1:512, 1:512, 1:512] ]],
dom(id) No
ROI( mask ) with  dom( mask) = [[ B, [190:310, 20:100] ]]
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Relation MRI consists of the multi-
dimensiona  attribute cube holding
Magnetic Resonance Imaging cubes and

the scalar attribute id carrying their
corresponding integer identifiers. The 1
multi-dimensional  attribute of relation

ROI (Regions Of Interest), named mask,
defines 2-dimensional regions using
binary masks. The following query || ki
delivers subimages of sections in the xy-
plane at position 300 of the MRI cubes
which have in at least one region of
interest an intensity value exceeding 127. result area mask area
The query uses the attribute names to

identify tuple elements of the cross Figure 3 Examplesfor
product. Collections MRI and ROI

MRI ROI

100 190 310 x
20

00 &

20( |

X

O trimming;1.100, 1:200]( Sectiong gop(cube) ) (

Gsome_cell( trimming; 106,310, 20:100)( S510N3 300 (cUbe 1t in 127)) ancp g mask)( MRI X ROI')

)

The selection expression of g, first, compares each cell of cube with the threshold value 127
resulting in a boolean MDD and cuts out a 2-dimensional subarea matching the spatial
domain of mask and, second, performs a conjunctive induced operation combining the result
with mask values before condensing the boolean MDD with some cells to a scalar boolean
value used for selection decision. Finaly, the application carries out the section to 2-
dimensional slices followed by a trimming operation cutting out top left subimages of size
100x%200 which defines the result area.

Figure 4 presents the corresponding operator graph. The spatial domains attached to multi-
dimensional variables denote their so called load domain which identifies the data area |oaded
from the storage system. Already at first glance, one can imagine its optimization potential.
Algebraic optimizations, such as pushing down section and trimming operations, moving
multi-dimensional (sub-) expressions of the application operation into the cross product, and
exploitation of common subexpressions comprise just a few of them. Comprehensive
optimization techniques of such queries as well as advanced execution strategies are discussed
in the next chapter.
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a “__[ trimming;1:100,1:200) ]“‘[ Sections s ]“‘[ Cubg 1512, 1:512, 1:512] ]
A

- ~
—

[trimning[igmsm,zozlom] [ MasK(100:310, 20:100] ]

|
[ secti 0Nz 300 ]
X A

>left_ind

=T e

—

| MRI(cube) | | ROI(mask) | [%9[1:512, 1512, 1:512]] ( 127 )

Figure 4 Operator Graph for Example Query
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Chapter 4
Array Query Processing

Next, we present an operator-based graph for query representation and define the terms
Relational Data Area, Scalar Data Area, and Dimensional Data Area which play a central
rolein array query processing. Taking into account the conventional differentiation of various
phases in query processing [Jar84], we identify the phases rewriting, transformation, and
execution. Each of the three phases and its peculiarities concerning array query processing are
described in the subsequent sections.

4.1 Query Tree

This section gives a description of the operator-based query tree which will be used to
represent our algebraic queries. This notation will be used frequently in order to visualize the
structure of queries, to define partitions of the query representation used in the optimization
algorithms, to be able to use algorithms based on graph theory, and, finally, as a framework
for the evaluation algorithm.

The query tree of an arbitrary array query consists of set trees and element trees as subtrees.
Set trees incorporate relational operations (see Section 3.3) asinner nodes and MDD relations
as leafs, whereas element trees consist of MDD operations (see Section 3.1) and logical
operations as nodes and MDD iterators and constants as leafs. Element trees connected to the
application node represent MDD expressions, they are called operation trees. Element trees
attached to selection nodes represents multi-dimensional boolean expressions, they are named
condition trees.

The Raster Data Query Language (RasQL) of the RasDaMan Array DBMS, which is defined
in Section 6.2.2, follows the select-from-where paradigm of SQL [ISO92] with the restriction
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that it does not support nested select-from-where statements. As a consequence, query trees
representing RasML queries only consist of one set tree. As an example, Figure 4 shows the
initial tree schema built from a RasML multiple target array query on relations §; to S, with
targets op; to opm, and selection predicate cond.

At execution time, the query tree generally is much more complicated, as preceding
transformations are adding nodes.

From an execution point of view, edges |
between operation nodes can be interpreted I:ﬂ :
as dataflow edges. Depending on the type of i
the data transported, edges are divided into i

relational data edges carrying relations, |:0
dimensional data edges carrying multi- 1
dimensional data (arrays), and scalar data

X

o\ / opm

edges carrying non-dimensional or scalar
values. According to this classification, one
can identify maximal subgraphs containing
only one sort of edges, called relational data
areas (RDAs), dimensional data areas Figure5 Initial Query Tre
(DDAS) and scalar data areas (SDAS).

]
set I: element
tree ! trees

As the described partitioning of the query graph is of specia interest for several optimization
algorithms, a more formal definition of relational, dimensional, and scalar data areas is given
in the following:

Definition 4.1 (Query Tree) Given a set of nodes V representing operators and a set of edges
E O V2 depicting directed dataflow edges between the operators, the query tree Gy is defined
by

Gq=(V,E) O

Definition 4.2 (Edge Type) Let k be an edge of set E. Function edge type: E - { rd, sd, dd }

is defined as
(rd if k carriesrelations

edge_type(k) = Esd if k carriessinglescaar values
Ebd if k carriessinglemulti - dimensiona values 0

Note: The edge type can be derived from the concerned nodes’ signatures. Relational data
edges 1(d) differ from scalar datas) and dimensional datad) edges in the sense that they
carry tuples of scalar and multi-dimensional attributes whesctanddd edges carry single
attributes.
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Definition 4.3 (Connection Relation) Let ky = (Va,Wa) and ky = (VW) be edges of set E with
nodes V,, V, being the sources and w,, W, being the destinations of the dataflow. Then the
connection relation ~ is defined by

ka ~ ko = edge_type(ks) = edge_type(kp) [ ( Va = Vo OVa =Wy OWa = Vp OwWa =Wy ) 0

Definition 4.4 (Area Relation) Let k, and k, be edges of set E. Then the area relation + is
defined by
Ko+ ko = Ka~ ko O( 3Ky, ..., kn OEWithky ~ kg ~...~ Ky ~ ky) O

Theorem 4.1 Arearelation + isan equivalence relation. 0
Proof: The proof is omitted because the properties of an equivalence relation are obvious.

Corollary 4.1 Let E/- O P(E) (with P denoting the power set) be the set of equivalence
classes of relation +. Then E/.. isapartition P of E with

(1) none of the sets of P isempty,
(2) any two setsof P aredigoint,
(3) each element of E isincluded in exactly one set of P. 0

Proof: Thisfollows directly from the properties of an equivalence relation.

In other words, one can say that the query tree is partitioned by changes of function
edge_type().

Definition 4.5 (Data Areas) Consider a query tree Gy = (E,V) with edge partition P =E/-.
Then the Relational Data Areas (RDAS), Scalar Data Areas (SDAS), and Dimensional Data
Areas (DDAS) are defined as

RDAs ={ S|SOPOOkOS: edge type(k) =rd}
SDAs ={ S|SOPUOOKOS: edge type(k) =sd}
DDAs :={ S|SOPOOkOS: edge type(k) = dd } 0

Example 4.1 Figure 5 gives an example for an element tree divided into DDAs (marked by
dark gray areas) and SDAs (marked by light gray areas). The graphical notation used for
visualizing query treesis described in Appendix A.
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It has to be remarked that the transition from a DDA to
an SDA is performed by the condense operation or any
derived aggregation operation whereas the one from an
SDA to a DDA stems from the marray constructor or >

. . . [ count_cells] [ m, ]
any derived induced operation. At the leafs, a scalar 'y
constant and .va_rlable. respectively start§ an SDA,
whereas a multi-dimensional constant or variable starts a >
DDA. Cm ] C 2 )
DDAs are of specia interest for the description of Figure6 Dimensiona and
rewriting heuristics (described in Section 4.2.2) as well Scalar Data Areas

asfor tile-based execution (described in Section 4.4.1).

4.2 Rewriting

In the rewriting phase, algebraic transformations which preserve semantic equivalence take
place. The goals of algebraic transformations are threefold: (1) the achievement of a
standardized query form, (2) elimination of redundancy and evaluation of constant
subexpressions, and (3) the construction of optimized expressions with respect to evaluation
performance and memory usage.

In the following, we first derive equivalence preserving transformation rules from the data
model introduced. Employing a subset of the transformation rules, some kind of standardized
starting point for query optimization is obtained, which is explained in the subsequent section.
Next, some rewriting heuristics used to optimize the algebraic query expression are presented.
Finally, exploitation of common subexpressions and its peculiarities concerning multi-
dimensional values are discussed.

4.2.1 Algebraic Transformation Rules

In this subsection, we present equivalence preserving transformation rules. It will turn out that
their application in the rewriting phase only makes sense in one direction. Therefore, they are
described in the form Ihs - rhs. Used as rewriting rule, the Ihs of an equivalence is rewritten
to its rhs. Some of the rules are expected to optimize the query in terms of evaluation time
and memory usage. This class of rulesis called optimization rules. The reverse application of
an optimization rule is contra-productive. It has to be remarked that the main effort is spent on
eliminating operations on multi-dimensional values as this turned out to be the primary bottle-
neck. All of the rules are standardization rules in the sense that they are used in order to
achieve a standardized query form. The application of rules leading to a standardized form is
described in Section 4.2.2.
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The discussion of transformation rules is divided into four parts, namely our MDD operation
categories geometric, induced, and aggregation operations, and relational operations. The
following discussion just presents the optimization rules (numbered with ORn); a complete
list of transformation rulesis given in Appendix B.

4.2.1.1 Geometric Operations

Geometric operations reduce the data set of an MDD by cutting out d-dimensional subcubes.
In order to optimize disk 1/0O and computation time of operations, the am is to perform
geometric operations as early as possible (cf. Section 4.2.2 about optimization heuristics). For
this purpose, geometric operations can be pushed into every operation delivering a multi-
dimensional result, i.e., marray constructor and its derived induced operations.

Let D, D’ [Jd be spatial domains with D’ O D, iONy, and v[IZ, then the transformation rules
look like

trimmingy ( marraypx(&)) — marrayp x( &) (OR1)
section;( marraypx( €&)) - marraysiicen,ivx( € ) (OR2)

Proofs for these rules can simply be done by substituting the operation definitions. As an
example we will provide the proof for rule ORL:

Proof (OR1)
trimmingp ( marrayp,x( &) )
marrayp y( marrayp,«( e[yl )
marrayp y( { (X, &) | XUD }[y] )
marray y( &) =
marrayp x( &) g.ed.

(Definition 3.9 Trimming)
(Definition 3.4 MDD Value)
(Definition 3.6 Cell Access and y[1D’ [1D)

Combining rules OR1 and OR2 with induced operations, we can derive 4 generic rules for
pushing geometric into induced operations. With e,[0T;, e[0T, being scalar expressions and
e J[[T1, D]], & O[[T2, D]] being MDD expressions, D’ 13 a spatial domain with D’ [0 D, and
o: T1xT,— T, an operation to be induced, the rules |ook as follows:

trimming( ounina(€1)) -  cunina( timmings(ey) ) (OR3)
trimmings( €1 ©pin ind €2) —  tiMMINg( €1) ©pin ina timMmings( &) (OR4)
trimming( €1 Clet ind € ) —  trimmingb( 1) ©jeft ind €2 (OR5)
trimmingy( e Oright_ind €2 ) > € Cright_ind trimming( &) (ORG)
sectiony( oun_ind( €1) ) —~  oyn ind( SECtiON( €1) ) (OR7)
sectiony( €1 opin ind€) — Sectiony( €1) opin ind SECtiON( &) (ORS)
section( €1 ot ind€) — SECtion(e1) ot ind € (OR9)

sectiony( 1 orign ind &) — €1 Oright_ind SECtiONY( &) (OR10)
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These rules can be proven analogously to the proof of OR1. Rules OR3 to OR10 are generic
in the sense that they can be instantiated for each induced operation supported. For the unary
operations -, not we get the rule instantiations OR3.1, OR3.2 and OR7.1, OR7.2. For the

binary operations +, -, *, /, and, or, <, <, >, >,

, # we get instantiations OR4.1 to OR4.12,

OR5.1 to OR5.12, OR6.1 to OR6.12, OR8.1 to OR8.12, OR9.1 to OR9.12, and OR10.1 to

OR10.12. They are listed in Appendix B.

We call the procedure of pushing down geometric operations to multi-dimensional sources
(MDD variables, constants, or marray constructors) within multi-dimensional expressions
load optimization (see also Section 4.2.3 on geometric optimization). At the end of this
process, MDD constants are cut out, the spatial domain of marray constructors is adapted, and
MDD variables are augmented with their so called load domains (attached to MDD variable
nodes as subscript) which is the smallest spatial domain sufficient for evaluating the whole

expression.

The geometric operations trimming and section are also commutable in the sense that they can
be exchanged with each other (by adapting their parameters). Nevertheless this property is not

exploited by our optimization techniques.

l a I“____[ trimmngA[l:loo,l:ZOO] ]
A

[ secti 0Nz 300 ]

A
|

[ Cu:bql:512, 1:512, 1:512] ]

ceIIs

maSk[190:31o, 20:100] ]

[tri mmi ng[igo:310,20:100]] [

|
[ secti 0Nz 300 ]

~
-~

[ Cu:bql:512, 1:512, 1:512] ]

|:X
t

| MRI(cube) | | ROI(mask) |

I a |<-————[ trimn‘ingA[l;loo,Lzom ]

A
|

[ secti 0N3 300 ]

A
|

[ Cu:bql:512, 1:512, 1:512] ]

ceIIs

ma5k{190:310, 20:100] ]

>left_ind

[tl’i mmi ng[190:31o,2o:1oo]] [
-

~

~

—
//

[ secti 0N3 300 ]

A
|

[ Cu:bql:512, 1:512, 1:512] ]

127

X
A

| MRI(cube) | [ ROI(mask) |

Figure 7 Load Optimization I: Move Down Geometric Operations



Array Query Processing 41

Example 4.2 Figure 7 and Figure 8 demonstrate |oad optimization of the query introduced in
Example 3.5. Figure 7 | moves down the section operation by applying rule OR9. Then rule
ORS5 switches trimming and induced operations which is demonstrated in Figure 7 1.

After section and trimming operations have been moved down the tree to variable cube, the
load domains of cube (written as subscripts) can be merged with section and trimming
operations one after the other. Thisis shown in Figure 8.

| |_T_|<-——- —[ tl’imﬂingA[l:loo,l:ZOO] ] .
A

|
[ Sectiong s ] o
A

———{ cubg1:100, 120,309 )

................................

N

G

|
[ cubg 1512, 1512, 1512] ]

~
— ~

[ >Ieft_ind‘ ] [ MasK(100:310, 20:100] ]

[%190:310, 20:100, 300]]

// \\

[ it ind ] [ MasK[100:310, 20:100] ] | X
A i

........... _ A

[tl‘i mmi ng[190:310,20:100]]
A

i)

A
|

[ %1:512, 1:512, 1:512] ]

| MRI(cube) | | ROI(masK) |

X
A

| MRI(cube) | | ROI(mask) |

Figure 8 Load Optimization II: Merge Geometric Operations with Access Nodes

When data is accessed at execution time, the load domain is passed to the storage system in
order to read the minimal amount of data, which is absolutely needed for computation of the
final result, from secondary storage keeping disk I/O at a minimum. This technique is similar
to accessing data from the storage system in RDBMSs taking into account simple selection
predicates described, e.g., in [Sel79]. Further, the load domain is used for the detection of
common subexpressions (see Section 4.2.2).

It should be remarked that the query can be further optimized by moving the subexpression
cubey190:310, 20:100, 300] >leit ind 127 into the cross product operation. This is demonstrated in
Example 4.3.
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4.2.1.2 Induced Operations

Rules for optimizing induced operations can be derived from mathematical laws of the cell
operations.

Theorem 4.2 (Associativity of Induction) Consider a scalar associative operation o: TXT - T,
then the corresponding induced operations opin ind, ©leit ind, @A ©right ind, @S defined in
Definition 3.11, are associative as well. O

Proofs for the induction of associativity, commutativity, distributivity, idempotency, double
negation, and De Morgan’s rules can be obtained by inserting the induction definition into the
respective rule. As an example, we provide the proof for binary induction of Theorem 4.2.

Proof (Associativity of Binary Induction) Leto: TXT- T be an associative operation with
TOT, opining: [T, DI x [T, D]] - [[T, D]] the corresponding binary induced operation with
DOd, andmy, mp, ms O [[ T, D]]. Then the following holds:

My ©pin_ind (M ©pin_ind Mg ) = (Definition 3.11 Induced Operations)
marrayp,x( m[X] o marrayp,,( mp[y] o mg[y] )[X] ) = (Definition 3.6 Cell Access)
marrayp,x( Mu[x] o (Mp[y] o mely] ) ) = (Associativity of o)
marrayp,«( (Mm[x] o nply] ) o myfy]) = (Definition 3.6 Cell Access)
marrayp,x( marrayp,y( mi[y] o mp[y] )[X]  mg[y] ) = (Definition 3.11 Induced Operations)
( My ©pin_ind My ) ©pin_ind M8 g.e.d.

Exploitation of associativity of induced operations like*, /, and, or leads to two optimizing
rules each. Given a scalar associative operati@xT - T with its induced operations defined
according to Section 3.1.5.2 and wathe,(JT andel[[ T, D]], the generic rules can be written
as

(€ eft ind €1 ) ©leit ind €2 - €eoind (€10 &) (OR11)
€1 orightind (€2 ©right ind€) — (€1 °€) oright ind € (OR12)

Obviously, both rules reduce computation effort significantly as one multi-dimensional
operation ¢ert ind @and oyignt indg) Can be substituted by a scalar operation The potential
speed-up for this kind of optimizations is demonstrated in Section 7.2.3.

Using rule templates OR11 and OR12, we can instantiate rules OR11.1 to OR11.7 and
OR12.1 to OR12.7 for the associative operations supported (+arfd,/or, =, #). They are
listed in detail in Appendix B.

It should be noted that, due to the limited float precision and the restricted integer domain of
machine representations, general associativity can never be guaranteed. Therefore, practical
application of associativity rules always has to be decided considering overflows and
computation precision.
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Further optimizing rules are derived from distributivity of two operations used for induction.

Theorem 4.3 (Distributivity of Induction) Consider apair of scalar operations o1, op: TXT - T
obeying distributivity ( s; 02 S3) ©1 (2 02 S3) = (81 °1 ) °2 S3 with SOT. Then the
corresponding induced Operations o1, ing, ©vieft ind» ©right ind AN ©26in inds ©2eft ind ©2right ind &S
defined in Definition 3.11, are distributive as well. O

With the operands pi, p2, ps O { T, [[T, D]] } being either scalar or MDD expressions, and
(e1,02) O{ (+, *), (or, and), (and, or) } being, according to their operands, either scalar or
multi-dimensional operations, 24 rules of the following structure can be set up:

(Proz2ps)e1(pP2o2pP3) -  (Pro1pz2) °2Ps (OR13)

In 15 of the 24 cases, reduction of computation effort is significant because not just a scalar
but an expensive multi-dimensional operation can be eliminated. We enumerate these rules
with OR13.1 to OR13.24.

Analogously, the rules of De Morgan can be induced and used for obtaining optimizing rules.

Theorem 4.4 (Induction of De Morgan’s Law Consider a pair of scalar operations oy, o»:
TxT T fulfilling De Morgan’s Lawnot(s; ) o1 not(s;) = not(s; o2 S, ) with sUT. Then the
corresponding induced operationg;, i, © e inds °right ind ANA°24in inds ©2ieft inds ©2right ind» &S
defined in Definition 3.11, are following De Morgan’s law as well. 0

With the operandsps, p2l{ T,[[T,D]] } and the operation pairsos(oo)l}{ (and,or),
(or,and) } being, according to their operands, either scalar or multi-dimensional operations,
the application of De Morgan’s rules delivers 8 optimizing rules of the following form:

NOting( P1) ©1 NOting(P2) —  NOtind( P1 °2 P2 ) (OR14)
The rule instantiations are enumerated with OR14.1 to OR14.8.

At this place, we omit 26 rather trivial optimization rules based on induction idempotency
(OR15.* to OR24.*) as well as on double negation (OR25.1 and OR25.2) and refer to
Appendix B for the comprehensive list.

4.2.1.3 Aggregation Operations

The category of aggregation operations leads to optimizing rules in combination with induced
operations. Wittpy, pol{ B, [[T, D]] }, bO[[B, D]], the quantifierssome _cells andall_cells

as defined in Section 3.1, and the operatmnandand being, according to their operands,
either scalar or multi-dimensional operations, the following rules are of special interest:

some cels(piorpz) -  some cels(py)or some cells( pz) (OR26)
all_cels(piandp;) - all_cels(p;)andall_cels(pz) (OR27)
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The rules hold for the assumption that for a scalar boolean value b[1B, the quantifiers are
defined as some_cells(b) := band all_cells(b) := b.

Rule OR26 pulls out disjunctions while condensing using logical or. This eliminates a multi-
dimensional operation and, additionaly, leads to a potentialy shorter execution time as the

scalar digunction or can terminate the evaluation of the expression for such occasions where

the first operand delivers true (‘lazy evaluation’). Analogously, rule OR27 saves time when
the first operand deliverfalse. Additionally, both rules are an important preparation for
pushing down selection and application operations as it is described in Section 4.2.1.4.
Instantiation of the rule templates leads to rules OR26.1-OR26.4 and OR27.1-OR27.4.

some cells(b)or all_cells(b) - some cdls(b) (OR28)
some cells(b)andall_cells(b) - all_cdls(b) (OR29)
some_cells( noting( b)) - not(all_cels(b)) (OR30)
all_cells( noting(b)) - not(some cells(b)) (OR31)

Rules OR28 and OR29 save an expensive aggregation whereas rules OR30 and OR31
substitute the inducetbt operation by a less expensive scalar one.

Proofs for rules OR26 to OR31 can be given by substituting the operation definitions
analogously to the proof of rule OR1.

CPU time needed to compute the reduce operation is in the scale of unary induced operations.
Performance measurements and especially the time saved by the elimination of a quantifier
operation can be found in Section 7.2.2.

4.2.1.4 Extended Relational Operations

Conventional heuristic optimization rules for relational operators (e.g., described in [Jar84]
and [UIIB9]) can be adapted to our relational model accordingly. For instance, consider
pushing selections into the cross product. A simplified rule VRth R(A4,...A) and

SO YBy,...Bs) being relations of MDD tuplegondg: R(Ay,...A) - B andconds: S(By,...Bs)

- B being multi-dimensional boolean expressions depending on just rdRaéiodS, resp.,

looks like

Ocondgand cond{ RX S) = Ocondg( R) X Oconag( S) (OR32)

Its performance impact is potentially intensified compared to the conventional case because
evaluation of the multi-dimensional expressicaosdg andconds by far dominates the overall
response time (see Section 7.2.2).

Remark: The technique of dividing predicates into sub-predicates which have a minimal set
of input relations (e.ggondgs = condg and condg), that is each input relation consists of at
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least one attribute used in the predicate, is called predicate splitting and described, e.g., in
[ulna9.

Rules concerning the generalized projection operation can be derived anaogoudly.
Comparable to the rule of pushing relational projections into joins, rules for moving the
corresponding application operation into the cross product can be set up. In the following, we

present three rules with their preconditions concerning the application’s operations getting
less restrictive but, at the same time, the rules becoming more complicated. The first rule is
able to move whole application operations into the cross product; the second one just moves
individual multi-dimensional expressions into the cross product; and the third one may move
multi-dimensional subexpressions into the cross product. It should be remarked that the first
two rules are specializations of the third one. Nevertheless, they are useful because their
application is rather simple compared to the third rule.

M ovement of application a into the cross product x

Let RO R(A,...A) andS[ §By,...Bs) be relations of MDD tuples. In case the application’s
operationsop; with i=1...n just depend on relatid® which means that multi-dimensional
expressionp; are of typeR(A4,...A) - vi with vill{ [[T;,Di]], Ti} being either scalar or
multi-dimensional result types, the optimization rule is simply written as

Oop,...op,( RXS) - Qid, ..., id( Qopy... op,( R) X S) (OR33)

...............

A similar rule can be set up for the case that expressignsist depend on relatioB See
rule OR34 in Appendix B.

Movement of individual expressions of application a into the cross product x

If the application operation consists of expressions depending just on refatamd S
respectively as well as on expressions depending on both relations, the optimization rule for
moving individual expressions into the cross product gets more complicated:

Let Igr andls be the sets of indices of MDD expressiopsjust depending on relatidRandS
respectively. Then the expressions’ signatures~br..n, look like

opi: R(AL...A) - Vi fori Olg
opi: YBay,...,By) - Vi fori Ols
opi: R(AL...A) X YBy,...,.B) - Vi otherwise

Now operation®p; with illlr can be moved to input stred®mnd operationsp; with illls to
input streans of the cross product. Witt(lg, i) andc(ls, i) delivering the-th index element
of setlg andls, respectively, sorted in any order, the optimization rule can be written as

.....



46 Chapter 4

Identity operations id; pass the original attributes of R and S because they might be needed by
MDD expressions not just depending on attributes of relations R or S (op; with ilIr O 1g).
After the cross product is computed, the operations op’,..., 0p’p, are responsible for passing
the precomputed expression results to the right positions and for computing the remaining
expressions.

With glldom(A), bi0don(By), tilveqp, for i=1...|Ig| and uilvgg) for i=1...|ld|, operations op'i:
VC(IR’ 1) X . X VC(IR’“RD X R(A]_,..., Ar) X VC('S )X . X% VC('S“SD X S(Bl,..., Bs) - Vj dae defined as

E idc_l(lR‘i) for 101
op), (tl,...,t‘lR‘,al,...,ar,ul,...,u‘ls‘,bl,...,bs) = [ id\IR\+r+c'l(IS,i) for iOlg
Hp (a,,..a ,b,,...b,) for 101,01

Movement of individual subexpressions of application a into the cross product x

In the following, we assume that not complete multi-dimensional expressions of the
application operation depend on single inputs of the cross product but at least subexpressions
fulfill this condition. This means that operations op: R(Ay,...,.A)) X YBa,..., B) - w3 may be
decomposed into operations opr;i: R(Ay,...,A) — Wi with j=1...nr; and ops;: §Bx,...,.Bs) — Vi
with k=1...ns depending just on attributes of relation R and S respectively. nr; and ns denote
the number of isolated subexpressions of operation i depending just on R and S respectively
and W O{ [[T;;,D1], Tii ¥ vii O{ [[Twi:Dwill, Tei }, o O{ [[Ti,Di]], Ti } represent either
scalar or multi-dimensional types. Further, we assume functions opf: [y X ... X Hnr,i X
R(AL,--,A) X V1 X ... X Uns i X YBy,...,Bs) — wy being able to combine the results of functions
opr;;i and op; to the original functions op.

With a;0dom(A) and b;ddom(B;) the decompositions of op can be described as following:

Op( ai,...,ar, bl,...,bs) =
OPR( OPI (A1), 0Pl (By-,84), Ay, OPSLi(Day-r 05, 0P (D05, B, bs)

Besides the results of functions opr; and ops the origina attributes are passed to the
combining functions opf in order to be able to compute the final results. The final
optimization ruleis written as

Ulopsy ... OPgs) 1):-+(0PS] fy---OPhg, hid idg( S)) (OR36)

After the cross product of expressions depending just on R and S respectively are computed,
operations op’; ensure correct invocations of opf in order to compute the final results. With
t;i0M i, UkiOvy for j=1...nr;, k=1...ns, and i=1...n, they are defined as
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Op,l( (tl,li---i tnrl,l),---, (tl,nl"'l tnrn,n), ali---!aﬁ (ul,ly---! Unsl,l);---; (ul,nl"'l Unsn,n), bl;---;br) =
Opfl( tl,il"'l tnri,i, all"'la'r! ul,i!---! Unsi,i, blv--;bs-)

Determination of functions opr;; and ops; is performed using the element trees of the query
tree. Starting at the leafs, expressions are smply extended until the subtrees depend on more
than one input stream of the cross product.

The speed-up of the optimized plan directly depends on the evaluation costs of expressions
oprj; and ops,; and on the ratios of the cross product cardinality to the input stream
cardinalities because each subexpression moved into the cross product just has to be evaluated
for each tuple of the input stream and not for each element of the cross product anymore.
Detailed examinations on the speed-up can be found in Section 7.2.4.

Movement of individual subexpressions of selection o into the cross product x

Movement of subexpressions into the cross product makes sense for boolean multi-
dimensional expressions of selection operations as well.

Again, we assume selection condition cond R(Ay,...,A) X SBy,...,Bs) - B being
decomposable into subexpressions opf;: R(Ay,...,Ar) — W with j=1...nr and ops: B;,...,.Bs) -
vk with k=1...ns depending just on attributes of relation R and Srespectively. nr and ns denote
the number of isolated subexpressions depending just on R and S respectively and
wO{ [[Ti.D1], Tj }, w{ [[Te.Di]], T} represent either scalar or multi-dimensional types.
Further we assume functions opf. p X ... X por X R(Ag,...,AY) XV1 X ... X Vs X §By,...,Bs) - B
being able to combine the results of functions opr; and ops to the origina condition cond
With a0dom(A) and b;ddom(B;) the decomposition of condcan be described as

cond ay,...,a, b,...,bs) =
opf( opri(@y,...,a),...0Pf(@1,--,8), &,---8, OPS(D1,...,09),...,0pSis(01,...,bg), by, 0s)

Now we are able to define the optimization rule as
0-cond( R x S) - 0-opf( cxoprl ..... o/o] RN e P idr( R) X cxopsl ..... OPSpgidyeess ids( S) ) (OR37)

Example 4.3 We illustrate the application of rule OR37 using the query tree which is
introduced in Example 3.5 and rewritten with regard to load optimizationin Example 4.2.
Subexpression cub@ien:a10, 20:100, 300] >leit_ind 127 is moved to input stream MRI(cubg of the
cross product operation.



48 Chapter 4
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Figure 9 Example for Extended Relational Rewriting

Again, these rules are very promising as MDD operations in application expressions are much
more expensive than scalar operations. As evaluation of MDD expressions is usualy very
time consuming, the CPU time optimization factor evaluation_time per_tuple(
cube190:310,20:100,300] >left ind 127) 1 |9 is of high impact on the overall query response time.
Benchmarking results of the described scenario are presented in Section 7.2.4.

Further optimization techniques, as for example premature termination of the some cells
aggregation, are considered by the tile-based execution strategy and described more detailed
in Section 4.4.1.

Since the application of each optimization rule produces an evaluation plan with reduced
costs either by reducing the number of multi-dimensional operations or by shrinking the set of
tuples on which multi-dimensional operations have to be applied, the rule system consisting
of our optimization rules is terminating. However, as we can not guarantee confluence for the
presented rule system and hence potentially rewritten plans are not unique, we present some
heuristics for the application of the rule system in order to achieve a standardized plan in the
first step and an optimized plan in the second one.
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4.2.2 Standardized Query Form

Concerning the relational operations, we do not have any demand for a standardized form
and, therefore, leave it open to adapt standardized query representations used in conventional
RQP (e.g., described in [Jar84]). On the contrary, for our multi-dimensional expressionsit is
rather important to have some kind of common starting point for the application of the
optimization heuristics described in 4.2.3. The standardization process consists of the
following steps:

1. Evaluate as many constant subexpressions as possible. In the first step, it is the am to
evauate as many constant and potentially multi-dimensional subexpressions as possible in
order to simplify the query. This is of primary importance, especialy since cell
expressions (used in the operations marray and condense) have to be evaluated for each
cell of each MDD vaue. In a bottom up process through the query tree, constants are
grouped together using commutative, associative, and distributive laws in order to be able
to pre-evaluate them. In this context, constant means invariant regarding the inner most
loop. Operations consisting only of constant operands are evaluated and replaced by the
resulting constant.

2. Prepare boolean expressions for the application of optimization rules. In order to be able
to frequently apply rule OR26, operands of the quantifier some _cells() are transformed to
disunctive normal form (DNF), whereas for the employment of rule OR27, it is important
to transform operands of all _cells() to conjunctive normal form (CNF). Further, for
applying rule OR32 we transform boolean multi-dimensional expressions to CNF.
Normalization of the expressions is rather straightforward using De Morgan’s rules, the
distributive rules, and the rule of double negation (see Appendix B).

3. Prepare induction expressions for the application of optimization rules. The precondition
for optimization rules OR11 and OR12 is to have a sequence of unary induced operations
of the same type which is either left induced (multi-dimensional operand on the left side)
or right induced (multi-dimensional operand on the right side) operations. In many cases,
this can be achieved by simply using the commutative law.

4.2.3 Rewriting Heuristics

In our rewriting phase, transformations are driven by heuristic rules which are supposed to
improve evaluation in terms of speed and memory usage. There is no guarantee to produce the
optimal expression to a given one, but adhering to the following principles turned out to be
generally useful:
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1.

Perform geometric operations as early as possible. As geometric operations reduce data,
they have an high impact on disk access, memory usage of intermediate results, and
evaluation time of MDD expressions. Therefore, they are moved down as far as possible
which means to the lower borders of Dimensional Data Areas (DDAS, defined in Section
4.1). This starting point of a DDA is either (1) an access node, (2) an MDD constant, or
(3) an marray constructor. In case (1), the geometric operation is accomplished in
combination with storage access, which means that disk access is reduced. Necessary
steps are described more detailed in Section 4.2.1.1. This mechanism is similar to the
index and segment scans of System R described in [Sel79], which allow the specification
of selection predicates in order to reduce calls to the Storage System Interface. Case (2)
means to cut the constant and, in case (3), the definition domain of the marray constructor
is reduced leading to less storage requirements for the intermediate result and less
computation effort for the generated MDD value. We call the process of pushing down
geometric operations and merging them with the starting node of the DDA load
optimization. It isfirst introduced in Section 4.2.1.1.

Reduce number and overall cardinality of Dimensional Data Areas as much as possible.
Dimensional Data Areas (DDAS) connect expensive operations on multi-dimensional
values. From an optimization point of view, it is the aim to reduce the number of multi-
dimensional operations by either removing multi-dimensional operations (e.g., rules
OR13, OR28, OR29) or transforming multi-dimensional operations into scalar ones (e.g.,
rule OR11, OR12, OR26, OR27) which leads to shrinking or splitting the involved DDAs.
In both cases, the overall cardinality of the resulting DDAS, which is the number of
dimensional data edges, is smaller than the cardinality of the original DDA. Additionally,
the overal reduction of DDASs leads to better preconditions for a tile-based execution
strategy (see Section 4.4.1). More formal, it isthe aim to minimize |DDAS| and D;‘ d .
p As

The following heuristic principles are well known in RQP [UII89], but their importance
increases with AQP because of the difference of operand size and operation complexity they
are dealing with (see Section 1.1):

3.

Perform applications as early as possible. Usually, the most time consuming part of AQP
isthe evaluation of MDD operations. These operations are combined to MDD expressions
and executed on each tuple by the application operation. Therefore, the primary goal of
heuristic rewriting is to perform these MDD operations on as few tuples as possible.
Similar to the rule of pushing down projections in RQP, our aim is to push down the
application operation especially into the cross product (OR33 to OR36).

Perform selections as early as possible. As with RQP, selections are moved towards the
leafs of the operator graph in order to reduce the result set as early as possible (e.g.,
OR32). If the selection predicate depends on a multi-dimensional attribute, the relation
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will have to be read by atable scan and the selection predicate will have to be evaluated
for each tuple. Selection (sub-) predicates formulated on scalar values should be cascaded
and moved over multi-dimensional selection predicates to retain the chance on an index
supported selection/join.

5. Look for common subexpressions. Particularly since disk access costs with MDD
expressions, in most cases, are by far dominated by CPU costs, it would be sensible to
precompute common subexpressions (CSES) once and store them as an intermediate result
if necessary. It is even more efficient to integrate CSEs by means of the application
operation and use a pipelined evaluation technique for the whole expression in order not
to materialize the intermediate result. Thisis described in more detail in Section 4.2.4.

4.2.4 Exploitation of Multi-dimensional Common Subexpressions

Asit is shown in Section 7.2.2, the performance of array queries carrying at least one MDD
operation, which is different from the geometric ones, is CPU-bound. Therefore, detection
and exploitation of multi-dimensional common subexpressions (CSEs) is of primary
importance for a convenient query response time. CSEs are examined after load optimization
rewriting (cf. Section 4.2.1.1) because, at this stage, geometric operations have been pushed
down to the leafs of the query tree and merged with the load domains of MDD variables
which enables to exploit similar expressions on overlapping load domains. This technique is
described in the following.

The basic algorithm for finding CSEs follows the one described in [Hal76] which compares
structural equality of sub-trees of the query tree. Moreover, MDD variables of muilti-
dimensional expressions suggest to additionally exploit their spatial domains in order to
increase the probability for the presence of CSEs. As described in Section 4.2.1.1, during the
rewriting phase, geometric operations are pushed down to multi-dimensional sources (MDD
variables, constants, and marray constructors) which are augmented with their so called load
domain. The load domain of an MDD variable is the smallest spatial domain, which means
data area, sufficient to determine the result of the query tree branch and it is used to minimize
access to the storage manager. The load domain isintroduced in Section 4.2.1.1. With this, we
are ready to formulate the basic idea:

Two multi-dimensional expressions will be equal with respect to their usability as CSE if they
are of the same structure, which means that they realize the same function depending on
MDD variables, and if the load domains of their corresponding MDD variables are
overlapping. Now the CSE is computed using their joint function but with MDD variables
carrying the union of the original load domains. The original functions are then substituted by
the CSE together with an additional geometric operation isolating their relevant part again.
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Definition 4.6 (Equal Sructure for CSEs) Let u;, viJ[[T;,Di]] be MDD variables and
consider function Id: [[1,8]] — 0 denoting the load domain of an MDD variable. Then, for a
multi-dimensiona expression e: [[T1,D1]] X ... X [[Tn,Dn]] - v with vO{ [[T;,D]], T, } being
either a multi-dimensional or a scalar result type, equal structure for CSEs is defined as
follows:

equal_structure( e(uy,..., Un), &V1,..., Vo) ) = U =V O ld(u) nld(v) #0 fori=1l.n ¢

Evauation of CSEs is done for the union or the minimal bounding box of the spatial
domains. cse = e(my,..., my) with my := u; and Id(m) := Id(u;) O Id(v) for i=1...n. In case that
the union is not rectangular, it is filled with null-values. The computed CSE gets an internal
attribute name and it is attached to the intermediate relation by an application operation. In the
upper tree, the CSE can be accessed by its name. The original load domains of the substituted
expressions are used as load domains for the CSE variable.

The decision on whether detected CSESs should be exploited or not has to be taken based on a
cost function (we suggest to use the Array Cost Model developed in Chapter 5) because
evaluation of CSEs on the union of their original spatial domains may cause significant
overhead.

Finally, CSEs are integrated on the logical level by using the application operation. In case
the CSE does not consist of any sort operation, its evaluation can be pipelined without any
additional disk 1/0. However, as CPU time is dominating, usualy it is worth exploiting CSEs
even in case of their intermediate storage on disk.

Example 4.4 In order to demonstrate CSE exploitation, we consider the following query on
relationsR(a) and S(b):

O trimmingp1.200, 1:200 (2 *bin_ind b)( Osome cells( trimming1.150,1:150] (2 *pin_ind ) >left_ind 127) (RxS))

After load optimization, the trimming operations are eliminated and the MDD variables carry
their load domains written as subscripts:

Q(ay1:200,1:200] *bin_ind P[1:200,1:200] )( Osome cells( a[1.150,1:150] *bin_ind P[1:150,1:150] ) left_ind 127) (RxS))

Expression e(my, Mp) = My *pin ing M 1S detected as a potential CSE and as equal _structur e(

&( ar1:200,1:200, Dr1:200,1:2001 ), € @1:150,1:150,, Prr:1s01:1500 ) ) holds, the CSE can be exploited.
Necessary rewriting of the query tree is shown in Figure 10:
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Figure 10 Common Subexpression Integration Rewriting

Exploitation of multi-dimensional CSEs turned out to be extremely relevant for the overall
query performance in a practica environment because CPU time of multi-dimensional
expressions dominates the overall response time and the same multi-dimensional expressions
used to prepare the query result (in the application operation representing the SQL select
clause) are usualy used to phrase the selection condition (sometimes with different spatial
domains). An example query processing speed-up for CSE exploitation can be found in
Section 7.2.4.

4.3 Transformation

At the shift from logical to physical level, which is the transformation phase, usually severa
different evaluation plans are generated by mapping logical operators to physical plan
operators. Afterwards, an optima plan is chosen using cost functions based on physica
figures.

As our relational model does not support joins on MDD attributes explicitly (see Definition
3.18) and selection predicates on multi-dimensional expressions are not supported by indices
(see discussion on indices which are defined on attributes derived from MDD values in
Section 1.1), accessing a relation (with just multi-dimensional selection predicates) means
scanning the relation in any case and the only way to realize cross product operations is by
nested loops. Consequently, there are no aternatives of physical algorithms for the relational
operations, which means that transformation is straightforward and no plan has to be chosen.
If the selection condition is a conjunctive or digunctive combination of predicates on scalar
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attributes and multi-dimensional expressions, the first group of predicates can be supported by
indexes (see Section 5.2.4 on Integration of Array Query Processing into Relational Query
Processing).

Efficient execution algorithms for MDD operations have to take into account the tiling layout
of the MDD values which indeed has a large optimization potential. For the first three
specification levels of multi-dimensional attribute domain types (see Section 3.3), the tiling
layout is different for each MDD item of a table column. In these cases, the tiling structure
cannot be considered at this stage but only in the execution phase, where the execution
algorithm dynamically adapts to the current tiling layout. The fourth specification level fixes
the tiling layout for table columns which means that all MDD values of one table column
share the same tiling layout. Hence, the scheduling of tile reads can be determined aready in
the transformation phase.

The following subsections describe different plan operator algorithms together with their
specific tile read strategies for our logical MDD operations. As outlined above, it depends on

the attribute’s domain specification level whether the algorithms taking into account tiling
structures can be fixed already in the transformation or just in the execution phase.

4.3.1 Physical Plan Operatorsfor MDD Operations

We start with a short description of straightforward evaluation algorithms for the elementary
operations and continue to describe evaluation aspects of the derived operations considering
particular optimization techniques, e.g., choice of tile access sequence. A detailed description
of evaluation algorithms performed on single tiles is given in [Wid98]. We want to remark
that geometric operationsriimming and section) are not considered at this stage anymore
because these operations are moved down wdthiensional data areas (DDAs) and merged

with their particular starting nodes durihgad optimization which is described in Section
4.2.1.1.

4.3.1.1 Elementary Operations

Basic evaluation algorithms for both elementary operatibfesray Constructor and
Condenser as defined in Section 3.1.3 are straightforward. The constro@omyp,x( &)
iterates through spatial domédnin any order and evaluates cell expresgpfor each point

of D. Analogously, operationond. p x( €my ) iterates through spatial domdnin any order,
evaluates cell expressi@n, for each point oD and aggregates the expression results using
functiono.

Cell expressions usually consist of one or more cell accesses to multi-dimensional values,
coordinate computations, and other scalar operations. Our experiences show that the
described evaluation techniques together with dynamic interpretation of the cell expressions
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lead to poor performance compared to the specialized evaluation algorithms of the derived
operations. To achieve more convenient evaluation performance for the elementary
operations, one has to analyze the cell expressionsin order to be able to optimize cell accesses
to tiles of multi-dimensional values and to compile the cell expressions. Both is left open for
future work.

4.3.1.2 Unary Induced Operations

Unary induced operations oy, ing(M) as defined in Section 3.1.5.2 get one multi-dimensional
operand. Each cell of the multi-dimensional value is processed according to operation o
independently of each other. Therefore, each tile of mJ[[T,D]] can be processed individually
which is expressed more formally by the following equation assuming Kp ={ Djy,...,Dn } OKp
being the tiling layout of multi-dimensional value m and the union operator [ able to merge
multi-dimensional values:

Oun_ind (Q) = Uoun_ind (trimmnng (Q))
i=1

operationontile
with domain D,

The proof can be produced by substituting the definitions of unary induction (Definition 3.11)
and trimming (Definition 3.9). The free choice of the tile access sequence can be exploited by
following techniques:

— In case the induced operation takes part of a dimensional data area (DDA) with a tile-
based execution strategy, the tile sequence can be prescribed by its input stream
(described in Section 4.4.1).

— In case the induced operation is the first operation to read tiles from disk, tiles can be read
most efficiently in the sequence corresponding to their physical storage (bulk load).

— Tile granularity can be used for intra-operator parallelization which means that unary
induced operations on tiles can be performed simultaneously.

Due to the limited set of operations suitable for the condensing operation o (e.g., +, -, *, /,
min, max, and, or), the evaluation algorithm needs not to interpret a general function but can
employ precompiled code which is essential for operations invoked on cell level with respect
to performance.

4.3.1.3 Binary Induced Operations

With binary induced operations (which means operations with two multi-dimensional
operands), corresponding, overlapping tiles have to be in main memory at the same time. As
the tiling scheme for MDD values is not fixed (see Section 3.2), it is very complex to find the
optimal tile read sequence with respect to 1/0O costs. The following ideas are based on the
work described in the Diplomarbeit (master thesis) of A. Haftmann [Haft97].
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The problem can be modeled as a bipartite graph G = (V,E) where the node set V can be
divided into two distinct subsets X and Y, so that no edge connects two nodes of X or two
nodes of Y, which means E [1 X x Y. Each node of X corresponds to one tile of the first
operand and each node of Y to one of the second operand. The nodes are connected with an
edge in case the tiles they are representing have an overlapping spatial domain. A particular
read sequence of the tiles can now be expressed as an order defined on the edges. Figure 11
shows the tiling scheme of two 2-dimensional MDD values, the corresponding tiling graph
and an exemplary order on the edges.

1
X1 Y1
X1 X2 2
4
X2 ® YZ yl y2
/ ;
X3 /3 ®y;

oy, Y3 Ya

X3 Xa

X4

Figure 11 Tiling Graph for two MDD Objects

The problem is now to find an order Opin = <ky,....kg> with KUE and Ui=1 gk} = E (i.e,
ki=k; for i=]) on the edges which leads to an evaluation with minimal disk access.

We will now concentrate on the determination of the occurring 1/0O costs. At first, we present
a cost function depending on the number of edges and, afterwards, we will show how the
number of edges depends on the number of tiles. Assuming that tiles are approximately equal
in size, costs can be expressed in the number of tiles which have to be accessed. If further no
cache is available and, hence, a maximum of two tiles is kept in memory, evaluation of one
edge needs at least one and at most two tiles to be read except of the first edge which always
needs to read two tiles. This leads to the following recursive definition of a cost function on
an evaluation order <Kky,...,Kg >:

COst((Ky, -k, )) = cost((Ky ko)) + [ for (k) =£‘:;1)elr£i$-l)z =(k.),

COSt(<k1>) =2

This means that, depending on the scheduling algorithm and its evaluation order, the number
of disk accesses is between [E[H1 and 2*[ELL The lower limit is reached, e.g., with an
Hamilton circle which is a path starting at one node, passing each node exactly once, and
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ending at the start node again. One can aso think of other graph structures with the
characteristics that an edge enumeration exists where two edges following each other have
one node in common. Not fully connected graphs are decomposed into n connected subgraphs
with CEH n asthe new lower limit.

The problem of finding the optimal edge enumeration with respect to minimization of the cost
function given above is isomorphic to the scheduling problem of ajoin operation in a paging
environment which is very well described in [Mer81]. The paper shows that determination of
the existence of an optimal solution is NP-complete. It gives two sufficient conditions for the
existence of a solution reaching the lower limit which are based on the Hamilton path
condition and the Euler path condition. It further shows that these conditions can be used to
derive heuristic procedures for near optimum solutions.

It can be observed that the cost function given above depends on the tiling graph and in
particular on the number of edges |E|. In order to be able to formulate a more convenient cost
function on the number of tiles, we will now discuss different potential tile configurations and
their implications on tile overlaps and hence on the number of edgesin thetiling graph.

Figure 12 shows four different tile configurations a) to d) of multi-dimensional operands used
for a binary induced operation. Light and dark gray areas represent the tiling of the first
operand (X) and dashed lines depict tile borders of the second operand (Y).

a) b) 0) d)
Figure 12 Tile Configurations for Binary Induced Operations

Configurations @) and b) use tiles of constant size and shape. The simplest case one can think
of is configuration @) where tile borders of both operands are matching exactly leading to [X]
and |Y] edges respectively. The number of overlapping tiles of configurations b) and ¢) depend
on the number of dimensions referred to as d. We get [X[* 2% edges for b) and |X[* 3% edges for
c). Configuration d) represents the worst case with |X|* |Y] edges in the tiling graph.

Theoretically, one can state that the number of edges may vary between max( |X|, |Y]) and
[X[*Y]. Practical observations suggest that configuration d) is a pathological case and that
configuration c) represents a more realistic limit with |X* 3% edges leading to an upper limit of
2% Xpmin( Y], 3%) for tile accesses. Without loosing generality we assume that [X| < [Y] holds.
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This limit still assumes a cache size of two tiles which leads to the question about the
necessary cache size which is large enough to reduce the number of tile accesses to [X[+|Y].
Now if we consider a scan line sequence on the tiles of the first operand, the cache has to be
large enough to store all tiles of the corresponding scan line of the second operand which is
similar to the problem of determining the necessary cache size for the Tetris algorithm
described in [Mar99a)]. In our case, cache requirements may be reduced by following a space
filling curve instead of a scan line. However, more specific statements on the necessary cache
Size require a more detailed specification of the tiling layout which is not within the scope of
thisthesis. Werefer to [Fur99] for detailed information on thistopic.

Summarizing, one can state that the heuristic scheduling algorithm is cheap compared to 1/0
costs of multi-dimensional tiles. In case of multi-dimensiona attributes with fixed tiling
layouts (this corresponds to specification level four of multi-dimensional attributes described
in Section 3.3), scheduling for all tuples can be determined aready in the transformation
phase which even more justifies the computation overhead. On the other hand, practical
experiences have shown that, in the majority of the cases, the working tile set of both
operands can be kept in main memory when following a scan line. Further, considering the
fact that computation time of induced operations extremely dominates the overall query
processing time (this is shown in Sections 5.1 and 7.2.2), optimization of the scheduling
algorithm is not of primary importance anymore. CPU time becomes even more dominating
in case of huge MDD values which are exactly the candidates for atoo small cache.

It should be noted that sequential disk access is not of primary importance as well because
tiles consist of several disk pages aready (usually between 20 to 80) which are clustered and
read sequentialy. Therefore, positioning time per tile may be neglected.

4.3.1.4 Aggregation Operations

All derived aggregation operations described in Section 3.1.5.3 depend on the reduce
operation reduce. p(m) which provides the basic evaluation template parameterized with an
associative and commutative condensing operation o: Tx T - Twith T O 1.

The reduce operation does not prescribe any sequence to visit and aggregate the cells of
spatial domain D because the condensing operation is associative and commutative. Given an
arbitrary tiling layout Kp ={ Dsy,...,Dn } OKp of multi-dimensional value mJ[[T,D]] consisting
of nON tileswith D;d, the reduce operation can be written as:

reduce. p(m) = reduce. p,(m) o ... o reduce. p (M)

Considering again associativity and commutativity of o, the equation shows that even the
sequence in which involved tiles are read can be chosen freely. The proof for this equation
can easily be produced by substituting the definitions of reduce (Definition 3.12) and tiling
layout (Definition 3.16).
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Analogously to unary induced operations, we can record that aggregation can be performed
tile by tile with no order prescribed. Again, this degree of freedom can be exploited by the
following execution techniques:

— In case the aggregation operation takes part of a dimensional data area (DDA) with atile-
based execution strategy, the tile sequence can be prescribed by its input stream
(described in Section 4.4.1).

— Tileread sequence can be adapted to physical storage order which allows bulk loading.

— Tile granularity can be used for intra-operator parallelization which means that
aggregation on tiles can be performed simultaneoudy. It should be remarked that the
reduce operation owns the so called distributivity property introduced by [Gra96] which is
asufficient parallelization criterion for user-defined SQL aggregates [Jae98].

4.4 Execution

Execution of the query tree follows a demand-driven strategy [Gra93]. One result item after
another is computed on request keeping memory requirements of intermediate results at a
minimum which is of special interest when dealing with huge amounts of data as we do. Each
set tree node represents a processing unit supporting the open-next-close protocol in order to
initialize the unit, compute the next result item, and, finally close the unit and free used
resources again.

As our tuple elements can be of huge size, it is of primary importance to keep the processed
data units small in order to save main memory for intermediate results, to keep the disk swap
rate at a minimum, and to increase the pipelining degree of execution. Therefore, the demand-
driven execution strategy is performed on different data granularities:

— tuple granularity within Relational Data Areas (RDAS),
— scalar granularity within Scalar Data Areas (SDAS), and
— tile granularity within Dimensional Data Areas (DDAS).

Considering that execution on tuple/page and scalar/page granularity is well known in RQP,
the next subsections concentrate on the examination of problems and optimization potentials
emerging with tile-based execution.

4.4.1 Tile-based Execution (inter-operator)

In contrast to element trees, evaluation granularity in the set tree corresponds to MDD items
at any time. In the element trees, where operations are applied to tuples of MDD items,
execution can partly be based on tiles. Pipelining on tile granularity is possible within
Dimensional Data Areas (DDAs, defined in Section 4.1) of the element trees. This means that
the execution process is driven by tile demand, so the result of the DDA is computed tile by
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tile which leads to the term Tile-based Execution. This finer execution granularity has several
benefits:

— Memory requirements of intermediate results within DDAS are reduced because not the
whole MDD has to be materialized anymore but just one tile at a time, and, at the
transition to the upper SDA or RDA, the aggregation value has to be stored.

— In case the aggregation result can be determined without reading the whole tile stream,
disk access and computation time are reduced. This occurs mainly with the quantifiers
some _cells and all_cells which, on the other side, are used at least once in each condition
clause of a selection operation.

— In many cases, tile iteration sequence can be chosen taking into account tiling layout and
physical storage order thereby optimizing disk access. Whether the sequence in which
tiles from an MDD object are read can be chosen freely or not, depends on the MDD
operations involved which is explained in Section 4.3.1.

4.4.2 Runtime ldempotencies

Further, as operations on usually very large MDD values are very expensive, application of
idempotency rules at runtime is of primary importance for fast execution. For instance, the so
caled lazyevaluation of boolean expressions can spare the evaluation of whole
subexpressions especialy if the rewriting phase has ordered the operations in a sequence most
probable to support premature eval uation termination (see example in Section 4.1).

4.5 Integration of Array Query Processing into Relational Query
Processing

Usually, multi-dimensional expressions are part of queries operating on both conventional
attributes and multi-dimensional attributes. Although this thesis concentrates on Array Query
Processing (AQP), this section provides some thoughts concerning the integration of AQP
into traditional Relational Query Processing (RQP). The discussion is structured according to
the processing phases rewriting, transformation, and execution.

In the rewriting phase, the conventional heuristics of moving down selections and projections
(our application operation) and perform most restrictive joins first may not lead to efficient
plans in the presence of expensive multi-dimensional expressions, e.g., in case the most
restrictive join consists of an expensive, CPU-bound multi-dimensional expression. The first
approach for a solution of this problem is to extend the heuristics and to perform operations
on scalar values first. In the presence of severa multi-dimensional predicates, this heuristics
is not sufficient. An appropriate technique solving the problem is to order the operations in a
sequence taking into account their relative selectivity and evaluation costs which needs to
employ a cost model, e.g., the Array Cost Model of Chapter 5.
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In the transformation phase, logical operations are mapped to physical plan operators. Since
multi-dimensional operations are mapped to exactly one physical operator (see Section 4.3),
the overall search space for an optimal plan is not extended. At this stage, there is aimost no
interdependence between relational and array operations and hence the set of physical plan
operators just has to be extended by the multi-dimensional plan operators described in Section
4.3.1.

In the execution phase, the usually tuple- or page-based execution strategy has to be extended
by the tile-based execution strategy introduced in Section 4.4.1 which turned out to be
essential for efficient array query execution.

It should be remarked that much work reported in the area of object-oriented and object-
relational systems and in particular in connection with processing of expensive user-defined
functions deals with similar problems, e.g., processing of expensive predicates (e.g., [Hel98])

and large objects which are physically stored outside of a tuple’s physical record (e.g.
[OC098])).

4.6 Summary

In the discussion of the traditional query processing phases, on logical level, transformation
rules derived from the adapted relational model as well as from the MDD model, an
optimization heuristics, and adequate exploitation of common subexpressions were presented.
As array queries including any operation on cells are strongly CPU-bound, it is the aim of the
rewriting phase to reduce the number of array operations on the one hand, and, on the other
hand, to minimize the number of tuples on which the expensive operations have to be
evaluated. It emerged that efficient execution algorithms, exploiting the physical storage
layout, can just be selected in the transformation phase in case of attribute definitions with a
fixed tiling layout. In the case of individual tiling on MDD value level, algorithms are chosen
dynamically while executing the query. Special plan operators minimizing tile reads and cell
iteration are discussed for the derived MDD operations. The execution strategy presented uses
data granularities as small as possible in order to reduce memory requirements for
intermediate results and to obtain a high pipelining degree. Besides the tuple/page granularity
between relational operations, we use scalar value and tile granularity to evaluate multi-
dimensional expressions.

An analytical examination of the cost savings achievable by the optimization techniques
presented can be derived from #hreay Cost Model introduced in Chapter 5 whereas Chapter
7 gives an experimental demonstration of typical speed-ups.
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Chapter 5
Array Cost Modéel

The main purpose of a query processing cost model is to provide a priori knowledge of
guantities, such as the time taken for running a query and characteristics of the query result
like its size and distribution. As in most cases, accurate computation of these parameters
requires actually running the query, the cost model just gives estimates. These predictions can
be exploited by several applications:

Optimization With declarative query languages such as SQL, the DBMS has the
responsibility of selecting an execution plan to answer a query which is as efficient as
possible. Therefore, a cost-based optimizer enumerates a set of semantically equivalent
execution plans for a query which potentially differ in operation order, operation
implementation, and available index structures. Employing a cost model, estimates, for
example, on the overall query execution time, are used as a metric in order to select the
plan with |east cost.

Load Distribution Similarly, accurate knowledge about the cost of executing queries or
parts of them can be used by the dispatcher of parallel DBMSs to get an optimized |oad
balance.

User Feedback Accurate predictions of the time taken by aDBMS to answer a query and
of the expected query result size can be used by the DBMS user in the query design phase
to avoid extremely long running queries and to optimize the whole DBMS application at
an early stage.

Further, elaboration of a cost model is highly beneficial for Performance Engineering of the
guery engine. In order to develop a cost model, it is necessary to analyze the cost structure, to
identify the main responsible cost producers, and to formally describe their behavior. The new
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insight and knowledge gained in this process can be used for specific optimizations of
algorithms and implementations.

For query optimization and load distribution, it is enough to rate different execution plans
according to the order of their real execution time which can be managed by a relative cost
model. On the other hand, performance engineering and especially user feedback requires an
absolute cost model which is able to deliver predictions about query execution times.

The purpose of this Section is to develop a cost model for the array queries introduced in
Chapter 3. We call this model Array Cost Model (ACM) which allows to predict execution
time and result size of queries on multi-dimensional attributes without really executing them.

At first, let us distinguish between retrieval and computational array queries because it will
turn out that composition of their overall response timeis absolutely different.

Definition 5.1 (Retrieval Array Query) An array query is called retrieval array query, if it
just consists of relational operations and multi-dimensional geometric operations. 0

Definition 5.2 (Computational Array Query) An array query is called computational array
query, if it consists of at least one multi-dimensional non-geometric operation, i.e.,
aggregation or induced operations. 0

It follows directly from Definition 5.1 that retrieval array queries have no selection condition
on multi-dimensional attributes because at least one multi-dimensional aggregation would be
necessary. Therefore, multi-dimensional selection queries are computational array queries
according to Definition 5.2.

In order to explain the next actions, |et us again consider the query of Example 3.5:

a trimming[1:100’ 1:200]( secti0n2,300(Cube) ) (

)

In order to predict the query cost, mainly two questions have to be answered. First, what are
the costs of multi-dimensional expressions (as defined in Section 3.1.6) in the application
operation (o) and in the selection operation (o) and, second, on how many tuples have multi-
dimensional expressions to be applied. More specifically, the second question asks for the
selectivity of multi-dimensional selection predicates which is the percentage of tuples
satisfying the condition.
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5.1 Costsof Multi-dimensional Expressions

The costs for processing database queries usually consist of secondary storage access costs,
computation costs, costs for storage of intermediate results, and communication costs. While
many cost models are based on the number of secondary storage accesses, e.g., described in
[Mer77], just afew reports consider working environments or CPU costs [Sel 79].

In our case, communication costs just arise for the client-server transfer of the query result
and, therefore, are independent of the execution plan. We also omit costs for the storage of
intermediate results because computation of multi-dimensional expressions follows a
continuously pipelined execution strategy, described in Section 4.3.1.4, without any blocking
operations. This means that just the final result is potentially made persistent. However, the
comparatively complex operations on MDD values make it necessary to consider both CPU
and 10 costs. Performance measurements described in Chapter 7 even show that AQP is
already CPU-bound with the presence of at least one multi-dimensional non-geometric
operation. Parameters influencing 1O costs are index size, tile size, tile location, tiling layout,
tile clustering (random vs. sequential access), buffer size, and disk page size, whereas CPU
costs are determined by the type of operation, the number of involved cells, the cells’ type
and the cell access stratedffset calculation vs. sequential access).

Since arbitrary tiling is beyond the scope of this work and described in more detail in [Fur99],
we restrict our cost model to regular d-dimensional tiles of constant size and shape. Only tiles
overlapping with the border of MDD values are alowed to be of different size. Anyway,
experimental results described in Chapter 7 show that in the presence of at least one multi-
dimensional non-geometric operation, query costs become CPU-dominated which means that
tiling layout (regular, aligned, non-aligned) and tile size is not of primary importance
anymore. Further, it should be remarked that within the ACM the cost for applying any of the
derived multi-dimensional operations is independent of the MDD content which means that
content dependent optimizations of the execution plan, as for example lazy evaluationof
guantifiers (see Section 4.4.2), cannot be modeled. Further, the ACM does not explicitly
model neither the time needed to access the index identifying the tiles belonging to a range
qguery nor the time needed to access meta data because they are both not of primary
importance for the overall processing time. A more detailed examination of the index time
can be found in Chapter 7 and [Fur98].

The basic difficulty is now to identify the main responsible cost producers and to describe
them formally. In the following, we examine 1/O and CPU times for the different multi-
dimensional operations and support our choice of main factors and our description of the
functional dependencies from their input parameters by some experimental results.
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5.1.1 Cost Producersand Dependencies

/O times

Our experiments have shown that 1/0 time is the same for trimming, unary induced, and

reduce operations which is plausible because it directly depends on the size of their operands’
spatial domain. It increases stepwise with the number of tiles to be read. As one tile covers
several disk pages (typically between 20 and 50 pages), I/O time directly depends on the
number of pages to be read, which are read sequentially. Therefore, whether tiles are read in a
sequence or randomly is of minor importance as the amount of data read sequentially is
already in the scale of 64 kilobytes (typical tile size suggested in [Fur99]). It can be
summarized that 1/O time depends on the number of tiles to be read and their size. Figure 13
gives a qualitative impression of 1/0O time behavior. As absolute figures are not of primary
interest at this point, the detailed description of underlying system and query parameters is
given in Chapter 7.
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Figure 13 I/O and CPU Times of different Operations

In case ofbinary induced operations on two different operands, the I/O time depends on the
tiling layout of the two multi-dimensional operands. On the assumption that overlapping tiles
can be read in a sequence which allows to combine all corresponding cells without reading
any tile twice, the 1/O times of both operands are simply summed up. It is very likely that the
assumption holds because, e.g., in a regular tiling scheme of a d-dimensional array one tile
has a maximum of %L neighbor tile¥ These tiles can be kept in main memory up to a

> For the derivation of the number of neighbors, we consider a d-dimensional cube with an
edge length of three which has altogeth&ef@ments. Subtraction of the central element
delivers its overall number of neighbor elements.
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dimensionality of about four to five if we assume the tile size being in the scale of 100
kilobytes. A more detailed discussion on tile read strategies can be found in Section 4.3.1. If
the binary induced operation works on one single MDD value, the 1/0 time will equal the one
of an unary induced operation.

The 1/0 time of the section operation depends on the number and sizes of the tiles intersected
by the section dimension and hence increases stepwise with the number of tiles to be read as
well.

CPU times

Besides the 1/0 time, Figure 13 shows several CPU times. CPU of the trimming operation
increases in a saw-tooth manner. Note that the ordinate of the trimming CPU time is on the
right side. The CPU time is minimal in case the query box consists of complete tiles
exclusively, which can be copied very efficiently in one block. Tiles overlapping with the
guery box have to be cut which means that each cell lying inside the query box has to be
visited using an expensive multi-dimensional iteration. As an optimization, cells of the
densely stored dimension are copied in groups which is more efficient. This is the reason why
the CPU time increases linearly between local minima and maxima depending on the number
of cells within the so called border tiles. For optimal performance, tiles have to match the
query box exactly. If thisis not possible, the section areas between border tiles and query box
have to be minimal. The trimming CPU time can be approximated by a simple function
getting tile size, tiling origin, and the query box.

The CPU times of unary induced, binary induced, reduce, and section operations rise strictly
linearly with the number of cells visited.

The reduce operation has the smallest gradient because the cell values just have to be read
once and the result of the cell function can be kept in a CPU register. Additional CPU timeis
needed by unary induced operations to perform a copy operation necessary to store the result
of the cell function in a multi-dimensional array. For binary induced operations, the gradient
is even larger because the cell function needs to read two values and to store the result for
each cell.

Our experiments show that the operation type, as introduced in sections 3.1.5.2 and 3.1.5.3,
for both induced and reduce operations is not important. The gradient of the linear
dependency is mainly determined by the type of the operands, i.e., operations on floats are
more expensive than operations on integers and the CPU time of operations on complex cell
types increases with the number of type components. Hence, CPU time of unary/binary
induced and reduce depends on the number of cellsinvolved and their type.
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CPU time of the section operation shows a linear dependency on the number of cells read as
well but the gradient is much larger which is mainly because of two reasons. First, almost all
cells have to be visited using single cell access. An optimization can just be performed in case
the section is along the densely stored dimension. Second, the number of cells read from one
tile is comparatively small because just one dimension is read and, therefore, the number of
tiles to be visited is much bigger than for the other operations. Nevertheless, it turned out that
considering the number of cellsis enough to get accurate estimation results.

It should be remarked that the dimensionality of MDD values has ailmost no impact on the

CPU time of multi-dimensional operations because an increasing number of dimensions

causes just slightly more computation effort for the cells’ addresses and the CPU time remains
to be dominated by the computation effort of multi-dimensional operations per cell.

5.1.2 System and Query Parameters

The input parameters used for the cost functions can be divided into two groups. The first
group is calledsystem parameters and consists of hardware and operating system dependent
parameters, such as disk page size, I/0O time for sequential read access to disk pages, and CPU
time constants for different elementary operations. The system parameters are determined
once for a specific query execution environment (hardware configuration, operating system,
DBMS configuration) and they are valid for all queries run in this environment. Table 6 gives

an overview on the system parameters used in the ACM.

System Parameters |Explanation

Spage size of disk pages in bytes
iOpage I/0O costs for reading a disk page sequentially
CPUcells CPU costs for copying single cells (single cell access)

Cpufpcells / CPUVpcans |fixed/variable CPU costs for copying cells with block access

cpufsect / CPpUVse:  [fixed/variable CPU costs for copying one cell with the segtion
operation

cpufuing / Cpuvying  [fixed/variable CPU costs for applying an unary operation to one|cell
(depend on operand types)

cpufping / CPUVhing  |fixed/variable CPU costs for applying a binary operation to two gells
(depend on operand types)

CPUfred / CPUVeq fixed/variable CPU costs for aggregating one cell
(depend on operand types)

Table6 System Parameters for the ACM
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Some of the elementary CPU times are described by a fixed and a variable time parameter.
The fixed costs appear once per MDD operation and the variable costs have to be cal culated
per cell. Parameters depending on the operand types are just marked as such but not listed for
all operand types.

In order to determine the system parameters, a special set of queries is executed on different
amounts of data whereby /O and CPU times are measured. Then the parameters are
computed by analyzing the gained results with linear regression techniques. The
determination procedure is described more detailed in the Diplomarbeit (master thesis) of M.
Ammermuller [Amm99].

The second group of parameters can be derived from the queries themselves and hence is
calledquery parameters. In contrast to the system parameters, they have to be determined for
each MDD operation individually. Among these parameters are the number of cells inspected
by the operation, the number of tiles intersected, and the number of tiles completely enclosed
by the query box. The latter two parameters can be computed from the current tiling layout
and the query box. Depending on the tiling policy, this step can be rather complicated and
time consuming. For instance with arbitrary tiling, the complete list of tiles and their spatial
domains has to be known and dealt with. As we assume regular tiling starting at zero in each
dimension, the parameters can be computed using the tile configuration, which is the tile
width for each dimension. Witts; being the tile width in dimensiarand the query box being

a d-dimensional spatial domain over poiats gh O Z% the number of intersected and
enclosed tiles can be computed with the formulas in Figure 14. The graphics shows a two-
dimensional example although the formula holds for an arbitrary number of dimensions.

[ -
. _ 2 s +(gl, mod ts )0 9 :
#tlleslntersect - : i ;
L | | e
: d —((ts —ql,) mod ts )0 N | dh
#tllesenclosed = I_l gqs ((S q I) S)D
i=1 [ t§ H tSQ

as ts
Figure 14 Calculation of Intersected and Enclosed Tiles with Regular Tiling

The complete list of query parameters used in our ACM is given in Table 7. The number of
cells #cells can be calculated from the query box a&wllsporger iS computed using the
number of cells and the tiles enclosed.
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Query Parameters Explanation

Stile sizeof tilesin cells

Scell size of cellsin bytes

#cells number of cellsto operate on

#tileSintersected number of tiles intersected by the query box

#tileSenclosed number of tiles completely enclosed by the query box

#cellSporder number of cells lying inside the query box but not within completely
enclosed tiles (#cells - #tileSenciosed * Stile)

Table7 Query Parameters for the ACM

5.1.3 Cost Formulas

Using the described system and query parameters, the basic cost formulas can be established
for each operation. They are listed in Table 8.

all® 1/O #tileSintersected * Stile * Scell / Spage * 10page

trimming CPU CPpUfpcels + #tileSenciosed * Stile ¥ CPUVpcells +
#cellSporder * CPUcells

section CPU CpUfsect+ #cells *  CPUVsect

unary induced CPU cpufuing+ #cells * cpuvying

binary induced CPU Ccpufping+ #cells * cpuvping

reduce CPU Cpufreq + #cells * CpPUVieq

Table 8 Cost Functions on Operation Level

The overall cost of a multi-dimensional expression is computed using the cost approximations
on operation level. Basically, 1/0 costs are just considered in the leafs of the operator tree,
which are the nodes reading data from disk. In contrast, CPU costs are aggregated from
bottom to top over all nodes of the tree until the root node holds the overall costs.

® 1/O time has to be multiplied by two for binary induced operations on two different

operands.
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5.1.4 Experimental Validation

This section demonstrates some experiments which compare measured 1/0 and CPU times of
executed multi-dimensional expressions with the corresponding computed costs of the ACM.

System parameters used for calculations of the cost model are listed in Table 9. Besides their
main function as cost model constants, the system parameters characterize the efficiency of
the query execution environment which, in this case, is a Sun Ultra 1 with 140 MHz and
256 MB of main memory.

Spage 4096 bytes
iOpage 1159 us
CPUcells 678 ns
cpUfpcelis / CPUVhcells 14786 ps/ 2ns
CpUfsect / CPUVsect 9843 us/ 5906 ns
CpUfying / CPUVying 23706 us/ 641 ns
CpUfping / CPUVping 17030 us/ 820 ns
CpUufreq / CPUVreq 8939 us/ 540ns

Table9 System Parameters of specific
Query Execution Environment

The multi-dimensional expressions are executed on an MDD object a of type [[char,
[1:2000,1:2000], regular[1:100,1:100] ]], i.e., the multi-dimensional value consists of 4
million one-byte cells and is subdivided into 400 equally shaped tiles of size 10 kB each.

Figure 15 shows the application of trimming operations trimming;1;«2s, 1:2000(a) With i=1...40
and compares measured 1/O and CPU times, respectively, with computed ones. Considering
the specified tiling layout, queries with i mod 4 = 1 have to read 20 additional tiles compared
to queries i-1 resulting in a stepwise increase of the I/O time. The intersected tiles of the
gueries with i mod 4 = 0 are completely covered by the query box which makes them the most
efficient ones concerning CPU time. The error curve represents the absolute difference
between measured and computed sums of 1/0 and CPU times. It is mainly caused by the I/O
component with a difference resulting from warm accesses of the underlying storage system
and some irregular machine load from the operating system which both are not modeled in the
ACM. Nevertheless, the error made is rather small with an average of about 3%.
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Figure 15 Measured vs. Computed CPU and 1/0 Times of the Trimming Operation

Analogously, the plots of Figure 16 present the cost model approximations of the CPU times
for reduce, unary/binary induced, and section operations. One can observe that the linear
dependency on the number of cellsis rather strong with a correlation coefficient above 0.992.
The small error produced can be traced back to ‘system noise’ again.
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Figure 16 Measured vs. Computed CPU Times of different Operations



Array Cost Model 73

5.2 Selectivity of Multi-dimensional Predicates

As multi-dimensional expressions can appear in selection conditions, some selectivity
estimation has to be performed in order to be able to predict complete query costs.

As afirst try, we assume that no statistical information is available, i.e., we assume the cell
values to be uniformly distributed, and that the value independence assumption holds for the
cells of an MDD vaue. Let mO[[ byte’, [1:800,1:600] ]] be an MDD value, then the
selection expression all_cells( a <&t jna 127 ) has the probabilistic selectivity factor
(127/256)®%"%%) \which is almost 0. This small example aready shows that, in order to get
more useful results, rather accurate MDD content information has to be considered. It should
be remarked that the value independence assumption is highly unrealistic for almost all MDD
values, e.g., time series, images, videos, and even for most of the neighboring values in an
OLAP data cube.

In Relational Query Processing (RQP), three different approaches to base cost computations
on the database content are well known: Sampling, Parametric, and Non-parametric
Techniques.

— Sampling Techniques read random samples from the database on demand in order to build
the data distribution. As these techniques do not rely on any precomputed data, any
accuracy of the distribution estimate can be achieved, no additional disk storage is
required, and database updates have no impact on the estimates. Severa techniques are
presented in the area of relational databases, e.g., [Olk86] and [Lip90]. The main
disadvantages are that all sampling methods have considerable 1/0 and CPU overhead at
runtime and computed distributions are not reused.

— Parametric Techniques use parameterized mathematical distributions, such as the
uniform, normal, or x? distributions, in order to approximate the original data distribution.
For example [Sel 79] describes statistical information based on a normal distribution. The
main advantage is that the distributions just have a small storage overhead. The problemis
that, typically, rea distributions and, in particular, distributions of operation results do not
follow any of the mathematical distributions. Some researchers try to overcome this
problem by using polynomial functions with regression techniques to describe the data
distribution. For example, [Che94] uses a six degree polynomial with dynamically
adapting coefficients based on query feedback. However, the problem seems to remain if
the original data distribution consists of a considerable number of peaks which turned out
to be the case, for instance, with images.

— Non-Parametric or Histogram-based Techniques use precomputed tabular information
called histograms to represent data distributions. A variety of different histogram types,
such as Equi-width and Equi-depth, single-attribute and multi-attribute, one-dimensional

" Wearefollowing the ODMG 2.0 standard by using type char to represent 8 bit integers.
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and multi-dimensional histograms, etc., can be found in the literature. The work of
[Poo97a] develops a taxonomy to arrange the different types and gives an excellent
overview on the current state of the art. Histogram-based techniques are highly adaptable
to specia needs concerning the type of information to store, the desired accuracy, storage
requirements, and operation compatibility.

Considering the work reported, histogram-based techniques are our choice to approximate
MDD values. It should be remarked that simple histograms, like Equi-width histograms, are
used in many commercia systems, such as DB2, Informix, Ingres, Microsoft SQL-Server,
Oracle, or Sybase. A discussion on specific histogram types appropriate to model MDD
values is given in Sections 5.2.2 and 5.2.3. Next, we identify the information content of an
MDD value necessary to approximate the result of multi-dimensional operations and we give
an overview on different possible histogram applications, so called histogram models.

5.2.1 Approximating MDD valueswith Histograms

As a ssimple example, we consider a one-dimensional histogram approximating the intensity
distribution of an 8bit grayscale image. Figure 17 shows a so called Equi-Width histogram
which divides the value domain into eight digoint classes of constant width and records the
average frequency for the values of each class.

3
o
2
7]
- 1]
0 31 63 95 127 159 191 223 255

dom( char)

Figure 17 Equi-Width Histogram

If we reconsider the selection predicate all_cells( a <ieit ing 127 ) together with the histogram
information, the predicate can be evaluated to false already. On the other hand, if the
histogram does not represent the cell value distribution of one image but of a whole set of
images, the selectivity of the predicate will be about 50%°. In summary, the binary induction
and reduce operations of the condition predicate are well supported by this kind of
histograms. In contrast, the selectivity of the same selection condition extended with a
geometric operation, such as all_cells( a[100:199,200:299] <eting 127 ), cannot be
determined at all because the histogram does not have any spatial information about the cell
values.

8 value 127 represents the 0.5 quantile of the given value distribution
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After this short introduction on histograms, the following definition introduces the terms
value dimensions and space dimensions on MDD values which will be used afterwards for the
development of a comprehensive overview on different histogram models.

Definition 5.3 (Value and Space Dimensions) Let value m be of type [[Te, DY] with Te = (Ty,
..., Tp) being a complex base type with p components and D [ 3" being a spatial domain with
dimensionality d. Then value m can be represented by a multi-dimensional boolean value of
type [[B, D x dom(Ty) x ... x dom(Tp)]] with dimensions 1 to d called space dimensions and
dimensions d+1 to d+p called value dimensions. %

(T1,.... To)

d;

d

d

Figure 18 MDD Value with 3 Space and p Vaue Dimensions

Notes:

1. Inthe area of Online Analytical Processing (OLAP), the term dimensions corresponds to
our space dimensions and the term measures to our value dimensions.

2. If dom(T;) is not a subset of Z, the spatial domain of the normalized MDD will not satisfy
Definition 3.1 anymore. In these cases, dom(T;) has to be mapped to a finite subset of Z
which is easily possible because all domains represented in a computer system are finite.
However, this has no impact on the following thoughts.

3. With fully populated MDD values, the space dimensions are to 100% dense and unique
which means that each point in the space spanned by the space dimensions has exactly
one value. In contrast, the space spanned by the value dimensions is usually very sparse
and points are not unique.

4. Thework reported in [Agr95] follows a similar approach. Their logical OLAP data model
treats all dimensions and measures in a symmetric way, i.e.,, any dimension may be
converted to a measure by using the push operation and, on the other hand, pull alows to
create dimensions from any measure data. The normalized form represents data with d
dimensions and one measure by a (d+1)-dimensional cube with boolean values. A cell
with value true indicates that the tuple specified by the cell’'s coordinates exists, whereas
false means that the corresponding tuple is not in the database.

5. Inthe OLAP area, our space dimensions are usually partitioned by dimension hierarchies
which are used for aggregation and range queries. As a conseguence, the choice of space
dimensions for storing an OLAP fact table in an Array DBMS is essential because of two
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reasons: First, typically just access to value dimensions (measures) is supported by indices
on space dimensions but not on value dimensions. Second, multi-dimensional clustered
storage of value dimensions with respect to the dimension hierarchies defined on space
dimensions can improve OLAP access performance considerable which described in
[Mar99b].

Depending on whether space dimensions are considered in the histogram approximation or
not, we distinguish between so called Position-Independent Histograms (PIHS), which simply
approximate the cell value distribution along the value dimension, and the so called Position-
Dependent Histograms (PDHs) which take into account space dimensions as well.

Further, we distinguish whether value dimensions are represented by separate histograms or
as additional dimensions of one histogram. The former means that we assume that the value
independence assumption holds between the cell value components. This class is referred to
as Smple Histograms (SHs) whereas the latter histogram type, which considers the inter-
component dependencies, is named Complex Histograms (CHS).

Employing these two orthogonal classifications, we end up with four different histogram
models. Table 10 summarizes them together with their characteristics and dimensionalities
using d for the number of space dimensions and p for the number of value dimensions:

Vaue Dimensions (p) p separate | p histogram p separate p histogram
histograms | dimensions | histograms dimensions
Space Dimensions (d) not not d histogram | d histogram
considered | considered | dimensions dimensions
Number of Histograms and p* (1D) pD p* (d+1)D (d+p)D
Dimensions

Table 10 Table of different Histogram Models

As an example, we consider an RGB color image of type [[ (byte, byte, byte), [1:800,1:600] ]]
with an 8hit value for the color components red, green, and blue. An S-PIH of the RGB image
consists of 3 one-dimensional histograms each of them approximating the intensity
distribution of one color plane red, green, and blue, respectively. The C-PIH uses one three-
dimensional histogram thereby preserving inter-component dependencies. None of the two
stores information on the geometric position of the RGB values. This penalty is overcome
with PDHs. The S-PDH uses a three-dimensional histogram for each color component and the
C-PDH applies one five-dimensional histogram.

In the following, we examine the suitability of the different histogram models for the
application of MDD operations.
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As we have seen already in the introduction example of Section 5.2.1, information about the
cell value distribution is sufficient for unary induced and aggregation operations. Even inter-
component dependencies of complex base types are not of interest which means that all
histogram models are good candidates for these operations.

Binary induced as well as geometric operations strongly depend on location information
stored in the space dimensions because typically cell values are not uniformly distributed over
the spatial domain of multi-dimensional values. As inter-component dependency information
is not used by these operations, any PDH leads to accurate results.

For binary induced operations between two base type components, referred to as inter-
component binary induction, the inter-component dependency information is of primary
importance which is well supported by any CH. The necessary dependency information can
be derived from S-PDH as well but just with the granularity of the histogram classes put up
by its space dimensions. As an example, we again consider the RGB color image. An
operation like imagerred + image.green is very well supported by a CH as the value
dimensions considered in the histogram store the information about corresponding red and
green values. The S-PDH till knows about the red and green distributions in different areas
of the image which can be used to approximate the operation result.

Table 11 summarizes the compatibility of the different histogram models with our operation
categories.

T T T T

geometric operation m[ 0:10, 0:10]

unary induction m+c yes yes yes yes
binary induction m +m no no yes yes
Inter-component binary m.red + m.green no yes yes yes
induction

aggregation some _cells(b) yes yes yes yes

Table 11 Compatibility of Histogram Models and MDD Operations

With an increasing number of dimensions and histograms, the models provide more support
for MDD operations but, at the same time, they get more complex in terms of creation time,
memory requirements, and operational performance. Indeed, if a histogram contains
dimensions which are useless for a specific operation, evaluation time will increase
substantially. For example, the aggregation of one base type component in a C-PDH needs to
aggregate over all histogram dimensions. Summarizing, one can say that if the operation is
known in advance, the histogram with the least complexity sufficient to support the operation
should be chosen (marked gray for each operation in Table 11). If no operation information is
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available, S-PDHs will be the best choice. They deliver high quality distribution estimates for
all operations and have minima CPU and disk requirements at the same time.

5.2.2 One-dimensional Histograms

Histograms are well known approximations to data distributions in the statistical area
Basically, ahistogram is constructed by partitioning the original data distribution into digjoint
subsets called buckets and approximating the value frequencies in some specific way.
Usually, one makes the uniform frequency assumption and approximates the frequencies in a
bucket by their average. Depending on how the bucket borders are chosen, one can think of a
variety of different computation techniques. [Poo97a] gives an overview on different
histograms together with a study on their effectiveness in providing accurate estimations. In
order to be able to rate different histograms according to their accuracy, we define the
absolute histogram error as the difference between the origina data distribution and the
histogram distribution.

Definition 5.4 (Absolute Histogram Error) Let A be the original data distribution of a set of
values with type Tt and A’ be the estimated histogram distribution. Whtlandf’; being the
frequencies of distributions andA’, respectively, the absolute histogram error is defined as

€ = dz
iOdom(T)

Section 5.2.2.1 shortly describes the most important histograms from our requirement’s point
of view and Section 5.2.2.2 introduces a new histogram type, datied Minimization
Histograms (EMHS), especially developed to minimize the estimation error defined in
Definition 5.4. Based on some experimental results, Section 5.2.2.3 identifies the most
appropriate one-dimensional histogram type for the approximation of MDD values.

f, —f’.‘
| |

5.2.2.1 Conventional Histograms

- Equi-Width histograms divide the value domain into n buckets of constant width and
count the number of values in each bucket leadingutefarm distribution over all values
lying within each bucket. Equi-Width histograms have low storage needs as the bucket
borders can be computed, they are easy to calculate, and they have valuable properties
such as additivity, but they adapt poorly to highly oscillating distributions. As an example,
Figure 17 shows an Equi-Width histogram approximating the distribution of an 8 bit
integer valu using eight buckets.

° We use char to denote 8 bit integers following the ODMG 2.0 standard.
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Equi-Depth histograms choose the bucket bordersin away that all bucket frequencies are
similar, i.e., the total number of values associated with each bucket is approximately the
same. Figure 19 shows an Equi-Depth histogram of an 8 hit integer® distribution. This
type of histograms still needs a small amount of memory, is easy to compute, and is much
more flexible in adapting to specific distributions. They aready loose the additivity
property but, nevertheless, they are used in many commercia products, like DBS-MVS
from IBM, Oracle7 from Oracle, and Online Data Server from Informix.

J
I
!
J
|
|
|
I

frequency

RN
0 31 63 95 127 159 191 223 255

dom( char)

Figure 19 Equi-Depth Histogram

V-Optimal histograms The idea of V-Optimal histograms is to minimize the variance of
the overall frequency approximation. These histograms are optimal regarding the
estimation error based on the squared frequency differences between the origina and the
histogram distribution. The construction agorithm has to enumerate al possible
partitionings, cal culate the corresponding variances, and choose the best one which would
have exponential complexity. Other agorithms potentially leading to sub-optimal
solutions are proposed, e.g., in [Poo97a]. In our work, V-Optimal histogram are just of
theoretical importance.

MaxDiff histograms In MaxDiff histograms the frequency differences between
neighboring values are considered. This means that, in order to construct a histogram with
n buckets, the n-1 bucket borders are set between the values with the n-1 biggest
frequency differences. These histograms are easy to compute, have low storage
requirements, and have a small approximation error in case of value peaks and rectangular
distributions.

It should be remarked that the taxonomy used in [Po0o974] distinguishes between frequency
and area values for the height of histograms. The area of a value is computed by the product
of its frequency and its spread while spread represents the distance to the next existing value
in a sparsely populated value domain. Since in our experiments, value domains are densely
populated, spread values equal one and the two parameters, frequency and area, become
identical.
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5.2.2.2 Error Minimization Histogram

Our experimental results, which are described in Section 5.2.2.3, have shown that the quality
of the described techniques strongly depends on the nature of the underlying distribution.
None of the techniques delivers high quality results for distributions with different properties.
This is mainly because their criteria to find bucket borders are not targeted to the
minimization of the approximation error. This drawback is the origin for the development of
the Error Minimization Histograms (EMHSs) described in the following.

Starting with the original distribution where each value frequency represents one bucket, the
algorithm iteratively merges the two neighboring buckets which result in the smallest error in
terms of any local error metric. In case the value domain has cardinality n and we want to
compute a histogram with b buckets, the EMH algorithm needs to merge n-b buckets. If the
computation algorithm maintains a heap structure sorted by increasing potential merge errors,
the complexity of the creation agorithm can be reduced to nlogn. A more detailed
description of EMHs can be found in the Diplomarbeit (master thesis) [AMmM99] where the
author uses the name LEUNA (least error unification algorithm).

Figure 20 shows the computation of the potential error g for the merge of buckets b; and bj. 1
using the absolute histogram error defined in Definition 5.4.
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Figure20 Computation of Potential Absolute Histogram Errors

Instead of using the absolute histogram error, any local error metric can be used. For example,
the sum of the squared frequency differences would put more weight on large deviations
which means that the absolute error may increase in favor of smaller local errors. It is even
conceivable to optimize the histogram in terms of efficient operation support if the error
formula takes into account the error produced by an operation which is thought to be applied
on the histogram. In terms of operations, both the absolute and the squared histogram error
would reduce the error made by a point query whereas the optimization of range queries
requires global error formulas which would raise the complexity of the histogram
computation algorithm to O(n?).
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It should be mentioned that the EMH a gorithm does not deliver any global optimum as for
example V-Optimal histograms but our experiments described in the next section have shown
that the algorithm delivers excellent results and is very robust concerning peculiarities of the
original data distribution.

5.2.2.3 Experimental Evaluation

In our experiments we apply the histogram techniques Equi-Width, Equi-Depth, MaxDiff, and
EMH to four different artificial as well as real-life data distributions which are explained in
the following:

— Normal distribution As a representative of good-natured distributions with a small
number of soft and continuous oscillations frequently occurring with images and in the
statistical area, we have chosen the normal distribution.

— Random distribution Random distributions are distinguished by many irregular peaks
and no continuous ranges.

— Zipf distribution A common claim in database literature is that many attributes in real-
life databases contain a few domain vaues with high frequencies and many with low
frequencies. This phenomenon can be modeled well by Zipf distributions [Poo97a,
Fed81]. With n being the number of cells and m being the value domain size, the
frequencies are computed as follows:

fi:,zn for 1<i<m andwith szi_i
I m =1 )

The z parameter, which is usually between 0 and 2, determines the distribution’s
steepness.

— CT distribution The CT distribution stands for the intensity distribution of a typical
computer tomography recording which usually have a high number of black values and
some smaller peaks in the remaining intensity domain.

Figure 21 shows the experimental distributions over an 8 bit value domain with about 24500
cells for the normal and the random distribution and about 40500 cells for the Zipf and the CT
distributions. Experiments with several millions of cells have demonstrated that the scale of
the amount of cells has almost no impact on the quality of the results. We have chosen two
Zipf distributions with the z parameter being 1 and 2, respectively, because the quality of
some histograms strongly depends on the gradients of the distributions.
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Figure 21 Experimental Cell Value Distributions

We have observed that all histograms except MaxDiff can approximate the normal
distribution with rather small errors depending on the number of buckets b. The continuous
frequency function with its moderate gradients and just one maximum leads to very poor
results in case of MaxDiff because the b-1 largest frequency differences are close together
around the two points of inflexion where al bucket borders are used. This phenomenon is
shown in Figure 23.
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Figure 22 Histogram Example: Normal Distribution with 16 Buckets



Array Cost Model 83

Figure 23 shows the different histograms with 16 buckets each approximating the random
distribution. In order to get convenient results, the buckets have to be used to approximate
large peaks primarily. MaxDiff and EMH adapt much better than Equi-Width and Equi-
Depth. Of course, the random distribution is the most difficult one to handle as there is no
dependency between neighboring values.
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Figure 23 Histogram Example: Random Distribution with 16 Buckets

Figure 24 shows histograms with 32 buckets approximating the Zipf distribution with z=2 and
Figure 25 plots histograms with 32 buckets for the CT distribution. Equi-Width histograms
deliver poor results for both of them because their characteristics is that a few domain values
occur with high frequencies which cannot be modeled by the Equi-Width technique. Equi-
Depth histograms deliver good estimations for Zipf distributions with low z parameters which
means a moderate gradient. Their quality gets worse with extreme gradients as in case of z
parameters greater than one or the CT distribution. In contrast, MaxDiff histograms use too
small buckets for the moderate gradient of Zipf distributions with small z parameters which is
the same problem as they have with the normal distribution. On the other hand, they deliver
good estimates for extreme gradients as occurring with higher z parameters and in the CT
distribution respectively. Their quality is just surpassed by EMHs which deliver good results
for small gradients (Zipf with z=1) and excellent ones for extreme gradients (Zipf with z=2).
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Figure 25 Histogram Example: CT Distribution with 32 Buckets

100000
‘ ——original distribution
10000 —Equi-Width n
'_l Equi-Depth
1000 +- [
L‘\I
100 —— iq
10
1
0,1
0 32 64 96 128 160 192 224
value range
100000
——original distribution
10000 - —MaxDiff —
EMH
1000
100
10
1 e —
0,1 T T T T T T T
0 32 64 96 128 160 192 224
value range

100000
‘ —— original distribution
10000 —Equi-Width ml
_l Equi-Depth
1000
\\\L/‘ e
100 14— - T—
[ SN W i el I ‘\ [ oy
s = v | 1—'1\ o0
| I [ “ I \‘ | “ H w__r—'—\_i
10 +———— — i
T T T T
N N I N I ‘
! =
0,1 . . . . . . .
0 32 64 96 128 160 192 224
value range
100000
—— original distribution
10000 —— MaxDiff L
EMH
1000 -+
\
; | - I
100 Ty 1 | =
Pl : = \ ‘ ‘ NeankS
B i '
| i
|
] B \\ \ \‘ \‘ |
1 T T T T ‘ T T T ‘
0 32 64 96 128 160 192 224
value range



Array Cost Model 85

Table 12 gives an overview on our experimenta results. The presented measurements are the
squared error (ey), the absolute error (eans), and its percentage of the overall value sum. The
four different histogram types namely Equi-Width, Equi-Depth, MaxDiff, and EMH were
used to approximate the distributions Normal, Zipf 1 (z=1), Zipf 2 (z=2), Random, and CT
with 8, 16 and 32 buckets respectively.

Parameters |m=200, s=60 z=1 7=2

#Ceélls 24576 40561 40561 24576 40561

Buckets

Histograms €y €ns | 0| ey €ns | 0| ey €ns | 0| ey €us | 0| &g | €us | %0
Equi-Width 33413| 2143| 8,8] 5E+7|23966|59,3] 6E+8|60579| 150|] 8E+6(19198|78,1| 6E+8|51218| 126

M axDiff 2E+5| 5914|24,2| 3E+6|17830(44,1| 4E+5| 4529|11,2| 2E+6(12900|52,5] 4E+5| 7255|17,9

8
Equi-Depth | 8 192532| 3590|14,7| 8E+5| 5791(14,3| 4E+5| 4529|11,2| 7E+6(18972|77,2| 3E+5| 6639|16,4
8
EMH 8 |24332| 1932| 7,9] 7E+5| 5993|14,8| 2E+5| 2082| 5,1| 2E+6|12879|52,4| 2E+5| 4563|11,2

Equi-Width |16| 8514| 1073| 4,4| 4E+7|17864|44,2| 6E+8|52941| 131| 7E+6|19123|77,8| 5E+8|48444| 119
Equi-Depth |16|27583| 1927| 7,9|73287| 2291| 5,7|45370| 1819| 4,5| 7E+6|16857|68,6| 2E+5| 4752|11,7
M axDiff 16| 2E+5| 5323(21,8] 1E+6(11814(29,2|45370| 1819| 4,5| 8E+5| 9963(40,5| 1E+5| 4016| 9,9
EMH 16| 5292 916| 3,7| 1E+5| 2391| 5,9] 7033| 544| 1,3| 8E+5|10045|40,9|83594| 2998| 7,4
Equi-Width |32| 2123| 544| 2,2| 3E+7|12344|30,5| 5E+8|43553| 108| 7E+6|18495|75,3| 5E+8|44971| 110
Equi-Depth |32| 8278| 1043| 4,3| 6409| 831| 2,1| 4510 671| 1,7| 6E+6|17767|72,3| 1E+5| 3722| 9,2
M axDiff 32| 1E+5| 4421|18,1| 4E+5| 6871|17,0] 4510 671| 1,7| 4E+5| 7248|29,5|41412| 2425| 6,0
EMH 32| 1388 460| 1,9 7770 808| 2,0f 180 81| 0,2| 4E+5| 7583(30,9|31821| 1991| 4,9

Table 12 Histogram Error Results for different Distributions

The one with the smallest error in per cent for each group is marked with gray background. It
can be observed that the EMHSs deliver the best results for amost all distributions and with
any tested number of buckets. In the remaining groups, they are at least on the second position
and their difference to the respective group winner is below 1.4%.

5.2.2.4 Conclusions

Our experimental results, based on synthetic as well as on real-life data distributions with
different peculiarities, show that the estimation quality of Equi-Width, Equi-Depth, and
MaxDiff histograms strongly depends on the original data distribution. In contrast, the EMH
algorithm demonstrates high stability and delivers accurate estimates independently of the

source data’s properties. It should be noted that we omit an examination of the different
histograms concerning updateability while preserving their characteristic properties because
further processing does not exploit the histogram-specific properties.
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Before we can make a final suggestion, we take a look at computation complexities. The
creation of Equi-Width and Equi-Depth histograms just requires one scan of the frequencies
whereas MaxDiff needs to get the #buckets-1 largest frequency differences which lies within
O( #domain values * log #buckets ). Computation of EMHs even lies within O( #domain
values* log #domain values).

Nevertheless, the fact that histograms used in the cost model are made persistent and hence
are built rarely makes EMHSs the best candidate for our application of approximating MDD
values.

5.2.3 Multi-dimensional Histograms

In accordance with one-dimensional histograms, we again need to divide the value domain
into digoint classes, i.e.,, we have to partition the d-dimensiona space into digoint d-
dimensional regions. Different techniques can be employed to approximate the frequencies of
the regions:

— Average Freguency As in the one-dimensional case, this technique uses the uniform
frequency assumption by setting all frequencies of aregion to their average.

— Min-Max Frequencies In order not to loose variance information one could also store the
minimum and maximum frequencies.

— One-dimensional Histograms In case of heterogeneous frequency distributions within the
regions, it would be admissible to store a one-dimensional histogram per region.
Potentially, any of the described ones can be used.

Basically, the spatial partitions should be chosen with regard to homogenous frequencies
within the partitions; if the partitioning is successful in the sense that frequencies within
partitions are homogeneous, storing the average frequency will be sufficient.

As afirst approach, one can use any space filling curve in order to define a total order on the
d-dimensional domain values while preserving their spatial proximity [Jag90]. This can be
used as a basis for any one-dimensiona histogram. Other approaches, such as rectangular
partitioning driven by heuristics or by Equi-Depth and MaxDiff criteria and decomposition of
the joint frequency matrix into vectors being approximated by one-dimensional histograms
are described and evaluated in [Poo97b]. Their experiments have shown that the MaxDiff
approach delivers the most promising results.

For our following thoughts, we will use Smple Position-Dependent Histograms (S-PDH)
introduced in Section 5.2.1. This histogram model uses p times (d+1)-dimensional histograms
with p being the number of value and d the number of space dimensions. As space dimensions
have the property of being densely populated, we suggest to apply the spatial partitioning just
along the space dimensions and approximate the remaining value dimension per spatial
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region. Then the frequencies of the regions correspond to their size and the value dimension is
approximated by the average of the regions’ values.

As the iterative EMH is very successful in the one-dimensional case, we have extended its
basic idea to multi-dimensional conditions. This means that spatial partitions are chosen with
regard to minimization of the histogram error. We are using a Quadtree to partition the d-
dimensional space which sub-divides regions with large errors. The detailed description of
our construction algorithm with a complexity Of #domain values * log #buckets ) can be

found in the Diplomarbeit (master thesis) [AmMm99].

Our multi-dimensional EMH algorithm uses the sum of absolute differences between the
original cell values and the average value of the regions as local error metric.

Figure 26 Visualization of Multi-dimensional Error Minimization Histograms

To give an example, Figure 26 shows an 8bit grayscale image of size 512*512 on the left
side. The other images are visualizations of the adapted S-PDHs with two dimensions
representing the space dimensions and an average intensity value per spatial region. The
histograms consist of 4096 and 512 buckets respectively computed with the multi-
dimensional EMH technique. The pictures suggest the relationship to lossy compression
algorithms. Indeed, using such multi-dimensional histograms for compression purposes is an
interesting approach because value coherence can be exploited in more than two dimensions.
In order to achieve a considerable storage compression rate, pointer references of the
Quadtree have to be transformed into an array arrangement.

5.2.4 Experimental Validation

The experiment described in this section compares measured result sizes, CPU times, and I/O
times of a set of selection queries with the corresponding results of the cost model. The
experimental data set consists of 200 single-tile images of type flcF&B00,0:300] ]]
resulting in a total database size of about 18 megabytes. The cell value distributions follow

19 \We are following the ODMG 2.0 standard by using type char to represent 8 bit integers.
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slightly modified normal distributions which means that the frequency maximum moves from
left to right over the 200 images. The distribution is visualized in Figure 27.

image 1 image | image 200
g - g - g

1 64 128 192 256

dom( char )

Figure 27 Synthetic Data Distribution for Selection Experiment

The queries retrieve all images where the number of cell values exceeding a certain threshold
X is above approximately 20% (~18000 of 301?). The threshold value x takes every fourth
value in the range from O to 255 forming a total number of 64 queries of the following form:

Ocount_cells( image >jeg;_jng x) > 18000 (Images) withx=0,4,8, ..., 252

The selection criterion is a multi-dimensional expression consisting of an unary induced and a
reduce operation. Considering the operation-histogram compatibility matrix of Table 11, we
use the simple position-independent histogram (S-PIH) model which we realize by a one-
dimensional error minimization histogram (EMH) with 32 buckets to compute the selectivity
of the selection criteria

On the one hand, sizes of the result sets as well as 1/0 and CPU times are taken from a red
guery execution and, on the other hand, they are computed by means of the cost model. The
results are plotted in Figure 28.
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Figure 28 Measured vs. Computed Result Size, I/0 and CPU Time

If we assume that the expression > 18000’ is not optimized, the selection criteria will require
to visit all cells independently of their contents. This results in a constant I/O and CPU time
which can be well approximated by the cost model. Concerning the result size, all images
fulfill the selection condition for a threshold value up to 100. Then the number of accepted
images decreases almost linearly till the result size is empty for threshold values over 208.
The ACM delivers an exact prediction of the result size which confirms the adequate
modeling properties of S-PIHs for unary induced and reduce operations.

5.2.5 Implementation Aspects

The approximation of multi-dimensional values with histograms is performed in two steps.
First, the source data distribution has to be calculated and, second, the histogram can be built.
Depending on the value domain, different techniques, such as hash or table counting, can be
employed to get the source data distribution. With potentially large domains (e.g., 64 bit
integer), the number of different domain values is limited by the number of cells. In order to
reduce computation time, one should consider to approximate the source data distribution by
the distribution of a data subset.

Another interesting question deals with the granularity of the data to be approximated. One
can think of histograms on tile, MDD value, class of MDD values, and set of MDD values
level. For efficient computation of the cost model, it is recommendable to approximate classes
of MDD values or to support histograms on different levels. Histogram types used for multi-
level histograms should respect some kind of additivity property to be able to compute
histograms of higher levels based on the ones of lower levels.
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At first sight, it could be beneficia to use the spatial partitioning of the tiling as a basis for
multi-dimensional histograms, i.e., histogram buckets correspond to tiles. However, this may
lead to poor quality histograms because the tiling strategy depends on access patterns and it
does not try to minimize the histogram error.

It should be noted that histograms can be modeled as one-dimensional arrays again which
facilitates their implementation in an Array DBM S environment.

5.3 Summary

The cost structure analysis of array queries carried out within the context of the Array Cost
Model has delivered the following results:

— 1/O time increases step-wise with the number of tiles to be loaded and tile load time
depends on the number of pages read sequentially.

— CPU time of retrieval queries grows in a saw-tooth manner which is due to an efficient
copy operation of enclosed tiles and a much slower copy process of border cells because
of the multi-dimensional iteration necessary to access specific cells. For minimizing both
I/0 and CPU time of retrieval queries it is highly relevant to use a tiling scheme with
borders matching the query box as close as possible. Our experiments with regular tiling
have shown that the overall response time of retrieval queriesis 1/0O-bound.

— In case of computational queries, the CPU time used for performing multi-dimensional
operations has a strong linear dependence on the number of cells concerned. CPU time of
non-geometric operations (except elementary operations) can be derived from the
operand’s size and type, it is independent of the cell's content. One can observe that query
response time for computational queries is absolutely CPU-bound.

Considering the presented results, the Array Cost Model incorporates cost formulas for the
prediction of I/0O and CPU time needed to evaluate multi-dimensional expressions.

The cost prediction of complete multi-dimensional selection queries additionally needs
selectivity computation based on statistical information. Experiments with different data
distributions have shown that the quality of histogram approximations strongly depends on
the properties of the original data distribution. However, practical evaluation of the newly
introducedError Minimization Histograms have proved their outstanding applicability for the
approximation of multi-dimensional values in different application areas. Finally, we have
proposed several histogram models in order to represent the information content necessary for
the application of different multi-dimensional operations.

Experimental confrontations of real-life cost measurements with computation results of the
cost model have demonstrated its satisfactory prediction quality.
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Chapter 6
RasDaM an | mplementation

RasDaMan (Raster Data Management in Databases) started as a basic research project
sponsored by the European Community** in 1996. The aim of the project was to develop
comprehensive database support for multi-dimensional arrays driven by real-life requirements
from the end user partners, namely Centro Nacional de Informatién Geogréafiead Hospital
General de Manresd he Array DBM S RasDaM an was developed by the Bavarian Research
Center for Knowledge-Based Systems

The extension of a DBMS for multi-dimensiona array support to an extent that realizes the
techniques presented in this work means extension of query language (Data Definition
Languageand Data Manipulation Language application programming interface (API),
communication modules, query processor (optimizer and executor), and storage manager. At
first glance, one would think of using the extension facilities of an object-relational database
management system (ORDBMYS), such as Informix Universal Server [O1s96]. Unfortunately,
these systems are not flexible enough, e.g., to extend their query language for arbitrary array
operations (e.g., user defined functions get a fixed number of parameters) or to efficiently
optimize and execute expensive predicates (see also discussion on Extensible DBMSs in
Section 2.1.5).

Considering al this, we finally decided for a vertical implementatiorof RasDaMan which
means that we have realized all necessary modules specifically for multi-dimensiona arrays
and their characteristic operations. As we were not able to integrate the modules into the core

11 RasDaMan has partly been sponsored by the European Commission in the ESPRIT 1V
program under grant no. 20073.
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of an operating DBMS, RasDaMan is built on top of aDBMS which is used as a basic storage
and transaction manager.

As afirst approach, one could think of implementing the RasDaMan functionality as a simple
library built on top of the base DBMS. This implicates client-side execution of queries with
the base DBMS acting as a tile server. Asthisis not convenient for queries processing many
tiles before selecting a comparable small result set and following the SQL-based shared-
server architecture of RDBMSs, we decided to provide server-side query execution which
made it necessary to implement our own client-server architecture within RasDaMan.

As aresult of the vertical implementation approach, the data model of RasDaMan is restricted
to relations carrying just multi-dimensional attributes. Storage of conventiona attributes
together with advanced, index-based retrieval functionality are out of scope for RasDaMan. In
order to reduce implementation effort and in correspondence to collections/extents of the
ODMG 2.0 standard [Catt97], persistent relations are even restricted to carry just one single
multi-dimensional attribute each. These relations are referred to as MDD collections. On
MDD collections, RasDaMan supports all of the MDD operations introduced together with
most of the optimization technigues presented.

Persistent data in the RasDaMan DB can be manipulated either by associative access using
the Raster Data Query Language (RasQL) or by navigational access using the C++ interface
based on the ODMG 2.0 standard [ Catt97].

The first section of this chapter shows the system architecture together with a short
description of its components. We continue with an introduction to the RasDaMan query
language and a more detailed design description of the query processing modules which are
both part of thisthesis.

6.1 System Architecture

RasDaMan realizes a two-tier client-server DBMS based on an object server (or more
specifically an MDD server) and server-side query execution. RasDaMan client and server are
two different processes and are possibly located on different, heterogeneous machines. The
linkage of RasDaMan and the so called base DBMS, which serves as storage and transaction
manager, can either be via function calls to a single-process base DBMS or via another client-
server communication, which indeed makes the whole system a three-tier architecture. The
latter system architecture is presented in Figure 29.
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Figure29 RasDaMan System Architecture

Each of the architecture’s components and its interaction with other componentsis outlined in
the following. As the Query Processor component is of primary interest for this work, it is
described in more detail in Section 6.3.

Raster Data Library (RasLib) The C++ library RasLib constitutes the Application
Programming Interface (API) to the RasDaMan DBMS. It implements the C++ binding of
the ODMG 2.0 standard for ODBMSs. The library consists of system classes for handling
of databases and transactions, persistency classes for maintenance of persistent objects,
query classes for creation and submission of declarative queries, and schema access
classes for provision of runtime type information in order to support query results of
arbitrary types. The key characteristics of the ODMG binding is its smooth integration of
database objects into the programming language by (1) using the programming language
data model as database data model at the same time and by (2) providing a smart pointer
which behaves like a normal C++ pointer capable of managing transient and persistent
data in a user transparent way. This leads to the elimination of the so called impedance
mismatch which is one of the disadvantages of RDBM Ss.

As built-in support for arrays in C++ is rather poor (pointer to cells), RasDaMan extends
the ODMG binding with classes capable of representing multi-dimensional points,
intervals, and arrays including a comprehensive set of operations on these data structures.
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Further, a set of so called Sorage Layout Classes is used to specify tiling and
compression properties for multi-dimensional arrays, which is developed in [Fur98].

Client-Server Communication Modules The communication modules are responsible for
data transfer and data transformation between client and server processes which possibly
reside on different, heterogeneous machines.

Query Processor The Query Processor evaluates query statements expressed in the Raster
Data Query Language. Therefore, it performs syntax checking and builds an operator-
based query tree which serves as internal representation of the query. In the semantic
analysis phase, the query tree is augmented with type information received from the
Catalog Manager and it is examined for semantic correctness. After the optimization
process, which is described in detail in Section 6.3.3, the final query plan is executed by
retrieving collections of MDD identifiers from the MDD Manager, tile identifiers from the
Index Manager, and tile data from the Tile Manager. Operations on scalar values and on
multi-dimensional tiles are provided by the Operation Manager.

MDD Manager This module provides access to collections of MDD identifiers together
with iterators enabling to scan the collections.

Index Manager The Index Manager maintains a spatial index per MDD value in order to
identify the relevant tiles for a specific region of the MDD’s spatial domain.

Tile Manager The array data which is subdivided into tiles can be accessed using the Tile
Manager. The Tile Manager also maintains a tile cache in order to speed-up tile operations
with locality.

Operation Manager The final query plan consists of operations on scalar values and
multi-dimensional tiles which are both executed in the Operation Manager. Tile
operations are executed based on information about MDD and cell type stored in the
Catalog Manager.

Catalog Manager The Catalog Manager stores schema information about collection,
MDD, and cell types specified with thRaster Data Definition Language (RasDL)
introduced in Section 6.2.1.

System Manager The System Manager provides methods to start and stop sessions, to
open and close databases, and to start, commit, and abort transactions. Implementation of
the system functionality depends on the base DBMS’s properties. For instance the
RasDaMan implementation on top of (Ban92] realizes its own session management
whereas RasDaMan databases and transactions are simply mapped to databases and
transactions of the base DMBS.
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— Base DBMS Interface This layer interfaces the manager modules to the underlying
storage manager and it is designed to ease RasDaMan portability between different base
DBMSs.

6.2 Query Language

The Query Language of RasDaMan, called Raster Data Query Language (RasQL), is divided
into the Data Definition Language alowing to create and maintain schema information on
multi-dimensional attributes and the Data Manipulation Language enabling users to
formulate retrieval and update queries. Both are described in this section.

6.2.1 Data Definition Language

The RasDaMan system maintains schema information on MDD collection types, MDD types
and cell types. The so called Raster Data Definition Language (RasDL) allows the database
user to add new types to the system. RasDL follows the idea of the Object Definition
Language of ODMG 2.0 [Catt97] but restricts the language to atomic and composite types for
the definition of cell types and to the set template for MDD collection types. MDD types are
described by a language extension alowing to specify multi-dimensiona attribute domains
with different specification levels, e.g., with different restrictions as defined in Section 3.3.

In the following, we describe the RasDL language by means of a language grammar.
Grammar rules consist of a non-terminal on the left-hand side of the colon operator and a list
of symbol names on the right-hand side. Character | introduces a rule with the same left-hand
side as the previous one. It isusually read as or. Terminals are written in bold.

Cell Types

Cell types are used to define the base type of MDD type definitions. They can be either
atomic, composite or a previously defined composite type:

<cell type> . <atom c_type> | <conplex_type> | <struct_name>

RasDaMan supports the following atomic types by default which means that they do not have
to be inserted into the schema explicitly.

<atom c_type> . octet | char | short | unsigned short
| long | unsigned long | float | double
| bool ean

Following the ODMG 2.0 standard, Table 13 summarizes all atomic types and gives a
description on their content and length in bits.
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RasDL name Description Length

oct et signed integer 8 hit
char unsigned integer 8 hit
short signed integer 16 bit
unsi gned short unsigned integer 16 bit
| ong signed integer 32 bit
unsi gned | ong unsigned integer 32 bit
f1 oat single precision floating point 32 bit
doubl e double precision floating point 64 bit
bool ean true (nonzero value), false (zerovalue) | 1 bit*?

Table 13 RasDL: Atomic Types

Complex cell types are built using the keyword st r uct followed by a new type name and a
list of attributes specified by a name and a type each while complex types may be nested. The
following grammar defines the syntax of a composite type definition:

<conpl ex_type> . struct <struct_nanme> { <attribute_ list> };
<attribute list> . <attribute list>, <attribute_spec>
| <attribute_spec>
<attribute_spec> . <attribute_nane> <cell type>
MDD Types

MDD types are used to define collection element types which correspond to the definition of
multi-dimensional attribute domains introduced in Section 3.3. According to Table 5 we
distinguish between four different specification levels. In the following, we describe the
RasDL definition of the first three levels. The fourth level deals with setting of tiling layout
which is beyond the scope of thisthesis. We refer to [Fur98] concerning the fourth level.
<ndd_t ype> . typedef marray

< <cell _type> , <dommi n_spec> >
<ndd_t ype_nhane>;

<domai n_spec> : (specification level 1)
| <unsigned_integer_literal > (specification level 2)
| <spatial _domai n> (specification level 3)

The keyword t ypedef isused to give names to arbitrary types. The MDD type constructor is
identified by the keyword mar r ay. It gets the parameters cell type and domain specification.
Depending on the specification level the domain specification can either be empty, an
unsigned integer value or a spatial domain. The spatial domain consists of a list of intervals
with either fixed or open bounds:

2 memory usage is one byte per pixel
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<spatial _domai n> . [ <interval list>]

<interval _|ist> : <interval _list>, <interval _spec>
| <interval _spec>

<interval spec> . <bound_spec> : <bound_spec>

<bound_spec> . <integer_literal>| *

MDD Collection Types

Collection types correspond to the schema definition of relations with one single MDD
attribute. Their specification decides about possible assumptions which can be made by the
guery processor while performing queries on collections. RasDL uses the usual set template to
define the collection type:

<col | ection_type> . typedef set< <ndd_type_ nanme> >;

Several type definitions can be combined in a RasDL description which has the following
structure:

<rasdl _description> : <definition_list>

<definition_|ist> . <definition_list> <definition_spec>
| <definition_spec>

<definition_spec> : <conpl ex_type>
| <ndd_type>

| <collection_type>

Example 6.1 This example defines cell, MDD, and collection types for a collection of RGB
images of type[[ (char, char, char), [1:800,1:600] ]].

struct RG@BCell { char red, char green, char blue };
t ypedef marray< RGBCel |, [1:800,1:600] > RGBI mage;
t ypedef set< RGBImage > RGBSet;

Note: Conventional, descriptive attributes as for instance identifiers used in Example 3.5 are
not supported in this implementation.

RasDL descriptions are inserted into the RasDaMan DBM S using the RasDL processor which
produces C++ type definitions to be used in the DBMS application as well as schema
information in the database. The workflow of client application development is outlined in
Figure 30.
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Figure 30 RasDaMan Application Development Workflow

6.2.2 Data Manipulation Language

The Data Manipulation Language of RasDaMan, called Raster Data Manipulation Language
(RasML), follows the syntax of SQL-92 [ISO92]. This section introduces its syntax and its
mapping to the algebraic operations introduced in Section 3.1. The complete language
grammar can be found in Appendix C.

Retrieval Queries

A basic RasML query consists of three clauses: the select-clause, which specifies the target
(output) attributes to be returned; the from-clause, which specifies the collections involved in
the query; and the where-clause, which specifies the conditions to be satisfied by the result of
the query. Expressions in both the select-clause and the where-clause may be multi-
dimensional as defined in Section 3.1.6 on base of our algebraic operations.
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sel ect <mdd_exp;>, ..., <ndd_exp,>
from <coll> ..., <coll
where <ndd_bool ean_exp>

The RasML query skeleton above is semantically equivalent to the following algebraic
expression:

O<ndd_expy>, . .., <erd_expn>( O<ndd_bool ean_exp>( <coll ;>x... x<coll))

Persistent DBMS relations in RasDaMan are restricted to carry one single multi-dimensional
attribute each. These relations are referred to as MDD collections or simply collections. The
above query statement calculates the cross product of collections <col | ;> to <col | > and
passes the resulting m-tuples to the selection operation o. Computation of arbitrary multi-
target query results specified in the select-clause are directly supported by the newly
introduced application operation a (see Section 3.3).

Multi-dimensional Expressions

Multi-dimensional expressions <ndd_exp;> to <nmdd_exp,> and <ndd_bool ean_exp> may
consist of operations on scalar types as well as of multi-dimensional operations (cf. Section
3.1.6 on multi-dimensional expressions). The following tables present the RasML syntax of
these multi-dimensional operations and fix their semantics through providing their
corresponding algebraic operations defined in Section 3.1.

marray <var> in <mnterval _exp> MAIr QY<ninterval _exp>, <var>
val ues <scal ar _exp> (<scal ar _exp>)

condense <condense_op> over
<var> in <ninterval exp>
usi ng <scal ar_exp>

COnd<condensc—:‘_op>, <m nt erval _exp>, <var >

(<scal ar _exp>)

Table 14 RasML: Elementary Operations

Table 14 presents the RasML syntax of the two elementary operations cond and marray
together with their counterparts from MDD Algebra. In this connection, multi-dimensional
point variable <var > can be any identifier, <m nt er val _exp> represents an expression
resulting in a spatial domain, expression <scal ar _exp> evaluates to a scalar value and
<condense_op> stands for an operation out of { +, -, *, /, mn, max, and,
or }.Usualy, <scal ar _exp> depends on variable <var > and a multi-dimensional value as
demonstrated in the next example:
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Example 6.2 We repeat Example 3.2 which is based on a salestablet of type [[ No, [1:52,
1:8] ]] with 52 week columns and 8 product rows. The following RasML statement results in
the total sales value of the first product:

condense + over i in [1:52] using t[i, 1]

t[i,1] denotes access to the cell with coordinates (i, 1) of the two-dimensional array t .
The next statement combines all sales values for each product in a one-dimensional array with
domain [1:8]:

marray j in [1:8] values
( condense + over i in [1:52] using t[i,j] )

We continue the introduction to RasML with the description of derived multi-dimensional
operations and start with geometric operations:

RasML ‘MDD Algebra

<ndd_exp> <mi nterval _exp> trimMiNG<ni nterva _exp>( <mdd_exp>)

<ndd_exp> <section_exp>

with < i on exp>= )
th<secti on_exp SECtiON; <scal ar_exp>( <mdd_exp>)

[ *:*, ..., *:* <scalar_exp >*:*, ..., *:* ]
| S S
i-1times d-i times

Table 15 RasML: Geometric Operations

Agan <mi nt erval _exp> evaluates to a spatial domain value whereas <secti on_exp>
contains open bounds specification *:* for all dimensions except for dimension i.
<scal ar _exp> fixes the sectioning position in dimension i. Trimming and sectioning
operations may be combined using one RasML expression as demonstrated in the following
example:

Example 6.3 The algebraic expression trimming,:n,, ..,14.,:hq1( SECtion;,(m) ), which takes
the d-dimensional value mand first cuts out one slice in dimension i at position v and second

performs a trimming operation, can be expressed using the following RasML statement:

m o Pahy, oo, Ticathicg, v, Lichy, oo, Taaihg ]

It should be remarked that cell access and section operation use the same syntax because cell
access to the cell with coordinates ( X1, ...,xd ) of multi-dimensiona value mis similar to the
following sequence of section operations: sectiony xi( Sectionyxo( ... Sectiongxd( m) ... ) ). As
demonstrated in the example, this can be combinedtoni{ x1, ..., xd ] inRasML.
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RasM L MDD Algebra

- <ndd_exp> -un_ind( <nmdd_exp>)

<ndd_exp;> + <ndd_exp,> +pin_ind( <Mdd_exp;>, <nmdd_exp,>)
<ndd_exp;> + <scal ar _exp,> +eit ind( <mdd_exp;>, <scal ar _exp,>)
<scal ar _exp;> + <ndd_exp,> +right_ind( <scal ar _exp;>, <ndd_exp,>)

Table 16 RasML: Induced Operations (excerpt)

Table 16 comprises minus as an example for unary induced operations and addition as a
representative for binary induced operations. RasML overloads the same operation symbol for

binary, left and right induced as well as for scalar operations. Their specific algorithms are

chosen depending on the operands’ types. RasML supports the following scalar and induced
operations respectively, -, *, /, not, and, or, = <, > <=(for <), >= (for

>), 1= (for #)

The selection of single elements of a composite type is performed using the sadalled
operator. As this operation can be induced as well, RasML supports the operator in
combination with multi-dimensional expressions.

sum cel | s( <ndd_exp> ) sum_cells( <ndd_exp> )

mul t _cel | s( <ndd_exp> ) mult_cells( <nmdd_exp> )

avg_cel | s( <ndd_exp> ) avg_cdls( <ndd_exp> )

m n_cel | s( <ndd_exp> ) min_cells( <nmdd_exp> )

max_cel | s( <ndd_exp> ) max_cells( <ndd_exp> )

sorme_cel | s( <ndd_bool ean_exp> ) some_cells( <ndd_bool ean_exp> )
all _cells( <ndd_bool ean_exp> ) all_cells( <ndd_bool ean_exp> )
count _cel |l s( <ndd_bool ean_exp> ) count_cells( <ndd_bool ean_exp> )

Table 17 RasML: Aggregation Operations

Table 17 summarizes RasML statements for derived aggregation operations. The first ones
take general MDD expressiorstdd_exp> as parameters whereas the last three depend on
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expressions resulting in MDD values with base type boolean denoted by
<ndd_bool ean_exp>.

Additionally to the presented multi-dimensional operations, RasML supports conventional
operations on scalar values as well as scalar and multi-dimensional constants in order to build
multi-dimensional expressions.

Example 6.4 In the following, we repeat the algebraic expression of the query introduced in
Example 3.5 and show the corresponding RasML statement:

Ot trimming 1.100, 1:200)( Sectiong gpq(cube)) (

O'some_cells( trimmingy 190;310,20:100]( %2tioN3 300  SUbe >t jng 127) ) andyip jng Mask) (MRI' > ROI')

)

sel ect cube[ 1: 100, 1: 200, 300]
from M as cube, RO as nask
where sone_cells( (cube > 127)[190: 310, 20: 100, 300] and mask )

Update Queries
According to SQL-92, RasML supports so called update queries able to change the state of a
database. The following statements are used to create and drop collections respectively.

create coll <coll> <type_nane>
drop coll <coll>

Both statements get the collection name <col | > whereas the collection type name
<t ype_nane> only hasto be provided to the creation statement. The type name must match a
collection type name available in the RasDaMan schema (see Section 6.2.1).

MDD elements are inserted into the collection using the insertion statement. It has the
following syntax:

insert into <coll> val ues <ndd_exp>

The result of the MDD expression <ndd_exp> is inserted into the collection with name
<col | > provided that the attribute domain specification is fulfilled.

Deletion of specific elements of a collection can be performed using the following delete
statement which deletes the elements of collection <col | > evaluating boolean expression
<ndd_bool ean_exp>totrue.
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del ete from <col |l > where <ndd_bool ean_exp>

The RasML update statement alows partial updates on MDD values. It has the following
syntax:

updat e <coll >
set <attribute> <m nterval _exp> assign <ndd_exp>
where <ndd_bool ean_exp>

The statement updates MDD values of collection <col | > fulfilling the selection predicate
<ndd_bool ean_exp>. <at t ri but e> stands for the multi-dimensional attribute of the target
collection to be updated. In case dimensiondlities of <attribute> and the multi-
dimensiona result of <ndd_exp> are equal and the attribute domain specification is not
violated, the cells of <ndd_exp> are copied to the corresponding cells of the update target.
<m nt erval _exp> is optiona and can be used to specify the update layer of a multi-
dimensional target attribute in case that its dimensionality is higher than the dimensionality of
the source expression.

Example 6.5 An application scenario is, for instance, piece-wise insertion of two-
dimensional computer tomogram records into a three-dimensional reconstruction of the data
cube within the array database. Let CT be a collection of three-dimensional tomograms and
variable $sl i ce carry the next image in plane xy produced by the CT device. The following
query updates slice 80 of the CT cube identified by object identifier $i d.

update MRl as cube
set cube[*:*, *:*, 80] assign $1
where oid( cube ) = $id

Note: Function oi d( cube) returns the object identifier of the collection element referred to
by cube. Asthe function is not relevant for this work a more precise definition is omitted.

6.3 Query Processing M odules

RasDaMan is designed and implemented solely using object-oriented design methods and
C++ as object-oriented programming language [Fur97]. This section describes the object-
oriented design of query processing modules responsible for internal query representation
and for the query processing phases query analysis, optimization, and execution.
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6.3.1 Internal Query Representation

RasDaMan uses an operator-based query tree
similar to the one defined in Section 4.1 for
internal, procedural representation of RasML /\

queries. The decision for an operator-based | |

query tree instead of, e.g., an object-based Q ONCStream| | Q Qperation
representation was supported by suggestions
made in [Mit95]. The nodes of the query tree
are instantiations of classes of the Query Tree
Class Hierarchy. Following the distinction
between set trees and element trees made in Section 4.1, the class hierarchy is partitioned into
classes derived from Q ONCSt r eam responsible for set trees and into classes derived from
Q Oper at i on building element trees. All classes are derived from Q@ Node which provides
general tree functionality, such as different traversal strategies (pre-order, in-order, post-
order) or consistency checking for father-son relationships, as well as definitions of virtual
interfaces for semantic analysis, optimization and execution phases. These interfaces are
described more detailed in sections 6.3.2, 6.3.3, and 6.3.4.

Q Node

Figure 31 Root Part of the
Query Tree Class Hierarchy

Set trees consist of relational operations (see Section 3.3) as inner nodes and nodes
representing MDD collections as leafs. All set nodes support the so called open-next-close
protocol (described in Section 6.3.4) which is offered by class @ ONCSt r eamand passed to
its subclasses. Figure 32 shows the corresponding class hierarchy. Classes Qt Sel ect i on,
Q Application, and Q CrossProduct represent relational operations. They are put
together under class @ I t er at or in order to support their common input signature which is
tuples of MDD values,

Q ONCSt r eam

| = |

Q Col | Access Qlterator

| /I\ |

Q Sel ection Q Application | |Q CrossProduct

Figure 32 Class Sub-Hierarchy for Set Trees

Element trees represent multi-dimensional expressions and consist of MDD and logical
operations as nodes and MDD iterators and constants as leafs. An excerpt of the class
hierarchy used for node instantiations in element trees is presented in Figure 33. Their
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common super class Q Oper ati on defines an interface for the evauation of general
expressions getting the probing tuple as input parameter. Operation classes are partitioned
into unary, binary, and n-ary operations which allows functionality depending on the number
of their input parameters to be defined in a common super class. All of the multi-dimensional
operations defined in sections 3.1.3 and 3.1.5 have their counterpart in the class hierarchy.
Classes Qt Poi nt Op, Q@ I nterval Op, and @ M nterval Op are used to define dynamic
points, intervals and multi-dimensional intervals respectively.

Q@ Qperation

N

Q Const Q Vari abl e Q UnaryQp Q Bi naryp Q NaryOp

‘ | )\ |

Q Interval O Q Bi naryl nduce

Figure 33 Class Sub-Hierarchy for Element Trees (excerpt)

6.3.2 Query Analysis

In the first step, the lexical analyzer transforms the query string into a sequence of tokens
while checking on lexical correctness. Then the language parser checks for syntactical
correctness with respect to the grammar description. During the parsing process, the query
tree is constructed. From that point on, all remaining actions for evaluation of the query are
performed on the operator-based query tree.

The next step is the so called semantic analysis phase. First, existence and validity of
collection and attribute names as well as of variable names is examined and, second, the
guery tree is augmented with type information received from the Catalog Manager in order to
be able to check type correctness of multi-dimensional expressions. The complete semantic
analysis process is performed within one post-order traversal of the query tree. The necessary
interface is provided in class @ Node and looks like:
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Q Type Q Node: : checkSemantics( Q TypeTupl e )

Each node triggers semantic checking of its descendants (input streams) by passing a type
tuple (Q TypeTupl e) for type information on free variables which will be bound during
execution. The returned types (Q Type) are used for semantic analysis of the node itself. In
case that the semantic analysisfails, an exception is raised.

6.3.3 Optimization Phases

Query optimization in RasDaMan is currently divided into four levels (0 to 3) with the
meaning that the higher the optimization level the more optimization techniques are
employed. Higher optimization levels include optimization techniques of lower ones. The
following table gives an overview on the techniques applied at each level:

Level Description

0 Load optimization.

Standardization and heuristic rewriting.

1
2 Simplification of constants and elimination of redundant terms.
3 Exploitation of common subexpressions.

Table 18 RasDaMan Optimization Levels

The optimization level can be specified as a command line argument of the server which
restricts the optimization level for all queries processed by the server. It can be further
restricted on query level stating a so called optimization hint embedded in a RasML query
comment.

Transformation rules are hard-wired and, following the object-oriented paradigm, each rule is
attached to the particular operation class corresponding to the root class of the subtree
representing the query pattern of the rule. This means that each query node possesses the
information on how its subtree can be rewritten. This design ensures easy maintenance of
inherently complicated code and comfortable extensibility of the rule system athough no
optimizer generator is used (e.g., [Gra87]).

Level O

Load optimization (cf. Section 4.2.1.1) of level 0 is achieved by moving geometric operations
to the leaf nodes of Dimensional Data Areas (DDAS, defined in Section 4.1). This starting
point of a DDA is either (1) an MDD variable, (2) an MDD constant, or (3) an marray
constructor. In case (1), MDD variables are augmented with their so called load domains
which is the smallest spatial domain sufficient for evaluating the whole expression. Case (2)
means to cut the constant and, in case (3), the definition domain of the marry constructor is
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reduced. Therefore, all nodes support an interface for pre-order traversa called
Q Node: : preOptim ze() which, right now, just takes care for top-down load
optimization.

Leved 1

Optimization level 1 consists of query rewriting for standardization and heuristic optimization
purpose. The standardization process basically follows the one described in Section 4.2.2
except of the evaluation of constant subexpressions which, right now, is performed in
optimization level 2. The interface @ Node: : st andar di ze() supports a pre-order traversal
for top-down application of standardization rules. Additionally, the standardization process
produces a unique tree structure for associative and commutative operations by building left
deep trees and by defining a total order on subtrees. This ensures a higher detection rate for
common subexpressions exploited on level 3. The rewriting process applies some of the
optimization rules described in sections 4.2.1.1 to 4.2.1.3 following the heuristics described in
4.2.3 except for the movement of geometric operations as they were treated at optimization
level O aready. The interfaces used are @ Node: : rewr i t eOps() for top-down application
of rulesand Q Node: : checkl denpot ency() which is used bottom-up. Optimization rules
concerning relational operations described in Section 4.2.1.4 are not supported yet.

Levd 2

Simplification of constants is performed using interface Q@ Node: : si nplify() which
performs a post-order traversal. Subtrees which are just composed of constants and operations
are evaluated using the evaluation strategy described in the next section and substituted by a
constant representing the result of the evaluation. This substitution process is performed
bottom-up thereby evaluating al constant subexpressions.

Level 3

Level 3 performs exploitation of common multi-dimensional subexpressions as described in
Section 4.2.4. The detailed algorithm for detection of common subexpressions can be found in
the Diplomarbeit (master thesis) of A. Haftmann [Haft97]. Basicaly, the interface
Q Oper at i on: : seeSubexpr essi on() tries to extend equal leaf nodes of the element
trees in order to get a set of expressions occurring at least twice. The final decision for
employing a common subexpression, as well as its integration into the query tree, follows the
technique described in Section 4.2.4.

6.3.4 Execution Process

The query execution strategy in RasDaMan follows the demand-drive strategy described in
Section 4.3.1.4. Right now, the operator based query tree is used for execution as well. The
object-oriented paradigm suggests to attach execution algorithms (equal to physical plan
operators) directly to operation nodes of the query tree. Set trees and element trees follow
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different execution strategies. While set trees evaluate on tuple granularity, element trees pass
scalar or multi-dimensiona values. The tile-based execution strategy developed in Section
4.4.1 is not supported yet.

Each node in the set tree realizes the so called open-next-close protocol by implementing the
following interface derived from class @ ONCSt r eam

voi d Q ONCSt ream : open()
voi d Q ONCSt ream : next ()
Q Tupl e @ ONCSt ream : cl ose()
voi d Q ONCStream :reset ()

First, method open() is invoked on the root node. In a post-order traversal, the method
invocation is propagated through the query tree while initializing stream inputs, collection
iterators, and other resources. Then, method next () is invoked repeatedly on the root node
which again is propagated in a post-order traversal through the complete tree. Each time the
method completes, this bottom-up process returns one element of the result collection. It
indicates the end of the evaluation process through an exception. At the end, method
cl ose() iscalledto clean up resources alocated during execution. Method r eset () is used
to put back the data stream of a node.

Nodes of element trees support the interface @ Dat a eval uat e( Q Dat aTupl e ) derived
from Q Oper ati on. The method is called from set nodes of type Q Appl i cati on and
Q Sel ecti on. It takes the probing tuple in order to be able to bind free variables and
eval uates the expression represented by the element tree from bottom to top.

6.4 Summary

We have presented an SQL-based query language which realizes the functionality of our
embedded array agebra developed in Chapter 3. Further, we have described the query
processing modules of the running Array DBM S RasDaMan implementing optimization and
evaluation techniques of Chapter 4. Both demonstrate practical feasibility of our theoretic
work.
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Chapter 7
Performance Sudies

The aim of this chapter is to demonstrate the practical impact of the presented array
optimization and evaluation techniques. For this purpose, we describe severa performance
studies performed with the Array DMBS RasDaMan of which we have described the
implementation of components relevant to our work in the previous chapter. The first
subsection introduces the benchmarking testbed. It is followed by two subsections describing
application scenarios based on synthetic and real-life data/queries respectively. Finaly, the
experimental results are summarized.

7.1 Benchmarking Testbed

The benchmarks are performed on a Sun Ultra 1 with 140 MHz and 256 MB main memory
running the RasDaMan DBMS version 3.5 [Ras99]. As the focus of our measurements is set
on query processing time and not on network transfer time, all processes, which means base
DBMS, RasDaMan server, and RasDaMan client, are running on the same machine. The
system configuration allows to measure query preparation and optimization time (top), index
search time (tingex), tile 1/0 time (tio), CPU processing time (tcp), and network transfer time
(twans). The total time needed to process a query, called query processing time (tqp), as well as
the overall query response time (tresponse) are calculated from its time components above. Table
19 summarizes measured and cal culated time components respectively.



110 Chapter 7

Time Description

topt Time used for parsing, analyzing and optimizing the query.
tindex Time spent in the index module.

tio Time used for loading tiles from the base DBMS.

tepu CPU-time used for query execution.

top Total time needed for query processing (topt*tindexttiottepu)-
tiransport Time needed to transport the query result to the client.
tresponse Overall query response time (tgp+trangport)

Table 19 Query Processing Time Components

We assess optimization benchmark scenarios with the so called speed-up parameter which is
the relative processing time acceleration in percent achieved by the optimization process. It is
defined as follows:

Definition 7.1 (Speed-up) Let t denote the original time and t' be the new time value, then the
speed-up sp;¢ is defined as:

-H-t
Spt,t’_g‘ t@:loo 0

7.2 Synthetic Scenarios

The synthetic benchmarking scenarios use artificialy generated data sets and queries. The
queries are mainly chosen with regard to their demonstration suitability for specific array
optimization techniques. Nevertheless, the applied queries use operations typical for many
application areas because the choice of our optimization techniques has been driven by
deficiencies observed in practice.

At first, we present a typical time composition diagram for retrieval array queries followed
by an examination of CPU times occurring with computational array queries. It follows an
evauation of the optimization impact of MDD expression rewriting, extended relational
rewriting, and CSE exploitation on the query processing performance.

7.2.1 Time Components of Retrieval Array Queries

The first class of queries to be examined are the so called retrieval array queries. In
accordance with Definition 5.1, these queries just consist of relational operations and multi-
dimensional geometric operations, i.e., trimming or section operations. As a consequence of
this definition, retrieval array queries have no selection condition on multi-dimensional
attributes.
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The MDD collection bntl used for this benchmark holds 100 MDD objects of type [[char,
[1:2000,1:2000], regular[1:100,1:100] ]], i.e., their sizeis4 MB and they are subdivided into
400 equally sized and shaped tiles of size 10 kB each (20 tiles in each direction) leading to an
overall database size of 400 MB.

Figure 34 shows the applied query configuration. The retrieval query performs a trimming
operation on each MDD object of collection bnil. The right border of the query box depends
on variable x which takes values from 1 to 1000 in steps of 25.

sel ect a[1l:x,1:2000]
from bnl as a

Figure 34 Benchmark Configuration for Retrieval Array Queries

The purpose of Figure 35 is to present an overview on the composition of the response time
for retrieval array queries. The composition diagram includes all time components of Table 19
depending on the number of cells per MDD object belonging to the query result set.
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Figure 35 Query Response Time Composition for Retrieval Queries

We can observe that the query response time is dominated by the client-server transport time.
tiransport 1NCreases step-wise because of block transfer but its gradient is nearly linear with a
throughput of about 1 MB per second. The time needed by the index (tingex) iS cOmparatively
small. Basically, tingex jumps with the number of tiles to read and its level depends on the
selectivity occurring in each dimension. More detailed examinations about the spatial index
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used in RasDaMan can be found in [Fur98]. The remaining time components, namely toy, tio,
and tcpy, are of special interest for this work and, hence, they are examined more detailed in
the following. Astyy isindependent of the amount of data processed and both tc,, and tj, scale
amost linearly with the number of MDD objects, we restrict the following benchmark
presentations to times needed to process single MDD objects.

Figure 36 plots the time components toy, tio, and tep, together with the number of tiles (#tiles)
to be read in dependence on the number of cells to be processed.
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Figure 36 Query Processing Time Components for Retrieval Queries

The following observations can be made:

Parsing, analyzing, and optimizing retrieval queries (summarized in time toy) takes
constant time in the scale of 9 ms. As a rough approximation, to,: depends linearly on the
number of operations used in multi-dimensional expressions:

topt =2 Ms* #operations+ 7 ms

tio depends on the number of tiles to be read. Due to the load optimization described in
Section 4.2.1.1, the number of tiles to be read is independent of MDD or database size. It
rather depends on the number of tiles sufficient to compute the result of the query. In our
configuration, reading one 10 kB tile needs 3 ms on average. It should be remarked that
larger tiles would be more appropriate with respect to sequential disk access. As our
configuration uses 4 kB disk pages, one tile consists of only 2.5 disk pages which is not
enough to compensate the performance penaty of random disk access. A detailed
examination of different tile sizes as well as a discussion on sequential vs. random tile
reading is given in [Fur99]. The pesks at the beginning of ranges with constant tile
numbers are due to cache load (cold access) of the base DBMS server. Reads directly
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following the peaks are warm accesses. The cache effect is small and hence neglectable
because the cache size of the base DBM S was set to a minimum.

- tepu INCreases in a saw-tooth manner depending on the number of tiles lying completely in

the query box and the number of cells lying in the query box but not within completely
enclosed tiles, the so called border tiles. Completely enclosed tiles can be processed very
efficiently as just whole memory blocks can be copied. Border tiles have to be trimmed
which means that cells intersected by the query box have to be copied with an expensive
multi-dimensional iteration. At the local minimums of the plot, the query box consists of
completely enclosed tiles exclusively which are copied most efficiently. Then the CPU
time increases linearly with the number of cells lying within border tiles until they are
completely overlapped by the query box again. Therefore, best performance is achieved if
the query box just overlaps complete tiles (no border tiles) while the worst performance
occursif tiles dlightly jut out the query box (border tiles with maximal size).
Further it should be mentioned that the time needed to trim border tiles depends on the
selectivity in each dimension. As multi-dimensional tiles are linearized in main memory,
the densely stored dimension can be copied most efficiently. As this is the highest
dimension in RasDaMan, the operation is the more efficient the less selective the
trimming is in the highest dimension and the more selective it is in the rest of the
dimensions.

As a rough approximation valid for this system and tiling configuration, the CPU time
increases linearly with an average gradient of 20 ns per cell.

A detailed examination of the CPU timeis given in Section 5.1.1.

Summarizing, it can be stated that query processing time for retrieval queries is clearly
dominated by 1/0O costs. The time strongly depends on the tiling layout which should
minimize the area difference between the union of concerned tiles and the query box. For
further reading about tiling we refer to [Fur99].

7.2.2 Time Components of Computational Array Queries

Computational array queries, as defined in Definition 5.2, consist of at least one multi-
dimensional non-geometric operation, i.e., aggregation or induced operation. Now we present
an examination of computational array queries with exactly one non-geometric MDD
operation, namely unary induce operation, binary induce operation and reduce operation. For
this purpose, we use the database introduced in Section 7.2.1 and apply the following queries:
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select f( a[l:x,1:2000] )
bml as a

from

Figure 37 Benchmark Configuration for Computational Array Queries

The computational query applies function f on a subarea of each MDD object of collection
bmi. The right border of the subarea depends on variable x which again takes values from 1
to 1000 in steps of 25. Function f stands for a non-geometric function. We use a+1 as a
representative for unary induced operations, a+a for binary induced operations, and
sone_cel | s(a) for reduce operations.

Figure 38 plots the measured I/0O and CPU times while processing one MDD value for each of
the three query types.
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Figure 38 1/0 and CPU Time for Computational Array Queries

— Since the amount of data to be read is the same for each query type, they all share the
same |/O time. Analogously to Figure 36, the 1/0O time depends on the number of tiles
overlapped by the query box. One 10 kB tileis read in approximately 3 ms.

— As aready observed in Section 5.1.1, the CPU times of unary induced, binary induced,
and reduce operations rise strictly linearly with the number of cells visited. The binary
induced operation has the largest gradient (820 ns per cell) because it has to perform more
expensive tasks per cell values: (1) read the current cell values from its operands, (2)
compute the result, (3) store the result in a multi-dimensional array. Unary induced
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operations are dlightly faster (641 ns per cell) because task (2) just needs to read one cell
and the gradient of reduce operations is even smaller (540 ns per cell) because the final
result is kept in a CPU register and has not to be copied to an array in task (3) [Wid9g].

If we compare the gradients of CPU times for computational array queries with their 1/0 time,
we can record that 1/0 is faster by a factor of about 1,8 to 2,7. Just in case a computational
guery operates on very view cells (with this query environment in the scale of 1500 cells) the
I/0O time gets larger than the CPU time which is aimost a pathological case for our
applications. Therefore we state that query processing becomes CPU-bound already in the
presence of at least one non-geometric multi-dimensional operation.

7.2.3 Performance I ncrease of MDD Expression Rewriting

MDD expression rewriting as described in Section 4.2.1 ams at eiminating multi-
dimensional operations or at replacing multi-dimensional operations by scalar ones. As an
example for the potential speed-up of MDD expression rewriting, we consider the application
of the associative law for induced operations as described by optimization rule OR11. We
again use the query configuration of Figure 37 with computation function f being equal to
expression (a*ig ind5) *ieit ind 2. During optimization, f is rewritten to a* et ina (5* 2)
thereby replacing one of the two multi-dimensional operations by a scalar one. Figure 39 plots
the query processing time per MDD value necessary for evaluation of the non-optimized and
the optimized query plan in dependence on the number of cells processed together with the
relative speed-up in percent.
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Figure 39 Query Processing Speed-up of MDD Expression Rewriting
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As query processing time of computational array queries is dominated by the CPU time of
multi-dimensional operations, the replacement of one multi-dimensiona operation out of two
with ascalar one resultsin an overall speed-up converging to about 50%.

7.2.4 Performance Increase of Extended Relational Rewriting

For demonstration of the performance increase achievable by extended relationa rewriting,
we take up again Example 4.3 which describes the movement of the selection subexpression
Cube€y190:310, 20:100, 300] left_ind 127 into the cross product x using rule OR37.

The benchmark database consists of the collections MRI and ROI:

— MRI with 1 MDD object of type [[char, [1:512, 1:512, 1:512], regular[1:32,1:32,1:32] ]]
— ROI with 400 MDD objects of type [[boolean, [190:310, 20:100], regular[1:121,1:81] ]]

One object of collection MRI has 134 MB and is tiled using a regular grid with edges of
length 32 resulting in 4096 tiles of size 32 kB. The masks of collection ROI are stored in one
tile each with about 10 kB in size. The original query statement for the benchmark looks as
following:

sel ect cube[ 1: 100, 1:200, 300]

from M as cube, RO as mask

where sone_cells( cube[190: 310, 20:100, 300] > 127c¢ and
mask[ 190: 310, 20: 100] )

The benchmark query set varies the cardinality of collection ROl because the performance
increase mainly depends on the ratio of the cardinality of collection ROI to the cardinality of
the cross product. Figure 40 plots CPU time (tcpy) and query processing time (tqp) for the non-
optimized plan as well as for the optimized plan rewritten according to Figure 9, together with
their corresponding speed-ups.
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Figure 40 Query Processing Speed-up of Extended Relational Rewriting

The CPU time necessary for the computation of expression cube19o:310, 20:100, 300] >left ind 127 1S
about 24 ms which is saved |MRI|* ([ROI|-1)=(JROI|-1) times. The CPU time
improvement of about 33% with 400 masks in ROI leads to an overall query processing
speed-up of about 28%. This result can be supported theoretically using the Array Cost Model
of Chapter 5. Based on the experience that query processing time of computational queriesis
determined by the CPU time of multi-dimensional operations, we just take into account the
variable time component of the CPU time for multi-dimensional operations in order to
calculate the CPU time t necessary for evaluation of the non-optimized plan and t' for the
optimized plan:

t
t’

|ROI|* IMRI|* ( CpUV(eq + CPUVying + CPUVping )
IROI|* [MRI|* ( CPUVred + CPUVbing ) + [MRI|* CpuVying

Using the query environment described by Table 9 the asymptotic speed-up™ spy is
computed as following:

cpuv . cpuv .
P = IimEF P ng - P na H]OO'-:SZ%
ROI[~ 0 [LPUV, ogF CPUV,; 1T CPUV,; g |ROI|[GCpuvred+Cpuvuind+Cpuvbind)

As the number of cells being processed per tuple is comparatively small (about 10000) the
difference between query processing time speed-up and CPU time speed-up is in the scale of
5%. It isthe smaller the more cells are involved in the computation.

13 asintroduced with Definition 7.1
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7.2.5 Performance I ncrease of Common Subexpression Exploitation

In order to demonstrate the performance increase achievable by exploiting common multi-
dimensional subexpressions as described in Section 4.2.4 we again use the database
introduced in Section 7.2.1 and apply the following query configuration with variable x
ranging from 1 to 2000 with increasing steps:

select (a * b)[1:x,1:2000]
from bml as a, bnl as b
where sone _cells( (a * b)[1:x,1:2000] >= 2 )

Figure 41 Benchmark Configuration for Common Subexpression Exploitation

Exploitation of the common subexpression (a * b)[ 1: x, 1: 2000] leads to a query plan
similar to the one described in Figure 10. Query processing time per MDD value necessary to
eva uate the non-optimized plan as well as the optimized plan in dependence on the number
of cells processed is plotted in Figure 42.
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Figure 42 Query Processing Speed-up of CSE Exploitation

The non-optimized query consists of one unary induced, two binary induced and one reduce
operation. The optimized query plan saves the computation of one binary induction. Detection
of the CSE and query rewriting just takes about 6 ms. As query processing time is dominated
by the CPU cost for multi-dimensional operations, the optimization reduces the overal
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processing time asymptotically to (CpuVieq + CPUVying + CPUVpbing) / (CPUVred + CPUVyind +
2*CPUVping) = 0,7. In other words, the speed-up converges to about 30%.

7.3 TheHuman Brain Database

In order to present some real-life experiences, we choose the European Computerized Human
Brain Database (ECHBD) described in [Fre99]. Within this EC Biotech project, a central
research database primarily consisting of 3-dimensional raster data images collected from
experiments and measurements on the brain is established on top of the Array DBMS
RasDaMan. The database offers some advanced, content-based query functionality to groups
of scientists all over Europe.

The database stores structural as well as functional data of the brain. The structura or
microstructural data in the ECHBD consists of cytoarchitecture and myeloarchitecture
information collected from post-mortem brains, basically by cutting the dead brains. The main
in vivo technigques used to produce functional data are Positron Emission Tomography (PET),
Functional Magnetic Resonance Imaging (fMRI), and MagnetoEncephaloGraphy (MEG).
One of the central research tasks is now to spatially correlate functional maps with structural
densities of the brain to determine the structural/functional relationship, e.g., to detect where
the working memory is located. As brains of different sizes and shapes are not comparable a
priori, they are first transformed to a standardized brain format by the BrainFit algorithm
[Lin96] which uses continuous mappings, guaranteeing that the environment of each point is
mapped to the environment of the transformed point, thereby preserving the topology.

7.3.1 Data Description

Our experimental database holds one data cube representing cytoarchitectural areas
(collection Cytoarch) and a collection of 20 different 3-dimensional data cubes representing
PET studies (collection PET). Each cube has a spatial domain of [0:140, 0:149, 0:184] and 2-
byte cell values resulting in 7.8 MB per cube and about 160 MB for the database.

7.3.2 Queries

The magjority of queries appearing in the ECHBD application first computes areas exceeding a
certain threshold and then combines corresponding structural and functional data by set-
algebraic operations before they filter out studies where the resulting area is below a certain
percentage. The queries can be described by the following skeleton:

14 using the query environment described by Table 9
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select ( ( a>ta ) op ( b>tb ) )[voi]

from Cytoarch as a, PET as b

where count _cells( ( ( a>ta ) op ( b>tb ) )[voi] )
/[ |voi| * 100 > tmin

with voi ... volume of interest (spatial domain)
| voi| ... number of cellswithinvoi (i nt eger)
ta ... threshold for cubes a (integer)
th ... threshold for cubes b (integer)
op ... set-algebraic operation:

intersection (and), union (or ),
difference (and not ), symmetric difference (xor)
tmin ... minima percentage of the result area (integer)

Based on the experience gained in Section 5.1.1 that costs are independent of the type of
binary induced operations, we restrict our experiments to the following simplified query set
with voi denoting the spatial domain [0:107,36:107,0:x]. The query set varies x within 0 and
180 in steps of 10.

select (( a>100 ) and ( b>200 ))[voi]
from Cytoarch as a, PET as b
where count _cells(( ( a>100 ) and ( b>200 ))[voi] > 0

The query set suggests the several optimizations which are examined in the following:

1. Load Optimization Trimming operations [ voi ] can be moved down to MDD sources,
i.e., variables a and b. Both the initial query tree and the load optimized query tree are
presented in Figure 43. Note that |oad domains of MDD variables are written as subscript.

2. CSE Exploitation The expensive subexpression ((a>ta) op (b>tb))[voi] occurs
twice and can be evaluated just once. The rewritten plan exploiting the multi-dimensional
CSE isdepicted by the left query tree of Figure 44.

3. Extended Relational Rewriting Sub-expressionsa>t a and b>t b can be moved into the
cross product operation. The right query tree of Figure 44 shows the query tree after the
application of extended relational rewriting using rule OR37.



Performance Studies 121

'y \ P -
7 ~N
' ~N

andyn i
in_ind
>|eit_ind >|git_ind
7 ~N
- 4 4

Ga) Ca) Ba) (o)
a) Ca) ) (o

[
o ] 2 R =
count;;:ells ( O ) [COUﬂt;CdlS] C 0 )
A
7 ~N

d in_in // \\
% % laner ] C ta ) (bpar] ( th )
Cb)

) G @

H

Jol

| Cytoarch(@) | | PET(b) | | Cytoarch(a) | | PET(b) |

Figure 43 ECHBD Query: Initial Query Tree & Load Optimization

E}- -t gmp

EX ( ta) (bwar ] C ib )

[ >left ind a | | a I‘Z—[ >left_ind ]
x b4 ‘ A A 4 \
| Cytoarch(a) | | PET(D) | | Cytoarch(a) | | PET(b) |

Figure 44 ECHBD Query: CSE Exploitation & Extended Relational Rewriting



122 Chapter 7

For practical examination of the three query plans, we ensure that the evaluation strategy does
not make use of any runtime-idempotency optimization or lazy-evaluation technique, i.e., al
data is processed in any case independently of its particular content. Figure 45 presents the
guery processing times of the three different optimized query plans together with the relative
speed-up resulting from their individual optimization technique. The size of the query box and
with it, the number of result cells are varying on the abscissa.
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Figure 45 Query Processing Speed-up of Human Brain Database Application

Evauation of the query tree without any optimization, i.e., the initial query tree, takes about
419 seconds almost independently of the number of cells in the query result. This means that
in this case, the speed-up of the load optimized query plan ranges from 50% to 98%
depending on the size of the query box.

CSE optimization provides an additional asymptotic speed-up of about 42%. This observation
can be proved using the Array Cost Model of Chapter 5: As CSE exploitation eliminates two
unary and one binary induced operation, the overall asymptotic speed-up computes to
(CPUVieg + 2*CPUViing + CPUVbind) / (CPUVred + 4*CPUVying + 2*CPUVping) =~ 0,56 which
corresponds to 44%. It should be noted that in this case the speed-up gained through CSE
exploitation depends only on the number of cells processed and not on the number of MDD
values processed.

On the other hand, the speed-up of about 15% resulting from extended relational rewriting
depends on the number of MDD values processed. With n; = |Cytoarch| and n, = |PET|, we
save exactly (ny*np-ng) + (N*Nn-ny) unary induced operations. For our benchmark scenario,
we have ni=1 and np,=20 resulting in an asymptotic speed-up of (20*(CpuVieq+

15> using the query environment described by Table 9
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CPUV4ing+CPUVbing) + CPUVuind ) / 20* (CPUVreq+2*CPUVying+CPUVbing) =~ 0,77 or 23%. In
order to come closer to the asymptotic speed-up, more MDD tuples would have to be
involved.

7.4 Summary

We have presented performance measurements of retrieval array queries, computational array
queries, and selected optimization scenarios using the RasDaMan Array DBMS. The results
confirm that retrieval array queries are 1/0O-bound which makes the tiling layout crucial for
their response time. Computational array queries are dominated by the CPU time which
increases with the number of multi-dimensional operations and the number of cells being
processed. The synthetic benchmarking scenarios concerning optimization techniques use
representative queries out of the optimization categories MDD expression rewriting, extended
relational rewriting and CSE exploitation. Their common aim is either to eliminate multi-
dimensional operations or to reduce the amount of data the operations have to be applied on.
The achievable asymptotic speed-ups are proportiona to the ratio of the remaining to the
original number of multi-dimensional operations per data.

Further, we have presented a real-life application, namely the Computerized Human Brain
Database, which makes use of the array functionality and query optimization presented. The
applied optimizations are load optimization, CSE exploitation, and extended relational
rewriting. The speed-up resulting from load optimization directly depends on the ratio of
MDD size to query box size, in our case between 50% and 98%. CSE exploitation achieved
additional 42% and extended relational rewriting additional 15% speed-up which proves
practical relevance of the presented optimization techniques.

It has been demonstrated that the measured performance speed-ups can be proved
theoretically by using the Array Cost Model developed in Chapter 5.

Database sizes used for our practical evaluations are in the scale of severa 100 MB. The
observations made on 1/0 and CPU time scale amost linearly for larger databases. Query
processing in RasDaMan has the restriction that query result and cross product operands have
to fit into main memory. As a consequence, /O for intermediate results occurring with very
large databases is not considered yet. It isleft open for further investigations.

16 using the query environment described by Table 9
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Chapter 8
Conclusion and Future Work

In an increasing number of occasions, multi-dimensional arrays are recognized as the natural
data structure for a broad range of structured information, such as time series, images, audio,
video, sensor, simulation data and many more. As these data sets are usually huge in size and
require advanced access functionality in multi-user environments, application domain-
independent array services have to be integrated into conventional database management
systems.

In this thesis, we have presented an Abstract Data Type (ADT) for such multi-dimensional
arrays of any cell type supporting a comprehensive set of operations essential and common
for various application fields. On the logical level, we have formally developed a novel
integration of multi-dimensional arrays into an adapted relational data model which explicitly
considers expensive expressions on arrays. On the physical level, a speciadized storage
architecture based on arbitrary tiling of the array data has been assumed. Both together serve
as the basis for the development of diverse optimization and execution strategies enabling for
fast array processing and retrieval. The main optimization and evauation techniques
developed in this thesis can be summarized as follows:

— We have proposed a comprehensive list of algebraic transformation rules together with an
application heuristics which aim at reducing the number of array operations and
minimizing the number of tuples on which expensive predicates have to be evaluated. We
present some practical query scenarios where these optimizations lead to an overall query
processing speed-up between 30 and 40%.
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— We have developed an advanced technique for the exploitation of multi-dimensional
subexpressions, again, reducing expensive operations on multi-dimensional arrays. A
typical query scenario shows an additional speed-up of about 30% compared to
straightforward evaluation.

— We have presented specialized physical plan algorithms for multi-dimensional operations
together with the novel tile-based execution strategy of multi-dimensional (sub-)
expressions. Their benefits are (1) optimization of tile access sequences in order to
minimize tile reads and to maximize sequential disk access; (2) reduction of memory
requirements to a minimum; and (3) potential premature termination of expensive
expression evaluation.

— In order to be able to examine and describe the cost composition of array query
processing, we have established a dedicated Array Cost Model. It includes a novel
histogram-based approach for adequate selectivity estimation of expressions containing
operations on multi-dimensional arrays.

The techniques discussed are independent from any DB paradigm, they can be integrated in
both relational systems, where MDD-valued attributes become available, and in object-
oriented systems where they enable for MDD-valued objects.

Performance measurements in synthetic as well as in real-life environments showed that
geometric operations, i.e., retrieval array queries, are 1/0-bound. If any cell changing or
aggregating operation is involved, occurring in so called computational array queries, query
processing will become CPU-bound with a strong linear dependency on the number of cellsto
be processed. The measurements demonstrate that the benefits gained by the described
optimization techniques are considerable.

Practical usefulness of the techniques presented is proven by their integration into the
operational array DBMS RasDaMan [Bau97a, Bau98b]. The DBMS is currently used in some
international projects for medical, neuroscientific, and geoscientific raster data management.

While developing the work presented, several interesting research topics have emerged.
Among them are the following:

— Examination of intraaMDD operation parallelization considering the work reported in
[Jae98] to achieve better performance for computational array queries.

— Additional acceleration of CPU-bound computational array queries can be achieved by
moving expensive query subexpressions to the client which are responsible for the fina
preparation of the query result (array computations in the select-clause), thereby relieving
the DBMS server.

Considering the work described in [DeW90], one should move even more responsibility
to the client in case that expensive methods are supported (cf. object-oriented and object-
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relational systems). As a consegquence, a DBMS architecture employing atile server with
client-side query processing should be examined in more detail.

— Query processing can be further accelerated by providing additional specialized physical
plan operators. Demands have been identified for operation categories M4 and M5
(described in Section 3.1.4) and for specific combinations of the elementary operations
Marray Constructor and Condenser, e.g., for histogram computation.

— Since the current Array Cost Model is restricted to densely populated data and aligned
tiling schemes, future work may also investigate in relaxing these restrictions.

— Asit seems to be promising to employ multi-dimensional arrays for storing the fact table
of OLAP systems [Zha98], compression of sparse arrays and MDD operations
performable on the compressed data as well as precomputation of aggregates and their
consideration in the optimization process are of special interest.

Another approach to deal with sparse data would be to apply different clustering
techniques than rectangular ones, e.g., UB clustering described in [Bay97].

— Performance comparisons in the area of Array DBMSs suffer from the fact that no
standard benchmark is available. The definition of a standard workload (data and queries)
for Array DBMSs considering different application areas would be desirable and useful.
Array DBMSs with extended functionality appropriate for OLAP applications can be
examined using the TCP-D [Rab95] and APB-1 [Ola98] benchmarks.

— Array queries asking for the coordinates of cells with some specific property (e.g.,
maximum, ranking) require some kind of array sort operation as described in [Bau99]. Its
integration into the MDD model and into the RasML query language as well as its
consideration in the optimization and evaluation framework is left open for future work.
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Appendix A Notation

In order to facilitate reading of the document, the following character formats are used to
reflect semantics of identifiers:

Functions and variables are written in italic lower case: sect, sdom, dim, i, ...
Constants are written in non-italic lower case: n, m, Wepy, ..

Types and spatial domain instances are written in italic upper case: T, D, Cepy
Tuples (or vectors) are written underlined: x

Multi-dimensional values are written double underlined: a

Function arguments which are of non-MDD type may be written as subscript:
marrayp,x( &)

Type constructors and the spatial domain type are written using Greek |etters.

In the following, we give alist of frequently used identifiers:

positive integer numbers without zero

positive integer numbers including zero

integer numbers

real numbers

boolean values{ 0, 1} withO=falseand 1 = true
set of spatial domains (spatial domain type)

set of scalar, i.e., atomic (No, Z, R, 3B) and complex types
set of tiling layouts

atomic or complex type [0 1

spatial domain [J &

relations

scalar of multi-dimensional attributes 0 { T, [[T,D]] }
number of dimensions [ Ng

number of cell elements 0 Ng

scalar value O T

multi-dimensional values (1 [[T,D]]

vectors 0 Z¢

constants [ Ng

B NZZ
o

» . T o> VWO AX A o
(o W wm
=3

3 X
A
‘-3 -
“ﬂ
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Table 20 gives an overview on notations used for type constructors, types, instances, and
element accesses.

spatial MDD
tuple domain  value relation
type @) [[t.9]]
constructor
type (Ty,..., Tn), [T} <T> 0 [[T,D]] R(Ay,...,.An) =
with ;01 |with TOT  |(with TOt with TOrt, dom(Ay)%..xdom(A,)
DOd dom(A)O{[[1,9]], T}
instance t=(t1,....tn), [{ts,..ta}, [<ty,...tx>,|DOd  [@d[[T,D]] RO R(Ay,...,An)
with 40T, with tOT with tOT
element tOT; - 40T - laxoT t=(ty,...,tn)OR
access with x(ID t;Jdom(A;) or
t[A]Odom(A)

Table 20 Notation of Type Constructors, Types, Instances

Figure 46 presents the graphical notation used for visualizing query trees.

bin_ind

g

relational operation

multi-dimensional operation

scalar operation

dimensional data area (DDA)

—_———

scalar data area (SDA)

dataflow of relations
dataflow of single
multi-dimensional values

dataflow of single
scalar values

Figure 46 Query Tree Notation
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Appendix B List of Algebraic Transformation Rules

B.1 General Definitions

The description of algebraic transformation rules use the following identifiers:

Di,Di;,D,D’ 0J ... spatial domainswith D’ 0 D

T, Ti; 01 ... atomic or complex types

i ONo,vOZ ... integer numbers

e UO[[T:,Di]] ... expression resulting in amulti-dimensional value with base type T,
e 0T, ... expression resulting in ascalar value of type T;

b O[[B,Di]] ... expression resulting in a boolean multi-dimensiona value

bO3B ... expression resulting in aboolean value

A, B ... atributes with scalar or multi-dimensional domains
RORAL,....A),

SO 9By,...,By) ... relations

wO{ [[Ti,Di], Ti },

i Of [[Ti,Digll, T 3,

vil{ [[Ti.Di]]. Ti },

vi,{ [[Ti,Diglls Tij 3

w{ [[Ti,D]], Ti } ... scalar or multi-dimensional types

We use the operation symbolS oy ind, ©bin ind, ©left inds ©right ind fOr induced operations as
introduced in Definition 3.11. Operation symbols without any subscript (e.g., o, and or, not)
are overloaded, i.e., operation semantics depends on their operands’ type.

As introduced in Section 4.2.1, the list of transformation rules consists of standardization
rules numbered with Rn and optimization rules numbered with ORn. Both standardization and
optimization rules can be templates. In case rule Rn and ORn respectively represents a
template, its instantiations are numbered with Rn.m and ORn.m respectively.

B.2 Geometric Operations

trimmingo ( marraypx(e)) — marrayp x( &) (OR1)
section( marraypx( €)) - Marraysicep;vx( ) (OR2)
trimmingp( oun ind €1)) - ©un_ind trimmingp( &) ) (OR3)
trimmingo( -un ind €1)) - -un_ind trimmingp( €1) ) (OR3.1)
trimmingo( NOtun ind €1) ) — NOtun_ind trimmingp( €1 ) ) (OR3.2)
trimmingp( €1 opin ind€) — trimmingo( €1) ©bin_ina trimmingo( & ) (OR4%)

with opin ingJ { +, -, *,/,and, or, <, <, >, >, =, # } (OR4.1-OR4.12)
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trimmingop( €1 et ind &) — trimmingo( €1) ©left ind € (OR5)
with oy ing O { +,-, *,/,and, or, <, <, >, >, =, # } (OR5.1-OR5.12)
trimmingp( e Oright_ind €2 ) - € Cright_ind trimmingp( ;) (OR6)
with orign ina O { +,-,*,/,and, or, <, <,>, >, =, # } (OR6.1-0OR6.12)
sectioni,v( °un_ind( [S] ) ) - °un_ind( SeCtioni,V( (<] ) ) (OR7)
section; v( -un ind( €1) ) —  -un ind( SECtioniy( €1)) (OR7.1)
section;y( Notyn ind(€1)) —  NOtun ina( SECtion;( €1) ) (OR7.2)
section; \( €1 ©binind€) — Section;( €1 ) pin_ind SECtion; \( &) (OR8)
with opin inga O { +,-,*,/,and, or, <, <,>, >, =, # } (OR8.1-0OR8.12)
section;y( € et ind &) — Sectiony( €1) et ind € (OR9)
with ot ina O { +,-,*,/,and, or, <, <,>, >, =, # } (OR9.1-0OR9.12)
section;y( €1 ©right ind €) — €1 Oright_ind SECtioN; u( &) (OR10)
with orign ina O { +,-,*,/,and, or, <, <, >, >, =, # } (OR10.1-OR10.12)

B.3 Induced Operations

Commutative Rules

€1 %%inind€® - € Ohinind &1 (R1)
with Obin_ind O { + * and, or, =, + } (Rl.l—Rl.G)
€1 Cleit_ind €2 - € %t ind €1 (R2)
with Oleft_ind O { + * and, or, =, + } (R2.1-R2.6)
€l Oright ind €&  — €2 Oright ind €1 (R3)
with oyigne ina O { +, *, and, or, =, # } (R3.1-R3.6)
Associative Rules

(prop2)ops - pPro (P20 ps) (R4)
with o O{ +,*,/,and, or, =, + },

prO{e e}, pU{e e} ppl{eses} (R4.1-R4.56)

The optimizing rules saving one multi-dimensional operation look like

(&1 Oeft ind €2) ©leftind€  — €1 Oeft ind ( €2 bin €3) (OR11)
With o ing 0{ +*, /, and, or, =, # } (OR11.1-OR11.7)
€1 Oright ind ( €2 ©right ind €) — (€1 °bin €) ©rignt_ind €3 (OR12)

Wlth oright_ind |:| { +, *, /, and, Or, :, + } (OR121'0R127)
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Distributive Rules

(Pro2ps) e (P2o2pPs) —  (P1o1P2) °2Ps (OR13)
with ppO{e e}, pp0{ e e}, ps0{ & e},

(eg,00) O{ (+,*),(o0r,and), (and, or )} (OR13.1-OR13.24)

De Morgan’s Rules

not(py) exnot(pz) -  not(pio2pz) (OR14)
with p, p20{ b, b},

(e1,09) O{ (or,and), (and, or)} (OR14.1-OR14.8)

Idempotency Rules

p1Or pg - P1 (OR15)
with p,O0{ b, b} (OR15.1-OR15.2)
p1and py N (OR16)
with p; O{ b, b} (OR16.1-OR16.2)
p1 or not( pz1) - true (OR17)
with p; O{ b, b} (OR17.1-OR17.2)
prandnot(py) - false (OR18)
with p; O{ b, b} (OR18.1-OR18.2)
p, or false >  p1 (OR19)
with p;O{ b, b} (OR19.1-OR19.2)
p; and true >  p1 (OR20)
with pO0{ b, b} (OR20.1-OR20.2)
py Or true - true (OR21)
with p; O{ b, b} (OR21.1-OR21.2)
p; and false - false (OR22)
with pO{ b, b} (OR22.1-OR22.2)
prand (prorpz) - p1 (OR23)
with p;, p20{ b, b} (OR23.1-OR23.4)
pror (mandpz) - p (OR24)
with p, p20{ b, b} (OR24.1-OR24.4)

Note: true and false can either be scalar or multi-dimensional boolean constants.
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Double Negation Rule

not(not(py)) - m (OR25)
with p,O0{ b, b} (OR25.1-OR25.2)

B.4 Aggregation Operations

Rulesfor Quantified Expressions

some cells(piorp2;) — some cells(pi) or some cells(pz) (OR26)
with p, po0{ b, b} (OR26.1-OR26.4)
all_cells(prand py) - all_cels(py) and all_cdls( p2) (OR27)
with p;, p2o0{ b, b} (OR27.1-OR27.4)

Note: Quantifierson scalar values are defined assome _cells(b) =bandall_cells(b) =b.

some _cells( by) or all_cells( by) - some_cells( b;y) (OR28)
some _cells(by) and all_cells(by) - all_cells(by) (OR29)
some_cells( Notyn ind( b1)) - not(all_cells(b;)) (OR30)
all_cells( notyn ing( b1)) - not( some _cells( b)) (OR31)

Note: The number of cells of an MDD value never is zero. Therefore, the usual quantifier
definitions for no elements can be omitted.

B.5 Extended Relational Operations

Ocondg and conds( RxS) - 0'condR( R) x 0'conds( S) (OR32)
with CondR: R(A]_,,Ar) — £, Conds: S(B]_,...,BS) -~ B

cxopl opn( R x S) - cxidl idn( cxopl opn( R) X S) (OR33)

...............

Oop,....op,( RX S) = Qligy,....id,( R% Oop;,...,op,( S)) (OR34)

...............

aOp’l ..... Op’n( GODCUR, 1) ..... Opc(|R, ||RI), idl ..... Idr( R) X GOpc(IS 1) ..... Opc(lS ||§), idl ..... Ids( S) ) (OR35)

with opi: R(Aq,...,A) - vi foriOlg,
opi: SBy,..., By - vi foriOls,
opi: R(Ag,...,.A) xYBy,...,Bs) - v; forillgOls,
c(l, i) delivering the i-th index element of set | sorted in any order,
a;Ddom(Ai), biDdom(Bi), t O VC(lR,i) for i:]....||R|, u; O Vc(ISi) for i:]....||3|
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0 id, for 1014
, 0 ) ¢ (Iri) )
opi(tl,...,tMR‘,ai,...,aT,ul,...,u“s‘,bl,...,bs) = Id\IR\+r+c'l(IS,i) for 1Ol

Hop (8. ,by,b,) for 01,01

Ulopsy 1. OPshs; 1)r++(OPS py-+-OPShg, hid ids( S) ) (OR36)

with opi:  R(Ag,...,A) x §By,...,, B) - w,
nr number of subexpressions of operation i depending on R
ns number of subexpressions of operation i depending on S
oprii: R(Aq,....A) - W, forj=1...nr
opsi: SBu,....Bs) — vk for k=1...ns,
opfii  Hai X« X M i X R(Aq,.,A) X V1 X ... X Upg i X §(By,...,Bs) -

Opi(al,...,a.r, bl!""bs) =
opfi( OPry(a,...,ar),-,0P e, i(A1,..,ar), 8t,eensr,

0psyi(Py;.---,0s),-.,0PSng (b1, D), b1,...,0s ),

ti O vy, Ui O P for j=1...nr;, k=1...ns, and i=1...n,

Op’l( (t1,11"'1 tnrl,l),---, (tl,na"'! tnrn,n), al!"ﬂa'ra
(ul,li---i Unsl,l);---, (ul,nl"'l unsn,n)u blw--,br ) =
Opfl( tl,il"'l tnri,i, all"'la'r! ul,il"'l uﬂﬁ,ii bl;---,bs-)

Ocond( RXS) - Oopt( Aopry,...opricy,..id, ( R) X Olaps, ... ops.gid.... i S) ) (OR37)

with cond R(A,...,A) x §By,..., Bs) - B,
nr - number of subexpressions of condition conddepending on R
ns  number of subexpressions of condition conddepending on S
opri: R(A,...,.A) — W forj=1...nr,
ops: YBa,...,Bs) - vk for k=1...ns,
opf My X ... Xt X R(Aq,...,A!) XV1 X ... X Vs X §By,...,Bs) - B,

cond ay,...,a, bs,...,.bs) =
opf( opri(as,...,&),...,0pm(as,...,&), ai,....a,
ops(by,...,bs),...,0pSs(b1,...,0s), b1,...,0s )

In summary, we have 240 standardization rules from which 168 are supposed to optimize the
algebraic expression in terms of memory usage and evaluation speed. Type casts are not
considered.
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Appendix C RasML Grammar

This appendix presents a simplified list of the main RasML grammar rules used in the
RasDaMan system. The grammar is described as a set of production rules. Each rule consists
of anon-terminal on the left-hand side of the colon operator and alist of symbol names on the
right-hand side. Symbols enclosed in squared brackets like [ where <general _exp> ]
are optional. Character | introduces a rule with the same left-hand side as the previous one. It
is usually read as or. Symbol names can either be non-terminals enclosed in pointed brackets
or terminals written in bold. Terminals either represent keywords of the language or stand for
identifiers and number literals respectively. Symbol names use the following abbreviations:
exp for expression, | i t for literal, op for operator, i dent for identifier, col | for collection,
var for variable, and spec for specification. It should be remarked that the language syntax
does not ensure any type safety.

<query> . <sel ect _exp>
| <update_exp>
<sel ect _exp> . select <result |ist>
from <coll list>
[ where <general _exp> ]
<updat e_exp> . update <coll _spec>

set <update_spec> assign <general _exp>
[ where <general _exp> ]
| insert into <coll _name>
val ues <general _exp>
| delete from <coll _spec>
wher e <general exp>
| drop coll <coll_nanme>
| create coll <coll _name> <type_nanme>

<result_list> : <result_list>, <general _exp>
| <general _exp>

<updat e_spec> © <var> [ <mnterval _exp> ]

<gener al _exp> © <marray_exp>

<condense_exp>
<geometri c_exp>
<r educe_exp>
<i nduced_exp>
<i nt eger _exp>
<m nt erval _exp>
<i nterval _exp>

<var >
<general lit>
<i nt eger _exp> . <general _exp> .lo

| <general _exp> . hi

<m nt erval _exp> [ <spatial _exp list>]
| sdom( <general _exp> )
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<spatial _exp_list>

<spatial _exp>
<i nterval _exp>
<bound_spec>

<condense_exp>

<condense_op>
<marray_exp>

<geonetric_exp>
<i nduced_exp>

<unary_i nduced_op>

<bi nary_i nduced_op>

<coll _list>

<col | _spec>
<r educe_exp>
<r educe_op>

<general _lit>
<nmdd_lit>
<dimlit_list>

<scalar_lit>
<atomc lit>
<complex_lit>
<scalar_Ilit_list>

<col | _nanme>
<var >

<el enent _nane>
<t ype_nane>

<spatial _exp_ list>, <spatial exp>
<spatial _exp>

<i nteger_exp> | <interval _exp>
<bound_spec> <bound_spec>
<general _exp> | *

condense <condense_op>

over <var >
in <m nt erval _exp>
usi ng <gener al _exp>

+| -] *| /| mn] max | and

marray <var>
in <m nt erval _exp>
val ues <general _exp>

<general _exp> <m nterval _exp>
<unary_i nduced_op> <general _exp>

<general _exp> <bi nary_i nduced_op><general _exp>

( <general _exp> )
<gener al _exp>. <el enent _nane>

not | -

+| -] *| /| and | or
<l <=] > > =]!=
<coll _list>, coll_spec>

<col | _spec>
<col | _nane> as <var>
<reduce_op>( <general _exp> )

sumcells | mult_cells
mn_cells | max_cells
sone_cells | all_cells
avg cells | count_cells

<scalar_lit>| <ndd_lit>
< <m nterval _exp> <dimlit_list> >

<dimlit list>; <scalar |lit list>
<scalar |it _|ist>

<atomic_lit> | <conplex_lit>
bool ean | integer | fl oat
{ <scalar_lit_list>}

<scalar lit list>, <scalar lit>
<scalar_lit>

i dent
i dent
i dent
i dent

Appendix C
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Appendix D Abbrevations

ACM Array Cost Model

ADBMS Array Database Management System

ADT Abstract Data Type

AQP Array Query Processing

CNF Conjunctive Normal Form

CSE Common subexpression

C-PDH Complex Position-Dependent Histogram

C-PIH Complex Position-Independent Histogram

DNF Digunctive Normal Form

DBMS Database Management System

DDA Dimensional Data Area

EMH Error Minimization Histogram

MDBMS Multi-dimensional Database Management System
MDD Multi-dimensiona Discrete Data

ODBMS Object (-Oriented) Database Management System
OR Optimization Rule

ORDBMS Object-Relational Database Management System
RasDL Raster Data Definition Language

RasML Raster Data M anipulation Language

RasQL Raster Data Query Language

RDMBS Relational Database Management System

RQP Relational Query Processing

RDA Relational Data Area

SDA Scalar DataArea

SSDMBS Statistical and Scientific Database Management System
S-PDH Simple Position-Dependent Histogram

S-PIH Simple Position-Independent Histogram
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