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Chapter 1

Introduction

Speech is one of the most important means of communication between humans.
Its main purpose is to exchange ideas and intentions between the communication
partners, but it also transports various other kinds of information such as feelings
or evidence about gender and age of the speaker. Most of the information about the
speaker’s ideas and intentions is carried by the uttered words and phrases.

Engineers denote the task of transcribing spoken utterances into sequences of
words as automatic speech recognition. Most human beings are capable of per-
forming this task effortlessly and almost perfectly, i.e. without making many errors.
Furthermore, humans are able to recognize speech in many different and sometimes
adverse situations, e.g. in traffic noise, in a busy restaurant, on a mobile phone with
bad reception or when the communication partner’s nose is blocked. In addition
to acoustic corruptions, humans are able to handle other speech degradations such
as accents or non-native speech, grammatically or semantically wrong utterances,
or incomplete ones. Due to such difficulties, the performance of nowadays’ speech
recognition systems is far from being close to humans, despite the efforts and the
progress that research into this field has made during previous decades.

The prospect of automatic systems with human speech recognition performance
poses a challenge to many scientists, engineers and other enthusiasts. With speech
being one of the most natural and efficient ways of human communication, speech
technology has the potential to revolutionize the communication between humans
and machines. However, in order to practically realize advanced human-machine
communication scenarios like the dialogues between the crew of Starship Enterprise
and the Ship’s computer in Star Trek, the machine needs to understand the meaning
of the spoken utterances. The speech understanding problem is the fundamental
topic of this work. In order to recognize meaning, the machine is not necessarily
required to produce a perfect word transcription. For the execution of an action,
such as programming the food replicator or the turbolift, it must only correctly
recognize the crew member’s intention including important key words such as ‘coffee’
or ‘bridge’, but not exactly how users express their wishes.

The study of the meaning of linguistic utterances is called semantics. The task
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Chapter 1. Introduction

of generating semantic representations from spoken utterances is called speech un-
derstanding. This task requires knowledge from two traditionally separate fields
of research, namely automatic speech recognition (ASR) and natural language un-
derstanding (NLU). The latter is the process of converting textual utterances to
meaning representations. This process is usually based on explicit morphological
and syntactic analyses of the input text, i.e. it relies on knowing the structure of
the words and the structural relationships between words. Such a ‘deep’ semantic
analysis, however, is difficult to perform if the input text is not well-formed, i.e. if it
contains morphological and syntactic errors. This has to be regarded if the output
of a speech recognizer is used, as these systems can usually not rely on well-formed
speech input and additionally produce errors themselves.

Because of the erroneous speech recognizer output and the computational diffi-
culty to perform speech recognition and deep analyses in appropriate time, state-
of-the-art speech understanding is not a simple application of ASR and NLU tech-
niques. Instead of the deep semantic analysis, a robust semantic analysis is per-
formed. The robustness is achieved by performing no or only little explicit syn-
tactic and morphological analyses, and limiting the scope of speech understand-
ing applications to narrow domains. Therefore, practical systems today operate in
specialized contexts, so-called target domains, such as weather information, flight
booking or account enquiries. A number of such systems have been described, e.g.
EVAR, LIMSI ARISE, MIT JUPITER, SRI ATIS, SUNDIAL or TRAINS/TRIPS
[BDHS95, FAM96, GAB'98, LRGB99, Pec93, ZSGT00]. The methods for speech
understanding presented in this thesis are also based on the limited-domain assump-
tion. Investigations are performed by use of a test system built from a speech data
collection for a German airport information dialogue system scenario.

Speech understanding is traditionally carried out by combining ASR and NLU
processing in a sequential manner. The tasks of mapping speech to text and text to
meaning representations are performed by two separate processing stages. We denote
this as a two-stage decoding process. This method has practical advantages: The de-
coders for both stages can theoretically be replaced by implementations which carry
out the same task, enabling comparison and more flexibility for speech understand-
ing system manufacturers. Moreover, the decoders can be developed independently
of each other, and each can independently utilize methodologies and algorithms
specialized for its task.

A tighter integration of ASR and NLU techniques can be achieved by one-stage
decoding. One-stage decoders directly map speech to meaning representations.
Hence, words do not necessarily play the central role, but can be treated as a pro-
cessing unit among others. One-stage decoding approaches have the fundamental
advantage that they obey the well-known principle of applying all available sources
of knowledge as early as possible. This is not the case in two-stage speech under-
standing systems, where the speech recognizer makes decisions without considering
semantic knowledge from the second stage. Yet, such early decisions can cause
speech understanding errors which are avoided by one-stage decoding.
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One-stage decoding may also be advantageous with regard to runtime behavior.
If decoding is performed time-synchronously, the speech understanding result can be
delivered with minimal delay. Yet, a conclusive comparison of runtime performance
depends on a great variety of factors, and is not goal of this work. The one-stage
approach also alleviates a practical problem: Inconsistent knowledge sources, such
as diverging word vocabularies, are ultimately discovered during the generation of
the integrated knowledge model. In two-stage systems, inconsistencies may remain
unnoticed and cause problems during runtime.

Stahl et al. [SML97] describe a one-stage semantic decoder for natural speech in-
put, realized by stochastic chart-parsing of extended context-free grammars. For an
application to control a graphical editor, their system achieves semantic accuracies
of 88.4% with the one-stage approach, and 86.0% with a two-stage decoder whose
NLU stage only uses the best word sequence as input. Johnsen et al. [JHHS00] use
Discrete Hidden-Markov Models for semantic processing in a Norwegian bus travel
information system. Their semantic model is integrated into a speech recognizer
instead of a conventional word-based language model. Acero et al. [AW04] propose
a so-called semantically structured language model, which combines n-grams and
context-free grammar rules in a single, stochastic language model. Like Johnsen,
they use their semantic model in a regular speech recognizer instead of a conven-
tional language model. In comparison to a two-stage decoder, whose semantic stage
is fed with the best recognition result only, their corresponding one-pass system
reduces topic classification errors substantially (from 6.8% to 3.8%) and slot identi-
fication errors slightly (from 9.0% to 8.8%).

This thesis also follows the basic one-stage decoding principle. In contrast to
other publications, however, we also report how the two-stage speech understanding
approach performs when its NLU stage operates with multiple alternative recognizer
hypotheses instead of only the best one. Two-stage systems sometimes consider al-
ternative word or utterance hypotheses to circumvent the problems caused by early
decisions. In practice, the possible number of alternatives is limited by the com-
putational resources available for the second stage. In this work, we specifically
investigate how many alternatives are required to achieve a similar semantic perfor-
mance as the one-stage system, and how many errors can be avoided if no or only
few alternatives are available.

One-stage decoding methods for speech understanding demand simultaneous
processing of knowledge from different fields such as acoustics, phonetics, (lexical)
phonology, syntax and semantics in a single procedure. Each of these processing
levels has its own special requirements regarding optimum modeling and decoding
of knowledge. Hence, representation and processing of all this knowledge can be
approached in two different ways: Either, models of different types are created, and
a specially tailored, hybrid processing algorithm is devised for them. The aforemen-
tioned approaches by Stahl, Johnsen and Acero fall into this category, for example.
Alternatively, the knowledge sources can be transfered to a uniform knowledge
representation, so that a more generic processing algorithm can be utilized. This

3
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Figure 1.1: Weighted transition network and equivalent weighted context-free rewrite
rule.

method was adopted in this thesis, because it allows flexible integration of knowledge
without having to modify the decoder, as long as this knowledge is representable
within the uniform modeling framework. This renders the approach more suitable
for research purposes at least. Furthermore, decoder complexity is potentially lower,
as only one algorithmic framework needs to be considered, instead of many.

The choice of a suitable uniform modeling framework is crucial. On the one
hand its complexity must be low enough to enable (near-) realtime processing, on
the other hand it needs sufficient expressive power to embed the different kinds of
knowledge within it. For this thesis, a uniform, stochastic knowledge representa-
tion based on weighted transition network hierarchies (WTNH) was selected.
In contrast to weighted finite-state transducers (WFST), which have been used as
uniform framework for speech recognition (see e.g. [MPRO02]), WTNH represent hi-
erarchical information in an explicit form. Since WFST require implicit encoding of
such hierarchical knowledge, tasks that require direct access to the model structure
are complicated. Therefore and due to other reasons, WI'NH are preferred in this
work.

The basic building blocks of WTNH are weighted transition networks, which
consist of labeled nodes and weighted transitions between these nodes. Weighted
transition networks can also be viewed as weighted rewrite rules, so that WTNH
represent rule sets or grammars, more precisely stochastic context-free grammars.
Figure 1.1 depicts a simple example of a weighted transition network N and its equiv-
alent representation as weighted context-free rewrite rule (see also Section 2.2.2). As-
suming that the weights, which are attached to transitions between network nodes,
are summed up along a path, this network e.g. produces the symbol sequences aa
at a cost of 7, bca at a cost of 6, and ddd at a cost of 9. WTNH consist of a set
of such transition networks and hierarchical dependencies between them, realized as
references from nodes to subordinate networks.

From the viewpoint of natural language understanding, the expressiveness of this
type of knowledge representation is comparably low. Due to this and in order to
limit the scope of this thesis, comparably simple semantic knowledge is represented
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by WTNH. Therefore, we substitute the term speech understanding with the less
ambitious term speech interpretation for the task pursued here.

This thesis mainly focuses on the syntactic-semantic modeling levels of WTNH,
denoted as hierarchical language model (HLM). As a special characteristic of
HLM, they are created by combining different rule-based and data-driven language
modeling techniques. From the mixture of these two fundamentally different ap-
proaches, we expect to limited the effort for model construction and to better cope
with the lack of sufficient amounts of training data. The hierarchical structure of
HLM is defined explicitly in this work, i.e. no automatic hierarchy-building tech-
niques are applied. Furthermore, HLM are trained from fully annotated data. The
data sparsity problem, which many statistical modeling approaches suffer from, is
studied by means of different smoothing techniques.

In the context of limited-domain conversational dialogue or control applications,
speech interpretation systems should ideally be able to cope with natural speech in-
put. Therefore, HLM specifically need to be robust against natural speech phenom-
ena and against unknown words. Both of these problems are specifically addressed in
this work. A word which is not contained in the system vocabulary is called unknown
word or out-of-vocabulary (OOV) word. OOV words are an important problem for
practical speech recognition and interpretation systems, because they are silently
misrecognized if no special arrangements for their treatment are performed. Es-
pecially in the context of limited domains, where the system vocabulary typically
consists of merely a few hundred or thousand words, a high rate of OOV words can
be expected. Therefore, techniques to build suitable OOV word models and to in-
tegrate them into HLM are examined in this thesis. Natural speech phenomena are
e.g. pauses, laughter, coughing, hesitations, mumbling, cut-off words, self-corrections
and ungrammatical utterances. Some of these phenomena are described by special
models for filler words and non-speech sounds. Other are alleviated by smoothing of
likelihood distributions, combination of data-driven and rule-based language mod-
eling techniques and unknown word modeling.

The evaluation of the studied speech interpretation methods is also a fundamen-
tal topic in this work. The standard performance measure in speech recognition
is word accuracy, which summarizes how many words are correctly recognized on
average. Another common measure, which judges language models alone, is test-set
perplexity. Both measures are adapted to the hierarchical speech interpretation task
considered in this work. The notion of perplexity is applied to HLM. More impor-
tantly, a suitable ‘end-to-end’ performance measure, the so-called semantic tree
node accuracy, is proposed. In contrast to standard approaches, the novel measure
is computed by tree matching instead of sequence matching. It is therefore expected
to be more flexible when assessing partially correct semantic tree representations.
In order to evaluate the performance of unknown word models, receiver-operating-
characteristics and figures-of-merit are computed.



Chapter 1. Introduction

This work is structured as follows: The uniform modeling approach for one-stage
speech interpretation is presented in Chapter 2, starting with an overview over the
basic processing stages and the fundamental differences to two-stage speech un-
derstanding systems. The basic one-stage decoding scheme for weighted transition
network hierarchies is described in Chapter 3. The chapter is concluded with an
experiment that quantifies the advantage of the one-stage decoding approach over
a corresponding two-stage speech interpretation system. Chapter 4 discusses the
evaluation methodology of this thesis, including semantic tree node accuracy. An
experimental comparison between sequence matching and tree matching based eval-
uation measures is performed. This chapter also describes the airport information
speech corpus utilized for model training and evaluation, and its annotation with
semantic information.

The hierarchical language modeling approach is presented in Chapter 5. Rule-
based and data-driven language modeling techniques and their use for HLM are
discussed as well as modeling of various natural speech phenomena. Different exper-
iments regarding smoothing techniques, the range of language model dependencies
and distribution of likelihood values are illustrated and discussed. The chapter con-
cludes with an experimental evaluation of the question whether semantic knowledge
is able to improve word accuracy, since many scientists attribute importance to this
measurement. Chapter 6 presents our unknown word modeling approach and its
integration into HLM, along with various experimental results. In Chapter 7 the
results and implications of this thesis are summarized, and motivation for future
work is given.



Chapter 2

A Uniform Model for One-Stage
Speech Interpretation

In this chapter, the basic uniform modeling framework for one-stage interpretation
of natural speech is discussed. The initial section gives a brief overview over the basic
building blocks of typical speech understanding systems and the fundamental differ-
ences to the one-stage speech interpretation approach of this thesis. Section 2.2 then
reviews suitable approaches for uniform knowledge modeling, based on formal lan-
guage theory. Specifically, regular language representation by regular expressions
and finite-state automata, and context-free language representation by automata
hierarchies are discussed. The selected modeling framework, namely weighted tran-
sition network hierarchies, and its similarities with stochastic context-free grammars
is then discussed in Section 2.3. After introducing the basic structure, the notion
of hierarchy levels within the uniform modeling framework is explained. Then, the
result of utilizing this knowledge model for speech interpretation is considered, in
the shape of semantic trees. In the final part of this chapter, an overview is given
over how the different knowledge sources, namely Hidden-Markov Models (HMM),
lexicon and semantic model, can be integrated into the chosen framework.

2.1 Overview: One-Stage vs. Two-Stage Decoding

This section provides an insight into the basic components and fundamental differ-
ences between classical two-stage speech understanding systems and the one-stage
speech interpretation approach pursued in this work. Figure 2.1 depicts the basic
building blocks of both types of systems, along with the knowledge fields which the
blocks represent, namely acoustics, phonetics, lexical phonology, syntax and seman-
tics. The first stage of a two-stage speech understanding system consists of a
speech recognizer (see upper part of Figure 2.1). In most state-of-the-art continuous
speech recognition systems, HMM are employed to describe fundamental acoustic-
phonetic units of spoken language such as phonemes or syllables. Phonemes are
often used in a context dependent version, e.g. as diphones or triphones, rather than
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acoustics phonetics phonology syntazx semantics

two-stage speech understanding system

) T @9

speech semantic

word
signal decoder lattice ~ representation

one-stage speech interpretation system

lexicon

uniform knowledge representation
(WTNH)

hierarchical
language model
(HLM)

speech semantic

signal representation

Figure 2.1: Basic processing levels of a typical two-stage speech understanding system
and our uniform one-stage speech interpretation system.

context independent monophones. The mapping from phonemes to words is carried
out by a pronunciation lexicon. There may be different non-standard pronunciations
for a word, called pronunciation variants.

A speech recognizer captures the syntactic structure of spoken language by means
of a so-called language model. An explicit syntactic analysis is usually not performed
in speech recognition. Instead, the syntactic structure is described by statistical re-
lations between words, derived from a textual corpus of training sentences. The
mostly used statistical language models are n-gram language models, of which sev-
eral variants with abilities to cope with training data sparsity exist. The speech
recognizer outputs its best hypothesis of a spoken utterance as a sequence of words.
Alternative hypotheses are usually produced on the utterance level (as n-best sen-
tence lists) or on the word level (as word lattices or word graphs).

The second stage of a two-stage speech understanding system decodes a semantic
representation from the textual representation of a spoken utterance. The semantic
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(and possibly syntactic) knowledge for the second-stage decoder is typically modeled
by a stochastic context-free grammar (SCFG). The decoding process is also called
parsing in this context. A parse tree represents the semantic structure, where each
node of the tree corresponds to a SCFG rule of the parse.

One fundamental difference between two-stage speech understanding and one-
stage speech interpretation is that the latter utilizes only one model to describe
the syntactic-semantic properties of the target domain. This modeling task is per-
formed by the hierarchical language model (HLM) in this thesis. The HLM is a
special syntactic-semantic language model which can be integrated together with
HMM and pronunciation lexicon into a uniform modeling framework, more precisely
into a weighted transition network hierarchy (WTNH). By use of this integrated
knowledge model, the one-stage decoder directly translates spoken utterances into
semantic representations, without explicitly creating an intermediate orthographic
representation.

Please note that the basic preprocessing of the speech signal is not shown in Fig-
ure 2.1, although this task is also performed by the (first) decoder. Moreover, the
uniform knowledge model does not explicitly contain the state probability density
functions (PDF) of the HMM, but only their state transition structure and weight-
ing. The PDF are kept in a separate data structure with an algorithm for computing
HMM emission probabilities. An interface to the uniform modeling framework en-
ables the transfer of computation results.

2.2 Uniform Knowledge Model Selection

In this section, we will discuss criteria for choosing an appropriate uniform knowl-
edge model for one-stage speech interpretation. The uniform modeling approach is
preferred for the one-stage decoding task of this thesis over hybrid modeling with
a specially tailored processing algorithm such as in [GA00]. The main reasons for
this choice are its extensibility with new types of knowledge models without requir-
ing decoder modification, and a potentially less complex decoder. While the hybrid
approach may lend itself to computationally more attractive decoder designs, this
was not a focus of this thesis.

The flexibility of the uniform approach is limited by the expressive power of the
underlying knowledge model. Simultaneously, the expressive power of a knowledge
model determines the size of the search space, which is generally coupled with the
computational requirements for decoding. Hence, the complexity of the uniform
representation must be low enough to maintain computational tractability.

The process of interpreting speech, or generating meaning representations from
spoken utterances, can be viewed as a symbol processing task, if not the speech
signal itself, but preprocessed acoustic observations (feature vectors) are used as the
basic symbols. The decoder’s task then consists of finding the ‘correct’ symbolic
meaning representation for a given sequence of acoustic observations. Because of
the diversity of speech, language and meaning, the knowledge models for speech
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interpretation are of statistical nature. Therefore, we redefine the task of the speech
interpreter as to find the most likely meaning representation for a sequence of acous-
tic observations, given the available knowledge models. The symbols are usually not
translated directly, but intermediate levels of representation are introduced to facil-
itate the design of appropriate models. Thus, the acoustic observation symbols are
first translated into sub-word units, typically phonemes. Phonemes are mapped to
word symbols. The words are further processed to yield semantic symbols.

2.2.1 Formal Languages and Grammars

In computational science, the standard means for symbol processing are formal
languages. A formal language defines a possibly infinitely large set of finite-length
sequences of symbols (strings) from a finite symbol alphabet. Formal languages are
usually described by a set of production rules. The rule set together constitutes
a formal grammar, more precisely a generative grammar. A production rule is
generally expressed as

LHS — RHS

where LHS denotes the left-hand side and RHS the right-hand side of the rule. A
production rule, also called rewrite rule, declares that LHS produces RHS or LHS
is rewritten by RHS. The LHS and RHS of production rules consist of terminal
symbols from a finite alphabet ¥ and non-terminal symbols from a finite alphabet N.
Non-terminals are usually represented by uppercase letters, terminals by lowercase
letters.

A formal grammar is able to ‘generate’ symbol sequences by subsequently rewrit-
ing parts of a symbol sequence. The rewriting is carried out by replacing the part
of the symbol sequence corresponding to a LHS of a production rule by its RHS.
The rules which can be applied at the beginning of the production process are called
start rules. Their LHS consists of the special non-terminal symbol S, called start
symbol. The special terminal symbol € is called the empty symbol. A valid (final)
symbol sequence of the language contains only terminal symbols.

Apart from producing symbol sequences, formal grammars can also be used re-
versely to analyze symbol sequences, i.e. to split up an input string into tokens. This
process consists of determining which rules need to be ‘fired’ (applied) to produce
the desired symbol sequence, and is called parsing. The result of parsing is a parse
tree, whose nodes represent the fired rules, and whose structure corresponds to the
order in which rules were fired. By looking for a successful parse, formal grammars
are also able to decide whether an input string can be recognized at all, i.e. if it is
a valid string of a language or not. This property is e.g. used for syntax checking.

A basic categorization of formal languages according to their expressive power
was done by Noam Chomsky [Cho56, Cho59]. His Chomsky Hierarchy (see Ta-
ble 2.1) defines four classes or types of formal grammars. From the most general
grammar class (type 0) to the most restricted grammar class (type 3) these are called
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type | formal formal equivalent
grammar language machine
0 unrestricted | recursively Turing
enumerable | machine
1 context- context- linear-bounded
sensitive sensitive automaton
2 context-free | context-free | pushdown
automaton
3 regular regular finite-state
automaton

Table 2.1: Chomsky Hierarchy [HU79).

unrestricted grammars, context-sensitive grammars, contezt-free grammars and reg-
ular grammars. The formal languages that these classes of grammars can produce
are called recursively enumerable languages, context-sensitive languages, context-free
languages and regular languages, respectively. Each Chomsky type is associated
with an abstract machine or automaton, which is capable of recognizing all lan-
guages of that type. The four types of languages form a strict hierarchy, i.e. a
language of type t; can always be described by a grammar of the same or a more
expressive type t < t;, whereas the opposite is at most true in special cases. For
example, certain types of context-free grammars, namely right-linear or left-linear
context-free grammars, are equivalent to regular grammars.

The grammar classes with most practical relevance are context-free grammars
and regular grammars, because there are efficient parser implementations which ren-
der these grammars computationally tractable for a number of applications. These
two kinds of grammars are also the basis for the modeling approach described in
this section.

2.2.2 Regular Expressions and Finite-State Automata

Regular grammars consist of rules of the form

A — Ba A —

or

aB

A — a (2.1)

A — a

In the case depicted at the left side of Equation 2.1 they are called left reqular
grammars, in the case at the right side of Equation 2.1 right regular grammars.
A more familiar form of representing regular languages are reqular erpressions. A
regular expression consists of a string of symbols and operators on these symbols.
There are different sets of regular expression operators in use, Table 2.2 shows a
listing of frequently used ones. Regular expressions are practically applied e.g. to
define search patterns in text editors and many Unix tools, or for string manipulation
in programming languages. A rule with a single non-terminal at its LHS and a

11



Chapter 2. A Uniform Model for One-Stage Speech Interpretation

‘ operator ‘ notation ‘ meaning

concatenation ab a followed by b
alternation alb aorb
option a? zero times or once
Kleene star a* zero, one or several times
Kleene plus at one or several times
grouping | (ab)* | scope and precedence

Table 2.2: Common reqular expression operators.

regular expression at its RHS is called context-free rewrite rule:
A — regexp

Regular expressions can also be weighted, by assigning costs to symbols (see e.g.
[Spr99b]). An example for such a weighted regular expression as part of a weighted
context-free rewrite rule is shown in Figure 1.1 of Chapter 1.

Regular grammars and regular expressions have equivalent representations as
finite-state automata (FSA), which are abstract machines with a finite amount
of memory in the form of states. Please note that the following discussion on FSA
is not meant as a complete description of finite-state theory, but rather as a brief
outline of some facts important for this work. For a more detailed discussion on this
topic the interested reader is referred to [Moh97].

A finite-state automaton A is defined as a tuple A = (3, 5,71, f) over an alpha-
bet X, a finite set of states S, a finite set of transitions 7', an initial state ¢ € S and
a final state f € S. A transition ¢ € T has a source state and a destination state
and is depicted as an arc. Finite-state automata are also called transition networks,
and the states are then denoted as nodes.

As representatives of formal languages, an essential component of FSA are the
language symbols. There are two types of finite-state machines, namely Mealy and
Moore machines, which differ in their placement of symbols. Mealy machines carry
their symbols on the transitions, whereas Moore machines utilize the states as sym-
bols carriers. Mealy and Moore machines can be converted into each other (possibly
increasing the number of states or transitions) and can therefore be seen as equiv-
alent FSA representations. For the uniform modeling approach of this thesis, the
Moore variant is selected, because this corresponds to the traditional form of repre-
senting HMM in speech recognition. Therefore, every state s € S of our FSA carries
a symbol o(s) € ¥. The alphabet 3 also contains the empty symbol e.

FSA are processed by walking from state to state along transitions, producing
(or consuming) symbols on the way. The walk starts at the initial state and is
complete when arriving at the final state. Complete walks are called paths. The
formal language represented by a FSA is defined as the (possibly infinite) set of
symbol sequences corresponding to all possible (different) paths through the FSA.
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The main use of FSA is to check if they accept a given input symbol sequence,
i.e. if there is a path through the FSA which produces the same symbol sequence.
Therefore, the basic form of FSA is also called finite-state acceptor. If there is
more than one possible path for any input symbol sequence, the FSA is denoted as
non-deterministic finite-state automaton (NFSA), otherwise as deterministic finite-
state automaton (DFSA). The notion of determinism generally applies to abstract
machines.

FSA have a number of properties which render them attractive for practical use.
An important property is that the problem of optimizing FSA, i.e. finding an equiv-
alent automaton with the least number of states, is decidable. The optimization
operation is also called minimization. For more expressive types of abstract ma-
chines, as pushdown automata, this problem is not decidable. FSA minimization is
only possible for DFSA. Fortunately, NFSA can generally be converted to equivalent
DFSA, in the worst case with an exponential rise in the number of states. Mini-
mization of FSA is attractive because the resulting automaton has no redundancy.
Hence, it can be processed efficiently, with minimum time and space requirements.
Another property of FSA is that a number of unary and binary logic operations,
similar to regular expression operations, can be carried out directly on the automa-
ton level. Concatenation for example combines FSA in series, union combines them
in parallel, intersection retains the common paths of both input FSA and Kleene
closure enables arbitrary repetition of an automaton.

For applications involving insecure or statistical data extended versions of FSA
exist, which carry weights on their transitions. These automata are called weighted
finite-state automata (WFSA). Reusing the notations for FSA, a weighted finite-
state automaton W can be defined as a tuple W = (3, 5,74, f) with a symbol
o(s) € ¥ on each state s € S and a weight w(t) on each transition t € T'.

Together with the introduction of transition weights, WFSA require a definition
how to treat these weights, i.e. an appropriate calculus. Specifically, it needs to
be decided how to combine the weights along a path and between paths. In speech
recognition applications, it is desirable to view transition weights as log-likelihood
values. For this notion, the tropical semiring (4, min) is a suitable calculus, which
implies that weights are summed up along a path, and weights on parallel paths are
combined by applying a minimum operation. This means that if there are multiple
paths through a WFSA for a particular input sequence, the best path is determined
as the one yielding the minimum accumulated weight.

WFSA can be seen as a generalization of FSA. WFSA have similar properties as
their unweighted counterparts. In particular, minimization of WFSA and automata
operations are of special interest. It must be considered, however, that not every
non-deterministic WFSA can be determinized directly. Yet it is often possible to
modify such automata so that determinization becomes possible [Moh97].

In recent years, another class of finite-state machines has received increasing
attention from the speech processing community, namely weighted finite-state
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transducers (WFST) [MPR02]. WFST are a generalization of FSA and WFSA
(and FST, the unweighted variant of WFST). In contrast to their acceptor coun-
terparts, transducers do not only recognize input symbol sequences, but also map
them into output symbol sequences. The transduction is carried out by assigning
each state s (in the case of Moore machines) a tuple (¢0%(s),0°(s)), consisting of
an input symbol o’(s) € ¥ from the input alphabet ¢ and of an output symbol
0°(s) € X° from the output alphabet ¥°. Apart from this, a WFST O is defined,
similar to WFSA, as a tuple © = (X%, %°, 5, T, 4, f) with weights w(t) on all transi-
tions t € T

Many of the operations on FSA and WFSA also apply to WEST. Moreover,
some operations only apply to transducers, such as inversion, which interchanges
input and output languages. Of particular relevance to speech processing is an
automata operation specially devised for WFST (and FST), called composition.
The composition X oY of two WFST X and Y yields a new WFST which translates
the input language of X into the output language of Y. A prerequisite for the
composition operation to succeed is that the output alphabet of X and the input
alphabet of Y are identical, and that the intersection of the respective languages is
not empty.

The composition operation renders WFST particularly suitable for multi-level
processing, where the whole string transduction problem can be split up into in a
number of smaller transduction tasks. For speech recognition, imagine a WFST
H mapping HMM states to phonemes, a second transducer D mapping phonemes
to words, and a third transducer L containing the possible word transitions (and
mapping them to themselves). From these components, a speech recognition trans-
ducer R, mapping HMM states to words, can be generated automatically through
composition:

R=HoDolL

In certain cases (see [Moh97]) the minimization operation can be applied, so that R
is optimized globally before decoding. Note that WEFST minimization relies on the
ability to shift input and output symbols within the transducer. Hence, it cannot
be guaranteed that the ‘atomic’ transductions, i.e. the direct symbol mappings on
the states or transitions, remain unchanged.

It is generally desirable to perform the composition of transducers off-line, so
that a part of the computational work required for decoding is carried out off-line,
resulting in faster on-line processing. However, off-line composition also means that
all possible input strings, most of which don’t occur during on-line processing, are
preprocessed. This may yield final transducers whose size is too large for the avail-
able memory resources. Hence, transducer composition has a trade-off between CPU
and memory load. A flexible handling of this trade-off has become possible lately
with the introduction of on-demand automata operations such as composition or
determinization [RPC95]. With this principle, the transducer composition is only
carried out for those parts needed to process specific input strings, i.e. it is performed
on-line. Hence, it can be transparently decided which compositions are carried out
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off-line and which are left for on-line processing. It must be considered, however,
that on-demand composition fundamentally increases the complexity of the other-
wise rather straight-forward WFST decoder.

Under the assumption that Chomsky Type-3 grammars offer sufficient expressive
power, WFST are generally suitable as a uniform modeling framework for speech
interpretation. Their suitability for automatic optimization is a powerful property.
Yet, the consequences of this property need to be considered.

A hierarchical meaning representation requires that the uniform knowledge model
contains several modeling levels with semantic information. When using a single
transducer, the hierarchical knowledge needs to be encoded in its flat automaton
structure. Let’s assume that there are two semantic modeling levels, namely word
classes and semantic concepts. If we name the corresponding WFST K and C,
respectively, and denote L as the transducer containing possible transitions between
concepts, we can build a speech interpretation transducer I by:

I=HoDoKo(ColL

Without special provisions, however, I will map directly from HMM states to se-
mantic concepts, without direct access to the sub-surface information, i.e. words and
word classes. Hence, information about the needed sub-surface symbols needs to be
encoded implicitly into I. This can be done by introducing special marker symbols,
which announce start and end of a symbol sub-sequence and act like brackets. This
has the effect that the final transducer I cannot be optimized as high as before.

Furthermore, the symbol shifting during WFST minimization breaks synchronity
between input and output symbols, so that it becomes difficult to uncover the tem-
poral word alignment. Yet this information can be vital for further processing, such
as computing confidence measures [LFRT04]. Another consequence of the trans-
ducer composition and optimization, specifically in off-line mode, is a limitation of
the ability to dynamically modify the transducer at runtime. This ability might be
required, e.g. in order to adjust the weighting of grammar parts depending on the
state of a dialogue system, or in order to dynamically add new words to the grammar.

Because of these difficulties, and also because of a lack of appropriate tools for
on-demand transducer operations, the finite-state transducer paradigm is not ex-
ploited for the one-stage speech interpretation problem of this thesis. Instead, an
explicitly hierarchical modeling approach is preferred. Yet, this approach still makes
use of finite-state acceptors, by hierarchically combining them to a knowledge rep-
resentation similar to a stochastic context-free grammar. This type of grammar is
introduced in the following section. In our approach, which is presented in Sec-
tion 2.3, FSA minimization still plays an important role for locally optimizing parts
of the model hierarchy.
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2.2.3 Context-Free Grammars
Context-free grammars (CFG) consist of rules of the form:
A -y

where v is an arbitrary sequence of terminals and non-terminals from the finite
alphabets ¥ and N, respectively. Formally we write v € (¥ U N)*, where U denotes
union and * is the Kleene star. The LHS of a CFG rule consists of a single non-
terminal symbol A. CFG are Chomsky Type-2 grammars and thereby have greater
expressiveness than regular grammars. In the special case that recursion only occurs
via the leftmost or the rightmost symbol of all rules’ RHS, CFG have equivalent
regular grammar representations. These types of CFG are attributed as being left-
linear or right-linear, respectively.

CFG are traditionally used in computational linguistics for modeling syntactic
structure. Like all non-stochastic grammars, CFG have no ability to decide which
is the better parse in the case that several parses exists, i.e. to disambiguate. Since
speech is highly ambiguous, disambiguation plays an important role in speech pro-
cessing. For tasks requiring disambiguation, CFG have been extended to stochastic
context-free grammars (SCFG). In general, stochastic grammars assign probabilities
to parses, so that disambiguation of multiple parses becomes possible by choosing
the most probable one. SCFG augment each rule with a conditional probability p:

A — v [p]

To ensure proper normalization, the sum of p over all rules with the same LHS must
be 1. The probability of a parse tree is then computed as the product of p over all
rules used to expand each node in the parse tree.

SCFG have two properties desirable for a uniform model for speech interpre-
tation, namely stochastic and explicitly hierarchical knowledge representation. As
discussed in the previous section, the latter enables full control over the decoding
process, including access to sub-surface units and temporal alignment, and allowing
dynamic model modification. Instead of the formal grammar notation, we prefer
to represent SCFG as abstract machines, more precisely as hierarchies of weighted
finite-state automata. Our one-stage decoder then directly operates on the abstract
machine, utilizing a technique called token passing. As discussed in the previous
section, the machine representation enables automatic optimization. Although our
explicitly hierarchical modeling approach prevents global model optimization, local
optimization of automata can still be performed. The machine-centric view provides
a common platform for different modeling techniques such as data-driven and rule-
based approaches. While a formal grammar notation could also serve this purpose,
we prefer to use the ‘final’ form of representation, which is directly fed into the
decoder, as common platform.

In order to discriminate between the ‘original’ finite-state calculus and our explic-
itly hierarchical approach, we use the term transition network rather than finite-state
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automaton. More precisely, the term transition network denotes a Moore machine
in this work, so that formal language symbols are attached to network nodes instead
of transitions. Our uniform, hierarchical knowledge model for speech interpretation
is consequently called weighted transition network hierarchy.

2.3 Weighted Transition Network Hierarchy (WTNH)

In the previous section we described the selection of a uniform modeling frame-
work for speech interpretation, called weighted transition network hierarchy
(WTNH). The fundamental structure and properties of this knowledge represen-
tation are presented in the first two parts of the current section. The third part
describes the basic structure of the results of applying WITNH. In the final part
of this section, an overview over the integration of various knowledge sources into
WTNH is given.

2.3.1 Basic Structure

WTNH are similar to stochastic context-free grammars or stochastic recursive tran-
sition networks [HC96]. Thereby, each transition network corresponds to a gram-
mar rule, and the hierarchical network structure corresponds to the dependencies
between rules. These dependencies exist between non-terminal symbols on the right-
hand side of production rules and identical left-hand side symbols of the same or
other rules.

The RHS definition of a SCFG rule corresponds to the internal structure of
a transition network. As mentioned in the previous section, we prefer the Moore
representation of abstract machines. Hence, transition networks in the hierarchy
contain two different types of nodes, namely terminal nodes and non-terminal nodes.
These can be seen as counterparts of terminal and non-terminal formal language
symbols at the RHS of SCFG rules.

In order to enable unambiguous referencing to transition networks, each network
is assigned a unique symbol. Network symbols are the counterparts of LHS symbols
of SCFG rules. The hierarchical dependencies in our uniform knowledge represen-
tation are therefore references from non-terminal network nodes to networks. These
links can be established automatically from a set of transition networks by finding
matching symbols of nodes and networks.

The correspondence between SCFG and weighted transition network hierarchies
cannot be seen if SCFG can have rules with identical LHS, because in this case
we couldn’t assign unique symbols to transition networks, and hence couldn’t re-
fer unambiguously to them. Fortunately, rules with identical LHS can easily be
merged by applying the union of their RHS. In this form, SCFG can be converted
directly to weighted transition network hierarchies. As has been discussed in the
previous section, regular expressions have equivalent finite-state automata represen-
tations. Hence, the RHS of convertible SCFG rules may consist of arbitrary regular
expressions of terminal and non-terminal symbols, which specifically includes union
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operations required for rule merging.

Figure 2.2 shows a simple example of a WTNH for the task of interpreting spo-
ken language queries in an airport information system. For clarity of illustration,
no transition weights are shown and the WTNH is only displayed partially, so that
not all hierarchical dependencies end at a terminal node. A typical utterance con-
tained in this WTNH is WANN STARTET DER FLUG L_H DREI SIEBEN NEUN EINS
NACH HAMBURG (word-by-word translation: when starts the flight LH three seven
nine one to hamburg). Figure 2.3 contains a CFG counterpart of the transition net-
work hierarchy of Figure 2.2. The RHS rules of this CFG make use of the regular
expression operators which were given earlier in Table 2.2 (see Section 2.2.2).

In Figure 2.2, each gray box contains a transition network. The bold-faced
designator at the top of a gray box is the unique network symbol. Apart from this,
a gray box contains the network representation in the shape of a directed graph.
Terminal and non-terminal nodes are represented as circles or round-cornered boxes
around their unique node symbol. For terminal nodes, which usually correspond to
HMM states, the node symbol always has the form z;, where x corresponds to the
network symbol and i denotes the ith HMM state.

Because a non-terminal node refers to a subordinate network in the hierarchy, it
is also denoted as sub-network node. In this context, the referenced network is called
sub-network. In addition to terminal and non-terminal nodes, a transition network
may contain null nodes. These are represented as bullets in Figure 2.2, and are e.g.
contained in network ROOT. Null nodes correspond to the empty symbols € of formal
language. We assume that each network has exactly one entry node and one exit
node, an arbitrary number of null nodes and at least one terminal or non-terminal
node. Entry and exit nodes are special null nodes without incoming or outgoing arcs,
respectively. They are represented as triangles in Figure 2.2. Transitions between
nodes of a network are also called network edges and depicted as arrows in the
example.

Viewing transition networks themselves as network nodes and references from
non-terminal sub-network nodes to their sub-networks as edges yields the so-called
super-network. In this context, we denote transition networks as super-network
nodes and references from sub-network nodes to their sub-networks as super-network
edges. The latter are depicted as dashed arrows in Figure 2.2. The super-network
describes the hierarchical dependencies between the networks and is thus a repre-
sentation of the hierarchical modeling structure. The super-network has a unique
start node, which is also called root network, and one or several end nodes. The end
nodes are those networks that contain no non-terminal nodes (networks N and s in
Figure 2.2). A super-network is acyclic if the corresponding SCFG is non-recursive.
Please note that acyclic super-networks may still possess cycles within transition
networks (as is the case in networks ROOT and N in Figure 2.2).
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FLUG LH DREI SIEBEN NEUN EINS NACH HAMBURG. Transition weights are not

shown.
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RooT — (Flight | AFlightCode | ADestination | QDepartTime | AFlightNum)*
QDEPARTTIME — QTime Depart
FLIGHT — (der | ein) flug
AFLIGHTCODE — AAirlnCode AFlightNum
ADESTINATION — nach ALocation
QTIME — um wieviel uhr | wann
DEPART — startet | geht
AFLiGHTNUM — ADigit ADigit ADigit ADigit?
AAIRLNCODE — LH | AF | BA
ADIGIT — null | eins | ... | neun
ALOCATION — hamburg | miinchen | frankfurt
WANN — Vv an sp
EINS — alnssp
N — n T ng* nat
S — s17 (27 s3* 547 | 83T s4T)

Figure 2.3: Context-free grammar representation corresponding to transition network
hierarchy of Figure 2.2.

2.3.2 Hierarchy Levels

The speech interpretation task comprises several levels of processing, such as acoustic-
phonetic, lexical and semantic processing. Although all these processing levels are
integrated into a uniform knowledge model and decoded simultaneously in a one-
stage process in this work, it is still desirable to separate them logically in order
to be able to assign different attributes to them. This is e.g. useful for applying
different structural constraints or search parameters at different logical processing
levels. For example, we restrict word classes to unions of single words, and language
model factors to be only applied at the word level and above (see Section 5.9.1).

In order to reflect the logical processing levels in the WTNH, we attribute differ-
ent network types to adjacent groups of transition networks. The assignment of net-
work types is constrained by the requirement that the WTNH forms a proper type
hierarchy. Consequently, the WTNH consists of different hierarchy levels, whose
names correspond to the types of the networks on that level. By definition, the
WTNH forms a proper type hierarchy if all super-network edges lead to a network
on the next lower hierarchy level. This notion is illustrated in the example network
hierarchy of Figure 2.2, which consists of 5 hierarchy levels. From the lowest to the
highest level these are the phoneme level, the word level, the word class level, the
concept level and the root level. The root level is a special hierarchy level which
always needs to be present and must contain exactly one network, the so-called root
network.

The introduction of hierarchy levels severely restricts the freedom of knowledge
representations if the corresponding WTNH must form a proper type hierarchy. In
order to enable more flexible and modular hierarchical modeling, we relax these
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constraints in two ways:

e hierarchy levels may possess an arbitrary number of sub-levels

e certain hierarchy levels may be skipped

Consequently, the type hierarchy validity check needs to be modified. In order
to allow hierarchy levels to be composed of an arbitrary number of sub-levels, a
super-network edge may, in addition to the next lower hierarchy level, also lead to
a network on the same level. In Figure 2.2, this is e.g. the case between networks
AFLIGHTCODE and AFLIGHTNUM, which both reside on the semantic concept level.

Level skipping occurs in two variants, namely skipping of sub-levels and skipping
of entire hierarchy levels. The latter is only allowed if a super-network edge may
lead to a network on the next but one lower hierarchy level (as between networks
QTIME and WANN, where the word class level is skipped). Skipping of sub-levels
can be useful at the semantic level, for example, so that a concept may appear both
at the surface and as part of a higher conceptual category. An example for this is
the concept AFLIGHTNUM in Figure 2.2, which appears both in the root network
and in the concept AFLIGHTCODE.

2.3.3 Semantic Trees

After introducing the basic structure and properties of our uniform knowledge model,
the outcome of applying such a model to analyze spoken utterances is now consid-
ered. While the one-stage decoding process will be discussed later in greater detail,
it is already clear from Section 2.2.2 that the decoder needs to find the best, i.e. least-
cost, path through a WTNH for a given sequence of acoustic observations. From the
best path, the final decoding result is extracted in the shape of an ordered, labeled
tree.

A valid path is generated by walking from node to node along node transitions,
beginning with the entry node of the unique root network and ending at the exit
node of the root network. Due to the hierarchical model structure, a walk leading
into a (non-terminal) sub-network node continues its way at the entry node of the
referenced sub-network. In other words, the path walks along a super-network edge.
On the contrary, walks arriving at an exit node of a non-root network continue at
the sub-network node they previously descended from, so that they traverse a super-
network edge backwards. When visiting a terminal node, a path consumes the next
acoustic observation in the input sequence. Hence, a path arriving at the exit node
of the root network is only valid if it has consumed all given observations.

While walking along a path, recording the symbols of the traversed networks
yields an ordered tree with those symbols at its tree nodes. Such a tree represents
the hierarchical dependencies between the visited networks and the order in which
they were traversed. If we view the network hierarchy as a stochastic context-free
grammar, a decoded tree corresponds to a parse tree of the grammar.

Usually, the HMM states and phonemes are not utilized for further processing.
Therefore, only networks on the word level and above are recorded. As the result-
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.-
concept  QDEPARTTIME  FLIGHT AFLIGHTCODE ADESTINATION
\ p ya
' ) [\ / )
concept  QTIME DEPART [ J/ AFLIGHTNUM
[ / 7N~
‘ [ / . ~
| \ / - ~ /
word class AAIRLNCODE ADicIT ADiGIT ADIGIT ADIGIT | ALOCATION
| \ |
. | I |
word WANN STARTET DER FLUG LH DREI SIEBEN NEUN EINS NACH HAMBURG

Figure 2.4: Semantic tree for the example of Figure 2.2.

ing trees carry symbols with semantic meaning, we denote them as semantic trees.

Figure 2.4 depicts the semantic tree of Figure 2.2 for the word sequence WANN
STARTET DER FLUG LH DREI SIEBEN NEUN EINS NACH HAMBURG. We generally
draw semantic trees so that a horizontal line through the tree touches only tree
nodes of the same type. The tree node types correspond to the network types and
to the hierarchy levels of the WTNH, which were described in the previous section.
In Figure 2.4, they are shown at the left side next to the tree. Note that there may
be less hierarchy levels in a semantic tree than in the WTNH the tree is derived
from. When drawing nodes of a type with one or more sub-levels, the node is placed
on the highest possible (sub-)level. For example, the tree node FLIGHT is drawn on
the upper concept level in Figure 2.4, not on the lower one.

A semantic tree always has a unique root node which corresponds to the unique
root network of the WTNH. Because of its uniqueness, we neither show its tree
node symbol nor its type throughout this thesis, but only a black dot. However,
for the tree-based evaluation measure defined in Chapter 4, it is important that the
semantic trees are rooted trees, i.e. that they possess exactly one root node.

The network hierarchies examined in this thesis always have one fully occupied
word level, because word level skipping does not occur. Therefore, the leaf nodes of
the resulting semantic trees are always words. However, this is no general necessity
from the viewpoint of knowledge representation, decoding or evaluation. It might
not even be required from a modeling point of view, if one does not assume that
words must always be the fundamental units of meaning representations.

2.3.4 Knowledge Representation within WTNH

After having defined the basic structure of WTNH, an overview is now given of how
the different knowledge sources for speech interpretation can be integrated into them.
In particular, we focus on the representational limitations of WTNH in this section.
At first, acoustic-phonetic and lexical modeling is discussed briefly. Although these
models are not a focus of this thesis, their quality should reflect the state-of-the-art
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of speech interpretation systems, so that the experimental results gained in this work
can be judged adequately. In the last part of this section, meaning representations
and their use for WIT'NH are considered.

Hidden-Markov Models

The acoustic-phonetic model (AM) is a fundamental component of a speech recog-
nition or understanding system. Its quality and robustness is an important factor
for the overall performance of the whole system. With the aid of this model, the
mapping of sequences of acoustic observations to basic speech units is performed.
Due to the large acoustic-phonetic variability and ambiguity of speech, the mapping
is performed in a statistical manner, i.e. the likelihood of different mappings is esti-
mated, so that the most likely one for the whole speech utterance can be chosen. One
fundamental problem of acoustic-phonetic modeling is the variable length of speech
units, which requires a dynamic model with respect to its temporal dimension.

Hidden-Markov Models (HMM) [RJ86, Rab89] have been the most widely used
statistical AM for many years. A continuous HMM consists of a fixed set of states
and transitions between those states. Each state has an associated likelihood func-
tion for consuming (or, depending on the viewpoint, emitting) acoustic observations.
The likelihood functions are probability density functions (PDF). HMM states are
traversed along their state transitions in temporal direction. A certain degree of
temporal dynamics is achieved by allowing states to be traversed multiple times, or
to be skipped. The former is realized by adding cycles to HMM states through self-
transitions. The state transition function also has a statistical component, in the
shape of transition weights. In addition to transitions between states, the definition
of initial and final states and associated transition weights also belongs to HMM. The
PDF parameters and the transition weights of HMM are estimated automatically
from speech data.

The state-transition structure of a HMM can be reproduced straightforwardly
with a weighted transition network, by replacing HMM states with network nodes
and state transitions with node transitions. While the likelihood of HMM state
transitions can be represented as transition weights in the WTNH, the emission
likelihood computation of state PDF needs to be performed externally. In the ex-
ample of Figure 2.2, typical examples for left-right HMM with 3 and 4 states are
depicted at the phoneme hierarchy level. A left-right HMM consists of a sequence
of states which are only traversed in one direction.

HMM have been used in speech recognition for modeling various speech units, in-
cluding words, syllables, demi-syllables, triphones, diphones and monophones. The
optimum unit choice is task-dependent and influenced by factors such as speaker
dependence, vocabulary size, amount of training data, computational power and
target language. For a German-language, speaker-independent, medium-size vocab-
ulary application with fairly large amounts of training data and the computational
power of current PC workstations, triphone HMM are a suitable choice. Triphones
are context-dependent speech units, whose context spans the previous, the current
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and the subsequent phoneme. If the triphone context is allowed to extend over word
boundaries, they are called cross-word triphones. However, if the explicitly hierar-
chical structure of WTNH should be preserved during decoding, as is the case in this
work, cross-word triphones cannot be used. The reason for this is that a path can
enter different successors after leaving a word. Hence, the following phoneme could
only be determined uniquely by looking ahead. This would require special treat-
ment of the phoneme level during decoding, which contradicts the uniformity of the
knowledge representation and processing scheme. Due to this limitation, intra-word
triphones are used throughout this thesis, which do not perform as good as cross-
word triphones [Six03]. Yet it should be noted that it is generally possible to cancel
this limitation by converting WTNH to implicitly hierarchical representations, such
as WEFST. The WFST approach was already discussed in Section 2.2.2.

Pronunciation Lexicon

The transition from phonemes to words is carried out with a lexical pronunciation
model. In the basic case, a pronunciation lexicon contains one phoneme sequence
for each word, namely the canonical (standard) pronunciation of the word. Such
a lexicon can be created manually, by automatic grapheme-to-phoneme conversion
techniques, or by a combination of the two. In order to account for alternative
pronunciations diverging from the standard, so-called pronunciation variants can be
added manually or generated automatically. The latter usually requires morpholog-
ical knowledge. Furthermore, different weighting of alternatives can be performed,
e.g. through estimating weights from training data.

Adding many variants to the lexical model is especially useful if pronunciation
varies fundamentally across the target users of the system, e.g. because of dialectal
variation. However, it must also be considered that this effectively increases the con-
fusability between words, and therefore may have a negative influence on the system
performance if not used with care. Since a close examination of the lexical model
should not be the focus of this thesis and as word pronunciation did subjectively not
vary much across the recorded speakers, we refrained from systematically adding
pronunciation variants to the lexicon of the test system. Instead, only some variants
were added unsystematically for frequently occurring deviations from the canonical
form. The canonical pronunciations were created manually. Due to the absence of
automatic pronunciation generation and also because it was not used for our robust
semantic analysis, the lexical model of this work does not contain morphological
knowledge.

Hence, the pronunciation lexicon is represented within our uniform knowledge
model by creating one transition network for each lexicon entry, and adding the
phonemes of the canonical pronunciation as a linear node sequence (see Figure 2.2 for
examples). Alternative pronunciations can be added as additional paths to the word
network. Pronunciation weighting is generally possible by assigning corresponding
transition weights.

In speech recognition, two different ways of representing lexical knowledge for
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decoding are traditionally distinguished. A linear lexicon separately represents each
word and its pronunciations, whereas a tree lexicon combines identical word begin-
nings in an unordered tree of phonemes, which can reduce the search effort during
decoding [ON95]. A tree representation of lexical knowledge is not directly possible
with WTNH, as each word requires its own transition network so that it can be
referred to from higher levels of the hierarchy. Yet, automatic network minimization
can be performed for each word separately, so that at least the different pronun-
ciations of a word are represented in an optimized way. Moreover, as is discussed
in Chapter 3, the one-stage decoder jointly propagates all search paths within a
transition network, so that paths crossing the same phoneme within different words
at the same time frame are treated together at the phoneme level.

Meaning Representation

As mentioned in the introduction of this work, the ultimate goal of speech under-
standing is the automatic transformation of spoken utterances to formal represen-
tations of the ideas transported with the utterances, in other words the utterances’
meaning. This transformation can be viewed as the machine’s process of ‘under-
standing’ or ‘interpreting’ user utterances. In this sense, speech serves as a medium
to transport ideas between human and machine. The formal meaning representa-
tion provides the basic semantic structure that subsequent processing stages of the
machine act upon, e.g. with the aim to give advice to users or to execute actions de-
sired by users. In order to perform its task, the machine also needs a certain degree
of world knowledge, whereby the ‘world’ of current speech understanding systems
comprises only special fragments of the real world, e.g. an airport’s flight database
or a company’s telephone directory.

The speech understanding problem is usually approached by subsequently con-
verting speech to text and text to meaning. At first glance, these two processing
steps can be carried out by combining automatic speech recognition with ‘deep’ se-
mantic analysis techniques from the field of natural language understanding (NLU).
This would for example lead to meaning representation such as Semantic Networks
or First Order Predicate Calculus [RN95], where the semantic analysis is based on
explicit morphological and syntactic analyses. However, such an approach would
only be feasible if speech recognizers were able to produce nearly perfect transcrip-
tions of speech utterances, on which the deep NLU processing was able to rely. Yet,
this is rarely the case in practice today, especially if system users should be able to
talk in a natural way and in natural situations. With the resulting erroneous and
ungrammatical text, the deep syntactic analysis is likely to fail, as for example the
German Verbmobil project [Wah00] has shown.

In order to cope with such kind of input, robust semantic analysis techniques
need to be applied. The robustness is achieved by lowering the analysis depth on
the one hand, and narrowing the complexity of application domains on the other
hand. The former means that little explicit morphological and syntactic knowledge
is used, or even omitted completely. The semantic analysis is directly performed on
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the word sequence in this case. Such an approach is e.g. taken by so-called semantic
grammars [BB75], which were originally developed for text-based dialogue systems.
Combining syntax and semantics in a single ‘semantic’ model renders the model
highly domain-specific. Hence, reusing models for other domains is hardly possible,
so that new semantic models need to be developed for each new domain.

Another measure to increase robustness is a tighter integration of speech recogni-
tion and semantic analysis, aiming at avoiding certain types of speech understanding
errors caused by early decisions. This kind of approach is chosen in this thesis, by
creating a uniform knowledge representation for both speech recognition and seman-
tic modeling, and utilizing this for a one-stage decoding process.

As a downside of the tightly integrated modeling approach, certain processing
steps of semantic analysis are hard to carry out, e.g. canonical representation or
consideration of background knowledge. Because of these limitations, we rather use
the less ambitious term speech interpretation instead of speech understanding. In
the remaining parts of this section, the properties of meaning representation within
our one-stage speech interpretation framework are discussed.

In natural language processing, meaning is typically represented through dis-
crete symbols, denoted as semantic objects, and relations between those objects.
For robust semantic modeling, words can be viewed as the fundamental (terminal)
semantic objects. Following the principle of compositionality, we assume that the
meaning of an utterance is composed from the meanings of its parts. From an
atomic point of view, this principle implies that a composed meaning of a group of
semantic objects can be expressed through a new, superordinate object. Through
its meaning, the new semantic object is related to its subordinate objects.

Generally, different semantic object groups can be attributed with identical
meanings. Such a set of object groups which share a common meaning is called
semantic category. Semantic categories are the basic building blocks of robust
semantic models. The basic structure of our semantic model is a hierarchical com-
bination of semantic categories. This implies that the meaning of an utterance can
be represented as a graph of semantic objects.

When representing semantic objects in a hierarchical structure with SCFG or
with WTNH, the grouping of objects is limited to consecutive items (or single ones),
and preservation of order. Consequently, the meaning representation of an utterance
is an ordered tree of semantic objects, which we call semantic tree (see Section 2.3.3).

In order to illustrate the notions of semantic objects and categories, we again
refer to the example of Figure 2.2. In this WT'NH, the semantic model is com-
posed of three types of semantic objects, namely words, word classes and concepts.
Each semantic category of the semantic model is implemented as a transition net-
work. The members of a category correspond to the symbol sequences contained
in the paths through the transition network. At the word class level, the category
members are single words by convention. At higher levels, the members may also
be sequences of semantic objects. The name of a transition network hints at the
meaning shared by its category members. For example, the category ALOCATION
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contains semantic objects denoting locations (of airports), AFLIGHTNUM contains
valid flight numbers composed of three or four consecutive digits, and QTIME sub-
sumes words and phrases indicating a temporal question. The root network is a
special category whose members don’t share a special meaning as such, except that
they all represent valid sequences of top-level objects.

The categorization of semantic objects can express different kinds of semantic re-
lations between the category object and its members. In this thesis, we discriminate
between three basic types of semantic categories. The semantic objects contained
in the first type of category are related to the pieces of information that the dia-
logue system can give advice about. In the domain examined in this thesis, these
are the items in the airport database, e.g. airport locations, arrival and departure
times, flight codes and airline names. The names of such semantic objects are pre-
fixed with an ‘A’, such as in ALOCATION or AFLIGHTCODE. The second type of
category is based on words or phrases suggesting a question, such as ZU WELCHER
ZEIT (word-by-word translation: at what time) or wo (where). These semantic ob-
jects are prefixed with a ‘Q’, such as in QTIME or QLOCATION. All other semantic
objects are subsumed in a third type of category, whose names have no special prefix.

A property of representing meaning with WTNH is its significance of temporal
order. While order is important on the acoustic-phonetic, lexical and syntactic
modeling levels, ordering of meaning units only matters in certain cases, if at all.
To illustrate this notion, consider the following textual utterances:

e FLUG LH DREI ACHT SIEBEN NACH HAMBURG
(word-by-word translation: flight LH three eight seven to hamburg)

e FLUG NACH HAMBURG LH DREI ACHT SIEBEN
(word-by-word translation: flight to hamburg LH three eight seven)

e FLUG LH DREI SIEBEN ACHT NACH HAMBURG
(word-by-word translation: flight LH three seven eight to hamburg)

Clearly, the first two utterances have the same meaning, although the order of
the phrases LH DREI ACHT SIEBEN and NACH HAMBURG is swapped. The third
utterance corresponds to the first one, except that the digits ACHT and SIEBEN
occur in different order. In contrast to the phrase change from the first to the second
utterance, this digit change alters the utterance meaning, because the order of the
digits is significant for the meaning of the flight number!'. Considering Figure 2.5
reveals that the semantic trees corresponding to the three utterances are all different,
although the first two utterances have identical meaning.

This example shows that the order significance of WTNH prevents that meaning
is represented in a canonical form, so that the speech interpretation system does

IPlease note that it would be possible to render the flight number category AFLIGHTNUM in-
significant of order by explicitly discriminating its members, e.g. by replacing the three ADiGIT
with AD1aiTl, AD1c1T2 and AD1GIT3.
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concept FLIGHT o AFLIQHTCODE ADESTINATION
concept AF{LIGHTN\UM \
word class AAIRL‘N(;ODE AD‘IGI’I‘/ AD:IGIT \AD‘IGIT ALO“C‘ATION
word FLUG LH DP‘{EI AC‘HT SIEBEN NACH HAMBURG
| —
concept FLiGHT ADESTH;IATION AFLIGHTCODE
concept AF{LIG?TNUM
word class ALO:C‘ATION AAIR,L‘NC/ODE AD‘IGI"[:/ AD‘IGIT “AD‘IGIT
word FLUG NACH HAMBURG LH DREI ACHT SIEBEN
concept FLIGHT AFLI/GHTCODE ADESTINATION
concept AF{LIGHTNUM ‘
word class AAIR,L‘NC/ODE AD‘IGIT// AD;IGIT “AD‘IGIT ALO:C‘ATION
word FLUG LH DF‘{EI SIEBEN ACﬁT NACH  HAMBURG

Figure 2.5: Example of semantic trees with three different word orders and two
different meanings.

not necessarily produce identical output for different input utterances with identical
meaning. Hence, the canonical form must be established in a postprocessing stage
of the speech interpreter.

Another property of semantic trees is their inability to represent nested struc-
tures. This can be of importance if a semantic object consists of spatially separated
objects. For example, consider the utterance WO KOMMT DER FLUG BA NEUN NULL
SIEBEN SECHS AN (word-by-word translation: where comes the flight BA nine zero
seven six at), where the members of the concept ARRIVAL, namely KOMMT and AN,
are 6 words apart. In such a case it is impossible to assign the separated objects
to one semantic category without also assigning all embraced words to the same
category. If this is not desired, the semantic category can only be split into two
parts, which are rejoined at a later processing stage. However, a link between the
separated objects can still be established if the dependencies within the semantic
model are capable to bridge the gap between them (see also Section 5.8).
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Chapter 3

A One-Stage Decoder for
WTNH

This chapter presents a description of the basic one-stage decoding scheme for the
uniform modeling framework discussed in Chapter 2. The decoder, whose basic
principle was also described briefly in [TFLRO03al, is called One-stage Decoder for
Interpretation of Natural Speech (ODINS). Please note that the experimental results
presented in this thesis were performed with an optimized decoder implementation
that differs in some aspects from the basic scheme described here. The optimiza-
tions, which are not a part of this thesis, mainly improve the runtime behavior of
ODINS. Yet, nor do these modifications alter the basic decoding scheme, neither the
presented experimental results.

This chapter is organized as follows: In Section 3.1, the hierarchical search prob-
lem is formulated in a generalized way. Section 3.2 discusses how the hierarchical
search problem can be solved with a time-synchronous decoding scheme based on
the token passing principle, and compares the proposed procedure with other simi-
lar decoding approaches. Finally, Section 3.3 presents the results of an experiment
which quantifies the theoretical advantage of the one-stage decoding strategy over a
corresponding two-stage approach.

3.1 Hierarchical Search Problem

The underlying assumption of the hierarchical modeling approach of Chapter 2 is,
that a sequential correspondence exists between the input symbols S* and the output
symbols S° of the decoder [PLV93]. More specifically, if S consists of a sequence
of |S*| symbols s%,sh, ..., s|gi| and S? consists of a sequence of |S°| < |S*| symbols
59,89, .. ,sto‘ a sequential correspondence means that S* can be segmented into
|S°| consecutive sub-sequences Si, S5, ..., S‘ZSO‘, so that each input sub-sequence Sj,
directly corresponds to an output symbol s?, where k =1...[S°|.

Let’s assume that in a speech recognition or speech interpretation system, S* are
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the acoustic observations and S° is a sequence of words or a sequence of semantic
objects. Then, the task of the decoder can be expressed as the problem of finding
the optimum output sequence for a given input sequence. As the decoder decisions
should be based on a statistical model, ‘optimum output sequence’ is rephrased
as ‘most probable output sequence’. Hence, using the definition from above, the
search problem can be formulated as finding the output sequence S°* for which the
statistical model, given an input sequence S?, yields maximum likelihood:

S°* = arg max P(S°|S%) (3.1)
SO

Due to the known difficulty of directly estimating the a-posteriori probability P(S°|S?),
Equation 3.1 is rewritten with Bayes’ formula as:

P(S'|S°)P(S°)
S°* = argmax —————~
& P(SY)

As the denominator P(S?) doesn’t depend on an argument of the maximum opera-
tion, it can be omitted, yielding:

8" = arg max | P(S718%)P(s)] (3.2)

While this equation describes the search problem for the case where the output only
consists of a flat symbol sequence, our speech interpretation task requires hierarchical
output and modeling. Therefore, we extend the notion of sequential correspondence
from above in a general way by allowing an arbitrary number of intermediate levels
of representation. This can be achieved by assuming pairwise sequential correspon-
dence between adjacent levels in the hierarchy. As a consequence of this assumption,
the resulting symbol hierarchy forms a proper, ordered tree structure.

In order to describe this extended notion of the search problem formally, it is
assumed for the moment that the tree structure has a constant height, corresponding
to the total number of levels of representation. For this purpose, we denote T as an
ordered, constant-height tree consisting of L > 2 hierarchy levels. By definition, a
horizontal line through T touches all tree nodes belonging to a hierarchy level [ of T,
with 1 <1 < L. The sequence of tree nodes contained in [ is denoted as T'. Thereby,
[ = 1is defined as the lowest hierarchy level which contains the leaf nodes of T or, in
other words, the input symbols of the decoder. The level [ = L refers to the highest
level, containing the decoder’s output symbols. The levels | = 2... (L — 1) contain
the symbols of the intermediate levels of representation.

More specifically, the ith tree node of T' carries the symbol sé, so that we can
write T! as a sequence of |T!| tree node symbols:

T! :sll,le,...,szl‘ (3.3)

30



3.1. Hierarchical Search Problem
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Figure 3.1: Notation scheme for symbol tree structure.

The tree structure of T implies that each level has at least as many nodes as the
next higher level, so that:

T > |T? > ... > |T"|

Applying the notion of sequential correspondence to adjacent hierarchy levels yields
that the tree nodes of level [ can be split into |T!*!| consecutive sub-sequences S:

l Ll l I ql l
T :817827---7S|Tl| :S17S27---7S|Tl+1| (34)

so that each sub-sequence Sli directly corresponds to a tree node sé“
higher level. Figure 3.1 illustrates the notation scheme of the discussed tree struc-

ture. The indices of the first and last symbols of S} are denoted Al and B!, respec-

on the next

tively:
Si = 8{427‘9{424»17' .. 78[B§
with A} =1, Al=B!, and Blpi =T (3.5)
+1

In tree notation, s;," " is called the parent of Sli. Likewise, the components of Sé are
called the children of sliH.

With this notation of the tree structure of symbol sequences, the search problem
for a hierarchical model with L hierarchy levels can now be formulated. For this
purpose, we replace the input symbols of Equation 3.2 with the lowest tree level T,
and the output symbols with the other tree levels T2, ..., TX. For the task of speech
interpretation the decoder is not desired to output all tree levels T2,..., T, but
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Hierarchy Level ‘ Term H Tree Node Type | Tree Level

root P(T9) concept TS
concept P(T5|T9) sub-concept T
sub-concept P(T#|T?) word class T4
word class P(T3|T?) word T3
word P(T?|T3) phoneme T?
phoneme P(T!|T?) HMM state T!

Table 3.1: Correspondences between the hierarchy levels of Figure 2.2 and the terms
of Equation 3.6, and the symbol types contained in the tree level sequences.

only semantically relevant symbols (see also Section 2.3.3). Therefore, the search
problem is defined as finding the most likely output tree T™ consisting of the top M
levels of the total symbol hierarchy, with 1 < M < L.:

T = argmax_|P(T'T?..., TH)P(T?,..., T")]

TL-M+1 _ TL
Using the chain rule, this equation can be rewritten as:

T = argmax_ |P(TYT?%..., T5)P(TT5,. .., TF)... P(T*!TH)P(TY)]

TL-M+1_ TL

Under the assumption that the tree nodes T! on level [ only depend on the tree
nodes T on the next higher hierarchy level, this becomes:

T = argmax [P(TT?)P(TT%)... P(T" T P(T")]

TL_AI+1,...,TL

—  argmax [P(TL) L]:f P(TYT!HY) (3.6)

TL—]M+17___’TL =1

For the example speech interpretation system of Figure 2.2, we have L = 6 and
M = 4. Table 3.1 shows which hierarchy levels of Figure 2.2 are described by which
terms of Equation 3.6, and which types of symbols are contained in the levels of the
hierarchy tree.

As already discussed in Section 2.3.2, it is desirable to extend the flexibility of the
modeling hierarchy by allowing hierarchy levels to be skipped. In order to take this
into account in the search problem formulation, we still assume that the hierarchy
is fully occupied, i.e. that no level skipping occurs, by imagining a ‘dummy’ network
consisting of a single sub-network node for each skip transition. In Equation 3.6,
these dummy networks can be ignored because they have a production probability of
one. This notion of hierarchy level skipping also explains why our representation of
output trees, as shown in Figure 2.4, doesn’t yield constant-height trees as described
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in the beginning of this section.

Using Equations 3.3 and 3.4, we can further decompose Equation 3.6 into tree
node symbols and their corresponding symbol sub-sequences:

L—1
T = arg max lP(TL) HP(Tl]THl)

TL_A/I+1,...,TL =1

L-1
= arg max lP(Sf) H P(Si, s, ..., Sle+1||sl1 s ,sf,JIﬁllﬂ)]

TL_A/I+1,...,TL =1

By assuming that a sub-sequence Sl only depends on its parent symbol lerl this
becomes:

r L-1
T = argmax |P(SF) [ P(Stsi™)P(SLIsh™) ... (sTmysﬁ}H')]
TL—M+1,...,TL L -1
L*llTl‘H‘
— P(sh) P(S!slH1 3.7
g, (PED LT Pt 0

A conditional likelihood term P(Sl|sl+1) of Equation 3.7 describes the probability
that the symbols of a sequence S occur as children of a symbol Sl+1. The uncon-
ditional likelihood for the occurrence of the surface symbol sequence is represented
by the term P(ST).

In this work, the underlying likelihood distributions of P(St|si™!) and P(S¥) are
modeled by the set of transition networks contained in a WTNH. Thereby, the name
of a non-root transition network is equivalent to the symbol sl+1, and the symbol
sub-sequence Sﬁ corresponds to a path through the network. A path through the
root network produces Sf . The likelihood of a network path is computed as the
product of the likelihood values of all involved transitions. At the phoneme level, the
HMM state emission probabilities are also included in the likelihood computation.
Hence, for a given acoustic observation sequence, the total likelihood of a path
through the WTNH is computed according to Equation 3.7 as the product of all
transition and emission likelihood values contained in the path. Using these notions,
the hierarchical search problem becomes the task of finding the path through the
WTNH yielding maximum total likelihood.

3.2 Token Passing

After formulating the hierarchical search task, this section discusses how this task
can be performed by a time-synchronous, one-stage, iterative search procedure,
which provides the core of ODINS. The basis for this decoding approach is the token
passing paradigm [YRT89], which is well-known in the field of speech recognition.
For example, the decoder of the Hidden-Markov-Model Toolkit (HTK) [YEK'02],
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history
tree

lgd\ /Qlulated

é@m D
weight weight
history tree J history tree—
node reference . node reference
back-tracking . back-tracking
record reference token record reference
token 1 container token 2

Figure 3.2: Relations between WTNH, token containers, tokens and history tree.

which is today a standard tool in speech recognition research, is based on a form of
token passing.

With token passing, a time-synchronous, hierarchical Viterbi search can be per-
formed by dynamic programming (DP) [SK83, Rus94]. The DP algorithm deter-
mines the best match between two patterns by finding the best path through a
matrix of accumulated distances. For Viterbi decoding of HMM, the matrix is re-
placed by unfolding HMM states in temporal direction and explicitly specifying the
possible state transitions in a so-called Trellis diagram. The decoding is performed
in a time-synchronous way by computing the Trellis states column by column, from
left to right. During this process, the principle of recombination is applied to mini-
mize search effort, by recombining converging paths locally and only continuing with
the best path at each Trellis state.

In [YRT89], Young formulates a generalized time-synchronous Viterbi decoding
scheme, by representing each search path as a moveable token that is passed along
the nodes of transition networks as time proceeds. The ‘goodness’ of a token is
represented by the accumulated weight it holds. This weight is updated during
token propagation with weights of traversed transitions and emission probabilities
of visited HMM states. The time-synchronity of a token passing search is ensured
by propagating each token over one HMM state only during each time frame. The
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recombination principle is applied to token passing by merging tokens that meet at
transition network nodes. The merging is performed by keeping only the token that
holds the maximum score (log-likelihood), and discarding all others.

In the token passing algorithm described in [YRT89], Young assumes that none
of the sub-networks are shared, so that there is a unique instance of each transition
network for each reference to it. As also noted by Young, this implies that the super-
network doesn’t contain (direct or indirect) recursion, because this would require an
infinite number of network instances. In order to eliminate this restriction in the
algorithmic formulation presented here, the creation of unique network instances
is avoided by directly operating on the WTNH (see Figure 2.2 for an example of
a WTNH). This approach to token passing implies that network nodes are able
to accommodate multiple tokens at once. We achieve this by associating a token
container with each network node, which holds the set of tokens that currently reside
at a specific network node. Figure 3.2 depicts the fundamental relationship between
network nodes of WTNH, token containers, tokens and the token history tree (see
next section).

As a consequence, it becomes possible to jointly propagate those token sets
across transition networks. On the one hand, this reduces the computational effort
in comparison to Young’s approach. On the other hand, it becomes necessary to
treat tokens separately with respect to recombination, because only those tokens
sharing a common ‘history’ regarding the network hierarchy may be recombined. In
the following section, we discuss how this requirement can be implemented by use
of a so-called history tree.

3.2.1 History Trees

Instead of creating unique instances for referenced transition networks, we dynam-
ically keep record of the ‘ancestry’ of tokens according to their way through the
super-network. Since transition networks may contain multiple references to sub-
ordinate networks (see e.g. network AFLIGHTNUM of Figure 2.2, which repeatedly
refers to network ADIGIT), references to sub-network nodes must be recorded. For a
set of paths through a WTNH, those references to traversed sub-network nodes form
an unordered tree. Since the ancestors of each tree node represent the history of a
token regarding its current position in the network hierarchy, such a tree is denoted
as history tree. The sequence of ancestor nodes of the history tree node where a
token currently resides is called the token’s super-network history.

Figure 3.3 shows the full history tree for all possible paths through the WTNH of
Figure 2.2, except for the phoneme level. Since network AFLIGHTNUM is referred to
directly from the root network and via AFLIGHTCODE, it occurs twice in the history
tree. Hence, each digit, which is contained 4 times in AFLIGHTNUM, totally occurs
8 times in the history tree. Please note that if the super-network of a WTNH con-
tains recursion, the corresponding full history tree becomes infinitely deep. Hence,
if recursion is allowed, the history tree must be constructed dynamically during
decoding.
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Figure 3.3: History tree for the WI'NH of Figure 2.2, without phonemes.
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As mentioned at the end of the previous section, history trees are a means to
determine if tokens may be recombined. For this purpose ODINS uses a common his-
tory tree for the whole search process, and each token is augmented with a reference
to a node of the common history tree (see Figure 3.2). This reference corresponds
to the token’s current position in the transition network hierarchy. Consequently,
only tokens referring to identical history tree nodes may be recombined.

Figure 3.2 shows an example of two tokens that currently reside at node x of
network c, and therefore are both placed in the same token container. Yet, these
tokens may not be recombined due to their different super-network histories: Token 1
entered network ¢ by descending from network a, whereas token 2 entered network ¢
via network b. This fact is reflected by the token’s history tree node references,
which point to different history tree nodes that both carry identical symbols ‘c’.

During token passing, the reference of a token to its history tree node must be
kept up-to-date. This is accomplished by moving the reference to a child node when
descending the WTNH to a sub-network, and by moving the reference to the parent
tree node when ascending the hierarchy from an exit node. During ascension the
history tree serves another purpose, namely to find the correct target sub-network
node for token propagation. This target is determined from the parent of the token’s
current history tree node.

3.2.2 Token Propagation Scheme

As already explained in Section 2.3.3, a valid path through a WTNH is generated by
walking from node to node along transitions, starting with the entry node of the root
network and ending at its exit node. Hence, a token passing search is initialized by
injecting a single token with score zero into the root network’s start node. Generally,
a token is propagated along a transition leaving the current node by moving it to
the successor node and adding the transition weight to its accumulated score. If a
node has multiple outgoing transitions, copies of the token are passed to all successor
nodes, accordingly. When multiple tokens with the same super-network history meet
at a network node, they are recombined as discussed in Section 3.2.1. The following
special cases need to be considered during token propagation:

e When a token enters a sub-network node, it is moved to the start node of
the corresponding sub-network. Hence, the token changes the super-network
node. During this process, the token’s history tree node reference is updated
as explained in Section 3.2.1.

e When a token reaches the end node of a network, it is propagated back to
the sub-network node it once descended using knowledge from the history tree
as detailed in Section 3.2.1. More precisely, the token is propagated along
the transitions leaving this sub-network node. Hence, the token traverses the
super-network in backwards direction during this step.

e When tokens are passed to a terminal node, the HMM state’s emission score
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transition network

Figure 3.4: Token recombination for in-order processing (numbers (1,2,3) above arcs)
and out-of-order processing (numbers (1,2,3,4) below arcs).

for the current acoustic observation is added to the token score as well as the
transition score.

As explained in the beginning of Section 3.2, our token passing scheme directly
operates on WTNH, so that network nodes generally accommodate a set of several
tokens at once, which can be propagated simultaneously. In return, it is desirable
for efficient processing to visit network nodes as rarely as necessary. This can be
achieved by processing network nodes in topological order if possible, i.e. if the
network is acyclic. Another reason for topological-order processing is, that it enables
to prevent late recombination of tokens by letting converging tokens meet as early
as possible, and hence avoid redundant computations. This cannot be ensured if
stepwise token propagation is performed out-of-order.

Figure 3.4 demonstrates the advantages of in-order network processing: In the
topologically sorted transition network, node c is processed after nodes a and b, so
that tokens are recombined at the earliest possible point, i.e. at node c. In contrast,
if node ¢ is processed before node b, the token passed via node a has already left
node ¢ when the token passed via node b arrives there. Hence, the two tokens don’t
meet at node c, so that their recombination is delayed. Moreover, node ¢ needs to
be processed a second time in this case.

In contrast to our approach, the ISIP ASR system [JZP101], which utilizes a
similar one-stage decoding method with token passing as ODINS, uses so-called
‘traces’ to avoid late recombination. A trace of a token is a recording of the node
sequence the token has passed in previous propagation steps. When a token comes
across a trace of another token, token recombination can be carried out immediately,
instead of waiting until the tokens themselves actually meet. Yet, this solution is
not optimal because it doesn’t avoid the propagation steps that the earlier token has
carried out after leaving the optimum point for recombination (node c in Figure 3.4).

Similar to within-network processing, it is also desirable to process the whole
network hierarchy in an optimum way. For this purpose, it needs to be considered
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how time-synchronity is ensured during the token propagation process. As already
briefly mentioned in Section 2.3.3, time is only consumed during decoding when
terminal nodes are visited and the emission score of the next acoustic observation
of the preprocessed input speech is added to the token score. Hence, the decoding is
time-synchronous if each (surviving) token visits exactly one terminal node during
each time frame. Similar to the ISIP system, we therefore perform token propagation
iteratively by dividing each time frame into three phases:

Phase 1: Starting at the root network, tokens are propagated downward until
all of them reside at a terminal network node.

Phase 2: Each token is propagated exactly once across the current terminal
node, consuming a time frame and a corresponding emission score.

Phase 3: Tokens are propagated upwards through the network hierarchy, from
the lowest hierarchy level to the root network.

During the ‘timeless’ phases 1 and 3, it is sufficient to process each network only
once if processing occurs in a correct order. Similar to within-network processing,
topological sorting of the super-network leads to a correct ordering. Hence, tran-
sition networks are processed in topological order during Phase 1, and in reverse
topological order during Phase 3, whereas during Phase 2 networks containing ter-
minal nodes can be processed in arbitrary order. If a WTNH contains recursion
the super-network is cyclic, so that its topological sorting becomes impossible. In
this case, networks need to be processed more than once during Phase 1 and Phase 3.

In order to further reduce the computational effort for decoding, different prun-
ing techniques can be applied to concentrate search on the most promising decoding
hypothesis by discarding tokens with low scores early. In speech recognition, a stan-
dard pruning technique is beam pruning, where all search paths whose scores are
worse than a constant threshold from the token with the best score are discarded.
This process is normally repeated at each time frame. Thereby, search is only carried
out on a ‘beam’ of most promising hypotheses. The number of hypotheses surviving
a beam pruning step may vary significantly within and across utterances, depend-
ing on the degree of ambiguity currently present. Generally, at instances of high
ambiguity more hypotheses are considered than when ambiguity is low. Therefore,
beam pruning avoids search errors, which occur if the globally best search path is
erroneously pruned, while reducing the search effort by a considerable amount.

However, the dynamics of beam pruning can also be undesirable, because this
may result in high variations in processing time, which for instance irritates system
users. Therefore, more advanced pruning techniques, e.g. maximum instance prun-
ing as in the ISIP system or confidence measure controlled pruning as in [FLRT05]
can be applied. As runtime performance optimization is not a focus of this thesis,
only beam pruning is considered here. Beam pruning is applied in Phase 2 of the
token passing algorithm, when all tokens have settled on a terminal node. After
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determining the best scoring token, the current beam width is computed by sub-
tracting the predefined threshold from this score. Finally, all tokens with inferior
score are discarded.

After the last acoustic observation of the input speech utterance has been con-
sumed and the remaining tokens have been propagated upwards to the exit node of
the root network, the decoding result needs to be extracted from the best token by
back-tracking. This step is carried out, similar to [YRT89], via a linked list of so-
called back-tracking records, which are created during forward propagation. Hence,
each token holds a reference to a back-tracking record, as shown in Figure 3.2. Fol-
lowing the back-tracking records of the best token reveals the sequence of transition
networks that the token has visited. This sequence is then converted into a semantic
tree as described in Section 2.3.3.

3.2.3 Constrained Token Passing

After presenting a token passing based solution to the hierarchical search problem of
ODINS, a modified version is discussed in the following. The modification enables
decoding based on textual representation of utterances instead of speech input. The
representation of textual input may be weighted and contain alternative hypotheses
in the shape of a word lattice, which can be produced by speech recognition systems
[DGP99]. Even more, the input may already be hierarchically structured like the
so-called lattice hierarchy described in [LFRT04], which can be produced by an
extended version of ODINS. In contrast to the unconstrained token passing search
discussed in Section 3.2.2, in the constrained version only those search paths are
taken into account which contain valid paths through the constraining lattice.

Constrained token passing is utilized for two tasks in this thesis: Firstly, to
simulate a two-stage decoder that corresponds as much as possible to its one-stage
counterpart. This enables to conduct an experimental comparison of the two ap-
proaches, which is presented in Section 3.3. Secondly, constrained token passing
can be used to automatically generate semantic tree annotations from orthographic
transcriptions of spoken utterances, as discussed in Section 4.1.2.

The constrained search is carried out by augmenting tokens with a reference
to the previously traversed terminal node of the lattice. For the uses discussed in
this thesis, terminal lattice nodes correspond to words. In this case, the knowledge
source for the decoder is not a full WTNH including acoustic-phonetic and lexical
modeling levels as in Chapter 2, but merely a WTNH comprising the syntactic-
semantic modeling levels, just like the hierarchical language model presented in
Chapter 5.

One measure to verify constraints consists in checking if tokens follow admissible
transitions between terminal network nodes of WTNH. This is achieved by discarding
tokens that visit a terminal network node if the node is, according to the lattice,
not a possible successor of the previously traversed terminal network node. The
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second action for constraint-verifying, which only needs to be carried out if the
input lattice is hierarchical, consists in checking if the token’s way through the
non-terminal levels of the network hierarchy is admissible. This can be ensured by
comparing hierarchy histories. More specifically, all tokens at terminal nodes are
discarded whose super-network history is not contained in the possible super-lattice
histories of the terminal lattice node. The super-lattice history is, similar to the
super-network history, represented in the shape of a history tree (see Section 3.2.1).
Hence, comparison of histories is performed by comparison of unordered (sub-)trees.

As mentioned in the beginning of this section, the input lattice can be weighted,
for instance if it is the result of speech recognition. In this case, two different kinds of
weights are present in the lattice, namely acoustic model and language model scores.
If the constrained token passing should act as a second processing stage after speech
recognition, it is desirable to reuse the acoustic model scores of the input lattice, but
discard the language model scores and use the (hierarchical) language model scores
of the WTNH instead. This method is similar to re-scoring known from multi-pass
speech recognition, only that the second stage here introduces additional, semantic
information. If the input lattice is unweighted, as is the case when generating
semantic tree annotations from word sequences, only the weights present in the
WTNH are considered during constrained token passing.

3.3 Experiment: One-Stage vs. Two-Stage Decoding

As mentioned in the introduction of this thesis, a one-stage decoding approach for
speech interpretation is desirable because it obeys the well-known principle of apply-
ing all sources of knowledge as early as possible. In contrast, the speech recognizer
of a two-stage speech understanding system computes the most likely word hypoth-
esis without considering semantic knowledge from the second stage. This becomes
relevant when speech interpretation hypotheses are not very likely if only acoustic-
phonetic, lexical and syntactic modeling is taken into account, but likely regarding
semantic modeling. If such a hypothesis is already discarded by the speech recog-
nizer without having the chance to become the overall most likely hypothesis, this
early decision may cause an error. On the contrary, ODINS prevents these kinds of
errors by considering the available knowledge models simultaneously.

In general, it is also possible to circumvent this problem in a two-stage system, by
generating alternative word or utterance hypotheses in the first stage and modifying
the second-stage decoder accordingly. However, runtime requirements may impose
strong limitations on the amount of hypotheses which can be accounted for in the
second stage. Therefore, it is desirable to quantify the degradation of semantic
accuracy when reducing the amount of alternative hypotheses. In this section, the
results of a corresponding experiment are presented!.

Figure 3.5 depicts the basic building blocks of the one-stage and the two-stage

!See [TFLRO3a] for a similar experiment, which was conducted with an earlier version of the
knowledge models and test corpora used here.
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Figure 3.5: Setup for comparing the one-stage (top) and the two-stage (bottom)
decoders used in this thesis.

decoders used in the experimental setup. In the one-stage system (see upper part of
Figure 3.5), the WTNH incorporates all sources of knowledge we use for speech inter-
pretation, namely acoustic-phonetic (HMM), lexical (word) and syntactic-semantic
(word class and concept) models. In both two-stage and one-stage setups, acoustic-
phonetic and lexical modeling is carried out as described in Section 5.6.2. The
hierarchical language model of the WTNH for the one-stage setup is constructed
as described in Chapter 5, using a training corpus of semantic tree annotations for
an airport information dialogue scenario (see Section 4.1). Specifically, the tran-
sition network at the root of the network hierarchy represents a (concept) bigram
language model. In the one-stage system, ODINS directly decodes semantic tree
representations from input speech signals utilizing this WTNH.

For the first stage of the two-stage system setup (see lower part of Figure 3.5), a
WTNH comprising only acoustic-phonetic, lexical and (implicit) syntactic knowledge
is constructed using the same semantic tree annotations as for the one-stage setup,
after discarding the concept annotation levels. Although word classes intrinsically
belong to the semantic modeling levels, we incorporate them into the first decoding
stage, because word class members required for the application but missing in the
training corpus are added manually (see also Section 5.6.1). Therefore, omitting the
word class models in the first stage would produce a smaller lexicon for the two-stage
decoder, rendering the comparison unfair. Hence, the transition network at the root
of the first-stage WTNH is based on word classes. As in the one-stage setup, a
bigram is used as root language model. In order to produce alternative word and
word class hypotheses, an extended version of ODINS (denoted as ODINS*) provides
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the first-stage speech recognizer. This decoder generates so-called lattice hierarchies
from speech signals (see Section 3.2.3).

This intermediate representation is further processed in the second stage of
the two-stage speech interpretation system, utilizing the constrained token pass-
ing search discussed in Section 3.2.3. In order to decode semantic trees from lattice
hierarchies of words and word classes, a second WTNH is used that contains the
syntactic-semantic modeling levels. This WTNH is equivalent to the upper part of
the WTNH for one-stage decoding, and also contains a concept bigram language
model at the root level.

In the described experimental setup, both decoders correspond to each other as
far as possible, in that they rely on the same training data, on the same modeling
approach and on the same decoding scheme. Hence, this setup is suitable for mea-
suring solely the effect of propagating only a limited number of hypotheses from the
first to the second stage. The amount of alternatives present in a lattice hierarchy is
expressed in terms of the lattice density pjq:, which is computed as the ratio of the
total number of edges in the flat lattice N*** and the number of nodes of the best
path through the flat lattice N2t

Ntot

e
plat = best
Nnes

The lattice density value expresses how many alternative words and word classes
a lattice contains on average for each word and word class in its best hypothesis.
Plat 18 controlled by varying two parameters of the first-stage decoder, namely the
number of n-best tokens recorded at network nodes during lattice generation, and
the beam pruning threshold ¢, which was discussed in Section 3.2.2.

For a set of u = 1...U utterances from a test corpus, the average lattice density
Plat 18 computed as:

1 U
ﬁlat = 77 Z plat(u)
u u=1

Figure 3.6 depicts the tree node accuracy Acc, of the two-stage system setup
in dependency of pj,; for the evaluation set of the airport information dialogue
corpus. The tree node accuracy is a measure for the degree of agreement between a
semantic reference tree and a semantic hypothesis tree, as discussed in Section 4.3.
In other words, Acc,, specifies how much of the semantic tree structure was correctly
interpreted.

The average tree node accuracy of the one-stage decoder is 87.5% for the eval-
uation set, shown as a constant line in Figure 3.6. This performance is achieved
with a hierarchical language model utilizing Good-Turing and modified Kneser-Ney
smoothing, as discussed in Section 5.7. For both one-stage and two-stage decoders
the language model factor was set to A = 21, which corresponds to the optimum
setting on the cross-validation set (compare Figure 5.4).
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Figure 3.6: Tree node accuracy of two-stage decoder for varying lattice densities.

For the two-stage decoder three curves are drawn, correspondington =1, n = 2
and n = 3 best tokens recorded during lattice generation. The beam pruning thresh-
old was varied between t = 80 and ¢t = 400. For n = 1 the lattice degenerates to
the best search hypothesis, yielding a lattice density of p;,; = 1 and a maximum
tree node accuracy of only 82.7%. For n = 2 and an increasing amount of alter-
native hypotheses, the performance of the two-stage system continuously improves
and achieves its maximum of Acc,, = 87.3% at pj,; = 37, which comes close to the
accuracy of the one-stage system of 87.5%. Further increasing the number of alter-
native hypotheses by setting n = 3 even yields the same accuracy as the one-stage
system, yet at the cost of processing lattices with an average density of p;,; = 132.

Summing up, the experiment suggests that a substantial amount of speech in-
terpretation errors, which originate from decoding the semantic representation from
a limited amount of speech recognizer hypotheses, can be avoided by a one-stage
decoding approach. Using only the best hypothesis increases the error rate by more
than 38% relative, compared to the error rate of the one-stage decoder. Although
this error increase can be limited to about 2% or even eliminated altogether, lattices
with more than 25 or even more than 100 alternatives for each word or word class in
the best hypothesis are needed in order to achieve this. Processing such large lattices
may well exceed the available computational resources as well as the requirements
for runtime delay in a practical application.
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Chapter 4

Evaluation Method and
Measures

This chapter deals with the question how to evaluate a speech interpretation sys-
tem, i.e. how to determine its ‘goodness’. Answering this question is interesting for
both manufacturers and customers of speech interpretation systems. Yet, finding a
general measure of goodness is difficult, as the notion of goodness typically relates
to a number of different system properties, which can be judged in different ways.
Therefore, goodness also depends on the viewpoint of the observer.

This notion is especially relevant for complete, end-user systems such as dictation
systems or spoken language dialogue systems, where personal customer preferences
play an important role (see [BD00] for a more elaborate discussion on speech di-
alogue system goodness). But even single system components, such as the speech
interpreter, may have a number of properties (e.g. word error rate, runtime per-
formance, noise robustness) that can be judged and weighted differently. Hence,
as also concluded by [BD00], evaluation should not aim to find ‘the’ goodness of a
system. Instead, numerous factors contributing to system quality should be deter-
mined, which observers can consider according to their perspective, in order to make
individual judgements of system goodness. We denote such a contributing factor as
evaluation measure.

The provision of suitable evaluation measures is also important because it en-
ables purposeful improvement of system components during system development.
Moreover, comparison of different modeling and processing approaches or even of
whole systems becomes possible.

Generally, evaluation measures can be divided into two categories, namely sub-
jective, user centric measures and objective, system centric measures. System cen-
tric evaluation can usually be repeated with no or little additional cost once the
evaluation environment has been created, whereas user centric evaluation generally
consumes similar effort with every repetition of the test. Subjective evaluation is es-
pecially useful to determine quality aspects that the system developers are immune
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Figure 4.1: Levels of representation and evaluation measures used for speech inter-
pretation.

against due to their involvement in the system design. Another possible categoriza-
tion of evaluation methods is achieved by discriminating black box and glass box
assessment [SF93]. The former denotes the evaluation of a system as a whole by
only looking at its input and output, whereas the latter refers to the assessment of
single system components only.

This thesis concentrates on objective, glass box evaluation of our speech inter-
pretation system as a component of a spoken language dialogue system. The system
centric evaluation is based on a speech corpus collected through a Wizard-of-Oz
setup of an airport information dialogue system scenario. This speech corpus is
discussed in Section 4.1. Yet, a complete speech dialogue system was not available
for this thesis. Therefore, black box assessment as well as user centric evaluation
couldn’t be performed.

Figure 4.1 gives an overview over the evaluation measures considered in this
chapter, namely word accuracy Acc,,, tree node accuracy Acc,, slot-value accuracy
Accg, and test-set perplexity ppl. In the figure, the scope of these measures is shown
by means of the different levels of representation and processing: As explained pre-
viously, the one-stage decoder ODINS directly maps the input speech signal into
a semantic tree representation. Internally, ODINS uses phonemes and words as
(intermediate) representation, whereby words are also part of semantic trees. In a
postprocessing step, a semantic tree is then converted into a suitable input repre-
sentation for further processing, e.g. for the dialogue management component of a
dialogue system. The postprocessing step e.g. involves the creation of a canonical
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form of meaning (see Section 2.3.4). The input to the dialogue manager typically
consists of slot-value pairs or slot-value-communicative function triples (see Sec-
tion 4.2.3). Finally, the dialogue system executes an action, usually by responding
to the user query.

Speech understanding systems are typically evaluated in terms of the goodness
of the produced slot-value representation. Slot-value pairs are also called concepts
in this context, and the corresponding evaluation measure denoted as concept accu-
racy. However, in this thesis the term slot-value accuracy is used instead, to avoid
confusion with the semantic units of WINH (see Section 4.2.3). In order to obtain
evaluation data from single components of the speech understanding system, the
goodness of the word representation, i.e. the speech recognition component, is also
measured. Further insight into the speech recognition process is gained by evaluating
the language model alone in terms of perplexity.

In this work, similar measures are defined to evaluate ODINS: Slot-value pairs are
derived from semantic trees by postprocessing, word sequences are directly contained
in the bottom level of semantic trees. Both evaluation measures are computed by
sequence matching, which is discussed in Section 4.2. An assessment of the language
modeling component alone is achieved by applying the notion of perplexity to the
hierarchical language model of ODINS. The corresponding measure is defined in
Section 4.4.

In addition to those metrics, a novel evaluation measure, which directly assesses
the semantic tree representation, is introduced in this chapter: The so-called tree
node accuracy, which is computed by tree matching instead of sequence matching.
This measure is defined and discussed in Section 4.3, after reviewing the basic ap-
proach to tree matching and showing how it can be extended to match the semantic
trees employed here. The section concludes with an experimental comparison be-
tween sequence based and tree based evaluation measures. The result suggests that
tree based evaluation is better suited for comparably complex hierarchical models,
like the ones examined in this work.

4.1 Airport Information Corpus

This section describes the collection and annotation of speech data for a sample
application of a spoken language dialogue system, which contains the considered
speech interpretation system as a component. One part of the annotated speech
corpus provides the fundamental data for computation of the objective evaluation
measures discussed in this chapter. Another part of the speech data is utilized for
creation of knowledge sources of a sample speech interpretation system, especially
for the hierarchical language models (HLM) discussed in Chapter 5.

The sample application proposes a dialogue system for information about the
Munich airport. In the target scenario, the system user is driving by car to the
airport in order to collect or deliver passengers, or to take a flight himself. The dia-
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lab car | total
# subjects 15 17 32
# tasks/dialogues | 240 | 255 | 495
# user utterances | 1365 | 1323 | 2688
# words 7047 | 7624 | 14671

Table 4.1: Statistics of speech data collected in laboratory and car environments.

logue system provides the user with information about departing and arriving flights,
specifically about departure and arrival times, about the origin or destination of a
flight, about flight number, gate, status, and about the airplane type. Additionally,
the user can request information about appropriate parking facilities.

4.1.1 Data Collection

The speech data was collected in a series of Wizard-of-Oz (WOZ) experiments,
closer described in [LR03]. The WOZ technique [DJA93] is employed to obtain as
realistic data as possible for a target domain without the need to provide a ready
target system. ‘Realistic’ means that the collected utterances are similar to the ones
expected in a real world dialogue application. In order to avoid degradation of speech
interpretation accuracy, the similarity between collected and real-world utterances
needs to extend over all levels of processing (acoustic, lexical, syntactic, semantic).
This can be achieved if the subject is confronted with the a system that behaves real.
WOZ experiments aim to meet this requirement by simulating essential parts of the
dialogue system with the aid of a human ‘wizard’. Ideally, subjects are unaware of
the simulation, so that they behave more naturally. The wizard interprets the user
utterances and initiates appropriate system actions, simulating speech interpretation
and dialogue management.

The corpus collection was performed in two different environments: The first
experiment took place in a quiet laboratory environment, the second one in a driving
car, which the subject itself was steering. In both environments, the subjects were
recorded with a close-talking microphone, in order to avoid influences of background
noise. During the experiments, the subjects were given a number of tasks, each
leading to a dialogue between the subject and the WOZ system. For each task,
a short description containing target information (e.g. arrival time) and possible
constraints (e.g. flight LH 4257 from frankfurt) was read to the subject by the
experimenter. In some of the tasks, the wizard deliberately initiated erroneous
system responses, simulating misinterpretation.

32 recordings of 30 different subjects were carried out in total. 15 different
subjects were recorded in the laboratory experiment, 17 different subjects in the
car, i.e. 2 subjects carried out both experiments. The number of tasks each subject
had to perform was 16 in the laboratory and 15 in the car experiment. The resulting
495 dialogues consist of 2688 user utterances or 14671 words, so that on average a
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dialogue contains 5.4 utterances, and an utterance contains 5.5 words. Table 4.1
summarizes the basic properties of the two data collections.

4.1.2 Corpus Annotation and Partitioning

The collected utterances from the airport information scenario are fully annotated
with semantic trees (see Section 2.3.3). In order to reduce the manual effort required
for annotation, a semi-automatic, iterative procedure is employed: Firstly, an initial
HLM is built from a small amount of manual tree annotations. Then, tree annota-
tions of new utterances are generated automatically from the word sequence, using
the constrained token passing scheme presented in Section 3.2.3. After manually
correcting the errors in the automatic annotations, a new intermediate HLM is built
on the extended set of annotated utterances. This process is repeated iteratively for
chunks of the corpus, as the tagging accuracy improves with the incorporation of
new phenomena into the intermediate HLM.

All of the objective evaluation measures mentioned in the beginning of this chap-
ter are computed on a set of test utterances of the considered speech corpus. Fur-
thermore, the speech corpus is also utilized to train the knowledge sources of the
speech interpretation system (HMM, lexicon and HLM). Hence, in order to render
the evaluation as fair and as practical as possible, the corpus needs to be split into
training and test sets so that the test set contains no data that is already known to
the system through training. This especially requires that the test set only contains
utterances from previously unseen subjects.

The test set is again split into two parts, namely into an evaluation set and a
cross-validation set. The cross-validation set is used to find the optimum settings of
free parameters of the speech interpretation system, such as language model factor
or OOV word penalties (see Sections 5.9.1 and 6.3). With those parameter settings,
the final evaluation result is then determined on the evaluation set, without using
knowledge about the optimum parameter settings on this set.

The tree annotation is based on a definition of 53 semantic categories. 12 of
those categories are defined on the word class level, the other 41 categories repre-
sent semantic concepts, arranged on two hierarchy levels. The structural distinction
between word classes and semantic concepts is, that a word class represents a union
of single words, whereas a concept may contain several subordinate units, either ter-
minal (words) or non-terminal (other concepts or word classes). In semantic terms,
members of the word class category always relate to information items the dialogue
system can give advice about (e.g. airport locations, airline codes, area codes, dig-
its of flight numbers), whereas concepts also represent other kinds of relations (see
Section 2.3.4). Some statistical data on the annotated airport information corpus is
given in Table 4.2. The table contains the total numbers for the whole corpus (all) as
well as individual numbers for training (train), evaluation (eval) and cross-validation
(xval) sets.

49



Chapter 4. Evaluation Method and Measures

airport information corpus

train | eval | xval all
# subjects 20 6 6 32
# dialogues 309 93 93 495
# user utterances 1714 | 439 535 2688
# words 9616 | 2496 | 2559 14671
# words per utterance 5.6 5.8 4.7 5.5
# word classes 3689 | 1036 | 1019 5744
# word classes per utt. 2.2 2.4 1.9 2.1
# concepts 3904 | 1018 | 1098 6020
# concepts per utterance | 2.3 2.3 2.1 2.2
# different words 594 | 307 | 272 667
# different word classes 12 8 12 12
# different concepts 41 41 38 41
unknown word rate na. | 2.2% | 1.5% n.a.

Table 4.2: Statistics of semantic tree annotation and partitioning into training and
test sets.

4.2 Sequence Based Evaluation

After discussing collection and annotation of a speech corpus for a sample dialogue
scenario and its partitioning into training and test sets, this section now deals with
sequence matching based evaluation of speech interpretation systems. For this pur-
pose, annotations of test utterances are utilized as reference material. Evaluation
measures are then computed by comparing these references against the output hy-
potheses of the speech interpretation decoder for the recorded speech signals of those
test utterances. Sequence based evaluation focuses on matching sequential represen-
tations of utterance hypotheses and references. We specifically review two objective
evaluation measures typically used for speech understanding systems, namely word
accuracy and slot-value accuracy. As shown in Figure 4.1 in the beginning of this
chapter, these metrics consider different levels of representation, and therefore dif-
ferent processing stages.

4.2.1 Sequence Matching

In order to compute a sequence based evaluation measure, the optimum match be-
tween reference and hypothesis sequences needs to be found, so that the erroneous
elements of the sequences can be located. The optimum match between two se-
quences is usually determined as the minimum edit distance, also called Levenshtein
distance, whereby this distance is computed as the sum of the costs of a set of edit
operations required to transform one sequence into another. By definition, there are
three different edit operations on sequence elements, namely insertions, deletions
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and substitutions. An insert operation inserts a new element into the sequence, a
delete operation deletes an element, and a substitution replaces an element by a
different one. Elements that don’t need changing are denoted as correct.

Formally, such a transformation between two sequences S; and Ss can be viewed
as an unordered set of |M| edit operations, denoted as mapping M:

M(S1,S2) = {(i1 — j1), (i2 — J2), .-, (Z|M\ ’_’]\M|)}

An edit operation is written as (i — j), where i and j are indices 1 < i < |Sq]
or 1 < j < |Sy| from the symbol sequences S1 = [S1[1],S1[2], .., S1][|S1]]] or S2 =
[S2[1],S2[2], .., S2[|S2]], respectively, or the null index €. The edit operation (i — j)
is called a map operation if i # € and j # €, a delete operation if i # ¢ and j = ¢ and
an insert operation if i = € and j # . A map operation (i — j) is termed correct if
the symbols are identical (S;[i] = Sa[j]), or a substitution otherwise (Si[i] # Sa[j]).
The ith symbol of a sequence S of length |S| is denoted S[i]. A sub-sequence of S
that contains consecutive elements from index i’ to index ¢ inclusively is denoted
S[i’..i]. Moreover, S[i..i] = S[i] and S[¢'..i] = 0 if i < ¢, where () denotes an empty
sequence. By definition, any pair of map operations (i1 — j1) and (i — jo) with
1 <i1,i9 < |Sy] and 1 < j1,j2 < |S2| of a mapping M(S1,S2) has the following
properties:

i1 =1y <= j1=1/J2 (one-to-one mapping)
i1 <iy <= J1<Jo (symbol order preserved) (4.1)
The distance of a mapping M is measured by introducing a cost function c(i — j)

for each edit operation (i — 7). In order to be a distance metric, ¢ has to meet the
following conditions:

clr—y) > 0 (non-negative cost)

cz—az) = 0 (no cost for identity mapping) (4.2)
clx—y) = cly—x) (order independent) )
c(x—2) < clx—y)+cly— 2) (triangle inequality)

In this thesis, the cost function is defined as in the widely used NIST scoring software
[FF93] as:

0, 4,7 # ¢eand Sq[i] = Sa[j] (correct)
. ) 4, i,j #eand Sq[i] # Saj] (substitution)
i j) = 3, i£candj=¢ (deletion) (43)
3, it=candjF#e (insertion)

The edit distance D¢(M(S1,S2)) of a mapping M (S1,S2) is then computed by
accumulating the costs of the single edit operations:

D.(M(S1,85)) = Z (i~ 5)
(4,7)EM(S1,S2)
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Figure 4.2: Ezample for word sequence matching by dynamic programming.

Hence, the minimum edit distance D7"(S1,S3) is defined as the edit distance of

the specific mapping that yields the minimum distance value:

D™ (S,8,) = M%ISllinSQ)De(M(Sl’SQ)) (44)

The task of solving Equation 4.4 for given sequences S; and Sy and a given
cost function ¢ is usually performed by a dynamic programming (DP) algorithm
[SK83, Rus94]. With the DP algorithm, the minimum edit distance is computed by
accumulating the single costs ¢ step-by-step in a left-to-right manner. Locally, i.e. in
each step, decisions are taken to yield the least-cost path. Thus, the minimum edit
distance is determined with a recursive formula that computes the accumulated cost
for transforming the sub-sequence Si[l..i] into S3[1..j] from previously computed
values:

_ DSy 1.1 — 1], 82[1..4]) + c(i— )
D" (S1[1..4], S2[1..5]) = min ¢ D™ (S1[1..1], S2[1..5 — 1]) + c(e—j) (4.5)
D™ (Sq[1..i — 1],S2[1..5 — 1]) + c(i — j)

Figure 4.2 illustrates the DP based minimum edit distance computation for a
reference word sequence S; = [LH, EINS, NULL, NEUN, NACH, HAMBURG] and a
hypothesis word sequence Sy = [EINS, ZWEI, NULL, NEUN, VON, HAMBURG]. The
minimum edit distances D" (S1[1..i], So[1..5]) are depicted as cells of a table whose
columns and rows correspond to the indices of S; and Ss, respectively. The table is
processed top-to-bottom and left-to-right. According to Equation 4.5, the value of a
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1 1 2 3 4 5 6
Si[7] | LH EINS NULL NEUN NACH HAMBURG
! ! ! ! !
Sa[4] EINS ZWEI NULL NEUN VON HAMBURG
j 1 2 3 4 5 6

Figure 4.3: Minimum edit distance mapping for example of Figure 4.2.

cell (4,7) is computed from the cells to the left (i — 1, j), to the top (i,j — 1), and to
the top-left (i — 1,5 — 1). Transitions from the left are computed with the first term
of Equation 4.5 and correspond to delete operations; ones from the top correspond
to the second term and to insertions; ones from the top-left correspond to the third
term and to correct matches if Sq[i] = Sa[j] or to substitutions otherwise. The best
transition corresponds to the minimum of the three values and is depicted by an
arrow.

Generally, more than one transition can result in the same optimum value, e.g. at
cell (1,2) both the transitions from the top and from the top-left yield the minimal
cost. Hence, a pair of sequences can have more than one minimum edit distance
mapping. The example of Figure 4.2 has only one optimum mapping with an edit
distance of 10 (the value of the cell (|S1],|Sz2|)). The optimum mappings are re-
trieved by tracking the transitions from cell (|S1],|Sz2|) back to cell (0,0), depicted
in Figure 4.2 with italicized numbers. In order to allow delete and insert operations
at the beginning of the sequences, the table contains an extra column and row cor-
responding to empty sequences (). The table is initialized by setting the value of cell
(0,0) to D™ ((), ) = 0.

Figure 4.3 depicts the optimum mapping resulting from the example of Fig-
ure 4.2. The mapping contains three erroneous elements, namely a deletion (1 — &),
an insertion (e — 2) and a substitution (5 — 5). Hence, the edit distance for this
mapping is D.(M(S1,S2)) = 10.

4.2.2 Word Accuracy

A standard evaluation measure for the assessment of speech recognition systems is
word accuracy. The word accuracy is determined by matching reference word se-
quence against hypothesis word sequence for a set of test utterances, as shown in the
example of Figure 4.3. Let Cy,, Sy, I, and D,, denote the total number of correct,
substituted, inserted and deleted words over a set of (optimum) mappings between
word sequences. Then, the word accuracy Acc,, is computed by subtracting the
number of erroneous map operations (substitutions, insertions and deletions) from
the total number of words in the references N,, = Cy, + Sy + Dy, and normalizing
appropriately:

Ny = (Sw + Ly + Dy) _1_Sw+lw+Dw
N a N

Accyy =

(4.6)
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Instead of reporting results as accuracy values, error rates can be used instead. For
this thesis, we generally define an error rate Err in terms of an accuracy Acc as:

Err=1— Acc

This definition not only applies to word accuracy, but also to the other accuracy
measures defined in following sections.

Sometimes, word insertions are not considered as errors, especially when evaluat-
ing speech recognition tasks. The evaluation measure is then called word correctness.
For speech interpretation tasks, however, where insertions of words or semantic units
could cause wrong system actions, we view insertions as errors. Consequently, the
word accuracy values are in the range —oo < Accy, < 100%. The example mapping
of Figure 4.3 yields a words accuracy of Accy,, =1 — Hféﬂ = 50%, if it is assumed
that the reference sequence is represented by S; and the hypothesis by So.

If the considered hypotheses are the output of a speech recognition system, word
accuracy is a black box measure of the overall system goodness considering all in-
volved knowledge sources. Yet, in the one-stage speech interpretation system setup
examined in this thesis, word accuracy measurements are also influenced by the
semantic knowledge contained in the HLM (compare Figure 4.1). As already men-
tioned in the introduction, the ultimate goal of this system is not a perfect word
transcription, but the perfect semantic tree representation. Therefore, optimization
of system parameters is rather guided by evaluation measures that also take seman-
tic modeling performance into account, and not by maximizing word accuracy, as
is often the case in speech recognition. This needs to be taken into consideration
when judging the significance of word accuracy in the context of one-stage speech
interpretation (see Section 5.10).

4.2.3 Slot-Value Accuracy

Speech understanding systems typically produce meaning representations in the
shape of slot-value pairs [BEGT96, Min98, SF93] or slot-value-communicative func-
tion triples [Bod98, vBKN99]. Therefore, objective black box assessment of speech
understanding systems can be achieved by matching sequences of slot-value pairs.
Boros et al. [BEG196] define such an evaluation measure in a similar way as word
accuracy, and call this concept accuracy. In order to avoid confusion with our no-
tation of semantic units (compare Figure 2.2), we use the term slot-value accuracy
instead.

In contrast to word accuracy, now the basic elements of reference and hypothesis
sequences are no single units, but pairs. Hence, we modify the basic definition of a
sequence S from Section 4.2.1, so that each element ¢ of S now contains two symbols,
namely a slot symbol S*°¢[i] and a value symbol S¥%[i]. Consequently, the notion
of mappings needs to adapted as well. In accordance with [BEG'96], we define edit
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operations between sequences of slot-value pairs as:

correct <= 14,5 # ¢ and S§°[i] = S§l°*[j] and S} [i] = Sy [j]
(i > ) is substitution <= i,j # € and S§°![i] = S5![j] and S}*[i] # Sy [4]
deletion <= (i, # ¢ and S§"'[i] # S5*[5]) or (i # ¢ and j = ¢)
insertion <= (4,7 # ¢ and S§¥°![i] # S5![j]) or (i = £ and j # ¢)

Hence, a map operation between an element i of sequence S; and an element j of
sequence Sy is only correct if both the slot symbols and the value symbols match. If
the slots match but the values don’t, the map operation is defined as substitution.
If the slots don’t match, the edit operation is not treated as a mapping at all, but
as an insert and a delete operation.

This definition of edit operations can be implemented by redefining the cost
function of Equation 4.3 as:

0, i,j # ¢ and ${”[i] = 85°'[j] and 8{*'[i] = 85*'[j]  (correct)
4, i,j # e and S§'i] = S§°'[j] and S{*[i] # S§*[j]  (subst.)
(i j) = 3, icandj=¢ (deletion)
3, i=candj#e¢ (insertion)
0, i,j # ¢ and S‘{lOt [Z] ?é Sglot []] (del./ins.)

Using this definition, the standard minimum edit distance computation presented
in Section 4.2.1 can be applied.

Let Cyy, Ssu, Isy and Dy, denote the total number of correct, substituted, inserted
and deleted slot-value pairs over a set of (optimum) mappings between slot-value pair
sequences. Then, the slot-value accuracy Accs, is defined similar to word accuracy
(compare Equation 4.6) as

SSU + ISU + DSU

A =1- 4.7
CCsp N (4.7)

where Ny, = Cgp + Ssy + Dg,, denotes the total number of slot-value pairs in the
reference sequences.

4.3 Tree Based Evaluation

In the previous sections, two standard measures used for speech recognition and
speech understanding system evaluation were discussed, word accuracy and slot-
value accuracy. Yet, as shown in Figure 4.1, for assessment of the one-stage speech
interpretation system regarded in this work, a novel, further objective evaluation
measure is employed. This metric is directly determined from the semantic tree
representation produced by ODINS, and denoted as tree node accuracy.

The computation of this tree based evaluation measure follows the known scheme
of comparing reference annotations of a set of test utterances with the output hy-
pothesis of the decoder for the recorded speech signals of those test utterances. Here,
the references are the semantic tree annotations discussed in Section 4.1.2; and the
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decoder hypothesis are the semantic trees produced by ODINS. For matching this
kind of tree structures, a number of algorithms have been proposed (see Shasha and
Zhang [SZ97] for an overview). Those algorithms have been applied to a variety
of tasks, e.g. RNA secondary structure analysis [SZ90]. In this work, we propose
a novel use of this principle, which enables a direct comparison of the considered
semantic trees.

For this task, we utilize an algorithm by Shasha and Zhang which is general,
straight-forward to understand and to implement and has limited time and space
complexity. Its basic scheme is outlined in Section 4.3.1. Section 4.3.2 then discusses
how this principle can be adapted to compare the specific tree representation used
in this thesis, and presents a definition of semantic tree node accuracy. This defi-
nition was also published in [TFLR03b]. An experimental comparison between this
novel metric and standard sequence based evaluation is given in Section 4.3.3. The
experiment shows that tree based evaluation is better suited for the kind of speech
interpretation system examined in this work.

4.3.1 Tree Matching

In this section, we outline a matching technique for ordered, labeled trees, which
was originally proposed by Shasha and Zhang. For a more detailed discussion the
interested reader is referred to [SZ97].

By definition, a labeled, ordered, rooted tree T consists of | T| tree nodes, exactly
one of them being the root node. A tree node of T is referred to via its index i;
the symbol or label attached to the node with index i is denoted ¢[i]. As in [SZ97],
we assume in the following that tree node indices are assigned to T by left-to-
right postorder numbering. This numbering scheme is beneficial for a recursive
formulation of the tree matching algorithm, as discussed later in this section. Left-
to-right postorder numbers can be computed by performing a left-right depth search
through T, assigning each node a consecutive number after all of its children have
been visited. Hence, ¢ = 1 refers to the leftmost leaf node, and i = |T| refers to the
root node of T. Figure 4.4 illustrates two example trees T and Ty along with their
postorder indices, shown in brackets below the node symbol.

Using these basic notions, the problem of finding the optimum match between
two ordered, labeled trees T; and T is approached, similar to sequence matching,
by determining a minimum edit distance transformation from T to Ts. For this
purpose, a mapping M between two labeled, ordered trees T; and T5 is defined as
an unordered set of tree edit operations (i — j):

M(Ty,Ts) = {(i1 — j1), (i2 — J2), .., (Z\M| — ]|M\)}

The indices i1, %2, .., %57 and ji, j2, .., jjas| are either tree node indices in the ranges
1..|T| or 1..|Tq|, respectively, or the null index . The edit operation (i — j) is
called a map operation if i # € and j # €, a delete operation if i # ¢ and j = ¢ and
an insert operation if 1 = ¢ and j # €.
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AFLIGHTCODE ADESTINATION
(10) (14)
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Figure 4.4: Ezxample mapping between two labeled, ordered, rooted trees T1 and Ts.
Node indices (in brackets) are assigned by left-to-right postorder numbering.

Edit operations on tree nodes are defined as illustrated in Figure 4.5: A map
operation converts a tree node ¢ into a node j; a deletion removes a node ¢ and
reassigns its children to its parent k; a node j is inserted as child of a node k so that
a consecutive number of k’s children become the children of j.

An example mapping between two trees is shown in Figure 4.4, where map
operations are illustrated by arrows between pairs of tree nodes. In this example
mapping, nodes 1, 2 and 10 are deleted from T, nodes 3 and 4 are inserted into T,
and the symbols of nodes 11 and 14 of T; are substituted. This is formally written
as:

M(TlaTQ) = {(1a5)’(2’5)a(3’1)’(4’ 2)’( ) ( 4) (5’5)’(6’6)’(7a 7)’
(8,8),(9,9),(10,6),(11,10) (12 11) (13, 12),(14, 13),(15, 14)}

Generally, any pair of map operations (i1 — j;1) and (ig — j2) with 1 <iy,i9 < |T]
and 1 < j1,72 < |T3| of a mapping M (T4, T2) must meet the following conditions:

i1 =iy < j1 =70 (one-to-one mapping)
i1 left sibling of is <= 7j; left sibling of j, (sibling order preserved) (4.8)
11 ancestor of i9 <= j; ancestor of jo (ancestor order preserved)
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map delete mnsert
—] i—€ e—jJ
T1 T2 T1 T2 Tl T2
ANIVAN ANIZAN ANIZAN
AN PaN AN AN ) NN, }k
A A

Figure 4.5: Edit operations on tree nodes; a triangle symbolizes a sub-tree of the
node at its top.

Similar to the mapping conditions for the sequence matching case of Equation 4.1,
the first two conditions of Equation 4.8 state that a tree node may not occur in
more than one map operation, and that the transformation preserves the left-to-
right order of a tree. Additionally, the third condition of Equation 4.8 ensures
preservation of the bottom-to-top (vertical) tree structure. The latter e.g. means
that if ¢;[14] = ADESTINATION is mapped to t2[13] = AORIGIN in Figure 4.4, a
descendant of ADESTINATION such as NACH may only be mapped to a node ‘below’
AORIGIN, more precisely to a node contained in the sub-tree rooted at AORIGIN.

Again, the best match is determined through the mapping yielding minimum
edit distance. Therefore, mappings are associated with distances by assigning a cost
to each tree edit operation and accumulating the single costs. As for edit operations
on sequences, the cost function ¢ for tree edit operations (i — j) needs to fulfill
Conditions 4.2 in order to be a distance metric. Hence, a valid definition of ¢ in
accordance with [FF93] is, similar to Equation 4.3:

0, 14,j # ¢ and t1[i] = ta[j] (correct)
)4, i j #eand t[i] # talj] (substitution)
climj) = 3, i#candj=¢ (deletion) (4.9)
3, i=candjF#e (insertion)
Finally, the minimum tree edit distance D""(T1, Ts) of the mapping M (T, T5)

that transforms T into Ts is expressed by:

D{"™(Ty,T2) = min 2
M(T4,T2) (4,j)€M(T1,T2)

c(i = j)

The determination of D{™"(Ty, Ts) can be carried out with a recursive, DP-style
computation scheme. Its basic principle consists of computing the accumulated costs
for transforming sub-structures from a tree Ty to sub-structures from a tree T in

a step-by-step, left-to-right manner.
For this purpose, the postorder numbering is used to outline sub-structures of
an ordered tree T, which consist of consecutively numbered tree nodes. Generally,
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AFLIGHTCODE VON ALOCATION
(10) (11) (13)
| |
AFLIGHTNUMBER HAMBURG
9) (12)
e ~
ADiIGIT ADiIGIT
(6) (5‘3)
DREI

(7

Figure 4.6: Ordered sub-forest T1[6..13] of tree T1 of Figure 4.4.

such a structure does not consist of a single sub-tree of T but of several sub-trees,
denoted as ordered sub-forest of T. The sub-forest is ordered in the sense that its
sub-trees appear in the same order as they do in T. Formally, T[¢'..i] denotes the
sub-forest consisting of the sub-trees of T that contain the nodes with indices 7’ to
i, inclusively. If i’ > 4, T[i’..i] = (). Figure 4.6 depicts an example sub-forest of tree
T, of Figure 4.4, consisting of nodes 6..13 of T}.

Consequently, in order to compute distances between trees, distances between
forests need to be determined as an intermediate step. More specifically, the mini-
mum forest distance D}’”"(Tl [i'..7], T2[j’..j]) or shorter D}’”"(i’..z’,j’..j) between the
sub-forests T1[¢'..i] and Ts[j’..j] is required. Then, a recursive formulation similar
to sequence matching (see Equation 4.5) can be devised, which determines minimum
forest distances from previously computed distances and the costs for the three tree
edit operations.

For delete and insert operations, the computation is equivalent to sequence
matching; the new forest distance is composed of the old value and the cost for
deletion or insertion, respectively. For map operations, however, special care must
be taken to ensure that the vertical structure of the trees is obeyed, as required by
the third condition of Equation 4.8. Please note that the horizontal tree structure,
i.e. the left-to-right order, is automatically preserved by the dynamic programming
procedure. Therefore, forests are decomposed into two parts:

e Part A: The sub-tree rooted at the current tree node i of T; (or j of Ts).

e Part B: All the other trees of the forest, located left of the current tree node.

In order to perform this decomposition, the index of the node at the boundary
between the two parts needs to be known. Due to the postorder numbering scheme,
the wanted node is the leftmost leaf node of the sub-tree rooted at the current node 7.
Let TJi] denote the sub-tree of T rooted at i. T[i] corresponds to Part A of the
forest T[i'..i]. Then, the index of the so-called leftmost leaf descendant of T|[¢] is
denoted [(i). For leaf nodes, I(i) equals i. A sub-tree T[i| can likewise be written in
forest notation as T[l(¢)..i]. Hence, Part B of the forest T[¢'..i] (located to the left
of 1) is expressed as T[i'..1(1) — 1] if i/ < 1(1).

59



Chapter 4. Evaluation Method and Measures

Since the goal is the computation of tree distances, the value of the left bound
i’ of the forest T[l(i1)..i] is restricted to be a leftmost leaf descendant I(i1) of some
tree node 7;. Hence, the right bound ¢ of the forest T[i'..i] must be a value from
the set of descendants of i1, denoted desc(iy), i.e. part of the sub-tree rooted at
T[i1]. Under the assumption that i € desc(iy) and j € desc(j1), the recursive forest
distance computation can be formulated as in [SZ97]:

D (U(in)-4,1(j1)-5) =

1
Dmmglghg a4 — ; )l( )]3 + cEz’ — 6))
. D7 (1(41)..4, =1 + cle—j
I i (15) 1(6) — 1,1(32).1(7) — 1) (4.10)
D) i~ LIG) G 1)+ elie )

This equation can be viewed as the tree matching counterpart of the sequence match-
ing formula (see Equation 4.5). The first two terms correspond to delete and insert
operations, respectively. The third term corresponds to a map operation and con-
sists of the distance between the forests left of ¢ and j, of the distance between the
sub-trees rooted at ¢ and j and of the costs for the map operation (i — j) itself. For
the case that [(i1) = (i) and I(j1) = I(j) the forests T1[l(i1)..i] and T2[l(j1)..7] are
proper trees, so that there are no forests left of ¢ and j. Thus, Equation 4.10 can be
split into two cases:

(Case 1) If I(i1) = I(2) and I(j1) = I(j):

D™ (1(ir)--i,1(j1)--j) = D" (i, ) =

1
Dy (i) i = 1,1(j1)--7) + cli—e)
min D?“'"(l(zl) A,0(j1)-g— 1) + c(e— ) (4.11)
Dy(l(in).i — 1,1(1).-g — 1) + c(i—j)
(Case 2) Otherwise, i.e. I(i1) # (i) or I(j1) # 1(J)
D Ui, 1(G1) ) =
Dmm(l(zl)..z'—1,l(j1)..j) + c(i—e)
min D}”’-"(l(il)..z, (j1)-.5—1) + (e - J) (4.12)
Dy (U(in)-1(0) = 1,1(1)-1(7) = 1) + D"(3,j)

where D™ (T[i], T2[j]) or shorter D{™"(i, j) denotes the minimum tree distance
between the sub-trees rooted at ¢ and j, respectively.

The final goal is to determine D/™"(Ty[|T1|], T2[|T2|]) = D" (T1,T2). As
we can see from Equation 4.12, this involves the computation of the tree distances
Dmin(i ) for all pairs of sub-trees (Ty[i], T2[j]), 1 < i < |T1], 1 < j < |To|.
However, some of these distances are already available from the computation of
D™ (i, 51). These are the pairs of sub-trees whose roots i and j are in the paths
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of I(i1) to 41 and I(j1) to ji, respectively. Thus, only the root node and all nodes
with left siblings need separate computations. Formally, this set of nodes is called
the left-right keyroots LRK R(T) of T, and is defined according to [SZ97] as:

LRKR(T) ={k |AK > k such that (k') = I(k)}

For the example of Figure 4.4, LRKR(T;) = {6,8,9,13,14,15} and LRKR(T3) =
{4,6,8,12,13, 14}.

Please refer to [SZ97] or [TFLRO3b] for a closer description of the implementation
of Shasha and Zhang’s algorithm, which computes a minimum tree edit distance
using Equations 4.11 and 4.12. As [SZ97] shows, the complexity of this algorithm
is:

O(|T1| x |T2| x min(depth(T1),leaves(Ty)) x min(depth(Ts),leaves(T3)))

4.3.2 Semantic Tree Node Accuracy

After showing how mappings between pairs of ordered, labeled trees can be computed
with an existing algorithm, this section presents an application of this technique to
determine a novel, objective evaluation measure for speech interpretation. For this
purpose, references in the shape of semantic tree annotations (see Section 4.1.2)
are mapped to the semantic tree hypotheses of ODINS for a set of test utterances.
Using the minimum tree edit distance mappings, we compute the degree of agreement
between references and hypotheses in the same way as word or slot-value sequences
(see Sections 4.2.2 and 4.2.3). Namely, an accuracy is determined by relating the
erroneous map operations to the total number of units in the reference, only that
now the units are tree nodes instead of words or slot-value pairs.

Consequently, we define a so-called semantic tree node accuracy Acc,, analogously
to Equations 4.6 and 4.7 as

Sp+ 1, + Dy

A =1-
cCnp, N,

(4.13)
where C,, S, I, and D,, represent the counts of correct, substituted, inserted and
deleted tree nodes, respectively, and N,, = C, + S, + D,, denotes the total number of
tree nodes of the reference trees. Since we make sure that the ‘dummy’ root nodes
are always mapped to each other (see below), they are ignored during counting,.

The direct use of the tree matching scheme of Section 4.3.1, and especially the use
of the cost function of Equation 4.9, however, does not take the modeling structure
of WINH (see Chapter 2) fully into account. Specifically, tree nodes of different
types, corresponding to different hierarchy levels, may be related to each other by a
map operation, more precisely by a substitution. Yet, it is desirable to prevent such

relations as they complicate separate evaluation of individual modeling levels (see
below).
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Figure 4.7: Tree node accuracies of a decoded semantic tree hypothesis, matched with
the annotated reference tree.

Therefore, we extend the notion of tree matching from Section 4.3.1 so that only
map operations between tree nodes of the same type are permitted. Algorithmically,
this can be achieved by modifying the cost function of Equation 4.9 so that the type
7[i] of a tree node i is considered in addition to its symbol ¢[i]:

0, i,j # ¢ and [i] = m[j] and £ [i] = ta[j] (correct)

4, 4,7 # e and 71[i] = m[j] and t1[i] # t2j] (substitution)
c(i—j) =1 oo, i,j#eand7i[i] # m[j] (type substitution)

3, i#cecandj=c¢ (deletion)

3, i=candj#e¢ (insertion)

(4.14)
This modification has the effect that a pair of insertion and deletion operations
is always preferred over a type substitution, because it is less costly. The new cost
function is also useful to ensure that the root nodes of the trees are always mapped to
each other. Please note that Equation 4.14 implies that the computed tree distance
is no longer a distance metric in the strict sense, as the triangle inequality (see
Equation 4.2) does no longer hold.
Figure 4.7 illustrates the result of a match between a semantic tree reference and
a semantic tree hypothesis. The trees are those shown in Figure 4.4 with additional
node types, and were redrawn to reflect the tree levels. For this example, the counts
are S, = 2, I, = 2, D,, = 3, and N,, = 14. Hence, the tree node accuracy yields
Ace, = 1 — # = 50%. This accuracy value approximately corresponds to an
intuitive rating of the interpretation goodness, since the flight number concept, three
of its four digits and the location were recognized and interpreted correctly.
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As mentioned above, the mappings between semantic trees can also be used to
compute separate accuracy measures for individual tree node types 7, such as words,
word classes or semantic concepts. By this, a more detailed error analysis can be
performed. For this purpose, map operations of the minimum tree edit distance
mapping are counted individually for each tree node type 7, yielding C7, ST, I7,
D] and N} = C] + S} + D]. Hence, the tree node accuracy for nodes of type 7,

denoted Acc], is defined as:

R

Acc], =1 N

(4.15)
The accuracy values for words (7 = w), word classes (7 = k) and concepts (7 = ¢)
for the example of Figure 4.7 are Acc? = 50%, Acc® = 60% and AccS = 33%,
respectively.

Please note that the type-dependent accuracies Acc], are determined from the
optimum match for the whole trees. This measure usually yields a lower value than
one computed by an isolated, and hence vertically less restricted mapping between
the considered tree levels. Specifically, Acc, < Acc,, for a given test set, i.e. the
tree node accuracy for nodes of type word is at most as high as the accuracy of the
word sequences contained in the semantic trees.

4.3.3 Experiment: Sequence vs. Tree Evaluation

In this section, an experiment is discussed which compares the tree matching based
evaluation measure proposed in the previous section, and the standard sequence
matching based measures defined in Section 4.2. A similar experiment, conducted
with an earlier version of the airport information corpus, is described in [TFLRO3b].
The evaluation measures are compared using different modeling setups for the con-
sidered one-stage speech interpretation task in the airport information domain.
Specifically, the behavior at varying semantic model complexity is examined, be-
cause it can be expected that a tree matching based evaluation measure is more
flexible than a sequence matching based one, and therefore especially suitable for
models of higher complexity.

In order to clarify this expectation, lets consider an example. As illustrated in
Figure 4.1, the slot-value pairs are in our case extracted in a post-processing step
from the semantic tree produced by ODINS. Since the considered semantic trees
generally consist of multiple levels of semantic category symbols, these categories
need to be flattened to yield a semantic slot. For this purpose, we combine the
ancestors of a leaf node in the tree into a single item. This yields the semantic slot,
whereas the leaf node itself represents the value for this slot.

Figure 4.8 depicts the slot-value pair sequences for the semantic trees of Fig-
ure 4.7. Due to the deletion of the concept AFLIGHTCODE and the substitution of
ADESTINATION with AORIGIN in the hypothesis, none of the slots match in this
example. However, as discussed in Section 4.2.3, for a map operation to be treated
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S1: reference
AFLIGHTCODE | AFLIGHTCODE | AFLIGHTCODE | AFLIGHTCODE | ADESTINATION | ADESTINATION
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Accey =1 — 846 — —100%

Figure 4.8: Slot-value pair sequences extracted from semantic trees of Figure 4.7.

as correct or substitution, matching slots are required. Thus, the mapping of this
example consists of insertions and deletions only, i.e. I, = 6 and Dy, = 6. With
Equation 4.7 we therefore get Accg, =1 — W = —100%, i.e. the accuracy of the
mapping even becomes negative. This result deviates largely from the accuracy of
the equivalent tree match (Acc,, = 50%) and from the intuitive rating of Figure 4.7.

The (admittedly extreme) example suggests that the two metrics can produce
fundamentally different evaluation results. Although the sequence and tree based ap-
proaches both honor partially correct interpretations, the latter displays greater flex-
ibility in finding correspondences between partially correct sub-structures, whereas
the slot-value measure always requires fully matching structures in vertical direction.

For the experiment, different WTNH models incorporating varying degrees of
semantic information were built. All WTNH contain identical acoustic-phonetic
and lexical modeling levels as described in Section 5.6.2. The HLM are constructed
as described in Chapter 5, using the training corpus of semantic tree annotations
introduced in Section 4.1. Good-Turing and modified Kneser-Ney smoothing was
employed to optimize HLM weights, as discussed in Section 5.7.

In order to reduce the degree of semantic information contained in the HLM,
varying numbers of semantic concepts were deleted from the annotated tree corpus.
The model building procedure was repeated after each deletion step, yielding 5
different HLM containing 41, 28, 19, 10 or 0 different semantic concept categories,
respectively (the HLM with 0 concepts corresponds to a word class based language
model). Hence, the phoneme, word and word class levels of all WTNH models
are identical, whereas the concept and root levels differ. With decreasing numbers
of semantic categories the complexity of the corresponding semantic model also
decreases, specifically in vertical direction, and along with this the (average) vertical
complexity of decoded semantic trees.

Figure 4.9 displays the accuracy values for all three evaluation measures (Accy,,
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90 Legend
: i i i i ® - tree node accuracy Accp
® ] o ® | ~
! ! ! ! ! “%°~ word accuracy Accy
| | | | o
! ! ! ! slot-value accuracy Acc
e S e —
2 o
<u ! | |
T [T
2 80 Lol | | 1
— e
ot
< DT
75 1 1 1 1 1
0 10 20 30 40 50
# semantic concepts ~ HLM complexity

Figure 4.9: Comparison of sequence and tree matching based evaluation measures
for HLM of varying complexity.

Accy, and Accgy) in dependency of this HLM complexity, represented by the number
of different semantic concepts contained in the HLM. The depicted accuracy values
were computed on the evaluation set, after optimizing the free parameters (in this
case the language model factor A, see Section 5.9) on the cross-validation set. The
parameter optimization was carried out separately for each evaluation measure and
each WTNH model.

The experimental data confirm the expectation that the two semantic evaluation
measures behave differently with increasing semantic tree complexity. The tree node
accuracy tends to rise slightly from about 85% to 87.5%, whereas the slot-value
accuracy decreases continually from 82.5% to about 78%. This is explained by the
increasing vertical complexity of the semantic trees and the corresponding increase
in partially correct vertical tree structures. As discussed in the example above, this
partial correctness cannot be honoured by the sequence based measure, and hence
Accg, shows decreasing accuracy.

Moreover, it can be noted that the word accuracy behaves more similar to the
tree node accuracy, as it rises slightly from about 84% to about 85%. This conforms
with the common expectation that the goodness of a speech interpretation system
with respect to semantics is coupled to its word transcription capabilities.

Yet, the question which evaluation measure is more appropriate for a system
such as ODINS may also depend on the task. If the following processing steps,
e.g. the dialogue manager, are not capable to capitalize on partly correct semantic
interpretations but rather depend on fully correct ones, slot-value accuracy may
be rated as more suitable. For this thesis, however, it is assumed that succeeding
modules can cope with such errors in the semantic tree structure. Therefore, tree
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node accuracy is utilized as a primary evaluation measure throughout this work.

4.4 Language Model Perplexity

In the previous sections, several possibilities to evaluate ODINS’s capabilities to
process speech were discussed. Yet, the text processing part of a speech recognition
or interpretation system, i.e. the language model, can also be assessed alone. The
standard evaluation measure for the effectiveness of a language model is test-set
perplexity [JMBB77]. In this section, a brief outline of the general notion of per-
plexity and a definition of computing test-set perplexity for HLM is given. For a
more elaborate discussion on entropy and perplexity in language processing, see e.g.
[JMO0].

Perplexity is closely related to the information theoretic notion of entropy, sug-
gested by Shannon [Sha48]. The entropy H(p) of a signal or a random variable with
probability distribution p is a measure of how much information is carried by the
signal, in other words a measure of its randomness. Commonly, entropy is viewed
as a lower bound on the number of bits required to encode an event in the optimal
coding scheme.

If the actual probability distribution p of the signal is unknown, but a model
p that approximates p is available, the cross-entropy H(p) can be computed. The
cross-entropy H (p) is an approximation of the true entropy H(p) and an upper bound
on H(p), whose goodness depends on how accurately p models p. For a discrete test
signal S consisting of |S| symbols s ... S|s|, the cross-entropy is computed with p(S)

as:
1

S|
Viewing each symbol s; as an event and using the notion from above, H (p(S)) rep-
resents the average number of bits needed to encode each s;.

H(p(S)) = log, p(S)

The value 27 is called perplexity. It can be interpreted as the average number
of choices a random variable has to make. The counterpart of cross-entropy, i.e.
the perplexity of a model p(S) measured over a test sequence S, is often denoted as
test-set perplexity ppl:

H(p(S

If p(S) is a word-based language model and S is a sequence of words representing
a set of test sentences, ppl(S) is an evaluation measure for that language model. It
indicates how well the language model can predict the next word in an utterance,
in terms of the average number of alternative words that need to be considered at
the current position.

The lower the test-set perplexity of a language model, the better its ability to
predict the next word. Hence, this measure can be used to compare language mod-
els built for the same task. Moreover, ppl can be used to compare the difficulty of
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speech recognition tasks. Typical ppl values for n-gram language models on English
or German texts range from about 10 to 1000, depending on the type of text. For
the airport information application examined in this work, the n-gram ppl values
are typically around 20.

The hierarchical language model considered in Chapter 5 represents a probability
distribution p(T) over ordered trees T of semantic symbols. Similar to Section 3.1,
T has L hierarchy levels, whereby each level [ = 1...L consists of a sequence T
of |T!| tree node symbols. However, the trees considered here only consist of words
and higher modeling units, so that T! denotes the word sequence represented by
the leaf nodes of T (compare Section 5.1).

Letting T denote not a single tree but a whole test set as above, we define the
cross-entropy H (p(T)) of the HLM p(T) and the corresponding test-set perplexity

ppl(T) as:

H(p(T)) = —ﬁ log, H(T)

ppl(T) = 2H(B(T))

Please note that we use the number of words |T"!| instead of the number of semantic
symbols | T| to compute cross-entropy. Therefore, ppl(T) relates to the average word
probability assigned by the (hierarchical) language model, just like ppl(S). This has
the advantage that HLM with different semantic symbol sets can be compared, as
will be done in Section 5.10.

Since HLM are constructed as weighted transition networks, p(T) is directly com-
puted from the WTNH representation of an HLM p. For this purpose, the (best)
path of T through the WTNH is determined and all transition scores (log-likelihood
values) along the path are summed up, which yields log p(T). The transition net-
works visited along the path are defined by the tree node symbols contained in T.
Therefore, only local best path searches in single transition networks need to be
carried out.

For perplexity computation a closed-vocabulary system is assumed. Therefore,
unknown words in the test set are ignored, i.e. the p(T) and |T!| are computed from
known words only. As noted in [JMOO], this means that the computed perplexity is
no longer guaranteed to be greater than the true perplexity of the test set. Hence,
the results must be interpreted carefully (see Section 5.8.1).

In a speech recognition or interpretation application, test-set perplexity is a glass
box evaluation measure that doesn’t consider the system as a whole like black box
measures such as word accuracy or tree node accuracy, respectively. For speech
recognition, it is generally assumed that language models with lower perplexity
produce better speech recognition accuracy. Yet, numerous publications report that
language models providing a large improvement in perplexity have yielded little or
no improvement in word accuracy, especially when different types of language models
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are considered (see [CBR98]| for a more detailed discussion).

In this work, we utilize both test-set perplexity and tree node accuracy for evalu-
ation. However, we generally rely on the black box measure, i.e. tree node accuracy,
for parameter optimization (including HLM parameters). Although this requires
considerably higher computational expenses, it ensures that the speech interpreta-
tion system is optimized on the whole.
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Chapter 5

Hierarchical Language Models
(HLM)

This chapter deals with the robust semantic modeling approach devised for the one-
stage speech interpretation task pursued in this thesis. The so-called hierarchical
language model (HLM) contains semantic and implicit syntactic knowledge repre-
sented by hierarchically structured, weighted transition networks. It corresponds
to the upper part of the WI'NH representation that was introduced in Chapter 2,
and typically consists of a word, a word class and concept hierarchy levels (see Fig-
ure 2.2). The paths through the HLM network hierarchy structure define the possible
semantic output trees of the one-stage decoder discussed in Chapter 3. HLM con-
tain stochastic knowledge in the shape of weights on the transitions between network
nodes. Using these weights, occurrence probabilities of semantic trees can be esti-
mated. Together with the acoustic-phonetic and the lexical knowledge contained
in the lower part of the network hierarchy, an HLM enables ODINS to compute
the most likely semantic tree for a given speech signal. The main features of the
hierarchical language modeling approach presented in this chapter were published
in [TFLRO5a].

In this work, it is assumed that the basic structure of a HLM is known, i.e. that
its symbol vocabulary and the dominance relations between the symbols are defined
manually. Approaches to automatically learn hierarchical language model structures
from training data have been proposed (see e.g. [LY90, Car95, Che96]) but are not
a focus of this thesis.

Yet, we still utilize data-driven language modeling techniques to build HLM.
These methods generally assume the availability of appropriate training data. In
our case, tree annotated training utterances are required. There are also methods to
train hierarchical language models from word transcriptions and dominance relations
only (see e.g. [HY03]). With such a technique, an explicit segmentation of semantic
units can be omitted, which reduces annotation effort. Again, this is not a goal of
this work. The HLM creation method pursued here relies on a training corpus fully
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annotated with semantic trees. Such a corpus for an airport information application
is described in Section 4.1.

In addition to data-driven techniques, we also employ rule-based approaches for
certain parts of HLM. Rule-based language models of moderate size can be devel-
oped more rapidly and avoid the need for annotated training data. In contrast,
data-driven techniques usually produce more robust language models and reduce
the amount of required expert knowledge. In this work, we employ both rule-based
and data-driven approaches to build suitable HLM. From this we generally expect
to utilize the advantages and to possibly avoid the weaknesses of each method, and
in particular to achieve good model performance with limited effort. Similar goals
were recently pursued by [RH03, BJ04], for example.

In our notation, we discriminate between the terms hierarchical language model
(HLM), local language models (LLM) and language model (LM). With the term
HLM, we refer to an explicitly hierarchical description of a formal (tree) language
consisting of a set of LLM. LLM are flat formal language descriptions consisting of
terminal' and non-terminal symbols. Each non-terminal symbol refers to a LLM, so
that the hierarchical structure of HLM is formed by these references. The LLM at
the top of the hierarchy is called root LM.

With the term LM, we generally refer to a flat description of a formal language,
such as a word language model for a speech recognizer. However, flat language mod-
eling approaches are also applicable to LLM, if terminal and non-terminal symbols
are (temporarily) treated equally (see Section 5.1). In this context, we mainly use
the general term LM. To sum up, the terms LM and LLM both refer to flat, sequen-
tial models, whereas the term HLM refers to a hierarchical, tree-shaped model.

This chapter is organized as follows: In Section 5.1, a mathematical formulation
of the hierarchical language modeling problem is presented. Section 5.2 then dis-
cusses properties of rule-based models and names suitable candidates for integration
into the network hierarchy. The well-known n-gram LM and the so-called exact
LM are described in Section 5.3 as representatives of the data-driven approach. For
both types of LM, suitable smoothing techniques and their application within the
uniform modeling framework are discussed. Due to the modularity of HLM, inde-
pendent modeling decisions can be made for each LLM, as long as the selected mod-
eling approach is representable within the WTNH framework. Section 5.4 presents
a decision principle which facilitates the selection of LLM types.

When humans talk to spoken language processing systems in a natural way, a
variety of phenomena can occur, each of which may have a negative influence on
the system’s performance. Section 5.5 describes how natural speech phenomena are
modeled and handled by HLM. The basic modeling setup for the airport information

!The terminal symbols of HLM are no terminals when regarded in the context of the full network
hierarchy, i.e. including the lexical and acoustic-phonetic hierarchy levels. In this case HMM states
are the terminal symbols.
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system examined in this thesis is explained in Section 5.6. The acoustic-phonetic
and lexical model setups are described only briefly, as this work is not focussing on
them. Section 5.7 presents experimental results on the influence of different HLM
smoothing methods and the effects of varying smoothing parameters. In order to
limit their complexity, LM usually only take a limited range of statistical depen-
dencies into account. In Section 5.8, the range of HLM is compared to that of
the standard word-based LM. Experimental results on HLM of varying dependency
ranges are presented.

In speech recognition, it is common practice to adapt the likelihood distribu-
tion of the LM to the acoustic-phonetic likelihood values by a so-called LM factor.
Section 5.9 describes how similar scaling can be applied to HLM and analyzes the
resulting model experimentally. The results suggest that HLM themselves can be
optimized by applying hierarchy level dependent scaling factors in order to balance
the within-HLM weighting. As a further optimization parameter, the word insertion
penalty is applied and investigated.

The ODINS system presented in this thesis can be regarded as a speech recogni-
tion system with additional semantic knowledge. This viewpoint raises the question
if the use of this new knowledge source can increase recognition accuracy, even if
this is not the original goal of this work. This question is pursued in Section 5.10.

5.1 Mathematical Formulation

A flat language model can be viewed as a likelihood distribution over symbol se-
quences. Given a sequence S of |S| symbols s; . .. ss| from an alphabet or vocabulary
Y, the likelihood P(S) that this sequence occurs can be expressed as the product of
the occurrence likelihood of the single symbols given their predecessors:

P(S) = P(Sla"'as\so
= P(Sl)P(82|81)P(83|8182) e P(S‘S||51 e S|S\—1)
IS|

= HP(SZ'|81...SZ;1) (5'1)
i=1

Likewise, a HLM can be regarded as a likelihood distribution over ordered trees
of semantic symbols. As described in Section 3.1, the hierarchical search problem
requires computation of the likelihood P(T) of ordered, labeled, constant-height
trees T consisting of L hierarchy levels. Please note that in contrast to Chapter 3,
where the complete WTNH is regarded, the current chapter deals with the ‘higher’
modeling levels. Therefore, we let L denote those levels that contain words and
semantic objects, only.

The likelihood of a tree is expressed in terms of its tree levels T/l =1... L as:

P(T) = P(T!, T?,..., T}

71



Chapter 5. Hierarchical Language Models (HLM)

Using the chain rule, this can be rewritten as:
P(T) = P(TYT%,....,THP(T?|T3,...,T!) ... P(TE Y TH) P(TY)

As in Section 3.1, it is assumed that a tree level T only depends on the next higher
tree level T!*+!. Hence, P(T) can be approximated by:

P(T) ~ P(THT?)P(TYT?)... P(TFYTh)P(TY)

= P(Th) Lf[l P(TYT! ) (5.2)
=1

As explained in Section 3.1, T! describes a sequence of |T'| tree nodes of level .
Each tree node has a symbol sé from the vocabulary Y. The symbols of a tree level
can be segmented into |T!T!| consecutive sub-sequences Sli, so that Equation 5.2
becomes:

P(T) =~ H H (Skyskty (5.3)

Each of the terms of Equation 5.3 are represented by the likelihood distribution of
a LLM. The root LM describes the unconditional likelihood term P(S%).

Using Equations 5.1 and 3.5, the terms corresponding to local language models
are further decomposed into:

T
H P( L|8f . Sijl) (5.4)
P(Skslt) = H P(s ]sgé...sé_l,séﬂ) (5.5)
j=A}
Hence, Equation 5.3 becomes:
ITL‘ L—1 ‘Tl+1| Bl

= HP(SJI»/|S{/...S]L;1)' H H H P(s J|SA1-- ] L s (5.6)
j=1

lzlzlel

For the one-stage decoding approach of this thesis, the likelihood distribution P(T)
of a HLM is represented by (the upper part of) a WINH. A likelihood distribution
P(St[s1) or P(ST) of a single LLM is implemented by a single weighted transition
network. Each of the likelihood terms P(...|...) on the right hand side of Equa-
tion 5.6 corresponds to a weight on a transition between two network nodes.

Now we formulate the special case primarily examined in this thesis, where the
semantic tree T consists of L = 4 hierarchy levels. These are denoted as word level
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W, word class level K, concept level C and concept sub-level C’. Their symbols and
sub-sequences are defined as follows:

'111 = W = w1, W2, ... ,w|W‘ = Wl,WQ,... ,W|K| (WOI”dS)

r:[‘2 = K = kl, kg, ce 7k|K| = Kl, KQ, oo 7K|C’\ (WOI‘d classes)
™ = C = d,d,... ,cic,| = C1,C,...,C (sub-concepts)
T™ = C = ¢,c9,... Nere] = C; (concepts)

For this case, the general formulation of the tree likelihood of Equation 5.3 becomes:

P(T) =~ P(Wilk1) - P(Walk2) ... P(W|lkk))

- P(Kiley) - P(Kalch) - ... - P(K|cyjjor))
. P(C'l\cl) . P(CIQ‘CQ) L P(C/|C\‘C|C\)
- P(Cy)

With Equations 5.4 and 5.5 this is decomposed into:

K| B
P(T) ~ H H P(wj]wA}...wj_l,ki)

izlj:Azl

c'| B
. H H P(k‘j|k‘Alg...]€j,1,C;)
iilj:A?

c| B
. H H P(kjlcys ... ¢y, c:)
i=1j=A3 '

C|

. H P(Cj’Cl ‘e Cj—l)
J=1

As mentioned in the introduction of this chapter, a training corpus of semantic
trees is the basis for building HLM. By extracting all occurrences of symbol sub-
sequences for a unique semantic category, a flat training corpus is provided for
the LLM corresponding to that category. The decomposition of a tree corpus into
a set of sequence corpora enables the use of flat language modeling techniques,
if terminal and non-terminal symbols are temporarily treated as the same type of
symbol. Thereby, decisions about the (local) LM type can be made independently for
each semantic category. However, a sequence corpus may also be omitted completely
and the corresponding LLM be defined manually, if desired. This is typically the
case if quality and /or quantity of training data is low. In the following three sections,
we discuss rule-based and data-driven language modeling approaches for LLM, and
criteria for their selection.
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5.2 Rule-Based Language Modeling

We call a LM rule-based if its structure and, if applicable, its weighting is defined
manually by a human expert. Such a definition is typically created by use of a
formal grammar consisting of a set of grammar rules, or by a single grammar rule.
Human experts mainly use their common knowledge and experience to write these
rules, and no or little explicit, actual real-world data. Commonly used grammar
formalisms are e.g. stochastic context-free grammars (see Section 2.2.3), weighted
regular grammars and context-free rewrite rules (see Section 2.2.2).

Rule-based language modeling generally has the desirable property that it re-
quires comparably little effort to achieve a relatively high coverage of the target
language by defining a few general rules. However, a further increase of the initial
coverage requires more and more effort from human experts, because generally an
increasing number of rules are required to cover increasingly rare phenomena. More-
over, grammars of increasing size become more and more difficult to keep consistent,
and the side effects of newly added rules become increasingly difficult to control.

Suitable grammar formalisms for HLM are basically all those representable within
the WT'NH framework. In terms of expressive power, these are all Chomsky type 2
and 3 grammars (see Section 2.2.1), i.e. context-free and regular grammars. For the
airport information application examined in this work, rule-based LM are only used
to model single semantic categories (compare Section 5.6.1). For this task, we found
weighted context-free rewrite rules most suitable. If no sensible weighting can be
given for a regular expression, a uniform weight distribution is assumed by default.

Network Representation

As discussed in Section 2.2.2, weighted context-free rewrite rules have equivalent
representations as weighted finite-state automata, which in turn can be converted
into weighted transition networks (for an example rule and a corresponding network,
see Figure 1.1). This enables the integration of such rule-based language models into
WTNH. For conversion of weighted context-free rewrite rules into weighted finite-
state automata we employ the AT&T Lextools toolkit [Spr03, Spr99a, Spr99b|. This
toolkit, which is based on the AT&T FSM Library (see Section 5.3.2), also performs
automata minimization (see Section 2.2.2) during the conversion, in order to increase
decoding efficiency.

5.3 Data-Driven Language Modeling

Data-driven language modeling approaches generally seem to require less manual
work from human experts than rule-based models. Their basic principle is based on
deriving LM automatically from annotated speech corpora. More specifically, the
automatic training procedure determines the structure and weight distribution of the
LM. Its structure is derived from the identities of the symbol sequences occurring
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in the speech corpus, whereas the weighting of the model is computed from the
corpus statistics in the shape of occurrence frequencies of symbol sequences. Another
advantage of data-driven language modeling is that rarely occurring phenomena can
be covered more easily than with rule-based techniques.

Yet, in order to achieve a broad coverage of the target language, substantial
amounts of training data are necessary. Moreover, the training data needs to be
representative for the target language. This implies that the frequency distribution
of all phenomena matches the real-world distribution. As this can usually not be
assumed, the frequency distribution is smoothed in order to increase LM accuracy.
Hence, the effort for data-driven language modeling is not necessarily smaller than
for rule-based language modeling. Yet, it needs to be considered that data collection
and annotation can, at least partly, be carried out by non-experts.

In this thesis, two different data-driven approaches were pursued in order to
create suitable LLM: The well-known n-gram model and the simple so-called ezact
model, which exactly covers the symbol sequences seen in the speech corpus. These
two approaches are discussed in the following sections.

5.3.1 n-Gram Language Models

The most widely used language models in speech recognition are n-gram LM [Bak75,
Jel76]. Their basic principle consists in assigning likelihood values to sequences of
n symbols. Thereby, the dependency of the current symbol is limited to the n—1
previous symbols. The n-gram model likelihood Ppgam (S) of a sequence S of |S|
symbols s7 ... s|g| from a vocabulary ¥ can be expressed by

IS|
Pogram(8) =[] P(silhi) (5.7)
i=1

where the term A" denotes the history of the current symbol s;. This history consists
of the n—1 symbols preceding s;:

n
hi = Si—nt1..-8i-1

Due to the limited dependency of n-gram LM, Py,gyem (S) is an approximation of the
LM likelihood P(S) of Equation 5.1.

The value of n is also denoted as order of the n-gram model. As a further
consequence of its range limitation, an n-gram LM has the ability to cover symbol
sequences of arbitrary length. This property is especially important for speech pro-
cessing applications, because it enables the system to process spoken utterances of
arbitrary length.

The number of n-gram parameters rises exponentially with n. In order to limit
the computational load, and since the needed amount of training data depends on
the number of parameters to estimate, the mostly used setting in practical speech
recognition applications is n = 2 or n = 3. l-grams are referred to as unigrams,
2-grams as bigrams and 3-grams as trigrams.
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The n-gram parameters are trained from a corpus of symbol sequences. From the
training corpus, the count c(h}'s;) of an n-gram hl's; is determined, i.e. the number
of times the n-gram occurs. These counts are the starting point for computing the
n-gram likelihood distribution.

The basic n-gram LM is obtained when the likelihood P(s;|h}") of an n-gram
h}'s; is replaced with the maximum likelihood estimate Py, (s;|h}"):

P(silhi") = Pur(si|hif)

This estimate is directly computed from the n-gram counts, after normalization with
the counts of all n-grams with the same history Al
c(hls;)
Pyr(si|h}) = =———— 5.8
( Z’ z) Zsi c(hznsl) ( )
Usually, this model is not used directly, because it doesn’t perform well with insuf-
ficient amounts of training data.

To cope with this problem, the basic n-gram LM is smoothed. Smoothing com-
prises methods for adjusting the likelihood distributions of LM so that they perform
more accurately. For this thesis, we split the smoothing problem into two tasks with
respect to terminology, namely discounting and generalization.

Discounting is understood as the task of reducing the likelihood of the unreli-
able estimates from the observed counts, and of redistributing the freed probability
mass. Generalization denotes the task of broadening the LM’s coverage of the target
language, by assigning non-zero probabilities to events, e.g. n-grams, which never
occurred in the training data (unseen events). Exaggerated generalization causes
generation of too many new events, which are increasingly confused with existing
ones during decoding. The result of this phenomenon, which is denoted as over-
generation, is a degradation of LM performance. The tasks of discounting and gen-
eralization are often applied together, in the sense that the probability mass freed
by discounting is redistributed among the unseen events created by generalization.

Smoothing is a central issue in statistical language modeling, and a large number
of smoothing techniques for n-gram LM have been proposed. A comparative study of
some of these can be found in [CG98]. For this thesis, several smoothing approaches
were examined with regard to their suitability for HLM. In the following, two basic
discounting techniques are outlined, namely additive discounting and Good-Turing
discounting. Then, two smoothing schemes for n-gram LM are briefly reviewed,
namely Katz smoothing and modified Kneser-Ney smoothing. At the end of this
section, we discuss network representation of n-gram LM for their integration into
HLM. In Section 5.3.2, we present methods for smoothing exact LM directly on
the network level, again using additive discounting and Good-Turing discounting.
Experimental comparisons of the applied smoothing techniques are then presented
in Section 5.7.
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The n-gram LM utilized in this thesis were all estimated with the SRI Language
Modeling Toolkit (SRILM) [Sto02]. Furthermore, this toolkit was also employed to
convert n-gram LM into weighted transition networks.

Discounting

If training data is sparse, it can be assumed that the distribution of events seen dur-
ing training does not reflect the real distribution very well. Therefore, it is desirable
to modify the frequency distribution of the training data in an appropriate way, and
at the same time reserve some probability mass for unseen events.

A basic method of discounting is the so-called additive discounting [Lid20].
It is based on modifying the counts derived from training data by adding a constant
value ¢ and renormalizing appropriately. This means that each n-gram is pretended
to occur 0 times more than it actually does. Hence, the maximum likelihood estimate
from Equation 5.8 is replaced by the additive discounting estimate P,qq:
Ne. Ne.
Pra(si| ) = 0+ c(h] s:l) _ 0+ c(h] SZ)n (5.9)
S ot clis)  OI%| 2., clhisy)
The value of the additive discounting constant ¢ is typically around 1. In the case
that 6 = 0, no discounting is performed. Thereby, the additive discounting esti-
mate P,y; degenerates into the maximum likelihood estimate P,;;. For large § the
likelihood distribution approaches a uniform distribution. The additive discounting
method is simple, yet reported to perform comparatively poor [GC94].

A more refined and widely used technique is Good-Turing discounting [Goo53].
It is based on the assumption that the frequencies of observed events follow a bino-
mial distribution. The Good-Turing method suggests that the observed counts ¢ of
events should be replaced by counts or frequencies c*, where:
Ney1
= (c+1)== 5.10
(41 (5.10)
In this equation, the term N, denotes the frequency of all events in the distribution
that were observed exactly ¢ times, in other words the ‘frequency of frequency’. The
discount ratio d. is defined as the ratio of the counts after and before discounting:
¢ (c+1) Nena
de=—=~—F— 5.11
¢ c c N, ( )
For n-gram LM, the observed events are n-grams, so that ¢ = ¢(hl's;). The modified
counts c*(h's;) are converted to a likelihood by normalization with all events with
the same history, as before. Hence, the Good-Turing estimate Pgr of an n-gram
hi*s; which occurs ¢(s;|hl') times is computed as:

c*(hisi)

Partoilhi) =5 s
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Using the discount ratio d., the Good-Turing estimate can also be expressed in terms
of the maximum likelihood estimate:

Per(silhi') = de - Pur(si|hi') (5.12)

In practice, the observed values of N, are not used directly, but replaced with
smoothed values. As proposed by Katz [Kat87], it is assumed that counts larger
than the so-called discount threshold ¢4, are reliable (in this work, the default
value of the SRILM toolkit was used, i.e. ¢ = 7). Hence, these counts are not
discounted:

d.=1 if ¢> cnaz

For small counts ¢ < ¢4z, the discount ratio d, 14, proposed by Katz is proportional
to the Good-Turing discount d.. Since the counts of unseen events should remain
unchanged, d. needs to be renormalized as follows:

dc - (Cmax + 1)]\%%?“

1-— (Cmax + 1)Nc7\?1x+1

dc,katz =

Another practical issue is, that the frequency estimation of Equation 5.10 fails
if N, = 0. For this thesis, we adopted the solution of the SRILM toolkit to this
problem: If N, . .+1 = 0, the discount threshold is decremented, i.e. Caz = Cmaz — 1.
The decrementing is repeated until N, . .+1 # 0 or ¢per = 0. Then, the discount
ratios d. for ¢ = 1...c¢pee are computed after Equation 5.11. If N, = 0 during
this computation, the corresponding discount ratio is set to d. = 1. Similarly, values
d. > 1 are ‘clipped’ to d. = 1. If no events occur less than or equal to ¢;q, + 1 times,
the discount threshold becomes ¢4, = 0. In this case, Good-Turing discounting
cannot be performed. As we want to avoid that unseen events (with a count of zero)
are assigned a likelihood value of zero, we fall back to additive discounting in this
case throughout this work.

Many smoothing techniques for n-gram LM are based on Good-Turing discount-
ing (see [CGY8] for an overview). In this thesis we employ the widely used Katz
smoothing, which is briefly reviewed in the following section. However, we also
utilize Good-Turing discounting directly to smooth the transition network represen-
tation of exact LM (see Section 5.3.2).

In the following section, we also outline a second n-gram LM smoothing tech-
nique, namely modified Kneser-Ney smoothing. This method is based on absolute
discounting [NEK94], where a fixed discount 0 < D < 1 is subtracted from each
non-zero count. Hence, the discount ratio d. 45 for absolute discounting is:

max {c — D,0}
c
As suggested in [NEK94], the discount D should be estimated from the frequencies
N1 and Ny of n-grams with one and two counts, respectively, by:
p- M
N1+ 2Ns

dc7 abs —

(5.13)
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Originally, absolute discounting is used as a smoothing technique according to our
terminology. As such, it also involves interpolation of higher- and lower-order n-
grams. This aspect is outlined in the following section, where derived smoothing
techniques are discussed.

Generalization

The basic n-gram model of Equation 5.8 is already able to generalize from the
symbol sequences seen during training to new ones. This capability arises from its
range limitation to n—1 previous symbols. However, because of data sparsity it is
desirable that LM are able to assign non-zero likelihood values to a larger number of
(n-gram) events, possibly even allowing arbitrary sequences of symbols from a given
vocabulary X.

The generalization principle is usually based on combining n-gram LM with
lower-order models. This combination can either be performed by linear interpo-
lation, or by a recursive backoff method: If an n-gram has a count (and hence
likelihood) of zero, the algorithm uses (backs off to) the likelihood of the (n—1)-
gram instead. This likelihood is scaled with an appropriate backoff factor. If the
(n—1)-gram also has a count of zero, the (n—2)-gram is used, and so on until the
unigram s;, which always has a non-zero count. Because of the final unigram back-
off, this technique effectively produces generalized n-gram LM which cover arbitrary
symbol sequences.

According to [KN95], the likelihood estimate of a backoff n-gram can generally
be described with the following recursive equation:

ny __ Piscount (Sz’hzn) if C(hznsl) >0
Fonron (1) = { W) P (i) it sy =0 1Y
This means that if an n-gram h's; occurs in the training data, its discounted likeli-
hood estimate Pgiscount (si|h}) is used. For n-grams with zero count, the smoothed
likelihood estimate of the backoff (n—1)-gram Psmooth(5i|hln_1) is used after scal-
ing with a factor y(h}). This factor corresponds to the backoff factor mentioned
above. It is chosen so that the total number of counts in the distribution, and
thereby its total probability mass, remains the same. Hence, the probability mass
distributed among the lower-order models must correspond to the amount reserved
during discounting.

An interpolated n-gram LM is generally represented by the equation:

Psmooth(5i|hzn) = )‘hfPML(SZVLZn) + (1 - )‘h?)Psmooth (5i|h?71)

In contrast to backoff LM, higher- and lower-order distributions are always com-
bined by interpolation, not only when the higher-order count is missing. Yet, as
shown in [CG98], higher-order counts may be less reliable, especially when they are
low. Therefore, interpolated LM typically yield better performance than backoff
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LM. According to [CG98]|, interpolated LM can also be expressed in the form of
Equation 5.14. The backoff formulation is favored in this thesis, because it can eas-
ily be transfered into a transition network representation. This is discussed in the
following section.

Katz smoothing [Kat87] directly yields a backoff n-gram after Equation 5.14.
It utilizes the modified Good-Turing discounting described in the previous section.
The discounted likelihood estimate is hence defined, analogously to Equation 5.12,
as:

Pdiscount (sz’h?) = dc,katz : PML(Sz’h?)

The scaling factor y(h}") is derived from the probability mass to be distributed among
all (n—1)-grams with history h}'. This value is computed by the difference between
the total probability mass 1 and the accumulated discounted likelihood of all seen
n-grams with history A}'. In order to obtain the fraction of this probability mass
reserved for each individual (n—1)-gram, it is normalized with the total likelihood
of all (n—1)-grams contained in the n-grams with history hl":

() = = Zsitnz =0 Pamooh ()
y(hi) = -
' 1- Zsi:c(hfs¢)>0 Popootn (sil by 1)

Modified Kneser-Ney smoothing [CG98] is based on Kneser-Ney smoothing
[KN95], which in turn is based on the absolute discounting technique mentioned
in the previous section. It yields an interpolated n-gram, which can be expressed
with the backoff formulation of Equation 5.14. Instead of using a single discount
parameter D as in absolute discounting, modified Kneser-Ney smoothing introduces
three different parameters Dy, Do and Dsy, which are applied to n-grams with 1,
2, and 3 or more counts, respectively. Correspondingly, the discount ratio dc gnmod
for an n-gram hj's; is

c(hi'si) — D(c(hi'si))

dc nmod —
kmmod c(hls;)
where:
0 if c(hl's;)) =0
noyv _ ) D1 it c(hl's;) =1
Dehisi)) =9 p, if c(hls;) =2
D3+ if c(h?sl) > 3
The discounted likelihood estimate for the backoff Equation 5.14 is then defined as:

Pdiscount (52|h?) = dc,knmodPML(5i|h?) + V(h@n)Psmooth (Si|h?_1)
The discount parameters Dj, Dy and Ds3y, are estimated, analogous to Equa-
tion 5.13, by:
N- N-
Y — 1 2
N1+ 2N, Ny
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N3 Ny
Dy =2-3Y— D3y =3 —-4Y —
2 No 3+ N

The (modified) Kneser-Ney smoothing method does not assume that the likeli-
hood values of lower-order n-grams are proportional to their absolute (maximum-
likelihood) counts, as is the case e.g. with Katz smoothing. Instead, the likelihood
of lower-order n-grams is adjusted corresponding to the number of different symbols
that they follow.

[CGY98] illustrates this notion with the following example: Consider a training
corpus for a bigram LM that contains many occurrences of the word FRANCISCO, but
always in conjunction with a single predecessor word SAN. Intuitively, the unigram
backoft likelihood of FRANCISCO, i.e. the likelihood assigned to it when it occurs in
different contexts, should be low. However, a backoff smoothing scheme that uses
the absolute counts of FRANCISCO would assign a rather high unigram likelihood to
it.

This can be avoided if the number of different predecessors is taken into account
during generalization. For (modified) Kneser-Ney smoothing, this is done by defining
the smoothed estimate P01, Of the backoff (n—1)-gram of Equation 5.14 as

_ Ny (oh?Ls;
Psmooth(8i|h? 1) = LG—l)
Nii(ehi "e)

where N1+(oh?718¢) denotes the desired number of different symbols s;_,, 11 (rep-
resented by the bullet) that precede the (n—1)-gram h;‘_lsi at least once in the
training data. This count is normalized with Ny, (eh? 'e), the sum of the counts
Ny (e ts;) for all symbols s;. Finally, the scaling factor y(hl*) of the backoff
equation is defined as

DlNl(thO) + DQNQ(thO) + D3+N3+(hzno)
25, c(hi'si)

v(hi') =

where N, (h]'e) denotes the number of different symbols s; with history A that occur
¢ times in the training data. Thereby, 3+ is read as ‘three or more times’.

Network Representation

After outlining different methods to smooth n-gram LM, we now show how these
LM can be integrated into the hierarchical language modeling approach. For these
purpose, they need to be represented as weighted transition networks. For back-
off n-gram models, efficient network representations are known (see e.g. [RPB96,
AMRO3]). The backoff principle is implemented by so-called failure transitions,
which realize a context change to an (n—1)-gram if the n-gram does not exist.
Figure 5.1 illustrates the basic transition network scheme of a bigram LM with
three symbols s1, s9 and s3. Each of these symbols is represented by a labeled node.
The two triangular nodes symbolize the entry and exit nodes which are traversed at
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Figure 5.1: Transition network representation of a bigram LM with vocabulary size

%] = 3.

start and end of a symbol sequence (compare Figure 2.2). The null node () is used
as target for failure transitions.

A transition between two non-null nodes represents a bigram between the cor-
responding nodes, respectively their symbols?. Such a transition carries the log-
likelihood value of the bigram as its weight. Context changes from bigrams to
unigrams are implemented as failure transitions from non-null nodes to the null
node. Their backoff likelihood is contained in the corresponding transition weight.
Finally, unigrams and their likelihood values are realized as transitions from the
null node to a non-null node. The network of Figure 5.1 contains all possible bigram
transitions. In a practical network, only a fraction of all possible bigram transitions
exist, namely those with non-zero likelihood.

If a bigram exists, there are two possible paths between the corresponding nodes,
one direct path and one via the failure transition. The dotted transitions of Fig-
ure 5.1 show an example of this for the bigram s;s9. The preference of the two possi-
ble paths is controlled via their scores, i.e. wy, s, for the direct path and wg, o +we s,
for the backoff path. In the SRILM toolkit, which was also utilized for the conver-
sion between n-grams and transition networks, this problem is solved by deleting
the direct transition ¢;; from node s; to node s; if it has a lower likelihood than the
backoff path, i.e. if ws, 5; < Ws; e + W s;-

5.3.2 Exact Language Models

In addition to n-grams, a second data-driven language modeling method was utilized
in this work to represent LLM within HLM. A so-called exact LM exactly covers

2For this purpose, imagine that the entry and the exit node carry begin-of-sentence and end-of-
sentence symbols, respectively.
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the symbol sequences occurring in a training data set. Therefore, the likelihood
Peract(S) of an exact LM for a symbol sequence S of length |S| is an exact description
of Equation 5.1, and not an approximation like the n-gram likelihood Pgrqm (S) of
Equation 5.7:
S|
Pea:act(s) = H P(Si’51 ce Si—l)
i=1

As for n-gram LM, the basic weight distribution is obtained by maximum likelihood
estimation, based on the occurrence frequencies seen during training. As discussed
later in this section, this distribution can be smoothed by discounting.

Because of their missing generalization capabilities, exact LM are clearly un-
suitable as stand-alone, flat language models, unless huge amounts of training data
are available. However, HLM inherently generalize to a certain extent because of
their hierarchical structuring, as illustrated in this section. In order to prevent
over-generation, exact LM were therefore used for certain parts of HLM, where gen-
eralization seems rather counterproductive.

Generalization

Due to their nature, exact LM themselves don’t generalize at all. However, when
considering the generalization abilities of the whole HLM, it has to be taken into
account that the hierarchical structuring of semantic symbol sequences into semantic
categories itself has a generalizing effect.

In order to illustrate this effect, let’s assume for example that the utterances UM
WIEVIEL UHR GEHT DAS FLUGZEUG (word-by-word translation: at what time goes
the airplane) and WANN STARTET DIE MASCHINE (when starts the machine) occur
in the training data, and that these utterances have both been annotated with the
same concept sequence QTIME DEPARTURE PLANE, because they are semantically
equivalent in the context of the considered application domain. If we now build
exact LM for each of these three concepts, they contain two alternative symbol sub-
sequences each. Using the notation of context-free rewrite rules, this is expressed
as:

QTIME — UM WIEVIEL UHR | WANN
DEPARTURE — GEHT | STARTET
PLANE —  DAS FLUGZEUG | DIE MASCHINE

Hence, as a result of the two utterances seen during training, the HLM is now able
to produce 8 utterances. These correspond to the 23 possible combinations of word
sequences contained in the concept sequence QTIME DEPARTURE PLANE, among
them e.g. WANN GEHT DIE MASCHINE.

In general, the generalization effect caused by hierarchical structuring becomes
the stronger the more semantic categories and the more hierarchy levels the HLM
contains. Therefore, this effect must be taken into account when defining the hier-
archy structure itself, but it also plays an important role for the decision which type
of LM to use for a specific semantic category.

83



Chapter 5. Hierarchical Language Models (HLM)

Network Representation

Transition network representations of exact LM can be obtained simply by creating
an isolated network path for each symbol sequence of the training set. However, this
type of representation is inefficient with respect to consumption of storage space,
because it treats common partial paths separately. Therefore, many more nodes and
edges are needed in comparison to an equivalent, compact version of the network.
For the decoding process this means that more tokens are created and that these
tokens are recombined later than necessary. Hence, compact network representations
enable more space and time efficient decoding.

As outlined in Section 2.2.2, minimization of abstract automata can be performed
automatically with the aid of methods from the finite-state automata theory. For
this work, the AT&T FSM Library toolkit [MPR98, MPRO03] was utilized to mini-
mize FSA representations of exact LM. Due to the equivalence of Mealy and Moore
machines (see Section 2.2.2), the minimized FSA can then be converted into equiv-
alent transition networks.

In principle, these minimization and conversion operations could also be carried
out on weighted representations of exact LM. Yet, in this work the weight distri-
bution is transfered to the network after these operations. This procedure is used
because we devised a general, data-driven method to convert unweighted transition
networks into weighted ones. This technique, which is described in the following, is
also applied to create stochastic versions of rule-based LM (see Section 5.4).

Discounting on the Network Level

In order to enable weighting and weight smoothing for a broader range of LLM, we
perform these operations directly on the transition network representation of LLM.
Thereby, all transition networks for which a suitable set of training data is available
can be subjected to this method. In this section, exact LM are considered, but
weighting and smoothing of rule-based LM is also performed (see Section 5.4).

As for n-gram LM, the weight estimation is based on counts. Here, counts
directly apply to the network representation, more specifically to node transitions.
Hence, we transfer the statistics of a training set to a network by walking the network
path corresponding to each symbol sequence in the training set, and counting how
often each transition is traversed. For this purpose, the transition network needs to
be deterministic, as is the case for representations of exact LM.

Again, it must be assumed that the amount of training data is not sufficient to
reflect the real distribution of events very well. Hence, smoothing is also desirable
for exact LM. Due to the missing generalization capabilities of exact LM, the re-
distribution of probability mass among unseen events is not possible. Yet, we can
still perform redistribution among seen events. In this case, smoothing is reduced
to discounting.

In this work, we apply two different discounting techniques to exact LM, namely
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additive discounting and Good-Turing discounting. Unlike for n-gram LM, where the
basic events for discounting are n-grams, here the basic events are node transitions.
Apart from this, discounting is performed as described in Section 5.3.1.

Let t;; denote the transition from node with index i to node j, and ¢(t;;) the
count of a transition ¢;;. Then, similar to Equation 5.9, the additive discounting
estimate P,q4(t;;) of transition t;; is computed by adding a constant value § to the
transition count, and normalizing over all transitions leaving node i:

4+ C(tij)

P (tij) = m

(5.15)

For Good-Turing discounting, the discount ratio d x4, is computed as outlined in
Section 5.3.1, using transition counts instead of n-gram counts. Generally, Good-
Turing discounting can be applied to all transitions of a network at once, or sepa-
rately for each node’s outgoing transitions. The former method is used in this work,
because only few nodes of practical networks have enough transitions to be able
to apply the Good-Turing algorithm at all. From the modified transition counts
c*(tij) = dckatzc(tij), the Good-Turing estimate Pgr(t;;) of transition t;; is then
computed, again normalizing over all transitions leaving node ¢:
_ ' (ty)
Pgr(tij) e (t)

Hence, the freed probability mass is redistributed uniformly.

5.4 Language Model Combination

As outlined in the introduction of this chapter, HLM are created by utilizing differ-
ent rule-based and data-driven modeling techniques. By selecting the most suitable
technique for each part of the HLM, we aim to improve model performance while
reducing efforts. This goal is supported by the modularity of HLM and the under-
lying WTNH, which allows that independent modeling decisions are made for each
network of the hierarchy. In this section, the selection of the best LM type for a
given task, i.e. to describe a semantic category and its probability distribution, is
discussed.

As explained in Sections 5.2 and 5.3, we utilized three types of LM as LLM in
this thesis, namely weighted context-free rewrite rules as representative of rule-based
language modeling, and n-gram LM and exact LM as data-driven models. Due to
the lack of suitable metrics, an automatic procedure for selecting appropriate types
for LLM couldn’t be applied. However, some decision criteria and a corresponding
decision principle were formulated. These criteria are based on the generalization
abilities of the different LM types as discussed in the previous sections, on the com-
plexity of the target language and on the amount of training data available for that
target language. The decision principle for the three utilized types of LLM is shown
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1. use weighted context-free rewrite rules if

(a) the target language can be covered with a few simple rules, or
(b) no or too little training data for a data-driven LM is available, or

(c) essential events are not contained in the training data
2. else, use n-gram LM if

(a) the symbol alphabet is large
and the symbols occur in varying order, or

(b) sequences of arbitrary length should be allowed

3. else, use exact LM

Figure 5.2: Decision principle for the three utilized types of local language model.

in Figure 5.2. The actual choices for the HLM used in the airport information sys-
tem are then discussed in Section 5.6.1.

In addition to making hard decisions about the LLM type, it is also possible
to combine rule-based and data-driven methods to estimate one LLM. Such an ap-
proach can for example be useful if the model structure can easily be given manually,
but the corresponding weight distribution is not clear to the human expert. In this
case, it may be desirable to transfer the statistics of an appropriate training corpus
to the manually created, rule-based LM. Compared to a uniform weight distribution
or one guessed by an expert, this more likely yields better model performance. In
this work, the statistics transfer is performed with the method described in Sec-
tion 5.3.2, except that the unweighted network corresponds to a context-free rewrite
rule instead of an exact LM. As discussed in Section 5.3.2, the transfered weight
distribution can also be smoothed.

The discussed method applies most suitably to Case 1(a) of Figure 5.2. In
Case 1(b), there is no or probably not enough training data for weight estimation.
In Case 1(c), the training data doesn’t cover essential parts of the manually defined
language by principle, so that data-driven weighting is rarely sensible.

5.5 Natural Speech Phenomena

We define natural speech as speech uttered by a human being in a natural way. This
specifically excludes that textual information is predefined, as is the case with read
speech. Moreover, speech is viewed as unnatural if speakers are limited with respect
to vocabulary or speaking style.

Naturally spoken user utterances may contain a great variety of phenomena.
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processing | phenomena

level

acoustic pauses, breathing, laughter, coughing, throat-clearing, lip-smacking
lexical filler words (hesitations, mumbling), cut-off words

semantic repetitions, self-corrections, ungrammatical utterances

Table 5.1: Ezamples of natural speech phenomena.

These pose a possible threat to the performance of a speech interpretation system
if they aren’t modeled appropriately. Some of the phenomena occurring in natural
speech are listed in Table 5.1, categorized by the processing level on which they are
typically treated (first). In the following, we will explain how some of these effects
are modeled in this work.

When humans speak naturally, they sometimes utter sounds which can be viewed
as speech sounds but not as proper words. We call these phenomena filler words.
Typical examples are sounds that are the result of periods in which the user is un-
sure what to say next, also called hesitations. These speech sounds may also have
a semantic relevance, e.g. the German sound ‘mhm’, which can mean an acknowl-
edgement of something the communication partner (be it a human or a machine)
said. In this thesis, filler words are modeled on the lexical level (see Section 5.6.2)
by assigning several variants as different pronunciations to a lexical entry denoted
<fill>. Because even humans can be unsure of their meaning, filler words are treated
as semantically irrelevant.

Longer pauses and non-speech effects like breathing sounds, laughter and cough-
ing are considered on the acoustic-phonetic level by the specially trained HMM nib
and p: (see also Section 5.6.2). Special lexical units were created for both of these
HMM, denoted <nonsp> and <silence>.

Another typical phenomenon of natural speech are incompletely spoken words,
so-called cut-off words. This phenomenon is difficult to cope with, since cut-off
words are likely to be confused with proper in-vocabulary words, because they actu-
ally consist of proper speech sounds until they are cut off. One possible approach to
this problem is to cover cut-off words with a generic lexical model. In Chapter 6 of
this thesis, such a modeling technique is presented and examined. Even if its main
purpose is the coverage of out-of-vocabulary (OOV) words, its generic lexical nature
makes it suitable for the cut-off word problem.

In order to take such natural speech phenomena into account, they also require
integration into HLM. Due to training data sparsity, we combine filler, non-speech
and silence ‘words’ in a single filler word class in this work, so that they ultimately
appear to the language model as one unit. As mentioned above, cut-off words are
treated as OOV words. Apart from this, the modeled natural speech effects are
treated like any other symbol in the HLM, i.e. they are generally contained in sev-
eral LLM on different hierarchy levels. Please note that the filler word class is
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regarded as syntactically and semantically irrelevant. Therefore, its occurrences are
ignored during evaluation.

Some natural speech effects only occur on the syntactic-semantic modeling level.
These are e.g. self-corrections or ungrammatical, i.e. syntactically incorrect, utter-
ances. The HLM approach considered in this work has a certain robustness against
such phenomena by design, specifically due to:

e robust semantic modeling without explicit syntactic analysis

e generalization and discounting of observed events, using hierarchical structur-
ing and local language modeling

e combination of data-driven and rule-based language modeling techniques

e OOV modeling, which enables a fragmentary analysis, similar to key-word
spotting, where only semantically relevant utterance parts are modeled

5.6 Test System Setup

This section describes the system setup for the experimental results presented in
this chapter. The experiments were all carried out with a test system for an air-
port information application. The collection and annotation of speech data for this
domain was outlined in Section 4.1.

The most important properties of this speech corpus are repeated briefly here:
The collected speech data comprises around 2700 utterances from 32 subjects, with
5.5 words per utterance on average. Recordings were carried out with a close-
talking microphone in two different environments, a quiet laboratory and a driving
car. The corpus was split into three parts (see Section 4.1.2): A training set with
the utterances of 20 subjects, an evaluation set and a cross-validation set with 6
subjects each. The OOV rates are 2.2% on the evaluation set and 1.5% on the
cross-validation set.

5.6.1 Hierarchical Language Model Setup

Unlike the acoustic-phonetic model (see following section), HLM are solely estimated
from the airport information corpus. The semantic tree annotations of its training
set comprise 4 hierarchy levels (see Section 4.1.2): One word and word class level
each, and two semantic concept levels. The word, word class and concept levels
consist of 594, 12 and 41 unique symbols, respectively.

Several different basic HLM setups can be generated by masking certain hier-
archy levels in the annotations. The default speech interpretation system setup
contains all of the 4 hierarchy levels. In order to build a speech recognition system
for comparison with the speech interpretation system (see Section 5.10), the concept
levels are hidden.
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The different types of LLM are selected by means of the decision principle pre-
sented in Section 5.4 as follows: Case 1(a) of Figure 5.2 applies to the semantic
concepts for flight number and flight code. Using the regular expression operators
defined in Section 2.2.2, the corresponding context-free rewrite rules are written as:

AFLIGHTNUMBER — ADicIiT ADiciT ADiciT ADIGIT?
AFLIGHTCODE —  AAIRLINECODE AFLIGHTNUMBER

Case 1(c) occurs for virtually all word classes, because only part of all digits, times,
airports, airline codes etc. that are relevant for the airport information domain are
contained in the training data. The manually added rules contain around 30 new
words for the lexicon.

Due to the variability of the root symbol sequence, n-gram LM (Case 2) are
utilized as root model of both word class and concept based HLM by default. In
Section 5.8, where varying n-gram orders of the root LM are examined, we also
evaluate HLM with exact LM at the root level. All other than the mentioned
semantic categories are implemented as exact LM (Case 3).

Word alternatives within word classes are weighted uniformly, in order to simu-
late real-world conditions. The likelihood distribution of all other exact networks is
derived from corpus statistics (with exact network we denote a network generated
from an exact LM or from a context-free rewrite rule). Exact networks and n-gram
LM are smoothed with one of two different methods each. For the former, we apply
additive discounting or Good-Turing discounting as discussed in Section 5.3.2. n-
Gram LM are estimated with the SRILM toolkit and subjected to Katz smoothing
or modified Kneser-Ney smoothing as outlined in Section 5.3.1.

5.6.2 Lexical and Acoustic-Phonetic Model Setup

Although acoustic-phonetic and lexical models are not a special focus of this work,
their quality needs to reflect the state-of-the-art of speech interpretation systems.
Thereby, the transferability of the results of this thesis can be judged adequately.

In order to model word pronunciation, a linear lexicon is created by manual
pronunciation transcription. Due to the reasons discussed in Section 2.3.4, only
few pronunciation variants are added for frequently occurring deviations from the
canonical form. The final lexicon contains about 620 words, 30 of which don’t occur
in the training corpus, but are added manually during word class member completion
(see previous section).

As speaker-independent, triphone HMM are today mostly used for similar tasks,
these are selected as acoustic-phonetic models. Due to the explicitly hierarchical
structure of WTNH, the context dependency of triphone models cannot extend
word boundaries, as was explained in Section 2.3.4. Therefore, intra-word triphones
are employed instead of the better-performing cross-word triphones. Still, intra-
word triphones offer a good compromise between training effort and consideration
of context effects.
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A basic requirement for the acoustic-phonetic models of the test system is speaker-
independence. However, the acoustic speech data collected for the airport informa-
tion domain is, according to experience, too small to train reasonably well perform-
ing speaker-independent models. A common approach to circumvent this problem,
which was also utilized here, consists of first estimating base models on a larger set of
speech data from one or several other data collections, and then using the in-domain
data to adapt these models to the target domain. The danger of this method is a
potential mismatch between the in-domain data and the base data, which might
degrade system accuracy. There are numerous factors for a possible mismatch,
e.g. microphone characteristic, recording environment (background noise), but also
speaking styles (read speech, spontaneous speech) or accents, whose phenomena can
also have a negative effect on the acoustic model performance.

For this work, the base models are trained on a speech data collection from
the German Verbmobil project [Wah00]. The used training set consists of about
11000 spontaneously spoken utterances from about 600 different speakers, recorded
in an appointment negotiation scenario. The acoustic conditions of these recordings
match those of a quiet laboratory environment. Therefore, only the laboratory
environment part of the airport information corpus (compare Section 4.1.1) is used
to adapt the base models to the target domain, but no speech data from in-car
recordings. The adaptation is performed by a combined Maximum A-Posteriori
(MAP) and Maximum Likelihood Linear Regression (MLLR) training, carried out
with the HTK toolkit [YEK'02]. The probability densities of the phoneme HMM
are modeled with Gaussian mixtures with diagonal covariance matrices. The HMM
training yields about 25000 Gaussian mixture components in total.

The set of 50 German phonemes is derived from the definitions of the Verbmobil
project. In addition to these phonemes, the HMM set contains a silence model
(p:), a short-pause model (sp) and a model for non-speech effects (nib, see also
Section 5.5). The HMM are three- or four-state left-right models, except for the
short-pause model. This consists of a single state, tied to the middle state of the
silence HMM. An additional skip transition renders the short pause model optional.
Therefore, it can simply be appended to all lexical entries.

The preprocessing stage of ODINS is similar as in other state-of-the-art speech
recognition systems. It computes 12 MFCC components, which together with energy,
delta and acceleration coefficients yield 39-dimensional feature vectors.

Because an investigation of runtime performance optimization is not a goal of this
thesis, all experiments presented in this thesis were carried out with a conservative
setting of the beam pruning threshold (compare Section 3.2.2) of ¢t = 800.

5.7 Smoothing Experiments
In order to analyze the influence of smoothing techniques and parameters on the
performance of our speech interpretation system, a number of different concept

based HLM were generated.
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Figure 5.3: Influence of additive discounting parameter § on tree node accuracy and
HLM test-set perplexity.

In the first experiment, the influence of the additive discounting constant § for
exact networks (see Equation 5.15) is examined. As discussed in Chapter 4, the tree
node accuracy Acc, is used as primary evaluation measure. Additionally, we report
results for the test-set perplexity ppl = ppl(T) of HLM. The experiment is carried
out with a Katz smoothed bigram LLM at the root level.

Figure 5.3 illustrates the results of Acc, and ppl on the evaluation (eval) and
cross-validation (xval) sets for settings of 6 = 0...1 . Tree node accuracy and test-
set perplexity are shown on the left and right y axes, respectively. In brackets below
the data points, those settings of the LM factor A (see Section 5.9.1) are shown, that
yield optimum accuracy. On the cross-validation set, the best accuracy of 86.47% is
obtained with A = 19 at § = 0.5. Surprisingly, the same accuracy can be achieved
with A = 19 at § = 0. At this setting of d, discounting is effectively disabled.
Because this is generally not desirable, § = 0.5 is selected for the standard system
configuration. The curve of Acc,, on the evaluation set confirms this choice. There,
the maximum accuracy of 87.05% is also obtained at § = 0.5. Compared to the case
where no smoothing is performed (§ = 0), this corresponds to an absolute accuracy
gain of 0.15% or to a relative error rate reduction of Err,. = —1.2%. The optimum
LM factor is A = 16 in both cases.

The test-set perplexities correlate fairly well with the tree node accuracies, al-
though the best values at § = 0 are marginally better than the perplexities at
6 = 0.5, both for evaluation and cross-validation. Generally, the absolute differences
in perplexity are rather small.

In the second experiment we investigate the influence of the different smoothing
techniques (ST). Again, bigram LLM are employed at the root level. As explained in
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Figure 5.4: Combinations of exact network discounting and n-gram LM smoothing,
evaluation (top) and cross-validation (bottom).

Section 5.6.1, exact networks are smoothed with additive discounting (add) or Good-
Turing discounting (gtnet). For n-gram LM, Katz smoothing (katz) or modified
Kneser-Ney smoothing (knmod) is applied.

Figure 5.4 depicts separate plots for evaluation and cross-validation sets with
four curves each, corresponding to the possible combinations of each of the two
smoothing techniques for exact networks and n-gram LM. Both plots show the total
tree node accuracy Acc,, for different LM factor settings between 10 and 25. On the
cross-validation set, the absolute maximum of Acc,, = 86.9% is obtained at A\ = 14
for the HLM combining Katz n-gram smoothing with Good-Turing discounting of
exact networks. However, examining the accuracy values around A\ = 14 reveals
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that this maximum is rather unstable. Better compromises between A-stability and
optimum accuracy are instead obtained by combining modified Kneser-Ney n-gram
smoothing with additive or Good-Turing exact network discounting. Both of these
HLM achieve Acc,, = 86.6% at their optimum LM factor settings.

This choice is confirmed on the evaluation set, where both knmod-smoothed
HLM outperform the katz-smoothed HLM significantly over the whole range of .
For the optimum A settings from the cross-validation set, both knmod-smoothed
HLM achieve accuracy values of Acc, = 87.5%. In contrast, the katz-smoothed
HLM only obtain Acc, = 86.6% and 86.7%. This corresponds to relative error rate
reductions of Err, = —6.7% and —6.0%, respectively. The accuracy differences
between additive and Good-Turing exact network discounting on the evaluation set
are negligible. Therefore, we selected the theoretically more attractive Good-Turing
discounting for our standard system configuration. Generally, it should be noted
that the accuracy curves of Figure 5.4 suggest a significant mismatch between the
characteristics of evaluation set and cross-validation set.

The test-set perplexity value for each HLM is listed in the legends of the two
plots. Surprisingly, this evaluation measure indicates an advantage of Katz smooth-
ing over modified Kneser-Ney smoothing on both sets (19.2 against 19.8/19.9 on the
xval set, 19.5 against 20.0/20.1 on the eval set). This also contradicts the study of
Chen and Goodman [CG98], where modified Kneser-Ney smoothing is reported as
the clear winner of the examined smoothing techniques, based on perplexity evalu-
ation. However, the scope and scale of their experiments differs substantially from
the ones presented here.

5.8 Range of Language Model Dependencies

An important characteristic of a language model is how much of the previously
uttered it takes into account to determine what is currently being said. In other
words, how many previous symbols a LM considers in order to decide which symbol
is currently the most likely one. This section deals with dependency ranges of flat
and hierarchical LM. First, we illustrate and discuss how statistical dependencies
are modeled with both approaches. Then, the influence of the root level LM range
on HLM performance is examined in Section 5.8.1.

The range of the basic n-gram LM is limited to n—1 previous symbols. As has
been mentioned in Section 5.3, values of n >3 are seldom used for speech interpre-
tation tasks, because of the exponential rise of the number of n-gram parameters.
Therefore, statistical relations between a larger number of symbols than captured
by the standard n-gram LM are called long-range dependencies.

A hierarchically structured LM enables modeling of such long-range, statisti-
cal dependencies by hierarchical combination of several shorter dependencies. This
characteristic of HLM is clarified in Figure 5.5, where the utterance IN WELCHEM
BEREICH KOMMT BA NEUN NULL SIEBEN SECHS AN (word-by-word translation: in
which area comes BA nine zero seven six at) along with its semantic tree is de-
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concept QAR,EA /VVVVVVVA;{JFV{VIVVALBEGKIN AFLIGHTCODE ARRIVALEND
concept \\AR,EA AFLIG}}TNUNIBER
word class AAIR,LINEéODE AD‘IGIT ADIC;IT ABIGIT AD‘IGIT

word IN/ WEL(‘:HEM BEREICH KOMMT BA NEUN  NULL SIEBEN SECHS AN

Figure 5.5: FExample for a long-range statistical dependency, which requires a 7-gram
LM on the word or word class level, but only a trigram on the concept level.

picted. In this utterance, there is a syntactic-semantic relation between the words
KOMMT and AN, which together mean ‘arrive’. On the word level, a 7-gram would
be needed to model this statistical relation with a flat n-gram LM. However, only
the 3 symbols ARRIVALBEGIN AFLIGHTCODE ARRIVALEND are necessary to cover
the same statistical dependency on the root level, since 5 of the words to be spanned
are contained in a single semantic category AFLIGHTCODE.

Besides the root level of HLM, such statistical relations can also occur within
the hierarchical structure, e.g. between the digits in the concept AFLIGHTNUMBER
of Figure 5.5. If generalization within the semantic category is not important, the
statistical relations can be modeled directly by use of an exact network, whose
dependencies span the whole modeled symbol sequence.

As outlined in Section 5.6.1, the HLM examined this thesis employ n-gram LM
at the root level only. At this level, many different symbol sequence variations are
observed, so that the n-gram model’s ability to cover symbol sequences of arbitrary
constitution and length is especially useful. Within HLM, the variations are much
smaller. Therefore, and due to the reasons discussed in Sections 5.4 and 5.6.1, exact
networks are used there. As these networks are capable of modeling long-range
statistical dependencies, the dependency range of the root LM is mainly responsible
for the range of the whole HLM.

It should be considered, however, that a hierarchical structuring of LM can be
a disadvantage if direct relations between words are important. By subsuming sev-
eral words or other semantic objects in a semantic category, the statistical relation
between semantic objects in different categories is no longer modeled directly. In-
stead, the lower-level dependency is replaced by a higher-level dependency, which
only directly affects the higher-level semantic categories. Because of this, HLM
cannot yield optimum performance if their structure obliterates lower-level statisti-
cal dependencies which significantly contribute to the speech interpretation process.
Consequently, the potential of an HLM fundamentally depends on the definition of
its semantic categories and their hierarchical structuring.
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Figure 5.6: Total tree node accuracy for varying n-gram orders of the root language
model on the evaluation set.

5.8.1 Experiment

In this section, the effect of different dependency ranges on the performance of HLM
and the whole speech interpretation system is examined. For this purpose, the n-
gram order of the root LM of a concept based HLM is varied between 0 (uniform
symbol likelihood) and 3 (dependencies on up to 2 previous symbols). Furthermore,
an HLM with exact root LM is also included in this experiment. As explained in
Section 5.7, Good-Turing discounting of exact networks and modified Kneser-Ney
smoothing of n-gram LM is utilized as standard configuration for this and other
experiments.

Figure 5.6 gives an overview of the resulting tree node accuracy for the different
model setups on the evaluation set when varying the LM factor A (see Section 5.9.1)
between 10 and 40. Each numerically highlighted value of Acc,, corresponds to the
optimum A setting of an HLM configuration obtained on the cross-validation set
(see Figure A.1 in Appendix A). In the legend of the plot, the test-set perplexities
of the examined HLM are listed.

First of all, it can be noted that, as expected, an increase of the n-gram order
from n = 0 to n = 2 substantially increases the accuracy of the speech interpretation
system from 76.7% to 87.5%. Accordingly, the test-set perplexities of HLM improve
with increasing dependency range, from 244 for the zerogram to 20.0 for the bigram.
Although the perplexity value of 10 promises the opposite, the use of an exact root
LM dramatically deteriorates accuracy. This accuracy degradation is a consequence
of the model’s inability to cover unseen events. The obverse perplexity result can
be explained with the used perplexity computation scheme, where unknown parts
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of the utterance are simply ignored (see Section 4.4). Therefore, this result cannot
be interpreted reasonably in this case.

The increase of the root LM order from bigram to trigram causes a significant
gain in perplexity, which improves from 20.0 to 18.5. However, the corresponding
tree node accuracy gain is rather small (0.2% absolute). An explanation for this
could be that long-range dependencies play a secondary role in the tested system.
As another possibility, a root model range of 3 might be still too small to take
specific long-range dependencies sufficiently into account. Furthermore, training
data sparsity might be the cause for the lacking performance gain of the trigram
model. Because of the small accuracy difference between bigram and trigram root
LM, bigrams are selected for the standard system configuration.

5.9 Likelihood Balancing

The language model factor (LM factor) A is an essential parameter in practical
speech recognition, because it balances the likelihood values of acoustic-phonetic
model (AM) and LM heuristically against each other. This balancing is performed
by a linear scaling of the likelihood distribution of the LM. In this section, the
use of similar scaling techniques for HLM are studied. For this purpose, the basic
approach for word-based LM, as used in speech recognition systems, is reviewed
in Section 5.9.1. Section 5.9.2 deals with a metric for closer examination of the
effects of different scaling parameters, the so-called insertion-deletion ratio. The
application of the standard scaling parameter to HLM is outlined in Section 5.9.3.
Experimental results, which suggest an extension of the basic scaling technique, are
presented. In Section 5.9.4, we define the novel method and measure its effects on
system performance. The results indicate a further possibility of improvement by
use of an additional offset parameter. Its influence is examined in Section 5.9.5.

5.9.1 Language Model Factor

The necessity for an adjustment of likelihood values arises because in contrast to
LM, the typically employed, HMM-based AM produce no real probabilities. Instead,
HMM emission probabilities are represented by values on the probability density
functions of mixture densities. Yet, both AM and LM likelihood values contribute
to the total likelihood of a spoken utterance. Due to their different value ranges
they cannot be combined directly.

The LM factor A tries to eliminate this mismatch by linearly transforming the
log-likelihood values of LM into the range of likelihood values of AM3. In addition
to adapting the ranges of likelihood values, A simultaneously balances the relative
influence of AM and LM on the decoding process. The higher the value of A, the
more the recognition results are dominated by the likelihood distribution of the

3The scaling could likewise be applied to the AM likelihood values, transforming them into the
LM’s value range.
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LM. This dominance has the effect that likely word transitions with unlikely acous-
tic matches are preferred over less likely word transitions with more likely acoustic
matches. This property can be utilized to compensate quality differences between
AM and LM heuristically, by giving more influence to the model of higher quality.
This avoids recognition errors caused by the lower-quality model.

The following outlines how A is formally applied in a speech recognition system:
Let X denote a sequence of |X| acoustic feature vectors z;...zx| and W denote
a sequence of [W| words wy ... ww|. Similar to Equation 3.2 of Chapter 3, the
problem of finding the optimum word sequence W* is solved with the maximum
a-posteriori equation:

W* = argV{InaX [P(X|W)P(W)] (5.16)

The term P(X|W) is estimated by the acoustic-phonetic and lexical models, P(W)
is represented by the LM. In practice, the likelihood values are not used directly,
because the computation of the multiplicative likelihood components would lead to
numerical underflow. Instead, their logarithm (log-likelihood, also called score) is
used. Hence, Equation 5.16 becomes:

W* = argvrvnax [log(P(X|W)P(W))]

The LM factor A is applied as an exponent of the stochastic LM P(W), so that the
search problem becomes:

W* = argvrvnax [log(P(X]W)P(W)A)}
= argV{InaX [log(P(X|W)) + Alog(P(W))] (5.17)

Using Equation 5.1, the A-scaled LM log-likelihood of Equation 5.17 is decomposed
into:

Aog(P(W)) = Mlog(P(wy)) + Mog(P(wa|w;))

+ ...+ Aog(P(wyw)|wr - .- wywi-1))
(W]

= Y Alog(P(wilw; ... w;—1)) (5.18)
=1

Assuming that X is segmented into |[W| consecutive sequences of feature vectors
1---Xw|, the AM log-likelihood of Equation 5.17 is expressed as:

|W]|
log(P(X|W)) Z log(P(x;|w;)) (5.19)
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By inserting Equations 5.18 and 5.19 into Equation 5.17, the search problem is
finally expressed as:

W* = argV{,naX [log(P(X|W)P(W))\)}

W]
= argV{,naX Z log(P(xi|w;)) + Aog(P(w;|wy ... wi—1)) (5.20)
i=1
From this equation it can be seen that LM scaling is performed by multiplying each
word log-likelihood with A. This means that when we represent LM as transition
networks, their scaling is performed by A-multiplication of the log-likelihood values
on all transitions.

The optimum value of X is determined experimentally, because it depends on the
type and quality of the used AM and LM. Typical values for a speech recognizer
using triphone HMM and n-gram LM are in the range of 5...15.

As a side-effect of balancing the likelihood distributions of AM and LM, A also
affects the average length of recognized words. The reason for this phenomenon
can be explained as follows: For large values of A\, the LM likelihood values become
comparatively small, so that a traversal from one word to another one is more ‘costly’
than staying within a word. In this case, longer words are favored over shorter ones
on average. Therefore, word deletion errors occur more often than word insertions.
On the other hand, small values of A favor the likelihood values of the AM, so that
word traversals occur more often.

5.9.2 Insertion-Deletion Ratio

In this section, we investigate the phenomenon described at the end of the previous
section, namely that A influences the average length of a recognized word. For this
purpose, we introduce a metric that describes the effects of likelihood scaling on
word length.

As for the word accuracy measure outlined in Section 4.2.2, we assume that eval-
uation is carried out by matching the decoder hypotheses for a set of test utterances
against their corresponding reference transcriptions. As a result of such an evalua-
tion, the total number of correct, substituted, inserted and deleted words in the test
set is known. These numbers are denoted by Cy,, Sy, I, and D,,, respectively. As
mentioned in Section 4.2.2, the total number of words in the reference transcriptions
Nrél can be expressed by:

Nl = Cy + Sy + Dy (5.21)

Together with the duration of the test utterances, N{;}ef is a measure for the average
word length in the reference transcriptions. Likewise, the total number of word
hypotheses Ngyp is a measure for the average length of the hypothesized words. It
can be written as:

NP = Cy 4 Sy + Iy (5.22)
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For our purpose, we are not interested in the absolute word length but in the relation
between reference and hypothesis. This could be described by the ratio between
NP and N7¢/. Since the numbers of correct and substituted words occur in both
of these terms, they can be omitted. Hence, our measure is defined as the ratio of
the number of word insertions and the number of word deletions in the optimum
match between the reference transcriptions and recognizer hypotheses of a test set.
The measure is denoted as word insertion-deletion ratio IDR,,:
I

IDR,, = -2

oo (5.23)

The appearance of recognition errors depends on the properties and interactions
of different modeling levels. Therefore, a simple relationship between the different
kinds of errors cannot be given. However, we can expected that the decoder should
recognize about as many words as were spoken to achieve its maximum accuracy,
i.e. when:

Nzlzyp ~ N;ef

By first applying Equations 5.21 and 5.22, and then Equation 5.23, this becomes:
D, ~ I, IDR,, ~ 1

Thus, the value of IDR,, should be around one at the value of A that yields the
maximum word accuracy Acc,. For small values of A the cost of word traversals is
low, so that more insertions than deletions occur on average and the value of IDR,,
becomes larger than one. Large A values render word traversals more costly, so that
relatively many deletions occur and IDR,, becomes smaller than one. For increasing
values of A\, the IDR,, curve should decrease monotonously.

5.9.3 Application of Language Model Factor to HLM

The basic problem of balancing AM and LM likelihood also exists for the speech
interpretation task examined in this work. This section outlines how the basic
likelihood scaling scheme of Section 5.9.1 is similarly applied to HLM. Furthermore,
we show how the notion of the insertion-deletion ratio measure introduced in the
previous section is extended to HLM, and discuss experimental results.

The formulation of the speech recognition problem given in Equation 5.16 can be
generalized to the hierarchical search problem of speech interpretation, as shown in
Section 3.1. In this section, we specifically consider the standard HLM of this work,
which consists of three main hierarchy levels and one sub-level. As in Section 5.1, the
main levels represent words, word classes and semantic concepts, which are denoted
W.K and C, respectively. The symbols on the concept sub-level are denoted C’.
For this HLM structure, the problem of finding the most likely output tree T* from
the feature vectors X is written, according to Equation 3.6, as:

T* = argmax [P(X|W)P(W|K)P(K|C')P(C'|C)P(C)] (5.24)
W,K,C/,C
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Similar as flat LM, HLM are scaled by applying A as an exponent to their likelihood
distribution. Hence, Equation 5.24 becomes:

T* = arg max [P(X;W)[P(W\K)P(K\C’)P(c’\C)P(C)N (5.25)
W, K,C',.C

By use of Equations 5.6 and 5.19 it can be shown that, similar to Equation 5.20, the
scaling applies to all transitions within the language model. In the case of WTNH
representations of HLM this means that all transition scores within networks that
correspond to a semantic category, including the root network, are multiplied by .

Similar to Section 5.9.2, the effects of the LM factor on HLM shall be described.
The metric is again based on results of evaluation test utterances, but this time
the tree matching based evaluation technique of Section 4.3 is utilized. If C,,, Sy,
I, and D,, represent the counts of correct, substituted, inserted and deleted tree
nodes, the number of nodes in the reference tree N/¢/ and the number of nodes in
the hypothesized tree NP are expressed by:

NS = Cp 4 Sp + Dy, NP = Cp + S+ Iy

Similar to the word related measure of Equation 5.23, we define the tree node
insertion-deletion ratio IDR,, as:
I,

n

Again it is expected that N’¢/ approximately equals N/¥P at the A value that yields

optimum accuracy (this time tree node accuracy Accy), and hence D,, ~ I,, and

IDR,, ~

Furthermore, we can extend this expectation to individual hierarchy levels: As
discussed in Section 4.3.2, the numbers of correct and erroneous symbols counted
separately for each tree node type 7 € {w,k,c} are denoted C7, ST, IT and DJ.
Consequently, hierarchy level dependent versions IDR], of the insertion-deletion ratio
measure are defined for words, word classes and concepts as:

w o I;f k _ Irli c _ IrcL
IDR} = 2. IDR = IDR; =2 (5.26)
n n n

If the numbers of nodes of each type are about equal in reference and hypothesis
trees, we get:
IDRY ~1 IDRF~1 IDR:=~1

However, it should be noted that this expectation is in fact only justified if an HLM’s
likelihood distribution is balanced in itself. Generally, optimizing A with regard to
maximum tree node accuracy only ought to equalize the number of tree nodes of all
types together, but not the nodes of individual types.
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Figure 5.7: Top: Tree node accuracy for all and individual node types for varying A
on the evaluation set. Bottom: Insertion-deletion ratio for the identical setup.

Experiment

The influence of A on the performance of our one-stage speech interpretation system
on the evaluation set of the airport information application is depicted in Figure 5.7.
The experiment was conducted with the standard system configuration elaborated
in previous sections, i.e. a 4-level HLM with bigram root LM, modified Kneser-Ney
smoothing and Good-Turing discounting.

In the upper plot of Figure 5.7, the total tree node accuracy Acc,, for all hierarchy
levels as well as the individual tree node accuracies Ace], (compare Equations 4.13
and 4.15) for nodes of type word (7 = w), word class (7 = k) and concept (7 = c)
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are shown for A = 0...50. Additionally, the value of the absolute maximum of each
curve is depicted. Firstly, it can be noted that accuracy levels differ consistently
among all hierarchy levels. While the maximum value at the word level of 85.3% is
well below the total accuracy of 87.6%, the concept accuracy is significantly higher
with 89.0%. The word class level even achieves 96.8%. These differences are the
result of the varying vocabulary sizes on the different hierarchy levels. With only
about 10 unique word classes, the confusability between these units is much lower
than the confusability between about 600 unique words. Clearly, structural depen-
dencies between levels also play an important role, so that this can only be a general
rule.

Another observation from the upper plot of Figure 5.7 is that the A settings which
yield maximum accuracy vary substantially between individual node types (15 for
words, 21 for concepts and 33 for word classes). In order to analyze this phenomenon,
the tree node insertion-deletion ratios for all and individual node types, IDR,, and
IDR], (compare Equation 5.26) are depicted in the lower plot of Figure 5.7 for the
same range of A\. The IDR curves are plotted on a logarithmic scale, which is well
suited to illustrate differences in the considered ratio. The plot also shows the IDR
values for A = 15, i.e. the point of maximum Acc,,.

As discussed earlier in this section, we would expect IDR, =~ 1 at this point,
and furthermore IDR] =~ 1. Whereas the former applies fairly well (IDR,, = 1.5),
especially the word class value (IDR}Y = 3.2) deviates substantially from our ex-
pectation. On the cross-validation set, this effect can hardly be observed (compare
Figure A.2 in Appendix A). This again suggests that a significant mismatch be-
tween evaluation set and cross-validation set exists. However, the slope differences
between the IDR curves is similar on evaluation and cross-validation sets, and the
variations in the word class specific curve are also similar on both sets.

As pointed out earlier, the differences between the IDR curves suggest that the
HLM is not well-balanced in itself. In order to compensate these differences, the
likelihood distribution needs to be modified. In the following section, we discuss an
according method which further extends the likelihood scaling technique that was
introduced in this section with the application of A to HLM.

5.9.4 Weight Balancing within HLM

This section presents our method to adjust the weight balance within HLM by
applying optimized scaling factors to individual hierarchy levels. In order to separate
the scaling between AM and LM and the scalings within the LM from each other, we
still apply the general scaling parameter A as defined in Equation 5.25. Hence, for
within-HLM scaling, each conditional likelihood expression of the search problem
formulation could be scaled with a separate parameter. However, in order to limit
the number of additional parameters, we only apply separate scaling factors to main
hierarchy levels, but not to sub-levels.
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For the considered 4-level HLM, a word class factor A and a concept factor A¢
is introduced. Hence, Equation 5.25 becomes:
T* = argmax {P(X!W)[P(W\K)AK [P(K]C’)P(C’\C)]ACP(C)N (5.27)
W,K,C',C
For practical WTNH representations of HLM this means that all transition scores
within word class networks are now scaled by A\, and transitions within concept
networks are scaled by Ao\ instead of .

Experiment

The scaling parameters A\, Ac and Ak are jointly optimized on the cross-validation
set to maximize the tree node accuracy Acc,. HLM and speech interpretation system
configurations are the same as previously, especially as for Figure 5.7. The optimum
values of the scaling parameters yielding maximum Acc,, are A = 18, A\c = 1.25 and
Mg = 1.5 (compare Figure A.4 in Appendix A).

Figure 5.8 depicts the comparison between the baseline parameter setup with
only a common LM factor (Ac = 1.0, Ax = 1.0) and the optimized parameter
setup with individual scaling factors for word classes and concepts (Ac = 1.25 and
Ak = 1.5) on the evaluation set. As in the previous section, the figure shows tree
node accuracy (upper plot) and IDR (lower plot) curves for the whole hierarchy as
well as for individual hierarchy levels, in dependency of A. The result curves of the
baseline are identical to those of Figure 5.7, except for the range of A\. However,
the highlighted values of Acc, and IDR here correspond the optimum settings of A
on the cross-validation set, i.e. A = 21 for the baseline and A = 18 for the balanced
HLM.

As can be seen from the upper plot of Figure 5.8, the within-HLM scaling yields
accuracy gains on the concept and word class levels almost over the whole tested
range of A\. At the optimum setting from cross-validation, the concept accuracy
increases from 89.0% to 89.3%, which corresponds to a slight relative error rate
reduction of Err. = —2.7%. On the word class level, a substantial improvement
in accuracy from 94.8% to 95.5% can be observed (Err,; = —13.5%). As the word
level accuracy decreases slightly (Err,.e; = +1.3%) and the average number of words
is much larger than concepts and word classes together, the total accuracy remains
unchanged.

The IDR curves corresponding to the two parameter setups are depicted in the
lower plot of Figure 5.8. Whereas the total IDR value remains near the optimum of 1,
the differences between the curves of individual hierarchy levels improve significantly.
Especially at the word class level a fundamental improvement both of the whole IDR
curve and at the optimum A value (from 7.0 to 1.6) is observed, even if its vertical
offset still leaves room for improvement.

On the cross-validation set, within-HLM scaling yields slight accuracy gains on
all hierarchy levels (compare Figure A.3). The total accuracy improves from 86.6%
to 86.8% (Err.e; = —1.5%). Interestingly, the word class IDR deteriorates from 0.8
to 0.3 at the points of maximum accuracy.
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Figure 5.8: Top: Tree node accuracy with and without level-dependent scaling factors
on the evaluation set. Bottom: Insertion-deletion ratio for the identical setup.

5.9.5 Word Insertion Penalty

As the previous section shows, the within-HLM weight scaling still doesn’t yield
optimally shaped IDR curves. An explanation for this could be that the scalings
performed so far are not powerful enough to cope with all requirements, i.e.

e range adaptation of likelihood values,

e balancing of relative influence of AM and HLM,

e balancing of weights within HLM and

e balancing of average word length, i.e. numbers of insertions and deletions.
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Especially the latter task is only implicitly influenced by the used scaling factors.
Hence, in order to further optimize HLM with respect to their IDR curves, the
scaling can be extended with a parameter that directly influences IDR. This can be
achieved with a technique known from speech recognition, which modifies the cost
of word transitions by a so-called word insertion penalty [YEK™02].

This parameter enhances the log-likelihood scaling by applying an additive offset
pw to all words. Based on the logarithmic version of Equation 5.27, the search
problem can thus be reformulated by including the word insertion penalty pyy:

T = arg max [ log(P(X|W)) + [W|pw + AgAlog(P(W[K))
T aerlog(P(K|C) 4+ AcAlog(P(CY|C)) + Alog(P(C)) ]

In the weighted transition network representation of HLM, the word penalization
is applied by adding py to the score on each transition that leads into a word
sub-network node.

Experiment

In order to confirm the effectiveness of pyy together with level-dependent scaling
factors experimentally, a joint optimization of A\, A¢, Ax and py with respect to
Acc, is carried out on the cross-validation set. The maximum of Ace, is found
at parameter settings of A = 18, A\¢ = 1.25, Ay = 1.5 and pyy = —10 (compare
Figure A.5). Figure 5.9 depicts the resulting total and per-level tree node accuracy
and IDR curves on the evaluation set in dependency of A. In order to measure
the effects of py alone, the baseline parameter setting corresponds to the optimum
setting with level-dependent scaling factors from the previous section, i.e. A = 18,
Ao = 1.25, A\g = 1.5 and py = 0.

The upper plot of Figure 5.9 shows that the use of pyy leads to tree node accuracy
gains on the word level (from 84.9% to 85.2%) and on the concept level (from 89.3%
to 89.6%). The word class level accuracy remains at 95.5%. In total, we notice an
accuracy improvement from 87.5% to 87.8%, which corresponds to a relative error
rate reduction of Err,. = —2.4%.

From the lower plot of Figure 5.9 it can be observed that, surprisingly, this
accuracy gain occurs although the IDR curves don’t improve. The word level IDR is
even slightly further away from the expected optimum value of 1 than the respective
baseline value (0.8 vs. 1.1), and the word class IDR remains unchanged at 1.6.

Similar effects are observed on the cross-validation set (compare Figure A.6).
There, the total accuracy Acc, rises from 86.8% to 87.2%, which corresponds to
Errpe = —3.0%. At the same time, the total IDR value at maximum Acc,, worsens
from 0.8 to 0.6.

Summary

The tree node accuracy and relative error rate reductions achieved by within-HLM
weight scaling and word penalization are summarized in Table 5.2. The upper
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Figure 5.9: Top: Tree node accuracy with and without word insertion penalty on the
evaluation set. Bottom: Insertion-deletion ratio for the identical setup.

part of this table shows the results of joint parameter optimizations on the cross-
validation set. Using these parameter settings on the evaluation set yields the lower
part of the table. The baseline column contains the results from only applying a
general LM factor A to HLM (compare Section 5.9.3). The second and third result
columns show the values corresponding to optimizations of the within-HLM scaling
factors Ax and A¢ in addition to A (compare Section 5.9.4). Finally, the results for
additionally applying a word insertion penalty py to HLM are given in the last two
columns of Table 5.2 (compare current section). The reported relative error rate
reductions always refer to the baseline values.
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set | hierarchy | baseline AK, Ac opt. AK, A\c, pw opt.
level Ace,, | Ace, | Errpe | Accy, | Err, e
xval | concept 85.5% | 85.8% | —2.1% | 86.3% | —5.5%
word class 97.9% | 98.1% | —9.5% | 98.3% | —19.0%
word 84.3% | 84.5% | —1.3% | 85.0% —4.5%
total 86.6% | 86.8% | —1.5% | 87.2% —4.5%
eval | concept 89.0% | 89.3% | —2.7% | 89.6% | —5.5%
word class 94.8% | 95.5% | —13.5% | 95.5% | —13.5%
word 85.1% | 84.9% | +1.3% | 85.3% -1.3%
total 87.5% | 87.5% | —0.0% | 87.8% —2.4%

Table 5.2: Summary of results for optimized within-HLM weight scaling and word
insertion penalty.

5.10 Recognition vs. Interpretation

The one-stage speech interpretation system investigated in this thesis can be viewed
as an extension of a conventional speech recognition system. This extension consists
of the additional semantic knowledge contained in HLM. In this section, we pursue
the question how this new knowledge source affects the speech recognition accuracy,
i.e. the word accuracy of the system. As outlined in the introduction of this work,
the original task of a speech interpretation system is the recognition of meaning. For
this task, the creation of a perfect word transcription is not necessary. Nevertheless,
corresponding evaluation results are reported in this section, as many scientists
attribute importance to them.

Ideally, we would expect an increase in word accuracy from the inclusion of
semantic knowledge. This expectation is founded on observations of human speech
processing: When humans understand the meaning of what their communication
partners say, it is generally easier for them to recognize the uttered words. This
observation is e.g. utilized by the semantically-unpredictable sentence (SUS) test
[BGH96]. This test is used in speech synthesis research to assess the intelligibility
of text-to-speech systems. The test measures the word transcription capabilities of
human subjects on synthesized speech. In order to avoid that subjects guess words
by using semantic knowledge, the test sentences use common syntactic structures
that are randomly filled with words from special word list, e.g. ‘The chair ran through
the yellow trust.’.

In terms of our speech interpretation system this means that we would expect
higher word accuracy from HLM based on semantic concepts than from word class
or word based HLM. We answer this question experimentally, by comparing a speech
interpretation system and a speech recognition system trained on identical knowl-
edge sources except for the semantic knowledge.

The basic system setup for this experiment is depicted in Figure 5.10. Both
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Figure 5.10: Experimental setup for comparison of speech interpretation (top) and
speech recognition (bottom) systems.

systems rely on identical acoustic-phonetic and lexical models, and both HLM are
trained from the tree annotations of the airport information system corpus. For the
speech interpretation system (upper part of Figure 5.10) the full annotations are
used, whereas the speech recognition system (lower part of Figure 5.10) is trained
on the same annotations after hiding the semantic concept levels.

Strictly speaking, the word class level contains semantic information, which
doesn’t belong to a conventional speech recognition system. Yet, similar as in
Section 3.3, omitting the word class models would result in a smaller vocabulary
(compare Section 5.6.1) and thus render the comparison unfair. Therefore, word
classes are considered a part of the speech recognition system.

Evaluation is carried out by semantic tree matching for both systems, since the
output sequences of words and word classes of the speech recognition setup (compare
Figure 5.10) are also represented as trees. In addition to tree node accuracy, the test-
set perplexity values ppl(T) for the HLM of the two system are reported. Although
only one of them contains semantic concepts, the two HLM are comparable due to
the word based normalization of ppl(T) (see Section 4.4). In order to enable a tree
node accuracy based comparison, the evaluation of the speech interpretation system
is only performed after deleting all semantic concepts from the decoder hypotheses
and from the reference trees. Thereby, only the word and word class levels of both
systems affect the evaluation. This also ensures that the parameter optimization
is, in both cases, carried out with respect to the joint accuracy of words and word
classes, represented by the total tree node accuracy Acc,,.
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Figure 5.11: Total and per-level tree node accuracy for speech interpretation (upper
3 curves of legend) and recognition (lower 3 curves) systems on the evaluation set.

Please note that, as already pointed out in Section 4.3.2, the word level accuracy
Accy) reported during this evaluation is generally different from an isolated evalua-
tion of the word sequence alone (which would yield Acce,,), because of the constraints
imposed by the word class identities. In the particular experiment regarded here,
however, the differences are marginal.

The standard speech interpretation system configuration elaborated in previous
sections is used for this experiment, i.e. a 4-level HLM with bigram root LM, mod-
ified Kneser-Ney smoothing and Good-Turing discounting. HLM scaling and word
penalization are applied according to the previous section. The parameter settings
that maximize the joint word and word class accuracy Acc, are A = 17, A\c = 1.25,
Ak = 1.5 and pyy = —10 (compare Figure A.7). The word class based, 2-level HLM
for the speech recognition system is built with the same techniques as the concept
based HLM, i.e. with bigram root LM, modified Kneser-Ney smoothing and Good-
Turing discounting. Likewise, HLM scaling and word penalization are applied. The
joint parameter optimization on the cross-validation set leads to settings of A = 20,

Ak = 1.5 and pyy = —10 (compare Figure A.8).

Figure 5.11 depicts the tree node accuracy curves of both systems for all and
individual hierarchy levels on the evaluation set. The numerically highlighted data
points correspond to the settings of maximum total tree node accuracy, i.e. A = 17
for the concept based HLM and A = 20 for the word class based HLM. On the word
level as well as on the word class level, the use of semantic knowledge results in
accuracy improvements. The total accuracy cannot be compared in this experiment
because it considers semantic concepts, which are only contained in the HLM of the
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speech interpretation system.

On the word level, we notice an accuracy improvement from 85.0% to 85.5%
for the concept based HLM. This corresponds to a relative error rate reduction of
Errye = —3.3%. The word class level yields a more substantial accuracy gain from
94.2% t0 95.5% (Errye = —22.4%). The joint accuracy for both levels improves sig-
nificantly from 86.7% to 87.3% (Err,e; = —4.5%). On the cross-validation set, error
rate reductions of Err,.o = —3.9%, Err,.q = —60.5% and FErr,q = —6.8% are ob-
tained for words, word classes and both together, respectively (compare Figure A.9).
The test-set perplexity values of the two HLM, which are shown in the legend of the
figures, improve from 23.4 to 20.0 on the evaluation set and from 21.8 to 19.8 on
the cross-validation set. The presented results confirm our expectation that the use
of semantic knowledge has a positive effect on speech recognition accuracy.
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Chapter 6

Unknown Word Modeling

In closed-vocabulary speech recognition and understanding systems, users are ex-
pected to utter only those words that are contained in the system lexicon. Therefore,
these types of systems take no explicit provisions for the case that unknown words
occur. These words are also called out-of-vocabulary (OOV) words, whereas words
contained in the system lexicon are denoted as in-vocabulary (IV) words. Occur-
rences of OOV words inevitably cause errors in closed-vocabulary systems, because
they cannot be distinguished from IV words and are therefore silently misrecognized
as IV words. Even worse, surrounding words are often also affected by these er-
rors, as a consequence of erroneous segmentations of the misrecognized OOV words
and also due to erroneous language model contexts. In speech recognition experi-
ments reported in [Fet98], each OOV word caused about two misrecognized words
on average. The usefulness of a closed-vocabulary approach for a particular type
of application therefore depends on the relative number of OOV words (also called
OOV rate) that occur during system operation, and if the amount of errors caused
by these OOV words is acceptable. The one-stage speech interpretation system dis-
cussed in this work is so far configured as a closed-vocabulary system. Later on
in this chapter, we give reasons why we expect high rates of OOV words during
practical operation of our type of system. Therefore, the unknown word problem is
an important issue in this work.

This chapter discusses methods to alleviate this problem by adding explicit
knowledge of unknown words to the system. Thereby, ODINS becomes an open-
vocabulary system that is able to detect words not contained in the system lexicon.
As further elaborated in Section 6.1, explicit OOV models are in principle not only
able to detect OOV words, but also to avoid interference with their surroundings.
This section also discusses which processing levels an OOV model can be based
on, and why a lexical level approach is chosen in this work. Our OOV modeling
approach, which is presented in Section 6.2, reuses data-driven language modeling
techniques from Chapter 5 to estimate statistical LM over phonemes. Large pro-
nunciation lexica and, optionally, word frequency lists are used as knowledge bases.
The main features of this approach are also published in [TFLRO5b]. Section 6.3
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then shows how these unknown word models are integrated into HLM and into the
decoding process of ODINS. Suitable methods to measure the detection capabilities
of OOV models and their effects on semantic accuracy are outlined in Section 6.4.
Finally, Section 6.5 discusses experimental results for various system configurations.

6.1 Motivation and Basic Approach

As mentioned in the introduction, the need for OOV modeling also depends on
the OOV rate occurring in a particular application. For large-vocabulary dictation
applications, closed-vocabulary systems are often appropriate because OOV rates
are typically low. Due to the difficulty of the task of speech understanding, these
systems today mostly operate in narrow application domains with limited vocabulary
sizes of a few hundred or thousand words. In these circumstances, high rates of OOV
words must be expected if users talk freely to the system. This can even be the case
if all semantically relevant words are known to the system, when users are oblivious
to domain limitations.

The airport information corpus presented in Section 4.1 yields a relatively low
OOV rate of about 2% on the test sets (compare Table 4.2). While the error rate
increase caused by this OOV rate itself may be acceptable, there are reasons why
we expect substantially higher OOV rates in real-world situations:

e Although the speech corpus is collected through Wizard-of-Oz (WOZ) ex-
periments which simulate real-world situations (compare Section 4.1.1), the
subjects need to be instructed about the kind of queries they should make.
Naturally, this tempts the subjects to reuse words and phrases occurring in
the instructions. Hence, a more natural choice of words and therefore a higher
OOV rate can be expected in real-world system use.

e Since real-world users can be expected to be less aware of domain limitations
than WOZ subjects, a larger number of queries can be expected whose an-
swering requires knowledge unknown to the system. Such queries are likely to
contain a large proportion of unknown words.

There are also other reasons against a closed-vocabulary approach:

e For a spoken dialogue application, the ability to detect OOV words at all can
be vital in order to purposefully ask users to rephrase parts of their utterance,
instead of continuing with the misrecognized words.

e It may be desirable to obtain a system vocabulary which only, or mainly, con-
tains words that are semantically relevant for the application. In the extreme
case, the speech interpretation system would thereby become similar to a key-
word spotting system. One way to exclude semantically irrelevant words from
the system lexicon is to declare them as unknown. In this work, this is achieved
by replacing their occurrences in the corpus annotations by the unknown word
symbol (compare Section 6.3). Thereby, the ‘natural’ OOV rate and hence
the need for OOV modeling is increased. In contrast to the ‘natural’ OOV
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words that never occur in the training data, we denote those words that we
deliberately declare unknown as known OOV words.

In the following, we present a brief categorization of existing statistical OOV
modeling approaches. For a more detailed survey, the interested reader is e.g. re-
ferred to [Fet98]. In general, the methods for detecting unknown words can be
divided into implicit and explicit techniques. In an implicit approach, the speech
decoding process typically does not differ from that of a closed-vocabulary system.
Instead, OOV words are detected by using knowledge collected during the normal
search process. As described in [Fet98], implicit OOV detection can be approached
by confidence measurement. Confidence measures represent estimates about the cer-
tainty of decoder hypotheses, e.g. on a word-by-word basis. Ideally, the confidence
value is 0 for erroneous word hypotheses and 1 for correct ones. Since OOV words
cause word errors, they can in principle be detected by use of confidence measures.
However, low confidence values do not exclusively result from unknown words, but
generally from bad matches of the input signal on acoustic-phonetic, lexical or lan-
guage modeling levels. Therefore, it is impossible to unambiguously identify OOV
words by this means. Moreover, implicit OOV modeling is unable to avoid errors
caused by misrecognized OOV words. In contrast to this, explicit approaches are
able to both detect OOV words and avoid these types of errors. For this purpose,
the OOV model is directly integrated into the decoding process. On the downside,
an explicit OOV model effectively introduces new word pronunciations into the sys-
tem, which generally increases confusability. Hence, care must be taken that the
negative effects of the OOV model don’t outweigh its benefits.

Explicit, statistical OOV models are typically based on the acoustic-phonetic or
on the lexical modeling level. The acoustic-level OOV model introduced in [Fet98]
consists of several HMM for OOV words of different length. This requires that
sufficient amounts of acoustic data are available for HMM training as additional
knowledge source. Lexical-level OOV models combine existing phoneme HMM in a
suitable way to yield one or several generic pronunciation models. For this purpose,
pronunciation lexica can be utilized as an additional knowledge source, as e.g. pro-
posed by Bazzi [Baz02].

For the speech interpretation task pursued in this work, OOV modeling on the
lexical level is considered more appropriate than on the acoustic-phonetic level. Be-
cause of the above mentioned method of defining known OOV words, it is assumed
that the unknown words are mostly common words of the target language. There-
fore, they aren’t expected to have substantially different acoustic-phonetic properties
than IV words. Hence, we see little reason, regarding model goodness, to base OOV
words on that processing level. A practical argument for lexical OOV modeling is
the availability of large pronunciation lexica for many languages, whereas it may
be more difficult to obtain speech data for acoustic-phonetic OOV model training.
Finally, as discussed in [Fet98], the main drawbacks of lexical OOV modeling are
a tendency for over-generation and the resulting need for OOV model penalization,
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and high computational requirements. Whereas the former issue is addressed in
this chapter by examining the sensitivity of OOV models against penalty variations,
analysis of runtime performance is not a focus of this work. Nonetheless, the effects
of reducing OOV model sizes on model goodness are also examined in Section 6.5.

6.2 Lexical OOV Modeling with Statistical LM

As outlined in the previous section, it is expected that most of the unknown words
are common words from the language of the target application, in our case Ger-
man. Consequently, we represent OOV words by a generic pronunciation model for
arbitrary words. In order to estimate this model, pronunciation lexica are used as
primary knowledge source. A statistical OOV word model can then be generated
by use of statistical language modeling techniques, only that the described symbol
sequences now consist of phonemes instead of words or semantic categories, as was
the case in Section 5.3.

A similar approach to OOV word modeling was proposed by Bazzi [Baz02]. Yet,
the methods presented here differ in several basic aspects: Bazzi applies his OOV
models to a WEFST-based speech recognition system, which is part of a multi-stage
speech understanding system. The speech recognizer makes use of the finite-state
transducer technique outlined in Section 2.2.2. In contrast, the one-stage speech
interpretation system utilized here is based on an explicitly hierarchical automata
representation in the shape of WI'NH. Due to the one-stage approach, our OOV
model directly affects the whole syntactic-semantic processing. Both systems have
in common that the OOV word model representation is compacted by automata min-
imization. With regard to the OOV model itself, Bazzi primarily concentrates on
automatic creation of suitable variable-length subword units and on modeling mul-
tiple classes of OOV words. Here, we focus on investigating the statistical phoneme
LM itself by applying two different language modeling techniques, and we examine
model performances for different OOV rates.

Two different methods for statistical language modeling were outlined in Sec-
tion 5.3, namely n-gram LM and exact LM. There, these techniques are utilized to
model the likelihood of sequences of words and semantic category symbols within
HLM. In this chapter, we reuse these methods to describe the likelihood of phoneme
sequences produced by the generic pronunciation model for OOV words. Instead
of training the statistical LM on semantic symbol sub-sequences from the tree an-
notation corpus, the training set here consists of the phoneme sequences of word
pronunciations from a pronunciation lexicon. As in Section 5.3, we use smoothing
and discounting to adjust the likelihood distribution of phoneme LM, and we also
represent the resulting LM as weighted transition networks in order to integrate
them into WTNH.

Exact phoneme LM exactly cover the pronunciations occurring in the training
set. Hence, they can be viewed as ‘super-words’, which combine different word pro-
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nunciations in a single lexical item. By means of their weight distribution, exact
phoneme LM assign likelihood values to pronunciations proportional to their occur-
rence frequencies. In contrast to exact phoneme LM, n-gram phoneme LM have
limited context dependency, and therefore also cover unseen phoneme sequences.
This property may be desirable in order to broaden the OOV word model’s coverage
of pronunciation variations. This especially includes cut-off words, which can occur
frequently in natural speech (compare Section 5.5).

As discussed in Section 5.3.1, the generalization capabilities of n-gram LM can
be extended by combination with lower-order models. Yet, in the case of phoneme
n-gram LM it may be advantageous to limit generalization, in order to prevent
over-generation of pronunciations and thereby confusions with IV word pronunci-
ations. Furthermore, since the phoneme models of our test system are triphone
HMM, it needs to be ensured that these are traversed in the correct order, i.e. with
matching left and right contexts. For those reasons, we disallow unigram backoff
altogether, and examine how inclusion of lower-order backoff affects the performance
of phoneme n-gram LM. Backoff to lower-order n-grams can be removed from the
transition network representation of n-gram LM by deleting the concerned failure
transitions (compare Section 5.3.1).

Two different German pronunciation lexica are utilized as knowledge sources
for phoneme LM estimation, namely Phonolex [pho04] and Celex [BPG95]. From
Phonolex, the manually verified ‘core’ pronunciations of 22k inflected words were
used. As the phoneme sets of Phonolex and ODINS are both similar to the Verb-
mobil definitions (compare Section 5.6.2), only few phoneme mappings need to be
performed. The German Celex database contains 52k lemmata with 366k corre-
sponding wordforms. The adaptation of its phoneme set is more difficult. Word-
forms containing foreign phonemes or others which have no well-defined counterpart
in our phoneme set are removed. After this, 314k pronunciations remain for OOV
model estimation.

In addition to word pronunciations Celex also contains word frequency informa-
tion from different sources, including spontaneous speech transcriptions. This in-
formation is optionally used to weight pronunciations accordingly. This is achieved
by modifying the pronunciation list that is used to train phoneme LM. The modi-
fication copies each word pronunciation as many times as the word frequency value
suggests, and thereby simulates a corpus with the desired frequency statistics.

As mentioned in the previous section, integrating an explicit OOV model into
the decoding process increases confusability. In order to lower confusability between
OOV and IV words, we examine the effects of excluding IV word pronunciations
from the training set for phoneme LM.
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concept ~ ATmve FLIGHT AORIGIN |
word class ALOCATION
word ICH MUSS HEUTE ABEND JEMANDEN VOM FLUG AUS  BERLIN  ABHOLEN
concept — ATIME ' " FricHT AORIGIN
/ ’ \\\
word class / ALOCATION
word OOV HEUTE ABEND OOV VOM FLUG AUS BERLIN [0]02%

Figure 6.1: Replacing known unknown words with OOV symbols in semantic tree
annotations.

6.3 Integration into WTNH

In order to integrate an OOV word model into the decoding process, it needs to
be defined at what positions OOV words may occur in an utterance and which
likelihood is assigned to them. Hence, the OOV word model must be considered by
the language model, in our case by the HLM. This can be carried out transparently,
i.e. without the need to modify the HLM building process from Chapter 5, if OOV
words become part of the tree annotations of the training corpus.

For this purpose, some of the words previously annotated as known now have
to be declared as unknown. While this may not be a suitable approach for a large-
vocabulary dictation application, where all words seen during training are included
in the system vocabulary, it may be desirable for a small- to medium-vocabulary
dialogue scenario to exclude semantically irrelevant words from the system lexicon,
as outlined in Section 6.1. In order to achieve this, the existing semantic symbol
set is augmented with the new word symbol ‘OOV’. Then, the tree annotations
are modified by replacing the symbols of semantically irrelevant words by the OOV
word symbol. As mentioned before, these words are denoted as known OOV words,
in contrast to the ‘natural’ OOV words, i.e. those words of the test sets that are
never encountered in the training set.

Figure 6.1 shows an example annotation tree from the airport information corpus
for the utterance ICH MUSS HEUTE ABEND JEMANDEN VOM FLUG AUS BERLIN AB-
HOLEN (word-by-word translation: I must today evening someone from flight from
berlin collect). In the lower annotation tree of Figure 6.1, the words ICH MUSS, JE-
MANDEN and ABHOLEN are declared as unknown by replacing them with the OOV
symbol.
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Figure 6.2: WTNH of Figure 2.2 with integrated lexical OOV word model.

Generally, candidates for known OOV words are all semantically irrelevant words
within the given application domain. It may nevertheless be desirable to keep some
of the semantically irrelevant words in the vocabulary, because they have syntactic
relevance or because their effect on confusability is larger as OOV word than as IV

word.

In this work, we examine two different sets of OOV word annotations on the

airport information corpus, yielding total OOV rates of about 8% and 23% on the
evaluation set, respectively. In the so-called 23%-set, all surface words, i.e. all words
not contained in a semantic category, are declared as unknown. In contrast, some
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of the most frequent syntactically relevant surface words are not declared unknown
in the so-called 8%-set.

Please note that we combine consecutive OOV words, e.g. ICH MUSS in Figure 6.1,
into a single OOV symbol (but still compute OOV rates in terms of individual OOV
words). This measure enables a more robust estimation of OOV model likelihood
within HLM, because it avoids context dependencies between OOV words, and re-
duces the required LM dependency range across OOV words. Furthermore, the OOV
model is only required to correctly detect occurrences of OOV words for this the-
sis, but not how many OOV words were uttered consecutively, and how the speech
signal is segmented into them. We motivate this simplification with observations
of humans, since even they have difficulties to correctly segment sequences of spo-
ken words that are unknown to them. As a consequence, consecutive OOV word
sequences are also used as basic unit for OOV model evaluation. For simplicity, we
still denote consecutive OOV word sequences as OOV words in the following.

Finally, the network representation of the generated OOV word pronunciation
model is included in the WTNH. Based on the example of Figure 2.2, a WTNH with
integrated OOV model is depicted in Figure 6.2. In this example, the OOV word
symbol is only contained in the root LM of the HLM. The OOV network itself can
produce consecutive sequences of ‘real’ OOV words by following the edge from the
null node that precedes the exit node back to the null node which follows the entry
node.

In order to balance the relative weighting of IV and OOV words, penalization of
OOV models is carried out with two different parameters. An additive log-likelihood
offset pi”, , also called OOV entry penalty, is applied when entering the OOV word
model. Figure 6.2 displays this parameter at the transition between the two null
nodes after the entry node. A log-likelihood scaling factor denoted Ay, Which is
not shown in the figure, is applied multiplicatively to all transition scores within the
OOV network, more precisely after p . These two parameters are similar to the
scaling and offset parameters A and py for relative weighting of acoustic-phonetic
and language models, as discussed in Section 5.9.

6.4 Evaluation Method

The unknown word problem can be viewed as the task of detecting OOV words
within sequences of IV words. Within this context, the detection of an OOV word is
denoted as an acceptance (of an OOV word), whereas the classification as an IV word
is denoted as a rejection (of an OOV word). Detection tasks are typically evaluated
by plotting various operating points into a so-called receiver-operating-characteristic
(ROC) diagram. Such a diagram shows the two types of errors that the OOV word
detector can make, namely false acceptances (FA) and false rejections (FR). FA
denotes an IV word wrongly hypothesized as OOV word, FR an OOV word wrongly
hypothesized as IV word. The two types of correct operations are called correct ac-
ceptance (CA) and correct rejection (CR). Table 6.1 gives an overview over the four
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‘ Reference ‘ Hypothesis ‘ Detector State ‘
0]0)% 010)Y% correct acceptance (CA)
IV (including €) OO0V false acceptance (FA)
IV (including €) | IV (including €) | correct rejection (CR)
0]0)Y IV (including €) false rejection (FR)

Table 6.1: Mappings between IV and OOV words for evaluation of OOV detection
performance.

possible mappings between reference transcription and decoder hypothesis with re-
gard to the two classes of symbols (OOV or IV). The counts of FA, FR, CA and CR
are computed from the mappings between reference transcriptions and hypotheses
of a test set. As discussed in Section 4.3.1, such mappings are computed by semantic
tree matching in this work. Since the OOV detection task merely relates to words,
only the word level mappings from the tree match are considered. In addition to
mappings between OOV words and IV words, insertions and deletions occur. These
can be viewed as mappings from or to empty symbols €, respectively. In order to
take these kinds of errors into account when evaluating the detection performance of
OOV models, € is treated as an IV symbol, as shown in Table 6.1. Hence, insertions
of OOV words are counted as false acceptances, OOV word deletions are counted as
false rejections and IV word insertions or deletions are counted as correct rejections.

In this work, ROC curves are plots of false acceptance rate (FAR) against false
rejection rate (FRR). FAR is defined as the number of FA in relation to all IV
words in the reference transcription. Likewise, FRR is defined as the number of FR
in relation to all OOV words in the reference transcription:

FA FR

FAR = —— FRR= ——
CR+ FA CA+ FR

The left diagram of Figure 6.3 shows the basic appearance and properties of an
ROC plot. A typical ROC curve, which always ranges between the data points (0,1)
and (1,0), has a hyperbolic shape. The more a curve approaches the FAR and FRR
axes, the less confusions occur between OOV and IV words. Ideally, both FAR and
FAR are zero. The baseline ROC curve, i.e. the curve corresponding to an OOV
detector which is randomly guessing, is a straight line between the start and end
points.

In order to capture the course of an ROC curve in a single evaluation measure, the
area over the curve is computed (see right diagram of Figure 6.3). Such a measure is
denoted as figure-of-merit (FOM). Its ideal and baseline values are 100% and 50%,
respectively. If we denote the ROC curve over the FAR values with r(z), the FOM
can be expressed as:

FOle—/Olr(:U)
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FRR
FRR

Figure 6.3: Left: Basic appearance of ROC curves. Right: Figure-of-merit compu-
tation.

For a practical open-vocabulary speech interpretation application, one usually tries
to avoid that IV words are misinterpreted as OOV words. Hence, the FAR should be
small. In order to focus OOV model evaluation accordingly, FOM can be limited to
this region of interest by computing the area only up to a certain FAR limit [. The
area is normalized to yield a constant value range between 0 and 1. In this work, we
use | = 5%, and denote the corresponding evaluation measure as 5%-FOM. Please
note that Figure 6.3 shows the 30%-FOM for better clarity. Generally, an [-FOM
is computed by:

1 7!
[-FOM =1 — —/ r(x)
[ Jo
Note that the baseline value of the I-FOM is no longer 50%, but /2.

In order to plot ROC curves, various operating points are determined by running
a test set with different settings of the OOV scaling and penalty parameters pi”,
and A,y through ODINS. Low penalty values produce operating points towards the
right hand side of the OOV curve, since IV words tend to be recognized mistak-
enly as OOV words. Increasing the penalties produces operating points towards
the left side of the plot. In this work, constant value ranges of pi’, = —7...0 and
Aoow = 0.5...20 were used for all experiments, in order to ensure comparability.

The detection of OOV words also affects the recognition of IV words, since one
or several IV words (or parts of IV words) can be mistakenly recognized as OOV
words, or vice versa. Therefore, it is essential to include an evaluation of the IV
words in an OOV model evaluation. Moreover, as we use the OOV model within a
speech interpretation system, the whole semantic representation can be influenced,
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so that the semantic tree node accuracy Acc,, (as defined in Section 4.3.2) must be
taken into account instead of only the word accuracy. Note that the computation
of Acec,, does not consider OOV words, whereas the computation of FAR and FRR
does. Hence, we match each pair of semantic trees a second time after deleting the
OOV nodes from both reference and hypothesis trees.

For a simultaneous analysis of both evaluation measures, they are combined in a
single diagram by using a common abscissa but two different ordinate axes. While
the ROC curve (which only considers the word level) is plotted as usual with FAR
on the abscissa and FRR on the ordinate, the tree node accuracy (considering all
hierarchy levels) is plotted on a second ordinate, which is located on the right side
of the diagram. Thereby, the performance of the OOV model with regard to both
the whole speech interpretation system and the best operating region can be read
off a single diagram.

6.5 Experiments

In this section, the results of a number of experiments with different OOV model
configurations are presented. First, we illustrate the effects of varying the penaliza-
tion parameters of OOV models, and show a combined ROC-accuracy plot for two
different phoneme language modeling methods. Then, the performance of different
types of phoneme LM with different smoothing techniques is investigated. Further-
more, we present comparisons between two pronunciation lexica for OOV model
training, and examine the influence of frequency weighting and exclusion of IV word
pronunciations from OOV training. Finally, the robustness of our OOV modeling
approach against different rates of OOV words is tested.

According to Section 4.1.2, the ‘natural’ OOV rate on the airport information
corpus is 2.2% on the evaluation set and 1.5% on the cross-validation set. As ex-
plained in Section 6.3, two sets of OOV word annotations are used to examine how
the system performs for different OOV rates. For the so-called 8%-set, the rates of
known OOV words are 8.6%, 4.7% and 7.2% on the training, cross-validation and
evaluation sets, respectively. The second annotation set yields known OOV word
rates of 25.2%, 16.1% and 21.6%, respectively, and is referred to as the 23%-set.
From the 620 IV words in the lexicon of the baseline system without OOV model-
ing, about 400 IV words remain in the 8%-set, and about 380 IV words remain in
the 23%-set.

The open-vocabulary speech interpretation system employed for the experiments
discussed in this section also uses the basic setup described in Section 5.6. Since
the computational costs for varying the OOV model penalization parameters alone
are already high, all experiments were carried out with fixed settings of the HLM
scaling and penalization parameters. The used settings correspond to the ones yield-
ing maximum Acc,, (on the cross-validation set) for the closed-vocabulary system
determined in Section 5.9.5, i.e. A = 18, A\¢ = 1.25, A\ = 1.5 and py = —10.
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Figure 6.4: Acc, for varying OOV penalties p, and Moo, with exact (left) and

oov
trigram (right) phoneme LM, trained on Phonolex, on cross-validation and 8%-set.

In all experiments, the OOV model penalties p, and \,e, were first optimized
on the cross-validation set to yield maximum Acc,. Those settings were then used
to determine OOV model performance on the evaluation set, particularly Acc, and
the values of FAR and FRR at this operating point. In order to compute FOM
values, pi. and ), are varied on the evaluation set, too.

6.5.1 Penalization Parameters

Figure 6.4 illustrates tree node accuracy curves for different settings of A,,, in the
range pi*, = —7...0. This experiment is performed on the cross-validation set
of the 8% OOV annotation set. For the left diagram, an additively discounted
exact phoneme LM is used as OOV model, the right diagram shows the results
for a modified Kneser-Ney smoothed trigram phoneme LM. With increasing scaling
factor Aoy and decreasing additive offset p™ . the log-likelihood of the OOV model
generally declines in relation to the IV model likelihood. Towards the left side of the
diagram, the penalization of p, becomes so strong that more OOV words are on
average mistakenly recognized as IV words than vice versa, i.e. FRR is high and FAR
is low. The opposite effect occurs towards the right diagram side. The maximum tree
node accuracy occurs when the likelihood of OOV and IV models is well-balanced.
With rising penalization through A, the requirement for additional penalization
by pi”, decreases, and the accuracy maxima move towards the right diagram side.
The maximum accuracy of Acc, = 85.8% is achieved at (p'%,, Aooy) = (—3,5) for
the exact phoneme LM, and Acc,, = 85.4% at (p'",, Aoow) = (—2,7) for the trigram
phoneme LM.

It can be noted that the accuracy maxima for the exact phoneme LM have
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Figure 6.5: Combined plot of ROC curve and Acc,, for exact and trigram phoneme
LM, trained on Phonolex, on evaluation and 8%-set.

similar values, which suggests that different combinations of p”, and .., achieve
similar effects on this type of OOV model. In contrast to this, the maxima for the
trigram phoneme LM differ significantly, e.g. 85.0% for the second maximum vs.
85.4% for the first one. Hence, the penalization effects of pi?, and Ay, seem to be
not interchangeable on this model type.

6.5.2 Exact vs. n-Gram Phoneme LM

Figure 6.5 depicts the combined ROC-accuracy plot for the same OOV models as
used for Figure 6.4, but here for the evaluation set. Please note that the two ordi-
nate axes are scaled differently. As mentioned above, the numerically highlighted
values correspond to the settings of pi, and Ao, yielding maximum Acc,, on the
cross-validation set. At these operating points, the OOV model based on an exact
phoneme LM has FAR = 0.9%, FRR = 52% and Acc, = 87.2%. The 5%-FOM
of its ROC curve is 61.5%. The trigram phoneme LM achieves a slightly better
accuracy of Acc, = 87.4% and a substantially better OOV detection performance
both at the operating point (FAR = 1.2%, FRR = 41%) and over the whole ROC
curve (5%-FOM = 66.8%).

However, the accuracy curves reveal that the trigram phoneme LM is rather
sensitive to changes of the penalty parameters, whereas the exact model behaves
more stable with respect to tree node accuracy. Such stability differences between
exact and n-gram phoneme LM are generally observed. This plays an important role
for practical operation, where a system with stable accuracy may be more desirable
than one with better maximum accuracy, but greater sensitivity towards parameter
or environment changes.
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OOV phoneme LM xval eval
5%-FOM | Accy, | (p™sAoov) | 5%-FOM | Ace,
bigram 82% | 84.3% | (-6,7) 64.3% | 83.6%
trigram + bigram backoff | 60.9% | 85.0% (=3,7) 64.0% 85.8%
trigram without backoff 57.1% | 85.4% (—2,7) 66.8% | 87.4%

Table 6.2: OOV/IV model performance for different n-gram phoneme LM based
OO0V models, trained on Phonolex, on 8%-set.

As discussed in Section 6.1, open-vocabulary systems with explicit OOV mod-
els are expected to avoid the errors that occur in the surrounding of OOV words
inevitably misrecognized by closed-vocabulary systems. In order to measure this
effect, we use the best closed-vocabulary system of Chapter 5 as basis for compar-
ison of tree node accuracy. It needs to be taken into account, however, that the
open-vocabulary systems are trained and evaluated on modified corpus annotations,
where semantically irrelevant words have been declared as unknown (compare Sec-
tion 6.3). Due to the resulting differences in vocabulary size, these systems are
strictly not comparable. Therefore, the closed-vocabulary system is rebuilt on the
8% and 23%-sets to obtain baseline systems. The total tree node accuracy Acc,, for
these systems is 82.0% and 73.2% on the evaluation set, and 82.9% and 75.2% on
the cross-validation set, respectively.

The baseline value for the 8%-set is also shown in Figure 6.5. The exact phoneme
LM based open-vocabulary system is able to outperform this baseline over the
whole 5%-range of FAR. With the trigram phoneme LM, the same is achieved
for FAR < 3%. At the operating points, the two OOV models achieve relative error
rate reductions of Err,., = —28.9% and Err,, = —30.0%, respectively.

As discussed in Section 6.2, the generalization abilites of n-grams may lead to
performance degradations of phoneme LM because of over-generation, especially if
backoff to lower-order n-grams is enabled. Therefore, it may be desirable to limit
generalization by preventing backoff. In order to examine this issue, three different
n-gram phoneme LM were built:

e A bigram LM, where the likelihood of a triphone within an OOV word always
depends on the preceding triphone only.

e A trigram LM with bigram backoff, where the bigram likelihood is used if the
trigram is missing. This model allows less pronunciations than the bigram
LM.

e A trigram LM without backoff to bigrams. In this model, the likelihood of a
triphone always depends on the two preceding triphones. This yields the most
restrictive pronunciation model.
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OOV | smoothing xval eval
LM 5%-FOM | Accn, | (p™, Aoow) | 5%-FOM | Accy,
exact add 52.6% | 85.8% (—3,5) 61.5% | 87.2%
gtnet 52.5% | 85.8% (—4,2) 61.5% 87.1%
trigram katz 55.3% | 85.3% (—2,6) 64.2% | 87.2%
knmod 57.1% | 85.4% (—2,7) 66.8% | 87.4%

Table 6.3: System performance for different smoothing techniques on 8%-set.

The unigram backoff is always removed to ensure that the triphones are traversed
in the correct order. The performances of these models on the 8%-set are listed in
Table 6.2. On the evaluation set, the trigram model without backoff is the clear
winner both in terms of OOV detection performance (5%-FOM = 66.8%) and re-
garding semantic accuracy (Acc, = 87.4%). Hence, this n-gram model variant is
used for other experiments. Although the trigram phoneme LM with bigram backoff
achieves the best OOV detection performance on the cross-validation set, it cannot
confirm this value on the evaluation set. There, it obtains similar detection perfor-
mance as the bigram model (64.0% vs. 64.3%), but substantially better semantic
accuracy (85.8% vs. 83.6%). As expected, less restrictive OOV pronunciation mod-
els require higher penalization, because they are more easily confused with IV words.

As for the hierarchical language modeling approach of Chapter 5, two smoothing
techniques are investigated for each of the two types of phoneme LM (compare Sec-
tion 5.3): Katz smoothing (katz) and modified Kneser-Ney smoothing (knmod) for
n-gram LM, and additive discounting (add) and Good-Turing discounting (gtnet) for
exact LM. The results are shown in Table 6.3. As in Chapter 5, additive discounting
and Good-Turing discounting perform similarly. Here, additive discounting per-
forms marginally better. For n-gram phoneme LM, modified Kneser-Ney smoothing
again yields consistently better results than Katz smoothing on cross-validation and
evaluation sets. Substantial improvements are obtained for the 5%-FOM measure
(66.8% vs. 64.2% on the evaluation set), whereas the difference in tree node accuracy
is rather small (87.4% vs. 87.2%). The best methods, i.e. additive discounting and
modified Kneser-Ney smoothing, are again selected as defaults for other experiments.

6.5.3 OOV Training Lexica

So far, experiments were conducted with Phonolex as training lexicon for OOV
pronunciation models. In the following, we present comparisons with the second
training lexicon, named Celex. As outlined in Section 6.2, the pronunciations of
314k wordforms are used from Celex, whereas Phonolex yields manually verified
pronunciations of 22k inflected words. The sizes of these training sets are reduced
optionally by selecting only the most frequent pronunciations according to word fre-
quency statistics from Celex (see Section 6.2). For OOV models based on Phonolex,
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training | OOV # xval eval
lexicon LM pron. | 5%-FOM | Acc, (pffév, Aoow) | D%-FOM | Accy,
Phonolex | exact | 22k 52.6% | 85.8% (—3,5) 61.5% |87.2%
10k | 522% |858% | (-3,5) 60.1% | 86.9%
Ik | 45.0% |844% | (-2.2) 59.2% | 86.7%
trigram | 22k 57.1% | 85.4% (—2,7) 66.8% | 87.4%
10k 55.8% 85.5% (—2,7) 63.7% 87.0%
Celex exact | 314k | 54.2% | 85.2% (—3,6) 62.7% | 87.1%
100k | 54.1% |853%| (-5,1) 61.9% | 86.8%
10k 50.6% 85.7% (—2,6) 59.8% 87.6%
trigram | 314k | 59.4% | 84.5% (—4,7) 63.2% | 85.4%
100k | 57.4% |847% | (=2.7) 61.5% | 85.8%
‘ closed-vocabulary baseline ‘ n.a. ‘ 82.9% ‘ n.a ‘ n.a. ‘ 82.0% ‘

Table 6.4: Performance for different OOV model training lexica on 8%-set.

reduced lists consisting of 10k and 1k pronunciations are used to build exact and
trigram phoneme LM. Since the 1k pronunciations are not sufficient for trigram LM
estimation, only exact LM are generated from this list. For the same reason, exact
LM are built from 100k and 10k Celex pronunciations, but trigram LM only from
the 100k list.

Table 6.4 gives an overview over the detection performance and semantic accu-
racy of the corresponding OOV word models. The Celex based exact phoneme LM
generally display similar performance as the ones based on Phonolex, yet they re-
quire a larger number of pronunciations to achieve this. The high semantic accuracy
of 87.6% of the exact 10k Celex model can presumably be viewed as an outlier. For
trigram phoneme LM, however, the Phonolex pronunciations yield fundamentally
better performance (87.4% vs. 85.4% accuracy and 66.8% vs. 63.2% FOM). Hence,
Phonolex seems to be more suitable for the OOV modeling task considered here.
This may be caused by the manual pronunciation verification of Phonolex and by
the use of inflected words instead of automatically generated wordforms. Further-
more, the poor match between the phoneme sets of Celex and ODINS certainly plays
a role, too.

As expected, reducing the sizes of the OOV training lexica by selecting most
frequent words generally causes performance degradations. For all open-vocabulary
configurations, however, the maximum accuracy is well above the baseline values
of the closed-vocabulary system. The degradations are more consistent for the
Phonolex configurations than for those based on Celex. For example, the 100k tri-
gram model achieves Acc, = 85.8% on the evaluation set, whereas the 314k model
only obtains 85.4%. A reason for this may also be that the pronunciation model
becomes so general that its confusability with IV words outweighs the benefits of its
larger coverage.
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ooV freq. | IV ex- xval eval
LM weight. | clusion | 5%-FOM | Accy, | (92, Aoov) | 5%-FOM | Ace,
exact no no 52.6% | 85.8% (—3,5) 61.9% | 87.0%
no yes 51.6% | 85.5% (—3,5) 60.7% | 86.3%
yes no 52.6% | 85.8% (—3,5) 61.5% | 87.2%
yes yes 51.6% | 85.5% (—4,1) 60.4% | 86.8%
trigram | no no 53.2% | 85.2% (—2,7) 66.6% | 86.6%
no yes 54.0% 85.3% (—3,5) 65.3% 86.3%
yes no 57.1% | 85.4% (—2,7) 66.8% | 87.4%
vos | yes | 56.9% |852%| (=2,7) 66.7% | 86.6%

Table 6.5: Influence of frequency weighting and exclusion of IV word pronunciations
from OOV training on system performance.

Furthermore, we test the influence of weighting the pronunciations for OOV
model training according to the word frequency information of Celex, and the effects
of excluding pronunciations of IV words from the training list (compare Section 6.2).
The former aims to improve the frequency distribution of OOV pronunciation mod-
els, whereas the latter is expected to lower confusions between OOV and IV words.
The experiment, whose results are summarized in Table 6.5, is carried out on exact
and trigram phoneme LM for the standard 8%-set Phonolex configuration.

In terms of tree node accuracy Acc,, the OOV models with word frequency
weighting consistently outperform those without on the evaluation set. The same
effect can be observed for the 5%-FOM of trigram OOV LM on cross-validation and
evaluation sets. The FOM of exact OOV LM, however, is identical on the cross-
validation set and slightly lower on the evaluation set (61.5% vs. 61.9% and 60.4%
vs. 60.7%) if word frequency weighting is carried out. Because of the slightly higher
semantic accuracy values (87.2% vs. 87.0% and 86.8% vs. 86.3%), the frequency
weighted exact models are still used as default for other experiments.

The exclusion of IV word pronunciations consistently degrades both accuracy and
FOM on the evaluation set, and with one exception also on the cross-validation set.
At first, it seems surprising that this measure doesn’t succeed in improving system
performance. Yet, it can be explained by the fact that some of the known OOV words
also appear as IV words within semantic concepts. Therefore, although excluding
their pronunciation from the OOV model training set may help to discriminate OOV
and IV word models, this also prevents their detection as OOV words. Hence, the
desired effect cannot be achieved.

6.5.4 Varying OOV Rates

In the final experiment of this chapter, we examine the robustness of the presented
lexical OOV modeling methods against different rates of OOV words. For this pur-
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training OOV | anno. xval eval
lexicon LM set | 5%-FOM | Acc, | (9, doow) | 5%-FOM | Accy,
Phonolex | exact | 23% 59.9% | 83.7% (—2,7) 67.3% | 86.3%
8% | 526% |858%| (-3,5) 615% | 87.2%
trigram | 23% 61.7% | 83.5% (=2,7) 69.1% | 85.6%
8% | 57.1% |854% | (-2,7) 66.8% | 87.4%
Celex exact | 23% | 59.8% | 83.8% (—3,6) 68.5% | 85.8%
8% | 542% |852%| (-3,6) 62.7% | 87.1%
trigram | 23% 60.5% | 81.7% (=2,7) 66.6% | 84.3%
8% 59.4% 84.5% (—4,7) 63.2% 85.4%
closed-vocabulary | 23% n.a. 75.2% n.a. n.a. 73.2%
system 8% n.a. 82.9% n.a. n.a. 82.0%

Table 6.6: Performance of OOV word models for different OOV rates.

pose, both the 8%-set and the 23%-set are used. For these two annotation sets, OOV
detection perfomance and semantic accuracy results for exact and trigram phoneme
LM based on the two different training lexica are listed in Table 6.6, along with the
baseline values of the corresponding closed-vocabulary systems. The comparison be-
tween Phonolex and Celex based OOV models on the 23%-set yields similar results as
on the 8%-set: Exact LM perform similarly on both lexica, whereas Phonolex based
trigram phoneme LM obtain considerably better performance than those based on
Celex (69.1% vs. 66.6% FOM and 85.6% vs. 84.3% semantic accuracy).

Again, it is hard to determine a clear winner between exact and trigram OOV
LM for all system configurations. Depending on the situation, one or the other
model type achieves better evaluation results. Trigrams are e.g. advantageous for
Phonolex based models on the 8%-set, whereas exact LM score better for Celex
based models on the 23%-set. With other system configurations, 5%-FOM and
Acc,, even show opposite preferences. However, as outlined earlier in this section, it
needs to be taken into account that exact phoneme LM are generally less sensitive
towards variations of the OOV model penalization parameters.

Although the performance values of the 8%- and 23%-sets shouldn’t be compared
directly because of the different system vocabularies, it can nevertheless be noted
that OOV detection performance is consistently higher on the 23%-set, whereas the
8%-set shows consistently better semantic accuracy values. In comparison to the
closed-vocabulary system, all tested open-vocabulary system configurations obtain
substantial gains in semantic accuracy. For the 23%-set, the tree node accuracy of
the best open-vocabulary system of Acc,, = 86.3% corresponds to a relative error rate
reduction of Err, = —48.9% over the closed-vocabulary baseline (Acc,, = 73.2%).
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Conclusion and Outlook

This work dealt with the task of automatically understanding the meaning of natu-
rally spoken user utterances in limited-domain human-machine communication ap-
plications. Practically, this problem was studied by means of a spoken language di-
alogue application for a German airport information scenario. Most existing speech
understanding systems perform similar tasks by loosely coupling automatic speech
recognition and natural language understanding in a sequential, two-stage decoding
process. For this thesis, a tightly coupled one-stage decoding method was devel-
oped, which directly transforms speech into tree-based meaning representations and
thereby aims to avoid errors caused by early decisions. In order to lower decoder
complexity and maintain the flexibility to integrate new knowledge sources, the one-
stage approach was based on a uniform, stochastic knowledge representation that
can be processed by a generic decoding algorithm.

The uniform knowledge representation for the airport information test system
consists of models for phoneme HMM, word pronunciations, word classes and seman-
tic concepts. Uniformity was realized by explicitly hierarchical modeling through
so-called weighted transition network hierarchies (WTNH). Thereby, the different
knowledge sources were arranged on 6 hierarchy levels, which reflect the logical
processing stages. In order to maintain modeling flexibility, the ability to define
sub-levels and to skip certain hierarchy levels was introduced. As an alternative to
our explicit approach, an implicit representation of hierarchical structures through
weighted finite-state transducers was considered. This technique recently received
much attention from speech recognition researchers, mainly because it allows flexible
composition and automatic, global optimization of automata. On the downside, hi-
erarchical knowledge needs to be encoded implicitly into WFST, which together with
automata optimization complicates tasks that require direct access to the hierarchi-
cal model structure, such as confidence measurement or dynamic system reconfigu-
ration. Furthermore, the basic building blocks of WTNH are equivalent to weighted
finite-state acceptors, and therefore lend themselves at least to local optimization.
WTNH were therefore preferred for the speech interpretation task pursued in this
work.
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After deriving a generalized formulation of the hierarchical search problem, the
basic one-stage decoding scheme was described. It was based on Young’s approach to
realize a time-synchronous, hierarchical Viterbi search by token passing. As a nov-
elty of our method, the search was directly performed on the explicitly hierarchical
WTNH representation, which implies that transition network nodes accommodate
multiple tokens at once. This was achieved by augmenting network nodes with to-
ken containers, which enables joint propagation of token sets and thereby reduces
computational effort in comparison to Young’s approach. In contrast to a similar
decoding approach, transition networks were processed in topological order if possi-
ble. This avoids redundant computations since converging tokens meet as early as
possible.

In order to quantify the theoretical advantage of the one-stage decoder resulting
from its ability to consider all available knowledge sources simultaneously, a novel
experimental comparison with a two-stage decoder was devised. Both systems were
based on identical modeling approaches, decoding schemes and training data, so
that solely the effect of propagating only a limited number of hypotheses from the
first to the second stage could be measured. The experiment showed that the two-
stage system increased the error rate on the semantic representation by more than
38% in comparison to the one-stage system if only the best hypothesis is taken into
account. As expected, the two-stage system was able to eliminate this difference by
use of alternative recognizer hypotheses. However, about 30 alternatives for each
word in the lattice were necessary to reduce error rates considerably, and more than
100 alternatives had to be present to achieve the same semantic accuracy as the
one-stage system. The resulting computational effort may well exceed the resources
available for practical system operation.

Speech data was recorded in a series of Wizard-of-Oz experiments for a German
airport information dialogue system scenario. The collected user utterances, which
consist of about 15k words in total, were fully annotated with semantic trees. A
semi-automatic annotation procedure was developed to reduce manual labor. The
resulting corpus was used to train and test WTNH based speech interpretation
systems.

For system centric evaluation of our speech interpretation system, standard eval-
uation measures such as word accuracy, slot-value accuracy and test-set perplexity
were considered. Additionally, a novel evaluation measure, the so-called semantic
tree node accuracy, was devised to directly assess the semantic tree representation
produced by the WTNH based one-stage decoder. In contrast to standard ap-
proaches, the novel measure was computed by tree matching instead of sequence
matching, and was therefore expected to display greater flexibility when assessing
partially correct semantic tree representations. An experimental comparison be-
tween sequence matching and tree matching based evaluation measures revealed
that this flexibility is especially important when more complex semantic tree struc-
tures, as they occur in this work, are evaluated. For this case and if subsequent
processing stages are able to capitalize on partly correct semantic representations,
the novel evaluation measure was considered more appropriate.
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Robust semantic modeling techniques were developed to define the ‘upper’ part
of WTNH, consisting of words, word classes and semantic concepts. Instead of
performing explicit syntactic and morphological analyses, robust semantic models
are directly based on the word level. As a special characteristic of this work, the
proposed hierarchical language models (HLM) were created by combining different
rule-based and data-driven language modeling techniques. In particular, weighted
context-free rewrite rules, n-gram and exact language models and their represen-
tation as weighted transition networks were employed. In order to select the most
appropriate model type for each individual HLM part, a decision principle was for-
mulated. Complexity of target language, availability of training data and general-
ization capabilities of language models were used as decision criteria.

Robust semantic modeling, smoothing of likelihood distributions, combination of
data-driven and rule-based language modeling techniques, unknown word modeling
and special models for pauses, non-speech sounds and filler words render WTNH
suitable to process natural speech. Semantic accuracy values of up to 88% on the
evaluation data confirm the effectiveness of the approach.

The influence of smoothing the likelihood distributions of local language models
was examined for different techniques. In order to enable data-driven weighting and
smoothing of rule-based language models, these operations were directly performed
on the network level. By applying modified Kneser-Ney smoothing instead of Katz
smoothing, the semantic error rate could be reduced by up to 7%.

Furthermore, the likelihood distribution of HLM was improved by introducing
different scaling and penalization parameters. In order to describe the effects of these
parameters on all and individual hierarchy levels, appropriate metrics were defined.
Experiments showed that within-HLM scaling alone yields error rate reductions of
3% on the concept level and 14% on the word class level. Together with penalization
of word insertions, the error rate reductions could be increased to 6% on the concept
level.

Speech interpretation systems are not required to produce perfect word tran-
scriptions, since their original goal is the recognition of meaning. Nonetheless, the
transcription capabilities of our speech interpretation system and a speech recog-
nition system trained on the same speech corpus were compared. The experiment
suggested that the use of semantic knowledge reduces the error rate by 5%.

Consideration of out-of-vocabulary (OOV) words is especially important for
speech interpretation systems operating in narrow application domains, if users
should be allowed to talk freely. In these circumstances, high rates of OOV words
are likely to occur, which are silently misrecognized as In-Vocabulary (IV) words
in standard closed-vocabulary systems. In this thesis, explicit OOV modeling was
performed with generic, statistical pronunciation models for arbitrary words, since
OOV words were expected to be mostly common words from the target language.
The pronunciation models were trained on large pronunciation lexica, and option-
ally weighted according to word frequency statistics. Different aspects of the devised
methods are novel, e.g. that OOV models were integrated into WTNH and therefore
directly affect the whole speech interpretation process. Furthermore, experiments
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Chapter 7. Conclusion and Outlook

were conducted for different OOV rates and with OOV models created by use of dif-
ferent language modeling and smoothing techniques. Evaluation was carried out by
creating combined plots of receiver-operating-characteristics and semantic accuracy
curves.

Experiments revealed that phoneme language models based on n-grams are
rather sensitive to changes of the penalty parameters, whereas those based on exact
models behave more stable with respect to semantic accuracy. By weighting the
pronunciations used for OOV model training according to word frequency statistics,
the semantic error rate could be reduced by 6%. For a test set with a total OOV
rate of 8%, 59% of the OOV words could be detected correctly, while only 1% of
the IV words were wrongly recognized as OOV words. Simultaneously, the semantic
error rate could be reduced by 30% in comparison to the closed-vocabulary system.
On a second test set with 23% OOV words, an OOV detection rate of 66% could be
achieved for 1% wrongly accepted IV words. For this set, the semantic error could
be reduced by up to 49%.

To sum up, it can be said that the presented approaches are well suited for
one-stage interpretation of natural speech in limited-domain human-machine com-
munication applications. Yet, some aspects could be investigated more closely. For
example, further evaluation measures for semantic tree representations could be for-
mulated, which consider the ‘importance’ of semantic objects. Thereby, evaluation
and also tuning of system parameters could take the characteristics of subsequent
modules into account. For instance, semantic categories could be divided into those
whose members need to be distinguished for further processing (e.g. airline codes
such as AF or BA) and into those whose members are interchangeable in the context
of the application (e.g. phrases initiating temporal questions such as ‘where’ or ‘at
what time’). Semantic category members of the latter type could then be deleted
from semantic trees prior to evaluation. A more elaborate technique could be based
on assigning weights to semantic objects corresponding to their importance. These
weights could then be considered for computation of semantic accuracy, or directly
during semantic tree matching.

Closer consideration of unknown words during semantic processing is another
aspect that could be examined further, as most known OOV words appeared between
semantic objects in this work. Yet, purposefully integrating OOV word models
into semantic categories may further increase speech interpretation robustness. For
instance, OOV models could explicitly provide for unknown word class members
such as new location names. Thereby, the system would be able to recognize the
meaning of larger parts of user utterances, e.g. if the unknown location relates to
a flight destination or to a flight origin. It should be noted, however, that such
extensions would increase confusability and therefore pose a potential risk to system
performance if not applied carefully.
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Further Evaluation Results
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Figure A.1: Total tree node accuracy for varying n-gram orders of the root LM on
the cross-validation set.
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conducted on the cross-validation set.
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Figure A.5: Total tree node accuracy over X for different (Ac, Ax) and different word
insertion penalties py on the cross-validation set. Only the settings of (Ac, Ak)
yielding mazimum accuracy are shown. The best accuracy is achieved at A = 18,
Ao = 1.25, Ag = 1.5 and pyw = —10.
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shown. The best accuracy is achieved at A = 17, Ao = 1.25, Agx = 1.5 and py =
—10.
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Figure A.8: Total tree node accuracy over A for different pw and Ag for word

class based HLM on the cross-validation set.

Only the settings of (Ak) yielding

mazimum accuracy are shown. The best accuracy is achieved at A = 20, A\xg = 1.5

and pyw = —10.
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Figure A.9: Speech interpretation (concept based HLM, upper 3 curves of legend) vs.
speech recognition (word class based HLM, lower 3 curves) on the cross-validation
set.
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€, see empty symbol

A, see language model factor
Ac, see concept factor

Ak, see word class factor
Aoov, see OOV scaling factor
Plat, See lattice density

a-posteriori probability, 30
absolute discounting, 78
abstract machine, 11, 16
Accy, see tree node accuracy
Acc], see type-dependent tree node ac-
curacy
Accgy, see slot-value accuracy
Accyy, see word accuracy
acceptance, 118
accuracy
concept, 47
slot-value, 54
tree node, 61
word, 53
acoustic-phonetic model, 7, 23, 89, 96
additive discounting, 77, 85, 91
airport information, 18, 46, 47, 88, 108
alphabet, 10
AM, see acoustic-phonetic model
ancestor, 57
annotation, 49
average word length, 98

back-tracking, 40

record, 40
backoff n-gram, 79, 115, 124
Bayes’ formula, 30

beam pruning, 39
threshold, 40, 43, 90
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bigram, 75
black box evaluation, 46, 54, 67

canonical
meaning representation, 27
pronunciation, 24, 89
Celex, 115
CFG, see context-free grammar
chain rule, 32, 72
Chomsky Hierarchy, 10
closed-vocabulary system, 67, 111
composition, 14
compositionality, 26
concatenation, 12, 13
concept
accuracy, 47, b4
factor, 103
confidence measure, 39, 113
confusability, 102, 113
constrained token passing, 40, 49
context-free grammar, 11, 16, 18
left-linear, 11, 16
right-linear, 11, 16
stochastic, 16
context-free rewrite rule, 12, 83
weighted, 12
correct
acceptance, 118
rejection, 118
cost function, 51, 55, 58, 62
count, 76
covariance matrix, 90
coverage, 74, 75, 115
cross-entropy, 66
cross-validation set, 49
cross-word triphone, 24, 89



INDEX

cut-off word, 87, 115

data sparsity, 79, 87, 96

data-driven language model, 69, 74,

85
decision principle, 86, 89
decoding
one-stage, 29
one-stage vs. two-stage, 7, 41
two-stage, 40
delete operation, 51, 56
deletion, 50, 98
depth search, 56
descendant, 58
determinization, 13

DFSA, see finite-state automaton, de-

terministic
dialogue system, 45, 112
diphone, 7
disambiguation, 16
discount
ratio, 77
threshold, 78
discounting, 76, 77, 84, 91, 114
absolute, 78
additive, 77
Good-Turing, 77
distance metric, 51, 58, 62
DP, see dynamic programming
dynamic programming, 34, 52, 58

early decision, 26, 41
edge
network, 18
super-network, 18
edit
distance, 50, 51
operation, 50, 51, 55
empty symbol, 10, 12, 18, 119
entropy, 66
entry node, 18
Err, see error rate
error rate, 54
evaluation
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black box, 46

glass box, 46

measure, 45
objective, 45
subjective, 45
system centric, 45
user centric, 45

methods, 45

set, 49

exact

language model, 82, 86, 114
network, 89, 91
phoneme language model, 114, 122

exit node, 18
explicit OOV model, 113, 124

failure transition, 81, 115
false

acceptance, 118
rate, 119

rejection, 118
rate, 119

FAR, see false acceptance rate
FRR, see false rejection rate
feature vector, 9, 90
figure-of-merit, 119

filler word, 87

finite-state

acceptor, 13

automaton, 12
deterministic, 13
non-deterministic, 13
weighted, 13, 74

transducer
composition, 14
weighted, 14

flat language model, 70, 71, 73
FOM, see figure-of-merit
forest, 59

distance, 59

formal

grammar, 10, 74
language, 10

frequency of frequency, 77
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FSA, see finite-state automaton

Gaussian mixture, 90
component, 90
generalization, 76, 79, 83, 94, 115
glass box evaluation, 46, 67
Good-Turing discounting, 43, 64, 77,
85, 92
goodness, 45
grammar, 10
context-free, 16
context-sensitive, 11
formal, 10
generative, 10
regular, 11
semantic, 26
unrestricted, 11
grapheme-to-phoneme conversion, 24

hesitation, 87
Hidden-Markov Model, 7, 12
state, 18, 33
hierarchical
dependency, 21
knowledge representation, 15, 26
explicit, 15, 16
implicit, 15
language model, 9, 42, 64, 67, 69,
93, 116
complexity, 65
search problem, 29
hierarchy
lattice, 40
level, 20, 30, 100
skipping, 21, 32
sub-level, 21
history, 35, 76
super-network, 35
tree, 35, 36, 41
HLM, see hierarchical language model
HMM, see Hidden-Markov Model
HTK, 33

IDR, see insertion-deletion ratio
implicit OOV model, 113

in-domain data, 90

in-vocabulary word, 87, 111

insert operation, 51, 56

insertion, 50, 98

insertion-deletion ratio, 98, 100, 102,
103

intelligibility, 107

interpolated n-gram, 79

intersection, 13

intra-word triphone, 24, 89

inversion, 14

IV, see in-vocabulary word

joint optimization, 103

Katz smoothing, 80, 91
key-word spotting, 88, 112
Kleene
closure, 13
plus, 12
star, 12, 16
Kneser-Ney smoothing, 80
known OOV word, 113, 116, 121, 127

I-FOM, 120
language model, 8, 66, 96
combination, 85
data-driven, 74
exact, 82
factor, 43, 49, 91, 96
flat, 70
hierarchical, 69
local , 70
n-gram, 75
perplexity, 66
range, 93
root, 70
rule-based, 74
scaling, 98
lattice
density, 43
hierarchy, 40, 43
left-hand side, 10
left-right
keyroots, 61
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model, 90
left-to-right postorder numbering, 56
leftmost leaf descendant, 59
lemma, 115
Levenshtein distance, 50
lexical
model, 8, 24, 89
OOV modeling, 114
LHS, see left-hand side
likelihood distribution, 33, 72, 76, 96,
102
linear lexicon, 89
LLM, see local language model
LM, see language model
local language model, 70, 72
log-likelihood, 35, 96
long-range dependency, 93, 96

MAP, see maximum a-posteriori
map operation, 51, 56
mapping, 51, 56
maximum
a-posteriori, 90
likelihood
estimate, 76, 77, 83
linear regression, 90
Mealy machine, 12, 84
meaning representation, 25
canonical, 27
MFCC, 90
minimization, 13, 13, 14, 25, 74, 84,
114
minimum edit distance, 52
mismatch, 90, 102
MLLR, see maximum likelihood linear
regression
modified Kneser-Ney smoothing, 43, 64,
80, 92
monophone, 8
Moore machine, 12, 14, 17, 84
morphological analysis, 25

n-best tokens, 43
n-gram, 8, 67, 75, 86, 114
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backoff, 79
interpolated, 79
order, 75, 95
natural
language understanding, 25
speech, 86

nesting, 28
network
edge, 18

hierarchy, 17
representation, 81, 84
root, 18
sub-, 18
super-, 18
symbol, 18
transition, 18
type, 20
NFSA, see finite-state automaton, non-
deterministic
NLU, see natural language understand-
ing
node, 12
children, 31
entry, 18
exit, 18
non-terminal, 17
null, 18
parent, 31
root, 22
sub-network, 18
super-network, 18

symbol, 18

terminal, 17

tree, 21
noise, 90

non-speech effect, 87, 90
non-terminal

node, 17

symbol, 10, 17
null node, 18

objective evaluation, 45, 50, 55, 61
observation, 9
ODINS, 29, 33, 47
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one-stage

vs. two-stage decoding, 41

decoding, 29, 33

speech interpretation, 7
OO0V, see out-of-vocabulary word

detection, 113, 118

entry penalty, 118, 122

modeling, 113

lexical, 114

rate, 111, 112, 117, 121, 128

scaling factor, 118, 122
open-vocabulary system, 111, 124, 128
operating point, 120
ordered tree, 21, 26, 30, 71
out-of-vocabulary word, 87, 111
over-generation, 76, 113, 124

pn ., see OOV entry penalty
pw, see word insertion penalty
parse tree, 9, 10, 16, 21
parsing, 9, 10, 16
partial correctness, 65
path, 12
PDF, see probability density function
perplexity, 46, 66
phoneme, 7
set, 115
Phonolex, 115
ppl, see test-set perplexity
probability
density function, 9, 23, 90, 96
mass, 76, 80, 84
production rule, 10
pronunciation, 113
lexicon, 8, 24, 114
model, 114, 124
variant, 24, 89
pruning, 39
beam, 39
confidence measure controlled, 39
maximum instance, 39

randomness, 66
re-scoring, 41
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read speech, 90
receiver-operating-characteristic, 118
recombination, 34, 35, 37, 38
regular
expression, 11, 17, 74
operator, 11
weighted, 12
grammar, 11, 16
language, 11
rejection, 118
relative error rate, 103
rewrite rule, 10
context-free, 12
RHS, see right-hand side
right-hand side, 10
robust semantic analysis, 25, 69

ROC, see receiver-operating-characteristic

root
language model, 70, 72, 89, 94
network, 18, 20, 22
node, 22, 56
rule
production, 10
rewrite, 10
context-free, 12
rule-based language model, 70, 74, 85

SCFG, see stochastic context-free gram-
mar
score, 35, 37, 97
acoustic model, 41
language model, 41
search problem
hierarchical, 29
segmentation, 111, 118
semantic
analysis, 25
robust, 25
category, 26, 49, 73, 89, 94
concept, 15, 26, 49, 73
grammar, 26
model, 8, 26
object, 26, 94
relation, 27
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structure, 25
tree, 21, 22, 26, 27, 42, 46, 93
annotation, 49
node accuracy, 61
semantically irrelevant word, 116
semantically-unpredictable sentence, 107
sequence
evaluation, 50, 63
matching, 47, 50
sequential correspondence, 29, 30
short-pause model, 90
sibling, 57
silence model, 87, 90
slot-value
accuracy, 46, 54, 55
pair, 47, 54
smoothing, 75, 76, 90, 114
Katz, 80
Kneser-Ney, 80
speaker-independent HMM, 89
speaking style, 90
speech interpretation, 7, 25, 26, 107
one-stage, 7
uniform model, 7
speech recognition, 7, 23, 53, 107
vs. speech interpretation, 107
multi-pass, 41
speech understanding, 7, 25, 26
two-stage, 7
spontaneous speech, 90, 115
SRILM, 77
state, 12
stochastic
context-free grammar, 9, 16, 21
recursive transition network, 17
sub-
forest, 59
network, 18
node, 18, 35
tree, 59
subjective evaluation, 45
substitution, 51
super-network, 18, 35
edge, 18
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history, 35, 41
node, 18
surface
symbol, 33
word, 117
symbol
empty, 10
node, 18
non-terminal, 10
sequence, 10, 13, 71
start, 10
sub-sequence, 33
terminal, 10
syntactic analysis, 8, 25
system setup, 88

target domain, 48, 90
temporal order, 27

terminal
node, 17, 40
symbol, 10, 17
test set, 49

test-set perplexity, 46, 66, 91
text-to-speech, 107
time-synchronous search, 34, 39
token, 34
container, 35
passing, 33, 37
constrained, 40
propagation, 37
trace, 38
topological order, 38, 39
training set, 49
transducer, 14
transition, 12
network, 12, 16, 18
weight, 13, 18, 23, 37
tree
annotation, 40, 42, 49, 61, 88, 116
edit
distance, 58
operation, 56, 58
evaluation, 55, 63
history, 35



INDEX

matching, 47, 56, 100, 119
node, 21, 30, 56
accuracy, 43, 46, 47, 61, 91, 121
symbol, 62
type, 22, 62
ordered, 21, 56
semantic, 21
structure, 31
unordered, 35
Trellis, 34
triangle inequality, 51, 62
trigram, 75
phoneme language model, 122
triphone, 7, 23
cross-word, 24
HMM, 89
intra-word, 24
tropical semiring, 13
two-stage
decoding, 40
speech understanding, 7
type
hierarchy, 20
substitution, 62
type-dependent tree node accuracy, 63

uniform knowledge model, 7, 9, 15
unigram, 75
union, 13, 17
unknown word, 111
modeling, 111
unordered tree, 35
unseen event, 76

Verbmobil, 90
Viterbi search, 34

weighted
context-free rewrite rule, 12, 74,
86
finite-state
automaton, 13
transducer, 14, 114
regular expression, 12
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transition network hierarchy, 9, 17,
22, 33, 42, 64, 69, 116
WEFSA, see weighted finite-state au-
tomaton
WEST, see weighted finite-state trans-
ducer
within-HLM scaling, 102, 103
Wizard-of-Oz, 48, 112
word
accuracy, 46, 53
class, 15, 26, 49, 73
factor, 103
correctness, 54
frequency, 115, 127
insertion penalty, 104
lattice, 8, 40
WOZ, see Wizard-of-Oz
WTNH, see weighted transition net-
work hierarchy

zerogram, 95



