
Lehrstuhl für Integrierte Schaltungen
Technische Universität München

Speculative Protocol-Processing for High-Speed Packet
Forwarding

Jürgen Foag

Lehrstuhl für Integrierte Schaltungen
Technische Universität München

Speculative Protocol-Processing for High-Speed Packet
Forwarding

Jürgen Foag

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Jörg Eberspächer

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Ingolf Ruge, em.

2. Univ.-Prof. Dr.-Ing. Erik Maehle, Universität zu Lübeck

3. Univ.-Prof. Dr. sc. techn. (ETH) Andreas Herkersdorf

Die Dissertation wurde am 18.09.2003 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 26.02.2004 angenommen.

ii

Rien n’est plus fort qu’une idée dont l’heure est venue !
(Victor Hugo)

To Lydia, Mareike, Anyesse and everyone who will follow ...

with all my love !

iii

Acknowledgments
I would like to express my sincere appreciation and gratitude to my supervisor, Prof. Ingolf
Ruge, chair of the Institute for Integrated Circuits at the Technical University of Munich.
He encouraged me in research of integrated circuits in the application field of High-Speed
Networking.

I am also indebted to Prof. Erik Maehle and Prof. Andreas Herkersdorf for accepting to
act as competent co-referees for this dissertation. Their insights and constructive criticism
inspire for further activities in the challenging area of network processors.

Thanks also to Prof. Eberspächer for serving as the chair for the oral defense of my disser-
tation.

Likewise, this work drew inspiration and invaluable support from Dr. Thomas Wild and Dr.
Walter Stechele. They have listened patiently my ideas of speculative protocol processing.

This work also benefited from discussions with Dr. Oliver Denk, Gregory Gagarin, Dr.
Iyad Kanj, Oliver Laub, Dr. Damien Magoni, Osnat Mokryn and Maresa Praxenthaler.

I would like to also thank my colleagues at the Institute for Integrated Circuits, namely
Stephan Herrmann, Wolfgang Kohtz, Dr. Torsten Mahnke, Dr. Nuria Pazos, Stephan Stilk-
erich and Armin Windschiegl.

This work was influenced in particular by experiences I have made in the S/390 Micro-
processor Development of IBM Böblingen, Germany. Special thanks are denoted to Ralph
Koester.

This work would never have been realized without the love, help, support and female in-
spirations of my family Lydia, Mareike, Anyesse as well as my sisters Isabell, Monika, Ute
and Regina. Finally, I am indebted to my mother Lieselotte and my father Lorenz (†) for
all they gave to me during my life.

iv

Kurzfassung

Netzprozessoren sind Bausteine, die in zunehmendem Maße in Internetroutern eingesetzt
werden. Neben der flexiblen Unterstützung von Protokollen und Diensten zeichnen sich
Netzprozessoren durch eine hohe Leistungsfähigkeit aus. Die Flexibilität wird durch
eingebettete Prozessoren mit optimiertem Instruktionssatz realisiert. Eine hohe Perfor-
manz wird durch geeignete Systemarchitekturen erzielt, die sowohl Multiprozessierung
als auch Multithreading unterstützen. Wesentliche Performanzmetriken bei Netzwerkkom-
ponenten sind Datendurchsatz und Bearbeitungslatenz. Während bisherige Netzprozes-
soren auf hohe Datendurchsatzwerte optimiert sind, wird die Bearbeitungslatenz von ar-
chitektureller Seite des Netzprozessors in der Regel vernachlässigt. Dies kann sich bei
Echtzeitanwendungen, z.B. Internettelefonie, als nachteilig erweisen. Stattdessen sollen
eine beschleunigte Paketweiterleitung und somit verkürzte Latenzen in Netzknoten mit-
tels geeigneter Dienstarchitekturmodelle, wie z.B. Differentiated Services, und veränderten
Weiterleitungsprinzipien wie Multiprotocol Label Switching ermöglicht werden.

Zentraler Bestandteil dieser Arbeit ist eine Protokollbearbeitungsmethode für Netzwerk-
prozessoren, die auf kurze Verzögerungszeiten bei der Protokollverarbeitung fokussiert ist.
Die Methode besteht aus 2 Teilen: mittels Protokollstapelprädiktion wird aus einer Menge
von in der Vergangenheit empfangenen Paketen der Protokollstapel des als nächstes emp-
fangenen Pakets vorhergesagt. Die Bearbeitung von unterschiedlichen Netzwerkschichten
zugehörigen Funktionen dieses Pakets wird durch spekulative Protokollbearbeitung gle-
ichzeitig in parallelen Bearbeitungseinheiten begonnen. Im Falle einer korrekten Vorher-
sage ist die Bearbeitungslatenz verkürzt. Anderenfalls ergeben sich höhere Bearbeitungs-
dauern. Zusammengefasst wird für die Bearbeitungsdauer eine im statistischem Mittel
reduzierte Latenz erwartet.

Im ersten Teil der Arbeit wird eine abstrakte Konzeptevaluierung durchgeführt. Hierzu
werden netzwerk- und implementierungsspezifische Merkmale separiert und die das
Konzept beeinflussenden Parameter extrahiert. In einzelnen Szenarien wird dann der
quantitative Einfluss jeweils eines Parameters auf Latenzreduktion und zusätzlichen
Prozessierungsaufwand hin analysiert. Es wird unter anderem gezeigt, dass mittels
einer hohen Vorhersagegüte wesentlich die Latenzreduktion erhöht und der zusätzliche
Prozessierungsaufwand gesenkt werden kann.

Um das Verhalten der Bearbeitungslatenz im Internet-spezifischen Anwendungsfall zu
analysieren, wird ein System spezifiziert, das das spekulative Bearbeitungskonzept imple-
mentiert. Hierbei handelt es sich nicht um ein optimiertes Netzwerkprozessorsystem, das
mit kommerziell erhältlichen Bausteinen vergleichbar ist. Stattdessen dient es zur Bestim-
mung der erzielbaren Latenzreduktion unter implementierungsspezifischen Aspekten, z.B.
Verwendung einer aufgeteilten Busarchitektur. Da das Konzept eine hohe Latenzreduktion
an Einsatzorten mit komplexer Paketbearbeitung verspricht, wird hierfür der Zugangsbere-
ich zu Internetdomänen gewählt. Als Prädiktionsalgorithmus wird ein Verfahren verwen-

v

det, das auf dem am häufigsten aufgetretenen Ereignis basiert. Das dynamische Verhal-
ten ermöglicht eine selbstständige Anpassung an veränderte Netzwerkverkehrscharakteris-
tiken. Zum Zweck der schnellen Vorhersagetransienz und zur Vermeidung von möglichen
Vorhersageregisterüberläufen ist es um einen zyklischen Rücksetzungsmechanismus er-
weitert.

Sowohl für die Systemsimulation als auch die Simulation der Vorhersageeinheit werden ak-
tuelle Netzwerkverkehrsstatistiken verwendet. Basierend auf Verkehrsstatistiken von 2002
ergaben sich bei der Simulation der zweistufigen Vorhersageeinheit Raten für korrekte
Vorhersagen von 82 % für die erste und ca. 98 % für erste und zweite Vorhersagestufe
zusammen. Grundsätzlich läßt sich feststellen, dass die mittlere Zeitdauer zur Berech-
nung einer neuen Vorhersage deutlich geringer ist als die mittlere Bearbeitungslatenz eines
Pakets. Dies ermöglicht eine Aktualisierung der Vorhersagetabellen für jedes Paket. Für die
Systemsimulation wird als Referenzimplementierung ein Modell verwendet, dass die Bear-
beitung in parallelen Prozessoren pseudo-parallel, d.h. zeitversetzt entsprechend bestehen-
der Datenabhängigkeiten und deren Auflösung, ausführt. Für die exemplarisch gewählte
Systemumgebung am Netzwerkedge ergaben sich Werte zwischen 6,4 und 22,5 % für die
Latenzreduktionen. Als Nachteil ergibt sich jedoch eine höhere Auslastung der eingebet-
teten Prozessoren im Fall der spekulativen Bearbeitungsmethode.

Abschliessend wird die Protokollbearbeitungsmethode aus Anwendungssicht betrach-
tet. Fehlvorhersagen verursachen längere Bearbeitungsdauern und generieren fol-
glich Verzögerungsschwankungen, die sich auf Echtzeitanwendungen wie IP-Telefonie
nachteilig auswirken können. Zur Kompensation von Verzögerungsschwankungen wird ein
netzwerkknoteninterner Ansatz gemacht, der im Warteschlangensystem implementiert ist.
Hierzu wird ein als Referenz gewählter weighted-fair-queuing Algorithmus um zwei Priori-
tätswarteschlangen erweitert. In diese werden Pakete mit einer bzw. mit zwei Fehlvorher-
sagen abgelegt. Die Untersuchungen zeigen, dass hierdurch zeitliche Schwankungen bei
Paketen, die schnelle Paketweiterleitung erfordern, ausgeglichen werden können. Zuletzt
wird die Latenzreduktion des spekulativen Netzprozessors gegenüber pseudoparallelen
Referenzimplementierungen auf 13,4 bis 14,9 % abgeschätzt.

Zusammenfassend wird festgestellt, dass das Konzept der Protokollvorhersage und speku-
lativen Paketbearbeitung gewinnbringend in Routern am Internetrandbereich und zwischen
den Domänen von Internetdiensteanbietern eingesetzt werden kann, um deren Bear-
beitungsdauern zu verringern.

vi

Résumé

Les processeurs réseaux sont des composants qui sont de plus en plus utilisés dans les
routeurs de l’Internet. En plus de fournir un support flexible pour les protocoles et les
services, les processeurs réseaux fournissent de hautes performances. La flexibilité est
fournie par des processeurs embarqués qui possèdent un jeu d’instruction optimisé. De
hautes valeurs de performances sont possibles grâce à des architectures système appro-
priées, qui supportent les processeurs multiples et les processus légers multiples (mul-
tithreading). Les principales métriques de performance des composants réseaux sont le
débit et le délai de traitement. Bien que les processeurs réseaux courants soient op-
timisés pour obtenir de hautes valeurs de débit de données, le délai est couramment
négligé du point de vue de l’architecture du processeur réseau. Cette lacune peut être
désavantageuse dans le cas d’une application temps-réel, e.g. téléphonie sur IP. A la
place, des modèles adéquats d’architecture de services, e.g. differentiated services et des
principes d’acheminement modifiés tels que Multi-protocol label switching sont définis afin
d’accélérer l’acheminement des paquets entranant ainsi une diminution des délais dans les
noeuds du réseau.

La partie principale de cette thèse est une méthodologie de traitement de protocoles dans les
processeurs réseaux qui se focalise sur des délais courts dans le traitement de protocoles.
Elle est constituée de deux éléments : la Prédiction de protocole (Protocol-stack prediction)
utilise en entrée un jeu de paquets précédemment reus et prédit le prochain paquet qui va
être reu. L’éxecution de fonctionnalités qui se réfèrent à des couches réseaux différentes,
i.e. le Traitement spéculatif de protocoles (speculative protocol-processing), est démarré
simultanément sur des ressources de traitement parallèles. Le délai de traitement est réduit
dans le cas d’une prédiction correcte. Sinon, des valeurs plus grandes seront obtenues. Au
total, une moyenne réduite du délai de traitement est attendue.

Une évaluation conceptuelle abstraite est réalisée dans la première partie de cette thèse.
Les caractéristiques spécifiques liées au réseau et à l’implémentation sont séparées et les
paramètres liés aux concepts immanents sont extraits dans ce but. Leur impact quantitatif
sur la réduction du délai et le cot de traitement additionnel est déterminé pour des scénarios
individuels. Nous montrons que la réduction du délai peut être augmentée et le surcot de
traitement peut être diminué grâce à des valeurs élevées sur la précision de la prédiction.

Afin d’analyser le délai dans un environnement d’application réseau, une spécification du
système spéculatif est réalisée. Elle ne peut pas être considérée comme un système pro-
cesseur réseau optimisé qui permettrait une comparaison avec des appareils disponibles
dans le commerce. Cependant elle peut être utilisée pour calculer la réduction de délai
réalisable selon certaines considérations liées à des aspects de l’implémentation, par exem-
ple une architecture avec un bus partagé. L’architecture est un modèle hybride qui effectue
un traitement parallèle des paquets au niveau du système et un traitement parallèle des en-
têtes au niveau de la couche réseau. Le système sera déployé en bordure de réseau car un

vii

gain élevé sur le délai est attendu dans les zones qui nécessitent une haute complexité de
traitement des paquets.

L’algorithme de prédiction est basé sur le principe du plus fréquemment utilisé. Une adap-
tation autonome aux modifications des caractéristiques du trafic réseau est produite par le
comportement dynamique de la prédiction. Une possibilité additionnelle de réinitialisation
cyclique permet d’obtenir une adaptation souple de la prédiction et d’éviter le débordement
des registres de prédiction.

Des statistiques de trafic réseau courantes sont utilisées dans la simulation du système et
dans celle de l’unité de prédiction. Des taux de succès élevés de 82 % pour la première
prédiction seule et approximativement de 98 % pour la première et la deuxième prédictions
réunies peuvent être obtenus. Il peut être démontré que le temps de calcul moyen d’une
prédiction est significativement inférieur au délai de traitement moyen d’un paquet. Par
conséquent, une mise à jour de la table de prédiction peut être réalisée pour chaque paquet à
la vitesse de ligne des paquets. Une implémentation de référence qui effectue un traitement
de protocoéle d’une manière pseudo parallèle, i.e. le départ est décalé dans le temps selon
les dépendances des données, est utilisée pour la simulation du système. Les résultats de
simulation concernant la réduction du délai vont de 6,4 à 22,5 %. Cependant la méthode de
traitement spéculative entrane une charge de travail plus élevée des processeurs embarqués.

Par la suite, la méthodologie de traitement de protocole est considérée du point de vue
des applications. Les prédictions erronées entranent des délais de traitement augmentés et
par voie de conséquence produisent une gigue qui affecte les applications temps-réel telles
que la téléphonie sur IP. Afin de compenser cette gigue, une approche interne au noeud
réseau de l’implémentation du système de file d’attente est proposée. Une implémentation
de référence d’un algorithm de file d’attente à poids équilibrés (weighted-fair queuing)
est étendue par deux files de priorité dans lesquelles sont insérées les paquets provenant
d’une ou deux prédictions erronées. Les études de performance démontrent que les vari-
ations temporelles des paquets qui nécessitent un acheminement expéditif peuvent être
compensées. Finalement, la réduction du délai de traitement dans le processeur réseau
spéculatif est estimée comprise entre 13,4 et 14,9 %.

Nous pouvons en conclure que le concept de prédiction de protocole et de traitement
spéculatif de paquet peut être mis à profit dans les routeurs de bordure de réseau et ceux
situés entre les domaines des fournisseurs d’accès à l’Internet.

viii

Abstract

Network processors are devices which are increasingly applied in Internet routers. Besides
a flexible support of protocols and services, network processors provide high performances.
The flexibility is provided by embedded processors which feature an optimized instruction
set. High performance values are enabled by appropriate system architectures, which sup-
port multiprocessing as well as multithreading. Main performance metrics of networking
devices are throughput and processing latency. While current network processors are op-
timized for high values of the data throughput, the latency is commonly neglected from
the perspective of the network processor architecture. This lack can cause disadvantages
in case of real-time application, e.g. IP telephony. Instead of that, well-suited service
architecture models, e.g. differentiated services and modified forwarding principles such
as Multi-protocol label switching are defined to enable accelerated packet forwarding and
consequently reduced latencies in network nodes.

The main part of this thesis is a methodology for protocol-processing in network processor
which is focused on short delays for protocol-processing. It consists of two components:
Protocol-stack prediction uses a set of earlier received packets as input and predicts the
packet which will be received next. The execution of functionalities which refer to dif-
ferent network layers, i.e. the speculative protocol-processing, is started simultaneously
in parallel processing resources. The processing latency is decreased in case of a correct
prediction. Otherwise, increased values will be achieved. In total, a reduced mean latency
for the processing delay is expected.

An abstract concept evaluation is done in the first part of this thesis. Networking- and
implementation-specific characteristics are separated and concept-immanent parameters
are extracted for these purposes. Their quantitative impact on the latency reduction and
the additional processing effort is determined in individual scenarios. It is shown that the
latency reduction can be increased and the additional processing effort can be decreased
through high values of the prediction accuracy.

In order to analyze the latency in a networking-specific application environment, a spec-
ification of the speculative system is done. It is not aimed as an optimized network pro-
cessor system which allows a comparison with commercially available devices. Instead, it
can be used for a computation of the achievable latency reduction under consideration of
implementation-specific aspects. The architecture represents a hybrid model that realizes
packet parallelism on system-level and network-layer parallelism on packet-processing el-
ement level. The system will be applied at the network edge because of an expectation
for a high latency gain in operation areas which require a high packet-processing com-
plexity. The prediction algorithm is based on the principle of most-frequently used. An
autonomous adaptation to modified network traffic characteristics is given by the dynamic
behavior of the prediction. An additional cyclic reset facility serves to obtain a smooth
prediction adaptation and to avoid prediction register overflows.

ix

Current network traffic statistics are used for the system simulation and the simulation of
the two-stage prediction unit. Based on network traffic statistics of 2002, hit rates of 82
% for the first and approximatively 98 % for the first and second prediction stage can be
achieved. In can be asserted that the mean computation delay for a prediction is signifi-
cantly less than the mean processing delay of a packet. Thus, an update of the prediction
table can be done for each packet in line-rate. A reference implementation which executes
protocol-processing in a pseudo-parallel manner, i.e. the initiation of task processing is
shifted in time according to data dependencies, is used for the system simulation. If the
network edge is used as system environment for the simulation, the results of the latency
reduction range between 6.4 and 22.5 %. The speculative processing method, however,
leads to a higher workload of the embedded processors.

Subsequently, the protocol-processing methodology is considered from application per-
spective. Mispredictions cause increased processing delays and consequently generate a
delay jitter which affects real-time applications such as IP telephony. In order to compen-
sate this jitter, a network-node internal approach for implementation within the queuing
system is proposed. A reference implementation of a weighted-fair queuing algorithm is
extended by two priority queues in which packets with one or two occurred mispredictions
are inserted. Performed studies demonstrate that time deviations of packets which require
expedited forwarding can be compensated. Finally, the latency reduction of the speculative
network processor is estimated to 13.4 to 14.9 %.

It can be concluded that the concept of protocol-stack prediction and speculative packet-
processing can be inserted profitably in routers at the network edge and between Internet
service provider domains.

Contents

1 Introduction 1

1.1 Internetworking . 1

1.1.1 Network architectures . 1

1.1.2 Communication reference model and service architectures models . 2

1.1.3 Network performance metrics . 7

1.2 Network processors . 8

1.3 Motivation . 10

1.4 Structure of this thesis . 11

2 Protocol-processing methodologies 13

2.1 Introduction . 13

2.2 Packet-processing . 14

2.2.1 Packet reception . 15

2.2.2 Header parsing & checking . 15

2.2.3 Forwarding . 16

2.2.4 Classification . 16

2.2.5 Policing, metering, shaping . 17

2.2.6 Queuing, scheduling, congestion avoidance 17

2.2.7 Packet transmission . 18

2.2.8 Additional and optional tasks . 18

2.3 Protocol specifications . 18

2.3.1 Light-weight protocols . 18

x

CONTENTS xi

2.3.2 Adaptive protocol-stacks . 19

2.4 Protocol implementations . 20

2.4.1 Integrated-layer processing . 20

2.4.2 Connection-oriented protocol-processing optimization 21

2.4.3 Multiprocessing / Parallel protocol-processing 24

2.4.4 Multithreading . 27

2.5 Processing flow . 33

2.6 Predictive processing models . 34

2.6.1 Fundamentals . 34

2.6.2 Data prediction . 34

2.7 Network Traffic . 36

2.8 Summary . 38

3 Speculative protocol-processing concept 40

3.1 Introduction . 40

3.2 Protocol-stack prediction . 41

3.3 Speculative protocol-processing . 44

3.4 Concept benefit . 48

4 Abstract concept evaluation 49

4.1 Introduction . 49

4.2 Evaluation . 50

4.2.1 Predefinitions . 50

4.2.2 Scenarios . 56

4.2.2.1 Scenario 1: Number of predicted layers 56

4.2.2.2 Scenario 2: Additional processing time in case of mis-
prediction . 59

4.2.2.3 Scenario 3: Prediction accuracy 60

4.2.2.4 Scenario 4: Resolution time of control-flow conditions . . 63

4.2.2.5 Scenario 5: Processing time of control-flow conditions . . 64

4.2.2.6 Scenario 6: Prediction model: single-level or multi-level . 64

4.3 Conclusion . 65

xii CONTENTS

5 System design 68

5.1 Introduction . 68

5.2 Constraints of the application example . 69

5.2.1 System environment . 69

5.2.2 Supported protocols . 69

5.2.3 Supported services . 70

5.2.4 Protocol-stack . 70

5.3 Functional specification . 70

5.3.1 Overview . 70

5.3.2 Input processing . 71

5.3.3 Protocol-stack processing . 72

5.3.4 Output processing . 74

5.3.5 Control-point processing . 76

5.3.6 Protocol-stack prediction . 76

5.4 System architecture . 84

5.4.1 Overview . 85

5.4.2 Packet-processing element architecture 87

5.4.3 Network-layer processing unit and control-point PU 88

5.4.4 Prediction unit . 89

6 System evaluation 91

6.1 Introduction . 91

6.2 Prediction PU . 92

6.2.1 Test methodology and simulation traffic 92

6.2.2 Simulations and analysis . 94

6.3 Packet-processing element . 103

6.3.1 System implementation . 103

6.3.2 Test methodology and constraints 108

6.3.3 Simulations and analysis . 109

6.4 Conclusion . 116

CONTENTS xiii

7 Concept application study 118

7.1 Introduction . 118

7.2 Queuing delay and jitter analysis . 118

7.2.1 Motivation . 118

7.2.2 Scheduling algorithm . 119

7.2.3 Evaluation . 120

7.3 Network processor delay . 125

7.4 End-to-end analysis . 126

8 Summary and conclusions 131

Bibliography 135

A Publications and Patent Applications 146

List of Figures

1.1 Internet Topology . 2

1.2 Architecture model according to ISO/OSI Reference Model 3

1.3 Differentiated Services Architecture . 5

1.4 Multiprotocol Label Switching . 6

1.5 Virtual Private Network with IPSec . 6

1.6 End-to-end-Latency . 7

1.7 Router architecture . 9

1.8 Network Processor Block Diagram . 10

2.1 Packet Processing Chain . 14

2.2 IPv4 packet . 16

2.3 Integrated-layer Processing . 21

2.4 Jacobsons’ header prediction . 22

2.5 Woodsides’ Protocol Bypassing Scheme 23

2.6 Protocol Bypass Architecture . 23

2.7 Horizontal Process Architectures . 25

2.8 Vertical Process Architectures . 26

2.9 Run-to-completion model . 26

2.10 Systolic model . 27

2.11 Coarse-grained and Fine-grained Multithreading 28

2.12 Simultaneous Multithreading . 29

2.13 2-way Multithreading implementation . 30

xiv

LIST OF FIGURES xv

2.14 2-way MT processing flow . 30

2.15 Super-scalar processor implementation . 31

2.16 Processing flow of a super-scalar processor implementation 31

2.17 Multithreading Implementation (2 functional processing units) 32

2.18 Processing flow of a MT implementation (2 functional PU) 32

2.19 Sequential processing flow IXP 1200 . 33

2.20 Program execution in microprocessors . 35

3.1 Processing concept . 41

3.2 Protocol-stack prediction scheme . 42

3.3 Coverage of protocol-stack prediction . 43

3.4 Speculative Packet Processing (Layer 2 and 3 hit) 45

3.5 Speculative Packet Processing (Layer 2 miss / Layer 3 hit) 46

3.6 Speculative Packet Processing (Layer 2 and 3 miss) 47

3.7 Sequential and pseudo-parallel processing 47

4.1 Layer hierarchy . 50

4.2 Pseudo-parallel processing implementation 51

4.3 Speculative processing / case prediction hit 52

4.4 Speculative processing / case misprediction 52

4.5 Costs in case of misprediction . 54

4.6 Analytical model . 55

4.7 Processing flows (layer 2 - 3) . 56

4.8 Pseudo-parallel processing flow (layer 2 - 4) 57

4.9 Pseudo-parallel processing flow (layer 2 - 5) 57

4.10 Scenario 1: AC,r / Parameter: number of predicted layers 58

4.11 Scenario 1: AC,r(Nh/N = Nhh/N = Nhhh/N = 0.5) / Parameter: number of
predicted layers . 58

4.12 Scenario 1: AC,r(Nh/N = Nhh/N = Nhhh/N = 0.7) / Parameter: number of
predicted layers . 59

4.13 Scenario 2: r = f unction(TAPT) . 59

xvi LIST OF FIGURES

4.14 Scenario 2: AC,r / Parameter: TAPT . 60

4.15 Scenario 3: AC,r / Parameter: prediction accuracy 61

4.16 Scenario 3: AC,r / Parameter: prediction accuracy, TAPT 6= 0) 62

4.17 Scenario 3: AC,r / Parameter: prediction accuracy, T ′
L31

= TL31 +δ 62

4.18 Scenario 4: Completion time of the checktask 63

4.19 Scenario 4: AC,r / Parameter: resolution time of control-flow conditions . . 63

4.20 Scenario 5: Latency reduction / additional cost 64

4.21 Scenario 5: AC,r / Parameter: processing time of control-flow conditions . 65

4.22 Single-level prediction (a) and multi-level prediction (b) 66

4.23 Scenario 6: AC,r / Parameter: prediction model 66

5.1 Supported protocols . 69

5.2 PPE processing chain . 71

5.3 Input processing flow . 72

5.4 Protocol-stack processing flow . 73

5.5 Output processing flow . 75

5.6 MFU computation flow . 78

5.7 Components of protocol-stack prediction 82

5.8 Special register file . 83

5.9 Prediction table reset facility . 84

5.10 System model . 85

5.11 System architecture . 86

5.12 Packet Processing Element . 87

5.13 Network-layer processing unit . 88

5.14 Prediction Processing Unit . 89

5.15 Multi-modal protocol-stack prediction . 90

5.16 Protocol-stack status word (PSSW) . 90

6.1 Prediction PU evaluation test bench . 92

6.2 Misprediction rate . 96

LIST OF FIGURES xvii

6.3 Misprediction rate, different weights . 97

6.4 Hit rate UDP packets . 98

6.5 Traffic 1 . 100

6.6 Traffic 2 . 101

6.7 Prediction table reset facility . 102

6.8 System-level design flow . 104

6.9 PPE master and slave modules . 106

6.10 Protocol-processing flow . 106

6.11 Simulated systems . 108

6.12 PPE processing model . 109

6.13 PPE latency . 111

6.14 Latency reduction . 111

6.15 Individual processor workload . 112

6.16 Aggregated processor workload . 113

6.17 Arbitration- / bus- and memory-load . 114

6.18 PPE throughput . 115

7.1 Output data movement model . 119

7.2 Priority + weighted fair queuing . 120

7.3 Evaluation Methodology . 121

7.4 Queuing delay EF queue . 123

7.5 Delay jitter reduction . 124

7.6 Network architecture . 126

7.7 Delay portions . 128

List of Tables

2.1 Protocol breakdown MCI Worldcom 1997 37

2.2 Protocol breakdown Sprintlab 2002 . 38

5.1 Most-frequently used entries . 77

5.2 Protocol-stack identifier . 80

6.1 Deterministic and randomized simulation traffic 94

6.2 Deterministic and randomized simulation traffic 95

6.3 Impact of initialization packets . 99

6.4 Computation cycles and number of compare instructions for prediction
computation . 99

6.5 Randomized simulation traffic . 103

6.6 Memory access times . 107

6.7 Simulation traffic . 110

6.8 Mean protocol-processing latency . 110

6.9 NL-PU workload for UDP-IPv6-G-E . 116

7.1 Mean delay and jitter . 122

7.2 Processing delays . 126

7.3 Number of complex processing router . 127

7.4 Propagation delay . 129

7.5 Delay values . 129

xviii

Acronyms

APT Additional Processing Time
ARP Address Resolution Protocol
ARPA Advanced Research Projects Agency
ATM Asynchronous Transfer Mode
BE Best- Effort
CMT Coarse-grained Multi-Threading
CoS Class-of-Service
CP Control Point
CPG Conditional Process Graph
DHT Decode History Table
DSCP DiffServ CodePoint
EDA Electronic Design Automation
EF Expedited Forwarding
FMT Fine-grained Multi-Threading
G-E Gigabit Ethernet
GEANT Gigabit European Academic NeTwork
GPS Generalized Processor Sharing
HDLC High Level Data Link Control
ICMP Internet Control Message Protocol
ICMPv6 Internet Control Message Protocol version 6
IETF Internet Engineering Task Force
ILP Integrated Layer Processing
IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
ISO International Organization for Standardization
ISP Internet Service Provider
L2 Layer 2
L3 Layer 3
L4 Layer 4
MAC Medium Access Control
MMM Master-Master-Message

xix

xx LIST OF TABLES

MP Multi Processor
MP Multiprocessing
MPLS Multiprotocol Label Switching
MT Multi-Threading
NAP Network Access Points
NL-PU Network Layer-Processing Unit
NP Network Processor
OC Optical Carrier
OSI Open System Interconnection
OSPF Open Short Path First
PCI Protocol Control Information
PDU Protocol Data Units
POP Points-of-Presence
PPU Prediction Processing Unit
PSSW Protocol Stack Status Word
PU Processing Unit
QoS Quality-of-Service
RARP Reverse Address Resolution Protocol
RTP Real-time Transport Protocol
SEQUIN SErvice QUality across Independently managed Networks
SLA Service Level Agreement
SMT Simultaneous Multi-Threading
SONET Synchronous Optical NETwork
TCP Transport Control Protocol
UDP User Datagram Protocol
VMTP Versatile Message Transaction Protocol
VPN Virtual Private Network
WFQ Weighted Fair Queuing
WRR Weighted Round Robin
WWW World Wide Web
XTP Xpress Transfer Protocol

Chapter 1

Introduction

1.1 Internetworking

1.1.1 Network architectures

For more than three decades, data communication has been an essential component of
computing. Driven by the US Defense Department Agency, a four node network was es-
tablished in 1969 between UCLA, Stanford Research Institute, UC Santa Barbara and the
University of Utah [1]. In the following years, linking autonomous local networks together
became a main challenge. The intention was to share information of common interest.
Unfortunately, difficulties arose due to heterogeneous physical networks with diverse hard-
ware and software technologies. In addition, some applications created the demand for
high-speed communication, which was not feasible by networks that span large distances
[2].

A new technology, called internetworking, was created to satisfy these needs. It hides
details of the underlying network hardware and allows interaction between different de-
vices that comply with standardized internetworking specifications. The referring network,
called Internet, links local networks together at interconnection nodes. For this purpose,
network nodes include forwarding devices, i.e. routers. The Internet was developed on the
principle of packet-switched, i.e. connectionless, datagram delivery. Each data unit, i.e.
a datagram, is routed hop-by-hop towards its destination according to an inherent unique
destination address which is assigned to each end device.

The access to the Internet backbone is depicted in Figure 1.1.

1

1.1. INTERNETWORKING CHAPTER 1. INTRODUCTION

Router/Switch
Core

NAP NAP

NAP

Private
Peer

Wireless IP
Gateway

Tier−3−local ISP

Gateway
SS7 IP

Internet
Services

(e.g. Webhosting)

POP

Backbone (Tier−1 Carrier)

Wireless
User
End

End User TelephonyWirelineEnd User

Edge

Access
Router

Router

�����
�����
�����

�����
�����
�����

���
���
���
���

������

�
�
�
�
�
�
�
�

�	
�

�
������

Figure 1.1: Internet Topology

Data and voice communication subscribers are connected either by wireline or wireless at
Network Access Points (NAP). Furthermore, server farms can deliver content on request
to end users. In order to access the backbone network on top, a set of nodes, known as
Points-of-Presence (POP), are connected at the network edge. Communication over the
Internet will be extended by voice applications, such as IP telephony. A POP has links to
private peers, large company networks, regional tier-2 1 Internet Service Provider (ISP) or
local tier-3 ISPs. Tier-1 carrier represent the global backbone.

1.1.2 Communication reference model and service architectures mod-
els

The Reference Model of Open System Interconnection was defined to create a conceptual
model for communication in an open communication infrastructure [3]. It is standardized
as the ISO/OSI reference model of communication [4].

It comprises three abstraction levels [5]: An architecture model, which is built up of seven
layers, describes the communication flow in an open system [6]. In order to partition the
complete communication tasks, each layer provides well-defined communication services.

1tier: from medieval French tire: rank

JÜRGEN FOAG 2 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 1. INTRODUCTION 1.1. INTERNETWORKING

In addition, each layer represents an autonomous unit. Communication between the layers
is accomplished through well-defined calls and replies, so-called protocols. Figure 1.2
illustrates a communication architecture model with two end systems and a transmit system
between.

protocol

protocol

protocol

Physical

Data link

Network

protocol

protocol

protocol

Physical

Data link

Network

Physical

Data Link

Network

Physical

Data Link

Network

Transit System

Transport

Session

Presentation

Application

Physical

Data Link

Network

End System B

Transport

Session

Presentation

Application

Physical

Data Link

Network

Presentation protocol

Application protocol

Session protocol

Transport protocol

End System A

Layer

1

2

3

4

5

6

7

Interface

Figure 1.2: Architecture model according to ISO/OSI Reference Model

Each layer above layer three of end system A communicates with the same layer of end
system B. Due to the lack of a horizontal link, the virtual connection between these two
peers is enabled by vertical communication services. Each layer encapsulates user data into
protocol control information (PCI) and forwards it top-down to the layer below. Transmis-
sion takes place over the physical medium. At the receiving side, i.e. end system B, user
data is applied to the application layer bottom-up by decapsulation of the PCI.

The transmit system is intended for data forwarding between end systems, i.e. the source
and destination system of the communication data. In order to check the transmission data
and to determine the path towards the destination, layer one to three are involved.

The widely used protocol suite of the Internet is Transport Control Protocol (TCP) /
Internet Protocol (IP). It was developed by the US Department of Defense as part of
the ARPA (Advanced Research Projects Agency) technology [2]. IP implements the

JÜRGEN FOAG 3 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

1.1. INTERNETWORKING CHAPTER 1. INTRODUCTION

functionality of the network layer. TCP is one of two transport layer protocols in a TCP/IP
network and provides a connection-oriented and reliable transport service. The other, the
user datagram protocol (UDP) provides connectionless and unreliable transport service.
For network control purposes, the protocol suite comprises protocols such as Address
Resolution Protocol (ARP), Reverse Address Resolution Protocol (RARP), Internet
Control Message Protocol (ICMP) and other.

Based on this model, the Internet offers flexibility and performance for current applications
and services. The supply of audio and video communication as well as the support of reli-
able transactions, e.g. interactive games and stock trading, extends the traditional demand
of best-effort transmission to the network infrastructure. These kinds of multimedia appli-
cations produce a great amount of burstiness within the network which makes it difficult to
satisfy network subscribers requirements [7]. In addition to this, dynamic and efficient us-
age of network resources is an essential aspect. In order to provide end-to-end performance
in terms of throughput, delay, jitter and congestion, a Quality of Service (QoS) architecture
model was introduced.

Apart from the integrated services architecture model (IntServ) which enables per-flow
QoS [8], two essential models for QoS provisioning are Differentiated Services (DiffServ)
architecture and Multiprotocol Label Switching (MPLS).

Differentiated Services

The DiffServ architecture was defined by the IETF [9] [10]. Its main intention is to over-
come the scalability problem of the Integrated Service Architecture (Intserv) and to provide
Class-of-Service (CoS) support [11].

Incoming traffic to a DiffServ network is classified, policed and possibly conditioned at the
DiffServ ingress, i.e. the edge. Furthermore, the traffic is assigned to a behavior aggregate,
which is identified by a DiffServ code-point (DSCP). Inside the DiffServ domain, traffic
is forwarded according to the per-hop behavior (PHB) associated with the DSCP. Figure
1.3 illustrates the DiffServ packet forwarding model for packets with different behavior
aggregates (premium, gold, silver, bronze).

Processing complexity in the DiffServ domain is reduced to increase packet throughput
through fast but simple backbone routers. The underlying idea is the common design
principle that protocol processing complexity is moved to the network border [12] where
throughput requirements are moderate.

JÜRGEN FOAG 4 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 1. INTRODUCTION 1.1. INTERNETWORKING

Premium
Gold
Silver
Bronze

Classification
Marking
Shaping
Policing

Drop

Diffserv
Domain 1

Diffserv
Domain 3

Ingress
Diffserv Diffserv

Core Node Egress
Diffserv

Diffserv Domain 2

Forwarding (DSCP)

Figure 1.3: Differentiated Services Architecture

Multiprotocol Label Switching

Orthogonal to the node-level congestion avoidance mechanism of the DiffServ architecture,
Multiprotocol Label Switching provides QoS through an integration of the label swapping
forwarding paradigm with network layer routing. MPLS has been standardized by the IETF
[13]. Figure 1.4 illustrates a MPLS domain.

The bindings between Forwarding Equivalence Classes (FEC) and labels are distributed
among participating MPLS devices, i.e. label switch routers. Explicit paths, so-called label
switched path (LSP) are determined and established subsequently. Packets which enter in
am MPLS domain are labeled and assigned to a FEC. This corresponding label refers to
the LSP. Packets with same FEQ are treated identically and consequently follow the same
path through the domain. If a packet is forwarded to the next hop, the label is sent along
with it. At subsequent hops, no complex packet header analysis has to be done. Instead,
the current label is replaced by a new one which indicates the next hop. With regard to
the OSI reference model mentioned above, MPLS is located between layer two and three.
Thus, MPLS makes it possible to switch traffic through the network. At the MPLS egress
node, the label is stripped off and the packet is forwarded to its final destination.

JÜRGEN FOAG 5 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

1.1. INTERNETWORKING CHAPTER 1. INTRODUCTION

MPLS domain

Switched Router

Label

Packet
Packet Packet Label

Figure 1.4: Multiprotocol Label Switching

Virtual Private Network

In order to provide secure data transport for authorized user groups in a public network,
virtual private networks (VPN) have been standardized [14]. An IPSec2 VPN is depicted
in Figure 1.5.

Application

TCP UDP

IP

Application

TCP UDP

IP

Protected
Data

Protected
Data

Link Layer

Phys. Layer

Link Layer

Phys. Layer

IPSec IPSec

IP* IP*

VPN Gateway 1 VPN Gateway 2

Figure 1.5: Virtual Private Network with IPSec

IPSec VPNs, also called Layer-3 VPNs, allow secure transmission in an IP network through

2IP-Security

JÜRGEN FOAG 6 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 1. INTRODUCTION 1.1. INTERNETWORKING

data encryption. Beside several encryption standards, two encryption modes are supported:
transport and tunnel mode. While the former encrypts only the payload of a packet, the
latter encrypts both the header and the payload. In tunnel mode, which can be used in
conjunction with Layer-2 Tunneling Protocol (L2TP), a new IP header IP∗ is added with
a VPN source address. Finally after transmission, decryption is done in the gateway at
receiver side. Other types of VPNs are Layer-2 VPN and MPLS VPNs, respectively.

1.1.3 Network performance metrics

Key performance metrics of packet-switched networks are latency, delay jitter, throughput,
cost, loss and reliability [15] [16]. The end-to-end latency of a packet-switched network, is
illustrated in Figure 4.1.

Source A B DestinationDC

E
nd

−
to

−
en

d
la

te
nc

y

t

BA C D

Network Node delay

Propagation delay

PDU

PCI

Transmission delay

Figure 1.6: End-to-end-Latency

In the figure, data is decomposed, i.e. fragmentated, into four protocol data units (PDU)

JÜRGEN FOAG 7 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

1.2. NETWORK PROCESSORS CHAPTER 1. INTRODUCTION

and a protocol control information (PCI) is assigned to each before the transmission. The
transmission latency between data source and destination is composed of [17]:

• propagation delays of the transmission medium

• transmission delays which depend on data sizes and data rates

• network node delays which result from packet processing delays and internal queuing
delays

1.2 Network processors

The first generation of routers in the 1980s, so-called store-and-forward routers, commonly
used a bus-based computer system with a single central processing unit (CPU), a main
memory and multiple network interfaces [18]. On the CPU, an embedded operating system
was running, which was especially designed for routing purposes. Before forwarding, each
packet is stored in the memory. An essential drawback of it is a performance limitation
which results from a software implementation and the memory bandwidth.

In order to track with increasing transmission rates, several modifications concerning the
architecture have been done in the meantime. The number of CPUs was extended from one
to multiple to overcome the limited packet throughput. Route caches have been integrated
in the system to provide frequently-used routing information quickly. The workload of the
shared bus has been reduced by a distribution of CPUs, route caches and memories onto
separate network interface cards. However, it still represents a bottleneck. Switch-based
router architectures replaced the shared bus by a switch device, which enables fast packet
transfer from the incoming port to the destination port.

During the last years, the demand for higher throughput up to 10 Gbit/s and more, flexi-
bility requirements with regard to supported protocols and services, as well as economic
imperatives of shortened hardware and software development cycles enforced alternative
router designs with network processors (NP) as packet forwarding devices. In 1.7, a typical
current router architecture is depicted [19].

On a backplane, multiple line cards are plugged in. External connection and framing func-
tionality is provided by line interfaces. NPs accomplish packet analysis, routing lookups,
dedicated packet handling, e.g. support of differentiated services, and queuing. Packet
buffering and transfer to a switch fabric are done likewise. A system processor is used for
control-point functions, e.g. routing table updates.

Even though the expression “network processor” is not standardized, common properties
of these devices normally are [20]:

• An NP is a programmable device that is optimized for packet processing.

JÜRGEN FOAG 8 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 1. INTRODUCTION 1.2. NETWORK PROCESSORS

System

Processo
r

Network

Processo
r

Line

Interface

Switch

Fabric Line Card

Back Plane

Figure 1.7: Router architecture

• An NP is designed for entire protocol-processing from layer 2/3 up to layer 7.

• An NP executes networking tasks at high speed.

• Individual packets can be processed fairly independently.

• An NP can possess embedded coprocessor blocks for accelerated processing of ded-
icated functionalities.

Figure 1.8 illustrates main building blocks of a typical current NP [20].

Multiple independent packet engines are used for fast data plane processing. This com-
prises header parsing, header analysis and modification as well as classification and rout-
ing. Packets are received and transmitted to the line interface by media access control
(MAC) devices that can be implemented on-chip. Fast access to routing and classification
information is provided by a search engine. External and internal memory devices are typ-
ically in the dimension of several megabytes. The corresponding device interfaces have
to offer high bandwidth. A fabric interface either connects NPs with an external switch
fabric or two NPs directly. Currently, packet memories range in sizes up to 512 megabytes.
They are used to hold packet headers and payloads. Memories furthermore enable multiple
transmission queues according to different traffic priority levels. A control processor which
can be either on-chip or external, executes control plane tasks, e.g. the initialization of the
NP or routing table updates.

Without being exhaustive, two examples for network processors are the Intel IXP 1200 and
the IBM Power Network Processor 4G3. The IXP 1200 includes an on-chip array of six
32-bit micro-programmable RISC processor engines. Based on a synchronous multithread-
ing architecture, each micro-engine supports 4 contexts [21]. Additionally, an integrated
StrongArm processor core is responsible for control plane processing. A separate hash en-
gine performs polynomial hash on up to three values at once with the intention of fast table

JÜRGEN FOAG 9 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

1.3. MOTIVATION CHAPTER 1. INTRODUCTION

DRAM
Interface

Control
Processor

Fabric
Interface

Packet
Engine

Packet
Engine

Search
Engine

MAC

Internal Crossbar

MAC

PHYPHY

DRAM

Packet
Memory

To switch fabric

...

...

...Host
PCI

Interface

Line Interface

Table
Memory

SRAM

Figure 1.8: Network Processor Block Diagram

lookups. The chip possesses neither a direct switch fabric interface nor coprocessors for
accelerated execution of functions such as classification and queuing. IBM NP combines a
PowerPC CPU with 16 RISC packet engines [22]. As an essential extension in comparison
to the IXP 1200, four table search engines and 56 coprocessor units are contained in the
IBM NP. A switch fabric interface furthermore allows a direct connection from the NP to a
switch fabric.

1.3 Motivation

The main objective of current network processors is to cope with the demand for high
packet throughput [20]. In order to provide data rates up to OC-192, the fast processing
path is realized by programmable processor cores which have an optimized architecture for
packet processing. Multiprocessing and multithreading are two implementation techniques
which can be commonly found in current NPs. Multiprocessing implementations realize
packet processing in parallel execution units. As a result, the packet throughput can be
increased. Multithreading is used in microprocessors to hide latency which results from
access times of processor external devices. In NPs, multithreading processor cores per-
form program context switches during accesses to external packet and routing information
memories take place. Thus, no processor stall times appear.

JÜRGEN FOAG 10 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THIS THESIS

However, the processing the networking functionalities, such as checksum calculation, IP
next hop lookup etc., commonly follows a sequential flow [23]. The reason for this sequen-
tial processing model are data dependencies which result from the structure of a packet
protocol control information. The type of the transport layer is derived from a header field
of the network layer, for example. Consequently, protocol-processing of the transport layer
cannot be started until the network layer has been processed and the protocol layer type
for layer 4 has been derived. Thus, NPs which apply sequential processing exhibit longer
processing delays for packet handling than parallel processing flows.

This thesis challenges if a parallel execution model that exploits data speculation can be
efficiently applied to protocol-processing in network nodes of the Internet. The associ-
ated goal is to achieve significantly reduced processing delays between the incoming and
outgoing interface of a network processor compared to traditional sequential NP implemen-
tations. The proposed model derives basic principles from an efficient processing method-
ology in microprocessors, called branch prediction. The scheme is applied to reduce exe-
cution times of programs through a result prediction of single instructions and speculative
processing of succeeding instructions [24]. However, it has to be noted that the intention of
this work does not merely represent an adaptation of instruction prediction methods of the
microprocessor domain to the application field of networking. Instead, it comprises a con-
cept that performs a prediction on a higher level combined with the speculative execution
of processing tasks.

1.4 Structure of this thesis

The structure of the dissertation is as follows:

Chapter 2 presents related work in protocol processing. At the beginning, the packet
processing chain, which is composed of different tasks, will be introduced. In order to
obtain an increased protocol-processing performance, different protocol specifications and
protocol implementations were proposed. Their benefits as well as their weaknesses are
observed. After this, an introduction into principles of data prediction is given and research
concerning network traffic characteristics is presented.

As a main part of this thesis, chapter 3 introduces a new protocol processing concept
for network node devices. It consists of two parts, namely a protocol stack prediction,
which predicts future protocol traffic based on an a-priory knowledge, and speculative
data processing, which speculatively executes tasks of the protocol processing chain. The
associated benefit is a less mean processing delay.

JÜRGEN FOAG 11 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

1.4. STRUCTURE OF THIS THESIS CHAPTER 1. INTRODUCTION

An abstract verification is done in chapter 4 to work out benefits of the proposed concept.
At this step, details about the implementation as well as architectural considerations are out
of scope. In order to obtain general insights concerning the latency as well as processing
resource costs, networking specific restrictions, e.g. characteristics of particular protocol
types, are ignored. Essential parameters are extracted and their influence on the concept is
separately evaluated in individual studies.

In order to evaluate the concept under consideration of internetworking-specific con-
straints, a system architecture is defined in chapter 5. The architecture implements the
functionality of an network processor which is applied in an Internet edge router. The
functionality of the data-plane, which contains the high-speed protocol processing path,
and the prediction unit are specified and their architectural implementation is presented. It
should be emphasized, that the predefined architecture neither lay claim to be optimized
nor that it represents a competitive solution to disposable network processors. Instead, it
represents an exemplary architecture, which can be used for a performance evaluation.
It helps to find out potential limitations and performance bottlenecks of the speculative
concept.

Chapter 6 describes the applied test methodology for the speculative system architecture
of chapter 5 and discusses the obtained simulation results of the packet-processing element
and the prediction unit.

Chapter 7 considers the application of the proposed processing concept in networking
nodes and its impacts on end-to-end communication. In order to compensate the delay
jitter, which results from occurring mispredictions, a well-suited module for output
scheduling is proposed and evaluated.

Chapter 8 concludes the work with the scientific contribution and gives an outlook for
further optimizations of the proposed concept.

JÜRGEN FOAG 12 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 2

Protocol-processing methodologies

2.1 Introduction

For more than three decades, an extensive research has been done in protocol processing
to cope with increasing throughput requirements, different applications which came along
and changing network technologies [25]. The explosive growth in network bandwidth and
services exceeds the performance increase of traditional microprocessors [26]. For data
packets of 64 bytes and a bandwidth of OC-192, an NP has to perform packet-processing
in only 52 ns. In case of OC-768 merely 13 ns are available. Additional services which
have to be optionally supported, require a programmable or configurable NP architecture.
These aspects rise a demand for alternative protocol-processing methodologies that rep-
resent more efficient concepts compared to general-purpose processor implementations.
These concepts can be classified into protocol specifications and protocol implementations
[27]. While the former tries to avoid the complexity of traditional network protocols, the
latter has the goal to efficiently map a given protocol or a protocol suite on an underlying
system architecture.

Some of the approaches, e.g. protocol specifications, are strictly dedicated to network-
ing applications. With the introduction of NPs, embedded microprocessor cores were ap-
plied to packet-processing tasks. Thus, recent approaches commonly try to adapt efficient
methodologies of microprocessors , e.g. multithreading and multiprocessing, for use in
network processors to increase the performance.

After an introduction of the packet-processing chain and networking functionalities which
have to be handled by a network processor, the state-of-the-art methodologies in protocol-
processing will be shown by an overview of various protocol specifications and protocol
implementations. The main intention of this chapter is to illustrate their capabilities and
limitations.

13

2.2. PACKET-PROCESSING CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

Fundamentals of predictive processing models are shown afterwards. They are indispens-
able for an application of data prediction. Branch prediction, which is an ubiquitous method
for acceleration of program execution in current microprocessors, will be explained.

Finally, a summary highlights drawbacks of different protocol-processing methods that are
currently used with respect to short processing latencies.

2.2 Packet-processing

In network nodes, packet processing follows frame processing which is performed by a
framer or a Medium Access Controller (MAC) . Thus, considering the OSI reference model,
packet-processing comprises parts of protocol layer two, layer three and higher. The main
task is to forward packets in direction towards their destination. It is based on one of two
transmission paradigms: connection-oriented (end-to-end) or connectionless (hop-by-hop).
The end-to-end model arranges the route from data source through the network to the sink
before transmissions of user data take place. Contrary to this, hop-by-hop determines the
route to the destination according to routing protocol information in each network node.
The decision is made there over which connected interface of the device the data has to be
sent.

As depicted in Figure 2.1, packet processing is divided into control-plane and data-plane
processing.

drop drop

classi−
fication

forwarding
scheduling

queuingparsing
&

header

checking

packet
reception mission

packet
trans−

reached
destination
processing

local

coming
link

in−
going
link

out−

control plane

data plane

metering
shaping

policing

Figure 2.1: Packet Processing Chain

Both cover different protocol-processing tasks. The control-plane performs network ad-
ministration tasks, e.g. routing information exchange and network administration.

Data-plane processing refers to data transfer towards the destination of a user packet. The
packet is sent from the incoming interface, along the data-plane processing path to the
outgoing interface. The target of the data is indicated by the destination address which is
part of the protocol control information (PCI).

JÜRGEN FOAG 14 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.2. PACKET-PROCESSING

Processing tasks contain computations, e.g. algebraic calculations, which require input
values. These values could be a part of the PCI of a packet. Otherwise, information,
e.g. network node states and connection parameters, is kept in the network node itself.
The output of processing tasks delivers information concerning the further handling of
the packet, e.g. whether the packet has to be forwarded or dropped. This dependency of
required input data consequently forces a sequential flow of execution.

In order to achieve required network capabilities in terms of performance and transfer qual-
ity, a common paradigm is to keep the network core simple but fast. Complex packet-
processing tasks are shifted to the network edge [28]. Thus, the packet-processing chain
within the network core possesses a simplified and reduced complexity. The compliance of
a service level agreement (SLA) between a customer and a service provider is verified at
the network domain ingress. Time-consuming functions, e.g. a multi-field classification of
the packet, are processed there. The classification which is subsequently performed in the
core, merely considers the type-of-service field of the PCI.

Subsequently, main processing tasks of an edge-router, as shown in Figure 2.1, will be
explained in detail. Considering performance requirements of a packet processor device,
only tasks of the data-plane will be treated. The following description is based on the
TCP/IP protocol suite.

2.2.1 Packet reception

A link-layer device, e.g. a framer or MAC, transfers received packets to the packet proces-
sor. The packet reception unit of the NP is responsible for tasks such as packet reassembly,
identification of the physical input port and memory allocation for packet buffering [29].

2.2.2 Header parsing & checking

In order to decide how to handle an incoming packet, its PCI has to be gathered. According
to the applied TCP/IP suite, the PCI consists of different protocol layer headers. The net-
work layer protocol for the Internet is the Internet protocol. Transport layer protocol types
of the TCP/IP suite are the transport control protocol and the user datagram protocol. In
Figure 2.2, an IP packet is shown, which contains UDP as the encapsulated transport layer
protocol.

Depending on the protocol-stack, each layer is built up of multiple fields which include in-
formation, e.g. source address, destination address, checksum, protocol identifiers. Header
parsing extracts particular fields which can be found at predefined offsets from the header
start address. However, optional fields cause a variable header length and, thus, increase
the field localization effort. Checking is used for an evaluation of the packet header, i.e.
whether packet data is corrupted or not.

JÜRGEN FOAG 15 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.2. PACKET-PROCESSING CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

UDP length UDP checksum

Header
length

Type−of−
service

Total
length

Fragment
offset

Time−to−
live Checksum

Header

Source
Address

Destination
Address

Version

Identification Flag

Protocol

Options

PCI PDU

Destination port
number

Source port
number

Data

IP v4

UDP

Figure 2.2: IPv4 packet

2.2.3 Forwarding

Forwarding is responsible for choosing the outgoing link for a packet in the direction to its
destination. The execution of mandatory tasks, which are specified in [30], are part of the
forwarding block as well. The routing decision is made based on the address entries of a
routing table to which the forwarding unit has access. Routes are defined by an address of
the destination network. This address is specified by an address prefix and a prefix length
[31]. The next hop, to which IP packets are forwarded, is derived from the longest prefix
match among available routes of the routing table. If the destination address corresponds to
the network node address, the packet destination is reached. In this case, the transmission
is terminated and local processing follows, e.g. control-protocol processing in the control-
plane.

2.2.4 Classification

The determination to which traffic class an incoming packet belongs to, is done by classifi-
cation. One or several fields of the PCI are extracted as input for the classification. Header
fields that are commonly used in case of a multi-field classification at the network edge are
source and destination address, physical input port, protocol types of the application layer,
and the Type-of-service field [32]. The classifier returns an output value that indirectly
characterizes the further treatment of the packet.

JÜRGEN FOAG 16 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.2. PACKET-PROCESSING

2.2.5 Policing, metering, shaping

Before operation, network customer and provider sign a Service Level Agreement (SLA)
that specifies service guarantees. During operation, the compliance of the SLA has to be
checked. The profile meter measures the actual flow traffic and determines for each packet
whether it complies with the agreed traffic profile. In case of conformity with the SLA,
the packet is handled without restrictions. Otherwise, the policer marks the packed as non-
conforming. As a consequence, it can be degraded to a lower service level or even dropped.

In order to avoid violations of the SLA, incoming traffic can be shaped through an insertion
of a packet delay instead of being dropped.

2.2.6 Queuing, scheduling, congestion avoidance

Packets that are admitted to transmission have to be gathered until the outgoing link sched-
uler activates transfer. Packets are buffered in one or multiple queues. In case of a single
queue, packets are enqueued and dequeued in order of their arrival. However, additional per
flow states of packets are not kept. Systems with multiple queues allow to handle separate
traffic flows individually. Their intention in case of CoS support is a preferential treatment
to preselected flows for differentiated service queues.

The number of queued packets has to be monitored due to a limited amount of buffer
and memory space. In order to avoid packet congestion in a network processor, a queue
manager is responsible for controlling queue states and for preventive packet discard in
case of congestion.

The packet order and consequently the decision which of the buffered packets has to be
transferred next to an outgoing link is made by a scheduler. The selection of the applied
scheduling algorithm is based on criteria such as fairness, implementation complexity and
quality-of-service guarantees.

The highest fairness is provided by Generalized Processor Sharing (GPS), which is an
idealized fluid queuing model that ensures a bandwidth allocation among all backlogged
sessions in a system [33] [34]. However, due to a finite granularity of queuing server
resources and packet sizes, GPS is un-implementable [35]. Weighted round robin (WRR)
serves a packet from each non-empty queue in turn. It can show unfairness for long periods
of time and need to know mean packet sizes in advance [35]. Weighted fair queuing (WFQ)
is a packet approximation algorithm of Generalized Processor Sharing (GPS) [33] [34].
WFQ serves packets in an increasing order of their virtual finish times in the analog GPS
model. An essential benefit is that it is capable to handle variable packets sizes and queue
weights. Queue weights are defined to assign a dedicated server priority to queues.

Some scheduling algorithms that are currently used in routers to provide CoS support are
weighted-round robin, weighted fair queuing (WFQ) as well as derivatives of WFQ, e.g.
class-based weighted fair queuing (CBWFQ) [29] [36].

JÜRGEN FOAG 17 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.3. PROTOCOL SPECIFICATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

2.2.7 Packet transmission

At the end of the processing chain, the packet transmission module transfers a packet to
the succeeding device. This might be either a switch fabric or a link-layer device, e.g. a
MAC. According to the underlying frame format which depends on the applied transmis-
sion media and the corresponding maximum transfer unit, packets might be divided into
several fragments. The corresponding process of dividing a packet into several parts is
called fragmentation.

2.2.8 Additional and optional tasks

Packet-processing devices may provide additional tasks which are not depicted in the Fig-
ure above. Some of them are listed below.

• Load balancing enables a distribution of packet transmission among different net-
work routes.

• If the system is used as a filter, e.g. a firewall, access control prevents transmission
of non-authorized traffic.

• Data encryption hides private data for non-authorized users. An example for network
environments, where data encryption is applied, are virtual private networks.

• Network address translation converts private addresses into addresses of the public
network.

• Accounting and billing enable monitoring and gathering of traffic statistic for charg-
ing customers and for network maintenance purposes.

2.3 Protocol specifications

2.3.1 Light-weight protocols

Commonly used network protocols have the objective to cover a wide variety of supported
applications. For the transport layer, TCP was defined in 1974 to provide connection-
oriented reliable delivery [37]. In 1980, UDP was added to enable connectionless trans-
mission [38]. The underlying network layer protocol for both is IP. Contrary to these
general-purpose transport protocols [25], light-weight protocols are designed to avoid the
complexity of traditional protocols. In [39], protocol processing of layers above the media
access layer is mentioned to be often the bottleneck in communication systems.

JÜRGEN FOAG 18 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.3. PROTOCOL SPECIFICATIONS

Light weight protocols, such as Xpress Transfer Protocol (XTP) and the Versatile Message
Transaction Protocol (VMTP), were defined to meet performance requirements of low la-
tency and delay restrictions for multi-media-applications and to overcome the sequential
structure of standardized protocols [40].

Key issues in light-weight protocols are:

• Fixed header format to simplify header parsing

• Implicit connection setup to avoid a transmission of additional control packets that
are required for explicit connection setup

Main differences of XTP compared to TCP are [41]:

• Orthogonal protocol functions with the intention to separate paradigms from policies:
separation of communication paradigm (datagram, virtual circuit, transaction) from
the error control policy employed

• Separation of rate control and flow control: Contrary to XTP, TCP does not provide
a rate control, which is a congestion based concept in the network node. Both, TCP
and XTP, however provide a flow control mechanism, which considers the buffer
space from end-to-end perspective.

• Explicit multicast support

VMTP was designed as application-oriented transport protocol for message and object
transfer and possesses multicast capability [42].

As a result of the evolution of transport protocols towards an application-orientation, light
weight protocols have not gained broad relevance. Instead, commonly used protocols are
TCP for reliable data transfer, UDP for unreliable transfer and the real-time transport pro-
tocol (RTP) for real-time communication [25].

2.3.2 Adaptive protocol-stacks

Fixed protocol-stacks may exhibit performance drawbacks due to the communication effort
between protocol layers and duplicated protocol tasks across layers. Adaptive protocol
stacks can be configured by a generation of a light-weight protocol stack implementation
that correlates exactly with predefined application requirements [43]. In order to achieve an
optimum adaptation, protocol requirements are specified in a formal language [44]. Instead
of an approach that is focused on layer-orientation, a function-based communication model

JÜRGEN FOAG 19 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

is proposed that considers the application [45] [46]. Redundant layer processing tasks are
removed through a division of protocol-stacks into functions instead of layers.

The heterogeneous structure of the Internet as well as the multitude of distributed applica-
tions however prevent the generation of an ideal protocol-stack. Thus, adaptive protocol-
stacks cannot be applied to achieve a significant processing delay reduction in current IP
networks.

2.4 Protocol implementations

Early packet processing systems were commonly build of a bus-based general-purpose
computer system with multiple network interfaces [18]. Each packet which has to be for-
warded is stored in a main memory. With the ongoing evolution of the Internet in terms of
throughput and supported applications, the requirements for efficient protocol-processing
in network nodes rose significantly. Studies concerning performance bottlenecks of packet
processing devices led to a classification of functions into compute-bound and memory-
bound. While compute-bound tasks use processor resources exclusively, memory-bound
tasks use processor resources combined with accesses to shared memory resources. The
more memory-bound a transfer is, the more likely it is that memory contention between
processors in a multi-processor system will limit speedup [47]. Essential time-consuming
factors of protocol processing functions, e.g. the checksum and next hop calculation, are
read and write access times of the memory. In [48], it is concluded that the performance of
protocol processing devices will most likely be limited by the capacity of shared busses and
the memory system. Furthermore, problems which result from memory-bound functions
are intensified by the fact that access latencies of memory systems using DRAMs decrease
at a slower speed than CPU clock rates increase [49].

In order to cope with the performance requirements and under consideration of the aspects
mentioned above, current protocol implementations are presented below.

2.4.1 Integrated-layer processing

According to [51], data manipulation is one of the costliest aspects of data transmission due
to packet load and store operations of RISC system architectures. Well-known examples
are encryption, checksum computation or compression. Integrated Layer Processing (ILP)
has been introduced to reduce the number of manipulations [52]. Traditional implementa-
tions pass packets from one protocol layer to another through exploitation of a system data
structure with several buffers as depicted in Figure 2.3 (a).

JÜRGEN FOAG 20 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

read

write

read

write

write

read

f 1

f 2

f 3

f 3

f 2

f 1

output buffer

input buffer

input buffer

output buffer

(a) (b)

Figure 2.3: Integrated-layer Processing

By contrast, ILP integrates a series of protocols and the corresponding functions fi in order
to combine accesses to packet data as shown in Figure 2.3 (b) [53]. The intention of the
concept is to achieve a higher data throughput.

In order to evaluate ILP, [54] points out that the concept has a limited applicability to
complex functions which are used for data manipulations. Considering the protocol layer
hierarchy, i.e. the encapsulation of higher layers into lower ones, only a few tasks of the
packet which are covered by all manipulation functions can be processed in an integrated
implementation. As a consequence, no significant reduction of the processing latency can
be achieved.

2.4.2 Connection-oriented protocol-processing optimization

TCP has been introduced to provide a connection-oriented and reliable data transmission
[55]. It comprises a TCP connection establishment and termination as well as an interactive
or bulk data flow. One evidence for the reliability is the generation of an acknowledgment
packet by a receiving host at one end of the TCP connection.

Optimization approaches which target on a performance increase of protocol-processing
in end systems, try to exploit this interaction between the hosts at the ends. Statistically
favored transmission states are factored out and will be handled as special cases. By a

JÜRGEN FOAG 21 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

dedicated implementation of them, an accelerated protocol-processing is possible. The
main two concepts are explained below.

Jacobsons’ header prediction

The header prediction scheme which is proposed by Jacobson calculates a predicted header
from a previous packet, which is assumed to be received next [56] [57]. It comprises a
prediction statement about the next expected segment for a current connection which is the
next in-sequence TCP data segment. This method is applied at the receiver site of data
transmission and is used for connection-oriented traffic [55]. Occurring events at receiver
site and the prediction flow are illustrated in Figure 2.4.

Prediction

Receive Packet 1

Send packet 1

Receive ACK 1
Send Paket 2

Receive ACK 2

Send ACK 1

Send ACK 2
Receive Packet 2

sender receiver

Figure 2.4: Jacobsons’ header prediction

Woodsides’ protocol bypass

In [58], a generalization of Jacobson’s Header Prediction is given by Woodside. It extends
the application of the prediction scheme to the data sender, i.e. if TCP is sending data, the
next expected segment for this connection is an ACK for outstanding data.

Based on the 80 percent/20 percent-principle [59], packets which refer to frequent transmis-
sion states, bypass the common protocol-stack. Instead processing is done by a dedicated
fast path. This path could be used for example for packets with identical PCI characteris-
tics. In Figure 2.6, the implementation of the concept within an end system is shown.

The main operation that is performed by the concept is the increase of PDU numbers by
one for each layer at sender and receiver side. In addition, an acknowledgment is sent after
a receive event. Two key operations decide whether the bypass is taken or not: packet
identification and bypass header match test. The second item ensures that data is for the

JÜRGEN FOAG 22 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

Prediction

Prediction

Prediction

Receive Packet 1

Send packet 1

Receive ACK 1
Send Paket 2

Receive ACK 2

Send ACK 1

Send ACK 2
Receive Packet 2

sender receiver

Figure 2.5: Woodsides’ Protocol Bypassing Scheme

send filter

receive filter

end system

bypass
send shared

data
protocol

stack
shared

data
receive
bypass

application

network

Figure 2.6: Protocol Bypass Architecture

right connection and provides the expected sequence number. The benefit of this approach
is a significant increase of the system throughput and a reduction of processing delay at
termination nodes.

Both approaches shown above allow a delay reduction for packets which bypass slow-path
processing. Thus, for a period of time, a lower mean processing latency can be achieved.
However, conceptual restrictions of the protocol bypass and TCP header prediction method

JÜRGEN FOAG 23 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

with respect to an application in network nodes are:

1. The application of both concepts is limited to network end systems. Transit systems
within the network are not supported [60].

2. The performed prediction is based on traffic connection states. Stateless transport
protocols, e.g. UDP, are not supported. Furthermore, only packets which have a
relation to the previous can be predicted.

3. In case of partial misprediction of packet data, no additional prediction is requested
for remaining processing. This singularity of a bypass test operation limits the la-
tency reduction.

2.4.3 Multiprocessing / Parallel protocol-processing

In order to cope with an increased effort for protocol-processing, Multiprocessing (MP)
was introduced [61]. MP realizes the simultaneous processing of packets through multiple
processing units that work in parallel.

A classification of parallel-processing architecture models that utilize MP can be found in
[62]. Three different categories are defined that differ in the implemented parallelism. The
kind of parallelism is expressed by the type of the replicated unit, e.g. per-protocol, per-
connection, per-packet, per-layer and per-protocol function. The corresponding process
architectures are categorized in horizontal, vertical and hybrid [63]. Although each of
these process architectures has different structural characteristics, it is generally possible to
implement the same protocol functionality.

Horizontal process architectures assign processing units (PU) to protocol layers or to pro-
tocol tasks. Each PU performs the appropriate protocol-processing operations on the data
packet. Two kinds of horizontal process architectures are layer parallelism and functional
parallelism as shown in Figure 2.7.

Layer parallelism is shown in Figure 2.7 (a). Each protocol layer is is assigned to a
PU. Note that PUs are illustrated as dark rectangles in the following figure. Packets are
transferred from one PU to another. According to [63], its main drawback is a fixed
amount of parallelism. In Figure 2.7 (b), functional (task) parallelism is illustrated.
Different protocol-processing tasks are performed in parallel by multiple PUs. While the
use of multiple processing units potentially increase the performance, disadvantages are a
synchronization overhead between the PUs.

Vertical process architectures assign processes of the operation system to connections or
messages. Figure 2.8 shows two examples for vertical process architectures are connec-
tional parallelism and message parallelism.

JÜRGEN FOAG 24 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

LAYER N + 1

Application Interface

LAYER N

Network Interface

Application Interface

Network Interface

MANAGEMENT
CONNECTION

CONTROL
FLOW

CONGESTION
CONTROLRETRANSMIT

DATA

TRANSMIT
DATA

to receiver

from receiver

LAYER N − 1

(b)(a)

Figure 2.7: Horizontal Process Architectures

The connectional parallelism in Figure 2.8 (a) shows that different connections Ci are as-
signed to separate PUs. Each PU process all packets which refer to this connection. Con-
nectional parallelism can be applied for example to network servers that offer connection-
oriented services. However, connectionless traffic cannot not be supported by the concept.
Message parallelism, which is shown in Figure 2.8 (b), associates a separate processing
unit with one message, i.e. packet. The overhead that results from resource management
and scheduling represents a main disadvantage of message parallelism [63].

Hybrid models realize horizontal and vertical parts together in one system. For instance,
current network processors possess several programmable processing units which fulfill
the majority of protocol processing tasks in message parallelism. In addition, hardwired
coprocessor modules for accelerated execution of dedicated processing tasks, i.e. checksum
calculation, correspond to functional parallelism.

As mentioned in the previous chapter, network processors and their architectures target
on a throughput increase through the efficient use of system resources. They commonly
consist of multiple processor cores that are used for packet-processing tasks. For NPs,
two common models for multiprocessing have been established [64]. They differ in the
deployment of the processor cores in the NP with regard to packet-processing tasks. The
run-to-completion model in Figure 2.9 is characterized by the assignment of a packet to a

JÜRGEN FOAG 25 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

LAYER
N + 1

LAYER
N

LAYER
N − 1

Application Interface

Network Interface

(b)

LAYER N + 1

LAYER N

LAYER N − 1

Application Interface

Network Interface

(a)

C1 C2 C3 C4

Figure 2.8: Vertical Process Architectures

single processor core. The complete packet processing is performed by this core.

packet 1

packet 3

packet 2
processor

core 2

processor
core 3

processor
core 1

Figure 2.9: Run-to-completion model

The processing latency of a single packet depends on the processing model of the assigned
processor core and on the interaction between cores in terms of accesses to shared

JÜRGEN FOAG 26 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

resources.

The systolic model, which is a generalized form of pipelining [65], transfers a packet from
one processor core to the next until processing is complete. As a common implementation
component of CPUs, pipelining overlaps multiple processing steps in parallel [66]. These
steps, which are called pipeline stages, are connected to form a pipe. Data units, which
have to be executed, enter the pipe at one end, pass through and leave after completion of
processing. For networking applications, pipelining can be applied on packet forwarding
in two dimensions. Besides instruction pipelining, the protocol processing chain can be
divided into individual functional stages, e.g. receive, classification, forwarding and trans-
mit stage. During processing, a packet is assigned to one of these functional stages and
passes through the functional pipeline. Figure 2.10 depicts a systolic model built up of
three stages.

tim
e

packet 1

packet 2

packet 3

packet 1

packet 2

packet 3

packet 1

packet 2

packet 3

packet 1packet 2packet 3
processor

core 2
processor

core 3
processor

core 1

Figure 2.10: Systolic model

The main goal of the model is to achieve a throughput increase. However, the processing
delay for the systolic processing model is given by the sum of the latencies for all pipeline
stages and remains unchanged [67].

2.4.4 Multithreading

Multithreading (MT) was introduced in the area of microprocessors to increase the number
of instructions per cycle. Its intention is to “hide” processing latency that results from op-
erations which access devices external to the processor, e.g. an off-chip address lookup. It

JÜRGEN FOAG 27 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

is enabled through the capability of context switches between threads to obtain an efficient
load of CPU resources.

A thread is defined as a single sequential flow of control within a program [68] [69]. Each
thread acts like a sequential program. A thread has a beginning, a sequence and an end.
At any given time during the runtime of the thread, there is additionally a single point of
execution. An n-way MT processor can execute as many different threads as it has support
for, i.e. n, and possesses the capability to store the states of n threads. Multithreading can
be divided into three categories:

• Coarse-grained multithreading (CMT)

• Fine-grained multithreading (FMT)

• Simultaneous multithreading (SMT)

Figure 2.11 illustrates CMT (a) and FMT (b) [70].

Fu
nc

tio
na

l U
ni

ts

t / clock cycles

t / clock cycles

Idle Slot

Thread 3Thread 2

Thread 1 Thread 4

Fu
nc

tio
na

l U
ni

ts

a)

b)

Figure 2.11: Coarse-grained and Fine-grained Multithreading

Both approaches execute one software thread at a time. When a switch to another thread is
invoked, the processor saves the state of that thread and loads the state of the next thread.

JÜRGEN FOAG 28 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

A CMT architecture merely executes a single thread at a time, but does not possess on-chip
register states for multiple threads. A switch between contexts requires a certain number
time of processor cycles. For example, the multithreaded PowerPC processor described in
[71] performs a context switch in 4 to 6 processor cycles. FMT enables the processor to
switch between contexts on every cycle [72]. Thus, processor resources are shared at a finer
granularity. Finally, SMT is a technique which combines the capabilities of fine-grained
multithreading with the multiple-issue per instruction feature of super-scalar microproces-
sors [73] [24].

Idle Slot

Thread 3Thread 2

Thread 1 Thread 4

Fu
nc

tio
na

l U
ni

ts

t / clock cycles

Figure 2.12: Simultaneous Multithreading

The majority of network processors uses multithreading (MT) as processing model for
protocol-processing. Examples are given in [21] [22].

MT requires a considerable amount of hardware resources and complexity [74]. The es-
sential advantage is an increased system performance for memory bound applications when
multiple context threads share resources.

In order to analyze the processing time of a network processor that exploits MT, the MT
processor system in Figure 2.13 is defined.

A packet, which is received by the system, is assigned to one of the two contexts in the PU.
Figure 2.14 shows the processing flow for two packets.

For demonstration purposes, the complete protocol processing chain of a packet i is defined
to three tasks Ti j with j ∈ {a,b,c}. Tasks of one packet refer to the same thread. Each of
the first two tasks initiate an access request to the shared memory (MEM). After the access
is given by the bus arbiter, data are transferred from the PU through the bus to the memory
(MEM) or in reverse direction.

It is furthermore assumed that data dependencies in the packets exist, which concern their
protocol-stack and which are resolved sequentially. Consequently, succeeding tasks cannot
be started before the termination of the previous.

JÜRGEN FOAG 29 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

PU

Memory

Context 1

Context 2

Bus

Figure 2.13: 2-way Multithreading implementation

L M 1

L M 2

T1a

T2a

T1b

T2b

T1c

T2c

Arbiter/BUS

PU / Context 1

PU / Context 2

Memory

Figure 2.14: 2-way MT processing flow

The packet-processing latencies LM1 and LM2 consist of accumulated execution times in
processing units (PU) as well as arbitration delays of shared resources and memory (MEM)
access times. While the throughput is increased compared to scalar processors, MT with
one functional unit does not have fundamental impacts towards reduced processing delays
[75] [76].

In order to obtain a substantial reduction of protocol processing latency compared to the
MT processor implementation above, two conceivable alternatives are depicted below. It
should be noted that both have an additional effort in terms of system resources.

The multiprocessor (MP) system in Figure 2.15 consists of two two-way super-scalar
CPUs. The two pipelines of each processor are noted as pipe a and b.

The processing flow of two packets is shown in Figure 2.16.

After the reception of a packet, e.g. packet 1, both corresponding tasks T1a and T1b

are started in parallel. It is still assumed that task T1b depends on data that result from
execution of T1a. Consequently, the execution of T1b is started with assumed input
values. The last task T1c terminates earlier than in case of the 2-way MT implementation

JÜRGEN FOAG 30 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.4. PROTOCOL IMPLEMENTATIONS

Memory 1

PU 1 PU 2

Memory 2

Bus 1

Pipe a

Pipe b

Pipe a

Pipe b

Bus 2

Figure 2.15: Super-scalar processor implementation

T1a

T1b

T1c

T2a

T2b

T2c

L S 1

*PU 1 / pipe a

PU 2 / pipe a

PU 1 / pipe b

PU 2 / pipe a

Memory 1

Arbiter/BUS 1

Arbiter/BUS 2

Memory 2

L S 2

*

Figure 2.16: Processing flow of a super-scalar processor implementation

above. Thus, a significant reduction of LS1 can be achieved, if (1) data dependencies of
succeeding tasks of one thread could be resolved at the beginning of processing, and (2) the
protocol-processing of a packet has a non-negligible compute-bound part. An additional ef-
fort for the verification of the result assumption, which is indicated by stars, has to be spent.

A second alternative, which exploits MT, is shown in Figure 2.17.

JÜRGEN FOAG 31 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.4. PROTOCOL IMPLEMENTATIONS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

Memory 1

PU 1 PU 2

Memory 2

Bus 1 Bus 2

Context 1 Context 1

Context 2Context 2

Figure 2.17: Multithreading Implementation (2 functional processing units)

It is assumed that both MT processors support each 2 contexts. Both processors have access
on separate busses and memories. The flow of packet-processing in the system can be seen
in Figure 2.18.

T1a T1c

T1b

T2a

T2b

T2c*

L M22

PU 1 / Context 1

PU 1 / Context 2

PU 2 / Context 1

PU 2 / Context 2

Arbiter/BUS 2

Arbiter/BUS 1

*

L M2

Memory 2

Memory 1

1

Figure 2.18: Processing flow of a MT implementation (2 functional PU)

To each PU a single packet is assigned. The context switch from T1a to T1b is done
conditionally, i.e. the result of T1a is assumed to be known at this time. The verification
whether this assumption was done correctly is checked by the additional task highlighted
by a star. The completion of processing for a packet is done earlier than in case of the

JÜRGEN FOAG 32 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.5. PROCESSING FLOW

single MT processor above. Consequently, the processing delay can be reduced by a
increased amount of system resources.

Summarized, processing latencies of the last two system architectures are lower than the
processing latency of a single MT network processors.

2.5 Processing flow

The delay for passing the complete packet processing chain is mainly influenced by the
processing model in terms of task order.

Network processors commonly implement a sequential flow of tasks that refer to a single
packet. Figure 2.19 illustrates the reference protocol-stack implementation of the IXP 1200
[23].

routing ?

IP verify LPM

Bridging

EnqueueReceive
next packet

no

yes

Figure 2.19: Sequential processing flow IXP 1200

The processing order follows a sequential flow of tasks. After the reception of a packet,
either bridging has to be done or routing. In case of routing, the longest prefix match
(LPM) is done after the verification of the IP header. At the end, the packet is enqueued
until transmission. It should be noted that each of the blocks in the figure consist of several
processing tasks.

The essential drawback is the latency which is the sum of the single processing delays. An
alternative model for the task processing order implements pseudo-parallelism. After the
termination of conditional functions within the packet processing chain, dependant tasks
are started. In order to apply pseudo-parallel execution, parallel processing units are re-
quired. The presence of parallel processing resources can be used to apply the model as a
reference model for evaluation purposes.

JÜRGEN FOAG 33 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.6. PREDICTIVE PROCESSING MODELS CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

2.6 Predictive processing models

In the area of data processing, prediction is most commonly used to avoid latency penalties
and to improve system performance. The prediction of values or events makes it possible
to speculatively overcome data- or control- dependencies. The objective is to accelerate
process execution through a process invocation, which is initiated earlier.

However, an uncertainty is inherent to the concept in case of occurring mispredictions. In
other words, the assumed value or event may not correspond to the actual one. In this
case, speculatively executed processes have to be suspended and obtained results have to
be dropped. The control-path or data-path which is required to be taken instead, has to be
followed additionally. In general, prediction can be divided into control-path prediction
and data value prediction [77].

A brief introduction explains the fundamentals of data prediction. As a common application
field of predictive processing models, branch prediction schemes used in microprocessors
will be explained subsequently.

2.6.1 Fundamentals

Prediction is defined as a statement about one or more future events of a process, which are
based on [78]:

• a theory

• observations

The first condition requires a statement of grounds for the prediction and a specification
of premises under which the prediction can be applied. The second condition ensures that
every prediction is based on an analysis of the past, i.e. is empirically funded.

A prediction which is obtained by analysis or observations from the past is only useful, if
the time stability hypothesis is valid, i.e. if statistical characteristics of the process are time
invariant.

2.6.2 Data prediction

Prediction is applied in different application fields. Some examples are file access predic-
tion [79], message prediction in workstation clusters [80], as well as microprocessor branch
prediction.

For the last, program branches impede machine performance though conditional branches.
Continuation of program execution is not possible until a condition is not resolved and the

JÜRGEN FOAG 34 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.6. PREDICTIVE PROCESSING MODELS

push cs

pop ds

cmp dl, 0x4

jnz 0x5e9

?

Processor
Pipeline

05D4
05D6
05D7
05D8
05DB
05DD
05E0
05E2
05E6
05E8
05E9

mov di,bx
push cs
pop ds
cmp dl, 0x4
jnz 0x5e9
push dx
pop di
lea si,[0x39a]
jmp short 0x5f5
nop
lea si, [0x340]

Program

Figure 2.20: Program execution in microprocessors

program target address is calculated [81]. Figure 2.20 illustrates these difficulties which
might occur in microprocessors during program execution.

The decision whether a jump at address 0x05DB has to be done or not, depends on the
results of the previous compare instruction. Consequently, the fetch operation for the in-
struction register has to wait until the previous instruction has reached the last pipeline
stage. As processor pipelines get deeper or issuing rate gets higher, penalties imposed by
branches get larger. One way to reduce this processing penalty is to predict whether a
branch will be taken or not. The corresponding address of the next instruction can be de-
rived and pre-fetching, decoding and execution of it can be done earlier. However, in case
of a branch misprediction, i.e. the predicted result of the conditional branch was incorrect,
the partially processed instructions after the condition have to be dropped. Subsequently,
the program execution is continued at the correct address. Summarized, the objective of
branch prediction is to achieve a penalty reduction of program execution time.

In order to reach increasing values for the hit accuracy, various dynamic prediction schemes
have been developed [82] [83] [84]. For example, Yeh and Patt proposed a two-level adap-
tive branch prediction scheme. The average prediction hit accuracy of it achieves 97 percent
[85].

It should be noted that research of branch prediction was experimentally driven at the be-
ginning. In other words, little effort was spent to analyze fundamentally the characteristics
which enable an accurate prediction. Instead, most effort has been focused on an attain-
ment of prediction schemes with high accuracies without disposing of exact models for the

JÜRGEN FOAG 35 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.7. NETWORK TRAFFIC CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

instruction flow. Later, analysis has been done to derive models for microprocessor pro-
gram execution. For example, Evers demonstrated that branch correlation is an essential
reason for enabling prediction [86].

Value prediction is another methodology for enhancing microprocessor performance. It
contains a prediction of output values for operation at run-time. As a consequence, these
predicted values are used to trigger execution of subsequent data-dependent instructions
speculatively. By use of a hybrid value predictor, as presented in [87], a prediction hit rate
of 83 percent can be achieved.

2.7 Network Traffic

Network simulations and characterizations of communication networks target on the
knowledge of network traffic behavior to dimension efficiently networks and network de-
vices [88]. An example for the exploitation of this knowledge is Internet traffic prediction,
which can be used to predict the behavior of packets that are sent through communication
networks [89].

Network characteristics

Extensive research has been done to understand the nature of network traffic. An essential
result was the observation of self-similarity in various Internet traffic measurements [90]
[91] [92].

Self-similarity is used for processes which show scale-independent unchanged correlational
structure. In other words, the appearance is unchanged regardless of the scale at which it is
viewed.

Self-similarity is closely associated with heavy-tailed distributions. A distribution is heavy-
tailed if

P[X ≥ x]∼ x−α

with x → ∞,0 < α < 2. The expression heavy-tailed results from extremely large values
with non-negligible probability [93]. Such distributions decline via a power law with small
exponent, i.e. less than 2. As a consequence, when α < 2, the random variable shows
infinite variance.

Self-similar processes can exhibit long-range dependency. A process with long-range de-
pendency is defined by an autocorrelation function of

sxx ∼ x−β

JÜRGEN FOAG 36 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.7. NETWORK TRAFFIC

with x → ∞,0 < β < 1. Further fundamentals about long memory processes can be found
in [94].

Summarized, some essential observations concerning network traffic characteristics are
listed in the following. However, the exact reasons for these phenomenons are not entirely
determined.

• According to [95], burst sizes of FTP transfers and Telnet inter-arrival times follow
a heavy-tail distribution.

• Studies in [96] show that transmission and idle times of Ethernet traffic between
source and destination pairs are heavy-tailed.

• The reason of heavy-tail distributions for WWW traffic is explained by larger docu-
ment sizes of WWW documents compared to UNIX files, e.g. text files or executa-
bles [90]. Furthermore, due to user behavior, heavy-tailed distributions can be found
in the durations of HTTP sessions, i.e. the behavior of WWW application, and in
interarrival-times of HTTP requests.

• In [97], self-similarity within network traffic is explained by TCP congestion control
mechanisms: Slow-start-stage, congestion-avoidance-stage and exponential-back
off-stage.

Statistics

Measured data of the Internet leads to a classification of network traffic into routing data
and user data. While the former is necessary for network administration, the latter transmit
application data for the network source to the destination. Several measurements have been
done to understand the routing behavior in the Internet [98] [99]. However, the obtained
results are not disclosed due to confidentiality reasons. Some publicly available statistics
are presented in this section.

A traffic statistic gathered by MCI Worldcom, is shown in Table 2.1.

Protocol Percentage

TCP 90

UDP 5 - 10

ICMP 1 - 3

other 0 - 4

Table 2.1: Protocol breakdown MCI Worldcom 1997

The data refer to measurement of the Internet backbone performed in 1997 [100]. Varia-
tions of the statistical distribution results from variations during daytime. Other network

JÜRGEN FOAG 37 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

2.8. SUMMARY CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES

layer protocols, e.g. IPv6 and encapsulated IP (IP-in-IP), show an almost negligible per-
centage. The most frequently used Internet applications are Web traffic, DNS, SMTP, FTP,
NNTP and Telnet. The majority of the applications relies on TCP as transport layer proto-
col. TCP traffic comes along with a significant traffic for an exchange of acknowledgment
packets which can be seen in the table above.

A more recent traffic statistic can be seen in Table 2.2.

Protocol Percentage

TCP 82 - 90

UDP 8 - 16

ICMP 1.5 - 3

other 0.5

Table 2.2: Protocol breakdown Sprintlab 2002

The results are taken from the IP Monitoring system which is deployed in the Sprint Tier-1
IP backbone network. The data are monitored at different Points-of-Presence (POP) in the
USA. The reasons which have an impact on the variation from the first statistic in Table 2.1
to the second in Table 2.2 are shown below [101] [102].

• Elephants-and-mice phenomena: New applications lead to a statistical distribution
which is characterized by a small number of high-volume streams, so-called ”ele-
phants”, and many low-volume traffic streams, ”mice”. While the former often refers
to streaming media applications, the latter results from TCP acknowledgment pack-
ets.

• New Applications: On some links, traffic is composed of more than 60 percent of
new applications. Examples are distributed file sharing (Napster, Gnutella, etc.) and
streaming data (Realaudio, Windows Media Player, etc.).

• Firewalls: Common firewall configurations encourage rather TCP/HTTP than UDP
for real-time applications.

• POPs: Application access differs significantly at POPs due to local arrangements of
servers, e.g. Content Delivery Networking servers.

2.8 Summary

In this chapter, packet processing methodologies have been addressed. Some of them are
currently applied to network processors. The main target of the concepts is to achieve a
high throughput and to optimize the system load.

JÜRGEN FOAG 38 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 2. PROTOCOL-PROCESSING METHODOLOGIES 2.8. SUMMARY

The properties have been reviewed with regard to their benefits. It has been observed that
the TCP/IP protocol suite displaced dedicated protocol specifications, e.g. XTP and VMTP.
The complex structure of the Internet furthermore eliminates an efficient application of
adaptive protocol-stacks.

The performance of protocol implementations considerably depends on the character of
the performed function, i.e. memory-bound or compute-bound. In order to cope with
these functions and to provide an efficient packet-processing, several concepts have been
proposed. Multiprocessing and multithreading became nearly ubiquitous in state-of-the art
network processor. The former provides multiple execution units to allow a simultaneous
processing of packets. The latter hides access times for memory-bound functions through
the support of multiple program contexts in a single microprocessor. Both concepts enable
a significant increase of system throughput. The fact that both concepts provide flexibility
in terms of software programmability furthermore intensifies their benefit.

The evaluation of the methods has shown that the task processing-flow causes a conceptual
limitation of the processing delay. The main reason is a sequential order for the processing
of tasks, such as forwarding, classification and queuing, of packets. Alternative processing
models were taken to demonstrate the inherent drawback of this traditional processing flow
within different implementations.

The commonly applied processing flow in NPs has been studied. A pseudo-parallel model
that can execute tasks in parallel processing units possesses the capability to reduce the
delay for passing the packet-processing chain.

Finally, a brief introduction in data prediction highlighted the benefits of methods which
exploit value assumptions that are required for continuation of data processing.

JÜRGEN FOAG 39 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 3

Speculative protocol-processing concept

3.1 Introduction

In order to address the delay limitation mentioned in the previous chapter and consequently
to achieve lower values for the processing latency, a dyadic concept for protocol processing
is proposed in the following. It consists of:

• Protocol-Stack Prediction

• Speculative Packet Processing

The targeted reduction of latencies is possible through an early resolution of data depen-
dencies which are inherent in data packets. The concept adapts a speculative processing
scheme to a networking environment. Figure 3.1 shows the processing flow of the concept.

40

CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT 3.2. PROTOCOL-STACK PREDICTION

Prediction

Protocol−stack

Packet
Processing

Speculative
packet

packet
receive

packet
transmit

Figure 3.1: Processing concept

Protocol-stack prediction delivers an information that represents an assumption concerning
the protocol-stack of a packet. The protocol-stack defines the procedure how a received
packet has to be handled, e.g. if the packets has to be forwarded to another network node or
has to be dropped in case of corrupted packet data. The prediction furthermore indicates the
types of protocol layers and if optional fields are part of the packet header. The speculative
packet processing derives the concrete processing flow as well as the corresponding tasks
thereafter and starts their execution. After completion, the actual protocol-stack is shown
to the prediction unit for update purposes.

3.2 Protocol-stack prediction

Protocol-stack Prediction has the objective to correctly predict the protocol-stack charac-
teristics of packets which will be received next by the system. The protocol-stack represents
a hierarchy of protocols which work together to provide required services on a communi-
cation network.

Routers comprise the physical layer, the data-link layer and the network layer. If QoS is
supported, differentiated packet or traffic flow handling might be required. In this case,
routers could be extended towards coverage of the transport layer as well. The prediction
scheme is depicted in Figure 3.2.

A predefined number of packets pk with k ∈ {−n, ...,−1,0}, which were received earlier,
are monitored and parts of their PCIs which are relevant for the prediction are gathered.
According to the preselected prediction algorithm, the assumed protocol stack characteris-
tics of the packet p1 received next can be concluded. Thus, input for the algorithm are the

JÜRGEN FOAG 41 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

3.2. PROTOCOL-STACK PREDICTION CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT

L2 L3 L4 Payload L2 L3 L4 Payload L2 L3 L4 Payload L2 L3 L4 Payload

Prediction

packet p

0
t

packet p packet ppacket p−1 0 1−n

...

Figure 3.2: Protocol-stack prediction scheme

headers of layer 2 (L2), layer 3 (L3) and layer 4 (L4). It should be mentioned that the layers
of the TCP/IP suite do not exactly correspond to the layers of the ISO reference model of
communication. However, it is assumed that IP refers to layer 3 and TCP/UDP refers to
layer 4.

As mentioned in the introduction, the prediction is not merely restricted to a statement that
refers to the protocol types of individual layers. It encompasses furthermore the complete
processing flow of a current packet as shown in Figure 3.3.

The analysis of PCI layer 3 cannot be started until its type is derived from the PCI of
the lower layer, i.e. layer 2. This can be done by a derivation of the position for the
corresponding layer type field in PCI layer 2. The content of the field is extracted and
compared with a list of supported protocols by the system. The necessary effort for these
operations is limited. Consequently, a prediction benefit in terms of processing time would
be negligible if merely the layer fields would be extracted. However, several essential
considerations have to be done which have an impact on the complexity of protocol-stack
analysis:

• The decision whether a principal necessity for the content of layer 3 is given depends
on results of several tasks. If a packet should be corrupted due to transmission failures
the analysis of the PCI layer 2 locates the error. Consequently, the packet has to be
dropped instead of being forwarded to layer 3 processing. Similar to this, the next hop
calculation, i.e. the determination of the network path towards the packet destination
and the physical interface, is only needed if the target address of layer 2 is not equal
to the local address, i.e. the packet is dedicated to this local device.

• The analysis of PCI upper protocol-layer fields considers merely the type of the upper
protocol layer. Consequently, the derivation of PCI upper protocol-layer fields have
to be done in several stages.

• Optional PCI fields have an impact on the length of the complete protocol-layer

JÜRGEN FOAG 42 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT 3.2. PROTOCOL-STACK PREDICTION

PDU
Layer 4

PCI
Layer 2

PCI
Layer 3

PCI
Layer 4

PCI
Layer 4

PCI
Layer 2

Analysis
protocol type

layer 3

Verification
header length

Target address
compare

PCI
Layer 3

Verification
header length

(optional fields)

Target address
compare

(forward packet ?)

Verification
Checksum

Verification
Checksum

Target address
lookup

Target address
lookup

(forward frame ?)

Analysis
protocol type

layer 4

Figure 3.3: Coverage of protocol-stack prediction

header. The offset that indicates the beginning of the upper layer PCI can be de-
rived not until the presence of optional PCI fields has been checked.

Thus, time consuming tasks which have to be done between the analysis of upper layer PCI
fields prevent from a fast derivation of the protocol-stack.

Data prediction follows a predefined algorithm that commonly uses frequencies of events
that occurred before. In case of protocol-stack prediction, frequencies of received packets
are used as input for the computation of prediction values. A common principle that is ap-
plied relies on the most-frequently used (MFU) event. A MFU model can be characterized
by an output value that corresponds to the highest values of a set of event frequencies. It is
applied for example in one-level branch prediction schemes [103] [104].

The applied prediction covers the network and the transport layer. The type of protocol
layer two is used as an input for the prediction, i.e. a prediction is made under the condition
of a certain type of protocol layer two.

As mentioned above, protocol types may provide optional header fields beyond. Consid-
ering the header encapsulation of higher layer PCIs, header field boundaries and offsets

JÜRGEN FOAG 43 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

3.3. SPECULATIVE PROTOCOL-PROCESSING CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT

consequently depend on the presence of these optional fields. In order to provide a predic-
tion nevertheless, an indication flag could be defined to extent the prediction to a coverage
of optional fields.

In order to apply a prediction scheme for a flexible networking system environment and to
provide an information that specifies i.e. protocols, daytimes, etc., statistical characteristics
of the observed process have to be time-invariant. Thus, it has to be ensured that the char-
acteristics of a process in the past will remain valid in the future. This premise is called
time stability hypothesis. Studies about network traffic characteristics observed Ethernet
traffic [91], wide area network traffic [95], WWW traffic [90] and TCP traffic [93] [97].
The results show a correlative behavior and heavy-tail distributions [94]. However, under
consideration of these observations, a pragmatic starting point allows to perform a predic-
tion nevertheless. It has to be possible therefore to assume that the time stability hypothesis
is basically satisfied [78]. Considering the results of [101], this assumption has been made.

The prediction module has furthermore the requirement to adapt its output to variations of
network statistics, e.g. during daytimes. It is furthermore assumed that the time stability
hypothesis is valid for these limited periods of time, i.e. that statistical characteristics are
time-invariant during this period. The integration of a dynamic behavior for the prediction
enables thereafter a continuous adaptation to changed network traffic statistics.

In order to enable a dynamic adaptation of the prediction, it has to be ensured that a modi-
fied traffic distribution leads to a modified protocol-stack prediction. Parameters that deter-
mine the prediction values are the packets which have been received before. The amount of
input data depends on the prediction algorithm. If the time when a packet was received is
registered too, the amount of input data can be defined by a sliding window [55]. If the time
stamp of packet reception is not kept, the variability can be realized by a cyclic mechanism
that periodically resets the data base of the computation data for the prediction.

Performance constraints that refer to certain protocol types can require a favored process-
ing, e.g. real-time traffic which commonly relies on UDP for the transport layer. In order to
cope with this demand, a weight factor can be defined to assign a higher prediction priority.
This means that the calculation of a predicted protocol-stack considers the frequencies of
received packets as well as the priority weights for the protocol-stacks.

In summary, the goal of the prediction is to provide an information that specifies the
protocol-stack of a next packet. This data determines the processing order and the par-
ticular tasks which have to be performed with the packet.

3.3 Speculative protocol-processing

The objective of speculative protocol processing is to perform the entire protocol-
processing of a packet in a shorter period of time, compared to traditional methods. The

JÜRGEN FOAG 44 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT 3.3. SPECULATIVE PROTOCOL-PROCESSING

approach is based on the fact that required input data are not entirely known at the initi-
ation of task processing. The unknown data and flag, e.g. protocol layer types and flags
concerning optional fields, are derived from the protocol-stack prediction.

The order of processing depends on several factors, e.g. the protocol types and supported
applications such as DiffServ, MPLS, IPSec, VPN. In addition, due to performance require-
ments, execution order can differ at the network edge, in the core and in termination nodes.
In Fig. 3.4, the flow of speculative data packet processing is illustrated.

hL h

T L21
T L22

T L31

T L2C
T L24

T L44

T L23

T L32
T L3C

T L33

T L41
T L42

T L43
T L45

Figure 3.4: Speculative Packet Processing (Layer 2 and 3 hit)

Tasks TLi j , which refer to one protocol layer Li with i ∈ {2,3,4}, are conceived to be
processed sequentially. The order of execution is expressed by increasing values of j. The
execution of tasks in a speculative processing model depends on the availability of parallel
processing resources.

In case of speculative processing, execution of first tasks for protocol layer 2, 3 and 4 , i.e.
TL21 , TL31 and TL41 , are initiated simultaneously. Each layer possesses one task, which deals
with the determination of the protocol type for the next upper layer. Further on, this task is
called checktask. Checktasks of layer 2 and 3, i.e. TL2C and TL3C are highlighted in grey.

After completion of a checktask, the actual protocol layer type of the current packet has
been analyzed. This resolution of the data dependency that concerns the type of the higher
protocol-layer enables the partial verification of the performed prediction. This is illus-
trated by dashed lines. At this point, two possible cases can occur:

1. Prediction hit

2. Misprediction

In order to avoid misunderstandings, it should be emphasized that protocol stack prediction
delivers one single information that identifies the complete stack. Thus, the prediction
delivers an assumption for layer 2 AND higher layers. By contrast, checktask resolution
merely serves to evaluate the prediction statement with respect to one layer.

In case of a prediction hit, it can be concluded that control information concerning the
protocol layer has been delivered correctly by the prediction. Tasks, which have been

JÜRGEN FOAG 45 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

3.3. SPECULATIVE PROTOCOL-PROCESSING CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT

initiated earlier, were based on a correct input. Consequently, results which have been
obtained earlier, can be kept. The execution of simultaneous tasks can proceed. Finally,
remaining tasks are started subsequently.

Otherwise, i.e. in case of misprediction, the assumption of a value, which identifies the
higher layer protocol type, was false. This means, instructions that have been already
performed, were founded on a wrong assumption concerning the packet header type. As a
consequence, results which were obtained have to be dropped. Furthermore, tasks which
are executed simultaneously to the checktask have to be aborted. In order to finish packet
processing, the correct information that identifies the upper layer type is derived from the
checktask and processing of the corresponding layer is restarted upon correct input data.
In Figure 3.5, these tasks are marked with stars T ∗

Li j
. Even if partial results of higher

protocol layers might be correct, an individual verification does not take place. All results
of higher layers are dropped instead to avoid an additional computation complexity. An
additional processing effort is necessary for the derivation of the actual tasks which have
to be processed instead the mispredicted tasks. This effort in terms of time is referred to
as the additional processing time (APT). Reasons for a value APT 6= 0 might be memory
table lookups or a clearance of processor pipelines.

The checktask TL3C similarly evaluates the prediction concerning layer 4. Depending on
the correctness of the prediction, result values are kept or dropped and processing of layer
4 is proceeded or restarted.

In case of a correct prediction for both layers, layer 3 and 4, the complete processing time
is called the hit latency Lhh. “h” signifies a prediction hit. While the left index refers to
protocol layer three, the right corresponds to layer four.

L mh

T L21
T L22

T L31

T L2C
T L24

T L44

T L31
T L32

T L32
T L3C

T L3C
T L33

T L33

T L41

T L23

T L42
T L43

T L41
T L42

T L43
T L44

* * * *

** **

Figure 3.5: Speculative Packet Processing (Layer 2 miss / Layer 3 hit)

The figure above shows that it can be conceived to extend the scheme towards multi-level
prediction. After verification of protocol layer 3 and in case of failure of the first prediction,
a second protocol stack prediction can be requested. The second prediction is based on the
present knowledge of layer 3. Thus, this prediction stage comprises a statement about
protocol layer 4 in conjunction with the already known lower layers.

This implies that an uncertainty of an incorrectly predicted layer 4 persists until T ∗
L3C

has
been processed. In the figure above, dashed lines illustrate the time, when results of check-
task calculation are given.

JÜRGEN FOAG 46 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT 3.3. SPECULATIVE PROTOCOL-PROCESSING

In case of an incorrect first and a correct second prediction, the processing latency is Lmh.
“m” signifies a misprediction.

Figure 3.6 pictures a protocol-processing flow in case of two mispredictions. The process-
ing delay is Lmm.

L mm

T L21
T L22

T L31

T L2C
T L24

T L44

T L31
T L32

T L32
T L3C

T L3C
T L33

T L33

T L41
T L43

T L23

T L42
T L43

T L41
T L42

T L43
T L41

T L42
T

4
T L45L4

’

* * * *

*** ’ ’ ’ ’

Figure 3.6: Speculative Packet Processing (Layer 2 and 3 miss)

The fourth case that can occur is a correct prediction of layer three and a wrong for layer 4.
Hereby, no second prediction concerning layer 4 has to be requested. The obtained latency
is Lhm.

In order to illustrate the difference of the proposed concept and traditional methods, Figure
3.7 (a) shows the sequential processing flow of protocol processing and (b) the pseudo-
parallel flow.

T L21
T L22

T L2C
T L24

T L31
T L32

T L3C
T L33

T L44
T L41

T L42
T L43

T L45
T L23

T L21
T L22

T L2C
T L24

T L31
T L32

T L3C
T L33

T L44
T L41

T L42
T L43

T L45

T L23

L s

L pll

(b)

(a)

Figure 3.7: Sequential and pseudo-parallel processing

The corresponding latencies are Ls in case of sequential processing and Lpll in case of
pseudo-parallel processing.

JÜRGEN FOAG 47 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

3.4. CONCEPT BENEFIT CHAPTER 3. SPECULATIVE PROTOCOL-PROCESSING CONCEPT

3.4 Concept benefit

According to the given prediction, one of four values for the latency can be obtained, i.e.
Lhh, Lhm, Lmh or Lmm. For a period of time and a sample of N packets, the mean processing
latency LN is

LN =
1
4

[

1
Nhh

∑
i

Lhhi +
1

Nhm
∑

j
Lhm j +

1
Nmh

∑
k

Lmhk +
1

Nmm
∑

l

Lmml

]

(3.1)

with the number of packets Nhh in case of layer three hit / layer four hit, Nhm in case of
layer three hit / layer four miss, Nmh in case of layer three miss / layer four hit and Nmm

in case of layer three miss / layer four miss. Packet numbers for the four possible case are
indicated by i, j, k and l.

In case of mispredictions, processing delays have equal or higher values than in case of cor-
rect protocol-stack assumptions. The essential benefit of the speculative processing method
is a mean processing delay LN which possesses a lower value than alternative processing
models, e.g. sequential or pseudo-parallel processing.

The proposed concept is not restricted concerning systems where it can be applied. A
usage in network nodes, e.g. routers, can be aspired to as well as an integration in network
terminations, i.e. host computers.

JÜRGEN FOAG 48 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 4

Abstract concept evaluation

4.1 Introduction

The processing model which was introduced in the previous chapter was motivated by the
demand for short processing latencies in network nodes. The evaluation of the specula-
tive concept will be done in two stages. This procedure is inspired by the ultimate goal,
which is the evaluation of the speculative processing concept and not the development of
an optimized architecture for the concept. The first stage consciously extracts details and
constraints which are specific for an architectural implementation, e.g. access methods to
shared system resources and network protocols. The main intention of this evaluation part
is to derive parameters which are generally bound to the concept and not to its architectural
implementation and to determine their quantitative impact on the processing performance.
This will be the subject of this chapter. Succeeding chapters are concerned with the second
evaluation stage. There, the concept will be implemented in a system architecture and the
impact of added details will be analyzed with respect to performance and workload.

The first evaluation stage allows to obtain an estimation of the order of magnitude for rele-
vant performance metrics of the processing concept. For each concept-relevant parameter,
an evaluation scenario is worked out. The separate scenarios are analyzed to reflect the
particular impact of the corresponding parameter on the system behavior. The realization
of the concept evaluation is done upon an analytical study and not a simulation. During
this analysis other parameters are set to fixed values.

The quality of the concept is expressed by two relevant performance metrics, namely la-
tency reduction and additional costs. The latency reduction measures the processing la-
tency of the speculative concept in comparison to the reference model of the analysis.
Additional costs represent the additional workload of processing resources which perform
speculative processing in comparison to the reference model. It should be noted that no im-
plementation costs of processing resources are meant. Both metrics are defined as relative
quantities that refer to a reference system. For this purpose, the pseudo-parallel processing

49

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

model, which has been mentioned in chapter 2, will be used. It possesses parallel pro-
cessing capabilities and differs from the speculative approach in the initiation time of task
execution, i.e. the execution of a specific layer’s task is not started until corresponding
data-dependencies are resolved, and the lack of a prediction.

4.2 Evaluation

4.2.1 Predefinitions

Tasks and layers

In order to fulfill execution of a complete process flow, process tasks that belong together
are joined to a unit. Each unit is assigned to one layer that comprises a well-defined service.
Individual layers are grouped hierarchically as shown in Figure 4.1.

TL21
TL2C

TL22

L31
T TL3C

T
1L4

T
2L3

TL1C
T

2L1T
1L1Layer 1

Layer 2

Layer 3

Layer 4

Figure 4.1: Layer hierarchy

The interaction between layers is done through interfaces. A task represents one or multi-
ple functions to fulfill the execution of certain processing functionalities. Considering the
control-path that decides the process flow, it can be distinguished between two types of
tasks: normal tasks1 and checktasks. Normal tasks are characterized by an execution that
has no impact on other layers. By contrast, the execution of checktasks allows to derive
types of other layers. Thus, they condition the control-path of the process. Tasks which
have an impact on processing of the same layer are referred to as normal tasks. For the

1in the following, the expressions function, normal task and task are equivalent

JÜRGEN FOAG 50 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

analysis, it is defined that tasks referring to one layer are processed in a sequential order
starting with task 1. The nomenclature is:

• TLi j : jth task of layer i

• TLiC: checktask of layer i

Processing models

Both models, i.e. the speculative model as well as the pseudo-parallel reference model are
defined as systems that possess the capability for a concurrent execution of tasks which
refer to different layers.

In order to analyze the impact of concept parameters on the system performance, the struc-
ture of tasks is restricted to a minimum number of tasks that enable a speculative processing
model and allow a significant analysis.

The execution of tasks proceeds until all unfinished tasks are completed. Tasks which were
speculatively processed might be dropped directly after the detection of a misprediction.
The results of corresponding tasks are dropped. Then, the actual tasks have to be processed
until their completion.

The lowest layer for the analysis is predefined to layer 2. The processing of tasks that refer
to layer 2 is done without an input condition. It is assumed that the type of layer 2 is known
before start of processing.

Reference model

As mentioned above, the pseudo-parallel model starts task processing of a layer not until
the layer type is identified. This depends on the execution of the corresponding checktask.
Figure 4.2 shows the reference model which contains layer two and three.

TL21
TL22

TL2C

L31
T

L pll

Figure 4.2: Pseudo-parallel processing implementation

TL21 , TL22 and TL31 are used as normal tasks. The result of the checktask TL2C allows to
conclude on the type of layer three.

JÜRGEN FOAG 51 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

Speculative processing model

The system which is evaluated relies on the speculative processing model. Two processing
cases can occur for the given task structure. Figure 4.3 illustrates a correct prediction with
the prediction hit latency Lh.

TL21
TL22

TL2C

L31
T

L h

Figure 4.3: Speculative processing / case prediction hit

The time when the type of layer 3 has been analyzed, is highlighted by a dotted line. Else,
Figure 4.4 depicts a prediction miss with the latency Lm.

TL21
TL22

TL2C

L m

T TL31L31
*

Figure 4.4: Speculative processing / case misprediction

If a misprediction for layer three is detected, the speculatively processed task TL31 is
identified as a wrongly performed task. Its processing is interrupted at once and the
actual task T ∗

L31
is initiated instead. The additional effort for the conclusion on task T ∗

L31
is

neglected during this introduction of the processing models.

Metrics

The two observed metrics are:

• Reduction of processing time (latency reduction)

• Increase of processing costs (additional costs)

JÜRGEN FOAG 52 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

Latency reduction

The mean reduction of processing time r is the relation between speculative processing and
pseudo-parallel processing latency. It is defined to

r = 1−
Lsp

Lpll
(4.1)

Lsp represents the mean processing time for the speculative processing and Lpll the pro-
cessing time in case of pseudo-parallel processing. Lsp is the linear combination of Lh and
Lm according to

Lsp =
1

Nh +Nm
(NhLh +NmLm) (4.2)

Nh and Nm are the numbers of correct predictions and mispredictions, respectively. The
complete number of received packets is N = Nh +Nm.

The range of values for the reduction is r < +1. A value of 0 < r < 1 indicates positive
latency reduction, r = 0 no improvement and r < 0 represents a penalty in processing time.

Additional costs

In order to quantify the workload of a processing resource, “costs” are defined. The as-
signed value corresponds to the time when a processing resource is busy. Else, if a process-
ing resource is idle, the costs value is set to 0. The mean additional costs (AC) function is
defined to as the ratio of processing workload of the speculative and of the pseudo-parallel
model:

AC =
csp

cpll
−1 (4.3)

where csp represents the mean costs in case of pseudo-parallel processing and cpll the costs
in case of pseudo-parallel processing.

In case of pseudo-parallel processing, we have:

cpll = ∑
i, j

TLi j (4.4)

with the layers i and the tasks j. Apart from numerical values, j includes c, i.e. checktasks
are considered in the equation.

JÜRGEN FOAG 53 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

The mean costs csp for the speculative processing model consist of costs in case of hit
prediction ch and costs in case of misprediction cm. They are

csp =
Nh

N
ch +

Nm

N
cm (4.5)

The former is

ch = ∑
i, j

TLi j (4.6)

The latter consists of correctly and wrongly processed tasks.

tt

TL21
TL22

TL2C

TL31

TL21
TL22

TL2C

TL31
TL31

TL31

(a)

*

(b)

*

’

Figure 4.5: Costs in case of misprediction

In Figure 4.5, the two cases that can occur are depicted. If TL31 ≤ TL21 + TL2c (Figure
4.5(a)), the costs cm can be derived as

cm = ∑
i, j

TLi j +∑
i, j

TLi∗j (4.7)

Otherwise, i.e. TL31 > TL21 +TL2c (Figure 4.5(b)), the costs cm are

cm = ∑
i, j

TLi j +∑
i, j

TLi∗j +∑
i, j

TLi
′
j

(4.8)

cm is composed of processing tasks TLi j that include normal tasks and checktasks as well as
one or multiple actual tasks TLi∗j

which are executed after interruption of wrongly processed
tasks. In case of a misprediction, costs of wrongly processed and aborted tasks TLi

′
j
have to

be added. Furthermore, by processing more than two layers, a superposition of mispredic-
tions and prediction hits might occur. Consequently, equations (4.6) and (4.7) have to be
generalized accordingly.

JÜRGEN FOAG 54 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

Analytical model

The analytical model of the system considers six different input parameters Pi with i ∈
{1, ...,6} that are immanent to the speculative processing model. The parameters are listed
below.

1. Number of predicted layers (P1)

2. Additional processing time in case of misprediction (P2)

3. Prediction accuracy (P3)

4. Resolution time of control-flow conditions, i.e. the time when the control-flow con-
ditions are resolved (P4)

5. Processing time of control-flow conditions, i.e. the duration of the checktask (P5)

6. Prediction model: single-level or multi-level (P6)

Figure 4.6 illustrates the black box which contains the analytical model. The mean values
r and AC represents the system output.

AC

rN h

Nm

P 4P 1 P 2 P 5 P 6

(P)3

Figure 4.6: Analytical model

For the analytical model, the applied prediction is reduced to a numerical value that is
defined by the fraction of correct predictions Nh and the complete number of events N. The
value corresponds to P3. The complete number of events is the sum of correct predictions
Nh and mispredictions Nm. During this analysis, a time-variant behavior of the prediction
is not applied.

Numerical values

Values for task execution times are chosen by estimation of their processing effort. For
instance, check-tasks are assumed to be short. Considering analogies to networking, tasks
of higher layers are defined to demand a higher effort in terms of time consumption [55].
During the analysis, the applied hierarchy is defined to comprise layer 2 and higher.

JÜRGEN FOAG 55 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

4.2.2 Scenarios

The number of the employed scenarios for the abstract evaluation corresponds to the ob-
served parameters mentioned above. The impact of these parameters on latency and costs
is examined in the following scenarios. For the analysis, the following assumptions have
been made:

• Task execution times are set to TLi j
= 10τ for tasks below the highest layer, TLiC

= 5τ
for checktasks and TLi j

= 20τ for the highest layer of the inspected scenario.

• The processing covers layer 2 and 3.

• The additional processing time (APT) is set to TAPT = 0.

• The processing time of task TL31
possesses a well-defined value. A value extension in

terms of an additional processing time is expressed by δ. The default value is δ = 0.

• Static values for the prediction hit ratio are 0.2, 0.5 and 0.8.

• An a priori knowledge for the type of layer 2 is assumed.

Deviations from these assumptions are explicitly mentioned in the particular scenario.

4.2.2.1 Scenario 1: Number of predicted layers

In the first scenario, the impact of predicted protocol layer is analyzed. Processing models
which encompass layer 2 and 3 are depicted in Figure 4.7.

TL21
TL22

TL2C

L31
T

pll 2-3
L

(a)

TL21
TL22

TL2C

L31
T

L h

(b)

TL21
TL22

TL2C

L31
T

L m

(c)

T L31m

Figure 4.7: Processing flows (layer 2 - 3)

While Figure 4.7 (a) shows the sequence of tasks in the reference model, (b) and (c) illus-
trate the flow of the speculative model. It is assumed that the type of layer 2 is known a
priori. The corresponding latencies are:

JÜRGEN FOAG 56 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

Lpll2−3 = TL21 +TL2C +max{TL22;TL31} (4.9)

Lh = max{TL21 +TL2C +TL22;TL31} (4.10)

Lm = TL21 +TL2C +max{TL22;TL31} (4.11)

The mean latency for the speculative model finally is:

Lsp2−3 =
1
N

(LhNh +Lm [N−Nh]) (4.12)

Figures 4.8 and 4.9 show the processing flow up to layer 4 and 5 , respectively. The mean
latencies for the speculative model Lsp2−4 and Lsp2−5 can be derived likewise from correctly
and wrongly performed predictions.

TL2C
TL2 TL21 2

L31
T TL32

TL3C

TL41

pll 2-4
L

Figure 4.8: Pseudo-parallel processing flow (layer 2 - 4)

TL2C
TL2 TL21 2

L31
T TL32

TL3C

TL41
TL42

TL4C

TL51

pll 2-5
L

Figure 4.9: Pseudo-parallel processing flow (layer 2 - 5)

Figure 4.10 highlights that latency reduction increases with an increasing amount of pre-
dicted layers.

The ratio of correct and wrong predictions compared to the complete analysis time is
expressed by the relation of correct predictions and mispredictions Ni, Nii and Niii with
i ∈ {m,h} for processing up to layer 3, 4 and 5 and the total number of events N. The

JÜRGEN FOAG 57 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

0

0.1

0.2

0.3

0.4

0.5

AC

0.1 0.15 0.2 0.25 0.3 0.35

2−3

2−4

2−5

r

Figure 4.10: Scenario 1: AC,r / Parameter: number of predicted layers

ratio of prediction hits and failures to the accumulated number of both is Ni/N = 0.5,
Nii/N = 0.25 and Niii/N = 0.125. In case of a prediction up to layer 5, r can be reduced
up to 31 %. However, it can be mentioned that additional costs increase more than r. This
results in a value for AC of 48 %.

The figures 4.11 and 4.12 illustrate the graphs for different ratios for correct predictions
and mispredictions. While Nh/N exclusively refers to the processing structure that covers
layers 2 and 3, Nhh/N is used for the structure up to layer 4 and Nhhh/N up to layer 5. Thus,
it has to be mentioned that no relation is defined between these hit ratios. Figure 4.11 shows
AC and r for Nh/N = 0.5 for layers 2 - 3, Nhh/N = 0.5 for layers 2 - 4 and Nhhh/N = 0.5
for layers 2 - 5. The remaining ratios for each processing structure have identical values.
Considering network traffic statistics that allow higher values for correct prediction ratios
[101], Figure 4.12 illustrates the properties for Nh/N = 0.7 for processing up to layer 3,
Nhh/N = 0.7 for processing up to layer 4 and Nhhh/N = 0.7 if layer 5 is part of processing.

AC

r0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5

2-3

2-4 2-5

Figure 4.11: Scenario 1: AC,r(Nh/N = Nhh/N = Nhhh/N = 0.5) / Parameter: number of
predicted layers

It can be seen that an increase of correct predictions leads to a delay reduction. In parallel,
additional costs are decreased due to a lower processing effort.

JÜRGEN FOAG 58 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

0
0.1 0.2 0.3 0.4 0.5

AC

r
0.6

2-5

2-4
2-3

0.1

0.2

Figure 4.12: Scenario 1: AC,r(Nh/N = Nhh/N = Nhhh/N = 0.7) / Parameter: number of
predicted layers

4.2.2.2 Scenario 2: Additional processing time in case of misprediction

In case of occurring mispredictions, simultaneously processed tasks have to be aborted.
The tasks which have to be processed instead have to be derived from the results of the
checktasks. In order to express the corresponding additional effort, the additional process-
ing time TAPT is defined. Thus, the processing delay for misprediction of layer 3 is

L∗m = TL21 +TL2C +max{TL22 ;TAPT +TL31} (4.13)

The graphs for r = f unction(TAPT) are shown in Figure 4.13.

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Additional processing time

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g
tim

e

R
ed

uc
tio

n

N h /N = 0.8

Nh /N = 0.5

Nh /N = 0.2

Figure 4.13: Scenario 2: r = f unction(TAPT)

Note that large values for TAPT result in an increase of the speculative processing delay
compared to the reference model. Figure 4.14 shows the additional costs for different
ratios of the prediction accuracy Nh

N .

JÜRGEN FOAG 59 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

−0.8 −0.6 −0.4 −0.2 0 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Reduction speculative / pseudo−parallel processing time

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g
tim

e
A

dd
iti

on
al

 C
os

ts

T >> 0APT

T = 0APT

N / N = 0.2h

N / N = 0.5h

N / N = 0.8h

Figure 4.14: Scenario 2: AC,r / Parameter: TAPT

The figure above shows that additional costs equivalently arise with an increasing value
for TAPT . It has to be targeted that TAPT has to be reduced to achieve an optimized delay
reduction.

4.2.2.3 Scenario 3: Prediction accuracy

The influence of prediction accuracy is herein observed. With (4.1), (4.9), (4.11), and
(4.12), the reduction of processing time is given by

r = 1−β1
Nh

N
−β2 = (1−β2)−β1

Nh

N
(4.14)

with β1 = Lh−Lm
Lpll

and β2 = Lm
Lpll

.

According to (4.9) and (4.11), we obtain

β2 = 1 (4.15)

and consequently

r ∼
Nh

N
(4.16)

Due to (4.5), we obtain linear behavior of additional costs

AC ∼−
Nh

N
(4.17)

JÜRGEN FOAG 60 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

Figure 4.15 shows the graph of additional costs and delay reduction for different values of
Nh.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Reduction speculative / pseudo−parallel processing time

A
dd

iti
on

al
 c

os
ts

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g

N h /N = 0

Nh /N = 1

Figure 4.15: Scenario 3: AC,r / Parameter: prediction accuracy

The processing delay reduction increases and costs decrease in case of higher values for
Nh
N . If no prediction failure occurs, a maximum value for the latency reduction of r = 28%
is achieved.

In case of misprediction, an additional demand for control-flow processing might arise, i.e.
TAPT 6= 0. According to equation 4.13, the processing latency in case of mispredictions
extends to

L∗m = TL21 +TL2C +max{TL22 ;TAPT +TL31} (4.18)

Consequently, the reduction is less than in 4.14:

r∗ = 1−
Lh−Lm

∗

Lpll

Nh

N
−

Lm
∗

Lpll
(4.19)

The assumption that TL31 ≥ TL22 yields

r∗ = r +
TAPT

Lpll

Nh

N
−

TAPT

Lpll
(4.20)

Figure 4.16 illustrates the consequences of different values for TAPT , i.e. TAPT = 0τ and
TAPT = 10τ.

If the ratio for correct predictions is less than 50 %, the delay reduction becomes negative.
This means that the mean speculative processing delay is higher than the processing delay
of the reference model.

JÜRGEN FOAG 61 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

Reduction speculative / pseudo−parallel processing time
sp

ec
ul

at
iv

e
/ p

se
ud

o−
pa

ra
lle

l p
ro

ce
ss

in
g

A
dd

iti
on

al
 c

os
ts

Nh / N = 0

Nh / N −> 1

TAPT = 0

TAPT τ

τ

= 10

Figure 4.16: Scenario 3: AC,r / Parameter: prediction accuracy, TAPT 6= 0)

The impact of a varied value for the execution time TL31 is observed. An additional process-
ing time is defined by δ. It should be mentioned that δ and APT are different parameters.
While the former is used for variations of TL31 , the latter refers to additional effort in case of
a misprediction. The resulting processing time for the task in layer three is T ′

L31
= TL31 +δ.

Figure 4.17 illustrates the additional costs and the delay reduction for different values of δ,
i.e. δ1 = 5τ and δ1 = 40τ.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Reduction speculative / pseudo−parallel processing time

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g
A

dd
iti

on
al

 c
os

ts

δ1 > 0

δ1δ 2 >

N / N = 0h

N / N −> 1h

δ = 0

Figure 4.17: Scenario 3: AC,r / Parameter: prediction accuracy, T ′
L31

= TL31 +δ

It can be observed that for Nh
N → 1 the delay reduction possesses a local maximum. The

corresponding value for δ can be derived from TL31 + δ = TL21 + TL2c + TL22 . For the pre-
defined values, δ is 5 τ. This behavior results from the fact, that for δ < 5τ, δ has only an
impact on Lpll, but not on Lsp. For values δ > 5τ, the mean reduction r decreases.

JÜRGEN FOAG 62 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.2. EVALUATION

4.2.2.4 Scenario 4: Resolution time of control-flow conditions

Now, the impact of the time is considered when the execution of the checktask has been
completed. In order to reduce the complexity of the task structure, the processing model is
simplified towards two normal tasks and the checktask TL2C as shown in Figure 4.18.

TL21

L31
T

TL2C

Figure 4.18: Scenario 4: Completion time of the checktask

The graphs for Nh/N = 0.5 and Nh/N = 0.8 are shown in Figure 4.19. The dotted line
illustrates the graph direction for increasing values of TL2C .

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

Reduction speculative / pseudo−parallel processing time

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g
A

dd
iti

on
al

 c
os

ts

Nh /N = 0.8

N h /N = 0.5

L2 C
T

L2C
T = 0

L2C
T

Figure 4.19: Scenario 4: AC,r / Parameter: resolution time of control-flow conditions

Both, the reduction of mean processing delay r as well as AC possess a local maximum
which result from the overlap of synchronous processing tasks. Maximum values for r are
obtained if TL2C +TL21 = TL31 . Maximum additional costs AC are given for TL2C = TL31 , i.e.
if a maximum contribution of mispredicted tasks TL31 occurs. The following conclusions
can be drawn: For early resolution times of the control-flow condition, the main part of a
speculative processing delay are time-consuming tasks of higher layers. For late resolution
times, the dominant factor for Lsp is the processing layer two. Consequently, an maximum
mean latency reduction can be achieved if the task processing order meets TL2C + TL21 =
TL31 .

JÜRGEN FOAG 63 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.2. EVALUATION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

4.2.2.5 Scenario 5: Processing time of control-flow conditions

The difference to the previous scenario lies in the time when the control-flow condition is
resolved, i.e. when checktask processing is completed. Thus, the impact of the position of
the checktask in relation to the start of processing has been studied in scenario 4. Now, the
pure processing duration of the checktask independent of its sequential processing position
in the corresponding layer is observed. The computation time of the checktask has no direct
relationship to the time when the checktask is invoked and when it completes processing.
The processing time of the control-flow condition is considered in Figure 4.20. The non-
linear behavior results from the superposition of possible processing cases shown in Figure
4.7a-c on r and AC.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Processing time of control-flow condition

La
te

nc
y

re
du

ct
io

n
/ A

dd
iti

on
al

 c
os

ts

N / N = 0.8

N / N = 0.5h

h

Figure 4.20: Scenario 5: Latency reduction / additional cost

The reduction of the processing delay continuously decreases with increasing values for
TL2C . A local break of the graph is obtained if TL21 +TL2C = TL31 . i.e. if TL31 is completely
processed in case of a misprediction. The additional costs and the latency reduction is
depicted in Figure 4.21.

The figure shows that the additional costs possess a local maximum for TL2C = TL31 −
TL21 . Thus, it can be concluded that processing delays for the resolution of control-flow
conditions that refer to upper layers should have small processing times.

4.2.2.6 Scenario 6: Prediction model: single-level or multi-level

For the speculative processing model, the prediction delivers an information that represents
the complete structure of the predicted layers, i.e. the types of the predicted layers. The
verification whether the prediction of a certain layer was correct takes place in an ascend-
ing order of protocol-layer numbers. In case of a correctness, i.e. a layer was correctly

JÜRGEN FOAG 64 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.3. CONCLUSION

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

Reduction speculative / pseudo−parallel processing time

A
dd

iti
on

al
 C

os
ts

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g

N / N = 0.5h

N / N = 0.8h

L2 C
T = 0

L2 C
T = 0L2 C

T >> 0

L2 C
T >> 0

Figure 4.21: Scenario 5: AC,r / Parameter: processing time of control-flow conditions

predicted, processing all the verified layer and the upper layers proceeds. Otherwise, pro-
cessing of the verified layer and the upper layers is aborted. For the determination of upper
protocol layer, two alternatives exist as shown in Figure 4.22.

In case of a single-level prediction (SLP), no further prediction will be requested for the
current data. The determination of upper layers as well as the further processing follows
the pseudo-parallel processing model. Else, a multi-level prediction (MLP) predicts upper
layers based on the obtained knowledge of lower layers that already have been determined.
Figure 4.23 shows additional costs and the mean reduction r for Nii/N = 0.25 and Niii/N =
0.125.

It can be seen that MLP has an increased value for r compared to SLP. However, additional
costs are likewise increased in the MLP model. If the prediction comprises layer 2 up to 5
and implements MLP, a mean reduction of 32 % is achieved.

4.3 Conclusion

The potential of the speculative processing model has been estimated through an abstract
concept evaluation. For this purpose, a pseudo-parallel model has been taken as reference.
Some essential observations that have been made during the analysis inspire an implemen-
tation of the speculative processing model in the next chapter.

• The prediction of multiple layers leads to additional resource costs due to probably
occurring mispredictions. However, a notable delay reduction can be achieved. If a

JÜRGEN FOAG 65 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

4.3. CONCLUSION CHAPTER 4. ABSTRACT CONCEPT EVALUATION

TL2C
TL2 TL21 2

L31
T TL32

TL3CL31
T TL3C

TL41
TL4C

TL41
TL42

TL4C

TL51
TL51

TL2C
TL2 TL21 2

L31
T TL32

TL3CL31
T TL3C

TL41
TL4C

TL51

TL41
TL42

TL4C

TL51

*

* * *

* * *

*

* * *

* * *

(a)

(b)

Figure 4.22: Single-level prediction (a) and multi-level prediction (b)

multi-level prediction is applied, additional costs are required compared to a single-
level prediction. However, processing delays can be significantly reduced through

L
2−4

L
2−5

L 2−5

L 2−4

sp
ec

ul
at

iv
e

/ p
se

ud
o−

pa
ra

lle
l p

ro
ce

ss
in

g
tim

e

A
dd

iti
on

al
 c

os
t

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4

Reduction speculative / pseudo−parallel processing time

SLP

SLP

MLP

MLP

Figure 4.23: Scenario 6: AC,r / Parameter: prediction model

JÜRGEN FOAG 66 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 4. ABSTRACT CONCEPT EVALUATION 4.3. CONCLUSION

multiple prediction requests.

• An essential parameter that permits a large reduction of latencies together with small
cost increases is prediction accuracy. Thus, a substantial effort should be spent for
realization of a prediction instance to achieve large values of the prediction hit ratio.

• The resolution times of control flow conditions have a strong impact on the mean
latency reduction and the additional costs. In order to achieve a maximum value for
the mean delay reduction by meeting the local maximum, the processing order of
tasks and the checktask position have to be optimized.

• Maximum values for the delay reduction and minimum values for additional costs
can be achieved through small processing times of checktasks.

• In case of mispredictions, additional processing delay for abortion and re-initiation
of functions significantly reduces the concept’s benefit. Thus, short interrupt times
have to be striven for by means of appropriate mechanisms.

The observed parameters can be classified into parameters which can be optimized, e.g.
by the processing flow, and parameters which are invariant due to application constraints.
Examples for parameters that can be optimized are the prediction accuracy and the support
of a multi-level prediction. The first parameter can be modified through an appropriate
specification and implementation of a prediction algorithm. The employment of a multi-
level prediction model generally depends on the presence of multiple layers. Considering
networking applications, bridges are specified to comprise processing up to layer 2 and
common routers up to layer 3. Routers that additionally implement protocol-processing of
the transport layer analyze furthermore layer 4 as well. It has to be concluded, however,
that the presence of encrypted data, which are not processed by the system, limits the value
for the latency reduction. In the networking area, layer-2-tunneling and layer-3-tunneling,
e.g. IPSec with tunnel-mode, are examples for encrypted packets that limit the latency
reduction [105].

An optimization of the processing order of tasks and the position of a checktask commonly
depend on the application, too. Considering Internet protocol-processing, tasks such as
header verification or identification of the IP version are performed before others, e.g. a
next-hop lookup. Consequently, a modification of the processing order is only reasonable
for a limited number of tasks.

The computation time of checktasks and the additional processing time in case of mispre-
dictions have to be optimized by a well-suited implementation of the processing model.

JÜRGEN FOAG 67 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 5

System design

5.1 Introduction

The goal of this part is the creation of a system architecture that allows an evaluation of the
proposed speculative processing concept in a networking-specific environment.

The striven result will be neither an optimized architecture implementation that allows a
comparison with currently available NPs nor a development that covers backend stages of
the VLSI-design flow. The design amount is restricted towards a system-level description to
enable a fast application-specific evaluation of the system. This comprises a consideration
of probable bottlenecks that limit system performance. Examples are task concurrencies in
processor units and shared elements, e.g. busses or memory devices [47].

In order to evaluate the speculative processing model, an exemplary implementation for
the system is defined. At first, the application is specified followed by the corresponding
requirements. This contains the application area of the system as well as the supported
protocol-stack. The functional specification is described thereafter. The functional pro-
cessing flow is divided into three parts, namely input processing, protocol processing and
output processing. While input and output processing are specified as partitions that are
independent of the underlying processing model, protocol processing implements the spec-
ulative model and the pseudo-parallel reference model, respectively. This classification of
processing parts allows a dedicated evaluation of the associated processing model. Finally,
the exemplary system architecture will be explained.

68

CHAPTER 5. SYSTEM DESIGN 5.2. CONSTRAINTS OF THE APPLICATION EXAMPLE

5.2 Constraints of the application example

5.2.1 System environment

Routers are commonly classified into several categories according to their application, e.g.
backbone routers and access or edge routers [106]. While the former is focused on fast
and simple packet forwarding, the latter performs protocol-processing with an increased
complexity. For example, if an edge router support CoS, a classification of a received
packet has to be done when entering an ISP domain. The concept evaluation performed in
the previous chapter showed that the mean latency reduction can be increased by a larger
amount of predicted layers. Consequently, an application as an edge router is selected for
the system environment of the processing model.

5.2.2 Supported protocols

Common protocols for edge routers are Gigabit Ethernet, Packet over SONET, ATM and,
for higher protocol layers, the TCP/UDP/IP protocol suite [107] [108]. The range of sup-
ported protocols for the defined system is limited as depicted in Figure 5.1.

Gigabit−
Ethernet POS

TCP UDP

HDLC

IP Version 6IP Version 4 protocols
ControlLayer 3

Layer 2

Layer 4

LLC / SNAP

Figure 5.1: Supported protocols

The supported protocols in the figure above cover the protocol layers two up to four. The
prediction algorithm, which will be introduced later, exploits the type of protocol layer 2 to
differentiate the traffic which has been received and to provide a higher accuracy. The type
is signalized by a POS-framer or a medium access control device before the system. The
employed protocols for the physical and the link layer are Gigabit-Ethernet (G-E) [109] and
Point-to-Point in HDLC-like framing [110]. The reason for their support is derived from
their current application in edge router devices as well as initiatives which are focused on

JÜRGEN FOAG 69 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

a universal protocol support for different physical and link layers (POS-PHY Level 3 (OC-
48) and POS-PHY Level 4 (OC-192)) . Two examples for framer devices that support both
protocol types are described in [111] and [112]. The data-link layer type is indicated to the
system by the framer or MAC device. For the higher layers, the TCP/IP suite is applied,
i.e. the network layer protocols are the Internet protocol versions 4 and 6. TCP and UDP
are used as transport layer protocols. The employed control protocols in the figure above
are the Internet Control Message Protocol (ICMP) and Open Short Path First (OSPF) .

5.2.3 Supported services

The system supports differentiated services to provide CoS. It comprises tasks for multi-
field classification [113], policing and accounting [114].

5.2.4 Protocol-stack

The skeleton of the applied software protocol-stack used is adapted from the reference
implementation of the Intel IXP Network Processor IXP1200 / Release 1.0 [23]. Extensions
that implement differentiated services are derived from [115]. Further completions result
from the Berkeley Software Distribution version 4.4 BSD-Lite) [116]. The IP version 6
code is taken from [117].

5.3 Functional specification

5.3.1 Overview

The protocol-stack processing of a packet is assigned to a processing unit, which is re-
ferred to as protocol-processing element (PPE). The functional processing flow of a PPE is
depicted in Figure 5.2.

It includes all tasks that are performed after a packet has been dispatched to the PPE and
before it is transfered to output transmit queues. Foregoing and succeeding tasks are per-
formed by receive and transmit units that are external to a PPE.

Inside a PPE, input processing starts with the reception of a packet from the receive unit
and terminates before the initiation of protocol processing. Protocol-stack processing com-
prises packet header parsing and manipulation as well as DiffServ tasks classification,
policing and accounting. Forwarding is done based on the given destination address. If the
network destination of the packet has been reached, i.e. if the network node represents the
packet sink, packet termination is followed by local processing. In case of corrupted packet
data, the packet is handled according to predefined rules, e.g. dropping or degradation of

JÜRGEN FOAG 70 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

link

to outgoingincoming

link

from
Input

Processing Processing
Output

Processing
Protocol−stack

Prediction

Protocol−stack

Processing

Control−point

Figure 5.2: PPE processing chain

flow priority. The output processing block merges PCI and PDU and delivers packets to
output queues. In addition, a marker that indicates occurred mispredictions of the packet
is added. Protocol-stack prediction provides the system with a label that characterizes the
expected protocol-stack of future packets and determines the flow of protocol-stack pro-
cessing.

In order to specify processes that take place in the processing chain, a conditional process
graph (CPG) is used. A CPG is a directed, acyclic, polar graph and allows a convenient
system representation by an abstract model [118]. The graph enables a description of the
process schedule in the context of both, control and data dependencies.

5.3.2 Input processing

The input processing flow is illustrated in Figure 5.3.

When a packet is received by a PPE, it is completely transfered to the input buffer. The
assigned protocol type of the data-link layer is signalized to the control-point PU (CP) of
the PPE. For the supported protocols, the lengths of the transferred PCIs to the NL-PUs
for layer 2, 3 and 4 are derived from the specification of the supported protocols. These
PCIs are sequentially sent to NL-PU 2, 3, and 4. Finally, the complete packet is moved into
DRAM. After the CP has noticed completion of data transfer, protocol-stack processing is
initiated.

If input processing and protocol-processing are interleaved, i.e. protocol-processing in a
NL-PU starts immediately after the transfer of the corresponding layer PCI, a performance
increase for the PPE will be expected. A similar impact on the speculative as well as on a
reference system that differs merely in the underlying processing model could be assumed.
This modification of the input processing flow is not realized in this part.

JÜRGEN FOAG 71 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

P2 Transfer data−link layer type information to CP

Store packet and data−link layer type in input buffer

Transfer PCI (layer 2) to NL−PU L2

Transfer PCI (layer 4) to NL−PU L4

Store packet in DRAM

Transfer PCI (layer 3) to NL−PU L3

P7

P6

P5

P4

P3

P1

Signalize completion to CP

Begin

End

Figure 5.3: Input processing flow

5.3.3 Protocol-stack processing

The flow of protocol-stack processing is illustrated in Figure 5.4.

JÜRGEN FOAG 72 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

(A)

P23

y

z

A: correct

(A)

A
x

x

x

(B)

(A)

B

(A)

u

y

z

processing processing

Conjunktion node

A: not correct

Disjunction node

(B)

P10

P11

P19

P20

finish

Layer 4

Layer 4 headerP13

P17

processing
Layer 2
finish

processing
Layer 2
proceed

Layer 2
processing

Layer 3 Layer 4

Request
2nd Prediction

Receive
2nd Prediction

1st pred.
(in)correct

(layer 3)

processing
Layer 3

terminate

(2nd Pred.)
Layer 3 header

(restart)

Layer 3
processing

signalling

transfer

1st prediction
(layer 3)

Verification

1st/2nd prediction
Verification

(layer 4)

process.
Layer 3
proceed

process.
Layer 3

(2nd Pred.)

Request
Layer 4

source data

1st pred.
signalling

(in)correct
(layer 4)

processing
Layer 4

terminate

transfer

processing
P16

P30

processing
(restart)

processing
Layer 4
proceed

1st/2nd prediction
(in)correct

signalling

(layer 4)

u

processing

terminate
Layer 4

processing

proceed
Layer 4

transfer
Layer 4-Header

Layer 4

P15

(restart)

Layer 4
processing

finish

P29

P22

P0

P14

P12

P24

P28

P25

P26

P27

P21

P9

P1

P18

P7

P4

P2

P5P3

P6

P8

Reply
Availability

source data

Layer 2-4 processing
completion

Deliver
1st prediction

Signaling completion to CP

End

Begin

Figure 5.4: Protocol-stack processing flow

JÜRGEN FOAG 73 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

CPG disjunction nodes represent nodes that possess conditions at their edges. They are
highlighted through dashed lines. Depending on the resolution of the condition, one of the
alternative paths is taken by the process flow. In CPG conjunction nodes, multiple paths
are joined, which is shown by dotted lines.

The concurrency of the network layers two up to four in the figure is illustrated by a graph-
ical arrangement in columns. After reception of the first prediction, protocol processing
is invoked in parallel. Process P2 resolves the data dependency concerning layer three.
The corresponding packet header field is therefore parsed from layer two. The result of
the prediction is a value that represents the protocol-stack of a packet and allows to derive
the contained types of the several protocol-layers for the packet. The verification of the
prediction is finally done through a comparison of the actually present protocol layer types
of the packet and of the predicted types. Layer-two processing is completed.

In case of a misprediction, a second prediction is requested (P5). The signaling of a per-
formed verification, indicated by x, is sent to layer three and four. Depending on the ob-
tained result, one of two paths at the output of node P8 is taken. In case of a misprediction,
layer-three processing is terminated.

Layer-three header data might be no longer available due to overwriting of register values.
In that case, header data has to be transferred (P10) from DRAM and processing can be
revoked (P11).

In case of a prediction hit (A), layer three processing is continued. The predicted protocol
type for layer 4 has to be verified as well (P12). Finally, layer three processing ends in P14.

In case of a misprediction concerning layer 4, P15 requests overwritten source header data
of layer four from the memory.

Layer four processing takes place in a similar way. In P18, the signaling is done for a
correct or wrong first prediction and in P23 for the second prediction. Protocol-stack pro-
cessing ends in P29 when all layer processing is completed and the control-point PU gets
informed (P30).

The processing tasks in the figure cover the processing chain in Figure 2.1 without packet
reception and transmission as well as queuing and scheduling.

5.3.4 Output processing

After completion of protocol-processing, the initiation of output processing is invoked by
the control-point. The flow is shown in Figure 5.5.

The CP triggers NL-PU 2, 3 and 4 to send corresponding parts of the protocol layer header
to the output buffer. As a result of protocol processing, required control information con-
cerning PCI boundaries is gathered by the CP. Hereafter, the PDU is fetched from the
memory and is kept in the output buffer. Furthermore, additional data, which is required

JÜRGEN FOAG 74 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

Layer 2 header to output buffer
NL−PU 2 transfers modified

Layer 4 header to output buffer

P1

P2

P3

P4

Transfer modified packet to

Output buffer transfers PHW & DiffServ codepoint to

Layer 3 header to output buffer
NL−PU 3 transfers modified

NL−PU 4 transfers modified

Transfer PHW & DiffServ codepoint to

CP signals to NL−PU 3
to transfer layer 3 header to output buffer

to transfer layer 2 header to output buffer

CP signals to NL−PU 4
to transfer layer 4 header to output buffer

from DRAM
Output Buffer requests PDU

P5

P6

P7

P9

Append PDU to PCIP8

external output queue

output buffer

external output queue

P10

P11

CP signals to NL−PU 2

Begin

End

Figure 5.5: Output processing flow

JÜRGEN FOAG 75 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

for subsequent flow-based and prediction-miss-based scheduling, is sent from the CP to the
output buffer. Finally, packet data and additional information are transferred to the external
output queue.

5.3.5 Control-point processing

Control-point processing executes tasks that refer to the control-plane. For example,
routing protocols which exchange routing information of the network are transferred to
each network node. This processing is less time-critical. Consequently, it is done asyn-
chronously to data forwarding.

The synchronization of protocol-layer processing, the administration of PPE resources,
error detection and the synchronization with external system resources is furthermore part
of control-point processing.

5.3.6 Protocol-stack prediction

The system provides a lookup table to access the prediction. The determination of the
prediction value, i.e. the algorithm still has to be explained.

The goal of the prediction algorithm is to provide a label that identifies the protocol-stack
of the packet that will be received next. The applied algorithm for protocol-stack prediction
relies on MFU, i.e. prediction output values refer to the protocol-stacks which were most-
frequently received before. In case of equal values for reception frequencies, the least-
recently used (LRU) protocol-stack is predicted.

The algorithm comprises two stages. First, only the data-link layer is known and a first
prediction label is requested. In case of prediction failure, the algorithm provides a second
prediction that considers the network layer type which has been found out in the meantime.
Thus, with respect to the supported protocols, the algorithm delivers as output one of the
following MFU entries listed in Table 5.1.

It has to be mentioned that the entries in the table above are exclusive. If the network
layer of MFU0 is IPv4, for example, MFU2 is the protocol-stack with the second highest
frequency, but with a different transport layer protocol.

In order to determine the most-frequently used entries, a traditional sorting algorithm could
be applied to derive a frequency order for a set of data. Common algorithms are heap sort,
bubble sort, insertion sort, quicksort (partition sort), etc. [119]. Sorting methods for N data
elements require between ≈ log(N) ·N and ≈ N2 compare instructions [120]. Considering
the two stages of the prediction scheme and two protocol types for layer 2 and 3, in total
6 exclusive MFU values have to be determined. In order to perform prediction updates at
line speed, the drawbacks mentioned above force an alternative approach. Instead, a table

JÜRGEN FOAG 76 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

MFU0 most frequently used protocol-stack with

Gigabit-Ethernet as data-link layer

MFU1 most frequently used protocol-stack with

POS-HDLC as data-link layer

MFU2 most frequently used protocol-stack with

Gigabit-Ethernet as data-link layer and

IP version 4 as network layer, but not MFU0

MFU3 most frequently used protocol-stack with

Gigabit-Ethernet as data-link layer and

IP version 6 as network layer, but not MFU0

MFU4 most frequently used protocol-stack with

POS-HDLC as data-link layer and

IP version 4 as network layer, but not MFU1

MFU5 most frequently used protocol-stack with

POS-HDLC as data-link layer and

IP version 6 as network layer, but not MFU1

Table 5.1: Most-frequently used entries

scheme is applied for the dynamic calculation of prediction values that requires a smaller
number of compare instructions. The algorithm is shown in Figure 5.6.

JÜRGEN FOAG 77 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

YES

NO

=
Layer 2 (SID)

HDLC/POS

YES

Layer 2 = G−E
Layer 3 = IPv6

Layer 2 = G−E
Layer 3 = IPv4

Layer 2 = G−E Layer 2 = POS

Layer 2 = POS
Layer 3 = IPv6

Layer 2 = POS
Layer 3 = IPv4

condition:

condition:

condition: condition:

condition:

condition:

NO

10

Start

Last packet
received ?

End

Preprocessing

Receive SID

data base
Update

not equal MFU 0

0not equal MFU not equal MFU

not equal MFU 1

1

Calculate MFU Calculate MFU

Calculate MFU Calculate MFU

Calculate MFU Calculate MFU

(HDLC/POS)

(G−E)

42

3 5

Figure 5.6: MFU computation flow

JÜRGEN FOAG 78 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

Step 1: During preprocessing, initialization of the special register file in the prediction PU
can be done if a traffic profile is available. Subsequent to that, register copies are sent to
the PPE-local DHTs.

Step 2: After protocol-processing of a packet has been completed, the corresponding stack
identifier (SID) is transferred from the PPE to the prediction PU.

Step 3: The database which contains the reception frequencies of the supported protocol-
stacks is updated. According to the system specification, in total 16 different protocol-
stacks are supported according to Table 5.2.

Step 4: Depending on the data-link layer type associated with the current SID, the most-
frequently used stacks might have changed. Thus, in case of Gigabit-Ethernet (G-E), MFU0

has to be verified. Else, i.e. HDLC/POS, MFU1 has to be checked. If the stack that refers
to the current SID occurred more often, the previous MFU entry will be replaced.

Step 5: If one of the previous entries MFU0 or MFU1 has been replaced, its frequency
might be still higher than the corresponding entry of MFU2...MFU5 entry that has the same
protocol types for layer 2 and 3. Consequently, the corresponding entry MFU2...MFU5 is
replaced by the previous MFU0 or MFU1. If the protocol-stack of the current packet has
not been received more often than the corresponding entry of MFU0 and MFU1 respec-
tively, its frequency might be nevertheless higher than the frequency of the corresponding
entry of MFU2...MFU5. In this case, only one replacement for the corresponding entry of
MFU2...MFU5 takes place.

Step 6: If the system is still in operation, the following packet invokes a database update
and MFU calculation again.

Table 5.2 shows the assignment of protocol layers to a value for the stack identifier (SID).

Then, the algorithm selects the first two MFU according to:

MFU0 = i with ni = max{w0 ·n0;w2 ·n2;w4 ·n4; ...;w14 ·n14} (5.1)

MFU1 = i with ni = max{w1 ·n1;w3 ·n3;w5 ·n5; ...;w15 ·n15} (5.2)

with the number of received packets ni of protocol-stack (SID) i. Delay-sensitive appli-
cations require short-end-to-end latencies. In order to prioritize these protocol types, a
variable weight factor wi is defined. While its default value is wi = 1, wi > 1 is used to
assign priority to stack i.

The remaining MFU entries are calculated according to

JÜRGEN FOAG 79 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

SID Layer 4 Layer 3 Layer 2

0 TCP IPv4 G-E

1 TCP IPv4 POS

2 TCP IPv6 G-E

3 TCP IPv6 POS

4 UDP IPv4 G-E

5 UDP IPv4 POS

6 UDP IPv6 G-E

7 UDP IPv6 POS

8 ICMP(4) IPv4 G-E

9 ICMP(4) IPv4 POS

10 ICMPv6 IPv6 G-E

11 ICMPv6 IPv6 POS

12 OSPF IPv4 G-E

13 OSPF IPv4 POS

14 OSPF IPv6 G-E

15 OSPF IPv6 POS

Table 5.2: Protocol-stack identifier

JÜRGEN FOAG 80 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

MFU2 = i with ni = max{(w0 ·n0;w4 ·n4;w8 ·n8;w12 ·n12)

\max{w0 ·n0;w2 ·n2;w4 ·n4; ...;w14 ·n14}} (5.3)

MFU3 = i with ni = max{(w2 ·n2;w6 ·n6;w10 ·n10;w14 ·n14)

\max{w0 ·n0;w2 ·n2;w4 ·n4; ...;w14 ·n14}} (5.4)

MFU4 = i with ni = max{(w1 ·n1;w5 ·n5;w9 ·n9;w13 ·n13)

\max{w1 ·n1;w3 ·n3;w5 ·n5; ...;w15 ·n15}} (5.5)

MFU5 = i with ni = max{(w3 ·n3;w7 ·n7;w11 ·n11;w15 ·n15)

\max{w1 ·n1;w3 ·n3;w5 ·n5; ...;w15 ·n15}} (5.6)

The exclusivity of the entries MFU0 and MFU1 and MFU2...MFU5 results from the ap-
plied replacement strategy of the MFU entries. Its purpose is to avoid a complex calculation
effort for sorting the reception frequencies of the supported protocol-stack after each pro-
cessing of each packet.

The flow of protocol-stack prediction as a part of protocol-processing, i.e. the two predic-
tion stages and the prediction table update, are highlighted on the left by dark rectangles in
Figure 5.7. On the right, the corresponding state of the knowledge for individual protocol-
layers of a received packet is shown. While bright boxes represent unknown layers, dark
rectangles signify already analyzed and consequently known layers.

JÜRGEN FOAG 81 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.3. FUNCTIONAL SPECIFICATION CHAPTER 5. SYSTEM DESIGN

L3

L2

PredictedReceived

L4

L4

L3

L2

L3

L2

L4

L4

L3

L2

t

L4

L3

L2

protocol-stack protocol-stack

2nd stage

1st stage

Processing
Protocol

no

yes

Processing
Protocol

Continue

Protocol
Processing
Layer 3 & 4

Start

Abort

packet to
predictor

Send layer 2
type of current

x

MFU SID | Layer 2 = x

Deliver
prediction 1st stage

packet to
predictor

type of current
Send layer 2 / 3

Deliver
prediction 2nd stage

MFU SID |

x / y

Restart Protocol
Processing

Layer 2 = x & Layer 3 = y

=
real layer 3 type?

predicted layer 3 type
Compare

Layer 3 & 4

Restart Protocol
Processing

Abort and

Layer 4

=
real layer 4 type?

predicted layer 4 type
Compare

Processing
Protocol

Continue

prediction
Compute

values

End

no

yes

prediction
Update

data base

Start

Figure 5.7: Components of protocol-stack prediction

JÜRGEN FOAG 82 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.3. FUNCTIONAL SPECIFICATION

The prediction values are kept in a set of special registers. Beside the SID, which repre-
sents the predicted protocol-stack, each register pair contains a register where the reception
frequency of the corresponding stack is stored. The six pairs on the left refer to MFUi with
i ∈ {0..5} which correspond to Table 5.1.

The special register file is depicted in Figure 5.8.

MFU
L2 = G−E

sid
reg[4,2]

number
reg[4,3]

sid
reg[3,2]

number
reg[3,3]

sid
reg[2,2]

number
reg[2,3]

MFU L2 = POS & L3 =IPv6 & (!= reg[1,1]) & (!= reg[5,1])

MFU L2 = POS & L3 =IPv4 & (!= reg[1,1]) & (!= reg[4,1])

MFU L2 = G−E & L3 =IPv6 & (!= reg[0,1]) & (!= reg[3,1])

MFU L2 = G−E & L3 =IPv4 & (!= reg[0,1]) & (!= reg[2,1])

MFU
L2 = POS

sid

sid

sid

sid

sid

MFU

MFU

MFU

MFU

L2 = G−E & L3 =IPv4 & (!= reg[0,1])

L2 = G−E & L3 =IPv6 & (!= reg[0,1])

L2 = POS & L3 =IPv4 & (!= reg[1,1])

L2 = POS & L3 =IPv6 & (!= reg[1,1])

reg[5,0]

reg[4,0]

reg[3,0]

reg[2,0]

reg[1,0]

sid
reg[0,0]

number

number

number

number

number

number

reg[0,1]

reg[1,1]

reg[2,1]

reg[3,1]

reg[4,1]

reg[5,1]

6

7

8

9

0

1

2

3

4

5 sid
reg[5,2]

number
reg[5,3]

Figure 5.8: Special register file

The four additional register pairs, i.e. MFUi with i ∈ {6..9}, are required for the applied
replacement strategy of MFU entries. If a received packet causes that another protocol-
stack becomes the MFUi with i = 0or1, the current MFU possesses from now on the second
highest number of reception events. Instead of dropping this information, it will be kept
in the corresponding MFUi with i ∈ {2..9}. Thus, the special register file gathers not only
the numbers of reception events for the MFUs, but also the protocol-stacks with the second
highest number of reception events. If another protocol-stack becomes MFU, a transfer of
MFU register values from MFUi with i = 0or1 to one of the MFUi with i ∈ {2..5} takes
place. The necessity of the register pairs MFUi with i ∈ {6..9} results from preserving
completeness of MFU with the highest and the second highest number of packet reception
events. It can be explained by the following example:

At first, the following assumptions are exemplarily made: MFU0 := 2, MFU2 := 4,
MFU6 := 8 and n2 := n4. If the current stack corresponds to SID 4, then the entry of
MFU0 is replaced by MFU2. However the previous SID in MFU0 is not moved to MFU2

JÜRGEN FOAG 83 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.4. SYSTEM ARCHITECTURE CHAPTER 5. SYSTEM DESIGN

but to MFU3. In order to preserve completeness of the left column, the SID of MFU6 is
moved to the left column, i.e. MFU2 = 8.

In order to exemplarily illustrate right shifts of registers values, it is assumed that MFU0 :=
0, MFU2 := 4, MFU6 := 8 and n0 := n4 := n8 := n12. Now, a right shift occurs, if the
protocol stack of the current packet refers to SID 12. In this case, one obtains MFU0 := 12,
MFU2 := 0 and MFU6 := 4.

The demand for a dynamic adaptation scheme of the prediction has been mentioned in
chapter 3. Since the time stamps of the received packets are not kept due to an increased
effort, an alternative method for the selection is used. The scheme that determines a limited
number of prediction input data is shown in Figure 5.9.

...

n packets

n
0
n1

n2

n15

x

y

0

2...

SI
D

 0
SI

D
 1

SI
D

 2

SI
D

 1
5

SI
D

 0
SI

D
 1

SI
D

 2

SI
D

 1
5

...
yx

...

Figure 5.9: Prediction table reset facility

Frequencies of received packets are continuously taken to compute the prediction values.
After the reception of n packets, the periodical method determines two protocol-stacks that
have been most-frequently used during this period. The frequency numbers of all remaining
SIDs are reset to zero, the frequency for the most-frequently used stack is set to x and the
second is set y. This procedure allows to continuously provide a prediction value. Based
on these initialization values, the calculation of prediction values proceeds. The scheme
enables a transition to changed prediction values based on a modified traffic statistic. The
cyclic reset avoids furthermore overflows in case of a register implementations of the packet
reception frequencies.

5.4 System architecture

Research of communication systems has demonstrated that a performance increase can be
achieved though an exploitation of data parallelism [121] [122] [123] [124]. Furthermore,
recent studies concerning network processor architectures, which target on data rates of

JÜRGEN FOAG 84 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.4. SYSTEM ARCHITECTURE

OC-48 and higher, have confirmed the demand for a parallelized data path [75] [20] [125]
[126] [127]. Thus, the starting point for the defined system architecture are identical pro-
cessing units that implement multiprocessing.

5.4.1 Overview

The system model is illustrated as a queuing system that is composed of two stages as
shown in Figure 5.10.

...
...

Receive−FIFO

CoS queues

S

S

S

S

1

2

n

t

Figure 5.10: System model

Packets which are received by an external device are transferred to a FIFO buffer. If one
of the servers Si with i ∈ {1, ...,n} is idle, the first packet in the FIFO is dispatched. It is
assumed that one server possesses the capability to completely process all protocol-stack
tasks. After completion, the modified packet is stored in the queue that corresponds to
its CoS label. The DiffServ queues have different service priorities, which are considered
by the subsequent transmission server St . The corresponding architecture model of the
network processor is depicted in Figure 5.11.

It is realized by multiple identical packet-processing elements (PPE) that correspond to the
server in the previous figure. The prediction processing unit calculates and provides the
prediction values for the PPEs. One global control-point processing unit is in charge of
system administration. An external global SRAM contains information that is required for
routing and differentiated services support. In order to achieve accelerated lookup times
through avoidance of accesses on shared resources, an SRAM controller is used to enable
copying memory content to the PPE local SRAM. Packets which are forwarded from the
framer to the system are dispatched to an idle PPE.

A hybrid architecture model is chosen to reduce the synchronization overhead during pro-
tocol processing: the parallel PPEs implement message parallelism while network-layer
parallelism is given within the PPEs. Each of them possesses the capability to store one
packet and to handle one packet per time. If protocol processing of a packet is completed,

JÜRGEN FOAG 85 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.4. SYSTEM ARCHITECTURE CHAPTER 5. SYSTEM DESIGN

Framer/MAC

Storage

Table

& Statistics

Queue

..Packet−
PE

Packet−
PE

Packet−
PE

Packet−
PE

Transmit

..

Prediction
PU

Control
Point

PU

SRAM

Receive

Queuing
Scheduling

Switch Fabric

DRAMDRAM

(global)

Ctrl

SRAM
Ctrl

Figure 5.11: System architecture

JÜRGEN FOAG 86 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.4. SYSTEM ARCHITECTURE

the packet is transferred to an output queue that corresponds to its per hop behavior. Ac-
cording to the output link rate of the system and the queuing discipline, packets are served
and finally transmitted to subsequent devices.

5.4.2 Packet-processing element architecture

All functionalities that refer to packet processing besides output queuing are processed by
a PPE. The internal structure of a PPE is illustrated in Figure 5.12.

M
M

M

A
D

D
R

D
A

T
A

CP

reference

reference
PU/CP

NL−

NL−

NL−

Buffer (in)

Buffer (out)
PU/CP

DRAM

SRAM

(local copy)
PU L4

PU L3

PU L2

PPE

Prediction
Memory

Figure 5.12: Packet Processing Element

A PPE is built up of three network layer-processing units (NL-PU), one control-point pro-
cessing unit (CP) and three memories. NL-PUs and the CP are realized as embedded
processors. Separate input and output interfaces possess the capability to buffer a complete
packet. The master-master message bus (MMM) is used for control signaling between mas-
ter units. Data exchange between modules is done through the address (ADDR) and data
bus (DATA). The width of the data bus (DATA) is 32 bit.

An arbiter, which is not depicted, gives access to the shared busses. The access is granted
according to a predefined order. The highest priority is given to the CP, followed by the
NW-PUs in ascending order. The lowest access priority is assigned to the input and output
buffers.

JÜRGEN FOAG 87 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.4. SYSTEM ARCHITECTURE CHAPTER 5. SYSTEM DESIGN

Inside each PPE, an embedded RAM for packet buffering is implemented. Similar NP real-
izations implement packet buffers with a size of multiple KByte, e.g. 12 KByte embedded
data memory of a channel processor for the C-Port C-5 NP [128] and 128 KByte embedded
SRAM in an IBM Rainier NP [22]. For this exemplary implementation, the packet RAM
of a PPE is defined to 96 Bytes. This size corresponds to the length of packets during the
succeeding system evaluation.

The calculated prediction values are transferred from the prediction PU to the prediction
memory in the PPEs. The CP of a PPE can access updated prediction values hereafter.

Considering the assignment of functions, tasks that follow frame processing, which is done
externally, and refer to layer two are performed by the NL-PU L2. While NL-PU L3 covers
network layer processing, DiffServ functions are assigned to NL-PU L4.

5.4.3 Network-layer processing unit and control-point PU

Processing tasks of a layer are handled by a network-layer processing unit. The internal
architecture of a NL-PU is illustrated in Figure 5.13.

PU Controller

BA

condition code

Program
Counter

Instruction
Decode

Control Store

Register
Read Transfer Write Transfer

Register

GPR
A−Side

GPR
B−Side

ALU

Shifter

immed data

master command bus

slave command bus

data bus

RAM RAM

Figure 5.13: Network-layer processing unit

The three NL-PU have identical architectures that are dedicated to protocol processing.
The architecture model and the RISC instruction set are derived from the Intel IXP 1200
network processor [75] [129]. It should be noted that multithreading, i.e. the capability

JÜRGEN FOAG 88 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 5. SYSTEM DESIGN 5.4. SYSTEM ARCHITECTURE

for context switching is not implemented. Instead, a model that implements single-scalar
processing is used. While general purpose registers (GPR) can be used to store data, RAM
transfer registers support data transfer to and from DRAM as well as SRAM. Generally,
the internal width for registers and busses is 32 bit. A NW-PU contains an ALU and a
shifter which are capable of performing an ALU and shift operation in one processor cycle.
The ALU can perform addition, subtraction, and logical operations as well as generation
of condition codes based on these operations.

The control-point PU is responsible for PPE control, e.g. synchronization of NL-PUs and
external devices as well as error detection. The architecture of a CP is defined identical to
the NL-PUs.

5.4.4 Prediction unit

Protocol-stack frequencies of received packet, which are required for the compute of pre-
diction values, are accumulated in the register file of the prediction unit. While one part
of the register file is used to monitor frequency events for the protocol-stack of received
packets, the other part can be exploited for working register purposes. The data-path of the
prediction-processing unit is depicted in Figure 5.14.

Special Registers

Register
File

ALU
Shifter

Figure 5.14: Prediction Processing Unit

After completion of protocol-processing in a PPE, the information that characterizes the
protocol-stack of the current packet is transferred to the corresponding register of the reg-
ister file. The content of this register is incremented by one and prediction computation is
initiated. An ALU and a shifter as well as a register file are required for the calculation
of prediction values. Multiple values that represent the predicted protocol-stack of a future

JÜRGEN FOAG 89 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

5.4. SYSTEM ARCHITECTURE CHAPTER 5. SYSTEM DESIGN

received packet are the results. These values are stored in a set of special registers. Its con-
tent is mirrored to prediction memories within the PPEs, so-called Decode History Tables
(DHT). Subsequently, a PPE can locally request a prediction label for packet processing
from this DHT. The special register file is explained together with the algorithm in detail in
chapter 5.3.6.

Figure 5.15 illustrates the access methodology on a DHT within a PPE. The six lines of the
DHT contain the copied SIDs. The origin values are stored in the registers as depicted in
the left column of Figure 5.8.

PSSW

DHT

protocol−stack
Predicted

Figure 5.15: Multi-modal protocol-stack prediction

The control-point processing unit in a PPE keeps a protocol-stack status word (PSSW) to
address the corresponding prediction value in a DHT.

A PSSW contains information about the current processing state of a PPE analogous to the
program-status word in microprocessor, which keeps the instruction address, CPU condi-
tion codes and further state informations [130]. The format of the PSSW is illustrated in
Figure 5.16.

Layer4 Layer4 Layer3 Layer3 Layer2
type type typeflag flag

Figure 5.16: Protocol-stack status word (PSSW)

Flag fields indicate if particular protocol-layers have been already derived from the packet
header. The corresponding protocol type is kept in the Layer-i type field. An alternative
realization for a prediction access with a bit mask can be done as well.

JÜRGEN FOAG 90 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 6

System evaluation

6.1 Introduction

The previously described speculative system architecture is now evaluated using a two-step
approach. First, the evaluation of the prediction algorithm is performed, which is imple-
mented in the prediction processing unit. For this purpose, an appropriate test methodol-
ogy is defined. The applied protocol distributions are derived from current network traffic
statistics.

The obtained results for the accuracy of the prediction algorithm will be exploited in the
second part, i.e. for the simulation of a packet-processing element. Packet processing is de-
coupled through separate busses and packet memories of the PPEs. Based on these findings,
the performance values for the speculative processing can be determined by individual sim-
ulations of PPEs. The PPE has been modeled with SystemC to refine embedded PUs and
components, e.g. memories and busses, towards a well-suited design-level which enables
a high-level performance evaluation. The system-level description language furthermore
enables an annotation of timing data.

It is worth mentioning that the dynamic behavior of the prediction algorithm is evaluated
within the first part. The test methodology of the PPE simulation uses a prediction table
which is configured at simulation start and remains constant during operation, i.e. a static
prediction table. However, a limitation of the obtained results in the second evaluation part
is not given due to an application of different simulation scenarios.

91

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

6.2 Prediction PU

6.2.1 Test methodology and simulation traffic

As previously shown in section 4.2.2, a significant reduction of protocol processing delays
in conjunction with low additional processing costs is strictly related to high quantities for
the prediction accuracy. Furthermore, if protocol distributions vary over time, the demand
for a fast adaptation of protocol-stack prediction arises. Thus, the applied test scenarios
have to focus on both aspects. The simulation environment of the prediction PU is shown
in Figure 6.1.

SID pred

SID real

SID

MonitorComparator

Pool
(Packet)

PPU

Prediction
DHTSID/PSSW (Packet)

Generator

PSSW

Figure 6.1: Prediction PU evaluation test bench

The simulation compares actual protocol-stack identifiers SIDreal with predicted identifiers
SIDpred. The simulation stimuli data is delivered by a “packet” generator. Packet data
means protocol-stack identifiers that correspond to network packets. The protocol-stack
status word is derived from SIDreal and is used to request a prediction value SIDpred. A
comparator checks the equality of both, SIDreal and SIDpred. In case of a misprediction,
the PSSW is updated with the actual type of protocol layer three and accesses for a second
time the prediction table. A monitor device finally collects the results for both prediction
stages.

At the end of protocol-processing, the system has determined the actual stack-identifier. In
order to consider the packet for a next prediction computation, the simulation input SIDreal

is sent to the prediction processing unit (PPU). The processing delay is expressed by a
queue with a single entry. The prediction table is consequently updated by the PPU each
packet generation cycle.

Two types of simulation traffic are used during this evaluation:

JÜRGEN FOAG 92 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.2. PREDICTION PU

• Deterministic traffic

• Random traffic

The deterministic traffic is used to analyze particular compositions of simulation inputs.
Random traffic allows to stimulate the system with input data that have a predefined pro-
tocol distribution, but possess a randomized order of packet transmission. The applied
protocol distributions are derived from measurements in public infrastructures:

• Traffic statistics of 1997, provided by Cooperative Association for Internet Data
Analysis, University of California’s San Diego Supercomputer Center (CAIDA) and
the Measurement and Analysis Team (MOAT) at the National Laboratory for Ap-
plied Network Research (NLANR) [100] [131]. The gathered data were taken from
the commercial Internet backbone of MCI Worldcom, and have already been used
for simulation of network processor hardware [132].

• Traffic statistics of 2002, provided by the IP monitoring project of Sprint Cooper-
ation1. Monitoring of data has been deployed in the Sprint E-Solutions backbone
network.

Both traffic distributions show unequal characteristics. In order to find out weaknesses
concerning the prediction accuracy, the simulation stimuli are extended by traffic that pos-
sesses equal protocol distributions. The IP protocol in version 6 still has a small percentage
of traffic because most network hardware has not yet been designed for it. A common
approach is tunneling of IPv6 in IPv4, but which is out of scope in this work.

Tables 6.1 and 6.2 show the protocol distributions which are mapped to deterministic and
to random simulation traffic. It is assumed that the system environment supports the data
link and physical layer types LLC/SNAP over Gigabit-Ethernet (G-E) and packet-over-
SONET (POS). The order of packet transmission is indicated by letters that correspond to
protocol-stacks. The explicit specification of a packet order only refers to deterministic
traffic. In case of random traffic, the protocol distributions are identical, however the order
is randomized.

1http://ipmon.sprintlabs.com, 17th march 2002

JÜRGEN FOAG 93 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

Packets Composition

1 10000 90 % TCP-IPv4-G-E (A) Traffic distribution (1997)

9 % UDP-IPv4-G-E (B) [131, 100]

1 % ICMP-IPv4-G-E (C) packet order: each 10th packet: B

each 100th packet C

2 10000 82 % TCP-IPv4-G-E (A) Traffic distribution (2002) [101]

16 % UDP-IPv4-G-E (B) packet order: each 16th packet: B

2 % ICMP-IPv4-G-E (C) each 50th packet C

3 10000 50 % TCP-IPv4-G-E (A) Equal application distribution

49 % UDP-IPv4-G-E (B) packet order: A/B/A/B/...

1 % ICMP-IPv4-G-E (C) each 100th packet: C instead of B

4 10000 25 % TCP-IPv4-POS (A) Equal distribution of IP versions

24 % UDP-IPv4-POS (B) packet order: A/B/C/D/...

25 % TCP-IPv6-G-E (C) once per 100 packets: E instead of B

24 % UDP-IPv6-G-E (D) once per 100 packets: F instead of D

1 % ICMP-IPv4-POS (E)

1 % ICMP6-IPv6-G-E (F)

5 10000 12 % TCP-IPv4-POS (A) Equal packet distribution

12 % UDP-IPv4-POS (B) packet order: A/B/C/D/E/F/G/H/...

12 % TCP-IPv6-POS (C) once per 100 packets: I

12 % UDP-IPv6-POS (D) once per 100 packets: J

12 % TCP-IPv4-G-E (E) once per 100 packets: K

12 % UDP-IPv4-G-E (F) once per 100 packets: L

12 % TCP-IPv6-G-E (G)

12 % UDP-IPv6-G-E (H)

1 % ICMP-IPv4-G-E (I)

1 % ICMP-IPv4-POS (J)

1 % ICMP6-IPv6-G-E (K)

1 % ICMP6-IPv6-POS (L)

6 10000 12 % TCP-IPv4-POS (A) Equal packet distribution with

12 % UDP-IPv4-POS (B) short bursts

12 % TCP-IPv6-POS (C) packet order: A/A/A/A/B/B/B/B/C/C/

12 % UDP-IPv6-POS (D) C/C/D/D/D/D/E/E/E/E/F/F/F/F/G/G/G/

12 % TCP-IPv4-G-E (E) G/H/H/H/H/...

12 % UDP-IPv4-G-E (F) once per 100 packets: I

12 % TCP-IPv6-G-E (G) once per 100 packets: J

12 % UDP-IPv6-G-E (H) once per 100 packets: K

1 % ICMP-IPv4-G-E (I) once per 100 packets: L

1 % ICMP-IPv4-POS (J)

1 % ICMP6-IPv6-G-E (K)

1 % ICMP6-IPv6-POS (L)

Table 6.1: Deterministic and randomized simulation traffic

6.2.2 Simulations and analysis

Misprediction rate

The misprediction rates for the first m1 as well as for the first and second prediction stage
m1+2 are defined as follows:

JÜRGEN FOAG 94 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.2. PREDICTION PU

Packets Composition

7 5000 90 % TCP-IPv4-G-E Traffic distribution

9 % UDP-IPv4-G-E with burst

1 % ICMP-IPv4-G-E

1000 100 % UDP-IPv4-G-E

4000 90 % TCP-IPv4-G-E

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

8 1000 90 % TCP-IPv4-G-E Traffic distribution with 2 bursts

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

1000 100 % UDP-IPv6-POS first burst

3000 90 % TCP-IPv4-G-E

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

1000 100 % UDP-IPv6-G-E second burst

4000 90 % TCP-IPv4-G-E

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

9 4000 90 % TCP-IPv4-G-E Shifting traffic distributions

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

2000 50 % TCP-IPv4-G-E

49 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

4000 19 % TCP-IPv4-G-E

80 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

2000 50 % TCP-IPv4-G-E

49 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

4000 90 % TCP-IPv4-G-E

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

Table 6.2: Deterministic and randomized simulation traffic

m1 = 1−
Nh1

N
(6.1)

m1+2 = 1−
Nh1 +Nh2

N
(6.2)

with the number of correctly predicted protocol-stacks in the first stage Nh1 , the number
of correctly predicted protocol-stacks in the second stage Nh2 and the complete number of
packets N. The number of correctly predicted protocol-stacks in the second stage implies
that a misprediction occurred in the first stage. In Figure 6.2, the misprediction rates of the
first prediction alone as well as of both, i.e. the first and the second prediction, are depicted.

JÜRGEN FOAG 95 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

1 2 3 4 5 6 7 8 9

rate [%]
Misprediction

Traffic

90

100

80

70

60

50

40

30

20

10

0

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

1s
t +

 2
nd

 p
re

d.

Figure 6.2: Misprediction rate

For this part of the analysis, the prediction weights are set to default value. For traffic 1
and 2, the misprediction rates for the first prediction stage are 10 % and 18 % respectively.
However, the second stage achieves a hit rate of 90 % and 89 % respectively.

The hit rate for equal distributions of transport layer protocols, i.e. traffic 3, and for both,
network and transport layer protocols, i.e. traffic 4, are significantly lower than for traffic 1
and 2. Even though, the miss rate is small at about 2 percent due to the second prediction
stage.

The worst case is realized by traffic 5. The accumulated miss rates of 100 % for both stages
result from the period order of packets. In case of equal frequencies of monitored pack-
ets which are used for prediction computation, the algorithm prioritizes the last received
packet for MFU. Consequently, the predefined packet order leads to a period displacement
of prediction table entries. In contrast, traffic 6 has the same protocol breakdown but a
different packet order. As expected, two succeeding packets with identical SID exploit the
history mechanism which was mentioned above. Thus, the failure rate of the first stage was
reduced by 18 %.

Traffic 7 and 8 additionally comprise packet bursts. Compared to traffic 1, the first stage

JÜRGEN FOAG 96 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.2. PREDICTION PU

miss rate increases from 10 to 19 %. Nevertheless, large hit rates for the second stage of 95
and 94 % allow a failure rate for both stages of 1 %. The same miss rate can be achieved
for traffic 9.

Modified weight factor

The weight factor has been defined in chapter 5.3 to priorize particular protocol-stacks.

The misprediction rates for modified prediction weights can be taken from Figure 6.3.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.

rate [%]
Misprediction

90

100

80

70

60

50

40

30

20

10

0 Traffic

981 2 3 4 5 6 71 2 3 4 5 6 8 9
w=8 w=8 w=8 w=8 w=8 w=8 w=8 w=8w=8

7
w=1 w=1 w=1 w=1 w=1 w=1 w=1 w=1 w=1

1
w=4

2
w=4

3
w=4

4
w=4

5
w=4

6
w=4

7
w=4

8
w=4

9
w=4

Figure 6.3: Misprediction rate, different weights

The weights in the figure are modified to priorize real-time traffic which relies on UDP.
Apart from the default setting of all weights equal to w[i] = 1, the weights for UDP traffic
have been exemplarily set to w[i] = 4 and w[i] = 8 for i ∈ {4..7}.

It can be seen that no alteration of prediction rates arises from w = 4 for traffic distributions
with a noticeable majority of TCP traffic, i.e. traffic 1 and 2. For w = 8, the misprediction
rate for traffic 2 is significantly increased.

The misprediction rates can be decreased for traffic 5 and 6 through modified weights.
This can be explained by the priorization of UDP packets despite equal frequencies for the
supported protocol-stacks.

The increase of the misprediction rate for traffic 7 and 8 results from the burst of UDP
packets. While the accumulated misprediction rate for all packets is increased by higher
values for the corresponding weights, the hit rate of UDP packets can be increased by a

JÜRGEN FOAG 97 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

modification of w[i] as well. Figure 6.4 shows the hit rates for w[i] = 1 for all packets and
for w[i] = 8 for UDP packets only.

(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)(w=1)(w=8)
1 2 3 4 5 6 7 8 9

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

1s
t p

re
d.

1s
t +

 2
nd

 p
re

d.
1s

t p
re

d.
1s

t +
 2

nd
 p

re
d.

hit rate [%]

90

100

80

70

60

50

40

30

20

10

0

Prediction

UDP

Traffic

1 2 3

!

4

!

5 6 7 8 9

Figure 6.4: Hit rate UDP packets

It can be seen that the hit rate for a correct first prediction of UDP packets can be increased
by w[i] > 8 for UDP protocol-stacks.

Initialization

Now, the probable impact of initialization packets on the prediction accuracy is analyzed.
Initialization packets are used before start of operation to set up the prediction DHT. The
origin of initialization packets might be taken from monitored traffic of an earlier system
operation. After the DHT is set up, real user packets can be received. The observed results
are presented in Table 6.3.

The obtained values demonstrate an unchanged behavior of prediction rates. It can be con-
cluded that an initialization of the prediction DHT merely affects the prediction of the first
received packets. A larger number of initialization packets has no impact on the prediction
accuracy.

JÜRGEN FOAG 98 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.2. PREDICTION PU

Traffic Initialization hit rate hit rate miss

Packets 1st pred 2nd pred rate

2 10 0.82 0.160 0.02

2 20 0.82 0.160 0.02

2 50 0.82 0.160 0.02

4 8 0.492 0.488 0.02

4 16 0.492 0.488 0.02

4 40 0.492 0.488 0.02

9 10 0.6225 0.3675 0.01

9 20 0.6225 0.3675 0.01

9 50 0.6225 0.3675 0.01

Table 6.3: Impact of initialization packets

Processing Cycles

The mean number of processor cycles and the mean number of compare and branch in-
structions for the computation of updated prediction values is shown in Table 6.4.

Traffic Mean number of Mean number of

computation cycles compare/branch

per packet instructions

per packet

1 331.1 27.9

2 340.7 29.4

3 381.1 35.9

4 376.5 35.8

5 417.8 41.8

6 395.7 38.0

7 342.4 29.7

8 340.8 29.7

9 365.8 33.5

Table 6.4: Computation cycles and number of compare instructions for prediction compu-
tation

JÜRGEN FOAG 99 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

The measurement has been done on a SUN SPARC Ultra-2 microprocessor that provides
a reduced instruction set. One reason for this choice is the common approach to assign
control-plane tasks in NPs to RISC processors. In this context, prediction computation is
assigned to the control-plane as well.

It can be seen, that traffic 5 requires a mean number of 41.8 compare and branch instructions
per packet. This can be explained by a higher number of processor register replacements
for the cyclic traffic.

In order to evaluate the prediction algorithm in terms of computation effort, the number of
compare and branch instructions is measured. These instructions are necessary to sort the
protocol-stacks frequencies and to determine the predicted MFU entries. For this purpose,
considered instructions are branch on equal (be), branch on greater (bg), branch on greater
or equal (bge), branch on less (bl), branch on less or equal (ble), branch on not-equal (bne)
and compare (cmp). For a predefined number of N = 16 supported protocol-stacks, the
amount of compare and branch instructions is between 1.74 ·N and 2.61 ·N. Compared
to traditional sorting algorithms, which require between ≈ log(N) ·N and ≈ N2, a reduced
computation effort is required by the applied prediction algorithm.

Dynamic behavior

The dynamic behavior of the prediction algorithm has been simulated with randomized
traffics that correspond to the protocol distributions of Tables 6.1 and 6.2. However, their
packet orders differ from the deterministic traffics. Figures 6.5 illustrates the dynamic
behavior for traffic 1.

0

5

10

15

20

0 20 40 60 80 100

Misprediction (1st stage)
Misprediction (1st + 2nd stage)

Misprediction rate
[%]

[x 100 packets]

Figure 6.5: Traffic 1

The unit of the x-axis refers to 100 simulation packets. The number of first mispredictions
ranges between 3 and 19 %. The upper bound for both predictions is about 3 %.

JÜRGEN FOAG 100 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.2. PREDICTION PU

0

5

10

15

20

25

30

0 20 40 60 80 100

Misprediction (1st stage)
Mispreditions (1st + 2nd stage)

[%]
Misprediction rate

[x 100 packets]

Figure 6.6: Traffic 2

In Figure 6.6, the captured sequence for traffic 2 is depicted.

With a change of protocol percentages towards equal distributions, the variation for the
prediction increases. For instance, the variation of the first stage for traffic 1 and 2 is
increased by 3 %.

Prediction table reset facility

In order to achieve a fast adaptation to changed traffic statistics, the prediction algorithm is
extended by a facility that periodically resets the prediction DHT table. For the evaluation,
the randomized simulation traffic in Table 6.5 has been used. The simulation traffic 10
possesses two transitions of protocol distributions, the first after 3000 packets, the second
after 6500 packets.

The misprediction rates of the prediction without and with the reset mechanism are shown
in 6.7(a) and (b), respectively. Note that this extension is applied in this scenario to illustrate
its benefit. The previous results shown above refer to the prediction without this table reset.

Figure 6.7(a) shows the dynamic behavior without table reset. It can be seen that a rapid
increase for the misprediction rate from about 9 to 80 % occurs after 3000 packets. There
is no decrease to smaller values until the distribution changes to the initial distribution. As
expected, accumulated packet reception events, which are accumulated in the prediction
table, prevent the prediction from a fast adaptation to changed distributions.

Figure 6.7(b) illustrates the results for the algorithm which exploits the table reset capa-
bility. In order to achieve a fast prediction adaptation to changed distributions, the reset
period is predefined to n = 500 received packets. After the first transition, i.e. after 3500
packets, the misprediction rate for the first stage decreases significantly to about 19 %.

JÜRGEN FOAG 101 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.2. PREDICTION PU CHAPTER 6. SYSTEM EVALUATION

0

0

10

10

20

20

30

30

40

40

50

50

60

60

70

70

80

80

90

90

0

0

20

20

40

40

60

60 80

80

100

100

Misprediction (1st stage)

Misprediction (1st stage)

Misprediction (1st + 2nd stage)

Misprediction (1st + 2nd stage)

[x 100 packets]

[x 100 packets]

Misprediction rate
[%]

Misprediction rate
[%]

(a) no reset

(b) with reset

Figure 6.7: Prediction table reset facility

JÜRGEN FOAG 102 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

Packets Composition

10 3000 90 % TCP-IPv4-G-E Shifting traffic distributions

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

500 50 % TCP-IPv4-G-E

49 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

3000 19 % TCP-IPv4-G-E

80 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

500 50 % TCP-IPv4-G-E

49 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

3000 90 % TCP-IPv4-G-E

9 % UDP-IPv4-G-E

1 % ICMP-IPv4-G-E

Table 6.5: Randomized simulation traffic

The exemplary choice for x = 30 and y = 10 (chapter 5.3) can be illustrated by the following
assumption: The first protocol distribution for 3000 packets is 90 % TCP-IPv4-G-E, 9 %
UDP-IPv4-G-E and 1 % ICMP-IPv4-G-E, followed by a second of 3000 packets with 19 %
TCP-IPv4-G-E, 80 % UDP-IPv4-G-E and 1 % ICMP-IPv4-G-E. If the number of received
packets corresponds to the mean value during the first 3000 packets, 2700 packets of TCP-
IPv4-G-E, 270 packets of UDP-IPv4-G-E and 30 packets of ICMP-IPv4-G-E have been
received. If the complete prediction table would be reset and x as well as y are set to 0, a
mean number of 2454 packets are necessary to change the prediction from TCP-IPv4-G-E
to UDP-IPv4-G-E during the second distribution. If the table is reset, but x is set to 30 and
y is set to 10 instead, the mean number of received packets that are necessary to change the
prediction is merely 33.

6.3 Packet-processing element

6.3.1 System implementation

The main intention of an implementation is the functional verification and performance
simulation of a PPE. For the description language that enables system-level modeling, Sys-
temC is used. In the first part of this chapter, a brief introduction of system-level design is
given. In the second part, the simulation environment is explained followed by the obtained
results.

JÜRGEN FOAG 103 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

System-level design flow

According to [133], the system-level design flow contains the steps depicted in Figure 6.8.

Capture

Specification
model

Architecture
exploration

Architecture
model

HW/IF synthesis
SW compilation

Implementation
model

Communication
model

Algorithm
IP

Component
IP

RTOS IP RTL IP

Protocol
IP

Communication
synthesis

System Design

Backend

Functional

Structural

Bus−
functional

RTL

Structure /
Implementation

detail

Cycle−
accurate

Timing−
accurate

Timed

Untimed

Figure 6.8: System-level design flow

The approach comprises multiple layers of abstraction: the pure functional, the structural
and the bus-functional layer. The design starts with the development of a specification
model that is captured by the user. At the architecture level, the structure of the system
architecture is defined under consideration of a corresponding component library. The
functional description is divided into several partitions. Each of them is mapped to an ar-
chitecture component. During communication synthesis, components are refined into bus-
functional representations which provide a timing-accurate communication model. Finally,
the backend covers hardware, software and interface synthesis through an enhancement of
timing granularity of the components. The intellectual property (IP)-modules are used to
achieve a reduction of design effort and consequently to decrease the design time.

JÜRGEN FOAG 104 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

Currently, two of the most relevant approaches for system-level design languages are
SpecC [134] [135] and SystemC [136] [137]. Both are based on C/C++. They allow a
description of parallelism, structural and behavioral hierarchies as well as synchronization
and communication. Both furthermore provide the deployment of simulation models that
refer to one of the abstraction levels in the figure above.

SystemC

According to [138], there are two modeling concepts for SystemC: the classical hard-
ware modeling and the functional modeling. With “classical hardware modeling” modeling
started at register-transfer level and behavioral level is meant. “Functional modeling” in-
stead allows a description of system components while the partitioning into hardware and
software components is still out of scope. At that time, aspects such as timing, fine-grain
architectural structures or low-level communication protocols were not considered. In or-
der to validate system concepts before the implementation, functional models of the system
can be used. The two kinds for functional models, are untimed and the timed. They merely
differ in the annotation of timing information to the model.

Thus, the capability for functional modeling, the availability of the SystemC core language
and the communication and synchronization modeling features in version 2.0 were
essential reasons for the application of SystemC for system evaluation. In addition, the
potential strength of the academical and industrial participants of the open SystemC
initiative (OSCI) appears to support SystemC to become the state-of-the-art standard for
system-level description languages. Participants of OSCI are EDA vendors, e.g. Synopsys,
Cadence, Mentor Graphics and CoWare [139].

Implementation

Packet-processing element

Apart from the shared bus, the PPE architecture is divided into master and slave modules.
Master processing modules, which are shown on top, can be characterized by the capability
of process initiation and response on requests. This comprises the network layer PUs, the
control-point and the I/O buffers. In contrast, slave modules merely respond to master
requests. Figure 6.9 illustrates this classification in a PPE.

Two internal communication modes exist. Control signaling between master modules is
done with a master-master-message (MMM) bus . For data transfer between two masters
or a master and a slave module, the address and the 32-bit data bus are used. The access to
the bus is granted by a bus arbiter.

JÜRGEN FOAG 105 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

sramdram pred_mem

nl_pu_l2buffer_in nl_pu_l3 nl_pu_l4 cp buffer_out

data 32

8

14

MASTER

SLAVE

mmm

addr

Figure 6.9: PPE master and slave modules

Protocol-processing

Protocol-processing takes place in separate NL-PUs which are realized as microproces-
sor cores. The supported protocol-processing tasks are implemented as instruction se-
quences that rely on a predefined RISC-instruction set. The functional implementation
of the protocol-processing flow in a NL-PU is shown in Figure 6.10.

CP :

:

Shared bus

task_i+1

task_i

task_n

task_2

task_1

control

Figure 6.10: Protocol-processing flow

Protocol-processing tasks are initiated by a control unit that is responsible for task sequenc-
ing and execution control. After completion of a task i is signalized to the control unit, the
succeeding task i+1 is invoked. Each task can comprise one or several accesses on shared

JÜRGEN FOAG 106 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

resources, i.e. memory devices. The starting point for the embedded processor is a single-
scalar architecture. Thus, only one access on shared resources can be done at a time. The
completion of the last task and processing malfunctions are indicated to the CP. The imple-
mentations of embedded processors, memory and busses furthermore provide additional
monitoring signals which are used to evaluate their workload. The protocol-processing
flow depends on the results of conditional instructions. In this system design, conditional
branches are limited to the content of protocol-layer type fields, availability of optional
header fields and destination address fields. The flow of remaining tasks for a packet fol-
lows the predefined protocol-stack. The mean computation time for the single tasks is
derived from their RISC implementation on the Intel IXP 1200 NP [75]. Arbitration, bus
and memory access times are predefined as well. Their mean durations can be derived from
[140] [141] [75]. In case of a shared bus architecture with a maximum of four simultane-
ous bus requests, compared to the IXP1200, the bus structure can be realized with a lower
complexity. Thus, lower delay values compared to the IXP 1200 are assumed as shown in
Table 6.6.

Device Instruction Processor

cycles

SDRAM read, write 25

SRAM read, write 10

Prediction DHT read 1

Arbiter 2

Table 6.6: Memory access times

Memory clock frequencies are commonly lower than processor frequencies [75]. Note that
the cycles in the table refer to the processor clock frequency, which is assumed to be twice
the memory clock frequency.

JÜRGEN FOAG 107 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

6.3.2 Test methodology and constraints

Simulated systems

In order to determine the protocol-processing performance, the simulated system is re-
stricted to a PPE. This can be done based on the predefinition of separate memory devices
for the PPEs in the NP. The simulated systems can be seen in Figure 6.11.

M
M

M

A
D

D
R

D
A

T
A

M
M

M

A
D

D
R

D
A

T
A

Layer 2

Layer 3

Layer 4

Layer 2

Layer 3

Layer 4

Layer 2 Layer 3 Layer 4

Processing
Input Protocol−stack

Processing Processing
Output

CP

reference

reference
PU/CP

NL−

NL−

NL−

Buffer (in)

Buffer (out)
PU/CP

DRAM

SRAM

(local copy)
PU L4

PU L3

PU L2

PPE

Prediction
Memory

CP

reference

reference
PU/CP

NL−

NL−

NL−

Buffer (in)

Buffer (out)
PU/CP

DRAM

SRAM

(local copy)
PU L4

PU L3

PU L2

PPE

(a) (b)

Pseudo−parallel processingSpeculative processing

Figure 6.11: Simulated systems

Protocol-stack tasks are mapped to the underlying architecture according to the corre-
sponding processing model, i.e. speculative (Figure 6.11(a)) and pseudo-parallel (Figure
6.11(b)). The pseudo-parallel model is used as a reference for the evaluation. The input and
output processing flows are identical in both systems. Input processing represents the pro-
cessing flow after the reception of a packet by the PPE and before the initiation of protocol
processing, e.g. PDU data transfer to DRAM. After protocol-processing, output process-
ing comprises the assembly of layer-specific PCI with the stored PDU and the data transfer
to subsequent output queues. The assignment of protocol-layer tasks corresponds to the

JÜRGEN FOAG 108 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

layer numbers of the NL-PUs. QoS tasks, i.e. classification, policing and accounting, are
performed by NL-PU L4.

The PPEs in both systems follow the predefinition that only one packet per time is pro-
cessed. The processing model of a PPE is shown in Figure 6.12

NL−PU
L4

NL−PU
L3

NL−PU
L2

Figure 6.12: PPE processing model

Apart from synchronization tasks which are performed by the CP, the processing model
corresponds to a queuing model that consists of a single queue and three servers. Each of
them executes assigned protocol tasks of the corresponding network layer. Based on this,
single NL-PUs can be idle before each of them has completed protocol-processing and the
next packet is dispatched.

Simulation traffic

The randomized simulation traffic is shown shown in Table 6.7.

6.3.3 Simulations and analysis

Based on the model predefinitions above, the simulation results will be presented and
discussed. In case of a static prediction, the observed results can partially be analytically
derived, too.

Latency

For the determination of the mean protocol-processing latency, TCP-over-IPv4-over-G-E is
exemplarily applied as predicted protocol-stack for the first prediction stage. The latencies
per packet are shown in Table 6.8.

JÜRGEN FOAG 109 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

Traffic Composition

1 90 % TCP-IPv4-G-E Traffic distribution (1997)

9 % UDP-IPv4-G-E [131, 100]

1 % ICMP-IPv4-G-E

2 82 % TCP-IPv4-G-E Traffic distribution (2002)

16 % UDP-IPv4-G-E [101]

2 % ICMP-IPv4-G-E

3 50 % TCP-IPv4-G-E

50 % UDP-IPv4-G-E

4 50 % TCP-IPv4-G-E

50 % UDP-IPv6-G-E

5 50 % TCP-IPv4-G-E

50 % UDP-IPv4-PoS

6 80 % TCP-IPv4-G-E

20 % UDP-IPv4-G-E

7 100 % TCP-IPv4-G-E

Table 6.7: Simulation traffic

Received packet Number of speculative pseudo-parallel

protocol-stack mispredictions model model

[processor cycles] [processor cycles]

TCP-IPv4-G-E 0 841 1164

UDP-IPv4-G-E 1 1168 1150

UDP-IPv6-G-E 2 1452 1293

UDP-IPv6-POS 2 1478 1315

Table 6.8: Mean protocol-processing latency

The mean values refer to a series of identical protocol-stacks that are received in a sequen-
tial order by the PPE. The table reveals that only in case of no mispredictions, the specula-
tive processing model exhibits a smaller value for the latency than the pseudo-parallel. The
difference between both processing models is 323 computation cycles, which corresponds
to a delay reduction of 27.7 %.

Based on an identical and static prediction for the speculative model, the mean latencies in
Figure 6.13 result from simulations with the randomized traffic stimuli of Table 6.7.

JÜRGEN FOAG 110 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

1 2 3 4 5

speculative

500

1000

1500

[processor cycles]
Mean latency/packet PPE

Traffic
6 7

pseudo−parallel

Figure 6.13: PPE latency

The latency reduction can be derived with equation 4.1 as shown in Figure 6.14.

1 2 3 4 5 6

25

20

15

10

5

Mean latency reduction r [%]

Traffic
7

Figure 6.14: Latency reduction

A maximum reduction of r = 27.7 % can be achieved for traffic 7, i.e. in case of no
mispredictions. For current traffic characteristics, i.e. traffic 2, the value is about 22.5 %.
The reduction decreases with equal packet distributions to r = 6.4 %.

The effort for speculative protocol processing in terms of processor cycles is higher than
841 cycles for the chosen constraints. For a computation of prediction values based on a
RISC processor, between 331 and 417 cycles were necessary in chapter 6.2. Consequently,
dynamic tables updates at line-speed are feasible. In case of multiple PPEs per system,
an additional aggregation of received SID has to be done before the update of prediction
values.

JÜRGEN FOAG 111 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

Individual processor workload

The costs in terms of embedded processor workload are depicted in Figure 6.15. The
workload represents execution times when NL-PUs execute protocol tasks. Based on the
predefinition of three servers, i.e. NL-PUs, a higher processor workload does not require
additional resources, e.g. through an assignment of external processors.

0

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

1 2 3 4 5 6 7

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

N
L

−
PU

 L
4

N
L

−
PU

 L
2

N
L

−
PU

 L
3

speculativepseudo−parallel

10

20

30

40

50

60

70

80

Workload [%] / packet

Traffic

Figure 6.15: Individual processor workload

The relative quantities refer to the complete duration that is required for protocol-
processing. Thus, a comparison of workloads for different traffic has to account for the
corresponding protocol processing delays. The figure reveals that the workload for specu-
lative processing is higher than for pseudo-parallel execution, resulting on one hand from
an additional effort in case of mispredictions. On the other, during memory accesses pro-
gram execution in scalar processor stalls until reference termination. Consequently, the
processor is busy. High values are especially obtained for the NL-PU L4 which performs
the time-consuming DiffServ tasks, i.e. classification, policing and accounting.

The correctly predicted traffic 7 demonstrates the unbalanced workload of the NL-PUs.

JÜRGEN FOAG 112 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

While NL-PU L2 is busy for only 252 processor cycles, NL-PU L4 requires 597 cycles.
A latency reduction for speculative protocol-processing can be expected if the workload is
balanced, i.e. if tasks of NL-PU L4 are assigned to NL-PU L2 and NL-PU L3.

Aggregated processor workload

The aggregated values for the three NL-PUs can be taken from Figure 6.16.

7
speculative

10

20

30

40

50

1 2 3 4 5 6
pseudo−parallel

Traffic

Workload [%] / packet

Figure 6.16: Aggregated processor workload

While the deviation for pseudo-parallel processing is small, the added workload for specu-
lative processing is between 43 % and 49 %. For traffic 2, the additional workload is about
55 %. The workload decrease for traffic 4 and 5 results from the fact that relative quantities
are depicted.

Arbitration- / Bus- and Memory-Load

The access to local memories via the shared bus is granted by a bus arbiter. The workloads
of the arbiter, the shared bus as well as the memory devices are presented in Figure 6.17.

It can be observed that the accesses to the DRAM for the speculative model achieve a max-
imum value of 11 %. These higher values result from additional memory load instructions
which are necessary for partial PCI reload in case of speculatively overwritten content in
NL-PU registers.

The number of SRAM accesses is increased in case of speculative processing. This results
especially from routing, classification and policing tasks that are wrongly executed as a
consequence of mispredictions.

JÜRGEN FOAG 113 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.3. PACKET-PROCESSING ELEMENT CHAPTER 6. SYSTEM EVALUATION

0

90

7

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Sh
ar

ed
 B

us
SR

A
M

Sh
ar

ed
 B

us
SR

A
M

D
R

A
M

D
R

A
M

Sh
ar

ed
 B

us
SR

A
M

Sh
ar

ed
 B

us
SR

A
M

speculative

D
R

A
M

D
R

A
M

Sh
ar

ed
 B

us
SR

A
M

Sh
ar

ed
 B

us
SR

A
M

10

20

30

40

50

60

70

80
Sh

ar
ed

 B
us

A
rb

ite
r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

Sh
ar

ed
 B

us
A

rb
ite

r

SR
A

M

A
rb

ite
r

A
rb

ite
r

A
rb

ite
r

1 2 3 4 5 6

pseudo−parallel

Traffic

Arbiter, Bus and Memory load [%] / packet

A
rb

ite
r

A
rb

ite
r

A
rb

ite
r

Figure 6.17: Arbitration- / bus- and memory-load

An essential outcome of the simulation is a significant difference for arbitration requests for
shared memory resources. While memory accesses in case of pseudo-parallel processing
are spread over the complete processing time of a packet, initiation of layer processing
in parallel leads to a higher number of synchronous bus requests. This means that the
shared bus arbiter represents a limitation for the system performance. As a consequence,
stall times increase the processor workload which has been already shown in Figure 6.16.
Simultaneous requests to the MMM-bus occur rarely in relation to the complete processing
time of a packet. Consequently, this interconnection bus between embedded processors of
a PPE does not appear as a performance bottleneck.

Throughput

In order to determine the throughput of a single PPE, two basic assumptions are made:
Considering current NP properties, the processor clock is set to 400 MHz [142]. A unified
minimum packet size of 96 bytes is used as simulation stimuli for all supported packets.
The throughput results are depicted in Figure 6.18.

It can be seen that the throughput of the speculative model is higher than that of the refer-

JÜRGEN FOAG 114 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.3. PACKET-PROCESSING ELEMENT

0

[Mbit/s]

Throughput (PPE)

speculative

100

200

300

400

Traffic
51 2 3 4 6 7

pseudo−parallel

Figure 6.18: PPE throughput

ence implementation. This results from a higher latency for protocol-processing of a single
packet. It has to be mentioned however that the obtained values refer to the predefinition
of one processed packet per time in a PPE. The idle times in NL-PUs consequently exhibit
that the system is over-provisioned in terms of processor resources.

The system performance depends on the entire number of processing resources to which
protocol-tasks can be assigned to. In case of a non-over-provisioned system, a maximum
amount of processing resources is predefined. If the processing requirements for protocol-
processing of a packet exceed this value, the execution of several tasks stalls until process-
ing resources requirements fall below this limit l. Consequently, the processing delay is
increased.

The value for l has to be specified before operation. The value that is assigned to l corre-
sponds to the maximum workload per packets. In case of the two applied models, i.e. the
speculative and the pseudo-parallel model, the highest workload per packet for both models
is given in the speculative case if every received packet obtains two mispredictions, i.e. one
in each prediction stage. This value is specified as l. The exact value depends on one hand
on the protocol-stacks which are supported by the system. On the other hand, it has to be
noted that a strict relation for the workload exists between received protocol-stacks and the
currently predicted stacks of the dynamic prediction algorithm.

Considering the simulation traffic in Table 6.7, UDP-IPv6-G-E is used as the protocol-
stack that specifies the maximum value for the required workload. It is supposed that the
prediction leads to 2 mispredictions for the corresponding packet. The workload in cycles
for this protocol-stack is shown in Table 6.9. The index i in the table refers to the protocol
layer.

JÜRGEN FOAG 115 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

6.4. CONCLUSION CHAPTER 6. SYSTEM EVALUATION

Workload rel. Workload Workload rel. Workload

(speculative (speculative (pseudo-p. (pseudo-p.

model) model) wsLi
model) model) wpLi

[cycles] [%] [cycles] [%]

Latency 1452 1315

NL-PU L4 757 0.52 477 0.36

NL-PU L3 654 0.45 411 0.31

NL-PU L2 276 0.19 248 0.19

Table 6.9: NL-PU workload for UDP-IPv6-G-E

Both models differ in the values for the processing latency. If the processing delays are
normalized for both models, the additional NL-PU resources for the pseudo-parallel model
can be determined. Considering the values in the table above, the workload in case of
pseudo-parallel processing is decreased by

(wsL4
−wpL4

)+(wsL3
−wpL3

)+(wsL2
−wpL2

) =

(52%−36%)+(45%−31%)+(19%−19%) = 30% (6.3)

6.4 Conclusion

The evaluation presented in this chapter covered the prediction unit as well as the PPE. Sep-
arate simulation models, a model in C/C++ for the prediction unit and a model in SystemC
for the PPE, were applied to focus on one hand on the behavior of the prediction algorithm
and on the other hand on communication aspects of the shared bus architecture. Both parts
have been simulated with real packet distributions of 1997 and 2002. In addition, artifi-
cial protocol distributions have been used for worst-case analysis. Since the simulation of
the PPE covers worst-case traffic compositions, the implementation of a static prediction
module in the model does not constrain the quantity of the obtained performance results.

In the first part, the dynamic prediction algorithm has demonstrated a high accuracy and
an efficient adaptation to varied traffic distributions. The necessity for a small amount
of prediction registers and a small mean number of compare instructions highlighted the
strength of the chosen algorithm.

The implementation of a PPE architecture was focused on a performance evaluation of
the underlying processing model. Consequently, the obtained results refer to the prede-
fined system environment and to the simulation constraints. These values have shown

JÜRGEN FOAG 116 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 6. SYSTEM EVALUATION 6.4. CONCLUSION

that a significant reduction for the processing latency can be obtained through speculative
processing. For this processing model however, data access to memories was impeded
by a higher number of simultaneous requests for shared bus resources. The assignment of
protocol-layer tasks to the NL-PUs has an impact on the processing latency. If the processor
workload is unbalanced, the NL-PU with the highest workload determines the processing
latency.

The exemplary NP architecture represents an over-provisioned system. In case of a non-
over-provisioned system, the amount of assigned processor resources to a packet is limited.
During the system simulations, the maximum workload was required in case of speculative
processing for 2 occurring mispredictions. If this value is specified as the maximum pro-
cessor workload for protocol-precessing of a single packet, available processor resources
become idle in case of a lower number of misprediction. If the pseudo-parallel reference
model also provides an identical amount of processor resources, spare processing capacities
are given.

JÜRGEN FOAG 117 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 7

Concept application study

7.1 Introduction

The objective of the speculative packet-processing concept is to achieve a reduced latency
for protocol-processing compared to traditional processing models. Low latencies are rel-
evant for delay-sensitive real-time (RT) applications that possess bounded maximum end-
to-end transmission delays for each packet [143]. If a packet exceeds this deadline, i.e. it
arrives too late at the destination, its value is reduced or it is even useless for the appli-
cation. Besides low latency, an important property for RT communication is a low delay
jitter. Several studies have been done to provide bounded delay jitter in packet-switching
networks [144] [145].

However, results of section 6.2 show that the delay in case of speculative processing de-
pends on the protocol-stack prediction. While a correct prediction achieves low latencies
in a PPE, one or two mispredictions entail longer processing delays. For a data stream that
is transmitted in several packets, a delay jitter can arise from these different values of the
network node delay. In order to compensate increased mean values for processing delays
and delay jitters of packets, an appropriate concept will be introduced in section 7.2. In the
following section, the benefit of the speculative processing concept will be analyzed from
an end-to-end perspective. Finally, the complete latency reduction along the transmission
path will be estimated under consideration of network node and network domain properties.

7.2 Queuing delay and jitter analysis

7.2.1 Motivation

In Table 6.8, the additional processing time in case of occurring mispredictions was shown.
While one misprediction entails an additional processing time consumption of more than

118

CHAPTER 7. CONCEPT APPLICATION STUDY 7.2. QUEUING DELAY AND JITTER ANALYSIS

300 cycles, two mispredictions may require about 600 processor cycles more than in case
of none mispredictions. In order to cope with these deviations, a delay compensation has
to be achieved subsequently to the PPEs. Separate packet processing paths for the input
and output are used in NPs that have a switch fabrics between, e.g. [146]. In Figure 7.1, a
centralized architecture is shown that performs protocol-processing and output processing
in a single system, e.g. [21].

Output Processing

...
Queuing Scheduling

Transmission
Packet

Interface
Output

PPE

PPE

PPE

Figure 7.1: Output data movement model

Packets which have finished protocol-processing are transferred to the output processing
block. This block is responsible for enqueuing and dequeuing of packets. A scheduler
decides the service order for packet transmission to the outgoing interface. Further func-
tionalities, e.g. congestion avoidance mechanisms, might be implemented here as well,
but they are out of the scope of this work. Finally, packet transmission prepares packets
according to the internal data structure for transmission.

7.2.2 Scheduling algorithm

The targeted delay jitter compensation is realized by a scheduling algorithm that has the
capability to assign higher queuing priorities to mispredicted packets. One commonly im-
plemented scheduling algorithms in todays routers is WFQ. Figure 7.2 shows an extension
of the WFQ algorithm which additionally has two priority queues (PQ) [147] [148]. It is
called PQ+WFQ hereafter.

Packets which refer to different classes and receive different forwarding behavior are stored
in different queues based on the type-of-service field and traffic-class field of the IP version
4 and IP version 6 header, respectively.

For an individual prioritization of single WFQ queues, queuing weights wi are defined.
They allow an allocation of individual bandwidths and delays for traffic flows. For simplic-
ity reasons, two per-hop behaviors are used in the following: Expedited Forwarding (EF)

JÜRGEN FOAG 119 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.2. QUEUING DELAY AND JITTER ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

...

w1

w2

wn

WFQ queue n

Output line

Scheduler

WFQ queue 2

WFQ queue 1

Priority queue 1

Priority queue 2

Priority Queues

WFQ Queues

Figure 7.2: Priority + weighted fair queuing

and Best-Effort (BE). Large values for wi are assigned to EF queues, which contain delay-
and jitter-sensitive packets. BE traffic is kept in queues possessing small values for wi.

The priority queues are used for EF packets that are delayed due to mispredictions. In case
of one misprediction, the packet is stored in priority queue 2 and in case of two mispredic-
tions in priority queue 1, respectively. The number of occurred mispredictions is indicated
by the prediction history word (PHW) which is delivered simultaneously to the packet data
by the precedent PPE. Packets with no mispredictions during protocol processing are dis-
tributed among WFQ queues that correspond to the CoS label of the IP header. The number
of WFQ queues is exemplarily defined to four. The scheduling algorithm traverses down
the queues and serves successively priority queue 1 and 2 if a packet is stored. Otherwise,
the scheduler serves the WFQ queues according to their weights. It is assumed that the
scheduler has a work-conserving behavior, i.e. the scheduler is never idle when packets
await service.

7.2.3 Evaluation

The evaluation is focused on the metrics mean delay and delay jitter. The observed variable
delay jitter is defined as a quantity that expresses the variability of the delay. Considering
several different definitions of delay jitter [149], it is applied in this context as the difference
between the maximum and the minimum delay of packets in a network node [144].

In total, three simulation scenarios are observed. The reference system implements pseudo-
parallel processing and weighted fair queuing. The speculative model represents an im-

JÜRGEN FOAG 120 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 7. CONCEPT APPLICATION STUDY 7.2. QUEUING DELAY AND JITTER ANALYSIS

provement of the processing methodology. However, mispredictions generate a delay jitter
which can not be reduced by WFQ. Finally, PQ+WFQ is evaluated in conjunction with the
speculative processing model. The simulation methodology is illustrated in Figure 7.3.

Queue length)

Monitoring
(Jitter, Delay,

Generator
Packet

, d
m

2
d

 m
1

A
dd

iti
on

al
 P

PE
 p

ro
ce

ss
in

g
de

la
y

m
2

, p
p

 m
1

Pr
ed

ic
tio

n
m

is
s

ra
te

Misprediction
Generator

PQ + WFQ

WFQ

Figure 7.3: Evaluation Methodology

A packet generator is used to generate random simulation traffic for both queuing models.
In order to consider processing delays resulting from the occurrence of mispredictions in
PPEs, processing delays dm1,dm2 are added to single packets according to the statistical
rates pm1, pm2 for one or two mispredictions. The indices refer to the number of mispre-
dictions for a packet. In case of no misprediction, dm0 is equal to zero. According to Table
6.8, the additional processing delay in case of one misprediction is about dm1 = 300 cycles
and in case of two mispredictions about dm2 = 600 cycles, respectively. The misprediction
rates, derived from the traffic statistics in [101], are pm1 = 2 % for 2 mispredictions and
pm2 = 16 % for one misprediction. As a fundamental requirement for the simulation, the
queuing system has to be in steady state, i.e. the incoming and outgoing packet rates have
to be equal. It has to be mentioned that only mispredicted EF packets are stored in priority
queues, mispredicted BE packets are kept in WFQs. The size for simulation packets is 96
Bytes, which corresponds to the predefinition in the previous chapter. The outgoing link
rate is set to 8 bit per cycle. In case of an NP clock frequency of 400 MHz, the transmis-
sion rate ranges between OC-48 and OC-192. The number of simulation packets is 1000.
In order to avoid empty packet queues during simulation, two simulation periods are used.
The incoming data rate is higher than the outgoing link rate during the initialization. The

JÜRGEN FOAG 121 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.2. QUEUING DELAY AND JITTER ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

queues are filled with a number of predefined initialization packets ni. During the oper-
ation time, the mean incoming data rate is equal to the mean outgoing link rate to avoid
queue overflows. The packet order and the selection of mispredicted packets are generated
at random. The assignment rate of generated packets to each of the four WFQ queues is 25
%.

In Table 7.1, the results for a single simulation are shown. It has to be mentioned that the
values in the table solely refer to the queuing module. Additional delays that result from
protocol processing in the PPEs are not included.

PQ 1 PQ 2 WFQ 1 WFQ 2 WFQ 3 WFQ 4

PHB EF BE BE BE

wi 0.4 0.3 0.2 0.1

WFQ Mean Delay - - 600.0 636.3 714.3 953.4

(cycles)

Delay Jitter - - 853 858 1341 1907

(cycles)

PQ+WFQ Mean Delay 26.2 44.3 696.6 708.9 758.6 989.4

(cycles)

Delay Jitter 70 93 1017 1187 1503 2031

(cycles)

Table 7.1: Mean delay and jitter

It can be seen that mean delays and the delay jitter for WFQ queues increase with decreas-
ing values for wi. If mispredicted EF packets are assigned to one of the priority queues,
their mean delays can be reduced. The mean delays of WFQ queues however increase if
priority queues are applied. In Figure 7.4, the queuing delay distributions of WFQ queue 1
is shown for the reference as well as for the PQ+WFQ system.

The relative frequency of packets is expressed by the relation between queued packets in a
queue with a certain delay and the total number of simulation packets in the same queue.
Mispredicted EF packets are assigned to priority queues. Consequently, discrete values for
packet frequencies in case of pure WFQ are smaller than for PQ+WFQ. According to the
results of the table above, an increased delay can be observed for the PQ+WFQ system
compared to the WFQ model.

In the following, the targeted delay jitter reduction of the PQ+WFQ model is considered.
The jitter reduction takes into account additional processing delays that result from mis-
predictions and queuing delays. It is calculated as the difference between delay jitter of the

JÜRGEN FOAG 122 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 7. CONCEPT APPLICATION STUDY 7.2. QUEUING DELAY AND JITTER ANALYSIS

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500 600 700 800 900 1000 1100

re
la

tiv
e

fr
eq

ue
nc

y

Delay time t

WFQ queue 1 (WFQ)WFQ queue 1 (PQ + WFQ)

Figure 7.4: Queuing delay EF queue

WFQ and the PQ+WFQ system. The delay jitter jPQ+WFQ of the PQ+WFQ model includes
misprediction delays and is:

jPQ+WFQ = dWFQq1max −min{dWFQq1min ,dPQq1min +dm2,dPQq2min +dm1} (7.1)

with the maximum delay of WFQ queue 1 dWFQq1max , the minimum delay of WFQ queue 1
dWFQq1min , the minimum delay in case of 2 mispredictions dPQq1min +dm2 and the minimum

JÜRGEN FOAG 123 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.2. QUEUING DELAY AND JITTER ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

delay in case of 1 misprediction dPQq2min +dm1. The values for dm2 and dm1 are 600 cycles
and 300 cyles, respectively.

The delay jitter jWFQ of the WFQ model including the misprediction delays is:

jWFQ = dW FQq1max −dW FQq1min (7.2)

with the maximum delay dW FQq1max + dx and the minimum delay dWFQq1min + dy of WFQ
queue 1. dx and dy are addends which consider the misprediction delay. Their values are 0
in case of no, dm1 in case of one and dm2 in case of two mispredictions.

With equations 7.1 and 7.2 follows for the delay jitter reduction ∆ j

∆ j = jWFQ− jPQ+WFQ (7.3)

The reduction of the delay jitter through priority queues is illustrated in Figure 7.5. The
bars represent the range of simulation results for the jitter reduction.

64 8 10

Initialization
packets

Jitter reduction [cycles]

100

200

400

600

700

500

300

0

Figure 7.5: Delay jitter reduction

It can be seen that the jitter reduction depends on the number of initialization packets, i.e.
the fill level at the beginning of the simulation. A significant deviation for the jitter reduc-
tion can be seen as well. This results from the randomized parameters, i.e. the packet order,
the packet reception time, the selection of mispredicted packets and the packet assignment
to queues. However, a positive value for the delay jitter reduction can be achieved for dif-
ferent numbers of initialization packets. Thus, the delay jitter of the speculative processing

JÜRGEN FOAG 124 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 7. CONCEPT APPLICATION STUDY 7.3. NETWORK PROCESSOR DELAY

model can be compensated by a queuing system that applies additional priority queues. It
has to be mentioned that the applied queuing system with priority queues can also be used
in a pseudo-parallel model to reduce the queuing delay of EF traffic. In the speculative
processing model, however, the queuing system with additional priority queues has been
used to cope with the generated delay jitter due to mispredictions.

7.3 Network processor delay

The PPEs and the queuing module have been evaluated in the previous chapters. In order to
determine the delay properties of the complete network processor, the receive and transmit
units have to be analyzed. It should be noted that this part targets on an estimation of the
required processing cycles.

Concerning the receive unit, it is assumed that functions such as HDLC/POS serial-to-
parallel conversion, section/path overhead extraction, payload pointer interpretation as well
as Ethernet framing, frame size monitoring and FIFO buffering are done in the external POS
framer / Ethernet MAC device [111] [150]. An external FIFO is used to buffer incoming
data before their transfer to the NP.

The internal receive unit is responsible for dispatching packets, which are kept in the FIFO,
to an idle PPE. The data transfer itself is started on request of the PPE. Depending on the
data format of the FIFO, reassembly might be required as well as an identification of the
port. The packet data is transferred to the input buffer of the assigned PPE. According to
[141], 30 cycles are required for a data transfer of 32 bytes from the FIFO to the embed-
ded processor. Consequently, for packets with a minimum size of 96 bytes, 90 cycles are
required. Based on [140] and [29] and considering separate packet memories for PPEs, the
total processing effort needed for this block is estimated to 180 to 200 compute cycles.

The internal transmit block handles the data movement from the queuing module to a suc-
ceeding external device. Enqueued packets that await transmission are kept in a shared
DRAM. The requirement for a DRAM read operation, which is derived from [141], is es-
timated to 55 cycles. Additional information that is furthermore required by a succeeding
framer/MAC or a switch fabric has to be appended. In total, the estimated delay is about
125 to 145 cycles [29].

Table 7.2 gives an overview of the processing delay for a complete network processor.
The estimated values refer to clock frequencies of the embedded processor cores. Mean
PPE delays and the mean delay for EF-packets are taken from Figure 6.13 and Table 7.1.
The values are derived from the percentages of none, one and two mispredictions and the
corresponding delays. The applied traffic corresponds to the traffic distribution in [101].
The prediction rates are taken from chapter 6.2.

While the pseudo-parallel model requires between 2067 and 2107 cycles, the effort for
speculative processing is only between 1757.8 and 1823.8. This corresponds to a latency

JÜRGEN FOAG 125 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.4. END-TO-END ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

Processing model Speculative Pseudo-parallel

Queuing algorithm PQ / WFQ WFQ

Mean delay PPE [cycl.] 874 - 900 1162

Mean EF-delay [cycl.] 578.8 600

Delay receive unit [cycl.] 180 - 200 180 - 200

Delay transmit unit [cycl.] 125 - 145 125 - 145

∑ [cycl.] 1757.8 - 1823.8 2067 - 2107

Table 7.2: Processing delays

reduction of 13.4 and 14.9 %. If an NP clock of 400 MHz is assumed, mean latencies are
observed between the incoming and the outgoing interface amount of 4.4 - 4.6 µs in case of
speculative processing and 5.2 - 5.3 µs in case of pseudo-parallel processing, respectively.

7.4 End-to-end analysis

In the previous chapters, the speculative processing model has been evaluated. The
obtained latency reduction in a single network node is now compared with the delay of the
complete transmission path, i.e. the “end-to-end” delay. As an application example, which
possesses end-to-end delay requirements, IP telephony is used.

Network architecture

A common network architecture is depicted in Figure 7.6. Public network domains of ISPs
are highlighted as bright clouds.

Egress
Router

Campus

Ingress
Router

Ingress
Router
ISP 1

Router
Egress

ISP 1 ISP 2
Router
Egress

ISP 2

Figure 7.6: Network architecture

JÜRGEN FOAG 126 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 7. CONCEPT APPLICATION STUDY 7.4. END-TO-END ANALYSIS

End systems of a local-area network (LAN) are connected to a public network infrastruc-
ture through a LAN/campus egress router and an ISP ingress router. In case of a dial-in
access, a connection to the network is established through a network access router. In both
cases, access to a domain is only given if a service-level agreement (SLA) between the
end terminal subscriber and the network service provider exists. At this access or edge
router, the SLA compliance is verified and, according to the result, packet forwarding,
re-classification or dropping is initiated.

According to the results of chapter 4, a significant latency gain for the speculative process-
ing model is anticipated in edge routers where complex protocol processing is done. The
number of edge routers along the transmission path can be derived from the number of
individual DiffServ domains. According to the SEQUIN initiative of the GEANT research
network, premium IP service implementation targets on a minimum number of actions per
domain interconnection node [151]. While functionalities such as marking and policing
have to be done only in selected nodes, more complex tasks such as admission control,
classification, monitoring and accounting have to be performed by every DiffServ edge
router, i.e. ingress and egress router. Campus edge routers and firewalls, which might have
a demand for deep packet header analysis, are additionally considered. The number of net-
work domain transitions given below in Table 7.3 depends on several factors. The locations
of the end systems possess an important role on the number. The domain which is passed
first has furthermore an essential impact on the selection of a succeeding ISP domain [152].

The SpaceNet “traceroute” Service and “ping plot” have been taken to estimate the number
of network domain transitions for different connection end points [153] [154]. The results
are given in Table 7.3. The values for the end-to-end delay reduction are derived from the
different processing delays in Table 7.2 and an assumed NP clock of 400 MHz.

Connection end points No. ISP No. complex End-to-End

domain processing delay

transitions routers reduction (µs)

Munich - Washington, DC 1 - 4 6 - 12 4.2 - 9.6

Munich - San Francisco 1 - 5 6 - 14 4.2 - 11.2

Munich - Sydney 2 - 5 8 - 14 5.6 - 11.2

Table 7.3: Number of complex processing router

It is assumed that each of the passed ISP domains implements DiffServ functionalities.
The connection end points refer to different institutions. The end-to-end delay reduction
is obtained by the application of the speculative processing model. The complex protocol-
processing tasks of the applied routers correspond to the SEQUIN initiative. The number of
routers nrouter can be derived from the number of ISP domain transitions nISP, the campus

JÜRGEN FOAG 127 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.4. END-TO-END ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

ingress and egress router, the ingress router of the first ISP domain and the egress router of
the last ISP domain along the transmission path. Thus, it is

nrouter = 2 ·nISP +2 (7.4)

The values for the end-to-end delay reduction refer only to the NP systems. Additional
delays that result from network node devices, e.g. framers, MACs and switch fabrics, are
not included.

End-to-end delay

In case of IP telephony, the maximum value for an acceptable one-way end-to-end delay is
defined to 150 ms [155]. This time budget has to be spread between three parts, namely the
transmission source, the network and the transmission sink. The delay portions for these
components are shown in Figure 7.7.

Propagation
Delay

Transmission
Delay

Coding &
Packetization Processing

Queuing &

Node delay Queuing

Jitter Buffer Processing Decoding

Transmission sink

Transmission source

Network

Figure 7.7: Delay portions

A speech encoder in the transmission source converts a digitized signal to a bit-stream,
packetizes and sends it over the network. Codecs are therefore applied to code a digital
sound stream captured from a sound card and to decode the stream captured from the
network to a playable format. Commonly used codecs for IP telephony differ in packet
sizes, bit-rates and delays. Some codecs and their delays are G.711 (20 ms), G.729 (25 ms)
and G723.1 (37.1 ms) [156]. Additionally, a packet processing and queuing delay of about
20 - 70 ms is generated by the sound card and the operating system [157].

JÜRGEN FOAG 128 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 7. CONCEPT APPLICATION STUDY 7.4. END-TO-END ANALYSIS

Propagation delays of networks result from transmission medium properties. The propa-
gation velocity in optical fiber is approximatively 0.67 · speed-of-light, i.e. 200000 km/s
[25]. The propagation delay for three pairs of end points can be seen in Table 7.4.

Connection end points Distance Propagation

[km] delay [ms]

Munich - Washington, DC 7214 36.1

Munich - San Francisco 11155 55.8

Munich - Sydney 18932 94.7

Table 7.4: Propagation delay

Transmission delays depend on the data format of the physical medium and the supported
data rates. Node delays are composed of packet processing delays in network node devices,
e.g. NPs, framers, switch fabrics. Queuing delays result from overloads of components,
especially at traffic aggregation points.

A jitter buffer is necessary in the transmission sink to smooth packet burstiness and to com-
pensate delay jitter which has been generated along the transmission path [158]. Typical
delay values for jitter buffers range between 30 and 300 ms [157]. The decoder recon-
structs the voice signal from the received packets of the stream. The required time for this
task is about 1 ms. Finally, the processing time is identical with the processing time in the
transmission source, i.e. 20 ms.

Apart from network node delays, common delay values for an end-to-end transmission path
between Munich and San Francisco are shown in Table 7.5.

Delay [ms] Comment

Coding / Packetization 20 G.711

Queuing / Processing 20 - 70

Propagation delay 55.8 Munich - San Francisco

Transmission delay 0.016 - 25 100 Mbps / 64 kbps

Queuing 0 - 50

Jitter buffer 30 - 300

Processing 20

Decoding 1 G.711

∑ 146.816 - 541.8

Table 7.5: Delay values

JÜRGEN FOAG 129 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

7.4. END-TO-END ANALYSIS CHAPTER 7. CONCEPT APPLICATION STUDY

The relative delay reduction obtained by the speculative model along the complete trans-
mission path in relation to the accumulated end-to-end delay is about 20 ·10−6. If a traffic
burst leads to a queuing delay in a single network node, the latency gain obtained by spec-
ulative processing has a negligible value. However, an added delay time of more than 150
ms does violate the ITU recommendation [155]. Consequently, a local reduction of the
protocol-processing delay in a networking node represents an indispensable contribution
for delay sensitive high-speed forwarding.

JÜRGEN FOAG 130 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Chapter 8

Summary and conclusions

An increased performance demand arises for routers in the Internet. In order to cope with
this requirement and to provide furthermore the flexibility to support different protocols
and services, network processors have been introduced. They provide a high throughput
by means of embedded processor cores. Apart from a system throughput, latency is an-
other essential performance metric of networking systems. Short processing latencies are
required to enable delay-sensitive applications in a distributed environment. The limited
focusing of network processors concerning short protocol-processing latencies motivated
this work. The main topic of this thesis is a speculative protocol-processing methodology
for network processors that is focused on short processing latencies. A prediction is applied
to predict the protocol-stack of packets that will be received next. This knowledge is used
to overcome data dependencies in the packet header and to process protocol tasks of the
packet synchronously in parallel processing units. The targeted benefit is a reduced mean
processing latency compared to traditional processing methodologies.

A concept evaluation was done to determine the latency reduction that can be obtained by
the speculative processing concept. The analysis has been performed under consideration
of parameters that have an impact on the latency and the workload of the system. The
results exhibit that the latency can be significantly reduced, if the prediction covers multiple
layers. Thus, a promising application field for the speculative processing concept is where
complex processing is required, e.g. in edge routers or gateways. The contrary appears for
the speculative concept if processing in different layers is limited, e.g. IPSec or VPN. While
encryption and decryption are done in the transmission end points, no deep packet header
analysis has to be performed along the transmission path. The sequence of processing tasks
for the applied protocol-stack obeys logical considerations, e.g. an address lookup is only
performed if the checksum calculation of the packet header was correct. The results of the
concept evaluation however exhibit that the sequence and the position of the processing
task that derives the type of the upper protocol layer has a considerable impact on the
delay. Thus, it can be concluded that an optimization of the task order has to be done to
achieve a maximum value for the delay reduction. The analysis showed that an optimum

131

CHAPTER 8. SUMMARY AND CONCLUSIONS

value for the prediction accuracy leads to a substantial delay reduction of up to 28 %, while
the additional processing workload decreases to 0 %. Consequently, a high value for the
prediction accuracy has to be striven.

Leaving behind these general insights, a transition is made to the Internet and to VLSI-
specific considerations. A network processor architecture is therefore specified, which
offers multiprocessing capabilities. The protocol-processing units, which represent the so-
called fast-path, are realized as multiple protocol-processing elements. Each of them is
built up of four embedded processors. The implemented functionalities comprise tasks of
an edge router in a DiffServ domain. The protocol-stack prediction unit implements an al-
gorithm which is based on the principle of most-frequently used events. Simulations of the
implemented dynamic prediction model have been performed with current network traffic
distributions. It has been demonstrated that the algorithm possesses the capability for a
smooth adaptation to altered prediction values. Based on current traffic distributions that
have an dominant percentage of TCP, values for the prediction accuracy range of up to 82
to 90 % for the first prediction stage, and up to 98 to 99 % for the first and second prediction
stage. If the percentage of UDP traffic increases, e.g. for RT-applications, the prediction hit
rate will be decreased. It has been additionally shown that the algorithm, which is capable
for an update of the prediction registers in packet-rate, can be implemented in software.
However, the packet data collection at the input of the prediction computation unit has
to be enhanced to provide updated prediction values for network processor systems with
multiple packet-processing elements. Weight factors have been introduced to the predic-
tion unit to priorize protocol-processing of delay-sensitive packets even if their reception
frequencies do not correspond to the most-frequently used protocol-stacks. In order to ob-
tain maximum values for the latency reduction under consideration of prioritized packets
and their reception frequencies, a necessity for an exact assignment of weight factor values
arises. The large number of special registers and the computation effort for the calculation
of the required MFU values show weaknesses of the dynamic prediction algorithm. An
alternative algorithm with less complexity has to be striven, e.g. a tree search algorithm.
These topics will be subjects of further research.

The main intention of the system design was not to derive an optimized architecture of
a speculative network processor. Instead, an exemplary platform design was defined for
evaluation purposes. Based on the same amount of processor resources, the speculative
and a pseudo-parallel reference processing model have been mapped to this architecture.
Performed simulations observed the relationship of both models in terms of processing
delay and processor workload. The scenario which was used for the system evaluation was
a forwarding device in an ISP edge router. Based on this, it was found that the latency of
the speculative model can be significantly decreased to a value of 6.4 to 22.5 % compared
to the reference model.

However, functionalities which are time-consuming, e.g. DiffServ tasks such as multifield-
classification and policing, lead to a high workload of the assigned processors. Since oc-
curring mispredictions require an additional processing effort, an essential increase of the

JÜRGEN FOAG 132 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 8. SUMMARY AND CONCLUSIONS

processor workload is given. Another consequence is the fact that the workload of the bus-
iest NL-PUs determines the processing delay. This requires a balanced workload of the
NL-PUs. Further research is necessary to develop an improved model for the assignment
of processing tasks to NL-PUs. The aim of the model is a balanced workload to achieve
minimum values for the processing delay. Parameters which seem to be relevant for this
study are network traffic distributions, the corresponding protocol-stack prediction and the
applied protocol-stack.

A simultaneous initiation of layer-processing in different processors additionally involves a
higher number of simultaneous access requests on the local SRAM. The performed simula-
tions consequently have shown that the bus arbiter represents a performance bottleneck of
the speculative system. The shared bus workload is increased as well. In order to decrease
the number of simultaneous access requests and to decrease the arbiter load, a conceivable
approach might be to modify the PPE architecture in terms of the memory assignment to
NL-PUs. In the applied architecture, each PPE contains one local SRAM to which which
three NL-PUs have access. An alternative approach is to assign multiple NL-PUs of dif-
ferent packets and different layers to one SRAM. Consequently, different packet reception
times enable that times of input, protocol-stack and output processing are distributed and
the number of simultaneous SRAM access requests would be decreased. Another alterna-
tive to decrease the bus workload that mainly results from DiffServ tasks such as multifield
classification might be to shift these tasks to acceleration units which are external to PPEs.

In the implemented model, the bus access is statically prioritized for the NL-PUs from layer
2 to 4. A further improvement of the processing delay might be possible if the shared bus
is granted in an alternative way, e.g. round-robin. This can be subject of further research.

As a prerequisite for the latency gain, sufficient processing resources are required to avoid
stall times in case of successively mispredicted packets. The amount of processing re-
sources has to be predefined before the implementation of the system. If this value is
derived from the amount of resources that are required for processing mispredicted packets
with two mispredictions, the system is overprovisioned if the prediction hit rate increases.
The pseudo-parallel reference model has a higher processing latency. Thus, due to a lack
of mispredictions and a reduced workload, the throughput of a reference system that pos-
sesses an identical amount of processing resources is higher than the throughput of a spec-
ulative one. This implies that unused processor workload can be assigned to additionally
dispatched packets.

In order to develop an optimized system architecture, an effort has to be spent to analyze if
a balanced workload and consequently a reduced latency can be achieved by architectural
improvements. A conceivable starting point for this might be the replacement of scalar
NL-PUs through multithreading processor cores.

As a consequence of correctly predicted and mispredicted packets deviations appear for the
protocol-processing latency. In order to compensate this delay jitter, an approach has been
presented which can be applied to the speculative network processor model. The applied

JÜRGEN FOAG 133 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

CHAPTER 8. SUMMARY AND CONCLUSIONS

queuing algorithm is therefore extended by two priority queues, which mispredicted EF-
packets are assigned to. The performed simulations clearly demonstrated that the delay
jitter which has been generated in packet processing elements can be compensated and that
the speculative model is suitable for delay-sensitive traffic.

The proposed concept contains a prediction that provides not only a statement about the
types of protocol-layers. It also indicates the control-flow path through the protocol-stack,
e.g. whether the packets have to be forwarded or terminated. It furthermore predicts the
presence of optional protocol-header fields in a packet and makes an assumption whether
packet header data are corrupted or not. In the exemplarily implemented NP architecture,
protocol-processing has been done in three NL-PUs. Further research activities have to
been spent to scale the speculative processing model to more than three processing units.
This requires on one hand a model for an efficient assignment of protocol tasks to embedded
processors. On the other hand, considerations about the predicted statements towards value
prediction have to be done, e.g. prediction of CoS-labels.

On the whole, it can be concluded that the proposed methodology of protocol-stack pre-
diction and speculative packet-processing represents an essential contribution for reduced
processing delays in network processors. It can be profitably applied to network-edge
routers and domain border routers.

JÜRGEN FOAG 134 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Bibliography

[1] B. Leiner, et al., A Brief History of the Internet Internet Society, www.isoc.org.,
Reston, Version 3.31, Aug. 2000.

[2] D. Comer, Internetworking with TCP/IP Volume 1, 3rd edition, Prentice-Hall, Upper
Saddle River, 1995.

[3] ISO 7498. Information Processing Systems - Open Systems Interconnection - Basic
Reference Model International Standard, ISO, 1984.

[4] U. Black, OSI A Model for Computer Communications Standards Prentice Hall,
Eaglewood Cliffs, 1991.

[5] W. Haass, Handbuch der Kommunikationsnetze, Einführung in die Grundlagen und
Methoden der Kommunikationsnetze Springer Verlag Berlin, 1997.

[6] A. Tanenbaum, Computer-Networks Second edition, Prentice-Hall, Eaglewood Cliffs,
1989.

[7] S. Giordano, S. Salsano, S. Van der Berghe, G. Ventre, D. Giannakopoulos, Advanced
QoS Provioning in IP Networks: The European Premium IP Projects IEEE Commu-
nications Magazine, Vol 41 No.1, Jan. 2003.

[8] R. Braden et al., Integrated Services in the Internet Architecture: an Overview IETF
Request for Comment 1633, Jun. 1994.

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An architecture
for differentiated services IETF, RFC 2475, Dec. 1998.

[10] K. Kilkki, Differentiated Services for the Internet Macmillan Technical Publishing,
Indianapolis, 1999.

[11] K. Nichols, S. Blake, F. Baker, D. Black, Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers IETF, RFC 2474, Dec. 1998.

[12] P. Pradhan, T. Chiueh, A Cluster-based Scalable and Extensible Edge Router Archi-
tecture ECSL Technical Report 2000-79, DCS, State University of New York, 2000.

135

BIBLIOGRAPHY BIBLIOGRAPHY

[13] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching Architecture
IETF, RFC 3031, Jan. 2001.

[14] B. Gleeson et al. A framework for IP Based Virtual Private Networks IETF, RFC
2764, Feb. 2000.

[15] L. Kleinrock, Queueing Systems, Volume 2: Computer Applications John Wiley &
Sons, New York, 1976.

[16] K. Jeffay, Rate-based execution models for real-time multimedia computing Dept. of
Computer Science, University of North Carolina at Chapel, Sep. 1997

[17] L. Kleinrock, Queueing Systems, Volume 1: Theory John Wiley & Sons, New York,
1975.

[18] J. Sterbenz, Protocol for High-Speed Networks: A Brief Retrospective Survey of
High-Speed Networking Research Proc. of Protocol for High Speed Networks, Apr.
2002.

[19] W. Bux, W. Denzel, T. Engbersen, A. Herkersdorf, R. Luijten Technologies and
Building Blocks for Fast Packet Forwarding IEEE Communications Magazine, Jan.
2001.

[20] L. Gwennap, B. Wheeler, A Guide to Network Processors Published by MicroDesign
Resources, Sunnyvale, 2000.

[21] Intel IXP1200 Network Processor Advance Datasheet, Intel, Sep. 1999.

[22] IBM Network Processor Databook IBM Microelectronics Division, Nov. 1999.

[23] Intel IXP1200 Network Processor: Software Reference Manual Level One Com-
munnications, Inc., an Intel company, Mar. 2000.

[24] S. Hily, A. Seznec, Branch Prediction and Simultaneous Multithreading Pulication
interne No. 997, IRISA, Rennes, 1996.

[25] J.P.G. Sterbenz, J.D. Touch, High-Speed Networking: A Systematic Approach to
High-Bandwidth Low-Latency Communication John Wiley, New York USA, 2001.

[26] P. Paulin, F. Karim, P. Bromley, Network Processors: A Perspective on Market Re-
quirements, Processor Architectures and Embedded S/W Tools Proc. of DATA 2001,
Munich, Mar. 2001.

[27] M. Heddes, E. Ruetsche, A Survey of Parallelism in Communication Subsystems IBM
Zurich Research Laboratory, Res. Rep. RZ 2570, 1994.

[28] G. Federkow, Technology Overview Technology of Edge Aggregation: Cisco 10000
Series Edge Services Router, Cisco Systems, Inc. 2003.

JÜRGEN FOAG 136 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[29] S. Lakshmanamurthy, K. Liu, Y. Pun, L. Huston, U. Naik, Network Processor Perfor-
mance Analysis Methodology Intel Technical Journal, Vol. 6, Aug. 2002.

[30] F. Baker, Requirements for IP version 4 routers RFC 1812, IETF, Jun. 1995.

[31] Y. Rekhter, T. Li, An architecture for IP address allocation with CIDR RFC 1518,
IETF, Sep. 1993.

[32] P. Gupta, Routing lookups and packet classification Tutorial at AT&T Research,
Florham Park, Jul. 2000.

[33] A. Demers, S. Keshav, S. Shenker, Analysis and Simulation of a fair queueing algo-
rithm Internet Res. and Exper., vol. 1, 1990.

[34] A. Parekh, R. Gallager, A Generalized Processor Sharing Approach to Flow Control
in Integrated Services Networks: The Single-Node Case IEEE/ACM Transactions on
Networking, Vol. 1, No. 3, Jun. 1993.

[35] S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the
Internet and the Telephone Network Professional Computing Series, Addison Wesley,
New York, 1997.

[36] Quality of Service Solutions Configuration Guide Cisco IOS Software Releases 12.0,
2002.

[37] V. Cerf, R. Kahn, A Protocol for Packet Networking Interconnection IEEE Transac-
tions on Communications Technology, vol. comm-22, no. 5, New York, May 1994.

[38] J. Postel, User Datagramm protocol RFC 768, STD 006, Aug. 1980.

[39] T. Braun, B. Stiller, M. Zitterbart, OSI or Special Protocols for High Speed Networks
? Proc. 2nd joint Workshop on High-Speed Networks, 1991.

[40] T. Braun, M. Zitterbart, Parallel Transport System Design IFIP Conference on High-
Performance Networking, Liege, 1992.

[41] G. Chesson, XTP/PE Design Considerations IFIP PfHSN 1989, Zurich, May 1989.

[42] D. Cheriton, VMTP: A Transport Protocol for the Next Generation of Computer
Systems Proc. of ACM SIGCOMM 1986, Computer Communication Review, vol.16,
no.3, ACM, New York, Aug 1986.

[43] M. Zitterbart, B. Stiller, A. Tantawy, A Model for Flexible High-Performance Com-
munication Subsystems IEEE Journal on Selected Areas in Communications 11, May
1993.

JÜRGEN FOAG 137 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[44] T. Plagemann, B. Plattner, M. Vogt, T. Walter, A Model for Dynamic Configuration
of Light-Weight Protocols 3rd workshop on Future Trends of Distributed Computing
Systems, Taipeh, Apr. 1992.

[45] Z. Haas, A Protocol Structure for High-Speed Communications over Broadband ISDN
IEEE Network, Jan. 1991.

[46] D. Box, D. Schmidt, T. Suda, Adaptive - An Object Oriented Framework for Flexible
and Adaptive Communication Protocols 4th IFIP Conference on High Performance
Networking, Liege, Dec. 1992.

[47] E. Nahum, D.J. Yates, S.O’Malley, H. Orman, R. Schroeppel, Parallelized Network
Security Protocols ISOC Symposium on Network and Distributed System Security,
1996.

[48] M. Bjoerkman, P. Gunningberg, Locking Effects in Multiprocessor Implementations
of Protocols Proc. ACM Sigcomm 93, Sep. 1993.

[49] D. Patterson, J. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface Morgan Kaufmann Publishers, 1994.

[50] MAE East Network Access Point www.mae.net

[51] D. Clark, V. Jacobson, J. Romkey, H. Salwen, An Analysis of TCP processing over-
head IEEE Communications Magazine, 27(6), Jun. 1989.

[52] D. Clark, D. Tennenhouse, Architectural Considerations for a New Generation of
Protocols Proc. SIGCOMM’90, pages 200-208, Sept. 1990.

[53] M. Abbott, L. Peterson, Increasing Network Throughput by Integrating Protocol
Layers ACM Transactions on Networking, vol. 1, issue 5, Oct. 1993.

[54] B. Ahlgren, M. Bjoerkman, P. Gunningberg, The Applicability of Integrated Layer
Processing 7th IFIP Conference on High Performance Networking, White Plains,
Apr. 1997.

[55] W. R. Stevens, TCP/IP Illustrated, Volume 1 Addison-Wesley, Logman Inc., 1999.

[56] V. Jacobson, Congestion Avoidance and Control ACM Computer Communication
Review, Oct. 1988.

[57] V. Jacobson, 4BSD TCP Header Prediction Computer Communication Review, vol.
20, no. 2, Apr. 1990.

[58] C.M. Woodside, K. Ravinadran, R.G. Franks, The Protocol Bypass Concept for High
Speed OSI Data Transfer IFIP Workshop on Protocols for High Speed Networks,
Nov. 1990.

JÜRGEN FOAG 138 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[59] C. Smith, Independent General Principles for Constructing Responsive Software Sys-
tems ACM Trans. on Computer Systems, vol. 4, Feb. 1986.

[60] K. Ravindran, G. Singh, C. Woodside, Architectural Concepts in Implementation
of End-system Protocols for High Performance Communications IEEE International
Conference on Network Protocols, Oct. 1996.

[61] D. Giarizzo, M. Kaiserswerth, T. Wicki, R. Williamson, High-Speed Parallel Protocol
Implementations Proc. 1st Workshop on High-Speed Networks, May 1989.

[62] D.C. Schmidt, T. Suda, The Performance of Alternative Threading Architectures for
Parallel Communication Subsystems Journal of Parallel and Distributed Processing,
1996.

[63] D.C. Schmidt, T. Suda, Adaptive: A Framework for Experimenting with High-
Performance Transport System Process Architectures International Conference on
Computer Communication Networks, San Diego, Jun. 1993.

[64] S. Matheson, Steering your Way through Net Processor Architectures Silicon Access
Networks, www.commsdesign.com, Jul. 2002.

[65] M. Hamdan, A Combinatorial Framework for Parallel Programming using algorith-
mic Sceletons Thesis, Dept. Comptuing and Electrical Engineering, Edinburgh, Jan.
2000.

[66] J. Hennessy, D. Patterson, Computer Architecture, A Quantitative Approach 2nd
Edition, Morgan Kaufmann Publishers, Inc., San Francisco, 1996.

[67] M. Kaiserswerth, The Parallel Protocol Engine IEEE/ACM Transactions on Net-
working, 1993.

[68] K. Torp, Object-oriented programming Presentation, Dept. of Computer Science,
Aalborg University, Sep. 2002.

[69] A. Schuster, Concurrent and Distributed Programming CS236370, Technion - Israel
Institute of Technology, 1998.

[70] J. Lo, Exploiting Thread-Level Paralleleism on Simultaneous Multithreaded Proces-
sors Thesis, University of Washington, 1998.

[71] S. Storino, A. Aipperspach, J. Borkenhagen, S. Levenstein, A commercial multi-
threaded RISC processor International Solid State Circuits Conference, Feb. 1998.

[72] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Poerterfield, B. Smith, The
Tera computer system International Conference on Supercomputing, Jun. 1990.

JÜRGEN FOAG 139 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[73] D. Tullsen, S. Eggers, H. Levy, Simultaneous Multithreading: Maximizing On-Chip
Parallelism Proc. of 22nd Annual International Symposium on Computer Architec-
ture, Santa Kargherita Ligure, Jun. 1995.

[74] J.-M. Parcerisa, A. Gonzalez, Improving Latency Tolerance of Multithreading through
Decoupling IEEE Transactions on Computers, vol. 50, Oct. 2001.

[75] J. Foag, T. Langguth, M. Leibiger, T. Messerer, N. Pazos, T. Wild, Programmierbarer
Parser-Prozessor - Untersuchungen zu Netzprozessoren Project Report LIS FhG-ESK
Siemens AG, Jan. 2001.

[76] S. Wallace, B. Clader, D. Tullsen, Threaded Multiple Path Execution 25th Interna-
tional Symposium on Computer Architecture, Jun. 1998.

[77] K. Wang, M. Franklin, Highly Accurate Data Value Prediction using Hybrid Predic-
tors 30th Annual Symposium on Microarchitecture Micro’97, Dec. 1997.

[78] F. Thiesing, Analyse und Prognose von Zeitreihen mit Neuronalen Netzen Shaker
Verlag, Aachen, 1998.

[79] T. Yeh, D. Long, S. Brandt, Increasing Predictive Accuracy by Prefetching Multiple
Program and User Specific Files Proc. of Intern. Symposium for High Performance
Computing Systems and Applications (HPCS) 2002, Moncton, Jun. 2002.

[80] A. Afsahi, N. Dimopoulos, Architectural Extensions to Support Efficient Communi-
cation Using Message Prediction Proc. of Intern. Symposium for High Performance
Computing Systems and Applications (HPCS) 2002, Moncton, Jun. 2002.

[81] Z. Su, A Comparative Analysis of Branch Prediction Schemes Lesson, Computer
Science Division, Univ. of California, Berkeley, 1995.

[82] S. McFarling, Combining Branch Predictors WRL, Technical Note TN-36, Digital,
Western Research Laboatory, Palo Alto, Jun. 1993.

[83] B. Calder, D. Grunwald, Fast & Accurate Fetch and Branch Prediction Intern. Sym-
posium on Computer Architecture, Chicago, Mar. 1994.

[84] D. Patterson, J. Hennessy, Computer Architecture: A Quantitative Approach 2nd
edition, Morgan Kaufmann Publishers, Inc. 1995.

[85] T. Yeh, Y. Patt, Alternative Implementations of Two-level Adaptive Branch Prediction
Intern. Symposium on Computer Architecture, Gold Coast, May 1992.

[86] M. Evers, S. Patel, R. Chappell, Y. Patt, An Analysis of Correlation and Predictability:
What makes Two-Level Branch Predictors Work Intern. Symposium on Computer
Architecture, Barelona, Jun. 1998.

JÜRGEN FOAG 140 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[87] B. Rychlik, J. Faistl, B. Krug, J. Shen, Efficacy and Performance Impact of Value
Prediction Intern. Conf. on Parallel Architectures and Compilation Techniques, Paris,
Oct. 1998.

[88] L. Trajkovic, A. Neidhardt, Traffic characterization and time scales for designing
efficient network control policies Invited paper, Proc. NOLTA’97, Hawaii, Dec. 1997.

[89] L. Trajkovic, A. Neidhardt, Internet traffic prediction Centre for Systems Science,
Simon Fraser University, Vol. 12, Issue 1, Mar. 2000.

[90] M.E. Crovella, A. Bestavros, Self-similarity in world wide web traffic: Evidence and
possible causes IEEE/ACM Transactions on Networking, vol. 6, pp. 835-846, Dec.
1997.

[91] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the self-similar nature of
ethernet traffic IEEE/ACM Transactions on Networking, vol. 2, pp. 1-15, Feb. 1994.

[92] A. Feldmann, A. Gilbert, W. Willinger, T. Kurtz, The Changing Nature of Network
Traffic: Scaling Phenomena ACM Computer Communication Review, Apr. 1998.

[93] L. Guo, M. Crovella, I. Matta, TCP Congestion Control and Heavy Tails Techni-
cal Report BU-CS-2000-017, Boston University, Computer Science Department, Jul.
2000.

[94] J. Beran, Statistics for Long-Memory Processes Monographs on Statistics and Ap-
plied Propability, Chapman and Hall, New York, 1994.

[95] V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling IEEE/ACM
Transactions on Networking, Jun. 1995.

[96] W. Willinger, M. Taqqu, R. Sherman, D. Wilson, Self-Similarity Through High-
Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level
IEEE/ACM Transactions on Networking, Feb. 1997.

[97] A. Veres, B. Hungary,, M. Boda, The Chaotic Nature of TCP Congestion Control
Proc. of IEEE INFOCOM 2000, Mar. 2000.

[98] V. Paxson, End-to-End Routing Behavior in the Internet IEEE/ACM Transactions on
Networking, Oct. 1997.

[99] K. Claffy, Internet Measurement and Data Analysis: Topology, Workload, Perfor-
mance and Routing Statistics NAE Workshop, 1999.

[100] K. Thompson, G. Miller, R. Wilder, Wide-Area Internet Traffic Patterns and Char-
acteristics IEEE Network, 11(6), Nov. 1997.

JÜRGEN FOAG 141 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[101] C. Fraleigh, S. Moon, C. Diot, B. Lyles, F. Tobagi, Packet-Level Traffic Measure-
ment from a Tier-1 IP Backbone Technical Report TR01-ATL110101, Sprint ATL
Technical Report, Feb. 2002.

[102] S. Bhattacharyya, C. Diot, J. Jetcheva, N. Taft, Pop-Level and Access-Link-Level
Traffic Dynamics in a Tier-1 POP ACM Sigcomm Internet Measurement Workshop
IMW 2001, San Francisco, Nov. 2001.

[103] J. Pino, B. Singh, D. Culler, Performance Evaluation of One and Two-Level Dynamic
Branch Prediction Schemes over Comparable Hardware Costs Technical Report,
UCB/ERL M94/45, Jun. 1994.

[104] J. Smith, A Study of Branch Prediction Strategies Proc. 8th Intern. Symposium of
Computer Architecture, May 1981.

[105] P. Srisuresh, Security Model with Tunnel-mode IPSec for NAT Domains IETF, RFC
2709, Oct. 1999.

[106] Cisco 10000 Series Internet Routers Technical manual, Cisco, 2002.

[107] St200 Service Edge Router Data Sheet, Laurel Networks, 2002.

[108] Spring Tide 7000 IP Service Switch Router Data Sheet Brochure, Lucent technolo-
gies, 2002.

[109] Standard IEEE 802.3z IEEE Gigabit Task Force, Jul. 1998.

[110] W. Simpson, PPP in HDLC-like Framing IETF, Request for Comments, Jul. 1994.

[111] Khatanga 10 Gigabit Ethernet MAC and PHY/OC-192c POS Framer and Mapper
Product Brief Version 1.1, Apr. 2001.

[112] PHY/Framer ermoeglichen die Konvergenz von Protokoll-Services Telecomm &
Elektronik, Pages 26-28, Feb. 2001.

[113] P. Gupta, N. Mc Keown, Packet classification on multiple fields Proc. ACM SIG-
COMM 99, Cambridge, Aug. 1999.

[114] S. Shenker, C. Partridge, R. Guerin, Specification of Guaranteed Quality of Service
IETF Request for Comment 2212, Sep. 1997.

[115] Programmierbarer Parser-Prozessor Projekt-Abschlussbericht, Technische Univer-
sitaet Muenchen, Lehrstuhl fuer Integrierte Schaltungen, Jan. 2000.

[116] W. R. Stevens, TCP/IP Illustrated, Volume 2 Addison-Wesley, Logman Inc., 1999.

[117] KAME Project: free IPv6 and IPSec-Stack for BSD www.kame.net, Japan, 2002.

JÜRGEN FOAG 142 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[118] P. Eles, A. Doboli, P. Pop, Z. Peng Scheduling with Bus Access Optimization for Dis-
tributed Embedded Systems Proceedings of Design, Automation and Test in Europe
1998, pp132-138.

[119] C. Hoare, Quicksort Comput. J.5, 1962.

[120] R. Sedgewick, Algorithms 2nd edition, Addison Wesley, Reading, MA, 1992.

[121] M. Zitterbart, Parallelism in Communication Subsystems in: A. Tantawy: High
Performance Communications, Kluwer Academic Publisher, 1993.

[122] D. Yates, Connection-level Parallelism For Network Protocols on Shared-Memory
Multiprocessor Servers Thesis, directed by J. Kurose, University of Massachusetts
Amherst, 1997.

[123] T. La Porta, M. Schwartz, A High-Speed Protocol Parallel Implementation: Design
and Analysis in: A. Danthine, O. Spaniol: High Performance Networking, IV, IFIP,
North-Holland 1993.

[124] T. Braun, C. Schmidt, A Parallel Transport Subsystem Implementation for High
Performance Communication Concurrency: Practice and Experiment, Special Issue
on High Performance Distributed Computing, Jun. 1994.

[125] P. Crowley, M. Fiuczynski, J. Baer, B. Bershad, Characterizing Processor Archi-
tectures for Programmable Network Interfaces Proc. International Conference on
Supercomputing, Santa Fe, May. 2000.

[126] J. Allen, B. Bass, C. Basso, R. Boivie, J. Calvignac, G. Davis, L. Frelechoux, M.
Heddes, A. Herkersdorf, A. Kind, J. Logan, M. Peyravian, M. Rinaldi, R. Sabhikhi,
M. Siegel, M. Waldvogel, PowerNP Network Processor: Hardware, Software And
Applications IBM Journal of Research and Development, 2002.

[127] IX Architecture Whitepaper LevelOne, An Intel Company, 1999.

[128] C-5 DCP Architecture Guide Version 1.1, C-Port Corp., N. Andover, Nov. 1999.

[129] IXP 1200 Network Processor Hardware Reference Manual Level One, An Intel
Company, 2000.

[130] Enterprise Systems Architecture /390, Principles of Operation IBM, SA22-7201-04,
Fifth Edition, Poughkeepsie, Jun. 1997.

[131] K. Claffy, G. Miller, K. Thompson, The Nature of the Beast: Recent traffic measure-
ments from an Internet Backbone Proc. of ISOC INET’98, Jul. 1998.

[132] P. Sagmeister, G. Dittmann, A. Herkersdorf, D. Webb, Methodology for Testing
High-Speed Network Devices with Predicted Traffic Proc. of Gigabit Networking
Workshop GBN01, Anchorage, Apr. 2001.

JÜRGEN FOAG 143 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[133] A. Gerstlauer, R. Doemer, J. Peng, D. Gajski, System Design, A Practical Guide
with SpecC Kluwer Academic Publishers, Boston, 2001.

[134] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, S. Zhao, SpecC: Specification Lan-
guage and Methodology Kluwer Academic Publishers, Boston, 2000.

[135] http://www.specc.org

[136] T. Groetker, S. Liao, G. Martin, S. Swan, System Design with SystemC Kluwer
Academic Publishers, Boston, 2002.

[137] http://www.systemc.org

[138] T. Groetker, Stan Liao, Grant Martin, Stuart Swan, System Design with SystemC
Kluwer Academic Publishers, Boston, 2002.

[139] J. Gerlach, W. Rosenstiel, System Level Design Using the SystemC Modeling Plat-
form 2000.

[140] R. Balan, U. Hengartner, Performance Analysis of the Intel IXP1200 Network Pro-
cessor Project Report for Graduate Architecture Class, Carnegie Mellon University,
Sep. 2000.

[141] T. Spalink, S. Karlin, L. Peterson, Evaluating Network Processors in IP Forwarding
Technical Report TR-626-00, Dept. of Comp. Science, Princeton University, Jan. 01.

[142] Intel IXP 425 Network Processor Product Brief, Intel Corp., 2003.

[143] C. Aras, J.F. Kurose, D.S. Reeves, H. Schulzrinne, Real-time Communication in
Packet-Switched Networks Proc. of IEEE, Vol. 82 (1), Jan. 1994.

[144] D. Verma, H. Zhang, D. Ferrari, Delay Jitter Control for Real-Time Communication
in a packet Switching Network Proc. of TriComm 91, Chapel Hill, Apr. 1991.

[145] A. Bashandy, E. Chong, A. Ghafoor, Network Modeling and Jitter Control for Mul-
timedia Communication over Broadband Network Proc. IEEE Infocom 1999, New
York, Mar. 1999.

[146] Network-on-a-chip solutions from Vitesse Product Brief, Vitesse Semiconductor
Corp., Jan. 2000.

[147] K. Law, The Bandwidth Guaranteed Prioritized Queuing and Its Implementations
IEEE Globecom 97, Phoenix, Nov. 1997.

[148] T. Ferrari, G. Pau, C. Raffaelli, Measurement Based Analysis of Delay in Priority
Queuing Internet Performance Symposium, San Antonio, Nov. 2001.

JÜRGEN FOAG 144 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

BIBLIOGRAPHY BIBLIOGRAPHY

[149] H. De Meer, H. Knoche, Quality of Service Parameters: A Comparative Study
Technical Report, University of Hamburg, 1997.

[150] Intel IXF6048/IXF6012 Theory of Operation Intel, 2002.

[151] R. Sabatino, M. Campanella, SEQUIN: QoS for GEANT 2nd Intl. Workshop on
Quality of Future Internet Services QofIS 2001, Coimbra, Sep. 2001.

[152] G. Fankhauser, D. Schweikert, B. Plattner, Service Level Agreement Trading for the
Differentiated Services Architectures Swiss Federal Institute of Technology, Com-
puter Engineering and Networks Lab, Technical Report No. 59, Nov. 1999.

[153] Pingplotter Version 1.10, www.pingplotter.com.

[154] SpaceNet Traceroute Service www.space.net.

[155] One-Way Transmission Time International Telecommunications Union, ITU-T Rec-
ommendation G.114, Feb. 1996.

[156] Speech Coding and Speech Quality in IP Telephony Global IP Sound, Inc., 2001.

[157] B. Hammer, IP-Telephony Quality of Service Vortrag an Universität Klagenfurt,
Siemens AG, www-itec.uni-kul.ac.at, May 2001.

[158] D. Lin, Real-Time Voice Transmissions over the Internet Master of Science Thesis,
University of Illinois, 1999.

JÜRGEN FOAG 145 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

Appendix A

Publications and Patent Applications

Publications

• J. Foag et al.,
Processing methodology and architecture for high-speed networking using protocol-
stack prediction 7th International IFIP/IEEE Workshop on Protocols for High-Speed
Networks , Berlin, Apr. 2002.

• J. Foag et al.,
Self-adaptive Parallel Processing Architecture for High-Speed Networking Proc.
Int’l. IEEE Symposium on High Performance Computing Systems and Applications,
Moncton, Jun. 2002.

• J. Foag et al.,
Predictive Methodology For High-Performance Networking Proc. 7th Int’l. IEEE
Symposium on Computers and Communications, Giardini Naxos, Jul. 2002.

• J. Foag et al.,
Performance Evaluation of a Speculative Network Processor Proc. Int’l. Symposium
on High Performance Computing Systems and Applications, Sherbrooke, May 2003.

• J. Foag and T. Wild,
Traffic Prediction Algorithm for Speculative Network Processors Proc. Int’l. Sympo-
sium on High Performance Computing Systems and Applications, Sherbrooke, May
2003.

• J. Foag and T. Wild,
Queuing Algorithm for Speculative Network Processors Proc. Int’l. Symposium on
High Performance Computing Systems and Applications, Winnipeg, May 2004.

146

APPENDIX A. PUBLICATIONS AND PATENT APPLICATIONS

Patent Applications

J. Foag and T. Wild,
Verfahren und Vorrichtung zum Verarbeiten von Datenblöcken
German Patent DE10115799A1, Oct. 2002.

JÜRGEN FOAG 147 LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN

