
Lehrstuhl für Realzeit-Computersysteme

Visual Tracking and Grasping of a Dynamic Object:
From the Human Example to an Autonomous Robotic

System

Michael Sorg

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Klaus Diepold

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Georg Färber

2. Hon.-Prof. Dr.-Ing. Gerd Hirzinger

Die Dissertation wurde am 19.02.2003 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 16.07.2003 angenom-
men.

München, den 11.11.2002

First of all I want to thank my advisor Prof. Georg Färber for having
given me the opportunity to work at a real thrilling topic. His manner of
not pushing me in a certain direction, but leaving enough room to develop
own ideas, trying things where the outcome was unsure and leaving the
freedom to decide many things “on my own” were very valuable for me.
Thereby I learned a lot that I can need in the future. Many thanks to
Prof. Gerd Hirzinger for his spontanous promise to help as a corrector
of this thesis.
But this would not have been possible if there hadn’t been Alexa Hauck.
Having been already my advisor for my master’s thesis, she fascinated
me for “hand-eye coordination” and finally was developing valuable ideas
and a plan for this thesis. Besides these “hard facts” she was the best
advisor and colleague that I can think of. It was always fun and very
motivating to work together. I often think where I would be now if I
hadn’t knocked on her door . . .
Special thank goes to Thomas Schenk and Andreas Häussler from the
“neuro” team. Besides the fact that they brought “light into dark” when
we were discussing neuroscientific literature, their interest in robotics
and my work was a special motivation and gave me the feeling that I
(and my students) were doing something valuable.
The work would never have been possible without all the students work-
ing with me during their diploma thesis. They developed really great
ideas and were providing all the necessary pieces to let MinERVA catch.
Many thanks to Christian Maier, Hans Oswald, Georg Selzle, Jan Le-
upold, Thomas Maier, Jean-Charles Beauverger and Sonja Glas. That
many of them ended up as my colleagues emphasizes their “good job”.
At the lab I want to thank all the colleagues from the Robot Vision Group
for providing a real good atmosphere. Special thanks go to Georg Passig
who not only supported me in any problems concerning the robot but
had always time to discuss any other problem concerning work and “the
world”. Thanks to all the people of the Schafkopfrunde. This was (and
is!) great fun.
Again special thank to Johanna Rüttinger. Without her debugging thou-
sands lines of other peoples code, integrating new one and finally pro-
viding huge amounts of experimental data, the experimental part of this
thesis would have been poor. Or to be more precise: without her help I
think MinERVA would have never catched anything!
Last but not least I want to thank my parents and my brother. Not
knowing what I was exactly doing but always trusting that I would do it
right was very pleasant.

Michael Sorg

Abstract

In this thesis a robotic hand-eye system capable of visual tracking of a moving object and
reaching out to grasp this object using a robotic manipulator is described. A noticeable
number of successful methods performing those tasks has been published (also recently) and
impressive demonstrations have been shown thereby. Nevertheless, there is still one system
that is superior to all the demonstrated ones: the human. Humans perform catching tasks
with a high degree of accuracy, robustness and flexibility. Therefore this thesis investigates
results of neuroscience and applies them to design a robotic hand-eye system for grasping
a moving object. From the experimental data of human catching movements it can be
derived that humans are performing different subtasks during catching: tracking of the
target object, prediction of the future target trajectory, determination of an interaction
point in space and time, and execution of an interceptive arm movement. Thereby the
different subtasks are performed in parallel and the coordination between “hand and eye”
is reactive: the human can easily adapt and correct its interceptive movement triggered
either by (sudden) changes in the targets trajectory or by refinement of the predicted object
trajectory and the hand-target interaction point.

Transferring knowledge gained by the neuroscientists to robotics is often difficult since the
underlying physical systems are very different. Nevertheless there exist interesting models
or experimental data that offer the possibility of transfer. In this thesis for two of the
above noticed subtasks biological concepts are deployed: for visual tracking and for the
execution and timing of the interceptive catching movement.

For the tracking subtask the used visual sensors are closely related to those found in the
human brain: Form, color and motion (optic flow). Through analysis of human visual pro-
cessing from the eye up to the visual cortex three main concepts could be separated: parallel
information flow, pre-attentive processing and reentry of information. These mechanism
allow the human the optimal utilization of the presented information before attention is
put on a certain stimulus. This can be seen as a form of image pre-processing. Integrating
those concepts in a robotic hand-eye system improves image pre-processing for still images
as well as in a tracking task noticeable.

For the determination of hand-target interaction points and the timing of the arm move-
ment relative to the target motion a human-like behavior is adopted. Based on experimen-
tal data a four phasic model for the determination of interaction points and the generation

5

of appropriate via-points for a robotic manipulator for reach-to-catch motions is developed.
This model satisfies the purpose of flexibility: depending on the current object motion (and
prediction) the via-points are adapted and the interceptive movement is corrected during
motion execution.

The validity of these concepts is investigated thoroughly in simulations. Together with
modules for target object prediction (using autoregressive models), for the determination
of grasping points and for robot arm motion control a robotic hand-eye system is demon-
strated that proves its practicability in real experiments performed on the experimental
hand-eye system MinERVA.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Context . 2

1.3 Contributions and Limitations . 3

1.4 Organization of the Dissertation . 3

2 Neuroscience 7

2.1 Vision . 7

2.1.1 Anatomy of the Human Visual System 8

2.1.2 Models of Human Visual Processing 15

2.1.2.1 Parallel Information Flow and Reentry of Information . . 15

2.1.2.2 Feature Maps and Integration of Information: Visual At-
tention . 16

2.1.3 Summary . 17

2.2 Hand–Target Interaction . 19

2.2.1 Interaction with a Static Target: Reaching 19

2.2.2 Models of Human Reaching Movements 21

2.2.3 Interaction with a Moving Target: Catching 24

2.2.4 Models for Human Catching Movements 24

2.2.4.1 Movement Initiation . 25

2.2.4.2 On-line Control of Hand Movement 28

i

ii CONTENTS

2.2.5 Summary . 30

2.3 Discussion . 32

3 Robotic Hand-Eye Coordination 33

3.1 Internal Models . 33

3.1.1 Models of the Hand-Eye System . 34

3.1.2 Models of the Object to be Grasped 46

3.1.3 Models of Object Motion . 47

3.2 Vision . 47

3.2.1 Tracking . 47

3.2.1.1 Contour-based Tracking 48

3.2.1.2 Color-based Tracking . 52

3.2.1.3 Motion-based Tracking . 60

3.2.2 Sensor Fusion and Integration . 61

3.2.3 Grasp Determination . 63

3.3 Motion Reconstruction and Prediction . 64

3.3.1 Prediction with Auto-regressive Models 66

3.3.1.1 Global AR Model (least square) 66

3.3.1.2 Local AR Model (maximum likelihood) 67

3.3.2 Nearest Neighbor Predictions . 70

3.4 Hand-Target Interaction . 70

3.4.1 Interaction with a Static Target . 71

3.4.1.1 Positioning . 71

3.4.1.2 Reaching and Grasping 72

3.4.2 Interaction with a Moving Target 74

3.4.2.1 Tracking . 74

3.4.2.2 Catching and Hitting . 75

3.5 Summary . 77

CONTENTS iii

3.6 Discussion . 78

4 Hand-Eye System and Interaction with a Moving Target 79

4.1 Internal Models . 79

4.1.0.3 Automatic Initialization of B-spline Contour Models . . . 85

4.1.1 Discussion . 95

4.2 Tracking of Moving Objects . 96

4.2.1 Contour-Based Tracking . 96

4.2.2 Color-Based Tracking . 98

4.2.3 Motion-Based Tracking . 99

4.2.4 Discussion . 99

4.3 Sensor Fusion and Integration . 100

4.3.1 Sensor Preprocessing and Fusion: Pre-attentive Processing 100

4.3.2 Probability Based Sensor Integration: Attentive Processing 105

4.3.2.1 Modified ICONDENSATION Algorithm 106

4.3.3 Discussion . 109

4.4 Determination of Grasping Points . 110

4.4.1 Search and Tracking of Grasps . 110

4.4.2 Discussion . 114

4.5 Object Motion Reconstruction and Prediction 115

4.5.1 Average ARM Prediction . 115

4.5.2 Discussion . 117

4.6 Robot Arm Motion Control . 118

4.6.1 Human Trajectory Generation . 118

4.6.1.1 Static, Double-Step and Dynamic Targets 120

4.6.2 Robotic Trajectory Generation . 120

4.6.2.1 Determination and Control of Hand’s Position 122

4.6.2.2 Determination and Control of Hand’s Orientation 124

iv CONTENTS

4.6.2.3 Collision Detection and Workspace 130

4.6.3 Discussion . 131

4.7 Interaction Point Determination and Intermediate Target Calculation . . . 134

4.7.1 Open Questions and Hypotheses . 134

4.7.2 Four Phase Model of Hand Motion towards a Moving Target 136

4.7.2.1 Approach Phase . 136

4.7.2.2 Adaption Phase . 138

4.7.2.3 Contact Phase . 140

4.7.2.4 Follow Phase . 146

4.7.3 Discussion . 148

4.8 Implementation . 150

4.8.1 System Preliminaries . 150

4.8.2 State Automaton and Timing Charts 151

5 Simulations, Experimental Validation and Results 155

5.1 Tracking with Color, Form and Motion . 156

5.1.1 Color Tracking . 156

5.1.2 Form Tracking (CONDENSATION Algorithm) 161

5.1.3 Motion Tracking . 164

5.1.4 Modified ICONDENSATION . 164

5.1.5 Reentry of Color in Form Path . 170

5.2 Prediction of Target Motion . 182

5.2.1 Simulation: Comparison NN, Global ARM, Local ARM 184

5.2.2 Real Tracking: Average ARM . 189

5.3 Simulation of Hand-Target Interaction . 191

5.3.1 Control of Position . 191

5.4 Real Robot Experiments . 196

5.4.1 Experimental Setup . 196

CONTENTS v

5.4.2 Control of Robots Position and Orientation 197

5.4.3 Hand-Target Interaction: Grasping a Linear Moving Target 197

5.4.3.1 Escaping Target . 197

5.4.3.2 Approaching Target . 206

5.4.3.3 Tangential Target . 208

5.4.4 Hand-Target Interaction: Grasping a Circular Moving Target 210

5.4.4.1 Approaching Target . 210

5.5 Discussion . 212

6 Conclusion 213

A B-Splines A-1

B Model of the Head and the Camera A-9

vi CONTENTS

Chapter 1

Introduction

1.1 Motivation

Over the last decade, using sensor information to control robots has become a very popular
field of research, as it promises to lead to the design of autonomous robots. In contrast
to their preprogrammed industrial counterparts, autonomous robots are to be able to deal
with unexpected events, e.g. obstacles, misplaced objects or objects in motion. On the
one hand, this is especially important for personal robots as they are operating in a world
which is not adapted to the needs of machines. On the other hand, dealing with objects in
motion, which is the main concern in this thesis, might in the future also be interesting for
industrial robots: not stopping a conveyor belt while accurately placing or picking parts
on/from it by a robot might have different advantages. First, one could think of energy
reduction: starting and stopping a belt costs more energy than letting it continously run.
Secondly, less wastage: starting and stopping a belt is more mechanical wearing. Thirdly,
less calibration effort: by less mechanical wearing the calibration cycles will drop. And
finally, a economic gain: having less mechanical wearing can lead to use cheaper parts
(dimensioning of the system).

Nowadays, vision is by far the most commonly used sensor in robotics, due to the fact that
cameras are cheap and versatile. An additional advantage is that vision mimics the most
important human sense, thus making it possible for the human operator to understand
intuitively the information the robot gets.

In the field of visually controlled robot manipulators, two strategies have been proposed:
look-then-move systems and visual servoing systems. The former systems try to deter-
mine the object’s pose from the visual input as accurately as possible and then move the
robot appropriately. Unfortunately, its accuracy heavily depends on the accuracy of the
sensor/robot calibration and of the sensor itself.

The later systems have been proposed as an alternative approach to overcome these prob-

1

2 CHAPTER 1. INTRODUCTION

lems. Here, visual information about the current position of the manipulator is used in a
feedback control loop to guide the robot.

For both approaches, there exists a large number of successfully realized hand-eye systems
which cope very well with a specific problem. These systems deal with grasping of static
objects as well as with hitting or catching of dynamic objects.

Yet, in comparison with the human example they all show a considerable lack of per-
formance possibilities, robustness and flexibility. The main difference in the context of
grasping is that humans can grasp successfully using only little visual information, for ex-
ample looking at the target once with only one eye. More visual information, for example
a view of the hand or stereo vision, results in a more precise and efficient grasp.

In the context of catching the situation is quite similar. Humans can catch an object even
if the have seen only a small part of the object’s trajectory. Additionally, they can react
very flexible on sudden changes of the objects motion what implies that the movement is
not pre-programmed for the whole motion.

One has to conclude that there might be something to learn for robotics research by taking
a closer look at the human example. Instead of refining control methods or speeding up
image processing due to massive hardware support, this thesis therefore sets out to explore
the results of neuroscience and to apply them in the design of a robotic hand-eye system
with special emphasis on catching.

1.2 Context

The work presented in this thesis was part of an interdisciplinary project on human and
robotic hand-eye coordination, which in its turn was part of a Special Research Program
on “Sensorimotor – Analysis of biological systems, modeling, and medical-technical appli-
cations” (SFB 462) funded by the Deutsche Forschungsgemeinschaft (DFG). Our project
(TP C1) was a cooperation of the Institute for Real-Time Computer Systems (Technis-
che Universität München) and the Neurological Clinic (Ludwig-Maximilians-Universität
München).

From the start, the common goal of the project was to develop a model of hand-eye
coordination that, on the one hand, fits and predicts experimental data on human reaching,
grasping and catching. On the other hand, the model should be used to control a robot.
The clinical part mainly concentrated on analyzing human catching movements, to answer
the question which visual information is used to control which parameters of motion.

The technical part used this knowledge on the one hand to develop and synthesize the mod-
ules necessary for autonomous robotic grasping (first project period). Developed models,
experiments and results to prove the models were shown very thoroughly in the thesis of
my predecessor in this project (see [Hau99] for more details).

1.3. CONTRIBUTIONS AND LIMITATIONS 3

On the other hand the experimental data from catching experiments (from the literature as
well as from the project partners) served as a basis to develop modules for robotic catching
(second project period). Developed models, experiments and results are the content of this
thesis.

The project definition already limited the extent of the “model” that had to be developed in
both cases: Due to the different hardware addressed in the clinical and the technical part, a
common model was only possible on higher levels of abstraction. In the terminology of Marr
[Mar82], an information processing device should be analyzed at the levels of computational
theory, representation/algorithm, and hardware implementation; in the project, the model
of hand-eye coordination was restricted to the first two levels.

1.3 Contributions and Limitations

This dissertation contributes to research in the field of robotic hand-eye coordination in
three ways: First, it provides a fairly comprehensive survey of the neuroscientific literature
related to: (a) human visual processing from the retina up to the visual cortex and (b)
human hand-eye coordination for the two cases of interaction with a static target (grasping)
and interaction with a dynamic target (catching). Secondly, it provides a model of visual
processing for a robot, which is derived from a model of human visual processing in the
visual cortex. And thirdly, a model for hand-target interaction for a robotic manipulator
taking into account experimental results of human catching experiments is developed.

The obvious limitation of this work is that it addresses “only” reach to catch movements, i.e.
purely translational movements, and leaves out the orientation of the hand. A way how to
flexible control the orientation of a robotic manipulator is derived (and also implemented),
but for the catching experiments orientation was left constant. This was due to the fact that
the determination of the 3D orientation of the object to catch was an unsolved problem.

1.4 Organization of the Dissertation

The main problems researchers from the area of robotics encounter when trying to learn
from neuroscience are that the two sciences are concerned with very different physical
systems and speak about them using very different languages. The former problem rules
out a direct copying of results, the second impedes their transfer. Nevertheless the transfer
is possible if one is trying to exploit the main principles that lie behind a biological concept.
This is what was tried in this thesis.

The dissertation can be separated into four main parts: the first part (Chap. 2) is con-
cerned with a review on neuroscientific literature dealing with human visual processing
(Section 2.1) and human hand-eye coordination for grasping (Section 2.2.1) and catching

4 CHAPTER 1. INTRODUCTION

(Section 2.2.3), respectively. Current models for visual processing (Section 2.1.2), reach-
to-grasp (Section 2.2.2) and reach-to-catch movements (Section 2.2.4) are also reviewed
and shortly analysed.

The second part (Chap. 3) is concerned with a review of methods for visual tracking of mov-
ing objects (Section 3.2.1) using different sensor modalities (Section 3.2.1.1 for form, Sec-
tion 3.2.1.2 for color and Section 3.2.1.3 for motion), prediction of time series (Section 3.3)
and a review on literature and methods for robotic manipulator control for interaction with
static (Section 3.4.1) and moving targets (Section 3.4.2).

The third part (see Chap. 4) describes the methods and algorithms that were developed
in this thesis. Those methods and algorithmns were either developed from (a) knowledge
from the common robotics literature (see Section 4.1 for models) or (b) extensions of
methods described in Chap. 3 (see Section 4.2 for tracking, and Section 4.5 for motion
prediction) or (c) developments derived from the analysis of results described in Chap. 2
(see Section 4.3 for sensor fusion and integration, Section 4.6 for robot arm motion control
and Section 4.7 for hand-target interaction). Finally, implementation details serving as the
basis for experiments are shortly described (Section 4.8).

The fourth and last part (Chap. 5) summarizes results obtained by simulations (using MAT-
LAB and Simulink) and real robot experiments performed on the experimental robotic
hand-eye system MinERVA.

The connection and interaction between the different methods described in the third part
(Chap. 4) gets obvious by looking at the proposed hand-eye system architecture in Fig-
ure 1.1.

As a guideline for reading the reader should notice that all relevant chapters (Chap. 2,
Chap. 3, Chap. 4 and Chap. 5) are designed to have internally the same or a similar
structure reflecting the main topics of the thesis: vision (or visual tracking) and hand-
target interaction. Naturally, there are not always one to one correspondences. This
is on the one hand because neuroscience research lacks of explanations (e.g. for “how”
humans predict), on the other hand contributions to robotic “needs” have to be made
when necessary (e.g. the determination of grasping points). Nevertheless the interfaces
between the methods (and modules in Figure 1.1) are thin and easy and the transported
information is obvious.

This allows the reader to select only the parts for reading that are interesting for her/him.
Additionally, to support this kind of “cross reading”, summaries and discussions are given
at the end of each section which are sufficient to understand the content of the read section
as well as the “input/output” relationship between the sections. To keep the “whole” in
view at any time one can always refer back to the system architecture.

1.4. ORGANIZATION OF THE DISSERTATION 5

(State automaton)
System control

F
ea

tu
re

 e
xt

ra
ct

io
n

(f
o

rm
)

F
ea

tu
re

 e
xt

ra
ct

io
n

(c
o

lo
r)

sensory system actory systemmodel knowledge

generation of

control commandsobject models

geometric

models

sample points

short term predictions

long term predictions

images control commands

motion

long term

calculation of

Image interpretation

predictions

reconstruction of
object movement

(2D/3D)

calculation of

interaction points

intermediate targets

(Detection, Tracking,

Grasping points)

motion control
(position, orientation)

prediction of

object positions

(sensory, actory)

models
hand−eye−system

F
ea

tu
re

 e
xt

ra
ct

io
n

(m
o

ti
o

n
)

Figure 1.1: System Architecture

6 CHAPTER 1. INTRODUCTION

Chapter 2

Neuroscience

This chapter is concerned with a review on neuroscientific literature dealing with hu-
man visual processing (Section 2.1) and human hand-eye coordination for grasping (Sec-
tion 2.2.1) and catching (Section 2.2.3), respectively. Current models for visual processing
(Section 2.1.2), reach-to-grasp (Section 2.2.2) and reach-to-catch movements (Section 2.2.4)
are also reviewed and shortly analysed.

2.1 Vision

Since nature is a source of inspiration for the design of technical systems, taking a closer
look at the functionality of e.g. human or animal behavior can be very useful. With this
intention information about human vision was collected, i.e. about pathways of visual
information from the eye up to higher cortical areas. Interested in how an obviously well
working system has been developed by nature, a way was sought of how principles of the
human visual processing can be used to improve a robotic vision system.

The rest of the section is organized as follows: The first paragraphs (Section 2.1.1) de-
scribe the main components of the human eye, i.e. the retina, the photo-receptors and the
Ganglion cells. The succeeding paragraph describes the way of the visual information over
the Lateral Geniculate Nucleus (LGN) to the visual cortex ; finally, models (Section 2.1.2)
of its processing in the visual cortex, namely the parallel information flow and the reentry
hypothesis are presented. In the last paragraph a model of visual integration in higher
cortical areas using the concept of feature maps and master map is presented.

7

8 CHAPTER 2. NEUROSCIENCE

2.1.1 Anatomy of the Human Visual System

Retina Light enters the eye through the cornea and the lens and is projected onto the
retina. The lens can change its size by muscles to refract the light waves for focusing.
Figure 2.1 shows a schematic drawing of the main components of the eye.

Fixation
Point

Light

Cornea

Optic nerve

Lens

Fovea

Retina

Optic disc

Figure 2.1: The human eye

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

	
	
	
	
	
	
	
	
	
	
	
	
	

� �

Optic nerve

Cones
Rod

Light waves

Horizontal and vertical cells
(second layer)

P + M Ganglion cells

Photoreceptor cells
(first layer)

(third layer)

Figure 2.2: Layered retina structure

The retina has a layered structure (see Figure 2.2):

2.1. VISION 9

• Photo-receptor cells transform light wave energy into electric signals.

• A network of horizontal and vertical cells connects these signals to the ganglion cells.

• Ganglion cells interpret incoming signals and forward their results to the Lateral
Geniculate Nucleus or LGN through the optic nerve.

Interestingly light has to pass through all of the ganglion and network cell layers to reach
the photo-receptor cells. Those photo-receptor cells exist in different types, allowing for
daylight vision (cone vision) and night vision (rod vision)1.

The network layer is responsible for switching between daylight and night vision. Addi-
tionally, it controls the size of receptive fields of the Ganglion cells.

There exist two special areas of the retina (see Figure 2.1):

• The optic disc is the connection of the eye to the optical nerve. This nerve enters the
eye here and leaves no space for photo-receptor cells, making the eye blind at this
area.

• The fovea is the point of maximum concentration of photo-receptor cells on the retina,
leading to a very high spatial resolution of the fovea. Additionally, Ganglion cells are
moved aside at this area so that light does not have to pass through any other layer
to reach the photo-receptor cells.

Photo-receptors The human retina consists of two types of photo-receptor cells: rods
and cones. While cones are responsible for daylight vision, rods serve for night vision.
Rods function in dim light that is present at dusk or at night, when most stimuli are too
weak to excite the cone system.

Under daylight conditions only the cone system is active, while the rod system is saturated.
When illumination conditions change from bright daylight to darkness, first a mixture of
both cell systems is utilized. If light intensity gets too low for the cone system it is in-
activated, while the rod system is completely active. This mechanism is controlled by the
network layer of the retina.

Cones perform better than rods in all visual tasks, except for the detection of dim stimuli.
They provide a better temporal and spatial resolution. There exist three types of cones,
each of them having a different spectral sensitivity characteristic. Depending on their
sensitivity cones are called blue (short wavelength), green (medium wavelength) or red
(long wavelength) cones. Information provided by the cones is used in the brain to get the
perception of color vision.

1In daylight vision the color of objects is perceived. During night vision only gray-level contrasts can
be perceived.

10 CHAPTER 2. NEUROSCIENCE

Figure 2.3: Spectral sensibility characteristics of receptor cell types

Rods contain more photosensitive visual pigment than cones, but provide only achromatic
visual information. They amplify light signals more strongly than cones and saturate at
daylight conditions. Although there are 20 times more rods on the human retina, the
spatial resolution of the cones is higher, as most of the cones are in the small area of the
fovea, whereas the rods are distributed all over the rest of the retina. Also, in the peripheral
areas of the retina ganglion cells receive pooled receptor cell information. The larger these
pools are, the smaller is the spatial resolution. Concerning the temporal resolution cones
are also superior: The maximum flicker frequency of rods is at about 12Hz, whereas cones
can detect flicker up to 55Hz.

Ganglion Cells Ganglion cells are the final output neurons of the vertebrate retina.
A ganglion cell collects the electrical messages concerning the visual signal from the two
layers of nerve cells preceding it in the retinal wiring scheme. Intensive preprocessing has
been accomplished by the neurons of the vertical pathways (photo-receptor → bipolar →
ganglion cell chain), and by the lateral pathways (photo-receptor → horizontal cell →
bipolar → amacrine → ganglion cell chain) before presentation to the ganglion cell which
serves as the ultimate signaler of retinal information to the brain. Ganglion cells are larger
on average than most preceding retinal inter-neurons and have large diameter axons capable
of passing the electrical signal, in the form of transient spike trains, to the retinal recipient
areas of the brain. The optic nerve collects all axons of the ganglion cells. This bundle
of more than one million fibers then passes information to the next relay station in the
brain (especially the LGN) for sorting and integration into further information processing
channels ([KFN02]).

Despite being the same kind of cell, Ganglion cells differ in their

2.1. VISION 11

• size of the receptive field and

• ON/OFF area distribution.

Receptive Field As mentioned above, there are many millions of receptors on the retina,
but there is only about one million fibers in the optic nerve sending visual signals up to
higher brain centers. Consequently, individual receptors do not have private lines up to
the visual cortex. Rather, multiple receptors converge on to subsequent neural units on
their way to the higher visual centers. This convergence results in a physiological concept
known as receptive fields2. The receptive field of a ganglion cell describes the area of the
perceived image that this ganglion cell is processing. This field normally is a circular area.
The retina holds two different types of ganglion cells with different sizes of receptive fields:

• The M-cells have large receptive fields, whereas

• the P-cells only have small receptive fields.

M-cells are responsible for transporting mainly motion information, as their temporal res-
olution is better than their spatial resolution. Large receptive fields merge information of
many photo-receptor cells and though reduce the spatial resolution.

P-cells are built to transport mainly form and color information, as their spatial resolution
is higher than their temporal resolution. In the area of the fovea, some ganglion cells merge
only very few receptor cells, resulting in a very high spatial resolution.

ON/OFF Area Distribution Ganglion cells use a differential system to measure light
intensity. This means that no absolute signal level is transported to the brain, but the
difference signal of the ON and OFF areas. The ON and OFF areas are parts of the
receptive fields and have the form of concentric circles. Figure 2.4 shows the two possible
constellations. The ON areas are marked with a +, the OFF areas with a −.

The more light falls on receptor cells connected to an ON area, the higher is the signal level
output. The more light falls on receptor cells connected to an OFF area, the lower is the
signal level output. The signal level, coded in the firing rate of neuron cells, is then being
transported to the brain. A low signal level corresponds to a low fire rate, whereas a high
signal level corresponds to a high fire rate. There are always both ganglion cell types with
center ON/peripheric OFF and center OFF/peripheric ON present in all receptive fields.

Depending on which type of photo-receptor cell is connected to the ganglion cell, the
output provides different information. The most important constellations of receptor cell
connections are illustrated in Figure 2.5.

2To put it another way, a receptive field is the receptor area which, when stimulated, results in a
response of a particular sensory neuron.

12 CHAPTER 2. NEUROSCIENCE

Figure 2.4: ON/OFF receptive areas

B−
(G+R)+

B+
(G+R)−

(G+R)−(G+R)+

(G+R)− (G+R)+

R+ R−

G+G−

G+

R− R+

G−

a) b)

c)

Figure 2.5: Differential ganglion cells

Cells in group (a) are called concentric single-opponent cells. They are the most common
cell type and compute information about red minus green color contrast. Cells in group
(b), called concentric broad-band cells, respond to illumination differences. Cells in group
(c) do not have the above mentioned ON/OFF area distribution, but they compute a
difference signal between the output of the blue cone cells and the illumination level for all
cells in the receptive field.

Lateral Geniculate Nucleus (LGN) The LGN, located on either side of the rear end
of the thalamus, lies midway between the eyes and the visual cortex and has three basic
functionalities:

• to separate the information stream coming from the eye into dorsal and ventral
pathways,

• to continue differential signal processing in a similar fashion as it is performed in the
ganglion cells3,

3Cells found in the LGN have similar receptive field sizes like the retinal ganglion cells, as only very
few ganglion cells connect to LGN cells.

2.1. VISION 13

• to map retinal areas on visual cortex areas in relation to their importance: the
important fovea area is mapped to a large area in the visual cortex whereas peripheral
areas of the retina are mapped to smaller areas in the visual cortex.

Figure 2.6 shows the image information flow. After leaving the eye through the optic nerve,
information is split for the left and right visual field. Border for this separation is the fovea
on the retina. Both left visual fields are transported to the left LGN, whereas both right
visual fields are transported to the right LGN. The figure only shows the right LGN, as
processing is symmetrical for both fields. In the so called optic chiasm the nerve fibers of
both nasal halfs cross on their way to their LGNs.

left
visual
field

left
visual
field

visual
field

right
visual
field

right

Lateral
geniculate
nucleus

Optic
chiasm

M−Channel P−Channel

Primary visual cortex

4

5

6

3
2

1

Figure 2.6: The lateral geniculate nucleus

The LGN has also a layered structure. M-cells in the retina propagate their information to
the magnocellular layers, numbered 1 and 2 in Figure 2.6. Output of these layers is later

14 CHAPTER 2. NEUROSCIENCE

merged to the M-Channel, or ventral pathway, which is concerned with the initial analysis
of movement of the visual image. P-cells propagate their information to the parvocellular
layers, numbered 3 − 6 in Figure 2.6. Output of these layers is later merged to the P-
Channel, or dorsal pathway, which is concerned with the analysis of fine structure and
color vision.

Visual Cortex The visual cortex is the input stage of the brain for incoming visual signals
from the eyes. Image information is received through the LGN via the M-Channel and the
P-Channel as described above.

The visual cortex has been divided into numbered areas named V1, V2, . . . , with each
area having a designated function. Here, only areas V1 up to V5 will be discussed, as most
known visual processing occurs there [DE88]. Figure 2.7 shows a schematic drawing of a
model describing the assumed information flow in the visual cortex.

magnocellular
interblob
System

parvocellular

magnocells

M ganglion cells P ganglion cells

parvocells

higher cortical areas

Form

Motion

Color

Stereo Vision

hi
gh

−
le

ve
l

ob
je

ct
−

or
ie

nt
ed

lo
w

−
le

ve
l

fe
at

ur
e−

or
ie

nt
ed

V1

V4

V5

V3

LGN

V2

Retina

V
is

ua
l C

or
te

x

blob System
parvocellular

System

Figure 2.7: Schematic of visual cortex information flow (Adopted from [Kan91])

2.1. VISION 15

The mechanism of processing information with different cell types is continued in the visual
cortex. V1, to which the LGN pathways connect, has three different cell types, each of
them connected either to the parvocellular or to the magnocellular pathway. The three
different cell types constitute three streams of information, with each stream processing
mainly one property of the incoming information. These properties are form, color and
motion. Stereo vision aspects are also processed in the visual cortex, but are not further
treated in this thesis.

In the following we will concentrate mainly on the mechanisms of the visual cortex, since
they are interesting for robotic visual processing.

2.1.2 Models of Human Visual Processing

2.1.2.1 Parallel Information Flow and Reentry of Information

Parallel Information Flow All streams process their information in parallel [LH87].
The first stream deals with motion and form information from the magnocellular system
as the magnocellular system is achromatic. Form information is reduced here to gray image
form processing. The second stream processes form and color-form information from the
parvocellular system. The term color-form specifies the form perceived by color gradients
in contrast to the afore-mentioned achromatic form information in the first stream. The
third stream only treats color information. The advantage of this parallelism is that it
allows the optimal utilization of the present information at a time where no attention is
put on a certain stimulus (“pre-attentive processing” after Treisman and Jules in [Kan91]).

Each area forwards its processing results up to a higher area in the visual cortex. On
its way up the areas, the information type changes from low-level, small sized, feature
oriented local image information to clustered, high-level object-oriented information. This
can be interpreted as a hierarchical processing of the information. From one stage to the
next higher stage in the processing hierarchy there exist growing receptive fields of the
retina, that means there is increasing visual abstraction of the retinal image (see Hubbel
and Wiesel in [MK91]).

Areas V4 and V5 are the highest known areas with a specific specialization (V4 deals with
color, V5 with motion information). Succeeding cortical areas and areas responsible for
object recognition are still subject of intense research, as there is not much knowledge
about them presently. Notwithstanding, Tononi [TSE92] states that there is no area in
the brain, where information of the three streams merges together (binding problem). To
support this hypothesis, Engel [EKaTBSS92] proposes a system of temporal correlated
firing of neurons to integrate stream information in higher cortical areas.

16 CHAPTER 2. NEUROSCIENCE

The Reentry Hypothesis It is common to all cell types that they can forward processed
output up to higher areas. These intra-stream connections are commonly acknowledged
[HW65, NS99, Kan91]. Information is fed forward to higher areas, as well as fed back into
lower cortical areas at almost all cortical levels.

In experiments to attention control it could be shown that cells in V1 increase their activity,
if there is increased attention in a higher cortical region to the stimulus they detected (after
Wurtz in [Kan91]). Due to this and other similar experiments it is postulated in [TSE92]
that the strong connectivity between the areas of the visual cortex may support a dynamic
process of reentry with a continuous parallel and recursive signaling between the areas. In
[TSE92] a simulation model is proposed that suggests the thesis of reentry as a principle
in cortical integration.

To support the thesis an image processing experiment is described, wherein cortical areas
were simulated by neuronal networks. Results from higher networks feed their information
back to lower networks and influence the parameters of the lower neuronal networks in the
spatial domains of the recursive information. As their results were promising, it was tried
to use this effect in our robot.

As information in higher cortical areas already represents clustered object information, the
reentry effect is supposed to force more attention and therefore more sensitive segmentation
at lower levels towards the indicated object positions through the cluster information.

2.1.2.2 Feature Maps and Integration of Information: Visual Attention

Notwithstanding the statement of Tononi that there is no area in the brain where informa-
tion of the three streams merges together, the question that arises is how the information
about color, motion and form is organized into a cohesive perception. Obviously, the in-
formation of the groups of cells, each of which processing a distinct property, must be
brought together in temporary association i.e. there must be a mechanism whereby the
brain associates the processing carried out independently in different cortical areas. This
mechanism, as yet unspecified, is called the binding problem.

In psycho-physical studies it was shown (Treisman and Julesz) that the formation of these
associations requires attention. They also found that distinctive boundaries are created
from the elementary properties: brightness, color and orientation of line. If these bound-
aries are made up of elements that are clearly different from the rest of the image they
pop out almost automatically within few milliseconds. From different experiments and the
resulting observations Treisman and Julesz suggested that there are two distinct processes
in visual perception. An initial pre-attentive process (see above!) acts as a rapid scanning
system and is only concerned with the detection of objects. This process rapidly scans
the objects’ overall features and encodes the useful elementary properties of the scene:
color, orientation, direction of movement etcetera. At this point, variation in a simple
property may be discerned as a border or contour, but complex differences in combinations

2.1. VISION 17

of properties are not detected. Treisman proposes that different properties are encoded in
different feature maps in different brain regions. The later attentive process directs atten-
tion to specific features of an object, selecting and highlighting features that are initially
segregated in the separate feature maps. This attentive process takes a winner-takes-all
strategy, whereby the salient features of the object are emphasized and attended to (focus
of attention) while other features and other objects are inhibited or ignored.

But how does object recognition occur? Recognition requires attention. Stated in neural
terms Treisman and Julesz argue that cells in different feature maps (e.g. maps for color,
motion, and form) must be scanned, and associated with our memory of that object. To
solve this binding problem, Treisman postulates that there may be a master or saliency
map that codes only for key aspects of the image (see Figure 2.8). This master map
receives input from all feature maps but abstracts only those features in each map that
distinguish the object of attention from its surroundings. Once these salient feature have
been selected, the information associated with this location in the master map is retrieved
back to the individual feature maps. In this way the master map selects the details in the
feature map that are essential for attentive recognition. Recognition finally occurs when
these salient locations in different feature maps are associated or bound together.

2.1.3 Summary

In this section the way of visual information from the retina up to the visual cortex and
its processing in higher cortical areas was presented. Thereby following results can be
summarized: the retina consists of two different cell types, cones and rods, responsible for
day-light and night vision. Rods provide only achromatic visual information and saturate
at daylight conditions. Cones have a higher spatial resolution as most of them are on the
fovea, whereas rods are equally distributed all over the retina. Additionally, the temporal
resolution of cones is superior. The emphasis of perception is on color and form perception
in the area of the fovea having a high spatial resolution, and on motion perception in the
peripheral regions having a high temporal resolution. Information coming from the retina
is grouped in so called receptive fields.

The visual cortex is the input stage of the brain for incoming visual signals from the eyes.
It has been divided into numbered areas named V1, V2, . . . , with each area having a
designated function. The visual cortex is further characterized by a parallel feed-forward
processing in three streams of information, with each stream processing mainly one prop-
erty of the incoming information. These properties are form, color and motion. Further-
more it is commonly acknowledged that there exist many intra-stream connections as well
as inter-stream connections. Thereby information is fed forward to higher areas, as well
as fed back into lower cortical areas at almost all cortical levels. It was postulated that
the strong connectivity between the areas of the visual cortex supports a dynamic pro-
cess of reentry with a continuous parallel and recursive signaling between the areas. This

18 CHAPTER 2. NEUROSCIENCE

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

OrientationColor Size Distance Form

Image

Master map of image

Feature
maps

Detail analysis

Focused attention

Figure 2.8: A hypothetical model of the stages in visual perception based on experiments by Ann
Treisman (Adopted from [Kan91])

mechanism called reentry is seen as a principle in cortical integration.

Finally, in higher brain areas, the information coming from the visual cortex in categorized
into features to build so-called feature maps. Later attentive processes direct attention to
specific features of an object, selecting and highlighting features that are initially segregated
in the separate feature maps. This attentive process takes a winner-takes-all strategy,
whereby the salient features of the object are attended to (focus of attention) while other
features and other objects are inhibited.

A master map codes all key aspects of an image. This master map receives input from all
feature maps but abstracts only those features in each map that distinguish the object of
attention from its surroundings. For object recognition information from the memory is
used and compared with the master map.

2.2. HAND–TARGET INTERACTION 19

2.2 Hand–Target Interaction

This section describes experiments and models performed to analyze the interaction be-
tween hand and target for the two case “reach-to-grasp” and “reach-to-catch”. First,
experiments and results of different researchers leading to qualitative descriptions of the
characteristics of human reaching movements are shortly presented (Section 2.2.1), then
models developed to explain these characteristics are shown (Section 2.2.2). Thereby the
analysis is limited to the main topics that are necessary to understand the findings de-
scribed for the catching experiments. For a more profound analysis of “reach-to-grasp”
movements [Hau99] is recommended.

For interaction with a moving target experiments (Section 2.2.3) and models about catching
are shortly described (Section 2.2.4). One very promising is then analyzed in more detail
with special emphasis on the aspects “movement initiation” (Section 2.2.4.1) and “online
control” (Section 2.2.4.2) of the reaching phase.

2.2.1 Interaction with a Static Target: Reaching

Human prehensile movements can be separated into a transport component and a manip-
ulation component. While the former is mainly effected by shoulder and elbow the later
is effected by wrist and fingers. That these components are in fact separate processes can
be seen in experiments in which different task parameters like target position and size are
varied ([PMMJ91], [BMMZ94]).

The transport component is used to reach the object to grasp (for a review see
[Geo86, Ros94]). Those movements are highly automated; the common opinion is that
such movements are preprogrammed by the central nervous system in the form of so-called
motor programs which are scaled according to the task parameters. However, moving the
hand from point to point is a heavily under-constrained task as pointed out in [Kaw96]:
(1) The human arm has a redundant number of degrees of freedom (three both at the
shoulder and at the wrist, one at the elbow), so there exist an infinite number of possible
configurations at the end point. (2) There exist infinite ways, i.e. an infinite number of
trajectories to get from the starting point to the end point. (3) Those trajectories can be
realized using different muscle synergies. To limit this enormous space of possible solutions,
researchers have looked for parameters that remain invariant. Morasso [Mor81] analyzed
hand trajectories of planar movements4 in Cartesian and joint space and found that the
Cartesian space trajectories are much more invariant than the resulting joint space trajec-
tories. Kaminski et al. [KG89] supported this finding by analyzing single and multi-joint
movements leading to similar results. In general it can be stated that the path of the hand

4The problem with the analysis of 3D movements is that it is difficult to compensate external effects
like gravitation; this is perhaps the main reason why research has focused on movements in the horizontal
plane.

20 CHAPTER 2. NEUROSCIENCE

is a roughly straight line in Cartesian space and the tangential (Cartesian) hand velocity
profile is bell-shaped.

In most experiments like those of Morasso, the hand was hidden from sight, e.g. by
moving below a table, thus corresponding to a pure visual feed-forward control. However,
such movements are quite inaccurate concerning both direction and extent (see [Geo86]
for a review). In opposition accuracy increases significantly if visual feedback is permitted
[PEKJ79]. In 1899 already, Woodworth proposed that a reaching movement consists of two
components: an “initial impulse propelling the hand towards the target” and a “current
control to home in on the final position via successive approximations” [Woo99]. The
former was found to be dependent on visual information only at the beginning, to generate a
trajectory (visually directed motion); the latter depends on primarily visual feedback during
motion (visually guided motion). This qualitative description was supported experimentally
by Milner [Mil92] who measured the trajectories of human subjects inserting a pin into a
hole. For small holes and therefore high precision requirements, the velocity profile showed
small oscillations at the end, corresponding to a sequence of sub-movements.

However, there is a price to pay for increased accuracy: movement duration. Woodworth
was probably the first to investigate this so-called speed-accuracy trade-off5 (see [MSW82]
for a review); he found it to be more pronounced in the presence of visual feedback, but
existent as well for pure feed-forward movements. The latter is not surprising; even if
visual information may be the primary source of feedback it is not very probable that
proprioceptive information is not used at all. The first one to formalize this relation was
Fitts [Fit54]. Equation 2.1 states the relation between movement duration T and “task
difficulty” D/W (with D being the distance to cover and W the width of the target along
the direction of the movement) in the form which is commonly called “Fitts’ law”:

T = C1 + C2 · log2(2D/W) (2.1)

This relation holds in a variety of tasks (see [MBGL94] for 2D writing, [BMMZ94] for
grasping). However, there are cases where different relations seem to hold, e.g. a linear
one which has been explained by Meyer et al. [MSW82]. Plamondon [Pla95] furthermore
showed that a power law might fit the data in both cases better than the logarithmic/linear
law.

By introducing external disturbances e.g. by changing target size, the principles behind
motion control can be examined even further. An experiment suited to the analysis of
reaching or aiming movements is the so-called double-step target: here, the position of the
target changes stepwise, either before or after the beginning of motion. It has been shown
that motion is adapted smoothly [FH91]; the velocity profile shows multiple peaks only if
the target step appears later during the movement or if its direction is very different to
that of the primary movement. If a small step occurs very early during a saccade of the

5In fact, the variable measured in experiments on the speed-accuracy trade-off is not speed, but move-
ment duration!

2.2. HAND–TARGET INTERACTION 21

eyes, Pélisson et al. [PPGJ86] reported that the subjects correct their movement without
being aware of it. The reaction time to a visually perceived target step lies between 100ms
and 250ms (visual reaction time) [Ros94]6, and is therefore much shorter than the reaction
time to the first target. This indicates that the movement is not completely re-planned.
This finding of the duration of the visual reaction time corresponds well to the findings of
the reaction times to continuously moving target objects (see Sec. 2.2.3).

There has not been much research on which visual information is actually used as an in-
put to human motion control. Paillard [Pai96] showed that visual motion information is
indeed incorporated into motion control. The principal source, however, seems to be posi-
tional information. Vercher et al. [VMPG94] analyzed the accuracy of pointing movements
depending on whether the target was foveated (domain of “positional vision”) or viewed
peripherically (domain of “motion vision”) and found the former case to lead to more ac-
curacy (due to the higher resolution in the fovea area). Goodale and Servos showed that
the availability of binocular cues before or during a movement increases its accuracy and
efficiency [GS96] in contrast to purely monocular cues. Hu et al. [HEG99] show that it is
indeed 3D information that is used for motion control, not 2D information from the retinal
planes.

Summarizing this section, one can say that, using the robotic terms human hand-eye
coordination for reaching movements is based on a flexible combination of (mainly) visual
feed-forward and (optionally) visual feedback control, the latter being important to increase
accuracy. The system is position-based; binocular information is not a prerequisite but
increases the accuracy and efficiency of movements.

2.2.2 Models of Human Reaching Movements

The former section dealt mainly with a qualitative description of the characteristics of
human reaching movements, this section describes models developed to explain these char-
acteristics. Conceptually the models have been divided into three “classes”: models based
on the so-called equilibrium point hypothesis, those based on optimization theory, and mod-
els reproducing the form of the velocity profile.

Models Based on the Equilibrium Point Hypothesis The equilibrium point (EP) hy-
pothesis, first proposed by Feldman in 1996 [Fel66], is based on the mechanical properties
of muscles which can be described as “tunable damped springs”. According to Hooke’s law,
the tension of an undamped spring is proportional to (1) its stiffness and (2) the distance
it is stretched from the resting position. In the human musculo-scelettal system, a joint
is often moved by a muscle pair, the agonist and the antagonist. If both are modeled as

6The shortest times have been measured by Paillard [Pai96] for the integration of visual motion infor-
mation; the larger boundary seems to be the time it takes for estimating integrating positional information.

22 CHAPTER 2. NEUROSCIENCE

springs, then for given resting lengths and stiffnesses there exists a unique joint state where
the two-muscle system is at an equilibrium.

Limb motion might therefore be generated by the central nervous system by changing the
spring parameters. In the so-called α-model, the stiffness parameters are influenced by
a continuous activation of the muscles; in the λ-model, the central nervous system once
specifies desired resting lengths which are then achieved using proprioceptive feedback.
The former is the base for the work of Bizzi et al. (see e.g. [BHMIG92]), who found that
monkeys could reach a learned target position (one joint movement) even without any
visual or proprioceptive feedback. However, as the α-model completely lacks the notion of
feedback, it cannot account for “normal” movements which definitely use proprioceptive
feedback, e.g. the stretch reflex. Feldman’s group (e.g. [FOF93]) followed the λ-model,
which is completely dependent on feedback and therefore fails to explain the performance
of the monkeys. A combination of the two models can be found in [MB93].

Lacking the possibility to describe trajectories of multi-joint movements with those models,
in [FOF93], the λ-model was extended by postulating a time-variant equilibrium point
that moves at constant speed on the straight line between start and goal position. In the
case of double-step targets, the equilibrium point is shifted a second time, from the first
to the second target position. Note, that the shifting time is considerably smaller than
the duration of the movement. The α-model was extended in a similar way by moving
the equilibrium point on the minimum jerk trajectory [Fla89] which is discussed in the
following section.

The fact that in order to account for trajectories, the EP models both have been combined
with high-level, “kinematic” models suggests that the equilibrium point hypothesis should
not be treated as a stand-alone model, but as an intermediary, dynamic model.

Models Based on Optimization Theory Applying methods of optimal control theory
[BH75] to a criterion function which describes the objective of the movement makes it
possible to find a trajectory which minimizes this criterion function (with respect to the
dynamic and algebraic constraints imposed by the system). Not all trajectories obtained
by this method are confirmed by experimental data. Nelson [Nel83] shows the result of
minimizing different physical “costs” like time, force, impulse, energy, and more. Thereby
e.g. minimizing impulse results in a trapezoidal velocity profile. Two optimization models
that are experimentally confirmed are the Minimum Torque Change Model [UKS89]
(dynamic objective function) and the Minimum Jerk Model [FH85] (kinematic objective
function).

In the latter model the objective is to minimize jerk7 or, to put it in other words, movements
are planned in a way to assure a maximal smoothness. Equation 2.2 states the objective

7Jerk = derivative of acceleration.

2.2. HAND–TARGET INTERACTION 23

function C for a 2D-movement, Eq. 2.3 the corresponding hand path

C =
1

2

t=T∫
t=0

{(d
3x

dt3
)2 + (

d3y

dt3
)2}dt (2.2)

x1(t) = x0 + (xT1 − x0) · (10τ 3
1 − 15τ 4

1 + 6τ 5
1) (2.3)

with x0 and xT1 being the start and the target position, T being the movement duration,
and τ1 = t/T . The resulting paths are straight Cartesian lines, the tangential velocity
profiles are symmetric and bell-shaped.

Reactions to double-step targets, i.e. the case that the target “jumps” during the movement
from xT1 to xT2 , are explained by the so-called superposition scheme [FH91]: At the time
t = t2, a second minimum jerk trajectory (Eq. 2.4) is superimposed on the first:

x2(t ≥ t2) = (xT2 − xT1) · (10τ 3
2 − 15τ 4

2 + 6τ 5
2) (2.4)

with τ2 = (t − t2)/(T − t2). The parameters of the model were estimated by fitting
it to experimental data. It should be mentioned that the model has been successfully
implemented on a robot [Hen91].

Burdet [Bur96] extended the minimum jerk superposition model in two ways: First, he
combined it with the model of Meyer et al. [MSW82] which proposes that every move-
ment consists of sub-movements with random variable duration and extent, and thereby
accounts for the different forms of the speed-accuracy trade-off. In contrast to Flash, the
duration and extent of the sub-movements can now be computed, and only the total du-
ration, distance, accuracy, and the number of sub-movements have to be extracted from
experimental data. In contrast to Meyer, the sub-movements minimize jerk, not time. Bur-
det also integrated one of the results of Milner’s peg-in-hole experiments [Mil92], namely
that sub-movements seem to be triggered periodically with a rate corresponding to the
visual reaction time. While Milner’s observations stem from visual feedback experiments,
Burdet’s model does not account for this case. In later work, Burdet and Milner [BM98]
proposed another algorithm for the parameterization of sub-movements for the case of high
accuracy requirements in the presence of feedback on the current position. Some of the
model parameters, as for example the rate of the final sub-movements, were estimated from
experimental data; duration and extent of the first two sub-movements (“the plan”) can
be learned. The form of the sub-movements itself was modeled only qualitatively by using
bell-shaped velocity profiles.

Model Reproducing the Velocity Profile Nelson’s analysis of the effect of different ob-
jective functions [Nel83] also showed that different objective functions, namely minimum
energy and minimum jerk, result in a very similar velocity profile, the well-known bell
shape. This observation lead Goodman et al. [GGC92]8 to propose that the precise ob-
jective is not important, but that by achieving the bell-shaped velocity profile more than

8The paper was published under his former name, Gutman.

24 CHAPTER 2. NEUROSCIENCE

one objective is minimized. Following this line of reasoning, they modeled the velocity dur-
ing a reaching movement with a differential equation which computes the current velocity
from the remaining distance to the target. More detailed information to this model can be
found in Section 4.6.1.

2.2.3 Interaction with a Moving Target: Catching

Despite the fact that catching appears to be more complicated than reaching, the ability to
reach toward moving targets develops at a very young age ([vH82]). This ability develops
rapidly from birth and already by age of 36 weeks infants can accurately intercept a mov-
ing object ([vH79]). Furthermore, infants seem to use a predictive strategy in which the
initial movement is directed toward the interception point rather than tracking the object
([vH80]).

Catching or hitting experiments with adults have been performed by many researchers.
Thereby different aspects were in the focus of attention: [MC99] shows which characteris-
tics of target motion are important in the control and coordination of the transport and
grasp-preshape components of prehensile movements during a interception task. [PPG96]
investigates the performance of human subjects during the interception of real and path-
guided apparent motion targets. [vdKSS97] studies the effect of multiple information
sources on interceptive timing. Thereby the influence of background structure and monoc-
ular vs. binocular vision on the timing of a grasp in a simple one-handed catch is evaluated.
[DLC00] investigates target velocity effects on manual interception kinematics. In two ex-
periments the influence of early or late vision on the target was evaluated. As a result it
is suggested that subjects use visual information early in the target’s trajectory to form a
representation of the target motion that is used to facilitate manual interception. [BP92]
investigate the performance of human subjects in ball catching. They show that predictive
information about when an approaching ball will be where is available in the transforma-
tion of the optic array sampled at the point of observation of the catcher. They state
that (a) humans are able to use these information sources, (b) the power of this predictive
information lies in the possibility it offers for prospective control. Success in actions like
catching and hitting would be almost impossible without such predictive information.

2.2.4 Models for Human Catching Movements

Despite the fact that there have been many experiments accomplished describing the catch-
ing behavior of humans or even patients, almost no quantitative models have been de-
veloped so far. A model that describes the manual interception of moving targets in a
quantitative way is the model of Port, Lee and Georgopoulos [PLDG97, LPG97]. In the
experiments leading to this model two main questions have been addressed: (1) when does
a catching movement start and which trigger initiates it, and (2) how is the interceptive

2.2. HAND–TARGET INTERACTION 25

movement performed regarding position, velocity and acceleration of the intercepting hand.

2.2.4.1 Movement Initiation

Explanations for the initiation of arm motion in intercepting moving targets have been
given by two models: the threshold-distance and the threshold-τ model. The first of these
was put forward by Collewijn (1972) [Col72] to explain the optokinetic response time in
a rabbit and proved to be also applicable to the interception of moving targets by human
subjects. This “threshold-distance model” is so named because it postulates that a stimulus
must travel a certain visual angle before a motor response can be elicited.

The second model of target interception incorporates the concept of the time-to-contact
and τ as proposed by Lee [Lee76]. Under conditions of constant velocity, τ is a variable
that could be computed by the brain to determine the time to contact with the object.
The variable τ was originally defined under conditions of self motion in an optic flow field
[Lee76], in which it was proven that τ is equal to the inverse of the rate of dilation of the
retinal image.

For interceptive movements as described in the experiments of Georgopoulos [PLDG97,
LPG97] the τ of the target (which is a continuous variable changing with time) is defined
as the distance of the target to the interception zone at a time t divided by the velocity of
the target at time t.

τ =
d(t)

ḋ(t)
=

target distance

target velocity
(2.5)

In the following first an experiment is presented which examined the initiation and per-
formance of “reach-to-catch” movements of human subjects to intercept moving targets
[PLDG97], then the relation of the aforementioned models with experimental results is
shown.

Experiment of Georgopoulos In [PLDG97] the initiation (i.e. the reaction time) of the
reaching movement in response to a moving target has been examined and explanations for
the observed behavior have been given. To examine those human arm movements following
methods were applied: Subjects sat unrestrained in front of a two-dimensional articulated
manipulandum. The manipulandum was on a table which was approximately 10cm above
the subjects waist. By moving the manipulandum subjects controlled the location of a
position feedback cursor on a computer screen. At the beginning of a trial subjects had
to move the cursor to a start zone, which was centered at the lower vertical meridian of
the screen. After the subjects maintained this position for a random period of 1 − 3s a
target appeared in the lower left or right corner of the screen. The target then traveled

26 CHAPTER 2. NEUROSCIENCE

along a 45◦ path until it reached the vertical meridian of the screen, where it stopped at a
location 12, 5cm directly above the center of the start zone. The subject was required to
move the feedback cursor so as to intercept the target just as it reached its final position
at the center of the interception zone. No other requirements, e.g. to move as fast as
possible, were put on the subject. The target traveled either with a constant velocity, a
constant acceleration or a constant deceleration. The target movement duration took one
of 6 values between 0.5s and 2.0s, i.e. altogether 36 combinations were possible. For each
trial one possibility was chosen randomly.

With this setup two different reactions could be observed which can be seen in Figure 2.10:
In the plots the response time as a function of movement duration (also called Target
Motion Time) is drawn. Thereby it can be observed that for subjects 1 and 2 the response
time is continuously rising with the target motion time, while for subjects 4 and 5 the
response time stays almost constant for all target motion times. For both behaviors models
can now be assigned:

Hold zone

Start zone hand Feedback Cursor

Interception zone

Figure 2.9: Setup for experiments to determine the reaction time and to analyze interceptive move-
ments

2.2. HAND–TARGET INTERACTION 27

• threshold-distance model
The threshold-distance model predicts that a subject will respond after some constant
processing time plus the time it takes the target to travel a certain distance (threshold
distance). This model complies to a reactive strategy. For targets traveling at a
constant velocity9 the response time is almost independent of the velocity of the
target object (see subjects 4 and 5 in Figure 2.10):

Response time = processing time +
threshold distance

target velocity
(2.6)

Figure 2.10: Response time as a function of movement duration (from [PLDG97]).

• threshold-τ model
In the threshold-τ model, a movement is initiated after a certain processing time from
the moment at which the τ of the target decreases below a certain threshold. This
model complies to a predictive strategy. For targets traveling at a constant velocity

9For acceleration or decelerating targets, respectively, the response time is slightly different to Equa-
tion 2.6 (see [PLDG97])

28 CHAPTER 2. NEUROSCIENCE

the response time strongly depends on the velocity of the target (see subjects 1 and
2 in Figure 2.10), whereby faster targets elicit shorter response times.

Response time = processing time +
DSI− τv0

v0

(2.7)

with v0 being the initial target velocity and DSI being the distance between starting
position of the target and the interception zone.

Which strategy is used depends on the subject, but is chosen unconsciously. The analysis
revealed, if the experiments are performed with more emphasis on the speed of the response
rather than its accuracy, it is likely that subjects are biased towards adopting the reactive
strategy. In this case using a predictive strategy might be too time consuming since it
would require an estimation of target displacement and velocity. On the other hand,
if experiments are designed to put more emphasis on the temporal accuracy of target
interception, this might bias the subjects towards the predictive strategy [LPG97].

2.2.4.2 On-line Control of Hand Movement

Experiment of Georgopoulos Analyzing the kinematic characteristics of arm move-
ments for the above mentioned experiments it was found out that (1) for fast moving
targets, subjects produced single movements with symmetrical, bell-shaped velocity pro-
files and (2) for slowly moving targets, hand-velocity profiles displayed multiple peaks,
which suggested a control mechanism that produces a series of discrete sub-movements
according to the characteristics of target motion. Despite the fact that the number of
sub-movements, their amplitude and the intermediate time between two consecutive sub-
movements change from subject to subject, the chosen strategy, the duration of the target
motion as well as from the target’s velocity, nevertheless some invariants could be seen
by more detailed analysis: (a) the number of sub-movements was roughly proportional to
the movement time, resulting in a relatively constant sub-movement frequency (≈ 4Hz).
(b) the median duration Ts of a sub-movement is approximately 0.5s (see Figure 2.12).
(c) the onset of a sub-movement has a relatively constant temporal relationship with the
offset, instead of the onset, of the preceding sub-movement. On average the onset of a
sub-movement precedes the offset of the preceding sub-movement by 0.25s (≈ Ts/2!). This
duration is called Intersubmovement Interval or ISMI 10 (see Figure 2.13). (d) the sum of
the amplitudes of all sub-movements is approximately constant.

Analyzing sub-movement amplitude and its relation to target motion revealed that the
subjects achieved interception mainly by producing a series of sub-movements that would

10It should be noted that the constancy of the ISMI found in [LPG97] is probably not a general principle
that applies to all types of movements, since it has been shown that, with sudden change in target location,
an ongoing movement can be modified at any time during its execution.

2.2. HAND–TARGET INTERACTION 29

keep the displacement of the hand proportional to the first-order estimate of target position
at the end of each sub-movement along the axis of hand movement.

This finding lead Georgopoulos to formulate a Position control hypothesis : At the beginning
of a sub-movement the subject tries to determine the position of the target at the end of
the sub-movement and to reach this position with its hand in time with the target. In case
of a constant target velocity the situation is as follows:

positionhand = PG + VGDS (2.8)

with DS being the duration of the sub-movement, PG and VG being the position and
velocity of the target at the beginning of this sub-movement.

The amplitude of hand motion is therefore:

amplitudehand = PG + VGDS − PH (2.9)

with PH being the position of the hand at the beginning of the sub-movement. Taking
a constant time for the duration of a sub-movement, e.g. the median value of all sub-
movement durations Dm, the amplitude becomes:

amplitudehand = PG + VGDm − PH (2.10)

For the described experiment Equation 2.9 as well as Equation 2.10 gave good results
compared to the real behavior of the human subjects.

What could be additionally observed was that depending on the chosen movement initiation
strategy the “overall” control of the arm motion differed. Subjects using a reactive strategy
tried to keep up with the target object, i.e. the subject tried to keep the error between the
cursor position and the current target position to be zero:

E = Ytarget − Yfeedbackcursor = 0 (2.11)

If this condition is fulfilled until the target enters the interception zone, target and feedback
cursor will contact finally.

Resulting velocity profiles of the hand motion can be seen in Figure 2.11 on the right side.

In contrast, for subjects using a predictive strategy no straight relationship between hand
motion and target motion can be seen. The motion of the hand is significantly shorter as
with the reactive strategy and the subject produces less sub-movements. To explain this
behavior Georgopoulos [LPG97] gives to possibilities: (1) The subject is unable to generate
sub-movements at a rate fast enough to keep up with the target or (2) the subject can
estimate the target’s velocity very well and is able to predict the time of contact with the
interception zone. Therefore one impulse, maybe slightly corrected, is enough to contact
the target accurately.

30 CHAPTER 2. NEUROSCIENCE

Finally, the effect of target acceleration was analyzed. It was found out that, if the target
is accelerating during the trial, on average subjects move the feedback cursor too late into
the interception area. In opposite, if the target is decelerating, subjects move the cursor
too early into the interception area. This implies that subjects cannot take accelerations
or decelerations into account for the control of their hand movement.

Figure 2.11: Hand motion for different target motion times. Left: predictive strategy. Right: reactive
strategy.

Figure 2.12: Duration of sub-movements. The median duration is approximately 0.5 s.

2.2.5 Summary

In this section “reach-to-grasp” as well as “reach-to-catch” hand motions were analyzed
in more detail. Thereby results from different researches were compared. For the case of
“reach-to-grasp” it can be stated that there exist some invariant characteristics for those
motions, namely that (a) these motions are single movements with a straight hand path
and a bell-shaped velocity profile, and (b) the 3D position of the target object serves as
input data. Different models explaining and describing these findings have been presented.

2.2. HAND–TARGET INTERACTION 31

Figure 2.13: Duration between the end of a sub-movement and the beginning of the next. The ISMI is
approximately −0.25s.

In the case of “reach-to-catch” movements the situation is quite similar. There exist
also some invariant characteristics. Namely, (a) for movement initiation either a predictive
(threshold-τ model) or a reactive strategy (threshold-distance model) is chosen. (b) the arm
movement consists of a single or multiple sub-movements depending on initiation strategy
and target motion time. (c) the median duration Ts of a sub-movement is approximately
0.5s. (d) the number of sub-movements is roughly proportional to the movement time.
The rate of sub-movements is approximately constant. Thereby every 250ms a new sub-
movement is started (ISMI = Intersubmovement interval). (e) the sum of the amplitudes
of all sub-movements is approximately constant. (f) it seems that most subjects use a
“position control strategy”: At the beginning of a sub-movement the subject tries to
determine the position of the target at the end of the sub-movement and to reach this
position with its hand in time with the target.

When comparing the results of reaching and catching some similarities can be observed:
(a) while reaching movements consist of one single peaked bell-shaped velocity profile,
“reach-to-catch” movements are mainly produced by an superposition of those profiles.
(b) reaching with high accuracy demands and catching using a reactive strategy are very
similar: This can be seen from trajectories of human subjects inserting a peg into a hole.
For small holes and therefore high precision requirements, the velocity profile showed small
oscillations at the end, corresponding to a sequence of sub-movements. Additionally, these
sub-movements seem to be triggered periodically with a rate corresponding to the visual
reaction time. (c) the reaction time to a visually perceived target step (double step target
experiment) lies between 100ms and 250ms (visual reaction time). In case of a reactive
strategy sub-movements are generated with a rate that the ISMI is approximately 250ms.
Thereby hand and target are observed which implies that visual processing time is the
limiting factor for the generation of movements. (d) if the subject is unsure about its
movements and a higher control of the arm movement is necessary (as e.g. for aforemen-
tioned high precision movements) subjects use feedback about the current target and hand

32 CHAPTER 2. NEUROSCIENCE

position to control the motion which results in sub-movements.

2.3 Discussion

The main question that arises when reviewing this chapter is: What can be learned or
derived, respectively, from the knowledge gained by the analysis of human visual processing
and the reaching or catching behavior? Since the goal is to control a robot only those
results can be transfered that provide quantitative information or results that provide a
good principle to transfer. The latter is true for the vision part were the mechanisms of
parallel information flow and reentry are interesting and imply further observation. For
the “catching” the notion of super-positioned sub-movements at constant movement rates
and movement time implies the transfer.

Both topics build the basis for developed models as they are described in Chap. 4.

Chapter 3

Robotic Hand-Eye Coordination

The following chapter treats topics of the term “hand-eye coordination”. In the first part
basics for “internal model” needed for every calibrated hand-eye system are presented
(Sec. 3.1).

In the second part aspects of image processing are treated with emphasis on methods
of visual tracking. Thereby, a review of methods for visual tracking of moving objects
(Section 3.2.1) using different sensor modalities (Section 3.2.1.1 for form, Section 3.2.1.2
for color and Section 3.2.1.3 for motion) is given. Additionally methods to determine grasps
on the tracked object are introduced (Section 3.2.3).

Since the prediction of object motion is essential for the successful catching, methods for
the prediction of time series (Section 3.3) are presented whereby their suitability for our
purpose is analyzed.

The chapter closes with a review on literature and methods for robotic manipulator control
for interaction with static (Section 3.4.1) and moving targets (Section 3.4.2).

3.1 Internal Models

An internal model is a “simplified description of an object or of the function of an object”
that is used by a system. In an hand-eye system, different sub-systems need different inter-
nal models. E.g. the sub-system charged with translating planned trajectories into robot
commands needs an inverse kinematics model of the arm. To reconstruct spatial informa-
tion from the images an inverse model of the camera-head system is needed. Furthermore,
this reconstructed information has to be translated into arm coordinates.

In a robotic hand-eye system, one can imagine two classes of applications: Grasp or catch
a known object, perhaps even interact with it in a special way, or pick up, grasp or catch

33

34 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

an unknown object. In the first class (geometric) object models have to be stored; these
models are mainly needed for contour based tracking (see Sec. 3.2.1.1), determination of
grasps (see Sec. 3.2.3) as well as for e.g. tracking of precomputed grasps (see Sec. 4.4.1).

Since this thesis mainly deals about interacting with a moving target, in Section 3.3 motion
models to describe the target’s way are shortly introduced.

3.1.1 Models of the Hand-Eye System

Model of the Manipulator

In this section on the one hand geometric model properties of a manipulator are described.
On the other hand, and thereby maybe going above the word “model”, also kinematic
relationships for non-redundant and redundant manipulators are described.

Coordinate systems and -transformations An object in Cartesian space has 6 degrees
of freedom (d.o.f.), whereby 3 are translatory and 3 are rotatory. To be able to describe
these facts mathematically, the following definitions are needed:

• a base coordinate system (or world coordinate system) as a reference system. This
world coordinate system is called Fw in the following. It is assumed that Fw is a
Cartesian right hand system in R3 with the orthonormal base matrix:

wW =
[

wbx wby wbz

]
(3.1)

In general matrix wW can be any 3× 3 matrix, that fulfills above conditions. In the
simplest case one can take the identity matrix, so that

wW = I (3.2)

• a three-dimensional Cartesian vector that describes the position of an object relative
to Fw. This vector is a vector from the origin in coordinate system Fw and describes
the position of a fixed point of an object. This vector is called wp in the following.

wp =

 x
y
z

 (3.3)

• the rotation of an object relative to Fw can be described by an object coordinate
system Fo, whose origin is in the point that is defined by the position vector wp.
This object coordinate system is also defined as a Cartesian right hand system in R3

3.1. INTERNAL MODELS 35

with an orthonormal base matrix, whose base vectors are defined in Fw. This matrix
is denoted as

w
o R =

[
w
o bx

w
o by

w
o bz

]
(3.4)

and defines a rotation matrix. For matrix w
o R applies:

det w
o R = 1, w

o RT w
o R = w

o R w
o RT = I (3.5)

The geometric data of an object (e.g. edges, planes, . . .) can now be described relative
to Fo and therefore independently of the world coordinate system Fw. To transform a
vector ox in Fo (e.g. an edge point of a plane) into the world coordinate system, following
transformation is necessary:

wx = w
o R ox + wp (3.6)

This equation can be simplified, if one arranges w
o R and wp appropriately into a 4 × 4

matrix w
o T:

[
wx
1

]
= w

o T

[
ox
1

]
=

[
w
o R wp
0T 1

] [
ox
1

]
(3.7)

Now objects can be described not only relatively to the world coordinate system, but
also relative to other objects. Therefore the object coordinate system of one object is the
reference system of another object. If we define Fa as the object coordinate system of
object A, that is defined relatively to Fo

[
ox
1

]
= o

aT

[
ax
1

]
=

[
o
aR

op
0T 1

] [
ax
1

]
(3.8)

one gets the coordinates of the vector ax in the world coordinate system by following
concatenated transformation:

[
wx
1

]
= w

o T

[
ox
1

]
= w

o T o
aT

[
ax
1

]
(3.9)

The concatenation is therefore a simple multiplication of the transformation matrices. In
general one can write for a transformation from Fm to F0:

0
mT = 0

1T
1
2T . . . m−1

m T with m ∈ N (3.10)

36 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

The general form of a transformation matrix T can be described as:

i−1
i T =

[
i−1
i R i−1p
0T 1

]
(3.11)

The form of matrix 0
mT is exactly the same as the form of the single transformation

matrices according to Equation 3.7. This can be verified be inserting the accordingly
indexed Equation 3.11 into Equation 3.10 (see also [Hau99]).

Denavit-Hartenberg Transformation In robotics it is common to use Denavit-
Hartenberg parameters for the spatial description of a manipulator.

bzi−1

a i

d i

bx

Fi

i−1

i−1

bzi

i

b
i−1

yi

α

α

α
ϑ

ϑ

ii

i

i

i

b

bi−1

i−1

x

y

Fi−1

ϑ i

Figure 3.1: Coordinate transformation with Denavit-Hartenberg parameters

To determine those parameters, one assumes that two objects with object coordinate sys-
tems Fi and Fi−1 are connected by a joint. The rotation axis of the joint is identical
with the z-axis of Fi−1, and the joint turns counterclockwise by the angle ϑi around this
z-axis. By specification of an additional angle αi, which turns around the x-axis of Fi, and
of two additional scalars di and ai for an additional translation, the resulting coordinate
system Fi can be aligned in a way that its z-axis is the rotation axis of the next joint.
Where required it is additionally necessary to add an constant offset to the angle ϑi, since
otherwise it is not possible to model manipulator configurations with 90◦ offset.

3.1. INTERNAL MODELS 37

Calculation of End-effector Position and Orientation The position and orientation
of the end-effector can be calculated with the concatenated transformation matrix

w
e T = 0

mT = 0
1T

1
2T . . . m−1

m T (3.12)

that transforms the coordinates from the end-effector coordinate system Fe = Fm to the
world coordinate system Fw = F0. With Equation 3.7 one gets the position vector wp of
the end-effector, if following operation is executed:

[
wp
1

]
= w

e T

[
0
1

]
(3.13)

The three elements in wp are therefore equal to the first three elements of the fourth
column vector in w

e T. Accordingly, one gets the base vectors of Fe from the upper left
3 × 3 sub-matrix of w

e T. This sub-matrix is a rotation matrix w
e R according to the

definition in paragraph Coordinate systems and -transformations. By this rotation matrix
the orientation of the end-effector is determined well-defined and can therefore be used for
orientation declarations.

For certain tasks it can be sensible to use another possibility for the description of the end-
effector orientation. Like stated in [Mai99] the description of the end-effector orientation
can be obtained by using angles relative to the world coordinate system. This is possible
e.g. by using Euler XYZ, ZYZ or RPY angles. Hereby the calculation of these angles from
the rotation matrix w

e R is necessary. Unfortunately, this conversion is not trivial, since
for a given rotation matrix the solutions for the angles are not unique. Therefore, it is
necessary, e.g. for the trajectory generation of an orientation trajectory, to use previously
calculated values to obtain a continuous course of the angles.

As an alternative the use of approach and normal vector is suitable. Hereby the orientation
of the end-effector is uniquely described by two normed vectors in a plane. The approach
vector wa fixes two out of three rotatory degrees of freedom, it therefore fixes the “direction”
of the end-effector. For the fixation of the third rotatory degree of freedom the normal
vector wn is used. This vector is normally perpendicular to the approach vector, so
wa · wn = 0.

But this does not need to be fulfilled always. The orientation of the end-effector is uniquely
determined, if following applies for the scalar product:

−1 < waT wn < 1 with | wa| = | wn| = 1 (3.14)

whereby wa and wn lie in a plane and are linearly independent.

38 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

7-d.o.f Kinematics Kinematics is the science of motion which treats motion without
regard to the forces that cause it. Within the science of kinematics one studies the position,
velocity, acceleration and all higher order derivatives of the position variables with respect
to time. Hence, the study of kinematics of manipulators refers to all the geometrical and
time based properties of the motion.

In the following the kinematics of a 7-d.o.f redundant manipulator1 is described in more
detail. Hereby the following is defined:

• A Cartesian position vector in Fw

wp = wp(t) =

 px(t)
py(t)
pz(t)

 (3.15)

• A Cartesian angular velocity vector in Fw

wω = wω(t) =

 ωx(t)
ωy(t)
ωz(t)

 (3.16)

The three entries determine a rotation with the angular velocity ωi around the ac-
cording coordinate axis in Fw.

• A joint angle vector. This contains all m = 7 joints of the manipulator. For qi = 0
the base position of the manipulator is defined.

q = q(t) =

 q1(t)
...

qm(t)

 (3.17)

Direct Kinematics The term “direct kinematics” denotes the transformation that en-
ables to determine the position and orientation of the end-effector from the joint angle
vector q(t). This is a transformation from joint angle space (Rm) to Cartesian space
(R3). Formally, this can be described as follows, whereby x(t) contains the information
for position (translation) and orientation (rotation):

x(t) = F(q(t)) (3.18)

For the calculation of the direct kinematics this formal definition is split into:

1This is sensitive here since our robot MinERVA is also a 7-d.o.f redundant manipulator.

3.1. INTERNAL MODELS 39

wp(t) = Fp(q(t)) (3.19)
w
e R(t) = FR(q(t)) (3.20)

In general, Fp and FR are non-linear functions that map the joint angle vector q(t) into
the Cartesian position vector wp(t) or the rotation matrix w

e R(t), respectively.

The transformation matrix w
e T = w

e T(q(t)) contains already all information according to
paragraph Coordinate systems and -transformations, to determine wp(t) and w

e R(t) from
q(t). The calculations can be described as follows:

wp(t) =

 1 0 0 0
0 1 0 0
0 0 1 0

 w
e T(q(t))

0
0
0
1

 (3.21)

w
e R(t) =

 1 0 0 0
0 1 0 0
0 0 1 0

 w
e T(q(t))

1 0 0
0 1 0
0 0 1
0 0 0

 (3.22)

Inverse Differential Kinematics The inverse operation to the direct kinmatics of Equa-
tion 3.18 is defined by:

q(t) = F−1(x(t)) (3.23)

For a redundant manipulator Equation 3.23 cannot be solved in a closed form, since in
general, for a given position and orientation of the end-effector an infinite number of
solutions for q(t) exist. Additional information is therefore needed to get a unique solution.

This can be reached by integrating preceeding joint angles, i.e. the inverse kinematics is
calculated from the Cartesian translational velocities and the angular velocity of the end-
effector. Resulting angular velocities for the joint angles are integrated over time to get
the joint angles q(t) finally.

The direct kinematics in velocity space can be written as follows:

ẋ(t) =

[
wṗ(t)
wω(t)

]
= J(q(t)) q̇(t) (3.24)

whereby J is called geometric Jacobian.

40 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

The inversion of Equation 3.24 for the calculation of the inverse kinmatics in velocity space
is not possible by a simple inversion of matrix J, since J is not a square, but a 6×m matrix
(with m > 6)! In the same way inversion of matrix J is not possible if the matrix becomes
singular. Therefore, for inverse kinmatics a Pseudo-Inverse is used, which is defined by:

J# = JT (J JT)−1 (3.25)

Therewith the differential inverse kinmatics can be written as:

q̇(t) = J#(q(t))

[
wṗ(t)
wω(t)

]
(3.26)

This solution is also called Minimum Norm Solution (MNS), since the solution for the
pseudo-inverse J# minimizes the cost function

G(q̇) =
1

2
q̇T q̇ (3.27)

i.e. the angular velocities are minimized.

A drawback of this procedure is that it cannot (always) be avoided that the pseudo-inverse
J# becomes singular. Two different methods can be applied to avoid that J# becomes a
singular matrix:

• Weighted Least Norm Method (WLNM)

• Gradient Projection Method (GPM)

In the following only the GPM is explained in more detail, since this method is better
applicable to describe the inverse kinematics of a redundant manipulator (see also [Mai99]
for more explanations). The GPM is defined by:

q̇(t) = J#

[
wṗ(t)
wω(t)

]
+ (I− J#J) q̇0 (3.28)

whereby q̇0 is a m-dimensional angular velocity vector whose transformation by a transfor-
mation matrix (I− J#J), also called null space operator, is added to the Minimum Norm
Solution. q̇0 can be any angular velocity vector, that changes the configuration of the
manipulator and thereby prevents that J# becomes singular. The projection of q̇0 by the
null space operator causes, that the configuration changes, i.e. the joint angles change but
not the position and orientation of the end-effector!

In Equation 3.28 the two input values J as well as the q̇0 are yet unspecified. In the
following methods are presented to obtain these values.

3.1. INTERNAL MODELS 41

Determination of the Geometric Jacobian As has been seen before it is necessary to
have a geometric Jacobian matrix of the manipulator. One way to obtain this Jacobian is
described in the Method of Sciavicco and Siciliano in [SS96].

Thereby the geometric Jacobian J can be calculated straight from the geometry of the
manipulator. For the calculation of J a well-know law from mechanics is used

v = ω × r (3.29)

that describes the velocity of a point mass, that is rotated around an axis ω with the
angular velocity |ω| and having the distance |r| from the axis.

For the calculation of the translational portion in J (upper half of the matrix), Equa-
tion 3.29 is applied to each joint, whereby the rotation axis of the joint matches the z-axis
of the according coordinate system. For the calculation of the rotational portion the nor-
malized z-base vectors (rotation axis = orientation and direction of the angular velocity
vectors) of the single coordinate systems the joints are transformed to the world coordinate
system.

z

xb0

b0 z

F
q

F

p

F
x

2

ω
q1

ω

ω
y

x

0

b0 y

0

p
01

2

1

b

b

bz

0

0

0

1

1

1

x

y

1p2

0

2

b

b

bz

0

0

0

2

2

2

y

x

End−effector

Figure 3.2: Calculation of the geometric Jacobian for a manipulator with two joints

Mathematically this can be described by using ωi = zi · qi:

42 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

A0 =

 1 0 0 0
0 1 0 0
0 0 1 0

 , z0 =

0
0
1
0

 , p0 =

0
0
0
1

pi(q) = A0 · 0

i T(q) · p0 with i = 1 . . .m (3.30)

zi(q) = A0 · 0
i T(q) · z0 with i = 1 . . . (m− 1) ⇒ |zi(q)| = 1 (3.31)

J(q) =

 0
0
1

× pm(q), z1(q)× (pm(q)− p1(q)), . . . , zm−1(q)× (pm(q)− pm−1(q)) 0
0
1

 , z1(q), . . . , zm−1(q)

(3.32)

It can be seen from equation Equation 3.32 that J only depends from the joint angles q
and the geometric distances, that are described in 0

i T.

Performance Criterions For the differential inverse kinematics it is necessary to deter-
mine the vector q̇0. Mainly it shall be avoided thereby that J# becomes singular. In the
calculation of q̇0 it is also possible to consider other criteria, that change the configuration
of the manipulator, namely criteria like:

• Avoidance of singularities of matrix J#

• Avoidance of joint limits

• Collision detection between manipulator and surrounding objects

• . . .

In the following only the first two points are treated. Since the collision detection imple-
mented as a performance criterion causes a huge calculational effort (see [Mai99] for more
details). A simpler way for the collision detection will be described later in Section 4.6.2.3.

For q̇0 the following is defined:

q̇0 = q̇0(t) = ∇H(q(t)) (3.33)

3.1. INTERNAL MODELS 43

where H is a sum of so-called Performance Criteria Hi weighted by ki, that shall influence
the configuration of the manipulator.

H(q(t)) =
∑

i

kiHi(q(t)) with ki = const ∈ R (3.34)

ki and Hi have to be chosen in a way to obtain values for q0 which are suitable for the
avoidance of above mentioned states. That means, if it is detected from the timely course
of q, that for velocity q̇ an illegal state is reached, q0 has to counteract the velocity q̇.

q̇0 is obtained by construction of the gradient of Equation 3.34:

q̇0 = ∇H(q(t)) =
∑

i

ki ∇Hi(q(t)) (3.35)

For the criteria, joint limit avoidance and singularity avoidance H is defined by:

H(q(t)) = klHl(q(t)) + ksHs(q(t)) (3.36)

Unfortunately, this method has a drawback: By summing up the criteria, single criteria can
influence or even nullify each other! Therefore, it is especially necessary for the joint limit
avoidance to check joint angles for sensible values after calculating the inverse kinematics
and the integration of the angular velocities.

Furthermore, by using performance criteria the differential inverse kinematics tends to
instable behavior if the weighting factors are chosen disadvantageously (see [Mai99] for
details). To avoid this, appropriate values, in general experimentally determined, have
to be found for the weighting factors ki. By limiting |ki ∇Hi(q(t))| to a maximal value
the tendency for oscillations can be further suppressed. This maximal value has to be
determined for each criterion experimentally.

Joint Limit Avoidance For the joint limit avoidance following function Hl can be used:

Hl(q) =
m∑

i=1

qi,min − qi,max

(qi,max − qi)(qi − qi,min)
(3.37)

The value for kl has therefore to be fixed to:

kl > 0 (3.38)

The gradient of Hl assures that the configuration of the manipulator changes if the angle
of one joint reaches the border of its allowed range of values. In Figure 3.3 it can be seen,

44 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

0.40.20-0.2-0.4-0.6-0.8

8000

6000

4000

2000

0

-2000

-4000

-6000

-8000

q

dH(q)/dq

Figure 3.3: Example for δHl(qi)
δqi

with qi,max = 0.5 and qi,min = −1

that at the borders of the allowed range of values, values for (∇Hl(q))i are generated that
counteract this critical condition.

(∇Hl(q))i =
δHl(qi)

δqi
=

(qi,max − qi,min)(qi,max + qi,min − 2qi)

(qi,max − qi)2(qi − qi,min)2
with i = 1 . . .m (3.39)

3.1. INTERNAL MODELS 45

Singularity Avoidance For the avoidance of singularities the following function Hs is
used:

Hs(q) = − 1√
det(J JT)

(3.40)

For ks has to be assured:

ks > 0 (3.41)

Since it is not possible to calculate a derivative of the determinate straightly, the gradient
is determined with the definition of the differentiation rule:

(∇Hs(q))i = δHs(q)
δqi

= lim
∆qi→0

Hs(q+v∆qi)−Hs(q)
∆qi

(3.42)

with v =

 v1
...
vm

 ; vk =

{
1, k = i
0, k 6= i

; k, i = 1 . . .m

If for a positive ∆qi for an angle q the criterionHs(q+v∆qi) gets more negative thanHs(q),
i.e. the manipulator gets even closer to a singularity, the according element (∇Hs(q))i is
negative and counteracts the approach of the singularity of J.

By the numerical calculation of ∇Hs(q), ∆qi can be used as a constant (e.g. 0.1◦) or
alternatively chosen according to the current movement direction of the joint (e.g. ±0.1◦).
The second possibility can possibly generate better results, since the gradient is calculated
for the direction of the current joint angle motion.

Models of the Camera and the Head

In the robotics and computer vision communities, video (CCD) cameras are described using
a range of models. A good overview of these camera models is given in [MZ92] or [SZB95].
From the point of view of hand-eye coordination, some of the models are described in a
visual servoing tutorial by Hutchinson et al. [HHC96].

The most commonly used camera model is the pinhole camera model. It is appealing
because of its simplicity compared to other used camera models (e.g. the projective cam-
era model or camera models approximating perspective projection, e.g. the affine camera
model), but nevertheless the accuracy of measurements obtained with this model is very
high.

46 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

For the “head”, where the cameras are mounted, usually pan-tilt units are used. Thereby
the camera(s) are fixed on these units. A pan-tilt head can by modeled using Denavit-
Hartenberg parameters as described before for the manipulator. Thereby the pan-tilt head
is seen as a two joint manipulator.

How the head and the cameras are located relative to the manipulator depends on the
hand-eye configuration. Two possibilies are common: either the camera is located on the
manipulator (eye-in-hand) or a stationary camera is used. In the first case the camera is
usually fixed relative to the manipulator, i.e. it moves only if the manipulator moves. In
the second case the camera(s) can be moved independently from the manipulator.

Since camera and head models are not in the main focus of this thesis the topic is not
treated further here.

3.1.2 Models of the Object to be Grasped

If object models are to be used in the context of hand-eye coordination, they have to meet
two requirements: First, they have to contain information by which the objects can be
recognized in the images; secondly, they have to provide a way to store grasp positions
(e.g. to track a grasp as described in Section 4.4.1).

In the context of the first task, object recognition, two orthogonal approaches for object
representation have evolved: appearance-based representations are “learned” from a set of
images of an object, taken from different poses and different lightening conditions, implic-
itly taking into account surface properties like texture or reflectance. Most appearance-
based systems use global features, such as the area, color or the compactness of an object
or rather of the region in the image corresponding to the object. Therefore global features
summarize information about the entire visible part of an object. The identification pro-
cess is thus reduced to comparing the detected image features with those from the model
data base and using a measure of difference for classification, which makes such methods
very fast. Unfortunately, global features are very sensitive to occlusion and require al-
most perfect segmentation, which is problematic in the case of cluttered scenes. A wide
variety of approaches exist, differing in which image information is used and how data is
stored. These approaches range from aspect graphs based on geometrical features and their
topological relations [Pop95] to an eigenspace representation on pixel value level [MN95].
Appearance–based approaches facilitate the matching process, since the data compared is
very similar from the start;

Geometric representations maintain a 2D or 3D model of the entire object with descrip-
tions that vary from simple ones such as B-Spline curves or triangulated surfaces to more
complex ones, such as superquadrics [RDR94], algebraic surfaces [KP94] or generalized
cylinders [ZM94]. Geometric models permit the construction of large databases, enable
part–based descriptions and, therefore, can be used to describe generalized objects and ob-

3.2. VISION 47

ject classes. Geometric models also assist the segmentation process in a top–down manner
by predicting views of the object. Geometric representations rely mostly on local features,
such as line segments or junctions which are often associated with geometric systems.
Local features permit recognition even in cluttered scenes [BI98], but require additional
stages in the identification process, such as perceptual organization [Low85], establishing of
correspondences between image and model features and verification of hypotheses [BI98].

3.1.3 Models of Object Motion

Natural motions underly physical principles. As a simple example a free falling stone can
be taken, whose way down to the earth surface can be described by solving the equations
for energy conservation. Other examples are a swinging pendulum [OPB+98] or a thrown
ball, whose trajectory can be described by the equations of a parabola [N+98].

Also for more complex motions like bouncing balls or objects hitting edges (like in billiard
or air-hockey [BS98]) governing equations can be found. In general for all motions that
occur in nature equations describing their behavior have been found or can be established,
respectively.

It is obvious that in order to build a catching system that shall be able to grasp objects
moving in different, not a priori known manners, either models (equations) for all possible
motions have to be stored in a data base or more general models that can deal with different
object motions have to be provided. The first method would require that the system is
able to distinguish from only few measurements which model is to choose from the data
base, and then fit the parameters to apply the equations for the current motion. The
second method would always take the same set of equations and adapt its parameters to
the current motion.

Methods to described object motions, and predict their future motion using the second
method are described later in Sec. 3.3.

3.2 Vision

3.2.1 Tracking

Research into tracking has diverged into two camps - informally these can be distinguished
as low-level vs. high-level approaches. Low-level approaches are typically fast and robust,
but provide little fine-scale information, whereas high-level approaches can track complex
deformations in high-dimensional spaces, but must trade speed against robustness [IB98].
Low-level approaches include “blob-trackers” e.g. for color, or methods like “optic flow”.
They are fast, typically e.g. due to hardware support, and robust, but convey little infor-

48 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

mation other than object size, centroid and/or main axis orientation (with some additional
calculational effort).

For high-level approaches additional a priori information about the object is necessary. This
information can be gained either by modeling objects with specific gray-level templates
[BJ96] which may be allowed to deform [HT96] or by modeling objects with more abstract
templates such as curved outlines [BIR95]. Contour trackers have been constructed which
are robust to clutter, e.g. in [BI98] but only by sacrificing real-time performance. A contour
tracker working at real-time, but only with a special contour shape, an ellipse, is presented
by Vincze [VAZ00].

In the following sections low-level tracking methods for form (see Section 3.2.1.1), color
(see Section 4.2.2) and motion (see Section 4.2.3) as well as high-level methods (see Sec-
tion 3.2.1.1) and the combination of low- and high-level methods (see Section 3.2.2) are
presented.

3.2.1.1 Contour-based Tracking

In order to locate an object in an image, the aim will be to detect the real object’s contour
in the image data. There are several ways to extract features from an given image in
order to estimate observed outlines. By use of different filtering methods ridges, valleys,
edges or uniformly colored regions can be extracted partially via simple but fast low-level
feature detection procedures e.g. thresholding. The contour of an object can be estimated
very well if the object’s outline is clearly visible and not disturbed by clutter. In special
applications the possibility to back-light the object or manipulate the object’s background
is used to receive a maximum contrast between the real object’s contour and the rest of
the image. Unfortunately, this is not always simply applicable. Clutter or the presence of
distractor objects makes it difficult to detect target objects without the use of sophisticated
high-level methods, which are computationally expensive.

In order to track a contour in a sequence of images, the complexity of the problem rises
due to possible changes in the object’s outline. Given a clutter-free image, the contour
can be estimated in each image separately without problem. In reality one would wish to
use the estimated contour information provided by the real object’s outline detected in the
preceding frames. It is clear that this given contour is prior information for the search in
the new image frame, which should not be neglected in a cluttered environment.

Obviously, the shape of the same moving 3D object will change in the history of the image
sequence. One could consider the changes in size of an approaching object. If the estimated
initial contour will not be able to follow these changes, the search for a new arbitrary outline
on the dense feature map2 cannot be successful.

2The feature map here is the output of the filtered image. The desired features (e.g. edges) can be
found there if the appropriate filter is applied. Note that not only the object’s contour will be detected if

3.2. VISION 49

Active contour models3 or Snakes can overcome these problems and are able to adapt a
given contour to small variations.

A framework to integrate active contour models into a probabilistic tracking algorithm is
the CONDENSATION algorithm which is presented shortly in Section 3.2.1.1.

Snakes

“Snakes are a mechanism for bringing a certain degree of prior knowledge
to bear on low-level image interpretation. Rather than expecting desirable
properties such as continuity and smoothness to emerge from image data, those
properties are imposed from the start.”(see [BI98] p.27)

Snake contours can be described through the following minimization problem[
δ(w1r)

δs
− δ2(w2r)

δs2

]
︸ ︷︷ ︸

internal force

+ ∇F︸︷︷︸
external force

= 0 (3.43)

in which the mechanism of elastic adaption of curves becomes clear.

The contour r = r(s) in this static formulation describes the parameterized outline of the
object, supposed to be elastic and smooth. These internal properties4 want to maintain
a certain kind of shape, while the external force - described as ∇F - wants to drag the
contour to the highest responses of the feature map.

Generally spoken:

internal force: describes the tendency of the snake to stay smooth and continuous as the
information provided a priori.

• Increasing the parameter w1 = w1(s) makes the snake behave like stretched
elastic, but increases the tendency of shortness.

• Increasing w2 = w2(s) encourages the snake to be smooth. Thus, setting
w2(s0) = 0 will introduce a kink at this point.

external force: describes the tendency of the snake being dragged to the extracted fea-
tures of the image. In a cluttered environment, the highest response of the feature
map will not provide the solution itself.

the background is not clutter free.
3Active contours encompass more than the described snakes or B-splines. For further information see

the now classical paper by Kass, Witkin and Terzopoulos [KWT87].
4It is also called internal energy.

50 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

The trade-off between the restoring internal and the measured external forces can provide
a good solution.

Expanded to the dynamic case of contour tracking in image sequences, Equation 3.43 turns
into

ρrtt︸︷︷︸
inertial force

= −

[
γrt −

δ(w1r)

δs
− δ2(w2r)

δs2

]
︸ ︷︷ ︸

internal force

+ ∇F︸︷︷︸
external force

(3.44)

Note that r = r(s, t) and F = F(t) describe the time-variant contour and feature map,
respectively. ρ, which is called mass density due to the mechanical analog, and γ (named
viscous resistance of the surrounding environment) provide further possibilities to adjust
the snake model to the so-called Newton’s law of motion for snakes with mass, driven by
internal and external forces (see [BI98]).

An arising problem with snake models (besides the non-trivial search for the right parame-
ters) is that the outline may change dramatically in the elapse of time. E.g. if the contour
looses lock on the real object, the outline may become too tangled to recover again.

This problem can be overcome by the use of B-splines, whereby the practical advantage
of using a B-spline shape model is the possible neglect of the smoothness terms in Equa-
tion 3.43 or Equation 3.44, respectively. Derivatives are computationally approximated
as finite differences between the assembly of discrete points r(si), i = (0, . . . , h), on the
continuous outline of r(s)5. Using B-splines contours, a continuous and smooth contour
can be constructed out of a few control points without evaluating any finite differences.

Those B-spline snakes are the basis for other continuative algorithms, such as the succes-
sively described CONDENSATION algorithm.

CONDENSATION Algorithm

In general the CONDENSATION algorithm (CONDitional DENSitiy propagATION)
[BI98] is a stochastic algorithm that is able to propagate an entire probability distribu-
tion (p.d.) for object position and shape. This p.d. is represented by a set of samples

{s(n)
k−1, π

(n)
k−1}, each representing a certain state X of the object, randomly generated (selec-

tion) through a process called “factored sampling” [BI98]. In image processing applications
a state X is formed by two consecutive shape vectors X, X = (Xt,Xt−1), whereby a shape
vector is a multi-dimensional vector of curve parameters. All possible states of the object
span up the state space6. Standard CONDENSATION [BI98] uses off-line learned dynam-
ical models (prediction), together with visual observations (measurement), to propagate

5h is the number of sampled points on the contour. Thus, h is describing the resolution.
6Note: If the sample-set dense enough it is a good approximation to the state space

3.2. VISION 51

the random sample set over time. At the end of each cycle (selection, prediction, mea-
surement) every sample is given a new weight πm according to its measured probability to

represent the real object, and a new sample-set is obtained {s(n)
k , π

(n)
k }. The p.d. at the

start of a cycle is called prior density and posterior density at the end.

In image processing, each sample is represented by one affine transformation of an object
model, an active contour represented by a B-spline r(s):

r(s) = U(s)WX + r0(s) (3.45)

where U(s) is a matrix mapping the control point vector Q to the image curve r(s), W is a
shape matrix, X is the shape vector7 and r0(s) is the initial B-spline curve (object model).

In Figure 3.4 one cycle in the CONDENSATION algorithm can be seen.

sk−1
(n)

,
(n)

k−1

� � �� � �
� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �
� � �� � �

� � �� � �
� � �� � �

� � � � �
� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �

� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � �� � � �� � � �� � � �
� � � �� � � �� � � �� � � �

� �� �
	 		 	

� � �
� � �� � �

� � � �� � � �� � � �
� � � �

� � � �� � � �� � � �

� � �
� � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �

� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � �� � �
� � �� � � � � �� � �

� � �� � �� � � �� � � �
� � �� � �

� � �� � �� � �
� � �

� � �� � �� � �� � �

� � �� � �� � �
� � �

� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �

� � �� � �� � �� � �

! ! !
! ! !! ! !

" " "" " "" " "" " "" " "" " "

#
#

$ $ $$ $ $$ $ $
% % %% % %% % %

& & && & && & &
' ' '' ' '' ' '

(((((((((
)))
))))))

* ** ** *
+ +
+ ++ +

, , , ,, , , ,, , , ,, , , ,, , , ,

- - - -- - - -- - - -- - - -- - - -

.

/ / / // / / // / / // / / // / / /

Select

Predict

Measure

sk
(n)

,
(n)

k

Posterior density

Observation density

Prior density

Figure 3.4: One time step in the CONDENSATION algorithm (adopted from [BI98]

7To give an example for a simple shape matrix and a shape vector: The shape matrix of a restricted
two-dimensional shape space which exclusively allows translational movement looks like

W =
(

1 0
0 1

)
︸ ︷︷ ︸

2NB×2

(3.46)

An adequate shape vector for this space looks like

X =
(

tx
ty

)
︸ ︷︷ ︸

2×1

(3.47)

where tx and ty describe the translation in x and y (pixel-)coordinates. A new translated control vector
will be calculated out of the old one,(

Qx

Qy

)
=
(

1 0
0 1

)(
tx
ty

)
+
(

Qx
0

Qy
0

)
(3.48)

52 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

Since the above explanations can give only a short overview over the CONDENSATION
algorithm the interested reader is encourage to read [BI98] or [Osw00], respectively.

3.2.1.2 Color-based Tracking

Color has been widely used in machine vision systems for tasks such as image segmentation,
object recognition and tracking. The following sections cover the topics of how to represent
color in a computer (Section 3.2.1.2) and how to search for colors (Section 3.2.1.2). Ex-
periments and results with different color spaces and segmentation methods are described
in Section 3.2.1.2. Detailed results on tracking with color can be found in Section 5.1.1.

Color spaces The term color is closely related to the wavelength of electro-magnetic
waves. The visible spectrum for humans goes from 400nm up to 700nm. Humans learn
that objects reflecting electro-magnetic waves at about 558nm have the property “red”.
As has been mentioned in Section 2.1.1 there are three variations of day-light sensitive
photo-receptive cells on the human retina which differ in their spectral sensibility. Those
photo-receptive cells are called blue (short wavelength), green (medium wavelength) and
red (long wavelength) cones.

In simple CCD color cameras the situation is quite similar to the human retina. Those
cameras are equipped with CCD chips were the vertical rows are alternating sensitive for
red, green and blue. This is obtained through the use of color filters in front of the CCD
pixels, which filter out the complementary colors.

There exist many possibilities of how to describe colors in a machine compatible way. The
mathematical term to describe colors in a machine is “color space”. A color space should
be capable to represent almost all visible colors of our environment.

Common to all color spaces is that they try to describe colors by several parameters. The
way these parameters are chosen reflect the intended use of the specific color space. The
number of parameters and the dimension of the color space are equal.

A common problem of color spaces is quantization. Normally, integer values are used to
represent the parameters to save memory and processing time. Therefore, not all possible
colors can be represented with integer based color spaces. In the following the most common
color spaces are shortly introduced.

RGB color space. The RBG color space is a hardware-oriented color space. It uses three
parameters to describe the red, green and blue components of an electro-magnetic wave.
This concept of superposition is justified as the human eye also uses superpositions of three
base colors to see the whole spectrum.

The drawback for color segmenting techniques is that similar colors are not always described

3.2. VISION 53

by similar parameters. For example to get all different tones of red one has to sweep not
only through all variations of the red component, but also through some of the other
components. A bluish red and a greenish red are still recognized by humans as red, but
the red-green-blue values may differ quite a lot. Another well known, but still not generally
solved problem, is the dependency of all three parameters on illumination changes.

blue

green

red

C

Y

W

M

Bk

value

saturation

hue

R

YG

C

B M

Bk

W

a) b)

Figure 3.5: (a) the RGB color model and (b) the HSV model (both adopted from [Kra98]). 8

Figure 3.5(a) shows the color space as a three dimensional cube with the axes representing
the parameters red, green and blue and the origin representing black.

YUV color space. The YUV color space is another hardware-oriented color space. The
Y parameter describes the luminance value, U and V describe the chrominance value of
a pixel. This color space is often used in video applications (a very similar color space is
called YIQ that differs only in a rotation of chrominance values [Sol97]). The chrominance
values U and V represent the color differences B-Y and R-Y. The third color component
green can be calculated out of Y, U and V.

The transformation between RGB and YUV color space can be calculated by first multi-
plying a matrix on the RGB color vector to get the luminance and color difference values: Y

R− Y
B − Y

 =

 0.299 0.587 0.114
0.701 −0.587 −0.144
−0.299 −0.587 0.886

 R
G
B

U and V can then be obtained by multiplying the color differences:

U = 0.493(B − Y)

V = 0.887(R− Y)

Similar colors can be found in more compact subspaces of the YUV color space than in
the RGB color space. Changes in illumination intensity almost only affect the lumination
value Y, but not the chrominance values U and V. Therefore, this color space is convenient
for fast color tracking.

8R = red, G = green, B = blue, C = Cyan, M = Magenta, Y = yellow, W = white, Bk = black

54 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

HSV color space. The HSV (Hue, Saturation, Value) color space is a more user-oriented
color space. Image manipulation programs often offer slider to choose a color in HSV as
well as in RGB color space (for example The GIMP [KM]).

The Hue and Saturation parameters determine the color, with Hue representing the wave-
length (red, yellow, ...) and Saturation indicating the strength of the color (compared to a
gray tone with equal value), while Value represents the intensity (the grade of illumination)
of the color.

Figure 3.5(b) gives a three dimensional representation of the HSV color space. The black
point is at the apex. If Value is zero, Hue and Saturation do not change the color at all.
Hue is the angle between the saturation axes and the color vector projected onto the S×H
plane. Saturation is the length of this projected vector.

The way of selecting first the desired color by choosing hue and saturation and then to
choose the value parameter is easier to learn for a human to find a desired color.

The major drawback for using this color space is the increased calculation effort for trans-
forming from and to color spaces used in machine environments. To get Hue, Saturation
and Value of every pixel, you have to apply the following three equations [KC99] on every
pixel:

H = acos

 1
2
[(R−G) + (R−B)]√

(R−G)2 + (R−B) (G−B)

S = 1− 3

(R +G+B)
min (R,G,B)

V =
1

3
(R +G+B)

Other color spaces The number of used color spaces is enormous: the HLS, the HSI,
NCC, HDI, CIELUV etcetera. For the interested reader the book [Rus95] or [Haf98] is
recommended.

• HLS color space

The HLS (Hue, Lightness, Saturation) color space is similar to the HSV color space.
Hue identical to the HSV definition. See [Kra98] for more information.

• HSI color space

The HSI (Hue, Saturation, Intensity) color space wants to combine hardware com-
patibility and user friendliness. Hue is the same as in HSV. Intensity is defined as
I = (R +G+B)/3. See [Kra98] for more information.

3.2. VISION 55

• NCC color space

The NCC (Normalized Color Components) color space uses only two parameters.
Colors are normalized in respect to their intensity. Therefore two parameters are
enough to describe a color. See [Kra98] for more information.

• HDI color space

The HDI (Hue, Distance, Intensity) color space is used in [Kra98] for segmentation
purposes. Hue is the same as in HSV. Distance is the distance from the RGB point
to the gray diagonal in the RGB cube. Intensity is similar to HSI. See [Kra98] for
more information.

• CIELUV and CIELAB

These two color spaces are designed to be device-independent and perceptually uni-
form. The involve rather complex transformation operations. See [HC93] for more
information about using CIELUV in image color segmentation.

• CIE system for XYZ color space

This color space is based on the description of color as a luminance component Y,
and two additional components X and Z. The spectral weighting curves of X and Z
are calculated from statistics of experiments involving human observers. The XYZ
tristimulus can describe any color. The magnitudes of the XYZ components are
proportional to physical energy, but their spectral composition corresponds to the
color matching characteristics of human vision. See [Haf98] for more information.

• I1 I2 I3 color space

In [PP93] a color space based on experiments is mentioned. It is said that by trans-
forming RGB vectors by the following matrix good color segmentation results can be
obtained. I1

I2
I3

 =

 1
3

1
3

1
3

1
2

0 −1
2

−1
4

1
2
−1

4

 R
G
B

The values of the matrix were found using a Karhunen-Loève transformation. See
[PP93, Haf98] for more information.

Segmentation methods Color segmentation tries to segment an image based on color
information. Two orthogonal approaches can be mentioned in this context. The more
general approach is to segment the whole image into areas holding similar colors and to
cluster those pixels (pixel clustering). The alternative possibility is to look only for pixels
holding a previously known color and to filter all other pixels (color filtering).

56 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

Pixel clustering is a topic of great interest and one can find many publications and works
dealing with it. Most of them rely on histogram techniques to find initial cluster regions,
and differ mainly in the process of fusing pixels that are not lying within the maxima of
this initial histogram. Below a short overview of the methods is given.

In [ZL97] the segmentation process is separated into:

• finding color edges,

• fusing single pixels, and

• fusing regions of similar pixels and color edge information

To find color edges, a color gradient for the whole picture is calculated whose local maxima
give color edge pixels. Then, local pixel clusters of similar color are fused using the spatial
distance of pixels as a fusion criteria. Finally these local pixel clusters are combined with
local edge information from the color gradient function.

Hedley and Yan [HY92] also propose a color gradient function. But in their method first
cluster of low-gradient pixels are calculated and then high-gradient pixels are processed.
Low-gradient pixels define the number of segmented regions while high-gradient pixels
have to be added to the best matching, yet existing region, since they cannot initiate a
new region.

In [Sch93] a more complex color space, the CIELUV, is used. After transforming the
image into this color space, a one-dimensional histogram (one for each dimension of the
color space) classification is computed. Peaks of these histograms define the pixels that are
being processed in the next recursion of the histogram algorithm. The recursion is repeated,
until the histogram becomes unimodal. Resulting pixels are clustered and subtracted from
the original image before the process is restarted on the reduced image. Schettini claims
that overlapping regions can be separated with this procedure. If all large pixel clusters
have been processed, the found regions are merged based on distance and color criteria.

In [LY94] a multi-resolutional approach is presented. As a first step, coarse resolution
histogram operations are used to get a primary segmentation of the image. Upon this
segmentation, a quad-tree structure is used to implement the multi-resolution scheme. For
each sub image a more fine histogram operation is processed. Neighboring homogeneous
regions are merged after the image is split into regions holding only similar pixel color
values.

Lim and Lee [LL90] also propose a histogram based, coarse-to-fine algorithm. They use a
scale space filter to determine n clusters of a coarse histogram of the image before a fuzzy
c-means algorithm computes a measure for each pixel to relate it to one of the n found
clusters.

The common problem of all mentioned approaches is their high demand of processing time.
Since the computational load for other algorithms used within the hand-eye coordination

3.2. VISION 57

task tends to be high an alternative method for segmenting colors in a computationally
extensive way is presented next.

Color filters Algorithms looking only for some specific colors are called color filters.
They are computationally efficient because every pixel of the image has to be processed
only once. Therefore, the complexity of these algorithms is directly proportional to the
size of the image.

Color Distribution and Color Subspaces As the distribution of color values in a nat-
ural image is very wide-spread (see Figure 3.6), there is no single color to search for. As
an example in the figure the two lower images display color distributions in the RGB color
space. The black point is in the left bottom corner in the back of the white cube and axes
are oriented as in Figure 3.5(a). Pixels are drawn with their color at the three dimensional
position of their RGB values. The left distribution displays values for all pixels in the
upper image, the right distribution only pixels within the rectangular area indicated in the
upper image, which marked the color we are looking for. The black pixels in the search
area can’t be seen in the distributions because they coincide with the black point of the
cube.

Supposed, the green color of the box is the color of interest in the image, all pixels with
color values within the distribution in the right image had to be included and all pixels
outside excluded, i.e. the searched pixels all lie in a subspace of the current color space.
In the example of Figure 3.6 this subspace roughly has the form of a cylinder, with its
symmetric axis heading from the black point to some green color point.

The form of the subspace depends on the chosen color space. Therefore, the result (match-
ing quality and speed) of the filter depends on both, the color space and on the form of
the subspace. Complex subspaces require more processing time (since efficient implemen-
tation is most times not possible), while achieving better matching quality, whereas simple
subspaces need less processing time, but give worse results.

CLUT versus Windowing Mechanisms A common technique to define a color subspace
is to construct a color lookup table (CLUT). This table holds an entry value for every
possible color value. The entry value can indicate “anything”. Two common purposes are:

• Translate a color into another color. Many applications use this technique to change
known features of an image. For example, medical applications enhance visibility of
certain areas in images by assigning different colors to almost indistinguishable gray
tones. This is very favorable since the human eye can distinguish between thousands
of different colors, but only between a couple hundred grey tones [Rus95].

58 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

Figure 3.6: Pixel color value distribution of a sample image. On the lower half you can see two color
distributions in the RGB color space. The orientation of the RGB cube is the same as in Figure 3.5,
i.e. the black point is in the rear, lower, left corner. The left one displays all pixels of the image at the
top, the right one displays the distribution of all the pixels within the rectangular area indicated in the
upper image.

• Select certain known colors (Filtering). The value in the CLUT defines if the color
corresponding to the entry is within or outside the range of colors that the filter is
looking for.

Table 3.1 shows an extract of an example CLUT. With a CLUT subspaces of arbitrary form
can be constructed. It is also possible to search for several colors, by assigning different
values to the entries in the table. To process an image, every pixel has to be compared
with the entries of the CLUT to classify if the CLUT contains an entry of the pixel’s color
value. From this operation it can be decided for the entry whether to filter the pixel or
relate it to the result.

As mentioned, a CLUT can implement all kinds of subspaces and its processing time is equal
for all of them. Processing speed depends on memory access time of the hardware used.
Having rather simple subspaces, such as cubes, spheres or ellipsoids, it is not necessarily
needed to read CLUT values from memory. If the subspace can be modeled with few

9In the displayed extract the red and green color values are constant, while blue values change. Some
of the combinations are marked as inside the subspace (1), while others are interpreted as outside (0).

3.2. VISION 59

red green blue CLUT value
.
103 204 3 0
103 204 4 0
103 204 5 1
103 204 6 1
103 204 7 0
.

Table 3.1: Example entries of a CLUT9

parameters, an equation can be solved for every pixel’s color value that determines if the
pixel is within or out of the subspace. A spheric subspace can be modeled by a center
point and its radius, a cylinder by its symmetric axis and its radius, etcetera. The easiest
equation to solve for the pixels is a windowing mechanism, describing a cube as subspace.
Figure 3.7 shows a cubic subspace with its minimum and maximum parameters.

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � �

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !
! ! ! ! ! !

" " " " "
" " " " "
" " " " "
" " " " "
" " " " "

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %
% % % % % % % % % % % % % % % %

& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &
& & & & & & & & & & & & & & & &

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((
((((((((((((((((

)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))
)))))))))))))))))

* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *

Bk

W

R

B

Gmax

Bmin

Bmax

Gmin

Rmin

Rmax

Cy

Y

Figure 3.7: Cubic subspace, modeled by a windowing mechanism

In the case of a cubic subspace a windowing mechanism preserves memory and processing
time. The windowing algorithm loads the pixel color value and compares each component
of the color vector to chosen minimum and maximum values. These upper and lower values

60 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

constitute a window in every dimension of the color space. Color vectors lying outside the
window are filtered. Prerequisite for the windowing algorithm is that a color space is used
that justifies a cubic subspace as the color search subspace (this e.g. not the case for RGB
as can be seen from the example in Figure 3.6).

The Dichromatic Reflection Model Klinker, Shafer and Kanade [KSK90] have proposed
the Dichromatic Reflection Model (DRM), which tries to form the subspace in a way to
incorporate illumination effects.

Scene illumination has an influence on the appearance of object colors. This is particularly
true for dichromatic surfaces such as plastic, paper or ceramics. Dichromatic objects have
pigments incorporated into their molecular structure which reflect light with their proper
color. As an unwished side effect the surface also reflects the illuminating light. As both
mechanisms depend on the angle of the incoming light and neither the pigments nor the
surface are present in a perfectly aligned structure, the resulting reflected color always is
a linear combination of pigment and illumination color. Supposed that the illumination
color forms a vector in a color space, as well as the pigment color, the resulting reflected
colors lie in the plane spanned by those two vectors. Therefor a CLUT with a subspace
forming a plane can now be used to filter all colors the object is reflecting.

3.2.1.3 Motion-based Tracking

Obviously, motion is pre-destinated to be used for tracking and is an important part of
machine vision. Thereby, the vector field of two-dimensional velocities in the image, also
called optic flow, is dependent on the three-dimensional motion in the observed scene. The
analysis of this flow field can be used for many applications, e.g. for tracking of an object
in motion as needed here, but also in e.g. video-based navigation as described in more
detail in [Stö01].

The methods proposed in the literature to determine the optic flow can be separated
roughly into three different ([Stö01]):

• differential or gradient-based methods,

• correlative methods and

• feature tracking methods.

Gradient-based methods suppose time- and position continuous brightness changes on the
image plane. The result is a continuously defined velocity flow field. For image sequences
the interrelations can be discretised if the sampling intervals in space and time are chosen
small enough compared to the velocities of the tracked object.

3.2. VISION 61

Correlation and feature based methods suppose constancy of the intensity distribution
in small neighborhoods around an image point. Those methods try to find point-to-point
correspondences between image pairs and can therefore be used directly for image sequences
(and therefore for tracking). In general any pair of images can be used, e.g. images that
were captured at the same time with different cameras. But the larger the timely distance
between two images gets, the larger is the expense of the correspondence search through
the enlargement of search areas and the increase of ambiguities.

Apart from these methods there exist also techniques that cannot be assigned to one of
the aforementioned. For the more interested reader a more detailed overview is given in
[Stö01].

But also more simple methods to determine image motion exist, and were proven to be
used successfully for tracking (and catching). Thereby the use of image differences can be
mentioned: by subtracting two successive images only parts that have changed are content
of the resulting image. As an example for a robotic catching system using this method the
“Robotic ball catcher” described in [FHH01] can be stated.

The combination of optic flow methods in junction with active contours has been proposed
e.g. in [KHL99]. Thereby the object of interest is being tracked using a snake model. In
case that the object is lost in consequence of a jump optic flow is used to determine the
jump and reinitialize the snake.

3.2.2 Sensor Fusion and Integration

From the aforementioned the importance of intelligent sensor fusion gets evident: Having
different sensor modalities, each delivering interesting information about an image, the
remaining question is how to fuse or integrate this information. Naturally, this is a well
known and well treated question in the robotics literature.

Sensor fusion is the main form of data fusion in robotic systems and has been deployed
in many applications such as mobile robot localization, manipulation and telerobotics. To
define the term, following is stated as

Sensor Fusion: [CM99] “evidence from multiple sensors is combined in order to produce
information which is more precise than the output from an individual sensor; the fusion
may involve raw sensor signals, or features and attributes extracted through preprocessing
of the raw signals”.

In the same way the integration of sensor signals can be defined as

(Multi-) Sensor Integration: [CM99] “data obtained from multiple sensors is combined for
the purpose of tracking (and identification of multiple targets).”

To integrate multiple sensor information to generate an output about the assumed object’s

62 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

position and shape many methods exist. One method, a probabilistic approach to this
problem, is the ICONDENSATION algorithm which is described in the next paragraph.

ICONDENSATION Algorithm The ICONDENSATION algorithm was mainly devel-
oped to (1) combine low- and high-level information in a consistent probabilistic frame-
work, using the statistical technique of importance sampling combined with the CON-
DENSATION algorithm [IB98] and (2) to overcome real-time performance problems of the
CONDENSATION algorithm.

Importance sampling offers a mathematically principled way of directing search, combin-
ing prediction information based on the previous object position and motion with any
additional knowledge which may be available from auxiliary sensors (→ multi-sensor in-
tegration). On the one hand this combination confers robustness to temporarily sensor
failures in one of the measurement processes, on the other hand the tracker can take ad-
vantage of different information sources, each having distinct qualities.

The drawback of the CONDENSATION algorithm was that the areas of the image (the
portions of the state space, respectively) which are to be examined are determined before
any measurements are made. This is appropriate when the sample-set approximation to
the state density is sufficiently accurate. In principle, as the state density evolves over time,
the random nature of the motion model10 induces some non-zero probability everywhere in
the state space that the object is present at this point. With a sufficiently good sample-set
approximation this would tend to cause all areas of state space to lie near some samples,
so even motions which were extremely unlikely would be detected, and could therefore be
tracked. In practice most samples will concentrate near the most likely object positions,
building up distinct clusters. The result will be that large areas of the state space (and
therefore of the image) will not contain any sample at all. In order to robustly track
sudden motions of the tracked object either the process noise of the motion model must
be artificially high or, what is the case here, this lack of information must be filled by
additional sensor information.

Here the above mentioned method of importance sampling is adopted, to improve the
efficiency of factored sampling. It applies when auxiliary sensor information is available in
form of an importance function g(x) describing which areas of the state space contain most
information about the posterior density. The idea is then to concentrate samples in those
areas of the state space, generating sample positions s(n) from g(x) rather than sampling
from the prior density. The desired effect is to avoid as far as possible generating any
samples with low weights, since they are “wasted” in the factored sampling representation
as they provide negligible contribution to the posterior density.

10With the later introduced Auto-regressive models this can be ensured.

3.2. VISION 63

3.2.3 Grasp Determination

Tracking the object to be catched is necessary to have knowledge about its position in
space. But still the question arises where the end-effector has to be placed on the object
in order to smoothly grasp and manipulate the object. Therefore grasp determination is
necessary.

It is obvious that manipulation of objects is a fundamental class of operations in many
areas of robotics. The term includes both fixturing –restraining an object with the fingers
of the robot hand– and dexterous manipulation –use of the fingers to change the position of
the object within the robot arm– [BK00]. Here, the terms grasping and grasp determination
will be used in the sense of fixturing.

In manipulation, the ability of the robotic system to deal with known and unknown objects
is very important. In the latter case, the system must be able to use its sensors to detect
and extract the necessary information about the object. This information will be used to
decide for the most convenient way, possibly constrained through the task, how to grasp
the object.

The stability of a grasp executed on an object depends on the forces exerted by the gripper.
The number and types of these forces depends on how the contacts between the object and
the robot hand are modeled [BK00]. Works on grasp stability have distinguished between
fingertip grasps –in which each finger of the robot hand ideally contacts with the object
at a point– and enveloping grasps –which are formed by wrapping the fingers around the
object [BK00]. In these works, the grasp stability is often analyzed in terms of force and
form closure conditions [Ngu88], which ensure grasp stability assuming point contacts with
friction. Nevertheless, the search for stable grasps on the object based on force analysis
often requires solving complex operations.

For this reason, many works base their search on the analysis of the geometric properties
of the object.

Although predefined object models have been used by many [FP91], the object description
is often extracted from vision data. In this case, the problem is how to extract such a
description. In addition, if the relative position between the object and the camera changes,
because one of them -or both- is moving, there is, in order to control the approach of the
gripper to the object, a need to track not only the object itself but also the points at which
it should be grasped.

Another difficulty is locating the object and extracting a description of it for the grasp
search. Usually, images where there is a clear distinction between the object and the
rest of the scene have been used, in order to extract a description as accurate as possi-
ble [MRSdP01, PSMP00, SdPIR98]. Nevertheless, although there has been a lot of effort
over the last years to relax the working conditions (including light and type of background)
of this segmentation, its precision is still highly dependent on them.

64 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

The use of deform-able contours to represent its shape [KHL99, BI98, IB98] has proved
useful in some works, since they can also be used for tracking the object along a sequence
of images [PSMP00]. In contrast to that, some works have based their grasp search on the
skeleton of the object shape [HRSF99, Jar88]. But nevertheless, the use of the contour is
more common [MRSdP01, PSMP00, SdPIR98].

However, many works have considered only squeezing grasps –executed by closing the fingers
on the object– while, in some cases, expansion grasps –performed with an opening of the
fingers– are also possible [MRSdP01]. In general, these works do not rely on models, so
they do not require an identification of the object [Sta91].

Vision-based works on grasp determination usually perform a geometric analysis based on
the shape of the object. Often, a number of measures of grasp stability are defined and a
quality value is computed from them [MRSdP01, PSMP00, SdPIR98]. These methods are
heuristic in nature, since they estimate generic values of some parameters related to the
force closure (friction, force to apply to the object,...) based on either vision or previous
experiments.

3.3 Motion Reconstruction and Prediction

Motion Reconstruction In order to catch a moving object in a way as described in the
system architecture (see Figure 1.1) the motion has to be reconstructed. Many successful
catching systems restrict themselves to known object motions and therefore known motion
models. Famous examples of this kind are the “Volleyball” playing robot of Nakai et
al. [N+98] as well as the robotic catching system of Hong and Slotine [HHS97]. In both
aforementioned systems it is supposed that a ball is thrown towards the robot. The task is
here to reconstruct the current parameters of the parabolic model of the trajectory11 each
time the ball is thrown anew. This is done using recursive least square techniques.

Motion models can be found for most motions occurring in nature. In every physics book
one will find the governing equations for spring-mass systems, pendulum systems, masses
moved by gravitational force etcetera. In general these systems are of linear behavior.

If the kind of object motion is not known beforehand, the motion reconstruction system
has to rely on more general equations to describe the current object motion. One way is to
use Auto-regressive Models (ARM) as they are described in the following sections. They
are suitable for the description of most of the interesting object motions examined in this
work (see Section 5.2 for examples). One important factor for the result of the prediction
is the quality of the measured values. In general the output of the tracking process has
sporadic errors. Thereby two types of errors can be distinguished:

• Inexact measurements can occur through the limited resolution of the camera or

11i.e. r(t) = (x(t), y(t), z(t)) = (v0t cos α, 0, v0t sinα− 1/2gt2)

3.3. MOTION RECONSTRUCTION AND PREDICTION 65

through mismatches of the assumed object contour with the real object contour.
These in-certainties can be modeled through white Gaussian noise and can be com-
pensated e.g. by low-pass filtering.

• Outliers occur through errors during the tracking e.g. through loosing track of the
object. Outliers can lead to large deviations of the prediction. One way to handle
outliers is by smoothing the measured data.

Since any kind of post-processing of the time series of the measured data tends to be time-
consuming an efficient way to get stable prediction data was searched for. The chosen
method which proved to be working satisfactory for the catching task is presented in
Section 4.5.1.

Prediction Every three-dimensional object motion s(t) can be separated into its single
motions along the Cartesian axes of a reference system:

s(t) =

 x(t)
y(t)
z(t)

The future trend of the object motion can be calculated for every coordinate axis sepa-
rately by a so-called 1D-Predictor. Therefore, we will concentrate only on the prediction of
a one-dimensional object motion for the rest of the section. The task of the prediction is to
determine future values {xn+1, xn+2, . . .} out of a row of n measured values {x1, . . . , xn}.
For simplification of the prediction methods given below we assume that the sampling inter-
val Ta between two consecutive measured values is equidistant. For predictions which cover
more than one step into the future two prediction methods can in general be distinguished:

• iterative prediction
For the iterative prediction the value of xn+2 is calculated from the known measured
values and the predicted position xn+1:

xn+2 = F (x1, . . . , xn+1)

• direct prediction
In contrast the value of xn+2 is only calculated from the measured values x1, . . . , xn:

xn+2 = F (x1, . . . , xn)

Unfortunately, there is no general rule to determine which of the methods produces better
results. By the direct prediction method inaccuracies can occur, since with only one calcu-
lation step values for a large time period are covered. Though this is not the case with the
iterative method, it might rely on inaccurate former predictions. A combination of both
methods could also be considered, but is not covered within this work. In the following
only the iterative prediction is used for all mentioned algorithms. Further informations to
direct prediction methods can be found in [SJ99].

66 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

3.3.1 Prediction with Auto-regressive Models

In Auto-regressive Models the output value of the system is determined by a linear combi-
nation of the l preceding values. An AR model of order l can be described by the following
equation:

xn+1 =
l−1∑
j=0

ajxn−j + b (3.49)

Often the term IIR-Filter (Infinite Impulse Response) is used for this kind of model, since
the system produces in infinitely long response at the output as an reaction to single
peaked stimulation. In general there exist three distinct possibilities for the time course of
the output signal x(t) [WG94]:

• The output signal converges against the value b.

• The output signal oscillates periodically.

• The output signal diverges.

To be able to use this model for the prediction of object movements, the measured object
motion has to be describable by Equation 3.49. For this equation the parameters aj and b
have to be estimated from the former measured position values of the object motion.

3.3.1.1 Global AR Model (least square)

One way to calculate the parameters {a0, . . . , al−1, b} is the minimization of the quadratic
error. Thereby Equation 3.49 is applied to all measured values and the parameters are
determined by minimizing the least squares error. For a model of order l, thereby n − 1
equations can be set up. The error which has to be minimized is the mean quadratic
deviation between the measured value xj and the output value x̂j of the model:

E =
1

n− l

n∑
j=l+1

(xj − x̂j)
2 (3.50)

The system of equations containing (n− 1) equations has the following form:

xl+1

xl+2
...
xn

 =

xl xl−1 · · · x1 1
xl+1 xl · · · x2 1

...
...

...
...

xn−1 xn−2 · · · xn−l 1

a0
...

al−1

b

3.3. MOTION RECONSTRUCTION AND PREDICTION 67

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

t

x(
t)

Messwerte Prädiktion PredictionsMeasured values

Figure 3.8: Prediction with a global AR model (least square)

x = Rp (3.51)

The solution of the searched parameter vector ~p can be calculated by using the pseudo-
inverse matrix R+12:

p = R+x (3.52)

To avoid problems through the occurrence of singularities when calculating matrix R+,
the inversion was done by using Singular Value Decomposition (SVD). Having the calcu-
lated parameter vector p, the estimated value for xn+1 can now be calculated by use of
Equation 3.49. For further prediction steps this procedure is continued iteratively.

3.3.1.2 Local AR Model (maximum likelihood)

Contrary to the above described AR model, the maximum likelihood method tries to
estimate the model parameters through the use of equations of motion. Therefore, the
theory of the in [EG98] described method is shortly presented:

12using the pseudo-inverse matrix applies for the general case that matrix R is not square

68 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

Determination of the model For the calculation of an object position xn+1 out of the
last measured values following AR model is used:

xn+1 =

p∑
j=1

αjxn−j+1 + ex
n+1 (3.53)

with ex
n+1 being zero-mean white Gaussian noise. If the sampling steps of sensing the

environment are small enough, one can assume that the acceleration ẍ(t) of the object is
constant or is changing only slowly from one sampled value to the next. Therefore, the
following applies for the acceleration:

ẍn+1 = βẍn + eẍ
n+1 (3.54)

If one normalizes the sampling time ∆t to 1, the velocity ẋn and the acceleration ẍn can
be expressed as follows:

ẋn = xn − xn−1 (3.55)

ẍn = xn − 2xn−1 + xn−2 (3.56)

By substituting Equation 3.56 into Equation 3.54 one gets an AR model of order l = 3.

xn+1 = (2 + β)xn + (−1− 2β)xn−1 + βxn−2 + eẍ
n+1 (3.57)

In more compact notation:

xn+1 =
(
α1 α2 α3

) xn

xn−1

xn−2

 (3.58)

with

α1 = 2 + β

α2 = −1− 2β

α3 = β (3.59)

3.3. MOTION RECONSTRUCTION AND PREDICTION 69

Estimation of parameters To estimate the coefficients {α1, . . . , α3} from a given series
of measurements {x1, . . . , xn}, the Gaussian noise has to be minimized. For this estimation
of the coefficients and of the variance of the noise σ2

x the maximum likelihood function is
used:

lc(α1, α2, α3, σ
2
x) = −n− 3

2
ln(2π)− n− 3

2
ln(σ2

x)−
1

2σ2
x

n∑
k=4

(
xk −

3∑
j=1

αjxk−j

)2

(3.60)

Since all coefficients α1, . . . , α3 only depend on the parameter β, the maximum likelihood
function can be simplified:

lc(β, σ
2
x) = −n− 3

2
ln(2π)− n− 3

2
ln(σ2

x)−
1

2σ2
x

n∑
j=4

(ẍj − βẍj−1)
2 (3.61)

To maximize the function lc the partial derivatives are calculated and set equal to zero:

δlc
δβ

= 0
δlc
δσ2

x

= 0

As result one obtains:

β =

∑n
k=4 ẍkẍk−1∑n

k=4 ẍ
2
k−1

(3.62)

σ2
x =

1

n− 3

n∑
k=4

(ẍk − βẍk−1)
2 (3.63)

The value σ2 obtained by the above calculation rule is only an estimation of the true value.
It can be shown that a better estimated value can be obtained by slight modifications of
Equation 3.63. Thereto the sum of the squared distances has to be divided not by n − 3
but by n− 4 (see [Sch84]).

σ2
x =

1

n− 4

n∑
k=4

(ẍk − βẍk−1)
2 (3.64)

By the system of Equation 3.59 now the searched coefficients αi can be determined. Since
for this estimation only the parameter β has to be determined, the calculation time is short
compared to other methods.

70 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

Contrary to the AR model described in Section 3.3.1.1 this model tries not to find the
global parameters of the object motion, but uses only the current (local) acceleration of
the object for the prediction. Therefore, it is especially useful for long data sets to have
the estimation of the parameters only local. For the calculation of β not all accelerations
are summed up, but only the last 10 to 20 measured values are used. As an example for
this parameter estimation out of the last 20 values see the following equation:

β =

∑n
k=n−19 ẍkẍk−1∑n

k=n−19 ẍ
2
k−1

(3.65)

3.3.2 Nearest Neighbor Predictions

Throughout scientific research, such as physics, biology or medicine, measured time-series
are often a basis for characterizing a observed system and for predicting its future behavior.
This is based on the fact that for every deterministic dynamic system it is possible to
calculate future states of the system basing only on the knowledge of the current system
state [WG94]. To achieve this a method has to be found via that the dynamics of the
system can be reconstructed from former measurements of the object motion.

One method to do this is Delay-Coordinate Embedding. With this method it is possible to
reconstruct linear as well as non-linear object motions and the method promises insights
to the observed systems that traditional approaches (as the before described AR models)
cannot provide [WG94].

Unfortunately, the method has two main drawbacks: the first is that it requires large data
sets containing recurring states of the dynamic system to produce any predictions. This
was not the case with most of the time series treated in this thesis. The second drawback
is the unreliability of the results compared to traditional approaches [WG94].

Due to these reasons the treatment of NN predictions is reduced on a comparison of results
of NN predictions as well as ARM predictions with artificial data series. This is shown in
Section 5.2.

Nevertheless for the interested reader following books and articles are recommended:
[WG94], [YLH98], [Sel00].

3.4 Hand-Target Interaction

In case of hand-target interaction the same differentiation shall be made as for the human
example: Interaction with a static target (Sec. 3.4.1) vs. Interaction with a moving target
(Sec. 3.4.2). Thereby the “state of the art” is presented as it can be found in the well
known literature for robotics.

3.4. HAND-TARGET INTERACTION 71

3.4.1 Interaction with a Static Target

For the interaction with a static target two cases can be distinguished: “positioning”
(Sec. 3.4.1.1) and “reaching and grasping” (Sec. 3.4.1.2). Thereby positioning is the clas-
sical task addressed in the literature on visual servoing systems. Grasping objects can be
seen as a special positioning task (reaching) with a subsequent interaction with the target
object. But how to stably grasp an object is a research field of its own what was already
addressed before (see Sec. 3.2.3).

3.4.1.1 Positioning

“The task in visual servoing is to use visual information to control the pose of the robot’s
end-effector relative to a target object or a set of target features”([HHC96]). Depending
on the hand-eye configuration the task is further distinguished: given an eye-in-hand con-
figuration, the camera is positioned relative to a target; given stationary cameras, the task
is to move the end-effector or a tool held by it.

Since positioning is not the main interest within this thesis a short repetitive abstract of
related work presented in [Hau99] shall be given in the following:

Chaumette et al. has addressed image-based camera positioning in the early nineties. First
approaches [CRE91] used geometric features (mostly points) in conjunction with a coarsely
calibrated pinhole camera model for 6 d.o.f. positioning. The feature configuration at the
goal position was taught. This approach was extended to non-geometric features, using
image motion of textured planes [CC97] and its temporal integration [CC98] as a control
input. Problems like how to avoid kinematic limits or losing sight of the target were also
addressed [MCB99, MCR96, MH98].

Allotta and Colombo [AC99] show that, for the task of camera positioning, the performance
and robustness of image-based motion control can be improved by using a combined feed-
forward/feedback strategy. Based on a coarsely calibrated para-perspective camera model
and affinely deform-able active contours, the control signal is computed from the sum of a
preplanned image-based “trajectory” and the current image-based error signal. The goal
position is taught in beforehand.

For robotic assembly tasks Nelson et al. [NPK93] show in which way visual servoing can be
useful. They discuss and implement strategies for parts mating supervised by a stationary
camera and intelligent camera placement, based on a pinhole camera model with known
intrinsic parameters.

Gangloff et al. [GdMA99] apply position-based eye-in-hand visual servoing to the task
of following a 3D profile. The form of the profile is unknown, but marked with three
parallel lines. Another example of position-based eye-in-hand positioning is the work of
Martinet et al. [MDGD97]. Yoshimi and Allen [YA95] describe an image-based eye-in-

72 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

hand system specialized on a peg-in-hole task. The robot itself is calibrated, the Image
Jacobian is determined from a sequence of known robot motions; features are the ellipsoid
projections of the holes.

Three-dimensional reaching tasks, for example moving a spoon over a cup, are realized
by Grosso et al. [GMOS96] using optical flow features extracted by a stationary stereo
camera system. Only qualitative information about the hand-eye configuration is necessary.
The task specification, i.e. the determination of the part to be servoed and of the goal
configuration, could be called “hard-coded”;

Hager [HD97] presents a modular system for realizing up to 6 d.o.f. positioning tasks with
a stationary image-based stereo system. He mainly uses geometrical features like point
and lines, but also projective in-variances [Hag95]. The perhaps most spectacular task
achieved is the insertion of a disk into a disk drive, other examples include positioning a
screwdriver on a screw.

Jägersand presents an integrated approach to uncalibrated hand-eye coordination [Jäg97b].
The main feature is that sensory information is used at the same time for motion control, via
image-based visual servoing, and for the on-line estimation of the Image Jacobian [JFN96],
without the need for special robot movements. The Jacobian is estimated locally, global
convergence is assured by using an adaptive step size and by generating “way-points” on
the visual trajectory [Jäg96]. Tasks are specified in visual space, by user interaction or via
teaching [JN95], and then broken down into motion primitives [Jäg97a]. This allows for
example to control only 3 d.o.f. in a longer reaching movement, and then to switch to 6
d.o.f. control for fine manipulation.

3.4.1.2 Reaching and Grasping

Grasping objects can be seen as a special positioning task with a subsequent interaction
with the target object. How to stably grasp an object is a research field of its own;
more information can be found e.g. in [BBY98]. Following this line of reasoning, Ho-
raud et al. [HDE98] for example propose to apply an image-based visual servoing approach
to the task of object grasping. The goal position, i.e. the position in which the robot is
ready to close its gripper, is taught, with the corners of the (polyhedral) object and artifi-
cial markers on the gripper serving as features. The main argument against the teaching
of goal positions, namely that they are tied to a certain camera, is answered very elegantly
by introducing a projective framework for “translating” goal positions measured with one
camera setup to a different one. For the servoing control law, they extended the approach
of Chaumette et al. to the stationary camera configuration. The underlying pinhole camera
model is coarsely calibrated based on known robot motions.

However, approaches based on teaching grasping positions definitely do not scale well in
the framework of autonomous service robots. Here, the ultimate goal would be to en-
able the robot to autonomously extract suitable grasp positions. In the case of known

3.4. HAND-TARGET INTERACTION 73

(and recognized) objects, grasp positions could be retrieved from a database. Bless-
ing et al. [BLZ96] for example present a position-based eye-in-hand look-then-move sys-
tem; grasping positions and collision-free grasping motions are calculated from a CAD
model. Hanebeck et al. [HFS97] use a position-based look-then-move strategy on their
service robot ROMAN, which is equipped with a monocular camera system on a tilt-axis.
Namiki et al. [NNII99] use special image processing hardware in order to obtain visual
information with a rate of 1ms. In their experiments, a (known) object is first tracked and
then grasped using repeated pose estimations from a stationary camera.

The work-group of Nagel has the long-term goal of using visual servoing for the disassembly
of used cars. Based on CAD-models of the parts to disassemble and on a calibrated13 hand-
eye system with an independent stereo camera system mounted on a second manipulator,
they use a simple position-based visual servoing control law [TSSN97]. For pose estimation
and tracking, an iterative extended Kalman Filter is employed [TSHN97]; the features (edge
elements) are extracted using specialized hardware. In [KTNG98], a method for automatic
camera placement is described.

In the case of unknown objects, an additional “degree of difficulty” is introduced, i.e. the
determination of suitable grasping points from visual information. Research in this area
mostly focuses on the vision problem and regards the motion control part as given. Exam-
ples for this approach are the systems of Taylor et al. [TBC94] or Kamon et al. [KFE96];
they will be described in more detail in Sec. 4.4.1.

Only few groups work on both the vision and the motion control problem.
Hollinghurst and Cipolla [CH97] search for planar surfaces which they treat as candidate
grasping positions for polyhedral objects. Motion control is realized using position-based
visual servoing based on an affine model of the (stationary) stereo camera system which
is coarsely calibrated observing known robot movements. Gripper and object are tracked
using active contours. As an additional feature, the object to grasp can be “selected” by
pointing at it.

Sanz et al. [SdPIR98] address the problem of finding grasping positions on (quasi-planar)
free-form objects (discussed in more detail in Sec. 4.4.1). Such grasping positions are the
input for an image-based eye-in-hand visual servoing system. The approaching phase is
divided into two parts. The first serves to bring the manipulator (and the camera) just
above the object to grasp; a set of such approach positions is taught off-line and stored
in a look-up-table. In the second phase, a typical visual servoing control law is executed,
with the Image Jacobian being learned from known robot motions.

13How to adapt the kinematic model of the manipulator from visual measurements is described in
[RTHN97].

74 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

3.4.2 Interaction with a Moving Target

For the interaction with a moving target again two cases can be distinguished: “tracking”
(Sec. 3.4.2.1) and “catching and hitting” (Sec. 3.4.2.2).

3.4.2.1 Tracking

In a tracking task, the manipulator starts out in the certain position relative to the target
and is to follow target motion in order to keep this relative position constant; it is therefore
similar to a positioning task, with the degree of difficulty depending on the complexity and
velocity of the target motion.

Papanikolopoulos et al. [PNK95] describe an eye-in-hand system for tracking an object
moving in 3D. They use specialized image processing hardware to extract textured patches
and to track them via SSD correlation; how to select “good” features is described in [PS95],
how to detect the object in [RP95]. The Image Jacobian is derived from the pinhole camera
model; the necessary information about depth is estimated using controlled robot motions
[SBP97], other parameters are adapted online.

Hashimoto and Kimura [HK93] test their optimal control schemes in an image-based eye-
in-hand tracking task. They track simple planar movements. Robustness against sensor
latency and delays is assured by using observer for the target and robot motion; in [HK95]
a full, nonlinear model of the robot dynamics is used, in [HN99] a linearized one.

Wilson et al. [Wil93] also use an observer, a Kalman Filter, put in a position-based eye-
in-hand setup. In [WHB96], they extend this approach to 3D motion.

Bensalah and Chaumette [BC95] also use a Kalman Filter to estimate target motion;
additionally, they use the generalized likelihood ratio algorithm to compensate for abrupt
motion changes.

Piepmeier et al. [PML98] compare the performance of different observers for the tracking
of linear and circular target motions. The experimental setup consists of a two-link manip-
ulator servoed by a stationary stereo camera system. Image processing is held simple by
using one point feature on manipulator and target. This approach was extended for more
complex planar motions by integrating the motion observation into the estimation of the
Image Jacobian [PML99].

Oh and Allen [OA99] apply their approach of partitioned control to monitoring tasks in
an assembly work-cell. A camera mounted on a pan-tilt head which itself is mounted on
a 3 d.o.f. Cartesian gantry robot tracks for example people moving around the work-cell;
the redundant degrees of freedom allow a robust tracking in a huge work space. The
region-based SSD tracking is implemented in software, using Hager’s XVision library, the
targets to track are specified manually. The robot system and the pinhole camera model
are coarsely calibrated.

3.4. HAND-TARGET INTERACTION 75

3.4.2.2 Catching and Hitting

Interaction with a moving object, e.g. catching or hitting it, is perhaps the most difficult
task for a hand-eye system. Most successful systems presented in literature use precisely
calibrated, stationary stereo camera systems and image-processing hardware together with
a simplified visual environment: e.g. the target can be distinguished from the background
because of its color, its features are the centroid coordinates in the two images. Visual
information is used continuously to reconstruct the 3D motion, but still in a feedforward
structure concerning motion control.

One of the first works dealing with “dynamic grasping” is [And86]. An approach is de-
scribed there how a ping-pong ball rolling down a slope can be catched. Thereby a simple
motion prediction is performed: the trajectory of the ball is fitted to a straight line. But
during the “catch” only the position, not the velocity or acceleration, of the end-effector
and the target object is matched.

Some time later Lin et al. [LZP89] propose a two-step heuristic approach for catching. In
the first step the end-effector is moved towards the target object in the shortest possible
time, in the second step end-effector trajectory and target trajectory are matched.

Houshangi [Hou90] uses Auto-regressive time-discrete models to predict the target trajec-
tory and to compensate for image processing time delays. The used trajectory planning
module automatically reacts on changes of the target trajectory. Intermediate targets are
calculated from the current end-effector position and the predicted target positions. But
the prediction period is limited to one sampling interval. Additionally, the target object
has to be inside the workspace of the manipulator at every time.

Gosselin [GCL93] uses state estimators to predict the target trajectory, but limits his
considerations to free falling objects. The nearest point to the robot’s base is selected as
the catching location.

Zhang et al. [ZB94] adapts a geometric controller, originally developed for robot juggling,
to determine a desired target pose. But thereby no models of object motion or position
predictions are used.

Allen et al. [ATYM93b, ATYM93a] developed a robotic system that could grasp a toy
train moving in a plane. The train’s position is estimated from (hardware-supported)
measurements of optic flow with a stationary, calibrated stereo system. Using a non-linear
filtering and prediction, the robot tracks the train and finally grasps it. Thereby the system
is dependent of real-time image processing and sensitive to sensor failure.

The train scenario was also addressed by Burdet and Luthiger [BL96]. Instead of grasping
the train after tracking, the robot lets an object drop into a wagon. In this approach,
only a single overhead camera is used. Due to the lack of image processing hardware they
simplify vision by tracking a light bulb mounted on the train. Visuo-motor transformations
and reaction times are learned during training motions. For target tracking and position

76 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

prediction a Kalman Filter is used, based on a third-order motion model. The movements
themselves are optimized in order to reach the target smoothly and fast; they can be
smoothly adapted to new information about the target’s position.

One of the earliest “ball playing” robots was Andersson’s ping-pong player [And89].
Bishop and Spong present a robot playing air hockey [BS98]; to solve this 2D problem, they
use a calibrated grey-scale camera mounted over the hockey table and a 3 d.o.f. planar
robot arm. Real-time image processing is assured with the help of a DataCube; trajectories
are estimated based on a 2D least-squares fit.

Rizzi and Koditschek [RK93] presented a sophisticated system architecture for robotic
juggling, including attentional control14. Nakai et al. [N+98] developed a robotic volleyball
player. The colored balls are continuously fixated by a stereo camera head, the estimated
positions are fit into a 3rd order polynomial equation of the trajectory, from which a
suitable hitting point in space and time is computed.

Hong and Slotine [HS95, Hon95] present a system with a 4 d.o.f. head and a 7 d.o.f. cable-
driven manipulator which can catch (and throw) tossed balls and even paper airplanes.
Image processing is facilitated by using colored markers on the objects and supported
by specialized hardware. The object is fixated continuously, its path is estimated and a
suitable interception trajectory for the robot is calculated based on calibrated kinematic
models of the hand-eye system and learned dynamic models.

An exception to the rule of using visual feed-forward control for catching objects resulted
from the cooperation of the labs of Hirzinger [HBDH93] and Dickmanns [FDD94] in the
framework of the D2 space shuttle mission: One of the experiments saw ROTEX, the first
European robot in space, catch a (not too fast) free-flying polyhedron. The success was
based on the concept of “shared control”: At first, a human operator initialized the (6 d.o.f.)
pose of the target by superimposing a CAD model using a space mouse and moved the
robot into a suitable start position. Then, the system switched to the autonomous mode.
Based on feedback from a miniature camera in the hand, the robot first moved to reduce
the “errors” in the directions perpendicular to the line of sight, then moved towards the
object to intercept it. The almost unbelievable fact is that image processing was done on
earth. The approximately 6s delay were compensated by sophisticated prediction schemes
based on precisely calibrated models of the robot system and of the motion of the object.

Okhotsimsky [OPB+98] shows that by using exact dynamical models the grasp position
and time can be determined even for very complex object motions. But the determination
of the models is very complex and shown only exemplarily for two cases.

Nagahama et al. [NHNT00] describes a visual servoing system that is able to pick up a
moving object from a table surface. They use a model based predictor to be able to close
the visual servoing loop in case that the target object is lost temporarily.

14In later work [RK96], they proposed a robust visual state estimator and pointed out it’s duality to the
task of visual servoing.

3.5. SUMMARY 77

Finally, Frese et al. [FHH01] developed a robotic ball catcher using of-the-shelf components
for visual tracking. The thrown ball is observed by a large baseline stereo camera system,
comparing each image to a slowly adapting reference image. Tracking and prediction of
target position is performed by an Extended Kalman Filter (EKF), taking into account
the air drag. The system is limited to thrown ball trajectories and needs a motionless
background for successful tracking.

3.5 Summary

In this chapter methods and models needed for every calibrated hand-eye system were
described, i.e. manipulator model, head model, camera model, object model as well as
motion models.

Different methods for visual tracking of an object in motion were presented. Thereby
tracking methods using different sensor modalities (as e.g. form, color and motion) were
introduced and the according examples from the literature were given. Most of the tracking
methods were “low-level” tracking methods, i.e. those methods are fast and robust but
provide little information apart from objects position and size. One “high-level” tracking
method, the Condensation algorithm, taking into account apriori known object informa-
tion, in this case the objects shape, was presented.

Fusion and Integration of sensor information was shortly discussed. Thereby one algo-
rithm capable of integrating sensor information from different sensors was presented more
thoroughly. This algorithm, called ICondensation, is an extension to the aforementioned
Condensation algorithm.

Relevant notations and methods from the literature concerning the problem of grasp de-
termination were presented. It was shown that many works base their determination on
the analysis of the geometric properties (e.g. shape) of the object. In the case of moving
objects the use of deform-able contours to represent its shape has proved useful, since they
can also be used for tracking the object along a sequence of images.

To reconstruct and predict the motion of an object two different methods have been shown:
the prediction with auto-regressive models and the prediction with nearest neighbor meth-
ods. Thereby autoregressive models are suitable to predict linear motions whereas nearest
neighbor methods can also be applied to highly non-linear motions, but with the drawback
that large data sets are needed.

The hand-target interaction for the two cases, interaction with a static target and inter-
action with a dynamic target, was presented thoroughly. Thereby many examples of well
working systems as they are described in the literature were reviewed.

78 CHAPTER 3. ROBOTIC HAND-EYE COORDINATION

3.6 Discussion

Again, like in the preceding chapter, the question: What can be learned from the gained
knowledge for the goal to control a robot for a catching task? Certainly there are many
interesting aspects that on the one hand imply to be “copied as is” for fulfilling the intended
goal, on the other hand some aspects are interesting for further evaluation and extensions.
The goal would be to transfer this knowledge and fuse it with the knowledge from the
preceding chapter Chap. 2 to achieve better results of the algorithms. This procedure will
be applied for different aspects, as e.g. image preprocessing, sensor fusion and integration
as well as for object motion prediction in the next chapter (Chap. 4).

Chapter 4

Hand-Eye System and Interaction with
a Moving Target

In this chapter all algorithms for the hand-eye system are developed. For the readers
orientation the system architecture is given again in Figure 4.1. The single blocks given in
the architecture can be put into relation with the content of the successive sections. The
architecture is orientated on the assumed human behavior in a catching task. There are five
main blocks: the model knowledge (Sec. 4.1), the sensory system (Sec. 4.2 and Sec. 4.3),
the motion reconstruction and prediction system (Sec. 4.5), the actory system (Sec. 4.6)
and the state automaton (Sec. 4.8). Each block is subdivided into different modules:
the sensory system distinguishes between form (Sec. 4.2.1), color (Sec. 4.2.2) and motion
processing (Sec. 4.2.3) for tracking and the fusion (Sec. 4.3.1) and integration (Sec. 4.3.2)
of this information. Additionally, grasps can be determined and tracked (Sec. 4.4). The
motion r+p system covers the prediction of future object positions (Sec. 4.5.1) from the
tracked object positions. From these predicted positions appropriate interaction points and
intermediate targets (Sec. 4.7) are derived. Finally, the actory system generates trajectories
(for position (Sec. 4.6.2.1) and orientation (Sec. 4.6.2.2)) of the robot. Between the different
system modules exist connections. Along these connections information is passed from
module to module.

In a catching task the different blocks have to be activated dynamically. For this activation
the state automaton is responsible which is explained in Sec. 4.8.2.

4.1 Internal Models

As could be seen from the system architecture and descriptions in Sec. 3.1 internal models
are necessary to describe the hand-eye system. Within these sections the specific models
used for the hand-eye system MinERVA will be described, i.e. the manipulator model,

79

80 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

(State automaton)
System control

F
ea

tu
re

 e
xt

ra
ct

io
n

(f
o

rm
)

F
ea

tu
re

 e
xt

ra
ct

io
n

(c
o

lo
r)

sensory system actory systemmodel knowledge

generation of

control commandsobject models

geometric

models

sample points

short term predictions

long term predictions

images control commands

motion

long term

calculation of

Image interpretation

predictions

reconstruction of
object movement

(2D/3D)

calculation of

interaction points

intermediate targets

(Detection, Tracking,

Grasping points)

motion control
(position, orientation)

prediction of

object positions

(sensory, actory)

models
hand−eye−system

F
ea

tu
re

 e
xt

ra
ct

io
n

(m
o

ti
o

n
)

Figure 4.1: System Architecture

the camera and head model, the object models as well as object motion models.

Models of the Hand-Eye System

Model of the Manipulator

In general all relationships of Sec. 3.1.1 count also for the manipulator of our robot Min-
ERVA. Therefore to describe the manipulator, in the following only those adaptations are

4.1. INTERNAL MODELS 81

described that are necessary to model our specific robot. These adaptions concern (a) the
Denavit-Hartenberg parameters, (b) the coordinate systems, and (c) the determination of
the end-effector orientation.

Denavit-Hartenberg Transformation As mentioned before it is common in robotics to
use Denavit-Hartenberg parameters for the spatial description of a manipulator. How they
can be determined was described in Sec. 3.1.1.

Nevertheless, to describe the transformations from a frame Fi to frame Fi−1 with Denavit-
Hartenberg parameters ϑi, αi, di and ai different possibilities exist. With MinERVA fol-
lowing combination and order is used:

1. Rotation around the z-axis of Fi−1 by angle ϑi.

2. Rotation around the x-axis of the resulting coordinate system by angle αi.

3. The translation vector is thereby the linear combination of the x-base vector of Fi

scaled by ai and the z-base vector of Fi−1 scaled by di.

The transformation matrix thereby results to:

i−1
i T =

cosϑi − sinϑi cosαi sinϑi sinαi ai cosϑi

sinϑi cosϑi cosαi − cosϑi sinαi ai sinϑi

0 sinαi cosαi di

0 0 0 1

 (4.1)

Coordinate Systems of MinERVA By use of Equation 4.1 the single transformations
for the joints of MinERVA can be specified. Thereby the Denavit-Hartenberg transfor-
mation matrices are specified for the case, that the manipulator, i.e. the arm, is fully
stretched. This is shown in Figure 4.2. For the description of the manipulator it is as-
sumed that the origin of the frames {F0,F1,F2}, {F3,F4} and {F5,F6} is the same at
each case (i.e. di = 0).

By additional offsets in the angles ϑi the matrices are adapted in a way that the con-
figuration of the manipulator refers to the wished base position (all angles qi=0). The
configuration with regard to qi is shown in Figure 4.3.

The Denavit-Hartenberg parameters of MinERVA are shown in Table 4.1. s is hereby
the length of the “upper arm”, t the length of the “lower arm” and u the distance of the
“wrist” to the end-effector.

82 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

1

z
7

y
7 x

7 x
6

z
6

y
6

y
4

z
4

x
4

y
5

z
5

x
5

y
3

z
3

x
3

y
2

z
2

x
2

ϑ 6

ϑ 4

ϑ 2

ϑ 7

ϑ 5

ϑ 3

ϑ 1

0
x0

y

z
0

y
1

z
1

x
1

0
x0

y

z

ϑ

0

ϑ

ϑ

ϑ

ϑ

ϑ

ϑ

+

+

+

+

+

+

+

+

+

7

5

3

+

+

+

6

4

2

Figure 4.2: Coordinate systems of MinERVA with joint angles ϑi

Insertion of these parameters results, after short calculations, in the following transforma-
tion matrices for each joint:

0
1T =

cos q1 0 sin q1 0
sin q1 0 − cos q1 0

0 1 0 0
0 0 0 1

 (4.2)

1
2T =

− sin q2 0 cos q2 0
cos q2 0 sin q2 0

0 1 0 0
0 0 0 1

 (4.3)

4.1. INTERNAL MODELS 83

0
x0

y

z
0

y
1

z
1

x
1

x
2

z
2

y
2

y
3

z
3

x
3

x
7

z
7

y
7

y
6x

6

z
6

y

e

5

x
5

z
5

z
4

y
4

x
4

q
1

F w

F

F

F

F

F

1

2

3

4

5

6

F = F0

q

q
q

q

q

q
2

3

4

5

6

7

w

w

a

n

F = F7

Figure 4.3: Coordinate systems of MinERVA with joint angles qi in base configuration (q = 0) and
definition of approach- and normal-vector

2
3T =

− sin q3 0 − cos q3 0
cos q3 0 − sin q3 0

0 −1 0 s
0 0 0 1

 (4.4)

3
4T =

sin q4 0 − cos q4 0
− cos q4 0 − sin q4 0

0 1 0 0
0 0 0 1

 (4.5)

4
5T =

cos q5 0 − sin q5 0
sin q5 0 cos q5 0

0 −1 0 t
0 0 0 1

 (4.6)

84 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Table 4.1: Denavit-Hartenberg parameters for MinERVA

i αi [rad] di [m] ai [m] ϑi [rad]

1 +π
2

0 0 q1
2 +π

2
0 0 q2 + π

2

3 −π
2

s = −0.37 0 q3 + π
2

4 +π
2

0 0 q4 − π
2

5 −π
2

t = −0.31 0 q5
6 +π

2
0 0 q6

7 −π u = −0.24 0 q7

5
6T =

cos q6 0 sin q6 0
sin q6 0 − cos q6 0

0 1 0 0
0 0 0 1

 (4.7)

6
7T =

cos q7 sin q7 0 0
sin q7 − cos q7 0 0

0 0 −1 u
0 0 0 1

 (4.8)

Calculation of End-effector Orientation For MinERVA the vectors wa and wn are
defined as shown in Figure 4.3. Here approach and normal vector can straightly be read
from the rotation matrix. wa is equal to the z-base vector w

e bz of Fe, and wn is equal to
the x-base vector w

e bx of Fe:

wa = w
e bz,

wn = w
e bx (4.9)

Vice versa the rotation matrix w
e R can be calculated from this selection of wa and wn. wa

and wn can be seen as “input vectors”, which, according to Equation 3.14, not necessarily
need to be perpendicular. As a result one gets the orthonormal rotation matrix

w
e R =

[
w
e bx

w
e by

w
e bz

]
=

[
(wa × wn)× wa; wa × wn; wa

]
(4.10)

For the calculation of Equation 4.10 also unnormed approach and normal vectors can be
used, if they are normed before insertion.

4.1. INTERNAL MODELS 85

Model of the Head and Camera

The model of the head and the cameras are necessary here to transform any point projected
on the camera planes to the head base frame to obtain its 3D position relative to the
head base frame. The used models here are the Pin-hole camera model and a two joint
“manipulator” for the pan-tilt head. The according equations describing both models
for MinERVA can be found in the appendix.

Transformation from Head to Arm The transformation matrix from head to arm coor-
dinates can also be found in the appendix. The output obtained from this transformation
is a 3D coordinate in the manipulator base coordinate system. Usually target positions,
determined via vision, are transformed hereby from head centered coordinates to arm cen-
tered coordinates.

Models of the Object to be Grasped

Within this thesis (and within the context of tracking) appearance-based as well as geo-
metric representations of the object are used. The global feature representing the object
is simply color represented as a subspace of a chosen color space. As a geometric rep-
resentation “deform-able templates” or “Snakes” [BI98], i.e. parametric shape models
with relatively few degrees of freedom are used. Those shape models are represented by
parametric spline curves, i.e. B-spline curves, as it is common in computer graphics.

One problem occurring with B-spline curves is how to get the initial B-spline curve de-
scribing the outline of an object. Thereby an automatic procedure for this determination
is useful. A procedure developed within this thesis is described in the following section.

4.1.0.3 Automatic Initialization of B-spline Contour Models

A complete method for automated 2D reconstruction of object silhouettes by B-splines was
developed in [Gla02]. The most important steps for this automated mathematical approx-
imation of the silhouette are: (a) the initialization of the B-spline, (b) the correspondence
search between the B-spline and silhouette for detecting deviation and (c) the improvement
of the generated initial B-spline to optimize it (fitting).

For the automated initialization of the first B-spline a method was developed that uses
the shape information of the object’s outline to determine the initial B-spline. Due to this
method the first B-spline already provided a good approximation of the object’s silhouette.
Using this initialization method is essential and subsequent methods for controlling and
fitting (improvement) the initial B-spline are represented as relatively straight-forward
methods to complete the automated 2D representation.

86 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Initialization. The most important step of the automated B-spline determination is the
initial B-spline. A method to transform the shape information of an object to the first
B-spline representation is presented in the following. As in [GM99] the shape informa-
tion of outlines is quantified1. The method described here translates the essential shape
information into a first spline and is targeted for approximating splines needed for above
mentioned Snakes or as a initial form template for the CONDENSATION algorithm (see
Section 3.2.1.1). In the following it can be seen that the object’s shape information already
has to be included in the initial B-spline to let the later introduced improvement method
be successful.

This initialization method uses the curvature function as a criterion for the shape infor-
mation of an outline. There exist many methods to detect a discrete curvature. One way
to calculate a discrete curvature with low calculational effort is to determine the so called
k-curvature [Val96, SdPIR98]. Thereby the curvature value at a point p on the object’s
contour is the angle between the vectors v1 and v2 shown in Figure 4.4, where k is the
number of pixels covered in each direction on the contour. The object’s curvature can be
determined in every point of the outline with the k-curvature function:

k-curvature = angle =
~v1(k) ∗ ~v2(k)

|~v1| ∗ |~v2|
(4.11)

whereby ~v is the vector from pixel (index p) to pixel (index p±k) and |~v| is the norm of
the vector v.

V1

pp
V2

angle
contour

p+k

p− k

V2
V1

pixel

pixel

pixel

Figure 4.4: Calculation of the curvature

The curvature function parameter vector length is directly proportional to the object’s size
and depends indirectly proportional on the degree of exactness which is desired for the
initial B-spline. The parameter k2 can be used to smooth a noisy curvature function (large

1Another initialization method for the automated determination of ’control points’ (control point has
slightly different properties) is proposed in [PP96].

2The size of k is about one tenth of the object size. One tenth of the length of the smaller side of the
surrounding rectangle proved to be a suitable value for k.

4.1. INTERNAL MODELS 87

k) or to improve the exactness E of the first set of initialization points (small k).

step size = k =
contour length [in pixels]

E [in pixels]
(4.12)

The first and second derivative of the curvature function are calculated to determine the
minima (convexities), maxima (concavities) and inflexions (zero curvature). The criteria
to decide if a detected extremum is a characteristic one, are:

Criteria 1: [|curvature value| > threshold ∧ first derivative = 0]

∨
Criteria 2: [curvature value = 0 ∧ first derivative = extremum]

where threshold is used to limit the possible values for a solution. This threshold could
be set to zero if the contour consists of low noise and the calculated values by the curva-
ture function and its derivatives could be determined without any calculation errors (e.g.
rounding, quantization (=discretisation) errors).

representative determined for this extremum

region with many extrema

curvature

pixel indexr (r−l)/2 l

= dominant point

contour

Figure 4.5: Representative of an accumulation of extrema

One representative has to be chosen for all extrema which are determined within a region
which represents the same curve of the contour (Figure 4.5). The representative is the
middle over all extrema related to the spatial distribution (index of the contour pixels) of
the extrema on the curve. This representative is called a dominant point.

Figure 4.7, left side, shows an object outline with the determined dominant points and
Figure 4.6 shows the graphics of the curvature function and its derivatives.

88 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

s

cu
rv

at
ur

e
va

lu
e

Point of inflexion=convex
Minima

Figure 4.6: The calculated curvature function and its first and second derivatives

The central idea is to transform the shape information of the object provided by the
curvature function and its dominant points into the first B-spline representation to obtain
a similar-shaped B-spline. Thus the next step is to transform the information of the
dominant points into a first set of control points, the initialization points, to determine a
B-spline. The initialization points are determined using a tangential approximation of the
outline. The tangents are placed at the dominant points. The points of intersection of each
tangent with the neighboring tangents are the first control points to initialize the B-spline.
These control points are the vertices of the so-called control polygon, an approximation to
the B-spline.

Additionally dominant points are pre-selected because it is more efficient to use not all
dominant points for tangent placement. In general the following combinations of dominant
points exist: (1) a point with zero curvature is neighbored by a convexity or concavity.
(2) more convexities or concavities are consecutive. This is the case if different curvature
radia describe a complex curvature. The conclusion is that a convexity never can follow
a concavity without a zero in between, and that two subsequent zeros are impossible.
The best approximated B-spline to the outline is computed if the dominant points are
selected as follows: if the shape is (I) a convexity all points representing a convexity with
different radia as well as the two zero dominant points (points of inflexion) which edge the
consecutive convexities are taken. In contrary (II) a concavity is represented in two ways
depending on the number of consecutive concavities: (1) if there is only one concavity, it
is skipped and the neighboring zeros are sufficient to approximate the shape. (2) if more
than one concavity is in row all concavity points are used as well as the edging zeros. In

4.1. INTERNAL MODELS 89

min

maxch.p.

min

min

max

max

ch.p.

ch.p.

ch.p.

ch.p.

ch.p.

ch.p.: points of changing curvature

min: points of max convexity
max: points of max concavity

min: points of max convexity
max: points of max concavity

concave or vice versa

ch.p.:points where curvature
changes from convex to

control point

B−spline

contour

tangent

min: convexity
max: concavity
ch.p.: inflexion

dominant points:

Figure 4.7: The dominant points convexities, concavities and inflexions and the resulting control points

Figure 4.7 right side the initialization by a control polygon formed by tangents is illustrated
(at simple concavities no tangents are set).

Correspondence and Deviation Detection Method. To measure the accuracy of a
B-spline approximation the B-spline is assigned to the real contour. Once a B-spline has
been calculated using a given set of control points, the relation between the B-spline and
the real contour is determined. This is done by searching for the points on the contour
which relate to the points on the span of the B-spline.

According to this relation of the two curves the deviation of the B-spline approximation
can be determined and evaluated. The distance between the two curves is the deviation
of the approximated B-spline which is called error. This error will be reduced to a de-
sired minimum during the improvement procedure (see paragraph below). To determine
a relation between the real contour and the B-spline the normals of the B-spline are used.

90 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

The intersection of the normal in the point pn on the B-spline with the contour is the
corresponding point p′n. If a corresponding point is found the B-spline can be assigned
to the real contour. Every span of the B-spline is assigned separately to the real con-
tour. Therefore the corresponding point for the initial and the end point of the span is
determined. The assignment has to be unique and so on the one hand every point on the
B-spline has its correspondent point on the real contour and on the other hand no part of
the real contour is assigned twice. This is a good instrument to control the approximation.
If it is not possible to assign a certain part of the B-spline a false constellation of control
points is detected. The analysis of this false constellation leads to a change of the control
points to adapt the B-spline and correct it.

It can happen for example that a false set of control points is determined because of two
inaccurate tangents (Figure 4.8). The B-spline cannot be assigned correctly. An heuristic
to analyze the fault could be e.g. a decision which control point is deleted. As three control
points determine a span the following possibilities exist: (1) the beginning of a span can
not be assigned or the two assignment normals intersect with each other before crossing
the contour the second control point is deleted (Figure 4.8(b)). Or (2) the end of a span
cannot be assigned, the third control point is deleted. Other possibilities to handle a false
control point could be considered. To ensure the success of the improvement procedure
the B-spline has to be assigned completely and uniquely to the real contour.

The measure of quality of an approximation is the distance between two corresponding
points (error). The error between two corresponding points is defined as:

Error norm Euclidean distance between point pn on the spline and the intersection point
p′n on the real contour (where point p′n is the point where the normal of the spline at
point pn intersects with the real contour).

a) b) c)

Figure 4.8: Compensation of a wrong control point setting. (a) Construction of a bad control point,
(b) resulting B-spline, (c) after elimination of the bad control point

Improvement Method. After initialization of the first B-spline, its assignment to the
real contour and the detection of the deviation (error) the B-spline is now improved. The
fitting of the B-spline bases on a refinement of the spline. If the error norm of the corre-
spondence procedure (see paragraph above) detects a higher inaccuracy than the desired
accuracy threshold according to the error norm, the B-spline approximation has to be
improved. This improvement is done by inserting new control points (and therefore new

4.1. INTERNAL MODELS 91

knots) to refine and fit the spline, which implies a higher number of control points used
for the improved B-spline. To improve the B-spline span-wise a knot is inserted into each
span which needs to be improved. The knot is inserted at the position called break location
which is the point of maximum error referring to the absolute value of the error. This is
the point of a span where the deviation of the B-spline from the real contour is maximal.
This method has been proofed to work more adequate (faster convergence, good accuracy)
in combination with an accurate initialization method, than more complex methods as the
PERM method introduced by [CC99]. This comparison is evaluated and explained in more
detail in [Gla02].

Once new knots have been determined, a new set of control points is constructed and a
new spline is calculated (Figure 4.9). The construction of the new control points is similar
to the construction of the initialization points. In spans which are judged to be accurate
enough, knots and control points are retained. If a span is improved, a new knot is inserted
at the break location. The span, now consisting of the two old knots and one new knot, has
to be adapted to this change. Two new control points are determined instead of one old
one (middle control point referring to the three control points influencing a span). Thus
all three knots are projected to the contour (assignment) and the tangents at these points
provide two intersections. These intersection points are the new control points.

control point

new knot

newly constructed
control points

substituted

points of intersection
= new control points

control point

projection of new knot
projection of old knot
tangents in the projection points
B−spline
real contour

a) b) c)

Figure 4.9: Improvement of the B-spline by inserting new control points. (a) construction of the new
control points, (b) resulting improved B-spline, (c) details of the new control point construction

If the error between spline and contour is still too large, the process is repeated to improve
the B-spline further.

Results. The automatically produced B-spline is compared to an optimal B-spline to
show the quality. In this context optimal signifies that the B-spline is determined by its
unambiguous mathematical description, with possible control points randomly set, and
with the constraint that the final B-spline is a closed curve with no intersections. The
special shape of the optimal B-spline is determined using an independent B-spline calcu-
lation program where control points are randomly set by the user. As before only closed
B-splines of order d = 3 are taken into account. This optimal B-spline is the reference
object to fit the generated B-spline.

92 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

(a)

(c)
(b)

Figure 4.10: Number of control points compared for different samples according to the type of shape
for the three cases optimal, initialised and improved B-spline

The automatically generated B-spline is compared to the optimal B-spline with regard to
the number of (1) control points, (2) iterations and (3) the final deviation of the B-spline
from the optimal sample. The initialization and the improvement methods are examined
separately as two parts of the whole automated procedure. It should also be mentioned
that the automated B-spline generation procedure is designed to produce a B-spline with
a desired error (the final deviation) and not to obtain a B-spline with a minimum number
of control points. Most times the first automatically generated B-spline determined by the
initialization method fits the optimal B-spline with good accuracy.

In Figure 4.10 the different samples are arranged according to the objects’ shape. The
difference in the number of control points between the optimal spline in Figure 4.10(c)
and the initialization spline in Figure 4.10(b) is shown for three different types of shapes:
angular (or major changes in curvature), smoothly rounded (with little change in curvature)
and types with a mixture of both. For angular splines the difference between the generated
and the reference angular spline is small. Corners are very significant shape points and
therefore the information transformed from the curvature to the first set of control points
matches the shape with a high degree of accuracy. In contrast to this, round shapes are
imitated well by the first set of control points but with an unduly high number of control
points. The reason for this high number is that if there is little or no change in curvature
(the worst example is the circle) almost no shape information can be transmitted by the

4.1. INTERNAL MODELS 93

curvature function. To determine a spline it is therefore necessary to have information
about the shape regardless if the curvature changes or not.

The worst case, a circle, has a theoretical curvature with a constant value. The spline
representing a circle can be determined by only 4 control points. More dominant curvature
points are detected because the curvature and its derivative contain quantization noise. In
Figure 4.11 the object consists of parts with higher and lower curvature. Thus the control
point distribution is not ideal in the part with no curvature.

s = 0

dominant points

s

va
lu

e
of

 c
ur

va
tu

re

a) c) d)b)

Figure 4.11: B-spline curve with an adequate setting of dominant curvature points in all regions except
for a region with a small curvature. (a) Curvature and first derivative with dominant points (b) dominant
points (c) first B-spline (d) best B-spline

94 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Furthermore the calculation of the curvature using a discrete angle between two vectors
of definite length3 is inaccurate. At this point a more accurate curvature function would
improve this situation which is topic of further investigations.

Curve (a) in Figure 4.10 shows the number of control points needed by the automated
representation of the B-spline for the best possible approximated B-spline. The best ap-
proximation was limited to 3 pixels deviation per span, as mentioned earlier.

Figure 4.12 illustrates how the number of control points rises when the spline is improved
to a desired threshold. It is significant to note that the number of control points rises in
proportion to the desired accuracy, but the number of iterations is very limited and does
not rise proportionally to the accuracy. In many cases the number of iterations does not
rise at all. This means that the number of iterations only bears a very weak relation to
the desired accuracy.

0

5

10

15

20

25

0 1 2 3 4 5

blatt comparison

threshold 2
threshold 3
threshold 5
threshold 7

5
7

3
5

threshold

7

iterations

2
3

2

nu
m

be
r

of
 c

on
tr

ol
 p

oi
nt

s
m

ea
n

er
ro

r

Figure 4.12: An object with different desired accuracies, showing the number of iterations required
and the number of control points used

3If the curve is gentle and relatively short vectors are used (small k), the difference between an angle
of e.g. 180◦ and 135◦ degrees is very small. Therefore the curvature value approximates zero.

4.1. INTERNAL MODELS 95

Models of Object Motion

Models of object motion are determined online. No a priori knowledge about the object
motion is needed thereby. The used method is described in Sec. 4.5.1, which is an adaption
of the ARM method described in Sec. 3.3.

4.1.1 Discussion

In this section the models were described that are necessary for the used hand-eye sys-
tem MinERVA. For the manipulator model the obtained model is an adaption of a general
manipulator model as described in Sec. 3.1. For the camera the standard pin-hole camera
model was used. The head model describes the transformation matrices of a two-link ma-
nipulator, since a pan-tilt head is used. Object motion models are derived from standard
ARM models.

As a new method a procedure to obtain geometric shape models based on B-splines was
developed. The proposed method automatically initializes and refines a B-spline that
approximates a given object outline (silhouette). The most important steps for this au-
tomated mathematical approximation of the silhouette are: (a) the initialization of the
B-spline, (b) the correspondence search between the B-spline and the silhouette for de-
tecting deviation and (c) the improvement of the generated initial B-spline to optimize
it (fitting). These B-spline object models are important for the later described tracking
algorithm for tracking objects based on shape information.

96 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.2 Tracking of Moving Objects

First raw image segmentation methods will be analyzed and their suitability for tracking
will be evaluated. Thereby visual tracking using different sensor modalities (form, color
and motion) will be evaluated and the advantages and drawbacks of each sensor modality
will be shortly discussed. Additionally explanations and statements for the chosen methods
are given.

4.2.1 Contour-Based Tracking

In this section the methods and algorithms that were proposed for contour based tracking
in Sec. 3.2.1.1 are evaluated further. Emphasis is put on the Condensation algorithm.
Thereby additional explanations to the algorithm are given before advantages and draw-
backs of this algorithm are discussed.

Explanations to the Condensation algorithm. “Practically speaking” for image pro-
cessing, the CONDENSATION algorithm tries to find a known object outline r(s) in a set of
contour edges. The search is done by “spreading” (using the factored sampling algorithm)
a specified number of sample outlines (e.g. a sample-set of B-spline curves as described
above) over an image and for each sample outline the degree of fit into the present set of
contour edges is evaluated.

To obtain the sample-set that shall be evaluated, the algorithm first selects samples with
high probability measures of the previous frame (see the large blobs in Figure 3.4). As those
already had a high response in the old frame, it is assumed that new samples generated
(selected) from an “good” old sample also will give high responses in the new frame.
Therefore, samples with a high probability of fit are used as a basis for most of the new
samples (i.e. multi-modal probability distribution). Since it is the goal to track an object
in motion, the parameters of the new samples are propagated using a stochastic prediction
model (e.g. an ARM overlaid by random noise) for each parameter (e.g. translation,
rotation, scale), to have the evaluation of the new sample outlines at the most likely target
object positions.

The way sample outlines can vary in their image position, rotation and size, i.e. which
transformations are allowed is limited by the chosen shape space W (see [BI98]). E.g.
in an affine shape space size variations are possible in horizontal and vertical direction
independently. With these variations, almost all movements of a flat object can be tracked.
Movement in a three dimensional workspace is covered by image position (x and y) and
size (z = depth) (size changes equally in horizontal and in vertical direction). Rotation
about the axis perpendicular to the camera image is covered by the rotation value. Another
rotation about one of the two remaining axes is covered by splitting size into horizontal

4.2. TRACKING OF MOVING OBJECTS 97

and vertical components.

The measurement is obtained by searching for correspondences of sample outline pixels
with contour edges. The more correspondences an outline has, the higher is its probability
measure πm.

This procedure selection, prediction and measurement is repeated as long as the object is
being tracked.

Advantages and drawbacks of contour-based tracking Contour-based trackers are
a mixture of a low-level and a high-level tracking method since additional knowledge about
the form of the tracked object has to be available. Most contour trackers work only well with
simple object forms as e.g. ellipses or lines (see [VAZ00]) as these forms can be calculated
very fast and efficiently. Thereby usually real-time performance can be obtained.

To evaluate the contour in the image different “observation models” are used. In the
simpliest case the evaluation is only along the contour. More sophisticated is to evaluate
the contour along normals perpendicular to the contour, i.e. to raise the exactness of the
observation model. The tracker gets less error prone, but demands additional calculational
effort. Nevertheless contour trackers are easily attracted by background edges (clutter).

The big advantage using the contour for tracking is that grasping points on the object
(contour) can be determined easily.

Advantages and drawbacks of CONDENSATION algorithm Being a statistical al-
gorithm and its feature to maintain a multi-modal probability distribution temporal track-
ing failures (e.g. loss of the object) can be overcome by the Condensation algorithm.
Additionally by the use of shape spaces it is assured that the model outline does not
take forms that are impossible (because they are no transformations of the original form).
Thereby it is also avoided that the tracked outline becomes too tangled where it can never
recover.

The drawbacks are that for obtaining a good tracking performance a large number of
samples, i.e. sample set is necessary. But if the sample set becomes too large real-time
performance of the algorithm e.g. on a standard PC becomes impossible. Small sample
sets result in inaccurate results or, even worse, loose track of the object too often. So
it can be stated that the algorithm has a bad speed-accuracy trade-off. Additionally the
algorithm is dependent on two exact models: an exact observation model and an exact
motion model. Especially, if the motion model which has to be determined beforehand
and off-line does not match the real object motion well tracking results get bad or tracking
is even impossible.

To set this argumentation on a sound base different experiments have been performed which
can be found in Sec. 5.1.2. For further experimental results [Osw00] is recommended.

98 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.2.2 Color-Based Tracking

Color tracking is reduced to a successive processing of single images. Other than in form
tracking with the CONDENSATION algorithm, where the history of the object motion is
used to support successful tracking, here only the current information available from the
image data is exploited. Three criteria were interesting for our purpose: (1) one interesting
object color has to be segmented by the chosen method4. (2) The segmentation method
has to give positional and rough orientation information about the tracked object. And
(3) the method has to be fast and computationally inexpensive.

The exactness of the filter regarding critical pixels, i.e. pixels that lie on the border
of the subspace, was not problematic since it is the goal to compensate for those errors
through the use of complementary filters, sensor preprocessing/fusion (see Section 4.3.1)
and successive sensor integration (see Section 4.3.2).

The method chosen finally for most tracking experiments was a YUV color filter with a
cubic filter window. The reasons for this choice were mainly quality reasons compared to
computational costs i.e. (a) the YUV cube performed only marginally worse compared to
e.g. the Dichromatic Reflection Model implementation, but at enormous lower computa-
tional costs (see Section 5.1.1). (b) using a color filter is favorable for image sequences since
again computational load is less than for pixel clustering methods. (c) a simple subspace
for a windowing method can be efficiently implemented and bears again computational ef-
ficiency compared to e.g. a CLUT. For more details on results and implementation details,
respectively, see Section 5.1.1 or [Leu00].

Advantages and drawbacks of color-based tracking The advantages of a color-
based tracking is simply: its fast, computationally inexpensive (even on a standard PC)
and sufficiently robust. Additionally rough positional, size and even orientation information
can be obtained by analyzing the found color blobs.

Drawbacks are that, when using a color filter, the filter has to be tuned beforehand. Ad-
ditionally, depending also strongly on the filter, it is sensitive to illumination changes.

Color segmentation methods work well as blob trackers, but may be easily distracted by
objects bearing the same color.

Again to support this argumentation different experiments were performed to evaluate the
different methods. These experiments can be found in Sec. 5.1.1 or [Leu00].

4This seeming constraint can be justified by the fact that objects to be grasped are quite small and
other sensor modalities can be used to obtain fine-scale information.

4.2. TRACKING OF MOVING OBJECTS 99

4.2.3 Motion-Based Tracking

Motion based tracking methods often base on the determination of the optical flow field.
These methods are pre-destinated for tracking since they produce an interpretable output
when there is motion in the scene. Therefore they are optimal for pre-segmenting an
image into regions containing motion, and still image regions. In the nomenclature defined
in Chap. 2 these regions can be defined as attentive regions and can serve to control the
focus of attention.

One way to determine the optical flow field from a sequence of images in real-time was
developed in [Stö01]. This approach combines the correlation of rectangular image regions
(a common procedure used in video compression) with an efficient confidence measure.
This approach allows on the one hand the efficient implementation of the algorithms either
on special multi-media processors or on standard PC processors (e.g. Intel Pentium) in
real-time, on the other hand the vector field determined this way relates well to the real
image motion.

This sensor which relates to the class of low-level sensors can be described as fast and
robust, but provides usually only sparse fine scale information. Therefore it is ideal for
the combination with high level tracking methods like the later described Modified ICON-
DENSATION algorithm (see Section 4.3.2.1).

Advantages and drawbacks of motion-based tracking The main advantages of
motion-based trackers are: (a) they are pre-destinated for tracking, since they generate
an output if there is motion in a scene. (b) they are fast and the optic flow field can be
calculated efficiently (even on standard PCs). (c) they are well suited for pre-segmenting
an image, i.e. separate an image into regions where there is motion and regions without
motion. (d) they are ideal to generate a “focus of attention”, i.e. a region that is interesting
to be analyzed further.

The drawback is that motion based tracking methods usually generate only little fine scale
information.

4.2.4 Discussion

The reason for the former paragraphs was to review and discuss the different tracking
methods that were evaluated and tested in visual tracking experiments. The goal was
originally to find a reliable tracking method to be used for hand-eye experiments. To
summarize it can be stated that: Up to now raw image segmentation methods were an-
alyzed and their suitability for tracking was evaluated. Contour based trackers promise
to work well in conjunction with high level methods, but may have drawbacks mainly in
real-time performance, robustness and the need of a priori knowledge, e.g. a motion model

100 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

(see also Section 5.1.2). Color segmentation methods work well as blob trackers, provide
sufficient information about the object, but may be easily distracted by objects bearing
the same color. Finally motion detection methods like optic flow are fast and robust, but
provide little fine scale information. In summary it can be said, that the advantage of one
method is the drawback of another. Therefore it is self-evident that fusion and integration
of the above methods may serve to obtain a robust object tracker suitable for hand-eye
experiments.

4.3 Sensor Fusion and Integration

In the following a biologically motivated approach to sensor fusion and integration is pro-
posed which was derived from the analysis of human visual pathways and the processing of
visual information in the visual cortex or higher cortical areas (see Section 2.1.2), respec-
tively. The approach can be split into “Sensor Preprocessing and Fusion” which can be
set under the generic term Pre-attentive Processing, as well as “Sensor Integration” which
will be termed Attentive Processing in this context.

4.3.1 Sensor Preprocessing and Fusion: Pre-attentive Processing

Image segmentation and preprocessing intends to obtain interesting image regions, e.g.
areas where there is motion, from the available data. This operations can be performed in
parallel for all interesting image features. Fusion or dynamic linking of different clues such
as form, color and motion is obtained by applying the aforementioned (Sec. 2.1) broadly
accepted principles of human visual processing, summarized under the term Pre-attentive
processing, namely: (1) parallel information flow, (2) pre-attentive processing5, (3) reentry
of information[Kan91] and (4) feature map generation.

Parallel information flow applies thereby to the fact that visual information is processed
in three parallel pathways (form, color, motion) divided horizontally several times, where
an hierarchical processing (see pipeline concept below) of the information takes place.

Pre-attentive processing describes that this parallelism allows the optimal utilization of the
present information at a time where no attention is put on a certain stimulus.

Reentry of information postulates that there exists a dynamic process of continuous parallel
and recursive signaling between the strongly connected areas of the visual system.

Finally, feature map generation describes the transfer and entry of information from the
three processing sources into an abstracted description. The information entered into the
map can be any information (feature) about a region’s position, size etcetera.

5Unfortunately the generic term is named the same way

4.3. SENSOR FUSION AND INTEGRATION 101

A implementation model that covers the aforementioned principles is described below. The
input images obtained by the camera are processed by an edge filter, a color filter and an
optic flow sensor. The information obtained from this processing level is merged in higher
levels and finally clustered in the highest level. Information from the highest level can be
propagated back to lower levels of the same and other pathways. Thereby image regions
which contain a high match of signals from different pathways are dynamically intensified.
As an output feature maps are obtained which carry (in our case) estimations about the
current object shape and position.

Pipeline concept Common to all sensor modules is a three stage pipeline design, with
input, segmentation and output stages. Images and reentry information are received in the
input stage, whereby images are provided by the cameras. The process of segmentation is
performed in the second stage (see e.g. Section 3.2.1.2). The output stages remove noise
from the segmentation results by morphological operations and propagate their results to
both the feature maps and the sensor input stages. While moving from input- to output
stage, sensor information turns from pixel information into clustered region information.

Figure 4.13 shows a schematic layout of this pipeline concept. The input stage also includes
handling of reentry implementation, as described next.

Implementation of the Reentry Hypothesis Reentry information is backpropagated
from the output stage of the visual sensors. This information is used to modify raw images
in order to change segmentation parameters for spatial image regions. Regions indicated
in the reentry information data will be treated with more attention in the reentry step
than regions outside. These reentered regions are therefore called attentive regions and are
always slightly enlarged copies of the original sensor result output regions6.

Additional to the visual sensors which can incite each others sensor input, in the technical
implementation of the reentry hypothesis “prediction” information is also seen as an in-
citation sensor. When tracking and searching an object, the prediction of the object’s
future position gives a hint were to search the object in the next frame. This feature is
adopted here in a way that the prediction module can also simulate a sensor output stage
and send information about the next estimated position, orientation and size of the object
to the input layers of sensors.

The process of modifying the camera images can be described with the following formula:

Pm(x, y) = f(x, y)Po(x, y)

with P (x, y) being the pixel values at position (x, y) in an image. The indices m and o
signify the modified and the original version. f(x, y) is the modification function, defined
separately for each visual sensor module. Figure 4.13 shows how the reentry hypothesis is
implemented with the pipeline concept.

6This helps other filters to find their features within those enlarged regions (see cross influence)

102 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Operations
morphological

Reentry Information

Camera

Raw Image

Modified Image

Segmented Image

Clustered Object Information

f(x,y)

Operation
Segmentation

Expansion

Feature Map

Figure 4.13: The pipeline concept

Form Sensor The form sensor used here is a combination of a Sobel filter with a succes-
sive threshold operation7.

The sobel filter is applied before images enter the input stage of the form sensor. In the
used implementation (see Section 4.8) a sobel matrix of size 3 × 3 is applied on the gray
value image supplied by the camera. A successive threshold operation segments strong
object contour edges. When reentry data is present, the sobel image pixels are multiplied
by m ≥ 1 before applying the threshold operation in regions indicated by the reentry
data, and multiplied by n = 1/m in regions outside. After multiplication, the threshold
operation is applied on the modified sobel image, but with another threshold value (the
reentry threshold value). This multiplication ensures that weak edge pixels in attentive
regions get over the reentry threshold value. On the other side, strong edge pixels in non-

7With this implementation we leave the human model, as in the visual cortex form information is
obtained by oriented cells, each of them responding to oriented line stimuli [MK91].

4.3. SENSOR FUSION AND INTEGRATION 103

attentive regions are decreased in their value and therefore may end below the reentry
threshold value. f(x, y) of the form sensor is defined as:

f(x, y) =

{
m (x, y) ∈ A Enhancement
1
m

(x, y) /∈ A Inhibition

m ≥ 1

A is the union of all attentive regions

Attentive regions can be supplied to this sensor from all possible sources. If this sensor’s
output stage is connected to its own input stage, a high threshold in the first run allows
only strong edges to pass. In the second filter run a lower reentry threshold value allows
weaker edges lying close to strong edges to pass the second threshold operation. Supported
by successive morphological operations fragmented edges are closed (line filling). The effect
of supplying other attentive regions to this sensor is that more contour edges are found in
attentive reentry regions and less, or even no edges are found in non-attentive regions.

Entry into Feature Map: an enhanced contour image. Contours that have had a strong
response already in the first processing “run” will be intensified further by reentry, weak
contours will be diluted.

Color Sensor The color sensor is implemented as a UV window filter (see Section 3.2.1.2
and Sec. 5.1.1 for reason for this choice). Pixels are filtered according to their chrominance
values. Object color therefore is known as a range of accepted U and V values. For speed
purposes the filter is implemented using Intel MMX technology [Int] and processes eight
pixels a time in one cycle. Accepted pixel regions are smoothed by dilation and opening
operations.

Reentry regions modify the chrominance pixels by zeroing and thus moving window pixels
lying outside the attentive regions out of the filter. A different set of filter window param-
eters is applied to the modified chrominance values. f(x, y) for the color sensor is defined
as:

f(x, y) =

{
1 (x, y) ∈ A Enhancement
0 (x, y) /∈ A Inhibition

A is the union of all attentive regions

There can of course be other functions applied for enhancement and inhibition e.g. a
function describing a “inverted Mexican hat” which would enhance the borders of the
color region. Here only the most simple one is depicted.

Attentive regions can be supplied to this sensor from all possible sources. If this sensor’s
output stage is connected to it’s own input stage, a small range of accepted chrominance

104 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

values allows only pixels matching almost exactly the known color. A broader range of
accepted values in the second run allows to fill gaps between regions, as sometimes, due to
lighting conditions, more shades of the known color are produced on the object’s surface.
The effect of supplying other attentive regions to this sensor is that color filtering is only
applied to those regions. Non-attentive regions do not influence sensor results as they are
moved completely to the border of the color space.

Entry into Feature Map: Information about color “blobs”. This information may contain
size, area, position or form information (e.g. compactness, roundness etc.)8.

Motion Sensor The calculation of the optic flow was performed on a specialized hardware
board containing a MEP (Motion Estimation Processor) that was developed at our institute
[Stö01]. The output that can be obtained are rectangular areas containing objects that are
moving against the background.

f(x, y) =

{
1 (x, y) ∈ A Enhancement
0 (x, y) /∈ A Inhibition

A is the union of all attentive regions

Entry into Feature Map Regions in which motion information could be identified. Anal-
ogously to color the same region informations can be obtained and entered into the map.

Cross Influence of Sensors Color, Form and Motion: Sensor fusion As mentioned
above, the back propagation of sensor output information is not limited to a single sen-
sor modality. The sensor modalities can influence each other as well, only appropriate
modification functions have to be chosen. This is depicted in Figure 4.14.

This kind of recurrent signaling process which is termed Biologically motivated sensor
preprocessing here can well be seen as an extension of a typical sensor fusion process as
defined before in Section 3.2.2: “evidence from multiple sensors is combined in order to
produce information which is more precise than the output from an individual sensor;
the fusion may involve raw sensor signals, or features and attributes extracted through
preprocessing of the raw signals”.

The definition fits our adoption of the human visual sensor pre-processing in many ways.
On the one hand raw sensor signals such as the optic flow sensor output is combined with
the edge sensor signal to obtain enhanced edge features. On the other hand selected edge
features (obtained through the preprocessing of the raw signal) can be combined with e.g.
color regions to obtain more precise information about the true borders of an color region.

8Those region information can easily be obtained using image processing libraries like HALCON([HAL])

4.3. SENSOR FUSION AND INTEGRATION 105

Feature Map Feature MapFeature Map Feature Map

Camera images

ColorForm Motion

Detailed Analysis (serial)
Image Interpretation

A
tte

nt
iv

e
Pr

oc
es

si
ng

Pr
e−

at
te

nt
iv

e
Pr

oc
es

si
ng

Master Map

Prediction

FOA 1
FOA 2

FOA 3

Figure 4.14: Combing the results of different sensor modalities

4.3.2 Probability Based Sensor Integration: Attentive Processing

After the fusion process locally enhanced or intensified, respectively, image regions are ob-
tained and stored into feature maps. But strictly speaking those maps and the information
they contain are still separated. What is needed is that the information is integrated in
some way. This can be obtained by integrating the information of the different feature
maps into a coherent description, a master map. This master map contains only those
image regions (and all information about them provided by the feature maps), which are
interesting for further evaluation and are processed one after the other, i.e. the focus of
attention shifts from one region to the next. Working on a “focus of attention” the input
from the feature maps is tested on coherence in a serial way, e.g. if there is a region of
interest where is motion it is tested if this region is also entered in other feature maps.
Since all this processing is done in a serial way and is “blocking all other processing” it is
called Attentive Processing. For this kind of processing model knowledge is necessary.

In our case, tracking, the goal is to determine the position and orientation of an object in
motion through a sequence of images. That means that after processing an image frame a
distinct decision has to be made about where the tracked object is located in this frame.

Entry into Master Map The master map builds the output of the preprocessing and
therefore the input to any further processing algorithms. Here the master map is repre-
sented by a locally intensified edge image. The intensified regions are enhanced according
to the entries in the different feature maps. Additionally, information about the position,

106 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

size and orientation of interesting image regions is stored in the map9.

This additional information is valuable and necessary for the succeeding algorithms, in this
case the Modified ICONDENSATION algorithm as described below (Sec. 4.3.2.1).

In the next section Sec. 4.3.2.1 it is explained how the original ICONDENSATION algo-
rithm was modified to (1) improve the distribution of samples which shall be evaluated,
(2) to use the maximum information available from auxiliary sensors (and therefore all en-
tries and information of the master map), and (3) to be able to adapt tracking parameters
online.

4.3.2.1 Modified ICONDENSATION Algorithm

The original ICONDENSATION algorithm has been modified in four ways. First, samples
are here classified into (a) difference prediction samples, (b) prediction samples, (c) impor-
tance samples and (d) prior samples depending on the sampled probability distribution.
All samples are accompanied with a probability correction factor λ which is multiplied to
the measured probability value πm (see [IB98] and algorithm 1 for more explanation).

Second, the original prediction samples are split into two different types, the difference
prediction samples and the prediction samples. For a difference prediction sample st the
position of a base sample (acquired through sampling from the posterior density) is moved
by the difference of the predicted object positions:

st = st−1 + (pt − pt−1) + wk

where wk is a vector of normal random (Gaussian) variates, pt is the current predicted
object position and pt−1 is the predicted position from the previous frame. The difference
prediction samples behave similar as samples sampled from a prediction density described
in the original CONDENSATION algorithm in [BI98].

The third modification concerns the prediction samples which get their new position, ro-
tation and scale values from a prediction module:

st = pt + wk

In standard ICONDENSATION object dynamics are learned off-line from training se-
quences. With our tracker, object movements are predicted from an Average Auto-
regressive Model (see Section 4.5.1) whose parameters are acquired and refined during
tracking.

This is possible through the fourth modification which concerns importance samples. Here
additional image information is not only used for providing a rough position estimation

9This storage is actually a table were the “numerical” region information is entered

4.3. SENSOR FUSION AND INTEGRATION 107

but also shape and orientation parameters are acquired to place samples more efficiently.
Altogether the modified algorithm is independent from off-line training, but more sensitive
to the results of low level tracking (e.g optic flow).

Algorithm 1: Modified ICONDENSATION
Require: step ∈ [1, N], q ∈ [0, 1] and r ∈ [0, 1] with q + r ≤ 1

Setup prior equal distribution of N samples.
Measure πt−1

m for all N samples. Set πt−1
i = πt−1

m

loop
Generate N new samples from base samples with high πt−1

i (e.g. use cumulative probabilities
[IB98])
for all generated samples i at time t do

Choose a random number α ∈ [0, 1]
Sample and predict as follows
if (i%step == 0) then

Use difference prediction sampling
Sample from difference prediction p.d. to predict all sample properties. Set λ = 1

else if (α < q) then
Use prior sampling
Sample from additional sensor information p.d. to get sample position. Set random
values for rotation and size. Set λ = 1

else if (q ≤ α < q + r) then
Use importance sampling
Sample from additional sensor information p.d. to get sample position, rotation and
size
Set λ proportional to the distance of the predicted object position to the sample position

else if (α ≥ q + r) then
Use prediction sampling
Sample from AARM prediction p.d. for all sample properties (see 4.5.1). Set λ = 1

end if
Measure πt

m. Calculate πt
i = πt

mλ. Store sample
end for
Produce output (e.g. Mean). Pass output to AARM (see Section 4.5.1) and the Grasp
Tracker (see Section 4.4.1).

end loop

Online adaption of tracking parameters The parameters step ∈ [1, N], q ∈ [0, 1] and
r ∈ [0, 1] with q + r ≤ 1 influence the distribution of samples. Since this distribution
does not necessarily be constant during tracking, it can be favorable to online adapt the
distribution to the current tracking status: In the beginning a large number of samples
is necessary to accurately detect the object to track. Additionally, in the beginning of a
tracking sequence no knowledge about the object motion is available. Therefore, tracking
can only be performed reliable if unique additional sensor knowledge is available. As a

108 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

consequence to this it is reasonable to have 100% of the samples spent for importance
samples. After some time when tracking was successful and a motion model could be
generated online the sample distribution can be changed to allow prediction and difference
prediction samples. In the same rate the number of importance samples can drop. Now the
tracking gets less sensitive to temporal sensor failures, i.e. it gets more robust. Additionally,
when a sufficiently accurate motion model has been built up online, the total number of
samples can be reduced to reduce processing time. The optimal distribution of samples
to the appropriate type depends on the current tracking state. Ideally, the tracker has
to evaluate its performance online to adopt the distribution to the current state. This
adaption is equivalent to online learning of the system.

Experiments where the tracking parameters were adjusted in a priori fixed manner during
tracking are shown in Section 5.

Sample Selection Strategies At this point N samples have been distributed, πm has
been measured and πi has been calculated. Now we want to select out of all samples
the one sample representing the current object position, rotation and size. Four different
selection strategies have been tested to find the best sample st at a time t:

• Best matching sample

st : πi(s
(n)
t) = Max(πm(s

(n)
t)) ∀ n ∈ {1, . . . , N}

• Mean of all samples

st : E(st) =
N∑

n=1

π
(n)
i s

(n)
t

• Best matching sample in the best cluster of samples

st : πi(s
(n)
t) = Max(πm(s

(n)
t)) ∀ n ∈ B

B is the set of samples in the best Cluster

• Mean of all samples in the best cluster of samples

st : E(st) =
∑

n

π
(n)
i s

(n)
t ∀ n ∈ B

B is the set of samples in the best Cluster

The first two strategies ignore the spatial correlation of the samples and operate on all
samples. The best matching sample is the sample with the highest π value of all existing
samples. Mean of all samples calculates mean values for all sample properties, weighted
by their π value.

The last two strategies build spatial clusters of samples. The clustering algorithm is im-
plemented as:

4.3. SENSOR FUSION AND INTEGRATION 109

1. Take a sample s(n), n ∈ {1, . . . , N}.

2. Compare its position to all existing clusters and remember the nearest cluster Cb.

Cb : d(s(n)) = min(d(s
(n)
k)) ∀ k ∈ {1, . . . , K}

d(s
(n)
k) is the Euklidian distance of sample n to cluster k

K is the number of clusters in C
C is the set of all clusters

3. If d(s(n)) ≥ dmax or if there are no clusters yet, then make a new cluster and add this
sample to the new cluster. Else add this sample to the nearest cluster Cb.

4. Go to 1 if there are more samples, end if there are no more samples left.

If a sample is added to a cluster, the cluster remembers the sample’s π value and adds this
to its own probability sum value πcluster =

∑N
n=1 π

(n)
i . Additionally, the cluster recalculates

its center point to which the sample distance is calculated. Then, the best cluster is chosen
upon their probability sum value πcluster. Best matching sample now searches for the
sample with the highest π value within the best cluster. Mean of all samples in the cluster
calculates position mean values, weighted with the samples π value and copies rotation
and size values from the sample with the highest π value in the cluster.

The two clustering strategies were introduced to solve problems arising with mean sample
calculation, when additional sensor regions produce groupings of samples on distractor
objects that have values of π > 0. The unclustered mean strategy will shift its result
towards the group of distractor samples. The clustering strategies overcome this problem
by selecting the best cluster first and therefore calculating the median only for samples
lying over the tracking object.

4.3.3 Discussion

Summarizing it can be stated that a method of fusing and integrating sensor information
was proposed that is adopted from the visual information processing in the human brain.
Thereby two concepts were transfered: the reentry hypothesis (fusion) and he concept of
feature maps and master map (integration). For the fusion process the sensor modalities
form, color and motion are first processed in parallel in separate pathways before they
influence each other in a second processing cycle. Thereby image regions which contain a
high match of signals from different pathways are dynamically intensified. As an output
of this processing feature maps are obtained which contain estimations about the current
object shape and position. To integrate the information of different feature maps into
one coherent description, a master map is generated. This master map contains only those
image regions which are interesting for further evaluation. Those regions are then processed

110 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

one after the other in a serial way, i.e. the focus of attention shifts from one region to the
next. To evaluate this master map to generate an output, i.e. to determine the position
and orientation of an object in motion a distinct decision has to be made about where the
tracked object is located. This is done by the Modified ICONDENSATION algorithm.

The second proposal was an extension of the standard ICONDENSATION algorithm.
Thereby the algorithm was modified in four ways: (1) to improve the distribution of
samples which shall be evaluated, (2) to use the maximum information available from
auxiliary sensors, (3) to be able to adapt tracking parameters online, (4) to online build
up a motion model.

By these extensions one main problem occurring with the standard ICONDENSATION can
be counteracted: the need of a priori known motion models for all parameters like position,
scale and orientation. Additionally, by the online adaption of the tracking parameters the
maximum number of needed samples can be reduced and thereby processing time can be
lowered, if the tracking is successful for a certain time period.

4.4 Determination of Grasping Points

4.4.1 Search and Tracking of Grasps

The determination of grasping points was not in the focus of this thesis. The following
algorithms were developed by Recatala and Sanz (see [RSL+02]) and are only shortly
reviewed within the next section. Thereby two methods can be distinguished: The grasp
search and the grasp tracking. The algorithms for grasp search can be applied on any
contour description. For the grasp tracking the use of the aforementioned B-spline contours
proved to be very favorable: since the tracked contour is always an affine transformation of
a base contour also the grasping points are transformed affine and can be uniquely related
to the current spline contour via the spline parameter s.

The methods were integrated with the aforementioned tracking methods. Results of the
tracking together with the grasp determination can be found in Section 5.1.4 as well as in
[RSL+02].

Grasp search Once an active contour has been associated with the object, it can be
processed to search for pairs of grasp points at which the object can be stably grasped.
The method proposed for searching for grasp points along the object contour is an extension
of the one proposed in [MRSdP01]. The only a priori information it requires is the width
of its fingers (=2k in Figure 4.15(a)). For the evaluation of each grasp, point contacts with
friction are assumed, and the Coulomb friction model [Ngu88] is used. The static coefficient
between the object and the fingers is assumed unknown beforehand. This method is

4.4. DETERMINATION OF GRASPING POINTS 111

described by algorithm 2.

Algorithm 2: Grasp Search
Extract a list of grasp regions
Generate a list of pairs of compatible regions
for each pair of compatible regions do

Select best pair of grasp points
end for
Evaluate each selected grasp using a set of quality parameters
Sort grasps using this eval. and select the best one

a) b)

Figure 4.15: (a) Geometric interpretation of the quality criteria for the selection of stable grasps. (b)
Compatibility test for grasp regions.

Extraction of grasp regions. In this step, the object contour is explored in search for
grasp regions –regions of consecutive contour points where the curvature at each point
remains under a given curvature threshold α. The curvature is discretely evaluated at
each point. For that, a neighborhood of radius k centered at that point is considered.
This evaluation is based on the expression of the k-torsion [SdPIR98], which includes a
smoothing of the curvature. Ideally, it should be possible to approximate grasp regions
as straight lines. Nevertheless, this method could produce regions covering portions of
the contour that could not be reduced to straight lines. For this reason, the accumulated
curvature along a grasp region is used to limit its size. The minimum size is also limited,
since, being too small, they would not allow for tolerances in positioning of the fingers.

Unlike in [MRSdP01], the contours corresponding to internal holes of the object are not
considered, since only one active contour has been associated to the external boundaries
of the object.

Selection of compatible regions. Once the grasp regions have been found, a list of
pairs of grasp regions is built. These regions are defined by including two points –one
per region– such that, if the robot fingers are placed at them, the grasp complies with

112 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

the force-closure criterion. The regions in each pair will be termed hereinafter compatible
regions.

The compatibility between two regions is verified through two conditions (see Fig-
ure 4.15(b)): (1) the angle between the normal vectors to each region is π± β, β being an
angular tolerance threshold; and (2) the projection of each region, in the direction of the
normal, intersects with the other region, that is, the regions are confronted.

These tests produce pairs of compatible regions such that the normals to each region point
towards the space between both regions, and pairs in which they point towards outside this
space. The first ones correspond to squeezing grasps, which are the only ones considered
by many works on grasp determination. The others correspond to expansion grasps.

Grasp selection within regions. This step involves the selection of a pair of grasp
points within each pair of compatible regions, and can be seen as a refinement of these
regions. In this work, instead of an exhaustive checking of these regions to select the pair
that best complies with the quality criteria, a faster search is performed that limits the
checking to the neighborhood of the center of each region.

Grasp sorting and selection. The selected grasps are evaluated again according to how
loosely they comply with each of the two quality criteria. In addition, the distance to the
centroid is also considered. This produces a set of three quality values. Since these values
correspond to different magnitudes, a normalization is performed. A global evaluation of
each grasp is then computed based on this set of values. The grasps are sorted according
to their global evaluation, and the grasp with the highest evaluation is selected10. The
selected grasp is described by a pair of points on the contour, each one being the center of
the region where the robot fingers should be placed. It is also specified if it is an expansion
or a squeezing one.

Grasp tracking When an object is tracked along a sequence of images, an active contour
is associated to it at every image (see Section 4.3.2.1). This contour is the result of applying
some transformations (translation, rotation and/or scale) to the same reference contour
used in the previous image. As the location of the grasp points selected for a contour is
expressed with respect to the contour –or the object– itself, this location is invariant with
respect to the above transformations. Therefore, in two contours that are a transformation
of the same reference one, the location of the grasp in one can also be applied to the other.
This allows tracking the grasp points along a sequence of images.

The precision of this tracking depends on the suitability of the relative location of the grasp
points with respect to the object, considering the transformations applied to the contour.

10The global evaluation of the grasp is task-dependent, but usually a linear combination of the quality
values has been considered, each value being given the same weight.

4.4. DETERMINATION OF GRASPING POINTS 113

Algorithm 3: Grasp Tracking
if no grasp has been previously computed then

Search for a grasp on the contour (see alg. 2)
if a stable grasp has been found then

Add the grasp to the tracking window
end if

else
{Search for a stable grasp in the tracking window}
Start at the end of the tracking window of grasps
repeat

Take previous grasp in the window
Translate loc. of taken grasp to current contour
Evaluate the taken grasp

until a stable grasp is found or all the grasps in the window have been evaluated

{Search for a new grasp if no stable one is found}
if a stable grasp has been found then

Add the grasp to the tracking window
else

Search for a grasp on the contour (see alg. 2)
if a stable grasp has been found then

Add the grasp to the tracking window
else

Use last selected grasp (although unstable)
end if

end if
end if

For this reason, different location possibilities are allowed, and the tracking algorithm does
not rely on any specific reference system. Here, the grasp points are expressed with respect
to the contour of the object. Nevertheless, with some straightforward transformations, it
is possible to have them located with respect to other reference systems within the object
that, depending on the task to perform, may be preferable.

The algorithm for grasp tracking (see algorithm 3) tries to apply a previously computed
grasp, or a number of them, to the current contour. These grasps are evaluated for stability.
If none of them is stable, then a new grasp search is performed. The sets of previously
computed grasps that are checked on the new contour constitute a tracking window of
grasps. The length of this window can be set to an appropriate value depending on the
task to perform. If it is zero, then no tracking at all is performed.

114 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.4.2 Discussion

A method to determine grasps on a spline contour and the succeeding tracking of these
grasps is proposed. This procedure is favorable since tracking of a grasp –and finding a
new one when required– uses only a small percentage of video rate period (see [RSL+02]).
Therefor it is possible to track a contour and a grasp on it at video rate. In addition, this
procedure allows a more efficient control of the robot arm towards the grasping points,
since only in the case when a new grasp is determined a relative motion of the grasp on
the object occurs that adds to the absolute motion of the tracked object.

4.5. OBJECT MOTION RECONSTRUCTION AND PREDICTION 115

4.5 Object Motion Reconstruction and Prediction

In this section an algorithm is described that is capable to predict future positions of a
tracked object. Thereby the smoothing of the input data is inherent with the algorithm.
The method is a extension of the ARM method described in Sec. 3.3.

4.5.1 Average ARM Prediction

As we have seen in the preceding Section 3.3, AR models are suitable for predicting future
positions of an object in motion. In a real scenario the input data for the prediction comes
from the vision processing module. This input data is usually corrupted by measurement
noise, or even worse large outliers will occur occasionally. To tackle these problems either
the measured values have to be pre-processed e.g. like described in Section 3.3 to smooth
the input data and eliminate outliers, or the predictions themselves, used as input data
for other processing modules, have to be stabilized somehow. The method described next
explains a way how the predictions were stabilized in this work.

To predict more than one step into the future, the prediction is continued recursively to
predict M values. To stabilize this prediction, a technique of building median values at
different points of time was developed. The first step is to predict at different points of
time and store all values in a prediction buffer. This process is defined as:

1. Get the measured value

2. Predict the next M values based on the already measured values and

3. Enter these predicted values in the prediction buffer.

After some time, the prediction buffer looks as shown in Figure 4.16. Usually, after re-

Figure 4.16: The prediction buffer with M = 4

ceiving the next measured value, M new prediction values are calculated and a new line is
added at the bottom of the prediction buffer, holding the measured and the new predicted
positions. Measured values are expected to arrive at every time interval ∆t. If this is not
the case, the prediction has to get by without a measured position. The corresponding

116 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

prediction fields (marked with “P”) in the prediction buffer are left empty and the old
measured positions (marked with “D”) are copied to the new line in the prediction buffer.
When the next measured value arrives, the missing measured value is interpolated. In
Figure 4.17 the missing measured value is marked with “I”.

Figure 4.17: Buffer values in case of lost measurements

Starting from a given buffer state at time t, the predicted values Pt[j] at time t for points
of time t+ j∆t are calculated as:

Pt = [xt(t+ ∆t), xt(t+ 2∆t), . . . , xt(t+M∆t)]

Pt[j] = xt(t+ j∆t) ∀ j ∈ [1, . . . ,M]

The predicted values Pt+i∆t[j] at time t+ i∆t for points of time t+(i+ j)∆t are calculated
as:

Pt+i∆t = [xt+i∆t(t+ (i+ 1)∆t), xt+i∆t(t+ (i+ 2)∆t), . . . , xt+i∆t(t+ (i+M)∆t)]

Pt+i∆t[j] = xt+i∆t(t+ (i+ j)∆t) ∀ i ≥ 0, j ∈ [1, . . . ,M]

The average ARM prediction values APt+i∆t(j) are calculated as mean average values of k
Pt+i∆t(j) values, whereby k denotes the number of average iterations: 1 ≤ k ≤ i.

AP (j) =
1∑m=k−1

m=0 wm

m=k−1∑
m=0

pi−m(j +m)wm

wm =

{
w0 = 1
wm = 0.6wm−1

pi−m(j +m) =

0 if dim(Pt+(i−m)∆t) = 0 (lost frame)
0 if j +m > i
Pt+(i−m)∆t[j +m] else

Figure 4.18 illustrates this process for M = k = 4. The average ARM prediction results
are written to the buffer instead of the Pt+i∆t[j] results and used in the next prediction at
time t+ (i+ 1)∆t as predicted values.

4.5. OBJECT MOTION RECONSTRUCTION AND PREDICTION 117

Figure 4.18: Averaging k prediction values.

4.5.2 Discussion

Despite the fact that this algorithm is very simple, since it is mainly generating weighted
mean values of predicted positions at different points of time, it is well applicable in a real
tracking and prediction scenario (see Sec. 5.2). Its accuracy proved also to be sufficient for
hand-eye experiments (see Sec. 5.4). Additionally, it showed to be computationally very
efficient compared to methods were the input data was smoothed before the prediction
step (see [Sel00] for details).

118 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.6 Robot Arm Motion Control

4.6.1 Human Trajectory Generation

As has already been mentioned in Section 2.2.1 in prehensile movements, the transport
component is used to reach the object to grasp. However moving the hand from point to
point is a heavily under-constrained task [Kaw96]. To limit the enormous space of solutions
researchers looked for parameters that stayed invariant for different reaching movements.
Summarizing, it was found out that there exist indeed two invariant features, namely (1)
that the path of the hand is roughly a straight line in Cartesian coordinates and (2) that
the tangential velocity profile along this hand-path is bell-shaped.

We have seen that for modeling those invariant features researchers applied different meth-
ods. Mainly two could be distinguished. The first method tries to find models applying
optimization theory, the second tries to reproduce the tangential velocity profile. Two rep-
resentatives for those methods will be discussed more detailed in the following, namely the
“Model of Flash” (optimization) and the “Model of Goodman” (reproduction of velocity
profile).

Model of Flash

In engineering, obtaining a unique solution to a under constrained task is a typical problem
solved by optimal control theory. The basic principle is to specify a so-called objective
function or performance index and select a solution that minimizes it.

An optimization criterion that has been shown to match experimental data of human
reaching very well is minimum jerk11 [FH85], which was proposed by Tamar Flash. In
other words, movements are planned in a way to assure maximal smoothness. Equation
4.13 states the objective function C for a 2D-movement, equation 4.14 the corresponding
hand path

C =
1

2

t=T∫
t=0

{(d
3x

dt3
)2 + (

d3y

dt3
)2}dt (4.13)

x1(t) = x0 + (xT1 − x0) · (10τ 3
1 − 15τ 4

1 + 6τ 5
1) (4.14)

with x0 and xT1 being the start and the target position, T being the movement duration,
and τ1 = t/T . The resulting paths are straight Cartesian lines, the tangential velocity
profiles are symmetric and bell-shaped.

Reactions to double-step targets, i.e. the case that the target “jumps” during the move-
ment from xT1 to xT2 , are explained by the so-called superposition scheme [FH91]: At

11Jerk = derivative of acceleration.

4.6. ROBOT ARM MOTION CONTROL 119

the time t = t2, a second minimum jerk trajectory (Eq. 4.15) is superimposed on the first:

x2(t ≥ t2) = (xT2 − xT1) · (10τ 3
2 − 15τ 4

2 + 6τ 5
2) (4.15)

with τ2 = (t − t2)/(T − t2). The parameters of the model were estimated by fitting it to
experimental data. This model has been successfully implemented on a robot [Hen91].

Model of Goodman

It was found out that for many criteria that are minimized (e.g. jerk, energy etc.) the
resulting velocity profile is always very similar, the aforementioned bell-shape. As already
mentioned in Section 2.2.1, this lead Goodman to the proposal that it is not the objective
during a human reaching movement to minimize one certain criterion, but that by achieving
the bell-shaped profile many criteria are minimized. Therefore it was his objective not to
find another criteria, but to find a description modeling the velocity profile. Here he
found out, that a human reaching trajectory can be described by the following differential
equation computing the current velocity of the hand:

ẋ(t) =
1

τ1
· ġ(t) · (xT1 − x(t)), g(t) = t3 (4.16)

g(t) assures a bell-shaped velocity profile and a smooth, two-phasic acceleration profile.
Following Goodman et al., it corresponds to a nonlinear perception of time found in psy-
chophysical experiments. To transform Cartesian velocities into joint velocities, they pre-
sented a general scheme applicable also in the case of redundant degrees of freedom [GG95].
Equation 4.17 shows the solution of Eq. 4.1612:

x1(t) = x0 + (xT1 − x0) · (1− e
− 1

τ1
g(t)

) (4.17)

For the case of a double-step target, they proposed that a second differential equation given
in Eq. 4.18 is superimposed [GG95]:

ẋ2(t ≥ t2) =
1

τ2
· ġ(t− t2) · (D2 − x2(t)) (4.18)

with D2 = (xT2 − xT1). This leads to the solution

x(t ≥ t2) = x0 + (xT1 − x0) · (1− e
− 1

τ1
g(t)

) +

(xT2 − xT1) · (1− e
− 1

τ2
g(t−t2)

) (4.19)

Unfortunately, due to the nonlinearity in time Eq. 4.16 and Eq. 4.18 cannot be super-
imposed to form a single “visual-servoing-like” equation. However, simulations of Eq. 4.19
agreed well with experimental results.

12Note: Eq. 4.16 is very similar to the basic visual servoing control law [HHC96] only differing in the
time-variant gain. But Goodman et al. however did not address visual feedback.

120 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.6.1.1 Static, Double-Step and Dynamic Targets

Two cases of trajectory generation have been described above. Both methods were able to
describe the human behavior for reaching to a static and a double-step target.

Is is possible to use the aforementioned equations to describe also the reaching for a dynamic
target? A dynamic target changes its position continuously. If this continuous change is
described by discretization into succeeding target steps, those target positions could be used
as an input for a hand (manipulator) to follow or track the target, respectively. To apply
the method of e.g. Goodman the equations have to be generalized first:

taking the target point xT (i−1) of a trajectory as the starting point of a succeeding trajectory
with the target point xTi, one gets by superposition on the velocity level:

ẋ(t ≥ tn) =
n∑

i=1

3(t− ti)
2

τi
(xTi − xT (i−1))e

− (t−ti)
3

τi (4.20)

This is shown exemplarily in Figure 4.19 for the superposition of one element of ẋ(t) of
two trajectories.

An application and the results of the continuous overlay of targets can be seen in Sec-
tion 5.4.2 where the manipulator follows a circular moving target (the theory for that you
can find in the next section). It is obvious that by this method the manipulator never will
reach the target until the target object stops. Therefore other methods have to be applied
to find points on the target’s trajectory that lie “in the future” where the interaction of
the manipulator with the target object shall take place. The determination of these hand-
target interaction points and the resulting intermediate targets for the hand approaching
the target object are described in Section 4.7.

4.6.2 Robotic Trajectory Generation

Trajectory generation for a robotic manipulator specifies the generation of position and
orientation data, velocity and acceleration profiles to move the end-effector from a starting
position to a target position. As input parameters for the trajectory generation serve the
starting and the target position, the current end-effector position and orientation13 as well
as special parameters, which are necessary for planning the trajectory (e.g. the time given
to reach the target position, the accuracy that shall be reached at the target position, . . .).
With this input data the trajectory generation calculates necessary intermediate targets,
which shall be reached by the end-effector in certain time-steps before the end position is
finally reached. By use of the inverse differential kinematics it is possible that the trajectory

13feedback is mainly used for error corrections, see also [Hau99]

4.6. ROBOT ARM MOTION CONTROL 121

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

t [ms]

dx
(t

)
[m

/s
]

dx1
dx2
dx1+dx2

Figure 4.19: Superposition of biologically motivated trajectories

generation produces translatory and rotatory velocities instead of the according position
and orientation vectors. All those data is referenced to the world coordinate system.

Biologically Motivated Trajectories As described in Section 2.2.1 and modeled by
Equation 4.14 and Equation 4.16 a human grasping trajectory between a starting posi-
tion and a target position has the invariant features that (1) the hand moves on a straight
line and (2) the tangential velocity profile of the hand is bell-shaped.

For the trajectory generation of MinERVA an extended version of the model of Goodman
was developed in [Hau99]. This extended model generalizes the model of Goodman in a
way that it is able to handle multiple target jumps as well as the integration of visual and
proprioceptive feedback during the movement. Especially the extension that as a reaction
on a target jump ongoing arm trajectories can be super-positioned is very useful for the
grasping of moving objects, since usually continuous online adaptions of the end-effector

122 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

trajectory are necessary to accurately catch an object.

In the following first a short repetition of the main results concerning the trajectory gener-
ation on positional level according to [Hau99] is given (Section 4.6.2.1), then its extension
to control the robots orientation is presented in Section 4.6.2.2.

4.6.2.1 Determination and Control of Hand’s Position

With the trajectory generation for the position, the viapoints for the position wp(t) of the
robot’s end-effector shall be calculated, i.e. in this case the translatory velocity wṗ(t) of
the end-effector.

Therefore following abbreviations which were already defined before are shortly repeated:

Di = wpTi − wpT (i−1) with wpT0 = wp(t = 0) (4.21)

ei(t) = e
− 1

τi
(t−ti)

3

(4.22)

where Di is the vectorial difference between two target points (for a target jump).

By superposition on velocity level one gets for wṗ(t) :

wṗ(t ≥ tn) =
n∑

i=1

3(t− ti)
2

τi
·Di · ei(t) with t1 = 0 (4.23)

Equation 4.23 describes the time course of the translatory velocities after n target jumps.

The solution of Equation 4.23 is therefore:

wp(t ≥ tn) = wpTn −
n∑

i=1

Di · ei(t) (4.24)

One drawback of equation Equation 4.23 is, that wp(t) is not used for the calculation
of wṗ(t). But for the integration of visual or proprioceptive feedback14 it is necessary to
integrate the current end-effector position in the calculation of the end-effector’s velocity.

Use of substitutions and mathematical transformations leads to following equation (see

14see [Hau99] for the use of proprioceptive or visual feedback in human or robotic systems

4.6. ROBOT ARM MOTION CONTROL 123

[Hau99] p. 52 et seqq. for more details):

wṗ(t ≥ tn) =
3(t− tn)2

τn
(wpTn− wp(t)) +

n−1∑
i=1

Di · ei(t) ·
(

3(t− ti)
2

τi
− 3(t− tn)2

τn

)
(4.25)

Finally, only the determination of the factor τi is left. τi can be determined by specifying
of the desired end-point exactness εpi

and time Ti for the end-effector to move from the
starting position to the target position.

With:

| wpTi − wp(Ti)| ≤ εpi
(4.26)

Elimination of the “is lower than” sign and use of Equation 4.24 with n = 1 leads to:

εpi
= |Di| · e−

T3
i

τi (4.27)

By a simple transformation one gets finally the necessary value for τi:

τi =
T 3

i

ln
(
|Di|
εpi

) (4.28)

With Equation 4.28 only the exactness regarding the position is granted. If it is desired
that the velocity at the target position reaches a certain value, this can be integrated into
the determination of τi in the following manner:

According to [Hau99] the non-equation is prerequisite here:

| wṗ(Ti)| ≤ εvi
(4.29)

which leads to

εvi
=

3T 2
i

τi
· | wpTi − wp(Ti)| =

3T 2
i

τi
· εpi

(4.30)

and finally τi is calculated to

τi = 3T 2
i

εpi

εvi

(4.31)

124 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Finally, to map the position values from Cartesian space to joint space the equations
described in Section 3.1.1 have to applied.

4.6.2.2 Determination and Control of Hand’s Orientation

To determine the “trajectory” for the orientation of the manipulator the same principle as
for the position control shall be used, i.e. using a biologically motivated strategy for the
control. The main difficulty here is to transform those rules to be suitable for orientation
control.

In [Mai99] is suggested to apply biologically motivated trajectories (see Equation 4.16) to
calculate trajectories for Euler angles, which describe the current orientation of the end-
effector. Because of reasons which are described in more detail in Section 3.1.1, the use of
Euler angles is left out here, but the use of approach and normal vector is prefered in the
following.

Thereto it is necessary to extend the principle of biologically motivated trajectories to be
usable with approach- and normal vectors. In the following the solution to this problem is
explained.

Like explained in Section 3.1.1 one can use an approach vector wa and a normal vector
wn to describe the orientation of an end-effector. With these vectors a rotation matrix
w
e R according to Equation 4.10 can be calculated which also describes the orientation of
the end-effector in an unique way. In the following a rotation matrix R is used having the
properties:

• being an orthonormal matrix with row vectors forming a right-handed coordinate
system

•
detR = 1 (4.32)

•
RRT = RTR = I (4.33)

The same features hold for matrix w
e R.

Determination of the rotation matrix from an rotation axis and an rotation angle
A rotation matrix in R3 can be calculated by a normalized vector u and a rotation angle

4.6. ROBOT ARM MOTION CONTROL 125

ϕ. u forms thereby a rotation axis, ϕ is an angle with a value range 0 ≤ ϕ < 2π by which
the counterclockwise rotation around u takes place.

R = (uuT) + cosϕ(I− uuT) + sinϕ

 0 −uz uy

uz 0 −ux

−uy ux 0

 with |u| = 1 (4.34)

Solved and summarized gives for matrix R:

R =

 u2
x + cosϕ(1− u2

x), uxuy(1− cosϕ)− uz sinϕ, uxuz(1− cosϕ) + uy sinϕ
uxuy(1− cosϕ) + uz sinϕ, u2

y + cosϕ(1− u2
y), uyuz(1− cosϕ)− ux sinϕ

uxuz(1− cosϕ)− uy sinϕ, uyuz(1− cosϕ) + ux sinϕ, u2
z + cosϕ(1− u2

z)

=

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.35)

Determination of an rotation axis and an rotation angle from a rotation matrix
The other way around it is also possible to calculate a rotation axis u and the according
rotation angle ϕ from a given rotation matrix R.

By use of the condition |u| = 1, the rotation angle ϕ having a value range 0 ≤ ϕ < 2π can
be calculated from the sum of the diagonal elements of R:

u2
x + u2

y + u2
z + cosϕ(3− u2

x − u2
y − u2

z) = r11 + r22 + r33 (4.36)

⇒ cosϕ =
1

2
(SpurR− 1) =

1

2
(r11 + r22 + r33 − 1) (4.37)

with 0 ≤ ϕ < 2π, and clockwise rotation around axis u

The rotation axis can be obtained by determination of the only (!) Eigen vector of R.

(R− I) u = 0 ∧ |u| = 1 (4.38)

Thereby the orientation of u is determined, but not the direction of u. Using ϕ the
correct direction of u has to be specified finally (one gets the same rotation matrix, if
one turns clockwise around the one possible direction of u with ϕ, as well as, if one turns
counterclockwise by the angle (2π − ϕ)). This problem can be solved if it is defined that
always the minimal rotation angle ϕ shall be used.

0 < ϕ < π (4.39)

126 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

For ϕ = 0 the calculation of the rotation axis is not reasonable, since in this case no
rotation shall take place. The same holds for ϕ = π, since in that case a limit had to be
set. This problem can be avoided, if u is determined from Equation 4.38, whereby the
direction of u can be chosen randomly (rotation by 180◦).

Instead of using Equation 4.38 a simple comparison of the coefficients of both matrices
on the right side of Equation 4.35 is done. Exemplarily one gets from r32 and r23 by
subtraction of (Equation 4.40–Equation 4.41):

r32 = uyuz(1− cosϕ) + ux sinϕ (4.40)

r23 = uyuz(1− cosϕ)− ux sinϕ (4.41)

r32 − r23 = 2ux sinϕ ⇒ ux =
r32 − r23
2 sinϕ

(4.42)

Applying this operation on all non-diagonal elements of R, u and the according ϕ results
to:

u =

 ux

uy

uz

 = 1
2 sin ϕ

 r32 − r23

r13 − r31

r21 − r12

 = Fu(R)

ϕ = arccos(1
2
(r11 + r22 + r33 − 1)) = Fϕ(R) (4.43)

with 0 < ϕ < π, |u| = 1

With these Eq. 4.43 a rotation axis u with a minimal necessary rotation angle ϕ can be
determined from a rotation matrix R. Inserting u and ϕ in Equation 4.34 again, R can
be calculated.

Application on biologically motivated trajectories Basing on the world coordinate
system (see Figure 4.20)

Fw :
[

wbx wby wbz

]
= I (4.44)

the orientation of the end-effector of a starting point

Fe1 : w
e1R =

[
w
e1bx

w
e1by

w
e1bz

]
(4.45)

4.6. ROBOT ARM MOTION CONTROL 127

Figure 4.20: Calculation of the angular velocity vector for the orientation trajectory

is given, and the orientation of the target point is given by

Fe2 : w
e2RT =

[
w
e2bx

w
e2by

w
e2bz

]
(4.46)

Now a “rotation difference” e1R∆ relative to Fe1 can be determined:

w
e2RT = w

e1R · e1R∆ (4.47)

⇒ e1R∆ = w
e1R

T · w
e2RT (4.48)

From e1R∆ the rotation axis and the rotation angle is calculated using Equation 4.43:

e1u∆ = Fu(e1R∆) (4.49)

ϕ∆ = Fϕ(e1R∆) (4.50)

whereby the vector of the rotation axis is given in coordinates of Fe1.

The important point hereby is that e1u∆ is exactly the orientation and direction of an
angular velocity vector around that the end-effector turns with the angular velocity ϕ̇∆ to

128 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

get from the starting orientation to the target orientation (see also Figure 4.20):

wω∆ = wu∆ · ϕ̇∆ = w
e1R · e1u∆ · ϕ̇∆ (4.51)

Now the principle behind the biologically motivated trajectories can be applied to the
rotation angle ϕ∆. Therefore the differential Equation 4.16 is adapted appropriately:

ϕ̇∆(t) =
3t2

τr
(ϕ∆T

− ϕ∆(t))

=
3t2

τr
(ϕ∆T

− ϕ∆0) · e
− t3

τr (4.52)

with ϕ∆0 = 0 and ϕ∆T
= ϕ∆

Since the angle ϕ∆0 is always 0 at t = 0 and since the “target angle” is ϕ∆T
= ϕ∆,

Equation 4.51) can be written as:

wω∆ = w
e R · eu∆ · ϕ∆ ·

3t2

τr
· e−

t3

τr (4.53)

With the abbreviation

eri
(t) = e

− 1
τri

(t−ti)
3

(4.54)

the equation of motion for the angular velocity vector in Fw can be obtained by superpo-
sition from Equation 4.53, like it is needed for the inverse differential kinematics. Matrices
w
e RTi form the particular target orientations.

wω(t ≥ tn) =
n∑

i=1

w
e RT (i−1) · eu∆i

· ϕ∆i
· 3(t− ti)

2

τri

· eri
(t) (4.55)

with t1 = 0

R∆i
= w

e RT
T (i−1) · w

e RTi

eu∆i
= Fu(R∆i

)

ϕ∆i
= Fϕ(R∆i

)

w
e RT0 = w

e R(t1 = 0)

4.6. ROBOT ARM MOTION CONTROL 129

Here it is also desired to integrate the current orientation of the end-effector into the
calculation of the angular velocity. Since Equation 4.25 is derived from Equation 4.23 the
same calculation can be formally applied to Equation 4.55. But it is not necessary to
apply this non-trivial conversion to Equation 4.55. It is sufficient to substitute the vector
difference (wpTn − wp(t)) in Equation 4.23 by the “rotation difference” (same structure
of Equation 4.25 and Equation 4.55!) to get:

wω(t ≥ tn) =
3(t− tn)2

τrn

· w
e R(t) · eu∆(t) · ϕ∆(t) (4.56)

+
n−1∑
i=1

w
e RT (i−1) · eu∆i

· ϕ∆i
· eri

(t) ·
(

3(t− ti)
2

τri

− 3(t− tn)2

τrn

)
with t1 = 0

R∆i
= w

e RT
T (i−1) · w

e RTi

eu∆i
= Fu(R∆i

)

ϕ∆i
= Fϕ(R∆i

)

w
e RT0 = w

e R(t1 = 0)

eR∆(t) = (w
e R(t))T · w

e RTn

eu∆(t) = Fu(eR∆(t))

ϕ∆(t) = Fϕ(eR∆(t))

w
e R(t) is the current orientation of the end-effector at point of time t, and eR∆(t) is the
“rotation difference matrix” between the target orientation and the current orientation.

The calculation of the factor τri
is performed analogously to Equation 4.28 and Equa-

tion 4.31, but instead of the distance |Di| between start- and target position the needed
rotation angle ϕ∆i

between start- and target orientation is used. εrpi
is the exactness in

rad by which the target position shall be reached, εrpi
the remaining velocity (in rad/s) at

130 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

the target position.

τri
=

T 3
i

ln
(

ϕ∆i

εrpi

) (4.57)

τri
= 3T 2

i

εrpi

εrvi

(4.58)

4.6.2.3 Collision Detection and Workspace

The task of collision detection is the avoidance of collision between parts of the manipulator
themselves and other objects, especially the base on which the manipulator is mounted.
Like explained in Section 3.1.1 it is possible to integrate performance criteria in the inverse
differential kinematics. This procedure comes along with an enormous calculational effort.
Nevertheless it is not granted that no collision occurs since the criteria are simply added
and can therefore influence or even extinguish each other.

Therefore in this work a different, more simple method is applied to avoid collisions. Colli-
sions of two links which are connected by a joint can be avoided by limiting the value ranges
of the joints. Unfortunately collisions of parts of the arm which are not straightly connected
by a joint as well as collisions with other parts cannot be avoided by this procedure.

One way dealing with this problem is to choose an appropriate workspace. Doing so
collisions of the end-effector can be avoided in most cases.

By defining a workspace it can also be avoided that the manipulator moves towards target
points which cannot be reached due to the manipulator’s configuration or geometry. In
case that a target position is chosen that lies outside the workspace, the target position
must be corrected in a way that it comes to lie inside the workspace. The simplest method
to achieve this is to move the point on the border of the workspace in a way that the
distance between the corrected and the given target point is minimal. If further target
points are given that are outside the workspace the manipulator moves on the border of
the workspace having a minimal distance to the given targets.

One difficulty thereby is, that the workspace continuously changes through the changing
orientation of the manipulator. As a simple solution to this problem the orientation of the
manipulator can be limited and the workspace can be adjusted accordingly, so that every
point inside the workspace can be reached with the allowed orientation.

In the following a simple geometric form for the workspace is chosen, namely a bowl.
This bowl is described by a radius rs and the position of the center of the bowl in world
coordinates wps.

If it is necessary to correct a target point wpT such that it comes to lie inside the workspace,

4.6. ROBOT ARM MOTION CONTROL 131

this can be achived in the following way (see also Figure 4.21):

wp′
T =

rs

| wpT − wps|
(wpT − wps) + wps (4.59)

if | wpT − wps| > rs

0
Fw

wp
T

p
s

w

wp
T

p
s

w−

w

T
p’

sr

Workspace

Figure 4.21: Workspace and correction of a target point

4.6.3 Discussion

Finally, the information gathered in the preceding sections is summarized here and pre-
sented in a form that allows the control of the end-effector of a redundant manipulator by
simple input of target points (see Figure 4.22).

This feedback structure, having a time base ∆t, contains the following elements:

1. Trajectory planning
The trajectory planning is a superimposed system (in our case the “intermediate

132 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

q

p, Rww
e

ω diff. inverse Σ MinERVAq
q: Feedback

p, w w

Trajectory

planning

Trajectory
generation Kinematics joints

of joints

q: calculated

qdirect
Kinematics

Intermediate Targets

Figure 4.22: Overview for the calculation of joint angles from given target coordinates

target generator”, see Section 4.7) which generates intermediate targets which shall
be reached by the manipulator. The generated intermediate targets (position and
orientation) are forwarded to the trajectory generation and form the input to the
system.

2. Trajectory generation
The trajectory generation is responsible for the following:

• Acceptance of new intermediate targets from the trajectory planning module
and correction of intermediate targets if necessary (see also Section 4.6.2.3).

• Calculation of translatory and rotatory velocities for the inverse differential
kinematics from the intermediate targets, the time to reach the targets, the
exactness specifications and the feedback values (current position and orienta-
tion). Therefore equations Equation 4.25 et seqq. and Equation 4.56 et seqq.
are used.

• Management of all targets. Removal of targets, if

– the target point is reached with the demanded exactness or

– the time T + ∆T for the movement is over or

– the exponential term in Equation 4.25 resp. Equation 4.56 is below a certain
threshold and does not add to the whole movement anymore.

3. Inverse differential kinematics
The inverse differential kinematics receives as input the Cartesian velocities and cal-
culates the necessary angular velocities (see also Section 3.1.1). In the criteria for
joint limit avoidance and singularity avoidance appropriate experimentally deter-
mined values for the weights ki are used.

4. Integration
The integration is a summation in a numerical sense and is used here to calculate

4.6. ROBOT ARM MOTION CONTROL 133

new joint angles q(t+ ∆t) from the current joint angles q(t) and the joint velocities
q̇(t). It is also checked that the joint velocities stay in predefined limits, i.e. it is
checked that the real joints can be driven with these values. Additionally, the new
calculated joint angles are checked on their validity.

5. Transmission of the calculated joint values to MinERVA
The calculated joint angles are transmitted to the joint controllers.

6. Feedback, direct kinematics
By the direct kinematics the calculated or measured joint angles are transformed
into the appropriate position and orientation information and then transmitted to
the trajectory generation. The measurement of the real joint angles is not necessary
for every time step ∆t (see also [Hau99] or [Mai00]).

134 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.7 Hand-Target Interaction Point Determination and
Intermediate Target Calculation for Interaction with
a Dynamic Target

Up to now it is still unspecified when and where the interaction of the end-effector and
the target object shall take place. Additionally, the way or trajectory of the moving end-
effector towards the target object needs to be determined, or i.e. the via-points need to be
specified depending on the target trajectory.

To answer these questions a transfer of the knowledge about human interceptive movements
that was gained in Sec. 2.2 shall take place.

4.7.1 Open Questions and Hypotheses

Analysing the results of the experiments about Hand-Target interaction for human catching
movements in Sec. 2.2.3 still some questions are unanswered that are necessary to generate
a model for a robot to perform reach-to-catch movements.

• Which movement initiation strategy shall be chosen?

• Which kind of movement online control shall be selected? Reactive or predictive?

• How long shall a sub-movement duration be chosen?

• How long shall a intersubmovement interval be chosen?

• What speed shall the end-effector have at the time of contact with the object?

• At which slope of the tangential velocity profile shall the interaction take place? At
the ascending or at the descending slope?

• Where are the intermediate targets of the end-effector movement, i.e. how large is
the sub-movement amplitude?

• Where is the final target of the whole end-effector movement?

• Where is the interaction point in the workspace of the manipulator?

Naturally, these are not all questions that can be asked. But they build a good starting
point.

In a human catching movement the motion is divided into two phases: the reaching phase
and the grasping phase. Here these phases are specified in more detail to obtain a model
consisting of four phases.

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 135

Additionally, as in the human catching experiments, the area where the hand-target inter-
action shall occur, i.e. the grasping or interaction area is specified beforehand.

Overview In order to grasp a continuously moving object it has to be decided where and
when the contact of the manipulator with the object shall take place. This is called Hand-
Target Interaction Point Determination within this context. Since the interaction point is
a point in space and time which lies in the future, it is determined from the predictions
of the object position. In reaction to this determination the robot has to move its end-
effector to the interaction point on time. In most cases the interaction point is changing
with time, i.e. it is periodically updated integrating current knowledge of object tracking
and prediction.

The choice of the position of the possible interaction point depends on the current motion
phase of the robot arm, but the interaction point has always to lie inside a pre-defined
catching area. Four different motion phases are distinguished:

1. an approach phase (Section 4.7.2.1) where the end-effector shall get close to the object
to catch,

2. an adaption phase (Section 4.7.2.2), where the trajectories of end-effector and the
target object shall get close to “match”,

3. a contact phase (Section 4.7.2.3) where the target object shall be contacted, and

4. a follow phase (Section 4.7.2.4) where the target object shall be smoothly grasped.

For targets moving at a moderate speed all motion phases will be activated sequentially.
As a result the arm motion will not be a single movement but an overlay of separate sub-
movements. Therefore appropriate intermediate targets for the manipulator have to be
calculated.

Predictions Predictions are generated in regular time intervals from the prediction mod-
ule (see Figure 4.1). These predictions are points in space and time that will most probably
be reached by the moving object. For every prediction the coordinates (xp, yp, zp)

15 of the
future object position are calculated as well as the duration Tp that the object needs, to
travel from its current position to the predicted position. Two distinct predictions are
essential for the described model: the prediction with Tp = 2Ts, which triggers the transi-
tion from the approach phase to the adaption phase, when the prediction appears in the
catching area, and the prediction with Tp = 3/2Ts, which triggers the transition from the
adaption phase to the contact phase, when the prediction is chosen as the final interaction

15We restrict the consideration on the position here. Certainly the same applies for the orientation
coordinates, approach vector a and normal vector n

136 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

point. Thereby Ts is the duration of a sub-movement as described in Section 4.6.1 and
Section 4.6.1, respectively.

Every time when a new intermediate target shall be sent to the motion control unit, one
prediction out of the current prediction-set is chosen as a possible Interaction Point with
coordinates (XIP, Y IP, ZIP). The time which is left for the arm to reach this target
(interaction point) is called “Time-to-contact”or TtC. The interaction point is used in all
phases of arm motion in a different way to calculate the intermediate targets.

Determination of optimal catching position The determination of the target inter-
action point on the future trajectory of the moving object must be restricted to a point
that lies inside the workspace of the manipulator. But even this does not guarantee that
a chosen point is suitable for catching. To keep the situation simple a user-defined area
is selected as the catching area, where it is possible to grasp (or catch, respectively) the
object with the manipulator. The catching area can have any three dimensional geometric
form (e.g. a sphere), but must lie completely inside the workspace of the manipulator. One
point within this area, where it is optimal to grasp the object e.g. the point with maximum
manipulability of the manipulator, is defined as the “Optimal Point” with the coordinates
(XOP, Y OP,ZOP). The closer a prediction lies relative to the “Optimal Point” the better
it is to grasp (catch) the object there.

4.7.2 Four Phase Model of Hand Motion towards a Moving Target

4.7.2.1 Approach Phase

The approach phase starts when the first prediction appears in the catching area. The goal
of this phase is to reduce continuously the distance between the manipulator and the first
possible hand-target interaction point.

Determination of possible Hand Target Interaction Points In the approach phase
the manipulator targets an possible16 interaction point that is located at the border of the
catching area. Here the question may arise, why not the prediction that lies closest to the
“Optimal Point” at this time is chosen as the possible interaction point? The reason for
this is that at the end of this phase the manipulator shall be close to the target object
when the object enters the catching area, but still have enough time and space to grasp it
smoothly.

To illustrate the procedure of Target Interaction Point Determination during the approach
phase see Figure 4.23. At the beginning there is no prediction inside the catch area (Fig-

16The point is termed as possible here, since in succeeding phases the interaction point will be changed
to a point that is more optimal to grasp

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 137

ure 4.23a), that means that there is no Interaction Point to select and therefore no arm
motion. When the first predictions are inside the catch area (Figure 4.23b), the one closest
to the border is chosen (the black colored asterics surrounded by the small dashed circle
in Figure 4.23b) as the possible Interaction Point. Each time when new predictions arrive
or are queried from the prediction module a new calculation of the Interaction Point takes
place, which usually changes the Interaction Point (Figure 4.23c and Figure 4.23d), but
only inside a limited area (indicated by the small dashed circle)17.

Figure 4.23: In (a) no possible interaction point exists, because there is no prediction in the catching
area. In (b), (c) and (d) the Interaction Point is indicated by the black asterics, which is the prediction
that is inside the catching area and closest to the border of the area.

Calculation of appropriate intermediate targets When a target Interaction Point
has been chosen, the robot arm has to move. Similar to the human behavior

17This assumption is reasonable if one assumes that the target object makes no sudden changes in
direction or acceleration that cannot be foreseen. But still the predictions underlie some jitter.

138 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

regularly every Ts/2 a new sub-movement shall be started for which a intermedi-
ate target has to be calculated. Given the current position of the end-effector
(xeepos, yeepos, zeepos), the duration of a sub-movement Ts and the data of the possible
target interaction point (XIP, Y IP, ZIP, T tC) the intermediate target for the manipula-
tor (xeedes, yeedes, zeedes) can be calculated. Thereby the idea, illustrated in Figure 4.24,
is that if the end-effector shall cover the distance XIP −xeepos in TtC it has to cover the
distance xeedes− xeepos with one sub-movement or within Ts:

Figure 4.24: The manipulator shall reach XIP in TtC. Therefore it shall reach xeedes in Ts

XIP − xeepos

T tC
=

xeedes− xeepos

Ts

(4.60)

Solved for the desired unknown:

xeedes = (XIP − xeepos)
Ts

TtC
+ xeepos (4.61)

4.7.2.2 Adaption Phase

The adaption phase starts when the prediction with a TtC = 2Ts appears in the catching
area. The goal of this phase is to approximate the trajectory of the target object by the
manipulator trajectory. This phase can be devided in two separate phases:

Determination of Possible Hand Target Interaction Points

• Sub-phase a
As mentioned the adaption phase starts when the prediction with a Tp = TtC = 2Ts

appears in the catching area. 2Ts was chosen, to leave the manipulator enough time

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 139

to approach the target object without contacting it. After each new prediction query,
the predicted position with a Tp = TtC = 2Ts is chosen as the Interaction Point.
During this sub-phase the TtC stays constant on TtC = 2Ts. Figure 4.25a and
Figure 4.25b show the continuous displacement of the Interaction Point, whereby in
this example the black asterics, indicating the Interaction Point, is always the fifth
prediction.

Figure 4.25: a and b: the Interaction Point is the predicted position with a TtC = 2Ts. c and d: the
Interaction Point is the prediction that lies closest to the “Optimal Point”.

• Sub-phase b
After each new prediction query the prediction with a Tp = 2Ts gets closer to the
“Optimal Point” and finally gets the prediction which is closest to the “Optimal
Point”. In this region the target object should ideally be grasped. If the above men-
tioned condition is fulfilled the displacement of the Interaction Point is stopped. Now
the prediction which is closest to the “Optimal Point” is chosen as the Interaction
Point. In Figure 4.25c and Figure 4.25d the fourth and the third prediction, respec-
tively, are the possible Interaction Points. Similar to the situation in the approach

140 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

phase these Interaction Points vary after each new prediction query, but normally
stay within a limited region.

Calculation of appropriate intermediate targets

• Sub-phase a
The intermediate targets (xeedes, yeedes, zeedes) are calculated the same way as in
the approach phase (see Equation 4.61). Through the continuous displacement of the
possible interaction point the trajectory of the manipulator approximates the target
object’s trajectory asymptotically.

• Sub-phase b
The intermediate targets (xeedes, yeedes, zeedes) are again calculated the same way
as in the approach phase (see Equation 4.61). Through the positional stability of the
Interaction Point the manipulator moves in a similar way as in the approach phase.

4.7.2.3 Contact Phase

The contact phase starts when the prediction that is closest to the “Optimal Point” has a
Tp = TtC ≈ 3/2Ts.

Determination of possible Hand Target Interaction Points At this point of time the
manipulator is expected to be very close to the target object and the “Optimal Point”
and the trajectories of target and manipulator almost coincide. These conditions are
convenient preliminaries to finally catch the target object. As already mentioned above,
the contact phase starts when the prediction that is closest to the “Optimal Point” has
a Tp = TtC ≈ 3/2Ts. In Figure 4.26 this point in time is defined as T1. At this time
the final Interaction Point is fixed and the final velocity (XV IP, Y V IP, ZV IP) of the
target object at the contact point is predicted. It is determined that the end-effector
shall contact (catch) the object in TtC = 3/2Ts in (XIP, Y IP, ZIP) having the velocity
(XV IP, Y V IP, ZV IP). Fulfilling this condition it is guaranteed that the grasping of the
target is smooth.

Calculation of appropriate intermediate targets At time tn−1 the last predictions
are stored and no more predictions are queried. Before the contact three sub-movements
are started, namely the sub-movements n − 1, n and n + 1, of which only the first one
(n − 1) will be finished before the contact. Each beginning of a sub-movement is called
ti and the corresponding intermediate target (Xi, Yi, Zi). The last three sub-movements
must be executed to fulfill the final conditions, namely to match the target position and
velocity in the final Interaction Point.

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 141

Figure 4.26: At T1 the prediction with T = 3/2Ts is chosen as the final interaction point. At this point
in time it is decided to contact the target object at ToC = tn+1 + tx, whereby ti are the starting times
of the sub-movements i.

The difference of the generated trajectories of the “Model of Flash” (Section 4.6.1) and
the “Model of Goodman” (Section 4.6.1) are negligible. One can assume that the Model
of Flash approximates the trajectory of the robot arm sufficiently accurate. Due to the
simplicity of Flash’s equations they are used to calculate the intermediate targets for the
contact phase.

In the equations below only the x-dimension is shown. The calculations for y and z are
analog.

142 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

In general for the position of the end-effector according to Flash’s model is true:

Sub-movement n− 1 : ∀t ∈ [tn−1; tn+1]

xn−1(t) = (Xn−1 −Xn−2)(10τ
3
n−1 − 15τ 4

n−1 + 6τ 5
n−1) (4.62)

Sub-movement n : ∀t ∈ [tn; tn+2]

xn(t) = (Xn −Xn−1)(10τ 3
n − 15τ 4

n + 6τ 5
n) (4.63)

Sub-movement n+ 1 : ∀t ∈ [tn+1; tn+3]

xn+1(t) = (Xn+1 −Xn)(10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1) (4.64)

with τi = t−ti
tf i

−ti
, ti being the beginning and tf i the end of sub-movement i. Here tf i = ti+Ts.

Respectively, for the velocity of the manipulator:

Sub-movement n− 1 : ∀t ∈ [tn−1; tn+1]

ẋn−1(t) = (Xn−1 −Xn−2)(
30

Ts

τ 2
n−1 −

60

Ts

τ 3
n−1 +

30

Ts

τ 4
n−1) (4.65)

Sub-movement n : ∀t ∈ [tn; tn+2]

ẋn(t) = (Xn −Xn−1)(
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n) (4.66)

Sub-movement n+ 1 : ∀t ∈ [tn+1; tn+3]

ẋn+1(t) = (Xn+1 −Xn)(
30

Ts

τ 2
n+1 −

60

Ts

τ 3
n+1 +

30

Ts

τ 4
n+1) (4.67)

In general the prediction of the final Interaction Point (contact point) occurs asyn-
chronously to the manipulator sub-movement starting times. The time between the start
of the (n− 2)nd sub-movement and T1, the point in time at which Tp = TtC = 3/2Ts for
the prediction that is closest to the “Optimal Point”, is called tx (see Figure 4.27). De-
pending on tx it is decided which succeeding sub-movements belong to the contact phase
or the follow phase, respectively.

Two different cases are distinguished:
either 0 ≤ tx < Ts/4 (Case 1) or Ts/4 ≤ tx < Ts/2 (Case 2).

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 143

Figure 4.27: If 0 ≤ tx < Ts/4 (left side of the dotted line), case 1 is chosen and the sub-movements
n − 1 and n define the contact phase. If Ts/4 ≤ tx < Ts/2 (right side of the dotted line), case 2 is
chosen and the sub-movements n− 1, n and n + 1 define the contact phase.

In both cases the following equations are true:

∀t ∈ [tn+1; tn+2]

x(t) = Xn−1 + xn(t) + xn+1(t)

= Xn−1 +

(Xn −Xn−1)(10τ 3
n − 15τ 4

n + 6τ 5
n) +

(Xn+1 −Xn)(10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1) (4.68)

ẋ(t) = ẋn(t) + ẋn+1(t)

= (Xn −Xn−1)(
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n) +

(Xn+1 −Xn)(
30

Ts

τ 2
n+1 −

60

Ts

τ 3
n+1 +

30

Ts

τ 4
n+1) (4.69)

• Case 1: 0 ≤ tx < Ts/4
In the first case xn+1(t ≥ tn+1) and ẋn+1(t ≥ tn+1) are small at the calculated
contact point18 and therefore negligible compared to xn(t ≥ tn) and ẋn(t ≥ tn) (see

18For the case that tx reaches close to Ts/4 this condition does not hold and results in a velocity mismatch
at the contact point

144 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

Figure 4.26). Therefore, it is sufficient to calculate Xn−1 and Xn to achieve the
contact conditions. The equations for position and velocity of the end-effector are:

∀t ∈ [tn+1; tn+2]

x(t) = Xn−1 + xn(t)

= Xn−1 + (Xn −Xn−1)(10τ 3
n − 15τ 4

n + 6τ 5
n) (4.70)

ẋ(t) = ẋn(t)

= (Xn −Xn−1)(
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n) (4.71)

At tn−1, Xn−1 and Xn shall be calculated:

x(tn+1 + tx) = XIP (4.72)

ẋ(tn+1 + tx) = XV IP (4.73)

Defining:

A = 10τ 3
n − 15τ 4

n + 6τ 5
n (4.74)

Ȧ =
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n (4.75)

results in:

Xn−1 + (Xn −Xn−1)A = XIP (4.76)

(Xn −Xn−1)Ȧ = XV IP (4.77)

summarized: (
A 1− A

Ȧ −Ȧ

)(
Xn

Xn−1

)
=

(
XIP
XV IP

)
(4.78)

(
Xn

Xn−1

)
=

1

−Ȧ

(
−Ȧ −1 + A

−Ȧ A

)(
XIP
XV IP

)
(4.79)

Xn−1 = XIP − AXV IP

Ȧ
(4.80)

Xn = XIP +
(1− A)XV IP

Ȧ
(4.81)

These calculations are executed at time tn−1. The contact phase consists of the
intermediate targets Xn−1 and Xn.

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 145

• Case 2: Ts/4 ≤ tx < Ts/2
In the second case the influence of the second sub-movement (n+1) is not negligible
any more. Therefore the contact phase consists of the intermediate targets Xn−1, Xn

and Xn+1 which have to be calculated in a way to fulfill the catching conditions, i.e
matching position and velocity in the contact point.

To achieve this calculation, one assumes that the manipulator will grasp the target
object at time t = tn+1 (see Figure 4.26). The Interaction Point (XIP, Y IP, ZIP) is
represented at time tn−1 by the prediction with Tp = TtC = 3/2Ts. Now intermediate
targets Xn−1 and Xn are calculated to fulfill the conditions of Equation 4.70 and
Equation 4.71 for point of time tn+1.

One obtains Equation 4.81 and Equation 4.80 with tx = 0 and τn = tn+1−tn
tn+2−tn

= 1/2.
But only the intermediate target Xn−1 is sent to the motion control unit. Xn and
Xn+1 are calculated according to equations Equation 4.93 and Equation 4.94, which
will be derived in the following:

Xn−1 = XIP − AXV IP

Ȧ
(4.82)

Now intermediate targets Xn and Xn+1 are calculated to obtain the correct final
contact conditions at point of time ToC:

∀t ∈ [tn+1; tn+2]

x(t) = Xn−1 + xn(t) + xn+1(t)

= Xn−1 + (Xn −Xn−1)(10τ
3
n − 15τ 4

n + 6τ 5
n) +

(Xn+1 −Xn)(10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1) (4.83)

ẋ(t) = ẋn(t) + ẋn+1(t)

= (Xn −Xn−1)(
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n) +

(Xn+1 −Xn)(
30

Ts

τ 2
n+1 −

60

Ts

τ 3
n+1 +

30

Ts

τ 4
n+1) (4.84)

Defining:

A = 10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1

Ȧ =
30

Ts

τ 2
n+1 −

60

Ts

τ 3
n+1 +

30

Ts

τ 4
n+1

B = (10τ 3
n − 15τ 4

n + 6τ 5
n)− (10τ 3

n+1 − 15τ 4
n+1 + 6τ 5

n+1)

Ḃ = (
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n)− (

30

Ts

τ 2
n+1 −

60

Ts

τ 3
n+1 +

30

Ts

τ 4
n+1) (4.85)

C = 10τ 3
n − 15τ 4

n + 6τ 5
n − 1 (4.86)

Ċ =
30

Ts

τ 2
n −

60

Ts

τ 3
n +

30

Ts

τ 4
n (4.87)

146 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

results in:

AXn+1 +BXn = XIP + CXn−1 (4.88)

ȦXn+1 + ḂXn = XV IP + ĊXn−1 (4.89)

summarized: (
A B

Ȧ Ḃ

)(
Xn+1

Xn

)
=

(
XIP + CXn−1

XV IP + ĊXn−1

)
(4.90)

(
Xn+1

Xn

)
=

1

AḂ − ȦB

(
Ḃ −B
−Ȧ A

)(
XIP + CXn−1

XV IP + ĊXn−1

)
(4.91)

(4.92)

Position of the end-effector:

Xn =
−Ȧ(XIP + CXn−1) + A(XV IP + ĊXn−1)

AḂ − ȦB
(4.93)

Xn+1 =
Ḃ(XIP + CXn−1)−B(XV IP + ĊXn−1)

AḂ − ȦB
(4.94)

4.7.2.4 Follow Phase

At point of time ToC the end-effector has contacted the target object. But to smoothly
grasp the object it is necessary to follow the target for the amount of time it takes to close
the gripper.

Determination of possible Hand Target Interaction Points In the ideal case end-
effector and the target object still have no physical contact at this time. The goal is now
that the end-effector follows the object on its trajectory long enough to close the gripper
and to grasp it smoothly. It is chosen (arbitrarily) that the position of end-effector and
target object shall coincide for e.g. all Ts/2, i.e. every time when sub-movements reach
their peak velocity. Again depending on tx two cases have to be distinguished for which
following conditions have to be fulfilled (see Figure 4.28):

• Case 1: x(tn+2) = xp(ToC + Ts/2− tx) for 0 ≤ tx < Ts/4

• Case 2: x(tn+3) = xp(ToC + Ts − tx) for Ts/4 ≤ tx < Ts/2

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 147

Calculation of Appropriate Intermediate Targets

• Case 1: 0 ≤ tx < Ts/4
In this case the sub-movements (n − 1) and (n) are part of the contact phase. The
sub-movement (n + 1) is therefore the first in the follow phase. This sub-movement
is calculated at point of time tn+1, in a way that xeepos− xobjpos = 0 in tn+2. (see
Figure 4.28). The interaction point and time is then covered by the prediction with
Tp = ToC + Ts/2− tx.

Figure 4.28: Contact point for ToC. If 0 ≤ tx < Ts/4 the follow phase starts with sub-movement
n + 1. Further contacts between end-effector and target object occur at point in time tn+2 and tn+3.
If Ts/4 ≤ tx < Ts/2, the follow phase starts with sub-movement n + 2. Further contact between
end-effector and target object occur at point in time tn+3.

Since only the position shall be matched, only the equation for the position is solved.
The resulting velocity at the (“follow”) contact point is not matching the object
velocity, but this is negligible, since the catching conditions have been fulfilled for

148 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

ToC. With the sub-movement (n+ 1) end-effector and target object are in contact.
The duration between these events is short enough to assume that the object velocity
changes only marginally.

Solving:

x(tn+2) = Xn + (Xn+1 −Xn)(10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1)

= xp(ToC + Ts/2− tx) (4.95)

results in:

Xn+1 =
xp(ToC + Ts/2− tx)−Xn

10τ 3
n+1 − 15τ 4

n+1 + 6τ 5
n+1

+Xn (4.96)

with τn+1 = tn+2−tn+1

tn+3−tn+1

These operations can be repeated every Ts/2 and as often as necessary. Usually, one
iteration is enough.

• Case 2: Ts/4 ≤ tx < Ts/2
Now sub-movement (n+2) is the first of the follow phase and is calculated at point in
time tn+2, such that xeepos− xobjpos = 0 in tn+3 (see Figure 4.28). The prediction
with a Tp = ToC + Ts − tx is used for calculating the intermediate target:

Xn+2 =
xp(ToC + Ts − tx)−Xn+1

10τ 3
n+2 − 15τ 4

n+2 + 6τ 5
n+2

+Xn+1 (4.97)

Afterwards there is no difference between the two cases. The target object is tracked
by the manipulator as long as necessary. For that every Ts/2 a new intermediate
target is calculated.

4.7.3 Discussion

To summarize this section it can be stated that an algorithm was developed that is capable
to determine interaction points and intermediate targets for a robotic manipulator to catch
a moving target in a human like way. The motivation for the algorithm was given by the
analysis of experiments of Georgopulos described in Sec. 2.2.3. In the algorithm interaction
points determine the points in space and time where the contact with the target object
shall occur. Those interaction points are derived from the predicted target trajectory.
Intermediate targets determine the points in space and time that the manipulator shall
pass on its way to the interaction points. The algorithm distinguishes between four phases
of manipulator motion: an approach phase, an adaption phase, an contact phase and an

4.7. INTERACTION POINT DETERMINATION AND INTERMEDIATE TARGET CALCULATION 149

follow phase. In each phase appropriate interaction points and intermediate targets are
calculated.

In Sec. 4.7.1 open questions and hypotheses where formulated that were derived from the
catching experiments with humans. Some answers can be given here: (1) As a movement
initiation strategy a predictive strategy was chosen. (2) The online control of the move-
ment is an adaption of a reactive strategy. (3) The sub-movement duration and (4) the
intersubmovement interval are free chosable parameters of the algorithm. (5) The speed
of the end-effector at the point of contact is the same as the target object speed. (6) The
interaction with the target occurs at the descending slope of the hand velocity profile. (7)
The sub-movements amplitudes are derived from the determined interaction points (points
in space and time!), and therefor from the predicted targets trajectory. (8) The final in-
teraction point is determined within a pre-defined catch area and fixated at the end of the
adaption phase.

In comparison to the findings of Georgopulos experiments the algorithm obeys “robotic
needs” for smoothly grasping a moving object, i.e. the adaption of the right speed at the
contact with the object and the following of the object with the manipulator to give the
end-effector enough time to close the gripper. Despite the fact that the algorithm consists
of different motion phases the passing from phase to phase is smoothly. Additionally,
no assumption was made about the targets trajectory, i.e. any kind of a predictable
target trajectory can be handled by the algorithm. The only restriction is that the “time-
to-contact” the target is at least 1,5 times the sub-movement duration, since at least 3
sub-movements are needed to adapt position and velocity in the contact point.

The extension of the algorithm to obeys also orientation trajectories is straightforward.
The formulas can also be used for the components of the normal and approach vector. The
only problem thereby is the determination of the 3D target objects orientation from the
image processing.

150 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

4.8 Implementation

4.8.1 System Preliminaries

To realize the designed algorithms on the robot system, most of them were implemented in
C++, running under Linux on a standard desktop PC equipped with a Intel Pentium III 500
MHz processor. Robot control is realized by an ISA bus card containing a microcontroller
for communication and a DSP for kinematics calculations. Positioning of the robot’s joints
is controlled by micro-controllers (one per joint). Image processing including the interaction
with the frame grabbers (one Matrox Meteor for each camera) was realized using the image
analysis system HALCON, an extensive domain-independent software library providing
low-level and medium-level image processing operators [ES97, HAL]. For acceleration of
specific operators (e.g. sobel filter [Bla00], color filters [Leu00]) implementations using
MDSI commands (multiple data, single instructions) were used. Graphical user interfaces
were constructed using Qt [Qt].

Task that are running on the system can be divided into hard real-time tasks and soft
real-time tasks. According to their required reaction time they were allocated on the given
hardware appropriately (for an overview of system architectures for time-critical technical
processes see [Bur02]).

Hard Real-Time Requirements The manipulator and the pan-tilt head is commanded
by sending “messages” to the ISA bus card provided by the manufacturer; for the realization
of the communication between PC and ISA card, a Linux device driver has been developed
as well as a C++ class library where all robot commands are encapsulated. This class
library allows to control the robot locally as well as over the network using CORBA. On
the card an Analog Devices ADSP 21060 is used to calculate (inverse) kinematics and the
resulting joint angles for the manipulator drives in real-time (see [Mai00]).

Soft Real-Time Requirements Since Linux is no hard real-time operating system, draw-
backs had to be taken into account. Image processing tasks (form, color, motion), sensor
fusion and integration, grasping point determination, prediction algorithms, interaction
point and intermediate target calculations could not all be performed at frame rate (25Hz).
Therefore, the algorithms were designed to cope with this drawback.

To realize a periodic timer the Linux Kernel signal SIGALRM was used. This timer has
low jitter under normal system load, and was used to send intermediate targets to the robot
control unit in time. Naturally any jitter is problematic in a robot control, especially if right
timing is demanded as in a catching task. To tackle this problem following procedure could
be used: the jitter is subtracted or added, respectively, from/to the movement duration of
the next sub-movement. The problem occurs then only at the contact of the end-effector

4.8. IMPLEMENTATION 151

with the target: by this procedure the contact velocity will not be the pre-calculated one.
But this “workaround” was not necessary as the experimental validation showed (see e.g.
Sec. 5.4)

4.8.2 State Automaton and Timing Charts

Prediction in grasping area

Prediction in grasping area

Object grasped

Object grasped

TtC = −2 * Ts

CF

TA

T

I

E

ready

Prediction in grasping area

TtC > 3/2 * Ts

Prediction in grasping area

TtC <= 3/2 * Ts

ready

Prediction in grasping area

Figure 4.29: State Automaton for Catching. I: Initialization, T: Tracking, TA: Track and Approach, CF:
Catch and Follow, E: Exit

To test the algorithms as “a working whole” a simple state automaton was designed and
implemented in C++ according to Figure 4.29.

In the Initialization state the human operator mainly prepares the system for one catching
trial. Thereby e.g. the tracker module has to be adjusted or the robot arm has to be
moved to the starting position. To leave the state the user enters a command that all

152 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

preparations for the trial have been performed successfully (see timing chart in Figure 4.30
for more details).

�� ��

�� ��
���	

measure position

OF init

Usert

B.S. out of OF

IP R+PModel ITC Arm Camera head

move head,

read,

move to

start pos.

read
read

read
g.o. start pos.

B.S. init

Color init

deliver B.S. / or
choose contour

store B.S.

store CP

CP: camera parameter

B.S.: B−Spline
g.o.: grasping object

GZP: grasping zero point
GCP: grasping contact point condition for state transition
IP: image processing
R+P: reconstruction and prediction
IPC: interaction point calculation

ITC: intermediate target calculation

module active

alternative/option: module active

Caption:

arm start pos.
deliver

deliver

Comparison /

calculate
g.o. start pos

store color

read camera para.

Initialisation State (Re−Initialisation)

IPC

(a,n,GZP,GCP1,GCP2)

Ts, best point,
grasping area

ready

timer interrupt (SIGALRM)

IT: intermediate target

Figure 4.30: Timing chart for state 1

In the Tracking state the system functions autonomously. The input image is first processed
for form, color and motion19 to extract the object to be tracked. Thereafter, features of the
object, e.g. its center of area are calculated. With this information predictions about the
future objects positions in 2 and 3D are calculated. After each 3D prediction it is checked
if the object will enter the catching area in the near future. If this is not the case the next
image is processed, otherwise the next state is entered (see timing chart in Figure 4.31 for
more details).

In the Track and Approach state tracking and arm motion occur in parallel. A system timer
is started to be able to send intermediate targets to the motion control unit in regular
intervals. From the predicted object position that are in the catching area interaction
points are derived. From those appropriate intermediate targets are calculated. At each
timer interrupt the current intermediate target is transmitted to the motion control unit
until the critical time limit is reached. This time limit, 3/2Ts, is derived from the duration
of a sub-movement (see Section 4.7 and timing chart in Figure 4.32 for more details).

In the Catch and Follow state the system is in a “simple” control mode. No more feedback
about the object’s position is processed anymore. Depending on the time elapsed since
the last sub-movement started, the final interaction point and all following intermediate

19In many experiments only color tracking was performed for simplicity and real-time performance
reasons

4.8. IMPLEMENTATION 153

�������
�

Arm

Form

Color

Motion

Form

Comparison

pred. in g.a.

User

3D R+P

IP

2D R+P

3D pos reconstruction

Fusion + Decision

R+P ITC

no pred. in g.a.

Comparison

Tracking State

t

3D R+P

Comparison / IPC

Figure 4.31: Timing chart for state 2

Ts

R+Pt

Form

Color

Motion

3D Pos Rec

Form

3D R+P

Timer Interrupt

Color

TtC <= 3/2 Ts

/ 2

6D ITC

IP ITC

IT

IT

next

Arm

Fusion + Decision

2D R+P

3D R+Pfinish

Comparison

Comparison

IPC

6D ITC

Track and Approach State

Comparison / IPC

IPC

move towards

move towards

start Timer ()

Figure 4.32: Timing chart for state 3

targets are calculated (see Section 4.7) from the last predictions made, and are appropri-
ately transmitted to the robot control unit at the timer interrupts (see timing charts in
Figure 4.33 and Figure 4.34 for more details).

Finally the Exit state is reached if the trial is over. This can either be if the trial was
successful, i.e. the object was grasp, or a specified amount of time after the calculated
grasping point in time is expired.

154 CHAPTER 4. HAND-EYE SYSTEM AND INTERACTION WITH A MOVING TARGET

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���
���

�
�
�
�
�
�
�

ArmR+PIPt
block
prediction buffer

IT (n−1)

final IPC

calculate tx

6D IT (n−1)

calculate

Catch and Follow State (for 0 <tx < Ts/4)

ITC

IT (n)

calculate

calculate
6D IT (n)

6D IT (n+1)

IT (n+1)
move towards

move towards
IT (n)

move towards
IT (n−1)

IT (n+1)

"Follow"
calculate
6D IT (n+2)

IT (n+2)
move towards
IT (n+2)

stop Timer

"Catch"

"Follow"

Comparison / IPC

Figure 4.33: Timing chart for state 4a

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

�
�
�
�

ArmR+Pt
block
prediction buffer

IT (n−1)

final IPC

calculate

6D IT (n−1)

Catch and Follow State (for Ts/4 < tx < Ts/2)

IP

calculate tx

6D IT (n)
calculate

IT (n)

calculate
6D IT (n+1)

IT (n+1)

calculate
6D IT (n+2)

calculate
6D IT (n+3)

IT (n+3)

stop Timer

Comparison / IPC

IT (n+2)

ITC

move towards

IT (n−1)

IT (n)

"Catch"
IT (n+1)

move towards

"Follow"
IT (n+2)

move towards

"Follow"

move towards

IT (n+3)

move towards

Figure 4.34: Timing chart for state 4b

Chapter 5

Simulations, Experimental Validation
and Results

Overview: This chapter summarizes the results of simulations and experimental vali-
dations to proof the algorithms proposed in this thesis. To start in Sec. 5.1 tracking
experiments and results with color (Sec. 5.1.1), form (Sec. 5.1.2) and motion (Sec. 5.1.3)
are presented. Sec. 5.1.4 describes the results obtained by the Modified ICondensation
algorithm as well as by the Grasp Determination algorithm. Also an example showing the
effect of the online adaption of tracking parameters is given.

Sec. 5.1.5 summarizes the results of biologically motivated image processing. Hereby the
Reentry mechanism is tested for the case that color information is entered into the form
path.

In Sec. 5.2 results of the different prediction algorithms are presented. Thereby in Sec. 5.2.1
the ARM prediction methods as well as the nearest neighbor methods are compared in
simulation. In Sec. 5.2.2 results of the Average ARM prediction algorithm used on real
image sequences is presented.

In Sec. 5.3 simulation results validating the algorithms of the Hand-Target Interaction are
shown.

Real robot experiments in Sec. 5.4 start with examples showing the control of the robots
end-effector position and orientation during tracking of a moving target (Sec. 5.4.2).

Finally, Sec. 5.4.3 shows the results of real catching experiments for a linearly escaping and
approaching target as well as for a target moving tangential to the robot. Sec. 5.4.4 shows
the case of a circular approaching target.

155

156 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Color Space Subspace Representation Time [ms]1 subjective rating
RGB CLUT (Cone) 7.4 good
RGB Window (Cube) 5.3 satisfactory
YUV2 CLUT (Cone) 7.0 satisfactory
YUV2 Window (Cube) [YUV]3 2.7 good
YUV2 Window (Rectangle) [UV]4 1.2 good
RGB DRM 7.4 very good5

Table 5.1: Results of implemented filters

5.1 Tracking with Color, Form and Motion

5.1.1 Color Tracking

Test conditions: Several of the previously described (see Section 3.2.1.2) CLUT and win-
dowing techniques were tested on their performance in [Leu00]. The clustering techniques,
performing well subjectively rated, always tended to be too slow to serve the needs, keeping
in mind that the process of color segmentation is only a small part of the whole system.
Therefore they are not considered in the following.

Color Filter Performance

Results: Table 5.1 presents an excerpt of performance measurements. The input image is
either grabbed as a RGB or YUV full color image having a resolution of 384x288 pixel (half
PAL). The measured times refer only to the process of performing a filtering operation on
the grabbed image and writing results into main memory.

Comments: As can be seen windowing techniques have speed advantages, but tend to
give worse segmentation results, as a cubic subspace is not optimal in every color space.
Usually chrominance values in YUV color space are sub-sampled by a factor of two. This
halves calculation cost, but also reduces the spatial resolution of the filter, especially if
only windowing in U and V coordinates.

1Measured on a Intel Pentium III 500MHz, 256 MB RAM.
2As the chrominance values in YUV color space are under-sampled by factor two, the processing times

of these filters also decrease by this factor.
3Windowing all three parameters: Y, U and V.
4Windowing only U and V parameters. Problems arise with black and white, as they can be coded in

many different ways in YUV color space.
5But adjusting all the parameters tends to be difficult.

5.1. TRACKING WITH COLOR, FORM AND MOTION 157

Output Examples of Color Filters

For comparison of different color filters a test image was used that can be seen in Figure 5.1

Figure 5.1: Original example image

Test conditions: In the image several objects of different colors are displayed. All color
filters were parameterized to segment for red objects. The red objects present in the image
are: (a) two circles on white paper background, (b) the visible part of a Chinese lantern
between these two circles, (c) the polygonal surface at the bottom and (d) the rectangle on
black background at the left side of the image. These objects do not have the same color
tone, but differ slightly to provide a broad range of possible object colors. Filter output is
optimized and judged to segment all red objects, but none of the other objects. This way
the best filter is defined as the one segmenting all kinds of red, but eliminating all other
colors.

Results: In Figure 5.2 outputs of filters operating in the RGB color space are presented.
On the left side bitmaps delivered by each color filter are shown. White pixels in the

158 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Figure 5.2: Color filter output examples

bitmap represent pixels that have passed the color, a black pixel represents a pixel that
was filtered out. On the right side three dimensional representations of the used subspaces

5.1. TRACKING WITH COLOR, FORM AND MOTION 159

are plotted. In this figure the colors of the pixels in the representations correspond to the
colors of the subspace pixels.

In the first row of Figure 5.2 the output of a ConeRGB filter can be seen. Its representation
shows a frustum with the truncated peak in the origin of the color space. The output
bitmap lacks white pixels for the dark rectangle at the left of the image, but all other red
objects are segmented well.

In the second row of Figure 5.2 the output of the CubeRGB filter can be seen. Its rep-
resentation shows a cube as subspace within the color space. Here the output also lacks
white pixels for the dark rectangular object at the left, and reveals a false segmentation
for the polygonal object at the bottom of the image.

In the third row of Figure 5.2 the output of the Dichromatic Reflection Model (DRM) filter
can be seen. Its representation is a thin plane as a subspace within the color space. The
output shows all objects segmented very well, and thereby almost no noise. The drawback
of this filter is however, that parameterization is hard to find as there are eight parameters
to be adjusted, including the illumination color that changes noticeable if sunlight (with
its own spectral distribution) suddenly enters the scene. For comparison filters working on
the YUV color space are presented in Figure 5.3. Hereby the colors in the representation
do not correspond to the color values of the subspace pixels.

In the top row of Figure 5.3 the output of the ConeYUV filter is shown. The form of its
representation is the same as for the ConeRGB filter. The output shows many noise pixels,
a small segmentation error of the polygonal surface at the bottom of the image and lacks
white pixels for the dark object at the left, apart from some outline pixels that would be
eliminated in consecutive noise reduction steps. Obviously, a subspace in form of a frustum
cannot be applied for the YUV color space.

The middle row of Figure 5.3 shows the output of the CubeYUV filter. Its representation
is a cube within the color space. Segmentation results are obviously better than for the
ConeYUV filter. All objects have been segmented correctly and only some noise pixels in
the upper half of the image disturb the result.

The CubeUV filter shown at the bottom row of Figure 5.3 is very similar to the CubeYUV
filter. As the luminance value is not restricted with this filter, the representation is a cube
reaching from one side of the color space until the opposite side, allowing all luminance
values. As expected, the output of this filter does not differ markedly from the CubeYUV
filter. The important advantage of this filter is its speed performance compared to the
other filters.

Comments: For the purpose of tracking speed against robustness and accuracy has to
be evaluated. In general tracking differs not from the evaluation of still images if motion
blur is removed. Hereby the decision was in favor of the CubeUV filter, since it gave the
optimal speed-accuracy trade-off of all tested filters. Tracking output examples can be
found in Section 5.2 as well as in Section 5.4 where the position of the target object was

160 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Figure 5.3: Color filter output examples

5.1. TRACKING WITH COLOR, FORM AND MOTION 161

determined using only color tracking with the CubeUV filter.

5.1.2 Form Tracking (CONDENSATION Algorithm)

Test conditions: For the purpose of form tracking the CONDENSATION algorithm was
evaluated (see also Section 3.2.1.1). Contour models described as B-Splines were generated
using the automated procedure (see Section 4.1.0.3) and used for observation. Simple
motion models were set up by hand and in the image sequence of Figure 5.4 a constant
velocity model was used for the position coordinates x and y whose parameters were
obtained experimentally. For the parameters scalex, scaley and teta (rotation) random
motion models with low jitter were used. This is contrary to the procedure proposed by
Blake and Isard who determined exact motion models through off-line training. Evaluation
of the sample contours was performed along the contour, i.e. the match of a sample contour
with the image edges was evaluated on discrete points along the contour, or along the
contour and few contour normals.

162 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Figure 5.4: Tracking of a commuting bottle

5.1. TRACKING WITH COLOR, FORM AND MOTION 163

Results: In Figure 5.4 the output of the algorithm during tracking a commuting bottle
can be seen. As input to the algorithm image differences served in the first two frames (for
initalisation purpose), after that the whole image was used. The following tables review
the results obtained in this example. Note that the outline of the commuting bottle is
quite complex, the bottle shape consists of 8 spans, and 32 contour points were evaluated
if matching on contour only was applied. 8 supplementary normals are used if observation
along the contour and normals was chosen. Time consumption is reviewed in Table 5.3,
while Table 5.2 describes intuitively the obtained exactness of results. Hereby results

Matching on 200 samples 400 samples 600 samples
the curve points only − − −
curve points and a few normals − − 0

Table 5.2: Intuitive evaluation: + good, 0 satisfactory, − bad

were not satisfactory as the commuting bottle changes speed, size and rotation quickly.
After the initial phase, where the sample set could concentrate on the bottle due to using
image differences as input for the observation model, too many edges distract tracking.
Mainly after the bottle turns around the bend on the left side (see Figure 5.4) and changes
speed quickly, which is not modeled in the constant velocity model, tracking is lost. Pre-
segmenting the regions of interest, e.g. by maintaining the image differences as input for
the observation model or using other modalities (e.g. color or optic flow) can overcome
this problem.

Matching on 200 samples 400 samples 600 samples
the curve points only 26 52 78
curve points and few normals 45 100 140

Table 5.3: The time consumption per step in the Condensation algorithm in ms 1.

Comments: Taking a closer look at the above described experiment the drawbacks of the
method get obvious:

• Clutter attracts the spline contours of the samples leading to misinterpretations of
the current object position.

• Exactness of the observation model is important. Matching on the contour only leads
to unsatisfactory results.

• Exactness of the used motion models is important, otherwise samples are not placed
at the right positions, leading again to misinterpretations.

1Note that this time measurement is applied to a careful, but non optimal implementation

164 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

• Good results need a large number of samples as well as an exact observation model,
both leading to real-time performance problems.

As already stated in the theory chapters the conjunction of different sensor modalities can
overcome some of these problems which will be described in the following paragraphs.

5.1.3 Motion Tracking

Figure 5.5: Output of the Optic flow sensor

Test conditions: The calculation of the optic flow was performed on a specialized hard-
ware board containing a MEP (Motion Estimation Processor) that was developed at our
institute. Further information about the used methods can be found in [Stö01].

Results: In Figure 5.5 the output of the Optic flow sensor is shown. Thereby red lines
indicate regions where the flow is non-zero. It can be seen that there are regions detected
where is obviously no motion, e.g. on the left part of the table. This comes mainly from
illumination changes. The object of interest, in this case a rolling ball, is detected well,
what is indicated by the surrounding green rectangle. Here the red lines are definitely
longer indicating a clear image flow.

Comments: Unfortunately, experiments with optic flow where limited to the above men-
tioned example due to hardware problems.

5.1.4 Modified ICONDENSATION

In the following the results using the Modified ICONDENSATION algorithm are evaluated.
As described in Section 4.3.2.1 the algorithm is capable of integrating sensor information
from different modalities. In the successive experiments the information from the color
sensor was integrated with the information from the form sensor.

5.1. TRACKING WITH COLOR, FORM AND MOTION 165

4 6

7

10 12

13

2 3

5

8 9

11

14 15

16 17 18

19 20 21

1

Figure 5.6: Tracking a green bottle moved by hand. The output of the Modified ICONDENSATION
algorithm is shown (estimated outline representing the Mean of all samples)

166 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

1 2

4

3

5 6

7 8 9

10 11 12

Figure 5.7: Tracking a green bottle moved by hand. The output of the Modified ICONDENSATION
algorithm is shown (estimated outline representing the Mean of all samples)

5.1. TRACKING WITH COLOR, FORM AND MOTION 167

1 3

4

7

6

10 11

13

2

5

8 9

12

14 15

16 17 18

Figure 5.8: Tracking a green bottle moved by hand. The output of the Modified ICONDENSATION
algorithm is shown (estimated outline representing the Mean of all samples)

168 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Test conditions: In all sequences a green bottle is moved by hand against a plain white
background. The Modified ICONDENSATION algorithm described in Section 4.3.2.1 is
applied. Thereby as additional sensor input only color is analyzed and the current size and
orientation of the bottle is estimated from the found color regions2. In the examples given
here the required input parameters step ∈ [1, N], q ∈ [0, 1] and r ∈ [0, 1] with q+r ≤ 1 (see
algorithm 1 in Section 4.3.2.1) were chosen to have only importance samples (≈ 95%) and
prior samples (≈ 5%), since the tracking sequence was quite short and the tracked motion
quite irregular. Sample contours were evaluated only along the contour. The number of
evaluated samples was constantly 100.

Results: In the first images of the sequence in Figure 5.6 the bottle is detected well and
the tracking error is low (except of some overestimation of the bottle’s size). In the 7th
frame the bottle is lost, i.e. the orientation is estimated wrong and the tracker does not
recover until the 15th image.

In the second sequence (Figure 5.7) the color region is evaluated well throughout the
sequence. The required parameters step, q and r were the same as in the sequence of
Figure 5.6. Misinterpretation occures only once when the orientation flips by 180◦ (frame
7). This is due to the large emphasis on importance samples, i.e. if the orientation
determination goes wrong in one frame this is not compensated by prediction samples
(taking into account the “tracking history”) in this case.

In the third sequence (Figure 5.8) the determination of the objects size by analyzing the
color region is shown. One can see that the B-spline contour grows in size when the bottle
is moved closer to the camera. Additionally tracking against dark background and a strong
edge (white to dark transition from the paper background to the wall) is shown in frames
10− 16. Throughout the whole sequence tracking is not lost.

Comments: Through the choice of a fixed sample distribution without any prediction
samples the drawback of a cut out of a motion model gets obvious: tracking can only rely
on (additional) sensor information that massively influences the quality of the output and
thereby leads to wrong results if the sensor information is misinterpreted.

Nevertheless, it can be stated, that use of additional sensor information (as e.g. in this
case color) can overcome problems occurring with the Standard Condensation algorithm,
namely,

• The spline contours tend to stay away from clutter background edges.

• Observation along the contour is sufficient.

• Missing motion model can partly be compensated through additional sensor infor-
mation.

2To estimate size and orientation standard operators provided by the image processing library HAL-
CON were used, i.e. area center or elliptic axis (see the HALCON manuals available at www.mvtec.de)

5.1. TRACKING WITH COLOR, FORM AND MOTION 169

• The accuracy is satisfactory even given only a small number of sample outlines, but
temporarily misinterpretations occur.

These results are a good starting point for further evaluation of the Modified ICONDEN-
SATION algorithm, i.e the online adaption of tracking parameters to change the sample
distribution. The experiments thereby are given below.

Grasp Determination and Grasp Tracking

Test conditions: see above. The grasp was calculated and tracked on the output spline.

Results: In the image sequences shown in Figure 5.6, Figure 5.7 and Figure 5.8 the output
of the Grasp Determination and Grasp Tracking algorithm (see Section 4.4.1) is indicated
by arrows drawn on the bottles. In the first image of each sequence an initial grasp is
determined as the optimal grasp for the given shape. Thereafter this grasp is being tracked
in successive frames. There the advantage of using B-spline contours for tracking becomes
obvious. Independently of the transformation that is applied to the initial spline (e.g. the
scaling operation for the approaching bottle) the grasp stays stable on the same position
of the bottle.

Comments: The constancy of the grasp over many frames is a very important feature
for catching experiments, since the pair of grasping points, or the grasping center point,
respectively, is used as an input to the motion reconstruction and prediction algorithms,
and finally to the motion control of the robot arm. It is obvious, that a relative motion of
the “grasp” on the moving bottle would lead to a disturbance for the motion reconstruction
and prediction algorithms, what would make it even more difficult to catch that moving
object.

Online adaption of tracking parameters

Test conditions: To test the proposed online adaption of tracking parameters (see Sec-
tion 4.3.2.1) a simple tracking scenario was chosen where a model train moved on a circular
railroad with constant speed, except for the acceleration phase in the beginning (see Fig-
ure 5.9). To obtain comparable results this setup served as the tracking scenario
for all experiments on tracking described in the rest of this section! As addi-
tional sensor input again color was used. The maximum translatory jitter for prediction
and difference prediction samples was set to 30 pixel. The number of used samples was
constantly set to 100. As output of the algorithm the mean of all samples was evaluated.
The distribution of the samples during the trial is shown in Table 5.4. Figure 5.9 middle
and right shows exemplarily how the samples were placed during a trial. On the left of the
figure the color region and the mean, a B-spline curve, can be seen.

Results: The results of the tracking can be seen in Figure 5.10. In the first row x(t) and
y(t) are plotted, in the second row the according errors, and in the third row the error

170 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Figure 5.9: The tracked object with sample distributions: 25% difference prediction samples (light blue
dots), 24.75% prediction samples (red dots), 50.25% importance samples (dark blue dots). In the left
image the segmented color region and the mean sample is shown, in the middle and right image the
sample distribution with the mean sample.

Frame importance prediction difference prediction
1 - 29 100.0% 0.00% 0.00%
30 - 59 90.25% 4.75% 5.00%
60 - 89 80.10% 9.90% 10.00%
90 - 119 69.43% 16.28% 14.29%
120 - 149 60.00% 20.00% 20.00%
150 - end 50.25% 24.75% 25.00%

Table 5.4: Temporal course of sample distribution during tracking

norm. It can be seen that the object is temporarily lost in the part of the sequence where
the error norm is above ≈ 40 pixel. Nevertheless the tracker recovers again and stable
tracking is performed for the last two rounds.

Comments: First, it can be stated that the Modified ICONDENSATION and the online
adaption is applicable for tracking the sequence. Despite the fact that the object is lost
early during tracking, the AARM motion model can be generated successfully and sub-
serves successful tracking. This can be seen from the last part of the plots (from ≈ frame
100 to frame 200) where the number of importance samples drops from ≈ 70% to ≈ 50%
and therefore tracking gets dependent on reliable predictions. Also it has to be noted that
the absolute number of samples, 100, is low compared to they sample-set usually used in
e.g. [BI98].

5.1.5 Reentry of Color in Form Path

Two biological concepts of human visual processing have been presented in Section 2.1.2:
the concept of reentry as well as the concept of feature maps. The later applied well to the

5.1. TRACKING WITH COLOR, FORM AND MOTION 171

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: position tracked (red), marked (green)

x
x marked

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: position tracked (red), marked (green)

y
y marked

0 20 40 60 80 100 120 140 160 180 200
−200

−150

−100

−50

0

50

100

150

frames

y
er

ro
r

[p
ix

el
]

Tracking error for circular motion

y error

Mean abs. error without re.:15.7500

0 20 40 60 80 100 120 140 160 180 200
−150

−100

−50

0

50

100

150

200

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x error
Mean abs. error without re.: 9.3450

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for circular motion

error norm

Mean error without re.: 19.8464

a) b)

d)c)

e)

Figure 5.10: Tracking with Modified ICONDENSATION and online adaption of sample distribution
according to Table 5.4. Thereby displays a) x(t), b) y(t) c) xerror(t), d) yerror(t), e) error norm√

x2 + y2

172 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

ideas of sensor integration as performed within the ICONDENSATION framework. The
former is analyzed more detailed in the following, thereby distinguishing between the effect
on still images as well as on image sequences. Concerning image sequences the interesting
question was, if the effect provided by reentry improves tracking, i.e. if the output of the
Modified ICONDENSATION algorithm can be improved.

Still Images The images in Figure 5.11 show the effect of parallel information flow pro-
cessing combined with the reentry concept. On the image in the upper left the original
camera image is given, showing a red circle printed on white paper as the object of interest.
Several distractor objects and a random cluttered background fill the rest of the image.
The color segmention is configured to filter for red objects. On the image right to the
camera image you can see the output of the color segmention, indicated by the red area.

The second and third row of Figure 5.11 show examples of both, the Sobel image and
the edge areas. On the left side the results are displayed without reentry of color filter
information into the form sensor. On the right side the results with color reentry are
shown. In the Sobel images you can see the effect of multiplying

f(x, y) =

{
2 (x, y) ∈ A
0.5 (x, y) /∈ A

on the Sobel image pixels. Pixels near or within the color region are amplified, thus giving
stronger edge pixels, whereas pixels far away from the attentive color region are weakened.
Therefore the number of edges decreases when applying a threshold on the modified Sobel
image, if the threshold value is configured to accept only strong edge pixels. This decrease
also accelerates the whole application in the following (see Table 5.6 for the dynamic case).

Image Sequences (with Modified ICOND.), constant tracking parameters

Figure importance prior prediction difference prediction
Figure 5.12a 40.00% 10.00% 0.00% 50.00%
Figure 5.12b 40.00% 10.00% 0.00% 50.00%
Figure 5.12c 40.00% 10.00% 0.00% 50.00%
Figure 5.12d 50.25% 0.00% 24.75% 25.00%
Figure 5.12e 50.25% 0.00% 24.75% 25.00%
Figure 5.12f 50.25% 0.00% 24.75% 25.00%

Table 5.5: Sample distribution during tracking

Test conditions: Tracking of the model train, moving at constant speed, was performed
again. Thereby constant tracking parameters according to Table 5.5 were adjusted for the

5.1. TRACKING WITH COLOR, FORM AND MOTION 173

Figure 5.11: Examples images showing the effect of the implemented biological concepts, i.e. the
reentry mechanism. Upper left: original image. Upper right: output of color segmentation. Middle
left: Sobel image. Middle right: color information reentered into Sobel image. Lower left: edge
image. Lower right: color information reentered into edge image.

174 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

different trials. Compared are the two cases: “tracking with color reentry” and “tracking
without color reentry”.

Results: Plots is Figure 5.12 show x-y plots of the tracked motion. Plot a) shows that
with and without reentry tracking is succesful for ≈ 80% of the trial. Large errors occur
only in the upper segment of the circle. This error (that can also be seen b) and c)) is
caused by a background edge. Plot b) shows for both cases tracking errors, which are lower
for the “with reentry” case. Plot c) shows a similar behavior as plot a). Plot d) shows
perfect tracking for both cases with almost no errors. In plot e) a trial is displayed where
the train is completely lost in the case “without reentry”. Tracking is nevertheless good in
the “with reentry” case. Plot f) finally shows similar tracking behavior for both cases as
is shown in plot a).

To quantify these observations error plots for the: x error, y error and the error norm for
all six trials are summarized in Figure 5.13. Thereby plot a) shows the x error for all data
obtain from plots a), b) and c) of Figure 5.12. Plot b) shows the same for the y error. Plot
c) shows the x error for all data obtain from plots d), e) and f) of Figure 5.12. Plot d)
shows the same for the y error. Plot e) shows the error norm, defined as

√
x2 + y2, of a)

and b). And finally, plot f) the error norm of c) and d). Thereby it can be stated that a
error norm of more than ≈ 40 pixels indicates a loss of the object.

Plots in Figure 5.14 show details of the tracked circular movement of plot b) in Figure 5.12
for the case “without reentry”, whereas plots in Figure 5.15 show details for the case “with
reentry”. In both cases can be seen that the object can be successfully tracked throughout
the sequence, i.e. the object is never lost. Comparing the mean errors reveals that in case
of reentry the error is marginally lower, but not significantly. That means that reentry is
not improving the exactness of a successful tracking trial.

The contrary case to the above mentioned successful trials show the plots in Figure 5.16
and in Figure 5.17, respectively. Thereby Figure 5.16 corresponds again to the “without
reentry” case, whereas Figure 5.17 corresponds to the “with reentry” case. Here the real
fortitude of the reentry mechanism gets obvious: it assures that the object is not lost
during tracking, respectively recovered quickly in the case of temporal failure. This is in
particular favorable during early tracking when no motion model could be acquired yet.
In this case without reentry there is no recovery from failure.

Comments: It can be stated that the effect of reentry on tracking is very positive in three
ways:

• The mean tracking error is considerably lower than without reentry3.

• Loss of the tracking object is considerably more seldom.

• Recovery from a loss (re-initialization) is faster and always possible. Thus the online

3It should be noted that the mean here takes into account all errors, i.e. also the losses.

5.1. TRACKING WITH COLOR, FORM AND MOTION 175

build motion model is not “destroyed”.

Otherwise there no significant difference can be seen for the different sample distributions,
i.e. the use of prediction samples shows no real improvement.

176 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

50 100 150 200 250 300 350
60

80

100

120

140

160

180

200

220

240

260

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without re.
x,y with reentry
x,y marked

50 100 150 200 250 300 350
60

80

100

120

140

160

180

200

220

240

260

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without re.
x,y with reentry
x,y marked

50 100 150 200 250 300 350
50

100

150

200

250

300

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without re.
x,y with reentry
x,y marked

50 100 150 200 250 300 350
60

80

100

120

140

160

180

200

220

240

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without
x,y with reentry
x,y marked

50 100 150 200 250 300 350
60

80

100

120

140

160

180

200

220

240

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without
x,y with reentry
x,y marked

50 100 150 200 250 300 350 400
0

50

100

150

200

250

x, x
r
 [pixel]

y,
 y

r [p
ix

el
]

object: cart. position tracked with reentry(b), without reentry(r), marked (g+)

x,y without
x,y with reentry
x,y marked

b)a)

c) d)

e) f)

Figure 5.12: Plots a), b), c), d), e), f) all show x-y plots of a circular motion tracked with the modified
ICONDENSATION and a sample distribution according to Table 5.5

5.1. TRACKING WITH COLOR, FORM AND MOTION 177

0 50 100 150 200 250 300 350
−140

−120

−100

−80

−60

−40

−20

0

20

40

60

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x err without re.
x err with re.

Mean abs. error without re.: 5.6597
Mean abs. error with re.: 2.2689

0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100

150

200

frames

y
er

ro
r

[p
ix

el
]

Tracking error for circular motion

y err without re.
y err with re.Mean abs. error without re.: 12.7857

Mean abs. error with re.: 5.7734

0 50 100 150 200 250 300 350 400
−200

−100

0

100

200

300

400

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x err without re.
x err with re.Mean abs. error without re.: 44.2493

Mean abs. error with re.: 5.1588

0 50 100 150 200 250 300 350 400
−150

−100

−50

0

50

100

150

frames

y
er

ro
r

[p
ix

el
]

Tracking error for a circular motion

y err without re.
y err with re.

Mean abs. error without re.: 25.4790
Mean abs. error with re.: 5.1142

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for a circular motion

error norm without re.
error norm with re.Mean without re.: 57.0720

Mean with re.: 8.4598

d)

e)

a) b)

c)

Figure 5.13: Plot a) shows the x error for all data obtained from tracking plots a), b) and c) of
Figure 5.12. Plot b) shows the same for the y error. Plot c) shows the x error for all data obtained
from tracking plots d), e) and f) of Figure 5.12. Plot d) shows the same for the y error. Plot e)
shows the error norm of a) and b). Plot f) the error norm of c) and d). Definitions: Mean error
x = 1/frames

∑frames
i=1 xi, Mean abs error x = 1/frames

∑frames
i=1 ‖xi‖, error norm

√
x2 + y2

178 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: cart. x position tracked without reentry(r*), marked (g−)

x without re.
x marked

0 5 10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

240

260

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: cart. y position tracked without reentry(r*), marked (g−)

y without re.
y marked

0 5 10 15 20 25 30 35 40 45 50
−40

−30

−20

−10

0

10

20

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x error without re.

Mean abs error without re.: 4.0213

0 5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

10

20

30

40

frames

y
er

ro
r

[p
ix

el
]

Tracking error for circular motion

y error without re.

Mean abs. error without re.: 7.1489

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for a circular motion

error norm without re.

Mean error without re.: 8.9342

a) b)

c) d)

e)

Figure 5.14: Plots show details of trial “without reentry” in Figure 5.12b

5.1. TRACKING WITH COLOR, FORM AND MOTION 179

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

frames

y
er

ro
r

[p
ix

el
]

Tracking error for circular motion

y error with re.

Mean abs. error with re.: 7.2174

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

15

20

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x error with re.

Mean abs. error with re.: 3.3478

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for a circular motion

error norm with re.

Mean error with re.: 8.5685

0 5 10 15 20 25 30 35 40 45 50
60

80

100

120

140

160

180

200

220

240

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: cart. y position tracked with reentry(r*), marked (g−)

y with re.
y marked

0 5 10 15 20 25 30 35 40 45 50
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: cart. x position tracked with reentry(r*), marked (g−)

x with re.
x marked

a) b)

c) d)

e)

Figure 5.15: Plots show details of trial “with reentry” in Figure 5.12b

180 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

0 10 20 30 40 50 60 70
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: cart. x position tracked without reentry(r*), marked (g−)

x without re.
x marked

0 10 20 30 40 50 60 70
60

80

100

120

140

160

180

200

220

240

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: cart. y position tracked without reentry(r*), marked (g−)

y without re.
y marked

0 10 20 30 40 50 60 70
−50

0

50

100

150

200

250

frames

x
er

ro
r

[p
ix

el
]

Tracking error for a circular motion

x err without re.

Mean abs. error without re.: 108.9275

0 10 20 30 40 50 60 70
−150

−100

−50

0

50

100

150

frames

y
er

ro
r

[p
ix

el
]

Tracking error for a circular motion

y err without re.

Mean abs. error without re.: 77.5072

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for a circular motion

error norm without re.

Mean without re.: 146.7529

b)

c) d)

e)

a)

Figure 5.16: Plots show details of trial “without reentry” Figure 5.12e

5.1. TRACKING WITH COLOR, FORM AND MOTION 181

60 70 80 90 100 110 120 130 140
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: cart. x position tracked with reentry(r*), marked (g−)

x with re.
x marked

0 10 20 30 40 50 60 70
−5

0

5

10

frames

x
er

ro
r

[p
ix

el
]

Tracking error for a circular motion

x err with re.

Mean abs. error with re.: 1.8551

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for a circular motion

error norm with re.

Mean with re.: 7.4082

60 70 80 90 100 110 120 130 140
60

80

100

120

140

160

180

200

220

240

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: cart. y position tracked with reentry(r*), marked (g−)

y with re.
y marked

0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

50

60

70

frames

y
er

ro
r

[p
ix

el
]

Tracking error for a circular motion

y err with re.

Mean abs. error with re.: 6.6232

b)

c) d)

e)

a)

Figure 5.17: Plots show details of trial “with reentry” Figure 5.12e

182 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Image Sequences (with Modified ICOND.), variable tracking parameters

In Figure 5.10 the case of online adaption of the tracking parameters was shown for the
Modified ICONDENSATION algorithm. Here the same experiment was repeated with
the only difference that color reentry was allowed. Results of this trial can be seen in
Figure 5.18. Here the comparison reveals again the advantage of the reentry mechanism:
The Modified ICONDENSATION was capable to track an object knowing its color and
contour and to generate a motion model during tracking. Failures, i.e. loss of the object,
can occur if by small deviations wrong assumptions about the current object motion occur.
In the “with reentry” case this problem is avoided throughout the complete sequence4.

Samples time with re. time without re. Difference
500 91.105 99.079 7.974
400 77.725 85.939 8.214
300 68.000 72.792 4.792
200 58.030 62.024 3.994
100 46.711 51.171 4.460
70 42.137 47.351 5.214
40 39.350 43.456 4.106
10 35.784 40.368 4.584
5 35.577 39.219 3.642

Table 5.6: Measured time consumption in ms of Modified ICONDENSATION algorithm with and
without color reentry. Used fixed sample distribution: 50.25% importance samples, 24.75% prediction
samples, 25.00% difference prediction samples.

Comparison of time consumption The last analysis regarding reentry compared the
time consumption of the Modified ICONDENSATION algorithm again for the cases “with
reentry” and “without”. Results are shown in Table 5.6. It can be seen that reentry
has no negative effect on image processing times, in contrary processing times are always
marginally lower than in the “without reentry” case. This shows that the reentry mecha-
nism does not only improve tracking performance, but also improves processing speed.

5.2 Prediction of Target Motion

To test the prediction algorithms that were described in Sec. 3.3 simulations using MAT-
LAB were performed. To test the Average ARM algorithm (see Sec. 4.5.1) real image
sequences were used.

4It can also be shown that disturbances through objects of the same color as the tracked object have
no negative influence if they are not moving.

5.2. PREDICTION OF TARGET MOTION 183

0 50 100 150 200 250
−30

−20

−10

0

10

20

30

40

50

frames

y
er

ro
r

[p
ix

el
]

Tracking error for circular motion

y error
Mean abs. error with re.: 3.3480

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

frames

er
ro

r
no

rm
 [p

ix
el

]

Tracking error for circular motion

error norm
Mean with re.: 4.6645

0 50 100 150 200 250
50

100

150

200

250

300

350

frames

x,
 x

 m
ar

ke
d

[p
ix

el
]

object: position tracked (red), marked (green)

x
x marked

0 50 100 150 200 250
40

60

80

100

120

140

160

180

200

220

240

frames

y,
 y

 m
ar

ke
d

[p
ix

el
]

object: position tracked (red), marked (green)

y
y marked

0 50 100 150 200 250
−25

−20

−15

−10

−5

0

5

10

frames

x
er

ro
r

[p
ix

el
]

Tracking error for circular motion

x error

Mean abs. err with re.: 2.4069

a) b)

d)c)

e)

Figure 5.18: Tracking with Modified ICONDENSATION, color reentry into the form path and online
adaption of sample distribution according to Table 5.4. Thereby displays a) x(t), b) y(t) c) xerror(t),
d) yerror(t), e) error norm

√
x2 + y2

184 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

5.2.1 Simulation: Comparison NN, Global ARM, Local ARM

Test conditions: To validate different prediction methods simulation models were devel-
oped using MATLAB. Hereby the algorithms were tested with “artificial data” e.g. data
obtained using mathematical functions e.g. sin(t) or numerical rows set up by hand.

Results: In Figure 5.19a-l, Figure 5.20a-l, Figure 5.22a-l and Figure 5.21a-l different
object motion forms were used to evaluate the performance of the prediction algorithms.
In all plots input data is indicated by a +, and prediction data by a ◦.

In plots a) and c) the input data and the prediction data using the Global AR Model (least
square) with order l = 3 is shown. Plots b) and d) show the detail plots of the prediction
and the data for the last 5% of the motion.

In plots e) and g) the input data and the prediction data using the Local AR Model
(maximum likelihood) with order l = 3 is shown. Plots f) and g) show again the details.

Finally, in plots i) and k) input data and prediction data of the Nearest Neighbor prediction
algorithm are shown, whereby the parameters m, k, l, M were set up accordingly (e.g. m =
4, k = 5, l = 3, M = 20 for plots in Figure 5.21. For more explanations on these parameters
see [Sel00]).

It can be seen that for the input data provided in plots of Figure 5.19 both ARM methods
provide very good prediction results whereas the Nearest Neighbor method has problems
predicting the parabola accurately. For data of plots in Figure 5.20 and Figure 5.21 the
Global AR Model (least square) and the Nearest Neighbor provide very good results wereas
the Local AR Model (maximum likelihood) fails predicting the periodic input data (see
plots g) and h)). Finally, for the more irregular and non-periodic motion in Figure 5.22
the prediction more or less fails for all prediction methods.

Comments: Summarizing it can be stated that linear curves, curves having low order and
highly periodic curves or periodic curves multiplied with linear curves (actually all linear
combinations of those curves) provide acceptable to very good results.

Due to the obtained results it was decided to use a “derivative” of the Global AR Model
method applied for real image data. This method, named AARM was described in Sec-
tion 4.5.1, and some prediction results are shown exemplarily in the following. This method
was also used for the performed catching experiments!

5.2. PREDICTION OF TARGET MOTION 185

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

360

370

380

390

400

410

420

430

440

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−400

−300

−200

−100

0

100

200

300

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2
−400

−380

−360

−340

−320

−300

−280

−260

−240

−220

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

360

370

380

390

400

410

420

430

440

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−400

−300

−200

−100

0

100

200

300

400

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2
−400

−380

−360

−340

−320

−300

−280

−260

−240

−220

−200

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−400

−300

−200

−100

0

100

200

300

400

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

−380

−360

−340

−320

−300

−280

−260

−240

−220

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

360

370

380

390

400

410

420

430

440

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

a) b)

e) f)

g)

k) l)

i) j)

h)

d)c)

Figure 5.19: Prediction of an artificial movements. + indicate data, ◦ indicates a predicted point. For
further information see text!

186 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

85 90 95 100 105 110
80

85

90

95

100

105

110

115

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 20 40 60 80 100 120
−10

−5

0

5

10

15

20

25

30

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

90 92 94 96 98 100 102 104

0

5

10

15

20

25

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

85 90 95 100 105 110 115 120

−80

−70

−60

−50

−40

−30

−20

−10

0

10

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 20 40 60 80 100 120
−10

−5

0

5

10

15

20

25

30

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

90 95 100 105 110
−5

0

5

10

15

20

25

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 20 40 60 80 100 120
−100

−80

−60

−40

−20

0

20

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

85 90 95 100 105 110 115

85

90

95

100

105

110

115

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

85 90 95 100 105 110 115
80

85

90

95

100

105

110

115

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

a) b)

e) f)

g)

k) l)

i) j)

h)

d)c)

Figure 5.20: Prediction of artificial movements. + indicate data, ◦ indicates a predicted point. For
further information see text!

5.2. PREDICTION OF TARGET MOTION 187

80 85 90 95 100 105 110 115

0

500

1000

1500

2000

2500

3000

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 20 40 60 80 100 120
−150

−100

−50

0

50

100

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

80 85 90 95 100 105 110 115

−100

−50

0

50

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
−500

0

500

1000

1500

2000

2500

3000

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

85 90 95 100 105 110 115

85

90

95

100

105

110

115

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

85 90 95 100 105 110 115
80

85

90

95

100

105

110

115

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

80 85 90 95 100 105 110

−100

−50

0

50

100

150

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
−150

−100

−50

0

50

100

150

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 20 40 60 80 100 120
0

20

40

60

80

100

120

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

85 90 95 100 105 110 115

85

90

95

100

105

110

115

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

a) b)

e) f)

g)

k) l)

i) j)

h)

d)c)

Figure 5.21: Prediction of artificial movements. + indicate data, ◦ indicates a predicted point. For
further information see text!

188 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8
200

220

240

260

280

300

320

340

360

380

400

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 1 2 3 4 5 6
−500

−400

−300

−200

−100

0

100

200

300

400

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
−500

−450

−400

−350

−300

−250

−200

−150

−100

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

−450

−400

−350

−300

−250

−200

−150

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 1 2 3 4 5 6
100

150

200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 1 2 3 4 5 6
−500

−400

−300

−200

−100

0

100

200

300

400

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
−500

−450

−400

−350

−300

−250

−200

−150

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

0 1 2 3 4 5 6
−500

−400

−300

−200

−100

0

100

200

300

400

t [ms]

da
ta y[i]

[m
]

y Position of data and prediction

data
y
 and pre

y

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
200

220

240

260

280

300

320

340

360

380

400

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

220

240

260

280

300

320

340

360

380

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 1 2 3 4 5 6
100

150

200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

0 1 2 3 4 5 6
100

150

200

250

300

350

400

450

t [ms]

da
ta x[i]

[m
]

x Position of data and prediction

data
x
 and pre

x

a) b)

e) f)

g)

k) l)

i) j)

h)

d)c)

Figure 5.22: Prediction of artificial movements. + indicate data, ◦ indicates a predicted point. For
further information see text!

5.2. PREDICTION OF TARGET MOTION 189

5.2.2 Real Tracking: Average ARM

Test conditions: To evaluate the Average ARM algorithm two experimental setups were
chosen. In the first setup the model train moved on a table in front of the robot on a
linear railroad. Predictions were made regularly while tracking continued (plots a) - d) in
Figure 5.23). The second setup was tracking and prediction of a tennis ball moved “by
hand” in front of the camera (plots e) -h) in Figure 5.23).

Results: In plot a) three prediction series are plotted. It can be observed from the
plot that for the first prediction run only few tracked positions were available leading the
prediction algorithm to assume a linear object motion with constant velocity. In the second
prediction run of plot a) the acceleration of the tracked object is overestimated, leading the
predicted position to “overshoot” the real position. Details to that second prediction run
can be seen in plot b). In plots c) and d) another trial of the same experiment is shown.

Plots e) and g) show the output of tracking and prediction of the tennis ball (plot f) and h)
show details again). Thereby circular motions are performed whose radii are continuously
changing while the frequency of the sinus waves and therefore the speed of the object is
approximately constant.

Mean errors were not evaluated for these trials, since only the absolute positional error for
the predicted point of contact is of interest in the robotic catching experiments.

Comments: This algorithm was used later for prediction of the target position for all “real
robot” catching experiments described later (see Section 5.4). Thereby further examples
can be seen. It can be stated already at this point, that for many experiments the accuracy
of the prediction was sufficient to finally catch the target object.

190 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.8

x 10
5

50

100

150

200

250

300

350

400

t [ms]

x
[p

ix
el

]

x Position of data and prediction

data x
pre x

2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.8

x 10
5

0

50

100

150

200

250

300

350

t [ms]

y
[p

ix
el

]

y Position of data and prediction

data y
pre y

1.49 1.495 1.5 1.505 1.51 1.515 1.52 1.525

x 10
6

−40

−20

0

20

40

60

80

100

120

140

160

t [ms]

x
[p

ix
el

]

x Position of data and prediction

data x
pre x

1.49 1.495 1.5 1.505 1.51 1.515 1.52 1.525

x 10
6

160

180

200

220

240

260

280

300

320

340

360

t [ms]

y
[p

ix
el

]

y Position of data and prediction

data y
pre y

2.74 2.745 2.75 2.755 2.76 2.765

x 10
5

50

60

70

80

90

100

110

120

130

140

t [ms]

y
[p

ix
el

]

y Position of data and prediction

data y
pre y

1.511 1.512 1.513 1.514 1.515 1.516 1.517 1.518 1.519

x 10
6

200

220

240

260

280

300

320

340

t [ms]

y
[p

ix
el

]

y Position of data and prediction

data y
pre y

1.509 1.51 1.511 1.512 1.513 1.514 1.515

x 10
6

20

25

30

35

40

45

50

55

60

t [ms]

x
[p

ix
el

]

x Position of data and prediction

data x
pre x

2.74 2.745 2.75 2.755 2.76 2.765 2.77

x 10
5

100

120

140

160

180

200

t [ms]

x
[p

ix
el

]

x Position of data and prediction

data x
pre x

b)

c) d)

f)

a)

e)

h)g)

Figure 5.23: Prediction of different motions. All plots show “position over time”. a) and c): x, y
position of a linearly moving model train. b) and d) detail plots of a) and c), respectively. e) and g): x,
y position of a tennis ball moved in front of the camera. f) and h) details of e) and g), respectively.

5.3. SIMULATION OF HAND-TARGET INTERACTION 191

5.3 Simulation of Hand-Target Interaction

Test conditions: In these experiments only the control of the end-effector position was
evaluated using MATLAB and Simulink. Control of orientation is analogous and can be
derived from the preceding chapter. Different kind of target trajectories were tested (see
[Bea01]). Here exemplarily the following trajectories are shown: an approaching target and
an escaping target.

5.3.1 Control of Position

Results: Figure 5.24 shows the 3D target and end-effector trajectories for the trial with
the escaping target, plots in Figure 5.25 show details of the trial. Thereby in plot a) the x,
y and z position over time for end-effector and target trajectory can be seen. The dashed
horizontal lines show the beginnings of the different motion phases (specified in plot b).
It can be observed that the end-effector first approaches the target object quickly, then
adapts its trajectory to the target trajectory, gets into contact with the target and finally
follows it for a while. This is in synchrony with the theory described in Section 4.7.

Plot b) shows the timely course of the “Interaction Points” together with the starting times
of the sub-phases indicated by the dashed horizontal lines.

Plot c) shows the desired end-effector positions or intermediate targets over time, which
actually are the input to the motion control unit. It can be observed that for this trial
every 250ms a new intermediate target is generated (having a duration of 500ms, see plots
d)-f)).

Plots d), e) and f) show the timely course of the Cartesian velocities of the target object and
the end-effector. It can clearly be seen that the end-effector velocity profiles are generated
by a continuous superposition of bell-shaped sub-movement velocity profiles. Thereby
the resulting velocity profiles correspond well to the observed velocity profiles of human
subjects using a reactive strategy for similar trials (see Section 2.2.3). Additionally, the
end point conditions are almost fulfilled in every coordinate, i.e. the position and velocity
of target and end-effector match in the contact point (at t ≈ 4s).

Figure 5.26 shows the 3D target and end-effector trajectories for the trial with the ap-
proaching target, plots in Figure 5.27 show again details of the trial. Detail plots show no
significant differences to the escaping case.

192 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

−2
−1

0
1

2
3

0

2

4

6

8
0

1

2

3

4

5

6

7

8

Position x

Position y

P
os

iti
on

 z

End−effector
Target object
Optimal Point

Target object
Start position

Optimal
Point

End−effector
Start position

Figure 5.24: 3D Plot of End-effector Position and Target trajectory for a escaping target

5.3. SIMULATION OF HAND-TARGET INTERACTION 193

0.5 1 1.25 1.5 1.71 2 2.5 2.79 3 3.25 3.5 4 4.5
0

1

2

3

4

5

6

7

8

time t

In
te

ra
ct

io
n

P
oi

nt
s

x
y
z

First Prediction
in Catching area

Start
Approach
Phase

Start
Adaption
Phase a

Start
Adaption
Phase b

Start
Contact
Phase

Start
Follow
Phase

z

y

x

0 1 2 3 4 5
−2

−1

0

1

2

3

time t
0 1 2 3 4 5

0

1

2

3

4

time t

ye
ed

es

0 1 2 3 4 5
0

2

4

6

8

time t

ze
ed

es
xe

ed
es

0 0.5 1 1.25 1.5 1.71 2 2.5 2.79 3 3.25 3.5 4 4.5
−4

−2

0

2

4

6

8

time t

V
el

oc
ity

 y

End−eff.
target

0 0.5 1 1.25 1.5 1.71 2 2.5 2.79 3 3.25 3.5 4 4.5
0

1

2

3

4

5

6

7

8

V
el

oc
ity

 y

time t

End−eff.
target

0 0.5 1 1.25 1.5 1.71 2 2.5 2.79 3 3.25 3.5 4 4.5
−8

−6

−4

−2

0

2

4

6

time t

V
el

oc
ity

 x

End−eff.
target

0 100 200 300 400 500
−2

−1

0

1

2

3

time t

P
os

iti
on

 x

0 100 200 300 400 500
0

2

4

6

8

time t

P
os

iti
on

 y

0 100 200 300 400 500
0

2

4

6

8

time t

P
os

iti
on

 z

Initial end−effector position: (x,y,z) = (−2,0,2)

Initial target object position: (x
i
,y

i
,z

i
) = (−2,7,2)

Optimal Point: (x,y,z) = (2.7,3,6)

Target trajectory:
x(t) = t + x

i
y(t) = −t2 /4 + y

i
z(t) = 5log(0.5t + 1) + z

i

target
End−eff.

a)

f)

b)

c) d)

e)

Figure 5.25: Data plots: a) x y z position of target and end-effector over time. b) Position of the
possible x, y, z Interaction Points over time. Additionally the starting times of the different hand motion
phases are drawn. c) The desired end-effector positions for the end-effector (= input for robot motion
control). d), e), f) the x, y, z end-effector and target velocities. Note: The first velocity peaks in d) and
f) correspond to the movement to the start position!

194 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

3

0

1

2

3

4

5

6

7

0

5

10

Position y

Position x

P
os

iti
on

 z

End−effector
Start position

Target object
Start position

Optimal
Point

Figure 5.26: 3D Plot of End-effector Position and Target trajectory for a approaching target

5.3. SIMULATION OF HAND-TARGET INTERACTION 195

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
−5

0

5

10

15

20

25

30

35

time t

V
el

oc
ity

 z

End−eff.
target

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
−4

−2

0

2

4

6

8

10

12

time t

V
el

oc
ity

 x

End−eff.
target

0 100 200 300 400 500
−2

−1

0

1

2

3

time t

P
o

si
tio

n
 x

0 100 200 300 400 500
0

1

2

3

4

5

6

7

time t

P
o

si
tio

n
 y

0 100 200 300 400 500
0

2

4

6

8

10

time t

P
o

si
tio

n
 z

Initial end−effector position: (x,y,z) = (3,0,9)
Initial target object position: (x

i
,y

i
,z

i
) = (−2,7,2)

Optimal Point: (x,y,z) = (2,3,8)

Target trajectory :
x(t) = t + x

i

y(t) = −t2/4 + y
i

z(t) = 5 *ln(t) + z
i

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

time t

In
te

ra
ct

io
n

P
oi

nt
s

x
y
z

First Prediction
in Catching area
Start
Approach Phase

Start
Adaption
Phase a

Start
Adaption
Phase b

Start
Contact
Phase

Start
Follow
Phase

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

time t

xe
e

d
e

s

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

time t

ye
e

d
e

s

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
−4

−2

0

2

4

6

8

time t

V
el

oc
ity

 y

End−eff.
target

0 0.5 1 1.26 1.5 1.8 2 2.5 33.06 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

time t

ze
e
d
e
s

f)

a) b)

c) d)

e)

Figure 5.27: Data plots: a) x y z position of target and end-effector over time. b) Position of the
possible x, y, z Interaction Points over time. Additionally the starting times of the different hand motion
phases are drawn. c) The desired end-effector positions for the end-effector (= input for robot motion
control). d), e), f) the x, y, z end-effector and target velocities. Note: The first velocity peaks in d) and
f) correspond to the movement to the start position!

196 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Comments: The motion of the end-effector behaves according to the expectations. It is
shown that it is possible to interact with a moving target in a “human like” way. The
resulting end-effector motions and velocity profiles are smooth. This observation allowed
the implementation of the strategy on the robot. The corresponding experiments are
described in the following.

5.4 Real Robot Experiments

5.4.1 Experimental Setup

x

y
z

Figure 5.28: Experimental setup

Figure 5.28 shows the robot MinERVA together with the target object which is placed into
the chimney of the model train5. With the railroads different target trajectories could be
modeled, e.g. linear, circular, wave-forms etcetera. The table top is made out of Styrofoam
to provide a soft obstacle for the robot arm in case of collisions. The train is controlled
by a human operator. Since the workspace of the robot arm is very limited, the grasping
area is limited to regions quite close to the robots body (see Section 5.4.1).

5The train itself was to chicken-hearted to serve as a target object . . .

5.4. REAL ROBOT EXPERIMENTS 197

Experimental Validation of the workspace To assure that the grasping area is placed
within the reachable area of the robot different experiments were performed. Thereby the
orientation of the robot’s end-effector was kept constant to a value that was used in the
later catching experiments (this starting orientation can be seen in Figure 5.28)6. Plots
in Figure 5.29 show the results of the evaluation. Different target positions laying on half
circles were given as input to the robot. It can be observed that there are clear limits for
the experiments: If the target is escaping from the robot it may not move far in z direction
towards the robots base, since the robot would have problems to reach it there.

5.4.2 Control of Robots Position and Orientation

As final experiments before real catching experiments were started the tracking perfor-
mance of the manipulator was tested. Thereby it was important to know if the manipulator
can accurately follow a target trajectory. The target trajectory tested was simply a circle
in the y-z plane (x constant), and at a constant time interval of 500ms successive points of
the circle were transmitted to the manipulator as intermediate targets. Results of the test
can be seen in Figure 5.30. It can be seen that the end-effector could follow the trajectory
very accurately.

The reason for this experiment was to assure that the robot moves to a transmitted target
accurately in time and space. Thereby it was assured that in case of a failed catching
trial (see e.g. Section 5.4.3) the responsibility for failure does not lie in inaccurate robot
movements.

In the same sense the control of the end-effector’s orientation trajectories was evaluated.
Table 5.7 shows the configuration parameters for the trial. Table 5.8 shows the target
coordinates for the trial. Thereby the position and orientation of the end-effector is changed
during the trial. Figure 5.31 shows the according trajectories. It can be observed that all
trajectories are smooth and have the expected form.

5.4.3 Hand-Target Interaction: Grasping a Linear Moving Target

5.4.3.1 Escaping Target

Test conditions: To test all algorithms as a “working whole” the setup with the moving
model train was chosen. In the first experiments the model train moved on a straight
railroad and was driving away from the robot as can be observed in Figure 5.34 and the plots
in Figure 5.32. The train was controlled by a human operator who chose the appropriate
speed. To simplify image processing (and reduce processing time) simple color tracking

6As mentioned, the orientation of the target object is not determined by image processing. A fixed
end-effector orientation is therefore reasonable.

198 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

Table 5.7: Configuration parameter

∆t [ms] 10
Length s [m] -0.37
Length t [m] -0.31
Length u [m] -0.24

kl 0.1
ks 0.01

εp [m] 0.002
εv [m

s
] unused

εrp [rad] 0.0035

εrv [rad
s

] unused
Feedback qmeasured unused

additional movement duration ∆T [s] 0

Table 5.8: Example: targets

wp wa wn T [s]

Start position

 −0.357
−0.557
0.02

 0.05
−0.998

0

 0.95
0.049
0.31

 –

Target 1

 −0.37
−0.70

0

 0
−1
0

 0.707
0

0.707

 4

Target 2

 −0.37
−0.60
−0.20

 0
−0.707
−0.707

 1
0
0

 4

5.4. REAL ROBOT EXPERIMENTS 199

Figure 5.29: Workspace evaluation

200 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

using the CubeUV filter was performed. From the tracked color blob the area center was
determined and its 3D position calculated. This 3D position was transmitted to the AARM
prediction algorithm which predicted the 3D position of th model train 2s in the future,
every time when a new 3D position arrived. From these predictions “Interaction Points”
and intermediate targets were derived using the algorithms as described in Section 4.7.
The intermediate targets were then transmitted to the motion control unit. More details
on the concrete timing can be found in Section 4.8.

Results: Results can be seen in Figure 5.32. There the x, y, and z position of end-effector
and target object are plotted. In the y-z plot the catching area is indicated by the large
circle (in 3D the catching area is a sphere, respectively). The predicted time of contact is
indicated by the vertical line crossing the trajectories. It can be observed that the end-
effector approaches the target trajectory successively. In the trial no real adaption phase
occurred. The according condition was only valid for a short time7. In the contact phase
the trajectory of the end-effector and the predicted trajectory of the target object match
at the contact point in all three coordinates within the desired accuracy. In the follow
phase the end-effector tracks the target long enough to finally close the gripper.

The verification that the prediction of the target trajectory and the calculation of the
intermediate targets is accurate enough for catching can be seen from the movie sequence
in Figure 5.34.

7This was determined from analysis of a LOGFILE that was generated during the trial.

5.4. REAL ROBOT EXPERIMENTS 201

4.498 4.5 4.502 4.504 4.506 4.508 4.51 4.512

x 10
7

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

t [ms]

x
y

z
[m

]
x
y
z

−0.375
−0.37

−0.365
−0.36

−0.355
−0.35

−0.5

−0.45

−0.4

−0.35

−0.3
−0.1

−0.05

0

0.05

0.1

x [m]y [m]

z
[m

]

end−eff.
target

−0.5 −0.48 −0.46 −0.44 −0.42 −0.4 −0.38 −0.36 −0.34 −0.32 −0.3
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

y [m]

z
[m

]

end−eff.
target

4.498 4.5 4.502 4.504 4.506 4.508 4.51 4.512

x 10
7

−0.5

−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

t [ms]

y
[m

]

y end−eff.
y target

4.498 4.5 4.502 4.504 4.506 4.508 4.51 4.512

x 10
7

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

t [ms]

z
[m

]

z end−eff.
z target

4.498 4.5 4.502 4.504 4.506 4.508 4.51 4.512

x 10
7

−0.372

−0.37

−0.368

−0.366

−0.364

−0.362

−0.36

−0.358

−0.356

−0.354

t [ms]

x
[m

]

x end−eff.
x target

d)

b)a)

c)

e) f)

Figure 5.30: Tracking a moving target with the robots end-effector

202 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t [ms]

x
 y

 z
 [

m
]

cart. position

x
y
zz

x

y

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t [ms]

n
x

n
y

n
z

[m
]

normal vector

nx
ny
nz

nx

nz

ny

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

t [ms]

a
x
 a

y
 a

z
 [

m
]

approach vector

ax
ay
az

ax

az

ay

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−6

−5

−4

−3

−2

−1

0

1

t [ms]

cr
itl

[i]

joint limit criterion

critl1
critl2
critl3
critl4
critl5
critl6
critl7

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

t [ms]

cr
its

[i]

singularity avoidance criterion

crits1
crits2
crits3
crits4
crits5
crits6
crits7

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

t [ms]

q[
i]

[r
ad

]

joint angles

q1
q2
q3
q4
q5
q6
q7

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1

−0.5

0

0.5

1

1.5

t [ms]

qv
[i]

 [r
ad

/s
]

joint velocities

qv1
qv2
qv3
qv4
qv5
qv6
qv7

a) b) c)

e)d)

f) g)

Figure 5.31: Example of controlling the position and the orientation of the robot’s end-effector

5.4. REAL ROBOT EXPERIMENTS 203

4.4636 4.4637 4.4638 4.4639 4.464 4.4641 4.4642

x 10
7

−0.42

−0.41

−0.4

−0.39

−0.38

−0.37

−0.36

−0.35

−0.34

t [ms]

x
[m

]

o.c.p. x tracked (*), o.c.p. x predicted (+), a.c.p. x approach (+), a.c.p. x contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

Predicted Time
of contact

4.4635 4.4636 4.4637 4.4638 4.4639 4.464 4.4641 4.4642

x 10
7

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

t [ms]

y
[m

]

o.c.p. y tracked (*), o.c.p. y predicted (+), a.c.p. y approach (+), a.c.p. y contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

4.4635 4.4636 4.4637 4.4638 4.4639 4.464 4.4641 4.4642

x 10
7

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t [ms]

z
[m

]

o.c.p. z tracked (*), o.c.p. z predicted (+), a.c.p. z approach (+), a.c.p. z contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
y−z plane with grasping area

y [m]

z
[m

]

object tracked
object predicted
arm approach
arm contact
last arm targets

x(t) y(t)

z(t) y − z plane

Figure 5.32: Plots of the trial of Figure 5.34. The time of a sub-movement was set to Ts = 1000ms

204 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

3.38 3.39 3.4 3.41 3.42 3.43

x 10
5

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t [ms]

x
y

z
[m

]

cart. position

x
y
z

3.35 3.36 3.37 3.38 3.39 3.4 3.41 3.42 3.43 3.44

x 10
5

0

2

4

6

8

10

12

14

16

x 10
−6

time t [ms]

V
el

oc
ity

 x
 [m

/m
s]

cart. velocity x

vx

3.38 3.385 3.39 3.395 3.4 3.405 3.41 3.415

x 10
5

−3

−2

−1

0

x 10
−4

time t [ms]

V
el

oc
ity

 y
 [m

/m
s]

cart. velocity y

vy

3.385 3.39 3.395 3.4 3.405 3.41 3.415 3.42 3.425

x 10
5

0

1

2

3

4

5

6

7

x 10
−6

time t [ms]

V
el

oc
ity

 z
 [m

/m
s]

cart. velocity z

vz

a)

c) d)

b)

Figure 5.33: Position and velocity plots of end-effector as calculated by the dsp for the trial of Fig. 5.34:
a) position x, y, z; b) velocity x; c) velocity y; d) velocity z. Time of a sub-movement Ts = 1000ms

5.4. REAL ROBOT EXPERIMENTS 205

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

2 3

4 5 6

1

Figure 5.34: “Movie” of a linearly escaping target. Time of a sub-movement Ts = 1000ms

206 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

5.4.3.2 Approaching Target

Test conditions: The test conditions were the same as for the escaping target. Note: in
this trial the catching area is placed at a position more suitable for an approaching target.

Results: Results can be seen in the plots of Figure 5.35 and Figure 5.36. Again x, y, and
z position of the end-effector and tracked or predicted target position or plotted. It can be
observed that end-effector and target approach each other well until the contact occurs.
After that end-effector trajectory and the (predicted) target trajectory diverge. Taking
a closer look at the “last arm targets”, indicated by the small circles, reveals the cause:
the third circle (with respect to time) lies “far away” from the predicted target trajectory.
The reason for that was not an algorithmic error, but a security check: the calculated arm
target was outside the catching area that was determined in Sec. 5.4.1 and therefore (by
default) replaced by the values of the first arm target.

4.2488 4.2489 4.2489 4.2489 4.249 4.2491 4.2491 4.2492 4.2492 4.2492 4.2493

x 10
7

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

t [ms]

x
[m

]

o.c.p. x tracked (*), o.c.p. x predicted (+), a.c.p. x approach (+), a.c.p. x contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

Predicted time
of contact

4.2488 4.2489 4.2489 4.2489 4.249 4.2491 4.2491 4.2492 4.2492 4.2492 4.2493

x 10
7

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

t [ms]

y
[m

]

o.c.p. y tracked (*), o.c.p. y predicted (+), a.c.p. y approach (+), a.c.p. y contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

4.2488 4.2489 4.2489 4.2489 4.249 4.2491 4.2491 4.2492 4.2492 4.2492 4.2493

x 10
7

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t [ms]

z
[m

]

o.c.p. z tracked (*), o.c.p. z predicted (+), a.c.p. z approach (+), a.c.p. z contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
y−z plane with grasping area

y [m]

z
[m

]

object tracked
object predicted
arm approach
arm contact
last arm targets

x(t) y(t)

z(t) y − z plane

Figure 5.35: Plots of the trial shown in Figure 5.36. Time of a sub-movement Ts = 1000ms

5.4. REAL ROBOT EXPERIMENTS 207

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

2 3

4 5 6

1

Figure 5.36: Linearly Approaching target. Ts = 1000ms

208 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

5.4.3.3 Tangential Target

Test conditions: In this trial the railroad was placed in a way that the train passed the
manipulator tangential as can be seen in Figure 5.38. Note again the “suitable” placement
of the catching area.

Results: Results can be seen in plots Figure 5.37 and Figure 5.38.

5.221 5.2212 5.2214 5.2216 5.2218 5.222 5.2222

x 10
7

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

t [ms]

y
[m

]

o.c.p. y tracked (*), o.c.p. y predicted (+), a.c.p. y approach (+), a.c.p. y contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

5.221 5.2212 5.2214 5.2216 5.2218 5.222 5.2222

x 10
7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t [ms]

z
[m

]

o.c.p. z tracked (*), o.c.p. z predicted (+), a.c.p. z approach (+), a.c.p. z contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

−0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
y−z plane with grasping area

y [m]

z
[m

]

object tracked
object predicted
arm approach
arm contact
last arm targets

5.221 5.2212 5.2214 5.2216 5.2218 5.222 5.2222

x 10
7

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

t [ms]

x
[m

]

o.c.p. x tracked (*), o.c.p. x predicted (+), a.c.p. x approach (+), a.c.p. x contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

x(t) y(t)

z(t) y − z plane

Figure 5.37: Plots of the trial shown in Figure 5.38. Time of a sub-movement Ts = 1000ms.

5.4. REAL ROBOT EXPERIMENTS 209

Figure 5.38: Tangential moving target.

210 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

5.4.4 Hand-Target Interaction: Grasping a Circular Moving Target

5.4.4.1 Approaching Target

Test conditions: In this trial the model train was placed on a small turning table driven
by a belt. The table rotated several times to give the AARM prediction algorithm enough
time and data to perform reliable long term predictions. The turning direction of the table
was set such that the object approached the manipulator.

Results: Results are plotted in Figure 5.40 and Figure 5.39. It can be observed that in
case of noisy tracking data (x coordinate!) the predicted position is qualitatively worse
than for well tracked position data (y and z position). Actually there was no real “up and
down” motion of the object like implied by the x(t) plot. This “up and down” was mainly
caused by vibrations of the turning table and image processing inaccuracies. Nevertheless
the prediction of the circle was well and again accurate enough for the manipulator to
finally catch the object.

3.8486 3.8488 3.849 3.8492 3.8494 3.8496 3.8498 3.85 3.8502 3.8504

x 10
7

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

−0.28

−0.26

−0.24

t [ms]

x
[m

]

o.c.p. x tracked (*), o.c.p. x predicted (+), a.c.p. x approach (+), a.c.p. x contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

3.8486 3.8488 3.849 3.8492 3.8494 3.8496 3.8498 3.85 3.8502 3.8504

x 10
7

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

t [ms]

y
[m

]

o.c.p. y tracked (*), o.c.p. y predicted (+), a.c.p. y approach (+), a.c.p. y contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

3.8486 3.8488 3.849 3.8492 3.8494 3.8496 3.8498 3.85 3.8502 3.8504

x 10
7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t [ms]

z
[m

]

o.c.p. z tracked (*), o.c.p. z predicted (+), a.c.p. z approach (+), a.c.p. z contact (+−), last arm targets (o)

object tracked
object predicted
arm approach
arm contact
last arm targets

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
y−z plane with grasping area

y [m]

z
[m

]

object tracked
object predicted
arm approach
arm contact
last arm targets

Direction
of target motion

x(t) y(t)

z(t) y − z plane

Figure 5.39: Plots of the trial shown in Figure 5.40. Time of a sub-movement Ts = 1000.

5.4. REAL ROBOT EXPERIMENTS 211

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

2 3

4 5 6

1

Figure 5.40: A target approaching on a circular path.

212 CHAPTER 5. SIMULATIONS, EXPERIMENTAL VALIDATION AND RESULTS

5.5 Discussion

Three main topics have been evaluated in this chapter: tracking of objects in motion,
prediction of object motions and hand-target interaction for catching a moving target.
For tracking different sensor modalities were tested for their usefulness for tracking. Each
of them showed certain advantages and drawbacks, all according with the theory. For
intelligent sensor preprocessing and fusion the biological concept of reentry and a modified
version of the ICONDENSATION were tested. It could be clearly showed that the reentry
mechanism strongly improved the tracking results for all test conditions. In detail it can
be stated that (a) the mean tracking error was considerably lower for tracking with color
reentry into the form path than without reentry. (b) the loss of the tracking object was
considerably more seldom and (c) the recovery from a loss (re-initialization) was faster and
always possible. Additionally, processing time for tracking with reentry was lower than
without.

The prediction of target motion was tested in simulation and for real image sequences. In
the simulation was shown that prediction performance of the different methods (ARM, NN)
is strongly depended on the form of the input data. For real image sequence the proposed
Average ARM prediction algorithm, despite the fact that it is simple and therefore fast,
proved to be working accurately enough to be used for hand-target experiments. Test cases
were real situations, i.e. objects moved by hand or a moving model train.

In the simulation of the hand-target interaction the motion of the end-effector behaved
according to the theory described in th preceding chapter. It was shown that it is possible
to interact with a moving target in a “human like” way. Two examples were shown, one
for a approaching target and one for a escaping target. The resulting end-effector motions
and velocity profiles were smooth. Additionally, in the experiments the timely course of
the interaction points and the intermediate targets was demonstrated. Their relation to
the predicted object motion and the timing of the different end-effector motion phases
was shown. It could be seen that the approach is general enough to control an robotic
end-effector for any kind of a predictable target motion.

These results allowed the implementation of the strategy on the robot. The corresponding
real hand-eye experiments were fulfilled on the experimental robot MinERVA. Thereby the
case of an approaching, escaping and a tangential moving target were shown. The results
demonstrated that it is possible to grasp an moving object with the proposed methods, i.e.
that the combination of tracking, prediction, and manipulator control worked for different
target motions.

Chapter 6

Conclusion

Naturally when looking back through this work some questions arise: What has been
learned from looking at the results of neuroscience? What would be a consequent contin-
uation of the topic? What could have been improved? But also: where are the limitations
of the work, of the approach taken and of the results? And finally looking back on the
“work done”: what are the personal experiences working on a robotic hand-eye system?

First, neuroscience was (and is) a very good source of inspiration to develop new ideas for
robotics. On the one hand there are well known principles as e.g. principles underlying
the grasping behavior of humans. On the other hand there are thoroughly recorded exper-
imental data sets that can be well interpreted as e.g. in this case for catching. An thirdly,
there are interesting models combined with experimental data about more “fuzzy” topics
as e.g. the functioning of the brain, or i.e. the functioning of the visual cortex. Taking
into account the knowledge of “standard” robotics and engineering one can get fast to new,
adapted models of human (or in general biological) behavior, that can be implemented on
a robot and (promise to) lead to better results as standard robotics methods. That this
is valid has been shown in this thesis for the cases of controlling a robotic manipulator
for a catching task, and to get to more efficient visual tracking. Last but not least the
implementation of biological models is interesting for neuroscientists to get feedback about
the validity and integrity of their models and inspiration for new experiments. Maybe the
results presented here serve to support this feedback process.

A work like this is of course never finished. Obviously, there were things left out or left
behind that would need more thorough evaluation. Especially, in this work many different
topics have been addressed and discussed, but always keeping in mind that the “hand-eye
system for catching” was the central point. Thereby the single parts were developed up
to an exactness sufficient to fit into the system and provide the needed information to
the system. Nevertheless, some topics that were interesting were explored more deeply as
e.g. the visual sensor fusion and integration, and its applicability for visual tracking. This
evaluation may thereby serve as a good starting point for anyone who is interested in the

213

214 CHAPTER 6. CONCLUSION

transfer of biological concepts to improve robotic vision.

That this procedure was justified can be seen from the experiments. The experimental
hand-eye system MinERVA can now actually reach to catch a moving object in a human
like manner. The only limitation is that orientation is left constant during the catching
experiments.

Looking back “on the work” performed it was very valuable to have a clear understanding
of the complete system and the dependencies between the different modules. In the same
way as it hopefully helped the reader to read this thesis, it helped me and the students
working on that topic not to loose sight for the essential. Additionally, it leaves space for
new developments, improvements of the existing methods or integration of new ideas.

Bibliography

[AC99] Benedetto Allotta und Carlo Colombo. On the Use of Linear Camera-
Object Interaction Models in Visual Servoing. IEEE Trans. on Robotics
and Automation, 15(2):350–357, April 1999. 71

[And86] R.L. Anderson. Real time intelligent visual control of a robot. IEEE
Workhop on Intelligent Control, 1986. 75

[And89] R. L. Andersson. Dynamic sensing in a ping-pong playing robot. IEEE
Trans. on Robotics and Automation, 5(6):723–739, 1989. 76

[ATYM93a] Peter K. Allen, Aleksandar Timcenko, Billibon Yoshimi, und Paul Michel-
man. Automated Tracking and Grasping of a Moving Object with a Robotic
Hand-Eye System. IEEE Trans. on Robotics and Automation, 9(2):152–165,
April 1993. 75

[ATYM93b] Peter K. Allen, Aleksandar Timcenko, Billibon Yoshimi, und Paul Michel-
man. Hand-Eye Coordination for Robotic Tracking and Grasping. In Koichi
Hashimoto, Herausgeber, Visual Servoing, Seiten 33–69. World Scientific
Publishing Company, 1993. 75

[BBY98] Antonio Bicchi, Joel Burdick, und Tsuneo Yoshikawa, Herausgeber. Work-
shop on Grasping, Fixturing, and Manipulation: Towards a Common Lan-
guage. In association with ICRA’98, Mai 1998. 72

[BC95] Farabi Bensalah und François Chaumette. Compensation of Abrupt Motion
Changes in Target Tracking by Visual Servoing. In Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS’95), Seiten 181–187, 1995.
74

[Bea01] Jean-Charles Beauverger. Biologisch Motivierte Wegepunktbestimmung für
eine Fangaufgabe mit einem robotischen Manipulator. Diplomarbeit, TU
München, Lehrstuhl für Realzeit-Computersysteme, Oktober 2001. 191

[BH75] A. E. Bryson und Y. C. Ho. Applied Optimal Control. Hampshire Publishing
Co., New York, 1975. 22

215

216 BIBLIOGRAPHY

[BHMIG92] Emilio Bizzi, Neville Hogan, Ferdinando A. Mussa-Ivaldi, und Simon
Giszter. Does the nervous system use equilibrium-point control to guide sin-
gle and multiple joint movements? Behavioral and Brain Sciences, 15:603–
613, 1992. 22

[BHS94] Bradley E. Bishop, Seth Hutchinson, und Mark Spong. On the Performance
of State Estimation for Visual Servo Systems. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA’94), Seiten 168–173, 1994. A-13

[BI98] A. Blake und M. Isard. Active Contours. Springer-Verlag, 1998. 47, 48,
49, 50, 51, 52, 64, 85, 96, 106, 170, A-6

[BIR95] A. Blake, M.A. Isard, und D. Reynard. Learning to track the visual motion
of contours. Journal of Artificial Intelligence, 78:101–134, 1995. 48

[BJ96] M.J. Black und A.D. Jepson. Eigentracking: robust matching and tracking
of articulated objects using a view-based representation. Proc. 4th European
Conf. on Computer Vision (ECCV’96), Seiten 329–342, 1996. 48

[BK00] A. Bicchi und V. Kumar. Robotic Grasping and Contact: A Review. In
Proc. IEEE Intl. Conf. on Robotics and Automation, Seiten 348–353, April
2000. 63

[BL96] Etienne Burdet und J. Luthiger. Adaptation of the Visuo-Motor Coordi-
nation. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’96),
Seiten 2656–2661, April 1996. 75

[Bla00] Martin Blasczyk. Bildverarbeitung mit Pentium-III SIMD Befehlen. TU
München, Lehrstuhl für Realzeit-Computersysteme, Studienarbeit, Dezem-
ber 2000. 150

[BLZ96] S. Blessing, S. Lanser, und C. Zierl. Vision-based Handling with a Mobile
Robot. In M. Jamshidi, F. Pin, und P. Dauchez, Herausgeber, International
Symposium on Robotics and Manufacturing (ISRAM), Vol. 6, Seiten 49–59.
ASME Press, 1996. 73

[BM98] E. Burdet und T. E. Milner. Quantization of human motions and learning
of accurate movements. Biological Cybernetics, 78:307–318, 1998. 23

[BMMZ94] Reinoud J. Bootsma, Ronald G. Marteniuk, Christine L. MacKenzie, und
Frank T. J. M. Zaal. The speed-accuracy trade-off in manual prehension:
effects of movement amplitude, object size and object width on kinematic
characteristics. Experimental Brain Research, 98:535–541, 1994. 19, 20

[BP92] Reinoud Bootsma und C. Peper. Predictive visual information sources for
the regulation of action with special emphasis on catching and hitting. In

BIBLIOGRAPHY 217

L. Proteau und D. Elliott, Herausgeber, Vision and motor control, Kapi-
tel 12, Seiten 285–314. Elsevier Science Publishers B.V., 1992. 24

[BS98] Bradley E. Bishop und Mark W. Spong. Vision-Based Objective Selec-
tion for Robust Ballistic Manipulation. In Robust Vision for Vision-Based
Control of Motion, Workshop at the ICRA ’98, Mai 1998. 47, 76

[Bur96] Etienne Burdet. Algorithms of Human Motor Control and their Implemen-
tation in Robotics. Dissertation, ETH Zürich, Switzerland, 1996. 23

[Bur02] Gregor Burmberger. PC-basierte Systemarchitekturen für zeitkritische tech-
nische Prozesse. Dissertation, TU München, 2002. 150

[CC97] Armel Crétual und François Chaumette. Positioning a Camera Parallel to
a Plane Using Dynamic Visual Servoing. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS’97), Seiten 43–48, September 1997.
71

[CC98] Armel Crétual und François Chaumette. Image-based visual servoing by
integration of dynamic measurements. In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA’98), Seiten 1994–2001, Mai 1998. 71

[CC99] T. Cham und R. Cipolla. Automated B-spline Curve Representation In-
corporating MDL and Error-Minimizing Control Point Insertion Strategies.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(1):49–53,
1999. 91

[CH97] R. Cipolla und N. J. Hollinghurst. Visually guided grasping in unstructured
enviroments. Robotics and Autonomous Systems, 19:337–346, 1997. 73

[CM99] Tomasz Celinski und Brenan McCarragher. Achieving Efficient Data Fu-
sion Through Integration of Sensory Perception Control and Sensor Fusion.
In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’99), Seiten
1960–1965, Mai 1999. 61

[Col72] H. Collewijn. Latency and gain of the rabbit´s optokinetic reactions to
small movements. Brain Research, 36:59–70, 1972. 25

[CRE91] François Chaumette, Patrick Rives, und Bernard Espiau. Positioning of a
Robot with Respect to an Object, Tracking it and Estimating its Velocity
by Visual Servoing. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’91), Seiten 2248–2253. IEEE, 1991. 71

[DE88] Edgar DeYoe und David Van Essen. Concurrent processing streams in
monkey visual cortex. Trends in Neuroscience, 11:219–226, 1988. 14

218 BIBLIOGRAPHY

[DLC00] Adam Dubrowski, Jerry Lam, und Heather Carnahan. Target velocity ef-
fects on manual interception kinematics. Academic Press, Inc., 104:103–118,
2000. 24

[EG98] Ashraf Elnagar und Kamal Gupta. Motion Prediction of Moving Object
Based on Autoregressive Model. IEEE Trans. on Systems, Man and Cyber-
netics Part A, 28(6):803–810, November 1998. 67

[EKaTBSS92] Andreas K. Engel, Peter König, Andreas K. Kreiter and Thomas B. Schillen,
und Wolf Singer. Temporal coding in the visual cortex: new vistas on
integration in the nervous system. Trends in Neuroscience, 15:218–226,
1992. 15

[ES97] Wolfgang Eckstein und Carsten Steger. Architecture for Computer Vision
Application Development within the HORUS System. Journal of Electronic
Imaging, 6(2):244–261, April 1997. 150

[FDD94] Christian Fagerer, Dirk Dickmanns, und Ernst D. Dickmanns. Visual Grasp-
ing with Long Delay Time of a Free Floating Object in Orbit. Autonomous
Robots, 1:53–68, 1994. 76

[Fel66] A. G. Feldman. Functional tuning of nervous system with control of move-
ment or maintenance of a steady posture. II. Controllable parameters of the
muscles. Biophysics, 11:766–775, 1966. 21

[FH85] T. Flash und N. Hogan. The Coordination of Arm Movements: An Experi-
mentally Confirmed Mathematical Model. J. Neuroscience, 5(7):1688–1703,
1985. 22, 118

[FH91] Tamar Flash und Ealan Henis. Arm trajectory modification during reaching
towards visual targets. J. Cognitive Neuroscience, 3:220–230, 1991. 20, 23,
118

[FHH01] Udo Frese, Steffen Haidacher, und Gerd Hirzinger. Off-the-shelf Vision for a
Robotic Ball Catcher. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS’01), Seiten 1623–1629, 2001. 61, 77

[Fit54] P. M. Fitts. The information capacity of the human motor system in control-
ling the amplitude of movement. J. Experimental Psychology, 47:381–391,
1954. 20

[Fla89] Tamar Flash. Generation of Reaching Movements: Plausibility and Im-
plications of the Equilibrium Trajectory Hypothesis. Brain Behavioural
Evolution, 33:63–68, 1989. 22

BIBLIOGRAPHY 219

[FOF93] J. Randall Flanagan, David J. Ostry, und Anatol G. Feldman. Control of
Trajectory Modifications in Target-Directed Reaching. J. Motor Behavior,
25(3):140–152, 1993. 22

[FP91] B. Faverjon und J. Ponce. On Computing Two-Finger Force-Closure Grasps
of Curved 2D Objects. In Proc. IEEE Int. Conf. on Robotics and Automa-
tion (ICRA’91), Seiten 424–429, 1991. 63

[GCL93] C. Gosselin, J. Cote, und D. Laurendeau. Inverse kinematic functions for
approach and catching operations. IEEE Trans. on Systems, Man, and
Cybernetics, 23(3):783–791, Mai 1993. 75

[GdMA99] Jacques A. Gangloff, Michel de Mathelin, und Gabriel Abba. Visual servoing
of a 6 DOF manipulator for unknown 3D profile following. In Proc. IEEE
Int. Conf. on Robotics and Automation (ICRA’99), Seiten 3236–3242, Mai
1999. 71

[Geo86] Apostolos P. Georgopoulos. On Reaching. Annual Reviews Neuroscience,
9:147–170, 1986. 19, 20

[GG95] Simon R. Goodman und Gerald G. Gottlieb. Analysis of kinematic invari-
ances of multijoint reaching movement. Biological Cybernetics, 73:311–322,
1995. 119

[GGC92] Simon R. Gutman, Gerald G. Gottlieb, und D. Corcos. Exponential model
of a reaching movement trajectory with nonlinear time. Comments Theo-
retical Biology, 2(5):357–383, 1992. 23

[Gla02] Sonja Glas. Automatic Initialisation of B-Splines and Fitting Them to 2D
Object Silhouettes. Diplomarbeit, TU München, Lehrstuhl für Realzeit-
Computersysteme, Februar 2002. 85, 91

[GM99] Antony Galton und Richard Meathrel. Qualitative Outline Theory. In Proc.
16th Int. Joint Conf. on Artificial Intelligence, Seiten 1061–66, Juli 1999.
86

[GMOS96] Enrico Grosso, Giorgio Metta, Andrea Oddera, und Giulio Sandini. Ro-
bust Visual Servoing in 3-D Reaching Tasks. IEEE Trans. on Robotics and
Automation, 12(5):732–742, Oktober 1996. 72

[GS96] Melvyn A. Goodale und Philip Servos. Visual Control of Prehension. In
Howard N. Zelaznik, Herausgeber, Advances in Motor Learning and Con-
trol, Kapitel 5. Human Kinetics, 1996. 21

[Haf98] W. Hafner. Segmentierung von Video-Bildfolgen durch Adaptive Farbklas-
sifikatoren. Dissertation, Technische Universität München, Institut für In-
formatik IX, 1998. 54, 55

220 BIBLIOGRAPHY

[Hag95] Gregory D. Hager. Calibration-Free Visual Control Using Projective In-
variance. In Proc. Int. Conf. Computer Vision, Seiten 1009–1015, 1995.
72

[HAL] MVTec Software GmbH. HALCON – The Software Solution for Machine
Vision Applications. http://www.mvtec.com/halcon/. 104, 150, A-14, A-15

[Hau99] Alexa Hauck. Vision-Based Reach-To-Grasp Movements: From the Human
Example to an Autonomous Robotic System. Dissertation, TU München,
1999. 2, 19, 36, 71, 120, 121, 122, 123, 133

[HBDH93] Gerd Hirzinger, Bernhard Brunner, Johannes Dietrich, und Johann Heindl.
Sensor-Based Space Robotics – ROTEX and Its Telerobotic Features. IEEE
Trans. on Robotics and Automation, 9(5):649–663, Oktober 1993. 76

[HC93] Thomas J. Hebert und Seenwei Chen. Object classification using half-
contour features. In Pattern Recognition Letters, Vol. 14. Elsevier Science
Publishers B.V., North-Holland, Juni 1993. 55

[HD97] Greg Hager und Zachary Dodds. A Projective Framework for Constructing
Accurate Hand-Eye Systems. In Proc. Workshop on New Trends in Image-
Based Robot Servoing, In assoc. with IROS’97, Seiten 71–82, September
1997. 72

[HDE98] Radu Horaud, Fadi Dornaika, und Bernard Espiau. Visually Guided Object
Grasping. IEEE Trans. on Robotics and Automation, 14(4):525–532, August
1998. 72

[HEG99] Y. Hu, R. Eagleson, und M. A. Goodale. Human Visual Servoing for Reach-
ing and Grasping: The Role of 3-D Geometric Features. In Proc. IEEE Int.
Conf. on Robotics and Automation (ICRA’99), Seiten 3209–3216, Mai 1999.
21

[Hen91] Ealan Henis. Strategies Underlying Arm Trajectory Modification During
Reaching Toward Visual Targets. Dissertation, Weizmann Institute of Sci-
ence, Israel, 1991. 23, 119

[HFS97] U. D. Hanebeck, C. Fischer, und G. Schmidt. ROMAN: A Mobile Robotic
Assistant for Indoor Service Applications. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’97), Seiten 518–525, September
1997. 73

[HHC96] Seth Hutchinson, Gregory D. Hager, und Peter I. Corke. A Tutorial on
Visual Servo Control. IEEE Trans. on Robotics and Automation, 12(5):651–
670, Oktober 1996. 45, 71, 119

BIBLIOGRAPHY 221

[HHS97] W. Hong, T. Hornung, und J. J. E. Slotine. Robotic Catching of Free Flying
Objects. Artificial Intelligence Laboratory Research Abstract, MIT, 1997.
64

[HK93] Koichi Hashimoto und Hidenori Kimura. LQ Optimal Control and Nonlin-
ear Approaches to Visual Servoing. In Koichi Hashimoto, Herausgeber, Vi-
sual Servoing, Seiten 165–198. World Scientific Publishing Company, 1993.
74

[HK95] Koichi Hashimoto und Hidenori Kimura. Visual Servoing with Nonlin-
ear Observer. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’95), Seiten 484–489, 1995. 74

[HN99] Koichi Hashimoto und Toshiro Noritsugu. Visual Servoing with Lin-
earized Observer. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’99), Seiten 263–268, 1999. 74

[Hon95] W. Hong. Robotic Catching and Manipulation Using Active Vision. Diplo-
marbeit, Massachusetts Institute of Technology, USA, September 1995. 76

[Hou90] N. Houshangi. Control of a robotic manipulator to grasp a moving target us-
ing vision. Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’90),
1:604–609, 1990. 75

[HRSF99] Alexa Hauck, Johanna Rüttinger, Michael Sorg, und Georg Färber. Visual
Determination of 3D Grasping Points on Unknown Objects with a Binocular
Camera System. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’99), Oktober 1999. 64

[HS95] W. Hong und J. J. E. Slotine. Experiments in Hand-Eye Coordination Using
Active Vision. In Proc. 4th Int. Symp. Experimental Robotics (ISER’95),
1995. 76

[HT96] G. Hager und K. Toyama. Xvision: Combining image warping and geo-
metric constraints for fast visual tracking. Proc. 4th European Conf. on
Computer Vision (ECCV’96), 2:507–517, 1996. 48

[HW65] David Hunter Hubel und Thorsten Niels Wiesel. Receptive fields and func-
tional architecture in two non-striate visual areas (18 and19) of the cat. J.
Neurophysiology, 28:229–289, 1965. 16

[HY92] Mark Hedley und Hong Yan. Segmentation of color images using spatial and
color space information. In Journal of Electronic Imaging, Vol. 1, Depart-
ment of Electrical Engineering, Sydney, New South Wales 2006, Australia,
Oktober 1992. 56

222 BIBLIOGRAPHY

[IB98] Michael Isard und Andrew Blake. Icondensation: Unifying low-level and
high-level tracking in a stochastic framework. In Proc. 5th European Conf.
on Computer Vision (ECCV’98), Seiten 893–908, 1998. 47, 62, 64, 106,
107

[Int] Intel. Intel Architecture MMX Technology, Programmer’s Reference Man-
ual. 103

[Jar88] R. A. Jarvis. Automatic Grip Site Detection for Robotics Manipulators.
Australian Computer Science Communications, 10(1):346–356, 1988. 64

[JFN96] Martin Jägersand, Olac Fuentes, und Randal Nelson. Acquiring Visual-
Motor Models for Precision Manipulation with Robot Hands. In Proc. 4th
European Conf. on Computer Vision (ECCV’96), Seiten 603–612, 1996. 72

[Jäg96] Martin Jägersand. Visual Servoing using Trust Region Methods and Esti-
mation of the Full Coupled Visual-Motor Jacobian. In Proc. IASTED Appl.
Control and Robotics, Seiten 105–108, 1996. 72

[Jäg97a] Martin Jägersand. Image Based Visual Simulation and Tele-Assisted Con-
trol. In Proc. Workshop on New Trends in Image-Based Robot Servoing, In
assoc. with IROS’97, Seiten 33–44, September 1997. 72

[Jäg97b] Martin Jägersand. On-line Estimation of Visual-Motor Models for Robot
Control and Visual Simulation. Dissertation, University of Rochester, USA,
1997. 72

[JN95] Martin Jägersand und Randal Nelson. Visual Task Specification, Planning
and Control. In Proc. IEEE Int. Symp. Computer Vision, Seiten 521–526,
1995. 72

[Kan91] E.R. Kandel. Perception of Motion, Depth and Form. In E.R. Kandel,
J.H. Schwartz, und T.M. Jessel, Herausgeber, Principles of Neural Science,
Seiten 421–438. Elsevier Science Publishers B.V., 1991. 14, 15, 16, 18, 100

[Kaw96] Mitsuo Kawato. Trajectory Formation in Arm Movements: Minimization
Principles and Procedures. In Howard N. Zelaznik, Herausgeber, Advances
in Motor Learning and Control, Kapitel 9. Human Kinetics, 1996. 19, 118

[KC99] D. Kragić und H. I. Christensen. Integration of visual cues for active track-
ing of an end-effector. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS’99), Oktober 1999. 54

[KFE96] Ishay Kamon, Tamar Flash, und Shimon Edelman. Learning to Grasp Using
Visual Information. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’96), Seiten 2470–2476, 1996. 73

BIBLIOGRAPHY 223

[KFN02] H. Kolb, E. Fernandez, und R. Nelson. WEBVISION: The Organization
of the Retina and the Visual System. Technical report, Interdepartmental
Program in Neuroscience, University of Utah, University of Utah, 2002. 10

[KG89] T. R. Kaminski und A. M. Gentile. A kinematic comparison of single and
multijoint pointing movements. Experimental Brain Research, 78:547–556,
1989. 19

[KHL99] Won Kim, Sun-Gi Hon, und Ju-Jang Lee. An Active Contour Model using
Image Flow for Tracking a Moving Object. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS’99), Vol. 1, Seiten 216–221, Kyongju,
Korea, 1999. 61, 64

[KM] Spencer Kimball und Peter Mattis. The GNU Image Manipulating Program.
http://www.gimp.org/. 54

[KP94] D. J. Kriegman und J. Ponce. Representation for Recognizing Complex
Curved 3D Objects. In Proc. NFS–ARPA Workshop on Object Represen-
tation in Computer Vision, Seiten 125–138. Springer-Verlag, 1994. 46

[Kra98] Vladimir Kravtchenko. Using MMX Technology in Digital Image Process-
ing. Technischer Bericht TR-98-13, University of British Columbia, De-
partement of Computer Science, 1998. 53, 54, 55

[KSK90] G. J. Klinker, S. A. Shafer, und T. Kanade. A physical approach to color
image understanding. In International Journal of Computer Vision, Vol. 4,
1990. 60

[KTNG98] F. Keçeci, M. Tonko, H.-H. Nagel, und V. Gengenbach. Improving visually
servoed disassembly operations by automatic camera placement. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA’98), Seiten 2947–2952,
Mai 1998. 73

[KWT87] M. Kass, A. Witkin, und D. Terzopoulos. Snakes: Active contour models.
In Int. Conf. on Computer Vision, Seiten 259–258, 1987. 49

[Lee76] D.N. Lee. A theory of visual control of braking based on the information
about time-to-contact. Perception, 5:437–459, 1976. 25

[Leu00] Jan Leupold. Biologically motivated visual sensor integration for scene
segmentation and object tracking. Diplomarbeit, TU München, Lehrstuhl
für Realzeit-Computersysteme, Dezember 2000. 98, 150, 156

[LH87] MS Livingstone und DH Hubel. Psychophysical evidence for separate chan-
nels for the perception of form, color movement and depth. J. Neuroscience,
7:3416–3468, 1987. 15

224 BIBLIOGRAPHY

[LL90] Young Won Lim und Sang Uk Lee. On the color image segmentation al-
gorithm based on the thresholding and the fuzzy c-MEANS techniques. In
Pattern Recognition, Vol. 23, 1990. 56

[Low85] David G. Lowe. Perceptual organization and visual recognition. The Kluwer
International Series In Engineering and Computer Science. Robotics and
vision. Kluwer Academic Publishers, Dordrecht, 1985. 47

[LPG97] Daeyol Lee, Nicholas Lindman Port, und Apostolos Georgopoulos. Manual
interception of moving targets: On-line control of overlapping submove-
ments. Experimental Brain Research, 116:421–433, 1997. 24, 25, 28, 29

[LY94] Jianqing Liu und Yee-Hong Yang. Multiresolution Color Image Segmenta-
tion. In IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16,
1994. 56

[LZ95] S. Lanser und Ch. Zierl. Robuste Kalibrierung von CCD-Sensoren für au-
tonome, mobile Systeme. In R. Dillmann, U. Rembold, und T. Lüth, Her-
ausgeber, Autonome Mobile Systeme, Informatik aktuell, Seiten 172–181.
Springer-Verlag, 1995. A-15

[LZB95] S. Lanser, Ch. Zierl, und R. Beutlhauser. Multibildkalibrierung einer CCD-
Kamera. In G. Sagerer, S. Posch, und F. Kummert, Herausgeber, Mus-
tererkennung, Informatik aktuell, Seiten 481–491. Deutsche Arbeitsgemein-
schaft für Mustererkennung, Springer-Verlag, 1995. A-14, A-15

[LZP89] Z. Lin, V. Zeman, und R. Patel. On-line robot trajectory planning for catch-
ing a moving object. Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’89), 1:1726–1731, 1989. 75

[Mai99] Christian Maier. Biologically Motivated Kinematic Control of a 7-DOF Re-
dundant Manipulator. Diplomarbeit, TU München, Lehrstuhl für Realzeit-
Computersysteme, Dezember 1999. 37, 40, 42, 43, 124

[Mai00] Thomas Maier. Ansteuerung eines redundanten Manipulators in Echtzeit
mit Hilfe eines Digitalen Signalprozessors. Diplomarbeit, TU München,
Lehrstuhl für Realzeit-Computersysteme, September 2000. 133, 150

[Mar82] D. Marr. Vision. Freeman, New York, 1982. 3

[MB93] Joseph McIntyre und Emilio Bizzi. Servo Hypotheses for the Biological
Control of Movement. J. Motor Behavior, 25(3):193–202, 1993. 22

[MBGL94] Denis Mottet, Reinould J. Bootsma, Yves Guiard, und Michel Laurent.
Fitts’ law in two-dimensional tasks. Experimental Brain Research, 100:144–
148, 1994. 20

BIBLIOGRAPHY 225

[MC99] Andrea Mason und Heather Carnahan. Target viewing time and velocity
effects on prehension. Experimental Brain Research, 127:83–94, 1999. 24

[MCB99] Ezio Malis, François Chaumette, und Sylvie Boudet. 2-1/2-D Visual Servo-
ing. IEEE Trans. on Robotics and Automation, 15(2):238–250, April 1999.
71

[MCR96] Éric Marchand, François Chaumette, und Alessandro Rizzi. Using the task
function approach to avoid robot joint limits and kinematic singularities in
visual servoing. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS’96), Seiten 1083–1090, Oktober 1996. 71

[MDGD97] P. Martinet, N. Daucher, J. Gallice, und M. Dhome. Robot Control us-
ing Monocular Pose Estimation. In Proc. Workshop on New Trends in
Image-Based Robot Servoing, In assoc. with IROS’97, Seiten 1–12, Septem-
ber 1997. 71

[MH98] Éric Marchand und Greg Hager. Dynamic Sensor Planning in Visual Ser-
voing. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’98),
Seiten 1988–1993, Mai 1998. 71

[Mil92] T. E. Milner. A model for the generation of submovements requiring end-
point precision. J. Neuroscience, 49(2):487–496, 1992. 20, 23

[MK91] C. Mason und E.R. Kandel. Central Visual Pathways. In E.R. Kandel,
J.H. Schwartz, und T.M. Jessel, Herausgeber, Principles of Neural Science,
Seiten 421–438. Elsevier Science Publishers B.V., 1991. 15, 102

[MN95] H. Murase und S. K. Nayar. Visual Learning and Recognition of 3D Objects
from Appearance. Int. J. Computer Vision, 14(1):5–24, Januar 1995. 46

[Mor81] P. Morasso. Spatial Control of Arm Movements. Experimental Brain Re-
search, 42:223–227, 1981. 19

[MRSdP01] A. Morales, G. Recatalá, P.J. Sanz, und A.P. del Pobil. Heuristic Vision-
Based Computation of Planar Antipodal Grasps on Unknown Objects. In
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’01), Seiten 583–
588, Seoul, Korea, Mai 2001. 63, 64, 110, 111

[MSW82] David E. Meyer, J. E. Keith Smith, und Charles E. Wright. Models for the
Speed and Accuracy of Aimed Movements. Psychological Review, 89(5):449–
482, September 1982. 20, 23

[MZ92] Joseph L. Mundy und Andrew Zisserman. Projective Geometry for Machine
Vision. In Joseph L. Mundy und Andrew Zisserman, Herausgeber, Geomet-
ric Invariance in Computer Vision, Kapitel 23, Seiten 463–519. MIT Press,
1992. 45, A-12

226 BIBLIOGRAPHY

[N+98] Hiroaki Nakai et al. A Volleyball Playing Robot. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’98), Seiten 1083–1089, Mai 1998. 47,
64, 76

[Nel83] W. L. Nelson. Physical Principles for Economies of Skilled Movements.
Biological Cybernetics, 46:135–147, 1983. 22, 23

[Ngu88] V.-D. Nguyen. Constructing Force-Closure Grasps. The Intl. J. of Robotics
Research, 7(3), 1988. 63, 110

[NHNT00] K. Nagahama, K. Hashimoto, T. Noritsugu, und M. Takaiawa. Visual Ser-
voing based on Object Motion Estimation. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’00), Vol. 1, Seiten 245–250, 2000.
76

[NNII99] Akio Namiki, Yoshihiro Nakabo, Isaku Ishii, und Masatoshi Ishikawa. High
Speed Grasping Using Visual and Force Feedback. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’99), Seiten 3195–3200, Mai 1999. 73

[NPK93] Bradley J. Nelson, Nikolaos P. Papanikolopoulos, und Pradeep K. Khosla.
Visual Servoing for Robotic Assembly. In Koichi Hashimoto, Herausge-
ber, Visual Servoing, Seiten 139–164. World Scientific Publishing Company,
1993. 71

[NS99] Heiko Neumann und Wolfgang Sepp. Recurrent V1-V2 interaction in early
visual boundary processing. Biological Cybernetics, 81:425–444, 1999. 16

[OA99] Paul Y. Oh und Peter K. Allen. Performance of a Partitioned Visual Feed-
back Controller. In Proc. IEEE Int. Conf. on Robotics and Automation
(ICRA’98), Seiten 275–280, Mai 1999. 74

[OPB+98] D. E. Okhotsimsky, A. K. Platonov, I. R. Belousov, A. A. Bogulavsky,
S. N. Emelianov, V. V. Sazonov, und S. M. Sokolov. Real-Time Hand-Eye
System: Interaction with Moving Objects. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA’98), Seiten 1683–1688, Mai 1998. 47, 76

[Osw00] Hans Oswald. Probabilistic Tracking of Moving Objects in Image Se-
quences using Shape Information. Diplomarbeit, TU München, Lehrstuhl
für Realzeit-Computersysteme, Mai 2000. 52, 97

[Pai96] J. Paillard. Fast and Slow Feedback Loops for the Visual Correction of Spa-
tial Errors in a Pointing Task: A Reappraisal. Can. Journal of Physiological
Pharmacology, 74:401–417, 1996. 21

[PEKJ79] C. Prablanc, J. F. Echallier, E. Komilis, und M. Jeannerod. Optimal Re-
sponse of Eye and Hand Motor Systems in Pointing at a Visual Target.
Biological Cybernetics, 35:113–124, 1979. 20

BIBLIOGRAPHY 227

[Pla95] Réjean Plamondon. A kinematic theory of rapid human movements. II.
Movement time and control. Biological Cybernetics, 72:309–320, 1995. 20

[PLDG97] Nicholas Lindman Port, Daeyeol Lee, Paul Dassonville, und Apostolos Geor-
gopoulos. Manual interception of moving targets: Performance and move-
ment initiation. Experimental Brain Research, 116:406–420, 1997. 24, 25,
27

[PML98] Jenelle Armstrong Piepmeier, Gary V. McMurray, und Harvey Lipkin.
Tracking a Moving Target with Model Independent Visual Servoing: A
Predictive Estimation Approach. In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA’98), Seiten 2652–2657, Mai 1998. 74

[PML99] Jenelle Armstrong Piepmeier, Gary V. McMurray, und Harvey Lipkin. A
Dynamic Quasi-Newton Method for Uncalibrated Visual Servoing. In Proc.
IEEE Int. Conf. on Robotics and Automation (ICRA’99), Seiten 1595–1600,
Mai 1999. 74

[PMMJ91] Y. Paulignan, C. MacKenzie, R. Marteniuk, und M. Jeannerod. Selective
perturbation of visual input during prehension movements. Experimental
Brain Research, 83:502–512, 1991. 19

[PNK95] Nikolaos P. Papanikolopoulos, Bradley J. Nelson, und Pradeep K. Khosla.
Six Degree-of-Freedom Hand/Eye Visual Tracking with Uncertain Param-
eters. IEEE Trans. on Robotics and Automation, 11(5):725–732, Oktober
1995. 74

[Pop95] A. R. Pope. Learning to Recognize Objects in Images: Acquiring and Us-
ing Probabilistic Models of Appearance. Dissertation, University of British
Columbia, Canada, 1995. 46

[PP93] Nikhil R. Pal und Sankar K. Pal. A Review on image segmentation tech-
niques. Technischer Bericht, Machine Intelligence Unit, Indian Statistical
Institute, 203 B.T. Road, Calcutta 700035 India, 1993. 55

[PP96] I. Pavlidis und N. P. Papanikolopoulos. Automatic Selection of Control
Points for Deformable-Model-Based Target Tracking. Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’96), Seiten 2915–2920, 1996. 86

[PPG96] Nicholas Lindman Port, Guiseppe Pellizer, und Apostolos Georgopoulos.
Intercepting real and path-guided apparent motion targets. Experimental
Brain Research, 110:298–307, 1996. 24

[PPGJ86] D. Pélisson, C. Prablanc, M. A. Goodale, und M. Jeannerod. Visual control
of reaching movements without vision of the limb. Experimental Brain
Research, 62:303–311, 1986. 21

228 BIBLIOGRAPHY

[PS95] Nikolaos P. Papanikolopoulos und Christopher E. Smith. Computer Vision
Issues During Eye-In-Hand Robotic Tasks. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA’95), Seiten 2989–2994, 1995. 74

[PSMP00] D. Perrin, C.E. Smith, O. Masoud, und N.P. Papanikolopoulos. Unknown
object grasping using statistical pressure models. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’00), Seiten 1054–1059, San Francisco,
CA, April 2000. 63, 64

[Qt] Troll Tech. The Qt GUI Toolkit. http://troll.no/products/qt.html. 150

[RDR94] E. Rivlin, S. J. Dickinson, und A. Rosenfeld. Recognition by Functional
Parts. In Proc. Computer Vision and Pattern Recognition (CVPR’94),
Seiten 267–272. IEEE Computer Society Press, 1994. 46

[RK93] Alfred A. Rizzi und Daniel E. Koditschek. A Dynamic Sensor for Robot
Juggling. In Koichi Hashimoto, Herausgeber, Visual Servoing, Seiten 229–
256. World Scientific Publishing Company, 1993. 76

[RK96] Alfred A. Rizzi und Daniel E. Koditschek. An Active Visual Estimator
for Dexterous Manipulation. IEEE Trans. on Robotics and Automation,
12(5):697–713, 1996. 76

[Ros94] D. A. Rosenbaum. Human Motor Control, Kapitel 6. Harcourt, Brace,
Jovanovich, 1994. 19, 21

[RP95] Charles A. Richards und Nikolaos P. Papanikolopoulos. The Automatic
Detection and Visual Tracking of Moving Objects by Eye-in-Hand Robotic
Systems. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’95), Seiten 228–233, 1995. 74

[RSL+02] G. Recatalá, M. Sorg, J. Leupold, P.J. Sanz, und A.P. del Pobil. Vi-
sual grasp determination and tracking in 2D dynamic scenarios. In Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’02), 2002.
to appear. 110, 114

[RTHN97] A. Ruf, M. Tonko, R. Horaud, und H.-H. Nagel. Visual Tracking of an End-
Effector by Adaptive Kinematic Prediction. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’97), Seiten 893–898, September
1997. 73

[Rus95] John C. Russ. The Image Processing Handbook. CRC Press, Inc., 1995. 54,
57

[SBP97] Christopher E. Smith, Scott A. Brandt, und Nikolaos P. Papanikolopoulos.
Eye-In-Hand Robotic Tasks in Uncalibrated Environments. IEEE Trans.
on Robotics and Automation, 13(6):903–914, Dezember 1997. 74

BIBLIOGRAPHY 229

[Sch84] Elmar Schrüfer. Zuverlässigkeit von Mess- und Automatisierungseinrich-
tungen. Carl Hanser Verlag München Wien, 1984. 69

[Sch93] Raimondo Schettini. A segmentation algorithm for color images. In Pattern
Recognition Letters, Vol. 14, 1993. 56

[SdPIR98] P. J. Sanz, A. P. del Pobil, J. M. Inesta, und G. Recatalá. Vision-Guided
Grasping of Unknown Objects for Service Robots. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’98), Seiten 3018–3025, Mai 1998. 63,
64, 73, 86, 111

[Sel00] Georg Selzle. Rekonstruktion und Prädiktion von 3D-Objektbewegungen.
Diplomarbeit, TU München, Lehrstuhl für Realzeit-Computersysteme, Au-
gust 2000. 70, 117, 184

[SJ99] Michael Small und Kevin Judd. Variable prediction steps and longer term
prediction. Technischer Bericht, Centre for Applied Dynamics und Opti-
mization, Department of Mathematics and Statistics, University of Western
Australia, 1999. 65

[Sol97] Stephen J. Solari. Digital Video and Audio Compression. McGraw-Hill
Book Company, 1997. 53

[SS96] L Sciavicco und B. Siciliano. Modeling and Control of Robot Manipulators.
McG, University of Naples, Naples, 1996. 41

[Stö01] Norbert O. Stöffler. Realzeitfähige Bestimmung und Interpretation des op-
tischen Flusses zur Navigation mit einem mobilen Roboter. Dissertation,
TU München, 2001. 60, 61, 99, 104, 164

[Sta91] S.A. Stansfield. Robotic Grasping of Unknown Objects: A Knowledge-
Based Approach. The Intl. J. of Robotics Research, 10(4):314–326, August
1991. 64

[SZB95] Larry S. Shapiro, Andrew Zisserman, und Michael Brady. 3D Motion Recov-
ery via Affine Epipolar Geometry. Int. J. Computer Vision, 16(2):147–182,
Oktober 1995. 45, A-12

[TBC94] Michael Taylor, Andrew Blake, und Adrian Cox. Visually guided grasping
in 3D. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’94),
Seiten 761–766, 1994. 73

[Tsa87] Roger Y. Tsai. A Versatile Camera Calibration Technique for High Accuracy
3D Machine Vision Metrology Using Off-The-Shelf TV Cameras and Lenses.
IEEE Trans. on Robotics and Automation, 3(4):323–344, August 1987. A-
14

230 BIBLIOGRAPHY

[TSE92] G. Tononi, O. Sporns, und G.M. Edelman. Reentry and the Problem of
Integrating Multiple Cortical Areas: Simulation of Dynamic Integration in
the Visual System. Cerebral Cortex, 2:310–335, Juli 1992. 15, 16

[TSHN97] M. Tonko, K. Schäfer, F. Heimes, und H.-H. Nagel. Towards Visually
Servoed Manipulation of Car Engine Parts. In Proc. IEEE Int. Conf. on
Robotics and Automation (ICRA’97), Seiten 3166–3171, April 1997. 73

[TSSN97] M. Tonko, J. Schurmann, K. Schäfer, und H.-H. Nagel. Visually Servoed
Gripping of a Used Car Battery. In Proc. IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS’97), Seiten 49–54, September 1997. 73

[UKS89] Y. Uno, M. Kawato, und R. Suzuki. Formation and Control of Optimal
Trajectory in Human Multijoint Arm Movement: Minimum Torque Change
Model. Biological Cybernetics, 61:89–101, 1989. 22

[Val96] Pedro J. Sanz Valero. Rozonamiento Geométrico Basado en Visión para
la Determinación y Ejecución del Agarre en Robots Manipuladores. Dis-
sertation, Department of Computer Science at the Jaume-I University of
Castellón, 1996. 86

[VAZ00] Markus Vincze, Minu Ayromlou, und Michael Zillich. Fast Tracking of
Ellipses using Edge-Projected Integration of Cues. In Proc. 15th Int. Conf.
on Pattern Recognition, Vol. 4, Seiten 72–75, Barcelona, E, September
2000. IEEE Computer Society Press. 48, 97

[vdKSS97] John van der Kamp, Geert Savelsbergh, und Jeroen Smeets. Multiple in-
formation sources in interceptive timing. J. of Human Movement Science,
16:787–821, 1997. 24

[vH79] C. von Hofsten. Development of visually guided reaching: the approach
phase. J. of Human Movement Studies, 5:160–178, 1979. 24

[vH80] C. von Hofsten. Predictive reaching for moving objects by human infants.
J. of Experimental Child Psychology, 30:369–382, 1980. 24

[vH82] C. von Hofsten. Eye-hand coordination in newborns. Developmental Psy-
chology, 18:450–461, 1982. 24

[VMPG94] J. L. Vercher, G. Magenes, C. Prablanc, und G. M. Gauthier. Eye-head-
hand coordination in pointing at visual targets: spatial and temporal anal-
ysis. Experimental Brain Research, 99:507–523, 1994. 21

[WG94] Andreas S. Weigend und Neil A. Gershenfeld. Time Series Prediction :
Forcasting the Future and Understanding the Past. Perseus Books Publish-
ing,L.L.C., 1994. 66, 70

BIBLIOGRAPHY 231

[WHB96] William J. Wilson, Carol C. Williams Hulls, und Graham S. Bell. Relative
End-Effector Control Using Cartesian Position Based Visual Servoing. IEEE
Trans. on Robotics and Automation, 12(5):684–696, Oktober 1996. 74

[Wil93] William J. Wilson. Visual Servo Control of Robots Using Kalman Filter
Estimates of Robot Pose Relative to Work-Pieces. In Koichi Hashimoto,
Herausgeber, Visual Servoing, Seiten 71–104. World Scientific Publishing
Company, 1993. 74

[Woo99] R. S. Woodworth. The accuracy of voluntary movement. Psychological
Review, 3:1–114, 1899. 20

[YA95] Billibon H. Yoshimi und Peter K. Allen. Alignment Using an Uncalibrated
Camera System. IEEE Trans. on Robotics and Automation, 11(4):516–521,
August 1995. 71

[YLH98] Dejin Yu, Weiping Lu, und Robert G. Harrison. Phase-space prediction of
chaotic time series. Proceedings in Dynamics and Stability of Systems, Vol.
13, No. 3, 1998, 1998. 70

[ZB94] M. Zhang und M. Buehler. Sensor-Based Online Trajectory Generation for
Smoothly Grasping Moving Objects. Int. Symp. Intelligent Control, 1:141–
146, 1994. 75

[ZL97] Didier Zugaj und Vincent Lattuati. A new approach of color images segmen-
tation based on fusing region and edge segmentations outputs. In Pattern
Recognition, Vol. 31, Februar 1997. 56

[ZM94] M. Zerroug und G. Medioni. The Challenge of Generic Object Recognition.
In Proc. NFS–ARPA Workshop on Object Representation in Computer Vi-
sion, Seiten 217–232. Springer-Verlag, 1994. 46

232 BIBLIOGRAPHY

Glossary of Symbols

a, b, c . . . scalar variables
a , b , c . . . vector variables
A , B , C . . . matrix variables
I identity matrix

0 vector of zeroes

Ff Base (Frame) f with B =
[

fbx fby fbz

]
f
gbi base vector i of Fg in Ff
fai vector in Ff and index i
fAi matrix in Ff and index i
f
gTi transformation matrix of Fg to Ff with index i
fRi rotation matrix in Ff with index i
fpi translation vector in Ff with index i
fxi Cartesian position vector in Ff and index i
fωi angular velocity vector in Ff and index i
q joint angle vector
m number of joint angles
Fw world coordinate system
Fe end-effector coordinate system
J] pseudo-inverse of matrix J
r(s) parameterized, two dimensional b-spline curve
W shape matrix
X shape vector
XOP x position of optimal catch point
XIP x position of interaction point
XV IP x velocity of target object in the interaction point
Ts time of a sub-movement
Tp time for the target object to travel from the current position to target position
TtC time to contact
ToC time of contact with the target
xeepos current x position of the end-effector

233

234 GLOSSARY OF SYMBOLS

xeedes desired x position of the end-effector
ti time of beginning of a sub-movement
tfi time of end of a sub-movement
f (Gaussian) focal length of a camera, camera constant
Sx, Sy scaling factors determining pixel size
Cx, Cy pixel coordinates of the principal point
κ radial distortion coefficient
B baseline of the stereo system
βL, βR vergence angles of left and right camera

Appendix A

B-Splines

Splines are nowadays a well exploited and commonly used mathematical method to describe
smooth curves. The following paragraphs constitute an introduction to the basic principles
of this method.

Basic mathematical background Originally a spline was a draughtsman’s aid. It was
a thin elastic wood or metal strip that was used to draw a curve through certain fixed
points. Mathematically speaking, a spline is in general a piecewise polynomial function,
where the pieces are smoothly connected.

An example of a spline is given Figure A.1. The connection points are called either knots
ki, hinges or breakpoints and the pieces of the spline curve are known as spans. The
individual spans are connected smoothly in the knots. The order d of a spline depends
on the degree of the polynomials of its polynomial pieces. The order d is one degree higher
than the degree of its polynomial (basis) functions.

Figure A.1: Spline curve with knots and spans

A-1

A-2 APPENDIX A. B-SPLINES

The B before the spline stands for Basis-spline. A B-spline is is a convenient computational
way of representing a spline function. The spline r(s) is defined as a weighted sum of basis
functions (polynomial functions):

r(s) =

NB−1∑
i=0

wi ∗Bi,d(s) (A.1)

where:
NB: the number of basis functions
wi: weight i
B(s) : basis function which is a polynomial function
Bi,d(s) : translation of the basis function B(s) of order d to B(s+ i)

The basis function Bi,d(s) can be determined in different ways; a very comprehensive
possibility is the convolution of a rectangular impulse b(s):

b(s) =

{
1 if 0 ≤ s < 1,

0 otherwise
(A.2)

The following Figure A.2 shows the rectangular impulse b(s) and its convolutions as well
as the notation Bi,d used below:

The basis functions can also be calculated with the recursive formula (A.3):

Bi,d (s) =
(s− ki) ∗Bi,d−1(s)

ki+d−1 − ki

+
(ki − s) ∗B(i+1),(d−1)(s)

ki+d − ki+1

(A.3)

where:
d : order of the spline
ki: knot i
Bi,d (s): basis function of the order d and translated by i

B0,1 (s) is equivalent to the impulse b(s) above:

B0,1(s) =

{
1 if k0 ≤ s < k1,

0 otherwise
(A.4)

An important characteristic of the basis functions is the local support property of the
B-spline, which indicates that the basis function vanishes outside the interval [ki, kd−i]. The
result is that changes of a weight index wi only affect the B-spline locally in the interval
ki ≤ s < kd−i.

A-3

(a) basis function B0,1 of order d
= 1 equal to b(s)

(b) basis function B0,2 of order
d = 2 equal to b(s) convoluted
with b(s)

(c) basis function B0,3 of order
d = 3 equal to B0,2 convoluted
with b(s)

(d) basis function B0,4 of order
d = 4 equal to B0,3 convoluted
with b(s)

Figure A.2: Basis functions of a B-spline of orders d = [1,...,4]

For example the basis function B0,3 has the formula:

B0,3(s) =

s2

2
if k0 ≤ s < k1,

3
4
− (s− 3

2
)2 if k1 ≤ s < k2,

(s−3)2

2
if k2 ≤ s < k3,

0 otherwise

(A.5)

where ki is a knot at the position s = i.

The order d of B0,3 is 3 and the degree of its polynomials is two, one less than the order
of the spline. In the knots the basis functions are smoothly connected in the same way as
a spline is always smoothly connected in the knots.

A constraint for each point is that the sum of all basis functions B(s) equals one:

∑
i

Bi(s) = 1 for all s (A.6)

A-4 APPENDIX A. B-SPLINES

Figure A.3: A B-spline is the sum of weighted basis functions

A B-spline of order d is now calculated as the sum of the weighted basis functions of order
d according to equation (A.1).

Figure A.3 shows the basis functions Bi,3 (s) of order d = 3 and the spline which is the
sum of the basis functions weighted by wi.

2-Dimensional B-Splines Calculation of the B-spline for e.g. object contour outlines,
requires two-dimensional B-splines and 2-dimensional weights, also called control points ci.
In analogy to equation Equation A.1 a 2-dimensional B-spline is defined as:

r(s) =

NB−1∑
i=0

Bi,d(s) ∗ ci (A.7)

where:

r(s) =

(
x(s)
y(s)

)

ci =

(
wi(x)
wi(y)

)

B(s) basis function

Figure A.4 shows an example of a 2-dimensional closed B-spline with its pieces, the spans,
connected by knots k. The control polygon is determined by the control points c. As can
be seen in Figure A.3 the B-spline is an approximation to the control polygon which is
formed by the weights. An example of the 2D case is given in Figure A.4.

A-5

Figure A.4: 2-dimensional B-spline

A more convenient mathematical expression for this B-spline can be obtained using matri-
ces. The vector sum of Equation A.7) can be expressed by matrices as follows:

r(s) =

(
B(s)T 0

0 B(s)T

)
︸ ︷︷ ︸

U(s)

∗ Q =

=

((
B0,d B1,d ... BNB−1,d

)
0

0
(
B0,d B1,d ... BNB−1,d

)) ∗

cx0
cx1
...

cxNB−1

cy0
...

cyNB−1

(A.8)

Multiplicity The B-splines discussed up to now have always been curves smoothly con-
nected in the knots ki. Nevertheless it is often necessary to introduce a vertex or hinge
at a certain point along such a parametric curve, to fit around sharp corners of an object
outline. A way to do so is to introduce multiple knots1. At a regular breakpoint, the degree
of smoothness is at its maximal value (continuity of all derivatives up to the (d-2)th). If a
double knot is introduced at a breakpoint the degree of smoothness is reduced by one. To
explain this the following shall serve:

1To use multiple control points would also be possible, but is not advantageous due to linearity con-
straints and bad behavior in the vicinity of the hinge (see [BI98] for details)

A-6 APPENDIX A. B-SPLINES

The derivative of the B-spline is continuous, as long as the order of the derivative is smaller
than the degree of the polynomial pieces. For a B-spline of order d = 3 the first derivative
is continuous, forming a hinge, and the second derivative is discontinuous, forming a break.
Therefore, the multiplicity mi of a knot can vary from 1 (smooth curve) to d-1 (break
in the curve). This is shown in Figure A.5. The same result can be imagined if two knots
move closer together until they coincide. The curvature of the B-spline becomes more
pronounced until it results in a hinge, then it is a multiple knot.

Figure A.5: B-spline with visible hinge at knot 2

If, however, the multiplicity m of the knots is not always 1 the situation is slightly different.
As was mentioned before, a higher multiplicity mi equals a coincidence of mi knots, this
is an increase in the number of basis functions B(s) used for combining the B-spline. Now
the number of basis functions NB for a closed B-spline is:

NB = L+
L∑

i=0

(mi − 1) (A.9)

where: L is the number of spans

Appendix B

Model of the Head and the Camera

Model of the Head

The head frames in Fig. B.1 also follow the Denavit-Hartenberg conventions. θ1 corresponds
to the pan angle, θ2 to the tilt angle. Table B.1 lists the corresponding link parameters.
The resulting forward model

0
2T = 0

1T · 1
2T =

cos θ1 · cos θ2 − sin θ1 cos θ1 · sin θ2 0
sin θ1 · cos θ2 cos θ1 − cos θ1 · sin θ2 0
− sin θ2 0 cos θ2 0

0 0 0 1

 (B.1)

is very simple and can be inverted directly.

In the case of the head, the equivalent of the end-effector are the cameras. Under the
assumption that the cameras are mounted allowing only a 3D translation and a (fixed)
vergence angle ψ{L,R}, Equation B.3 gives the corresponding transforms, with cLRot ex-

Link d ϑ a α transform

1 0 θ1 0 −90◦ 0
1T =

cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 0
0 0 0 1

2 0 θ2 0 90◦ 1
2T =

cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0

0 1 0 0
0 0 0 1

Table B.1: Link parameters of MinERVA’s head.

A-7

A-8 APPENDIX B. MODEL OF THE HEAD AND THE CAMERA

1

+
+

+θ

+

θ
2

xcL

ycL

z cL

left camera

xcR

ycR

z cR

right camera

y1

x1

z 1

z 0

y0

x0

z 2

y2

x2

head

Figure B.1: Model of the Robots Head

changing the axes so that the z-axis points along the optical axis:

2
cLT = 2

cLTrans ·Rotz(ψL) · cLRot

=

1 0 0 tcL,x

0 1 0 tcL,y

0 0 1 tcL,z

0 0 0 1

 ·

cψL −sψL 0 0
sψL cψL 0 0
0 0 1 0
0 0 0 1

 ·

0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

=

sψL 0 cψL tcL,x

−cψL 0 sψL tcL,y

0 −1 0 tcL,z

0 0 0 1

 (B.2)

2
cRT =

sψR 0 cψR tcR,x

−cψR 0 sψR tcR,y

0 −1 0 tcR,z

0 0 0 1

 (B.3)

A-9

With the additional assumption that the x- and z-axes of the cameras are co-planar, i.e.
equal translational offsets in z-direction, tcR,z = tcL,z, we obtain a simplified, planar model
of the stereo camera system (Figure B.2). This model is of course an approximation of the
real system, but errors occuring thereby can be tolerated as the experiments showed (see
Section 5).

f L

αL

dL

f RγL
γ

R

α R

xcL

zcL

xiL xiR

βL βR

γ

B

x
P

x

z

x

z

y

x

x

z

x

z

βL

ψ
L −ψ

R

βL

βR

x
cR
cL

z
cR
cL

b)

B
δ

a)

Figure B.2: Simplified model of the stereo camera system: (a) triangulation, (b) relation between stereo
and head parameters.

The inverse model of the stereo camera system, i.e. how to reconstruct 3D information
from pixel coordinates in the two images, cx = f(pLx, pRx), is derived based on the pinhole
camera model (see later paragraph Pinhole Camera Model). As could be seen in Equa-
tion B.16, the coordinates of a point cx can be computed if the z-component is known.
In our planar stereo model, cLz can be calculated using the trigonometric relations of
Figure B.2a:

cLz = dL · cosαL (B.4)

αL = arctan
iLx

fL

αR = arctan
−iRx

fR

(B.5)

with f{L,R} being the respective focal lengths of the cameras. Using the tangential formula
one can derive:

tan γ =
B · sin γL

dL −B · cos γR

(B.6)

A-10 APPENDIX B. MODEL OF THE HEAD AND THE CAMERA

with the baseline B, γ{L,R} = 90◦ − β{L,R} − α{L,R}, γ = 180◦ − γL − γR, and solve it for
dL:

dL =
B · cos(αL + βL)

tan(αL + βL + αR + βR)
+B · sin(αL + βL) (B.7)

The computed position can be transformed from the frame of the left camera to head
coordinates using Equation B.3. The parameters of the stereo model, B, βL, and βR, can
be derived from the parameters of the model of the camera-to-head relation (Equation B.3)
using the geometric relations illustrated in Figure B.2b: In the general case, the baseline
is rotated by an angle δ in relation to the y-axis of the top head frame. Therefore, the
vergence angles of the stereo model, βL and βR, depend on the vergence angles of the head
model, ψL and ψR, as follows1:

βL = ψL − δ βR = −ψR + δ (B.8)

Using the transformation between the two camera frames, cL
cRT

cL
cRT = cL

2 T · 2
cRT =

cosψΣ 0 sinψΣ sinψl ·∆tx − cosψl ·∆ty

0 1 0 0
− sinψΣ 0 cosψΣ cosψl ·∆tx + sinψl ·∆ty

0 0 0 1

 (B.9)

with ∆tx = tcR,x − tcL,x, ∆ty = tcR,y − tcL,y, ψΣ = ψL − ψR, the stereo parameters can be
computed as:

βL = arctan

(
cLzcR

cLxcR

)
, βR = −ψR + (ψL − βL), B =

√
(cLxcR)2 + (cLzcR)2 (B.10)

with cLxcR and cLzcR being translational components of cL
cRT.

Head-centered coordinates are transformed into arm-centered ones using a
hT, with a

hRot
only “exchanging” the axes while neglecting any other rotations:

a
hT = a

hTrans · a
hRot =

1 0 0 th,x

0 1 0 th,y

0 0 1 th,z

0 0 0 1

 ·

0 0 1 0
−1 0 0 0
0 −1 0 0
0 0 0 1

 =

0 0 1 th,x

−1 0 0 th,y

0 −1 0 th,z

0 0 0 1

 (B.11)

Model of the Camera

In the robotics and computer vision communities, video (CCD) cameras are described using
a range of models. A good overview of these camera models is given in [MZ92] or [SZB95].

1Note, that the angles of the head model are both measured in the mathematically positive direction,
while the angles of the stereo model are measured in different directions.

A-11

iy

xi

Sx
Sy

xC

yc

zc

xc

O’w

Ow

xw
yw

zw

yC

X

Y

x

x

P

P’

f

Figure B.3: Frames and parameters in the camera model.

When working with camera models, one has to address the question of how to estimate
(calibrate) their parameters. The number of published calibration methods is in fact large.
In developing a robotic hand-eye system, however, the estimation of model parameters is
not a central problem. Therefore this issue is not discussed more deeply in the following
and is restricted to the description of the calibration method we applied to our hand-eye
system (see later paragraph Calibration).

The most commonly used camera model is the pinhole camera model. All measurements
refered in this thesis are obtained by using this camera model. It is appealing because
of its simplicity compared to other used camera models (e.g. the projective camera model
or camera models approximating perspective projection, e.g. the affine camera model), but
nevertheless the accuracy of measurements obtained with this model is far above the needed
accuracy for the performed hand-eye experiments.

Pinhole Camera Model

A first approximation to the real optics of a camera is the so-called pinhole camera model2.
The projection of a point onto the image plane, P 7→ P ′ is modeled as a central projection
through the optical center, i.e. the center of the lens. This is illustrated in Figure B.3.

2The main approximation lies in not addressing the question of focus. In a real pinhole camera, the
projection is always focussed, independent of the location of the image plane. This is not the case for the
optics typically mounted on a CCD camera. See [BHS94] for a discussion of various other disturbances of
the model on position estimation.

A-12 APPENDIX B. MODEL OF THE HEAD AND THE CAMERA

Note, that for a more intuitive visualization the image plane is depicted in front of the
optical center instead of behind; therefore, the image does not appear inverted as it would
be in reality. The distance between image plane and optical center, f, corresponds to the
focal length of the camera.

Similar to Tsai’s model [Tsa87], three frames in the camera model are used. The camera
frame Fc, is positioned in the center of the lens; its z-axis points along the optical axis.
The (two-dimensional) image frame Fi is oriented as Fc, but translated along the optical
axis into the image plane. Its origin is called the principal point. The pixel frame Fp,
is oriented as Fi, but translated into the left upper corner of the image. Coordinates in
Fp are specified in Pixel instead of m. In the case of more than one camera, the frame
identifiers are extended, as for example in FcL, which denotes the camera frame of the left
camera in a stereo system.

Points cx given in camera coordinates are projected onto points in the image plane, ix :

ix =

[
ix
iy

]
=

f
cz
·
[

cx
cy

]
(B.12)

Equation B.13 describes the transformation from image to the pixel coordinates, ix 7→ px:

px =

[
px
py

]
=

[1
Sx

0 Cx

0 1
Sy

Cy

]
·
[

ix
1

]
→ px =

ix

Sx

+ Cx,
py =

iy

Sy

+ Cy (B.13)

with Sx and Sy being scaling factors specifying the metric dimensions of a pixel ([Sx,y] =
m
pix

), and (Cx, Cy) being the pixel coordinates of the principal point.

Especially when using wide-angle lenses, radial distortions due to imperfect lenses or im-
precise optical configuration become noticeable; distortions of radial distances in the image,
ir , can be modeled for example with the following geometrical sequence, with κi being
weighting coefficients3:

irdist = ir + κ3 ·
(

ir
)3

+ κ5 ·
(

ir
)5

+ . . . , ir =

√(
ix
)2

+
(

iy
)2

(B.14)

Distorted image coordinates, ixdist , are computed in a first approximation by neglecting
all terms with an order higher than three:

ixdist =
2 · ix

1 +
√

1− 4κ · ir2

iydist =
2 · iy

1 +
√

1− 4κ · ir2
(B.15)

with κ = κ3 being called the radial distortion coefficient4.

3This is but one possible model. It is the base of the calibration method we applied ([LZB95, HAL]
4Distortions with κ < 0 are called pillow-shaped, as the sides of a projected rectangle will be curved

inward like a pillow. Distortions with κ > 0 are called barrel-shaped, as the sides of a projected rectangle
will be curved outward.

A-13

f, Sx, Sy, Cx, Cy, and κ constitute the so-called internal or intrinsic parameters of the
(forward) camera model. The inverse model, i.e. the mapping from pixel coordinates to
3D points, px 7→ cx, can be computed in an unambiguous way up to the image coordinates
ix ; then, however, the only 3D information one can derive is that the point projected lies
on the ray through ix and the optical center, with λf being equivalent to the unknown
distance, cz :

cx ∈ g : x = λ ·

ix
iy
f

 λ ≥ 0 (B.16)

If the points to project are given relative to the world frame, they first have to be trans-
formed into camera coordinates. The six pose parameters corresponding to the transfor-
mation matrix, c

wT, are called the external or extrinsic parameters of the camera model.
The complete projection model without radial distortion can be denoted as follows:

cz ·
[

px
1

]
=

 f
Sx

0 0 Cx

0 f
Sy

0 Cy

0 0 1 0

 · c
wT ·

[
wx
1

]
(B.17)

Calibration

The internal models described in the former section each possess a set of parameters that
have to be estimated. In the case of the arm model, these are the lengths of upper arm
s, of the lower arm t, and the distance from the wrist to the gripper, u. The first two
parameters were extracted from the manufacturer’s specifications. The distance from the
wrist to the end of the gripper was measured using a measuring tape.

Intrinsic Camera Parameters. The intrinsic parameters of the pinhole camera model
were determined using the camera calibration method provided by the image analysis
software HALCON [HAL]. This method determines the intrinsic parameters including
the radial distortion coefficient from multiple views of a 2D calibration table [LZB95]. The
calibration setup is depicted in Figure B.4a.

Camera pose relative to head. In fact, the Calibration algorithm does not only esti-
mate the intrinsic parameters, it also estimates the pose of the calibration table relative to
the camera, respectively the transformation matrix between the frames of the calibration
table and the camera,

c{L,R}
cal T (see Figure B.4b). This can be used to calibrate the pose of

the cameras relative to the top head frame, 2
c{L,R}T by keeping the pose of the calibration

table constant and obtaining multiple views by moving the head [LZ95]. The principle
idea is to write an equation of transformations

cal
cRT = cal

0 T · 0
2T · 2

cRT (B.18)

A-14 APPENDIX B. MODEL OF THE HEAD AND THE CAMERA

1

T
0

cal T
cR
cal

T
2

cR

T
2

cL

b)a)

+
+

+θ

+

θ
2

z 0

y0

x0 y1

x1

z 1

z 2

y2

x2

head

xcR

ycR

z cR

right camera

xcL

ycL

z cL

left camera

z cal
ycal

xcal

calibration table

Figure B.4: (a) Calibration setup, (b) chain of transformations

in which the left side is estimated from visual information, and the right side consists of
one unknown but constant transformation, 0

calT, one changing but known transformation,
2
0T(θ1, θ2), and the also unknown and constant transformation of interest, 2

cRT.

Transformation from Head into Arm Coordinates. The method described in the
previous paragraph could also have been applied to calibrate the transformation between
head and arm frame by putting the calibration table into MinERVA’s hand and moving
it while keeping the head fixed. However, this would have been a rather time-consuming
process. Instead, we assumed the simplified relation given in Eq. B.11 and measured the
three translational offsets with a measuring tape.

	Introduction
	Motivation
	Context
	Contributions and Limitations
	Organization of the Dissertation

	Neuroscience
	Vision
	Anatomy of the Human Visual System
	Models of Human Visual Processing
	Parallel Information Flow and Reentry of Information
	Feature Maps and Integration of Information: Visual Attention

	Summary

	Hand--Target Interaction
	Interaction with a Static Target: Reaching
	Models of Human Reaching Movements
	Interaction with a Moving Target: Catching
	Models for Human Catching Movements
	Movement Initiation
	On-line Control of Hand Movement

	Summary

	Discussion

	Robotic Hand-Eye Coordination
	Internal Models
	Models of the Hand-Eye System
	Models of the Object to be Grasped
	Models of Object Motion

	Vision
	Tracking
	Contour-based Tracking
	Color-based Tracking
	Motion-based Tracking

	Sensor Fusion and Integration
	Grasp Determination

	Motion Reconstruction and Prediction
	Prediction with Auto-regressive Models
	Global AR Model (least square)
	Local AR Model (maximum likelihood)

	Nearest Neighbor Predictions

	Hand-Target Interaction
	Interaction with a Static Target
	Positioning
	Reaching and Grasping

	Interaction with a Moving Target
	Tracking
	Catching and Hitting

	Summary
	Discussion

	Hand-Eye System and Interaction with a Moving Target
	Internal Models
	Automatic Initialization of B-spline Contour Models
	Discussion

	Tracking of Moving Objects
	Contour-Based Tracking
	Color-Based Tracking
	Motion-Based Tracking
	Discussion

	Sensor Fusion and Integration
	Sensor Preprocessing and Fusion: Pre-attentive Processing
	Probability Based Sensor Integration: Attentive Processing
	Modified ICONDENSATION Algorithm

	Discussion

	Determination of Grasping Points
	Search and Tracking of Grasps
	Discussion

	Object Motion Reconstruction and Prediction
	Average ARM Prediction
	Discussion

	Robot Arm Motion Control
	Human Trajectory Generation
	Static, Double-Step and Dynamic Targets

	Robotic Trajectory Generation
	Determination and Control of Hand's Position
	Determination and Control of Hand's Orientation
	Collision Detection and Workspace

	Discussion

	Interaction Point Determination and Intermediate Target Calculation
	Open Questions and Hypotheses
	Four Phase Model of Hand Motion towards a Moving Target
	Approach Phase
	Adaption Phase
	Contact Phase
	Follow Phase

	Discussion

	Implementation
	System Preliminaries
	State Automaton and Timing Charts

	Simulations, Experimental Validation and Results
	Tracking with Color, Form and Motion
	Color Tracking
	Form Tracking (CONDENSATION Algorithm)
	Motion Tracking
	Modified ICONDENSATION
	Reentry of Color in Form Path

	Prediction of Target Motion
	Simulation: Comparison NN, Global ARM, Local ARM
	Real Tracking: Average ARM

	Simulation of Hand-Target Interaction
	Control of Position

	Real Robot Experiments
	Experimental Setup
	Control of Robots Position and Orientation
	Hand-Target Interaction: Grasping a Linear Moving Target
	Escaping Target
	Approaching Target
	Tangential Target

	Hand-Target Interaction: Grasping a Circular Moving Target
	Approaching Target

	Discussion

	Conclusion
	B-Splines
	Model of the Head and the Camera

