
Lehrstuhl für Realzeit-Computersysteme

Validation of Safety-Critical Distributed

Real-Time Systems

Jürgen Ehret

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Infor-
mationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Klaus Diepold

Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Georg Färber

2. Univ.-Prof. Dr.-Ing. Ingolf Ruge, em.

Die Dissertation wurde am 20.01.2003 bei der Technischen Universität
München eingereicht und durch die Fakultät für Elektrotechnik und Infor-
mationstechnik am 21.07.2003 angenommen.

ii

Meinen Eltern gewidmet

iv

Acknowledgements

I would like to express my gratitude to Professor Dr. Georg Färber who has
given me the opportunity to do this research as an industry dissertation. His
scientific guidance and encouragements throughout this thesis have been in-
valuable. Not to forget his support and patience in view of all the unforeseen
events throughout this project.

Many thanks to Professor Dr. Ingolf Ruge for his second expertise on this
thesis, and Dr. Walter Stechele for his very valuable comments on a draft of
this work.

Acknowledgement to all my former colleagues at BMW for their interest
in my work and for the professional discussions on this topic. Thanks to
all of you. Special thanks to Dr. Helmut Hochschwarzer for his support, his
trust in my visions, and for providing resources to perform the case study of
this thesis.

Special thanks to Richard Vogel for building the simulation model of the
brake-by-wire system, for implementing some of the ideas of this thesis, and
for his critical but very valuable comments on drafts of several chapters of
this thesis. I thank Dr. Annette Muth for her helpful feedback on drafts and
for her encouragements for getting this thesis done.

I would like to thank my entire family for their patience and understand-
ing without which I would not have been able to write this thesis in parallel
with my professional work.

Finally, this thesis would not exists as it is without the support, encour-
agement, and love of my wife Paule. She thoroughly reviewed this thesis
line-by-line to help improve the English, and most importantly the multiple
discussions with her helped to come to the point in many sections of this
thesis. Her unselfish sacrifices helped me to spend more than enough time
on evenings, weekends, and holidays on this thesis. I apologize for being too
busy for far too long.

Sunnyvale, January 2003 Jürgen Ehret

v

vi

Abstract

A safety-critical distributed real-time system is an electronic system where
a system failure may cause a severe hazard that will endanger human life
or the environment. For the development of such systems, it is desirable
to determine in an early development phase whether the system can cause
such a hazardous event, before a hardware is built and before the system
is in service. This thesis proposes methods and techniques to validate the
behavior of such systems using a simulation model in an early development
phase.

The simulation model represents the system architecture (hardware and
software) as specified in the design specification. The system model is based
on a strict distinction between the application software that represents the
desired functionality of the system, and the hardware and software platform
which executes the application software. This strict distinction gives insights
into complex interactions between hardware and software components of the
system. It allows to evaluate fault-tolerant system architectures in the pres-
ence of errors caused by faults of hardware elements or interferences.

The principle of the validation of a system proposed in this thesis is as
follows: a test bench stimulates the system model with realistic and safety
relevant test scenarios. An observer system monitors signals produced by
the system and evaluates whether or not the system’s reaction violates any
predefined conditions. The conditions represent safety requirements that the
system must fulfill to operate safely in its environment. An essential part of
the validation is the fault injection. This technique provokes errors caused
by faults of hardware elements or interferences during a test scenario. The
observer system assesses the system’s reaction to those errors and reports if
the system violates any of the predefined conditions.

This thesis presents a case study of a brake-by-wire system of an automo-
bile. The case study shows how the proposed techniques and methods can
support the development of an electronic system in an early development
phase. The test scenarios reveal that the brake-by-wire system will not meet
the safety requirements if it is built as specified in the design specification.

vii

viii

Contents

Abstract vii

Abbreviations xvii

1 Introduction 1

2 Problem and Related Work 5
2.1 Basic Concepts and Terminology 5

2.1.1 Distributed Real-Time Systems 5
2.1.2 Dependability . 7
2.1.3 Attributes of Dependability 8
2.1.4 Threats of Dependability 10
2.1.5 Means to achieve Dependability 14

2.2 Safety-Critical Real-Time Systems 16
2.2.1 Design and Development Process 16
2.2.2 Requirements Specifications 20
2.2.3 Fault Tolerance . 22

2.3 Techniques and Methods . 24
2.3.1 Verification, Validation and Testing 24
2.3.2 Fault Injection . 32
2.3.3 Real-Time Analyses . 36
2.3.4 Dependability Analyses 39

2.4 Problems addressed in this Thesis 42

3 Essentials for Validation 43
3.1 Safety Arguments . 43
3.2 Basic Elements of an Implementation Model 45
3.3 Characteristics of Architecture Components 47

3.3.1 Classification Scheme 47
3.3.2 Signals of an Implementation Model 49
3.3.3 Idealized, Limited, and Faulty Architecture Components 53

ix

x CONTENTS

3.4 Configurable Implementation Model 57

3.5 Fault Models of Architecture Components 60

3.6 Fault Injection Technique . 63

3.7 Simulation Platform . 66

3.8 Signals being Observed . 68

3.9 Test Case Table . 70

3.10 Observer System . 74

4 Validation Activities and Principles 79

4.1 Developing Safety Arguments 79

4.2 Building an Implementation Model 82

4.2.1 Building a Functional Network Model 83

4.2.2 Building a Hardware Architecture Model 83

4.2.3 Connecting Application and Architecture Components 84

4.2.4 Example to illustrate the Principle 84

4.3 Building Fault Models . 88

4.3.1 Modelling Occurrences of Faults 90

4.3.2 Modelling of Effects on Values and Time-tags 91

4.3.3 Example to illustrate the Principle 91

4.4 Defining Meaningful Signals 92

4.5 Designing an Observer System 93

4.6 Creating Test Scenarios . 95

4.7 Executing Test Scenarios . 98

4.8 Evaluating Test Scenarios . 101

5 Brake-by-Wire Case Study 103

5.1 Purpose of this Case Study . 103

5.2 Brake-by-Wire System . 104

5.2.1 Overview . 104

5.2.2 Safety Functions Requirements Specification 105

5.2.3 Basic Assumptions of this Case Study 106

5.2.4 System Architecture 108

5.3 Implementation Model . 112

5.3.1 Behavior Diagram of the BbW System 113

5.3.2 Architecture Diagram of the BbW System 116

5.3.3 Mapping Diagram of the BbW System 119

5.3.4 Test Bench and Environment 119

5.4 Observer System . 121

5.5 Fault Injection . 124

5.6 Test Cases and Safety Arguments 126

CONTENTS xi

5.6.1 Definition of Test Scenario 1: Actuator Fault after
Memory Fault . 128

5.6.2 Definition of Test Scenario 2: Two Subsequent Memory
Faults . 129

5.6.3 Definition of the Safety Arguments 129
5.7 Experimental Results . 129

5.7.1 Results of Test Scenario 1 130
5.7.2 Results of Test Scenario 2 134

5.8 Discussion . 137

6 Conclusion and Future Work 141

Glossary 145

Bibliography 147

xii CONTENTS

List of Figures

2.1 Dependability tree . 8
2.2 Fault chain . 10
2.3 Combined fault classes . 12
2.4 Approaches to reliability of safety-critical systems 15
2.5 Overall life-cycle of a safety-critical system 17
2.6 Software life-cycle process model (V-model) 19
2.7 Basic categories of fault injection techniques 33

3.1 Interaction of all basic elements of an implementation model . 46
3.2 Classification scheme for architecture components 48
3.3 Interactions between application and architecture components 53
3.4 Classified IMs with differently configured architecture compo-

nents . 58
3.5 Example of an IM configuration 60
3.6 Temporal behavior of a fault 63
3.7 Example of an injected memory fault 64
3.8 Fault injection layer in a simulation model 65
3.9 Time-tags and values calculated by the simulation engine . . . 67
3.10 Single system block under test and an example 70
3.11 Example test case table (column: fault model and fault injection) 73
3.12 Overview of an observer system 74
3.13 Example of an observer system for a distributed system 75
3.14 Example of an experiment with an individual observer 78

4.1 A simple system . 81
4.2 Functional nodes in a functional network model 82
4.3 Application components and their interactions 84
4.4 Hardware architecture of the system 86
4.5 IM of the system . 88
4.6 Fault model of processor faults 91
4.7 Fault model of memory faults 92

xiii

xiv LIST OF FIGURES

4.8 Observer system . 95
4.9 A simple fault tree . 97
4.10 Top-level diagram and hierarchy of the simulation model . . . 100
4.11 Behavior diagram of the functional network with probes . . . 101
4.12 Mapping diagram of the system 102

5.1 Overview of the BbW system 104
5.2 Fault-tolerant system architecture of the BbW system 109
5.3 N-modular redundancy cluster with three voters (N = 3) . . . 112
5.4 Behavior diagram of the BbW system 114
5.5 Next level of detail of the brake unit model hierarchy 115
5.6 Architecture diagram of the BbW system 117
5.7 Mapping diagram of the BbW system 120
5.8 Observer system . 122
5.9 Example of expected data in a text file 122
5.10 Example of an observer report file 123
5.11 Voter with probes . 124
5.12 Text file of a fault description 125
5.13 Data from the front left wheel during a braking scenario . . . 128
5.14 Graphical user interface of Cierto VCC (screenshot) 131
5.15 Results from two simulation sessions: (a) expected clamp

forces after an actuator fault and (b) delayed clamp forces
after an actuator fault in combination with a memory fault . . 132

5.16 First test scenario: (a) location of the faulty DPRAM and
(b) fault description of both faulty system components (fault-
sFile1.txt) . 133

5.17 Delayed brake state due to the memory fault 134
5.18 Driver warning and brake state signal after the first fault . . . 135
5.19 Driver warning and brake state signal after the second fault . 136
5.20 Results from observing the signal brake state voted RL 137
5.21 Memory fault description (faultsFile2.txt) 137

List of Tables

3.1 Characteristics of architecture components during simulation . 50
3.2 Effects on signals caused by idealized architecture components 55
3.3 Effects on signals caused by limited architecture components . 56
3.4 Effects on signals caused by faulty architecture components . . 57

4.1 Configuration of architecture components 86
4.2 Performance parameter of architecture components 87
4.3 Assignment of application to architecture components 89
4.4 Test case table of the example 98

5.1 Test case table of the two test scenarios 130

xv

xvi LIST OF TABLES

Abbreviations

ASCET-SD Advanced simulation and control engineering tool-software de-
velopment

ASIC Application specific integrated circuit

BbW Brake-by-wire

CCA Cause-consequence analysis

COTS Commercial off-the-shelf

CPU Central processing unit

DPRAM Dual-ported random access memory

E/E/PES Electrical/electronic/programmable electronic system

ECU Electronic control unit

EDF Earliest deadline first

ETA Event tree analysis

EUC Equipment under control

FL Front left

FMEA Failure modes and effects analysis

FMECA Failure modes, effects and criticality analysis

FR Front right

FTA Fault tree analysis

xvii

xviii ABBREVIATIONS

IC Integrated circuit

IEC International electrotechnical commission

IM Implementation model

IMIAC Implementation model with ideal architecture components

IMLAC Implementation model with limited architecture components

IMLFAC Implementation model with limited and faulty architecture com-
ponents

MEDL Message descriptor list

NMR N-modular redundancy

RL Rear left

RM Rate-monotonic

RR Rear right

RTOS Real-time operating system

SoS System of systems

TTA Time-triggered architecture

TTP Time-triggered protocol

VCC Virtual component co-design

WCET Worst-case execution time

Chapter 1

Introduction

Today’s electronic systems infiltrate more and more our daily life. We put
our lives in the hand of complex electronic systems. For instance, during a
flight with a modern aeroplane, where a severe failure of the electronic flight
control system may lead to a catastrophe, we completely rely on the proper
functioning of the electronic system.

In the industry, it is an upward trend to replace mechanical and hydraulic
control systems by electronic control systems. An example of the automotive
industry: in the model year 2001, electronics were accounted for 19 % of a
mid-sized automobile’s costs. It is estimated that in the year 2005, 25 %
of the total costs of a mid-sized automobile will be accounted for electronic
parts, and possibly 50 % for luxury models [Ber02]. This includes costs for
so-called ‘by-wire systems’, which will replace traditional mechanical and
hydraulic braking and steering systems in cars of the near future (model
years 2005–2007) [Bre01b].

In a by-wire system, braking or steering relies on the correct behavior of
the electronic system. A failure of the electronic system may cause a severe
hazard that will endanger human life or the environment. The design, devel-
opment, production, and maintenance of such a by-wire system is a complex
and difficult undertaking, and system failures during operational use have
to be prevented by all possible technical means. The difficulties are mainly
caused by the complexity of these electronic systems, mass production, and
stringent dependability (e.g., safety) requirements imposed by authorities.
Among others, a validation of the system’s behavior in all stages of the
system’s life-cycle is a necessary and important technical mean to have con-
fidence that the system under consideration behaves safe in its environment.
The validation confirms that the system’s behavior meets the requirements of
the authorities and the expectations of its user(s) (a more detailed definition
of the term ‘validation’ follows in Subsection 2.3.1 on page 24).

1

2 1. INTRODUCTION

The subjects of this thesis are safety-critical electronic systems that con-
sist of hardware and software components. It is important that a validation
considers both software and hardware of these systems. Musa states that
“pure software [with no hardware] cannot function” [Mus99, p. 163]. More-
over, the interaction of the system’s hardware and software determines the
system’s behavior in its environment and not software components or hard-
ware components by their own.

This thesis proposes techniques and methods that use simulation to val-
idate a safety-critical distributed real-time system. The validation focuses
on safety functions of the system that are supposed to maintain the safety
of the system in its environment. The validation aims to give a design team
confidence that their design fulfills the safety requirements, before the hard-
ware of the system is built. The basic elements of the validation proposed in
this thesis are:

• the definition of a set of conditions that the system must fulfill to
operate safely in its environment,

• the simulation model of the system under consideration,

• a strict distinction between hardware and application software,

• the fault models of the system’s hardware elements,

• the injection of faults, and

• the assessment of the system’s behavior by an observer system.

The approach proposed in this thesis uses models of hardware and soft-
ware of the system to assess the system’s behavior. The system under consid-
eration has to detect faults of hardware elements, which are injected during
simulation. The observer system assesses the reaction of the system to those
faults and reports whether the system violates one of the conditions that the
system is supposed to fulfill during the test scenario.

The remaining chapters of this thesis are organized as follows:

Chapter 2 introduces basic concepts and terminology used in this thesis.
The chapter describes a design and development process of safety-
critical systems and techniques and methods that are used in the in-
dustry and academia to build a safe system. It closes with a description
of the problems that are addressed in this thesis.

Chapter 3 presents the essentials for the validation of a safety-critical dis-
tributed real-time system. The chapter describes the basic elements

3

of the validation proposed in this thesis (see items above). The text
of this chapter explains all proposed techniques and methods that are
necessary to perform the validation of such systems.

Chapter 4 describes how a validation team should use the basic elements,
as described in Chapter 3, to perform the validation of such systems.
It illustrates with a simple example the principles of the proposed ap-
proach in this thesis.

Chapter 5 describes how a validation team performs the validation of a
complex system design. They apply the techniques and methods of this
thesis to a design proposal of a brake-by-wire system of an automobile.
It also shows how the validation helps to reveal gaps in the architecture
of the brake-by-wire system.

Chapter 6 concludes the thesis with the most important findings and future
work.

4 1. INTRODUCTION

Chapter 2

Problem and Related Work

This chapter introduces first into the basic concepts and terminology, which
are used by researchers and developers, who analyze and develop safety-
critical real-time systems. The second section puts emphasis on the design
and development process of safety-critical real-time systems, on requirements
for safety-critical real-time systems and on fault-tolerant system architec-
tures, which are used to fulfill these requirements. Current methods and
techniques that are used to analyze and develop these special type of sys-
tems are summarized in the subsequent section. The chapter closes with the
problems of the design and development process of safety-critical real-time
systems that are addressed in this thesis.

2.1 Basic Concepts and Terminology

Phrases and terms such as ‘distributed real-time system’, ‘safety’, ‘reliability’,
‘fault’, ‘error’, ‘failure’, etc. are often used and interpreted in the literature
differently. In order to avoid ambiguity throughout this thesis, the following
subsections introduce basic concepts of safety-critical real-time systems and
give informal definitions of relevant terms.

2.1.1 Distributed Real-Time Systems

The expression ‘distributed real-time systems’ expresses a system, which con-
sists of other systems (subsystems) that interact with each other and with
the environment in real-time. The following definitions make this explanation
more precise.

System : A system is a computing entity that interacts with its environ-
ment. The environment is either a physical equipment or another sys-

5

6 2. PROBLEM AND RELATED WORK

tem. A system is considered to be atomic (to avoid infinite recursion) if
any further internal structure of the system cannot be distinguished, or
is not of interest and can be ignored (see [LA90, p. 14–15] and [JKK+01,
p. 15]).

A fundamental point of this definition is the distinction between the sys-
tem itself and the environment. The system under consideration generates
outputs to the environment, which are the reaction to inputs coming from
the environment.

This definition excludes, for instance, a software program without any
associated processor. On the other hand a piece of hardware, for example an
ASIC (application specific integrated circuit) with computational power, is
a system according to the definition above, because the ASIC can be seen as
a self-contained device in comparison to a piece of software program.

Real-time system: A real-time system has to interact with its environment
in real-time. The correctness of a real-time system depends not only
on the logical result of the computation but also on the time at which
the results are produced [Sta88] (see also [TBYS96, p. 18–19]). The
point in time by which the result must be produced for the temporal
behavior of the response to be correct is called deadline (see [Kop97,
p. 2] and [KRPO93, p. 3-21–3-22]).

In the literature real-time systems are distinguished by the timing re-
quirement of their response time, which is the time taken for the system
to generate output from some associated input (see [BW01, p. 2–3], [Kop97,
p. 2–3], and [KRPO93, p. 3-21–3-22]). A timing requirement of a system can
be ‘hard’, ‘soft’, or ‘firm’ (a system with no timing requirements is not a real-
time system). A hard real-time systems must perform its response within a
specified window of time, without any failure; deadlines have to be met by the
system always. In a soft real-time system, the timing requirements is char-
acterized by a required average response time; deadlines can be occasionally
missed. A firm timing requirement is composed of a soft and hard timing
requirement. A system with firm timing requirements has a required average
response time but within a hard time requirement window. The authors of
[SSRB98, p. 15] mean by a firm deadline “that a task should complete by the
deadline, or not execute at all”.

In this thesis, the term ‘real-time’ is used to mean ‘hard real-time’ if not
otherwise noted. This thesis puts emphasis on embedded real-time systems,
which are part of a larger engineering system (e.g., an electronic system
that control an electro-mechanical brake in an automobile). The embedded

2.1. BASIC CONCEPTS AND TERMINOLOGY 7

system generally consists of software programs and hardware components
(processors, memories, etc.).

Distributed real-time system: A distributed real-time system is a set of
real-time systems (nodes) that interact with each other in order to fulfill
common task. The nodes are connected by a “real-time communication
network” [Kop97, p. 2]. An example of a distributed real-time system
is a brake-by-wire system of an automobile (e.g., [BH98]).

Behavior of a real-time system: The behavior of a real-time system is
what the system actually does [Lap92, p. 8]. It delivers services to its
environment or to another system, whereas a service implements the
system function. A system function is what “the system is intended to
do, and is described by the functional specification” [ALR01, p. 2].

A real-time system has functional, temporal, and — for dependable sys-
tems — dependability requirements, which are described in a specification.
The system’s functions and services have to meet those requirements (see
Subsection 2.2.2 for details on requirement specifications).

For this work it is assumed that a specification for the system under
consideration exists before the validation process starts.

2.1.2 Dependability

A development of a system is mainly influenced by the following properties
of the system: functionality, usability, performance, cost, and dependability
[ALR01, p. 2]. A development team generally has to make a trade-off between
those properties, because most of the properties tend to conflict with each
other. For instance, an architecture of a safety-critical system (a definition
follows in Subsection 2.1.3 on page 9), for example an electronic control sys-
tem in an airplane, requires additional software and hardware components
(apart from an elaborated development process and a highly-educated de-
velopment team), which makes it more expensive than a system that is not
safety-critical at all.

The following subsections concentrate on the dependability of a system,
which leads to basic concepts and terms of a safety-critical system.

Dependability: Dependability of a system is its ability to deliver a service
that the user can trust. The service is a behavior of the system that
is expected by the user. That behavior is defined in a specification on
which the user has agreed (see [JKK+01, p. 20], [Som01, p. 354], and
[Lap92, p. 4]).

8 2. PROBLEM AND RELATED WORK

The “dependability tree” of Figure 2.1 depicts the basic concepts of depend-
ability, which are split in three parts: attributes of dependability, threats
of dependability, and means to achieve dependability [ALR01, p. 2]. The
following subsections explain each term in more detail.

Threats

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Dependability

Faults
Errors
Failures

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Attributes

Means

Figure 2.1: Dependability tree (source: [ALR01, p. 2])

2.1.3 Attributes of Dependability

The attributes of dependability can be split into six different, but comple-
mentary dimensions: safety, reliability, availability, confidentiality, integrity,
and maintainability [ALR01, p. 5–7].

The following informal definitions of the attributes are commonly used
in the literature to differentiate the properties of a dependable system (e.g.,
[ALR01], [JKK+01], [Lap92], [LA90, 27–32], [Som01, p. 354], and [Sto96,
p. 20–24]).

Reliability is a property of the system with respect to the continuity of
service. The reliability is the probability that the system correctly
delivers services as expected by the user over a given period of time.

Availability is a property of the system with respect to the readiness for
usage. The reliability of a system is the probability that the system
will be up and running and able to deliver services correctly at any
given time.

Safety is a property of the system with respect to the avoidance of catas-
trophic consequences. A system can be seen as safe to a certain degree,

2.1. BASIC CONCEPTS AND TERMINOLOGY 9

if it is unlikely that the system will endanger human life or the envi-
ronment.

A system is called ‘safety-critical’ if an incorrect service of the system
may result in injury, loss of live, or major environmental damage.

Safety is an extension of reliability and “high reliability is normally a
necessary, but not sufficient, condition to guaranty safety” of a system [Sto96,
p. 162].

Leveson points out that even if a software of a system is correct and 100-
percent reliable, software still can be “responsible for serious accidents . . .
Safety is a system property, not a software property” [Lev95, p. 29].

Confidentiality is the attribute of a system with respect to absence of
unauthorized disclosure of information.

Integrity is the attribute of a system with respect to absence of improper
system state variations.

The security of a system is seen as a combination of confidentially, in-
tegrity, and availability (see [ALR01, p. 6] and [Lap92, p. 35]).

The reliability and availability are probabilities that can be expressed
quantitatively. Safety and security are judgements and are expressed in terms
of integrity levels rather than as numerical values. A higher level indicates
that the system is more safe or secure than a system grouped in a lower level
[Som01, p. 355].

A safety integrity level (SIL) is defined as a “discrete level (one out of
a possible four) for specifying the safety integrity requirements of the safety
functions to be allocated to the . . . safety-related systems, where safety in-
tegrity level 4 has the highest level of safety integrity and safety integrity
level 1 has the lowest” [IEC98c, p. 33].

The safety functions, implemented by the real-time system, are “intended
to achieve or maintain a safe state for the equipment under control (EUC), in
respect of a specific hazardous event” [IEC98c, p. 35]. In the IEC (Interna-
tional Electrotechnical Commission) standard 61508 safety functions can be
also implemented by an “other technology safety-related system or external
risk reduction facilities” [IEC98c, p. 35].

Maintainability is the attribute of a system with respect to ability to un-
dergo repairs and modifications.

The development of a dependable system can emphasize on one or more
of the six attributes of dependability. This thesis focuses on the reliability
and safety attributes and puts emphasis on safety-critical real-time systems.

10 2. PROBLEM AND RELATED WORK

2.1.4 Threats of Dependability

A dependable system should not fail. A system fails as a result of an error,
which is a manifestation of a fault.

A system is usually composed of other systems (subsystems or compo-
nents), which may fail by their own. Hence, a failure of a system A (e.g.,
a memory device) will possibly lead to a fault in another system B (e.g.,
a software program using a memory device), which can cause an error and
a possible failure in system B. This “fault chain” is depicted in Figure 2.2
(adopted from [BW01, p. 103]; described also in [Lap92, p. 18–21] as “funda-
mental chain” or “fault pathology”).

. . . Failure Fault Error Failure Fault . . .

System x System A System B System A System A

Figure 2.2: Fault chain (sources: [BW01, p. 103] and [Lap92, p. 19])

The following paragraphs will make the terms ‘fault’, ‘error’, and ‘failure’
more precise and will explain the different types of faults and failure modes.
Because the terms are closely related to each other (as explained above), it
is almost inevitable (and not desirable) to define one of the terms without
using the other.

Fault: A fault is the “adjudged or hypothesized” cause of an error (see
[JKK+01, p. 21] and [Lap92, p. 4]). The fault is called “active” if it pro-
duces an error, otherwise the fault is called “dormant” (see [JKK+01,
p. 21]and [Lap92, p. 18]).

Types and sources of faults in a real-time system are manifold. Avizie-
nis et al. propose to classify faults of a dependable system upon six “major
criteria” [ALR01, p. 4]:

1. Phase of creation or occurrence: developmental or operational
faults.

2. System boundaries: internal or external faults.

3. Domain: software or hardware faults.

4. Phenomenological cause: natural or human-made faults.

5. Intent: accidental (or non-malicious deliberate) or deliberately mali-
cious faults.

2.1. BASIC CONCEPTS AND TERMINOLOGY 11

6. Persistence: permanent or transient faults.

Those “elementary fault classes” [ALR01, p. 4] are compliant to classifica-
tions of other authors (e.g., [BW01, p. 102–104], [Kop97, p. 124–125], [Lap92,
p. 11–14], [SS98, p. 23–24], and [Sto96, p. 114–124]) and are used to classify
types of faults, which are addressed by the validation proposed in this thesis.

Avizienis et al. present an overview of combined fault classes of a depend-
able system [ALR01, p. 5]. Figure 2.3 illustrates the overview, which allows
it to classify the faults that this thesis mainly addresses.

A basic assumption made in this thesis is that the system under consid-
eration will always be affected by faults of hardware elements when a system
is in service (operational life of a system). Consequently, the focus of this
thesis is on hardware faults during the operation of a system, which are nat-
urally caused (e.g., aging of hardware elements or interferences) and which
are not caused by a human during the design phase (e.g., a flawed hardware
design). The grey boxes in Figure 2.3 highlight the fault combinations which
the thesis focuses on.

In addition to permanent and transient faults as shown in Figure 2.3, this
thesis adds an intermittent fault type (also proposed in [BW01, p. 102–104]
and in [SS98, p. 23–24]). A definition of those permanent, transient, and
intermittent faults is given in Section 3.5 on page 62.

12 2. PROBLEM AND RELATED WORK

S
of

tw
ar

e

F
la

w
s

M
al

ic
io

us

Lo
gi

c

H
ar

dw
ar

e

E
rr

at
a

P
ro

du
ct

io
n

D
ef

ec
ts

P
hy

si
ca

l

D
et

er
io

ra
tio

n

P
hy

si
ca

l

In
te

rf
er

en
ce

A

tta
ck

s

D
es

ig
n

Fa
ul

ts

P
hy

si
ca

l F
au

lts

In
te

ra
ct

io
n

Fa
ul

ts

Fa
ul

ts

P
ha

se
 o

f C
re

at
io

n
or

 O
cc

ur
re

nc
e

S
ys

te
m

 B
ou

nd
ar

ie
s

D
om

ai
n

P
he

no
m

en
ol

og
ic

al

C
au

se

 In
te

nt

P
er

si
st

en
ce

A
cc

.
or

N

on

M
al

.
D

el
.

D
el

.
M

al
.

P
er

m
.

T
ra

ns
.

P
er

m
.

T
ra

ns
.

T
ra

ns
.

T
ra

ns
.

S
of

tw
ar

e

E
xt

er
na

l

A
cc

.
or

N

on

M
al

.
D

el
.

D
el

.
M

al
.

P
er

m
.

T
ra

ns
.

A
cc

.

H
um

an
-

m
ad

e
H

um
an

-
m

ad
e

H
ar

dw
ar

e

O
pe

ra
tio

na
l

D
ev

el
op

m
en

ta
l

A
cc

.

N
at

ur
al

T
ra

ns
.

P
er

m
.

In
te

rn
al

H
ar

dw
ar

e

A
cc

.

P
er

m
.

D
el

.
M

al
. H

um
an

-
m

ad
e A

cc
.

or

N
on

M

al
.

D
el

.

P
er

m
.

P
er

m
.

H
um

an
-

m
ad

e

P
er

m
.

P
er

m
.

D
el

.
M

al
.

A
cc

.
or

N

on

M
al

.
D

el
.

H
ar

dw
ar

e
S

of
tw

ar
e

In
te

rn
al

M
al

ic
io

us

Lo
gi

c In
tr

us
io

ns

N
at

ur
al

N

at
ur

al

In
pu

t

M
is

ta
ke

s

F
ig

u
re

2.
3:

C
om

b
in

ed
fa

u
lt

cl
as

se
s

(s
ou

rc
e:

[A
L
R

01
,
p
.5

])

2.1. BASIC CONCEPTS AND TERMINOLOGY 13

Error: An error is a part of the system state, which is different to its (spec-
ified) valid state [LA90, p. 41]. An error is latent, when it has not been
recognized as such, or detected by an algorithm or mechanism [Lap92,
p. 19].

An example of an erroneous state is a software variable, which holds
an incorrect value but is not yet used by the software program (latent
error). The incorrect value could be caused by a physical fault in a
memory device.

The detection of errors in any kind of system is important. In a real-time
system, the time to respond to an error is as important as the detection of
an error. The time that elapses between the manifestation of an error and
the detection of the error by the system (the manifestation of that fault) is
called “error latency” (see [SS98, p. 48] and [KS97, p. 282]). The duration
between the fault formation and its manifestation as an error is called “fault
latency” [KS97, p. 282].

Failure: A failure in a system is an event that occurs when the actual be-
havior of the system starts to deviate from the intended behavior (de-
scribed in the system’s specification) (see [BW01, p. 103] and [Lap92,
p. 4]).

A failure can be classified according to its impact on a system’s service.
The impact of a failure can be either in the value domain, time domain, or
both [BW01, p. 104–105]:

• Value failure: the service delivers a wrong value (value domain).

• Time failure: the service is delivered at the wrong time (time domain).

– Too early: the service is delivered earlier than required.

– Too late: the service is delivered later than required (often called
a performance error).

– Infinitely late: the service is never delivered (often called an omis-
sion failure).

– Impromptu: a service which is delivered but not expected (also
called commission failure).

In this thesis it is assumed that a service of a system can be measured by
signals that a system emits on its interfaces. A signal conveys information
about the delivered service in the value and time domain (the definition of a
signal is given in Subsection 3.3.2 on page 51).

14 2. PROBLEM AND RELATED WORK

An important difference between a failure and an error is that a failure
is defined as an event (behavior), whereas an error is defined as a static
condition (state) [Lev95, p. 172]. In a safety-critical real-time system an error
only leads to a failure, when the software and hardware components are built
and operating together. For instance, an erroneous state in a processor may
only lead to a failure of the system, when a piece of software is using that
faulty processor.

The following “failure modes” are defined to distinguish the different ways
a safety-critical system can fail and to distinguish different development ap-
proaches of a safety-critical system (adopted from [BW01, p. 104–105]):

Fail never: A system which always produces correct services in both the
value and the time domain.

Fail controlled: A system which fails in a specified controlled manner.

Fail silent: A system which produces in both the value and in the time
domain either the correct service or no service. The system is “quiet”
in case it cannot deliver the correct service [Kop97, p. 121].

Fail stop: A system which has the same properties of a fail silent, but also
signals to other systems that it had a failure.

Fail late: A system which produces the correct services in the value domain
but the produced services are too late.

Fail uncontrolled: A system which fails somehow (unpredictable). The
delivered services can have failures in the value and time domain.

In case more than one system or system component can be simultaneously
affected by an error the failure is called a “common mode failure” [SS98,
p. 23].

A failure in a safety-critical system is called “malign” if the outcome of
the system failure causes harm to people or the environment (e.g., a crash of
an airplane due to a failure in the electronic flight-control system), otherwise
the failure is called “benign” [Kop97, p. 10].

2.1.5 Means to achieve Dependability

Approaches to reliability of a system can be determined depending on which
phase of the system lifetime is considered. Figure 2.4 shows different strate-
gies that can be used during the lifetime of a system to design, develop and
maintain a reliable system [LA90, p. 1–3]. Strategies for ‘fault avoidance’ are

2.1. BASIC CONCEPTS AND TERMINOLOGY 15

time

Design and
Implementation

Testing and
Debugging In Service

Phase in
System Lifetime

Fault Removal Fault Avoidance

Fault Prevention

Start of
Development

System into
Service

Reliability
Strategy

Fault Tolerance (diagnosis
with fault detection and fault
localization, redundancy, etc.)

Figure 2.4: Approaches to reliability of safety-critical systems (adopted from
[LA90, p. 3])

used in the design and implementation phase of the development process.
Strategies for fault avoidance are concerned with techniques which aim is
to avoid putting faults in the system during construction. The subsequent
testing and debugging phase is concerned with ‘fault removal’ under the as-
sumption that the realized system is not fault-free, in despite of use of fault
avoidance techniques. Both fault avoidance and fault removal strategies use
techniques to prevent faults in a safety-critical system (‘fault prevention’).
After the safety-critical system is in service, only ‘fault tolerance’ techniques
are able to handle or tolerate remaining faults.

The strategies proposed by Lee and Anderson [LA90] are still valid and
compliant with newer literature, for example, [ALR01], [BW01], [Som01], and
[SS98]. Techniques for fault avoidance, fault prevention, and fault tolerance
are discussed in more detail in the Subsections 2.3.1 and 2.2.3.

The focus of this thesis is on validation of the system behavior before it
goes into service. The idea is, to validate certain properties of the system by
a simulation, before the system is actually built. Thereby is assumed that
the phases design, implementation, testing, and debugging (see Figure 2.4)
are completed when the validation process starts. Such an assumption is rea-
sonable because those phases can be performed with models of the hardware
and software of the system under consideration instead with the physical
system. An early validation of the system behavior has the advantage that
system requirements can be checked before a design proposal is realized into
a physical system.

16 2. PROBLEM AND RELATED WORK

2.2 Safety-Critical Real-Time Systems

A safety-critical real-time system, as any other engineered system, needs to
be designed and developed before it is able to operate. The following subsec-
tions describe a design and development process for safety-critical real-time
systems, and focus on specific requirements and fault tolerance techniques of
such systems. This section is used to integrate the validation process pro-
posed in this thesis in the overall life-cycle of a system, and to describe the
kind of systems the validation has to deal with.

2.2.1 Design and Development Process

Each project that aims to design and develop a safety-related system is differ-
ent [Lev95, p. 249]. This statement could be generalized to all development
projects of electronic systems. The reasons are manifold: diversity in indus-
tries and applications with different objectives, different personnel and or-
ganizations, different economical constraints may lead to different processes
and to different technical solutions, and so on. Consequently, there is not
such thing as a ‘golden design and development process’ that applies to all
projects.

For the design and development of software, different kind of development
process models are known (abstract representation of the real processes), for
example, waterfall model, evolutionary development, formal system devel-
opment, reuse-oriented development, incremental development, and spiral
model (originally proposed by Boehm [Boe88]) [Som01, p. 44–55]. Each of
these process models has its advantages and disadvantages. It is out of the
scope of this thesis to discuss the pro and cons of those processes.

The validation process in this thesis is a generic process in the sense that
it can be applied to different types of design and development processes, and
is not bound to a specific design and development process. In order to keep
a more general approach, this text uses the IEC standard 61508 to integrate
the validation process proposed in this thesis in the design and development
process of a safety-critical system.

The IEC standard 61508 describes an overall safety life-cycle of a safety-
related system, as shown in Figure 2.5. The standard distinguishes between
non-programmable electronics and programmable electronics (PE). This
work focuses on safety-related systems and subsystems which are called pro-
grammable electronic systems (PESs) in the standard [IEC98c, p. 25], or
“computer systems” in other literature (e.g., [Sto96]).

The importance of this safety life-cycle is that it takes diverse aspects
of the realization of the system into account, and that it assigns a separate

2.2. SAFETY-CRITICAL REAL-TIME SYSTEMS 17

Concept 1

Overall scope
definition 2

Hazard and risk
analysis 3

Overall safety
requirements 4

Safety
requirements

allocation
5

Overall
operation

and
maintenance

planning

6
Overall
safety

validation
planning

7
Overall

installation and
commissioning

planning

8

Overall planning Safety-
related

systems:
other

technology

Realization

10 External
risk

reduction
facilities

Realization

11 Safety-
related

systems:
E/E/PES

Realization

9

Overall installation and
commissioning 12

Overall safety validation 13

Overall operation,
maintenance and repair 14

Decommissioning or
disposal 16

Overall modification
and retrofit 15

Back to appropriate overall

safety life-cycle phase

Figure 2.5: Overall life-cycle of a safety-critical system (source: [IEC98a,
p. 33])

phase in the life-cycle for a hazard and risk analysis of the system under
consideration [Sto96, p. 85–88].

The following paragraphs outline each phase of the overall life-cycle of a
safety-critical system as shown in Figure 2.5 in more detail. Note that ver-
ification, management of functional safety and functional safety assessment
are not shown in Figure 2.5 for reasons of clarity.

In the concept phase, the designers (designer is in this text a synonym

18 2. PROBLEM AND RELATED WORK

for engineer, developer, or architect) develop an understanding of the EUC
and its environment (physical, legislative, etc.). The activities of the overall
scope definition phase determine the boundaries of the EUC and specify the
scope of the hazard and risk analysis.

A hazard and risk analysis of phase 3 determines all hazardous events
of the EUC, and the EUC control system in all modes of operation for “all
reasonably foreseeable circumstances, including fault conditions and misuse”
[IEC98a, p. 51]. One of the results are the event sequence that lead to each
identified hazardous event and the associated risk of each hazardous event
(see Subsection 2.3.4 for more details on hazard and risk analysis).

The activities of phase overall safety requirements result in a specification
for all safety functions, which are necessary to ensure the required functional
safety for each determined hazard, and the integrity requirements for each
safety function.

The safety requirements allocation phase includes aspects of a “top-level
design” in a development project [Sto96, p. 87]. In that phase the safety func-
tions, which are specified in the overall safety requirements, are allocated to
an appropriate safety-related electrical/electronic/programmable electronic
system (E/E/PES), safety-related systems of other technologies and external
risk reduction facilities. The latter two are not covered by the IEC standard
61508 (depicted in Figure 2.5 as grey boxes with doted arrows).

The safety of a system is not only determined by its design but also by its
installation, maintenance, and its use [Sto96, p. 88]. The phases overall oper-
ation and maintenance planning and overall installation and commissioning
take those facts into account in an early development phase. The overall
safety validation planning for the system takes also place in an early stage of
the system’s life-cycle. All these three phases have influence on the detailed
design of the system in the realization phase.

Phases 9, 10 and 11 are concerned with the design and implementation
of safety-related systems, and external risk reduction facilities.

Phases 12, 13 and 14 deal with installation and commissioning, validation,
operation, maintenance, and repair of the overall system.

A development process is an iterative process. The standard takes that
fact in the overall modification and retrofit phase into account. The life-cycle
of a system ends with decommissioning or disposal.

The validation process in this thesis should be integrated into the real-
ization phase of an E/E/PES and focuses on software safety validation. A
software safety validation takes place when both hardware and software were
developed and combined to a system.

The IEC standard 61508 defines the objective of software safety valida-
tion as follows: “to ensure that the integrated system [hardware and software]

2.2. SAFETY-CRITICAL REAL-TIME SYSTEMS 19

complies with the specified requirements for software safety at the intended
safety integrity level” [IEC98b, p. 33]. The IEC standard 61508 recommends
to exercise the software by simulation. For instance, exercise a system re-
action to undesired conditions (e.g., interferences), or to anticipated occur-
rences (e.g., anticipated faults).

The IEC standard 61508 recommends to use the V-model approach for
software design and development of safety-related systems [IEC98b, p. 23].
The V-model is the development standard for IT (Information Technology)
systems of the Federal Republic of Germany [Bun97]. Figure 2.6 depicts the
V-model in connection with the safety life-cycle of a safety-related system
[IEC98b, p. 27].

E/E/PES safety
requirements
specification

E/E/PES
architecture

Software safety
requirements
specification

Software
system design

Module design

Coding

Module
testing

Integration
testing (module)

Integration testing
(components, subsystems

and programmable
electronics)

Software
architecture

Software
validation

testing

Validated
software

Software validation

Output
Legend:

Verification

Validation

Figure 2.6: Software life-cycle process model (V-model) (source: [IEC98b,
p. 27])

The design and development process starts with the software safety re-
quirements specification on the left branch of the V, which is part of the
overall safety requirement specification for software and hardware of a sys-
tem. It then ends with validated software on the left branch of the V (software
validation testing).

Note that each phase on the left branch is associated with a verification
step. The verification ensures that a system and its subsystems meet the
design specification after they are designed and built.

The testing activities on the right branch verify the software against the
design specifications on the left branch of the V. The specifications are essen-
tial parts of each development step and are not shown for reasons of clarity.

20 2. PROBLEM AND RELATED WORK

The validation activity on the right branch determines whether the system
(hardware and software) is appropriate for its purpose (i.e., whether or not
a system satisfies the software safety requirements specification).

The validation process proposed in this thesis contributes to a software
safety validation process, as described above, with the followings activities:

• Comparing the actual system behavior (software and hardware), repre-
sented by a system model, with the software safety requirements spec-
ification.

• Observing and assessing the system’s reaction to faults and interfer-
ences.

A more detailed description of a development process of a safety-related
system is out of the scope of this thesis. Details can be found in the IEC
standard 61508 [IEC98a], [IEC00a], [IEC98b], [IEC98c], [IEC98d], [IEC00b],
[IEC00c] and in other literature, for example, Storey [Sto96] discusses the
draft of the IEC standard 61508 and the authors in [SS01] give a guideline
to the IEC standard 61508.

An example of a development process of safety-critical systems is de-
scribed in [ADM+00]. The authors present a “system-safety process for ‘by-
wire’ automotive systems”. They claim that a distinguish feature of their
process “is the explicit linking of hazards controls to the hazards they cover,
permitting coverage-based risk assessment” [ADM+00].

2.2.2 Requirements Specifications

Requirements of complex safety-critical real-time systems are multifaceted
and call for different types of specifications: requirement specification, design
specification, realization specification, etc. [Lap92, p. 8–11]. For instance,
a software requirement specification describes “what” the software will do,
whereas a software design specification describes “how” the software it will
do it [Boe79, p. 47].

A requirement specification of a safety-related real-time system generally
specifies functional, temporal, and dependability requirements (e.g., safety
requirements) that the system under consideration must meet [Kop97, p. 3–
12]. Generally, such specifications should be “complete, consistent, compre-
hensible and unambiguous” [BW01, p. 103].

Rushby advocates to use formal methods early in the development process
for writing requirements and specifications ([Rus93, p. 38]; Rushby gives in
that text also an introduction to formal methods).

2.2. SAFETY-CRITICAL REAL-TIME SYSTEMS 21

Lee and Anderson propose “multiple specifications” that take into ac-
count the relative severity of features of the system. It has to be mentioned
that such specifications of a safety-related system will be influenced, apart
from technical concerns, by economic and legal aspects as well. The spec-
ifications can address the range of dependability requirements and can be
ordered in “a hierarchy of specifications”. A specification on the top of the
hierarchy imposes more stringent requirements on the design of the system
than a specification lower in the hierarchy. For instance, one specification
(top of the hierarchy) could cover critical system services, where a failure
of such a kind of services may lead to a catastrophe. Then a second spec-
ification covers essential system services, where a failure would impair the
system capabilities but not the safety, and a third specification (bottom of
the hierarchy) covers non-essential system services, where a failure would not
significantly degrade the capabilities of the system [LA90, p. 34–35].

The following paragraphs outline functional, temporal, and safety require-
ment specifications of a safety-critical real-time system.

Functional requirements are concerned with the functions that the system
must perform. Such functions are: data acquisition (e.g., sampling analog
signals), signal conditioning, control algorithms, diagnosis (e.g., check for
plausibility of input signals), functions that do support the man-machine
interface, and posting output signals [Kop97, p. 3–5].

Temporal requirements of a real-time system impose very stringent con-
straints on the design of the system. For instance, a relaxed response time
requirement (e.g., signal conditioning in a control loop of a man-machine
interface) can be satisfied by less powerful (and less expensive) hardware
equipment than a response time requirement, which are magnitudes larger
(e.g., signal conditioning in a control loop of an automotive engine). The
temporal requirements specifies minimal latency times (e.g., error-detection
latency) and latency jitter, which are accepted by the user of the system
[Kop97, p. 6–9].

Requirements for the dependability of a system are related to the quality
of the services that the system provides to its user(s) [Kop97, p. 9–11]. Safety
requirements are essential for a development of a safety-related system and
are a subset of overall dependability requirements, beside requirements for
reliability, availability, and maintenance. A safety requirements specification
is concerned with safety functions (a definition of a safety function is in
Subsection 2.1.3 on page 9).

This thesis is concerned with software safety requirements. According to
the IEC standard 61508 the software safety requirements specification shall
express and specify the following [IEC98b, p. 35–39]:

22 2. PROBLEM AND RELATED WORK

• Safety-related or relevant constraints between the hardware and the
software.

• Requirements for the software safety functions. The following items
are a subset of the requirements mentioned in [IEC98b, p. 39]:

– Functions that enable the EUC to achieve or maintain a safe state.

– Functions related to the, for example, detection and management
of faults in the programmable hardware.

– Functions related to the, for example, detection and management
of faults in the software itself (software self-monitoring).

– Functions related to the periodic testing of safety functions on-line
and off-line.

– Interface to non safety-related functions.

– Capacity and response time performance.

• Requirement for the software safety integrity:

– The safety integrity level(s) for each of the safety functions above.

The software safety requirement specification and the results of the vali-
dation activities should be part of a safety case. A safety case is a “record of
all the safety activities associated with a system, throughout its life” [Sto96,
p. 364]. The safety case provides evidence that “the risks associated with the
system have been carefully considered and that the steps have been taken to
deal with them appropriately” (it is not a proof that the system in question
is safe) [Sto96, p. 29].

Kopetz defines a safety case as a “combination of a sound set of arguments
supported by analytical and experimental evidence concerning the safety of a
given design” [Kop97, p. 246]. The arguments must convince an independent
authority that it is extremely unlikely that the system under consideration
can harm to people or the environment.

The concept of safety arguments is integrated in the validation process
in this thesis (see Section 3.1 for details on safety arguments).

2.2.3 Fault Tolerance

It is unlikely that components of a complex real-time system do not fail dur-
ing its lifetime, and that the design of such a system has no faults. Storey
states that it is “impossible” to eliminate all faults from a system. First
because components can have “random failure due to wear, ageing, or other

2.2. SAFETY-CRITICAL REAL-TIME SYSTEMS 23

effects” (e.g., electro-magnetic disturbance from the environment), and sec-
ond because a fault-free design is technically not possible [Sto96, p. 13].

A fault-tolerant system consists of techniques that enable the system to
meet its requirements and to remain operational despite the presence of faults
(perhaps with degraded functionality). Techniques for fault tolerance reduce
the probability of system failures and aim at a higher degree of system de-
pendability. In particular, fault tolerance techniques in a safety-critical real-
time system must prevent a “catastrophic system failure” [Kop97, p. 119].

Not all dependable system have to fulfill the same level of integrity be-
cause of different operational requirements, legal requirements, different us-
age, etc. Thus, it makes sense to classify fault-tolerant systems according to
their behavior in the presence of faults. The following fault tolerance levels
are quoted from [BW01, p. 107–108]:

Full fault tolerance: The system continues to operate in the presence of
faults with no significant loss of functionality or performance.

Graceful degradation (or fail-soft): The system continues to operate in
the presence of errors, accepting a partial degradation of functionality
or performance during recovery or repair.

Fail-safe: The system maintains its integrity while accepting a temporary
halt in its operation.

Redundancy is a mean to achieve fault tolerance with extra system com-
ponents (hardware, software, or both), which are not necessary if the system
is free from faults (see [BW01, p. 109] and [LA90, p. 55–57]). All fault toler-
ance techniques depend upon the “effective deployment and utilization” of
redundancy [LA90, p. 55].

A detailed description of fault tolerance techniques is out of the scope of
this thesis and left to the literature, for example, [BW01, p. 101–133], [Kop97,
p. 119–143], [KS97, p. 280–326], [LA90], [SS98, p. 79–227] and [Som01, p. 393–
416].

It must be mentioned that the implementation of fault-tolerant techniques
increase inevitably the complexity of a system because of additional (redun-
dant) components or features. The designers have to make sure that the
higher complexity does not decrease the dependability (due to more possi-
ble faults, errors, and failures) of a system instead of increasing it. A de-
sign framework to ensure higher reliability is proposed by Lee and Anderson
[LA90, p. 64–75].

The choice of one or another fault tolerance technique influences the hard-
ware and the software design and consequently the system architecture. An

24 2. PROBLEM AND RELATED WORK

evaluation of such a designed fault-tolerant system architecture in an early
phase of a development process is desirable, because process iteration loops
are time and cost intensive, especially when faults are detected late in the
development process, or worse, after the system is in service. The validation
process in this thesis supports an evaluation and validation of a fault-tolerant
system architecture early in the design and development process by simula-
tion.

2.3 Techniques and Methods

To fulfill the demanding requirements of complex safety-critical real-time
systems, there is a need for techniques and methods to assist designers in
accomplishing such a challenging design task. This thesis focuses on early
phases of the system’s life-cycle, where a design specification of hardware and
software components of the system is given (exists), but where no hardware
has been built yet. The primary focus is on interactions of hardware and
software components of a safety-critical real-time system and their influence
on the system’s behavior. The following subsections give an overview of
techniques and methods that are already used in this field. Those subsections
also compare them to the techniques and methods proposed in this thesis.

2.3.1 Verification, Validation and Testing

The activities for verification, validation and testing in the development of
safety-critical real-time systems are closely related and should supplement
each other [Sto96, p. 309–345]. Instead of describing each category by itself,
following paragraphs outline methods and techniques, which are used by
designers and which are related to the validation process in this thesis.

The terms verification, validation and testing can be defined as the fol-
lowing (quoted from [Sto96, p. 309–310]):

Verification is the process of determining whether the output of a life-cycle
phase fulfills the requirements specified by the previous phase.

Validation is the process of confirming that the specification of a phase, or
the complete system, is appropriate and is consistent with the user or
customer requirements.

Testing is the process used to verify or validate a system or its components.

A methodology for verification, validation, and testing should examine
rare conditions during earlier stages [Lev95, p. 492]. Hecht states that testing

2.3. TECHNIQUES AND METHODS 25

of rare conditions “could have avoided half of all failures and over two-thirds
of the most critical errors” in the Shuttle project [HC94].

Verification

Boehm defines the term verification as follows: “To establish the truth of
correspondence between a software product and its specification (from the
Latin veritas, ‘truth’)”, or informally, verification aims to answer the ques-
tion: “Are we building the product right?” [Boe81, p. 37].

Many techniques and methods used for verification have been proposed
for different design and development stages or life-cycle stages of computer
systems. Most related work to this thesis are approaches, which aim to show
that a design specification satisfies its requirements specification.

A formally based development of systems is currently the goal of a re-
search group of the Department of Informatics at the Technische Universität
München, Germany. Their tool prototype AutoFocus (based on the method-
ology FOCUS [BDD+92]) aims to support the development of well-defined
specifications of distributed, embedded systems, and to formulate consis-
tency conditions on these system descriptions that can be checked. Details
on AutoFocus can be found in [HS01] and [Dep03]. Two case studies with
AutoFocus are described in [HMS+98] and [BLSS00].

Breitling extends the FOCUS methodology with a formal description of
fault classes [Bre01a]. The goal of his work is to integrate the notion of
faults in the FOCUS methodology in order to model, analyze, and evaluate
fault-tolerant systems with regard to their reaction to faults (hardware and
software faults). In comparison to the approach of this thesis, the approach
in [Bre01a] aims to define a more formal and precise system specification,
whereas this thesis gives a practical engineering approach that a design team
can use to get confidence in their system design specification (i.e. hardware
and software), before a hardware is built.

Two “well-established” approaches to verification are the formal methods
called model checking and theorem proving [CW96, p. 629]. Model checking
relies on building a finite model of the system in question and then checking
that a desired property holds in that model. A theorem proving technique
expresses both the system and its desired properties as formulas in mathe-
matic logic. This logic is given by a set of axioms and a set of inference rules.
Theorem proving is the process of finding a proof of a property from the
axioms of the system. Where model checking has to deal with the state ex-
plosion problem, theorem proving can directly deal with infinite state spaces.
On the other hand, model checking is an automated process whereas theorem
proving often needs human interactions. This may cause it to be slow and

26 2. PROBLEM AND RELATED WORK

often error-prone [CW96].

A “promising” approach seems to be combining model checking and the-
orem proving techniques [CW96, p. 637]. For example, two research groups
in the Silicon Valley are currently going in this direction. Those groups are:
the REACT research group at Stanford University and the research group of
the Computer Science Laboratory at SRI International.

The research group at SRI International provides a system called Pro-
totype Verification System (PVS), which is intended to provide mechanized
support for formal specification and verification (see for details [ORSvH95]
and [SRI03]). PVS has been used in developing formal specifications and ver-
ifications for fault-tolerant architectures, algorithms, and implementations
(e.g., [MS95], [RSS99], and [Rus99]).

The REACT research group developed a system, called Stanford Tem-
poral Prover (STeP) that supports the computer-aided formal verification of
concurrent and reactive systems (e.g., real-time systems) based on temporal
specifications [MAB+94]. A case study with STeP is described in [BMSU97].

In the past model checking has been used primarily in hardware and
protocol verification (e.g., [BCRZ99] and [CGH+93]). Many tools of model
checking are based on the Symbolic Model Checker (SMV) developed at
the Carnegie Mellon University (see [Car03]; SMV is based on McMillan’s
thesis [Ken92]). A further development of SMV is the symbolic model
checker NuSMV used for verification (see for details [CCG+02], [ITC03], and
[CCGR99]).

The verification system SPIN [SPI03] targets the verification of soft-
ware systems, rather than hardware systems. Holzmann gives in [Hol97]
an overview of the design and structure of SPIN and describes “significant
practical applications” (e.g., protocol design problems, bus protocols, fault
tolerant systems, controllers for reactive systems, multiprocessor designs). A
verification method (software model checking) with SPIN of abstract models
derived from concrete implementations (e.g., ANSI-C code) is described in
[HS99], [Hol00], and [GH02].

The tool VeriSoft of the Bell Laboratories at Lucent Technologies [Bel03]
is another software model checking tool that is intended for testing of concur-
rent reactive software [God97]. The use of VeriSoft for testing applications in
the industry (telephone switching applications) is reported in [CGP02] and
[GHJ98].

Bienmüller et al. propose a framework for verification of embedded
real-time systems using symbolic model checking techniques and an ab-
stract model of the system in question (represented as a Statemate1 model)

1Statemate is a registered trademark of I-Logix, Inc.

2.3. TECHNIQUES AND METHODS 27

[BBB+99]. The authors found some design errors in the system model (a
brake management system of an automobile) with the proposed verification
framework. According to the authors, the framework needs further research
and development, for example, in order to avoid manual transformations,
which are necessary to transform models in their verification environment,
and to handle more complex systems and systems with continuous values
(and not only discrete values).

The verification techniques and methods, as described in the previous
paragraphs, and the validation approach proposed in this thesis have in com-
mon the fact that they deal with models of the system under consideration.
In fact, verification often aims to provide techniques for obtaining either a
correct software design or a correct hardware design. In contrast, this the-
sis aims to provide techniques for a correct system design. This is achieved
by having distinguishable models of software and hardware, modelling cer-
tain characteristics of hardware elements in sperate models (i.e. performance
models and fault models), and analyzing the effects of hardware faults and
interferences on the system’s behavior, which may occur when the system is
in service.

Note that a model is always an abstraction of a real system or a real
component. Consequently, all techniques and methods which deal with mod-
els instead of the real system, cannot guarantee that the real system, after
it is built and in service, will function correctly and safely under all cir-
cumstances (a similar statement regarding formal methods can be found in
[Rus93, p. 13]).

Validation

Boehm defines the term validation as follows: “To establish the fitness or
worth of a software product for its operational mission (from the Latin valere,
‘to be worth’)”, or informally, validation aims to answer the question: “Are
we building the right product?” [Boe81, p. 37].

Jones et al. propose a formal validation of dependability of a system
of systems (existing complete systems are composed to a new system)
[JKK+01]. They propose a “formal validation” approach for such a new sys-
tem [JKK+01, p. 56–63]. The following paragraphs compare some concepts
of the approach of Jones et al. with the concepts of validation proposed in
this thesis.

A formal validation of a system relies, among other things, on “formal
descriptions of the system and of the desired system properties” (intended
services of the system), and on “formal reasoning to show that the described
system satisfies the described properties” (trustworthiness of the system)

28 2. PROBLEM AND RELATED WORK

[JKK+01, p. 56]. Jones et al. use formal descriptions to describe the sys-
tem of systems (SoS), the intended services of the SoS, and the acceptance
criteria for trustworthiness. The authors claim in their approach “that the
described SoS provides the described intended services”, and “that the de-
scribed SoS service provision is trustworthy (according to the described cri-
teria)” [JKK+01, p. 57].

The ‘formal description’ described in [JKK+01] is related to the simula-
tion model of the system, which is called ‘implementation model’ in this thesis
(see Section 3.2 on details of an implementation model). The implementa-
tion model represents a description of the system. In this thesis the ‘desired
system properties’ are defined in the safety arguments (see Section 3.1) and
tested by a set of test scenarios (see Section 4.7).

That the described system satisfies the described properties is basically
shown by two techniques in this thesis:

1. by a performance simulation of the system model (implementation
model) with test scenarios (see Section 4.7), and

2. by the observer system that automatically checks whether the system
satisfies the described properties (see Section 3.10).

The author of [Pal00] proposes a validation approach that aims to provide
“the system designer with valuable feedback before building an actual hard-
ware prototype of the application” [Pal00, p. 2]. The objective of that work
is to examine the interaction between distributed algorithms and a time-
triggered communication subsystem. That approach uses a co-simulation
between simulation models of an application and the communication sub-
system under consideration. There are two main differences between the
approach described in [Pal00] and the validation approach proposed in this
thesis:

1. Pallierer’s approach focuses on the interaction of distributed algorithms
that uses services of a communication subsystem and does not use
models of the underlying hardware of a system under consideration.
In contrast, this thesis put emphasis on main characteristics (temporal
performance and physical faults) of all hardware elements, which may
influence system’s behavior during its operation.

2. The validation approach of this thesis does not only distinguish be-
tween communication models (i.e. bus models) and application models.
This thesis also uses two complementary models of hardware elements
(performance models and fault models), which represent the essential

2.3. TECHNIQUES AND METHODS 29

characteristics of hardware elements (processor, memory, and bus) of
a system under consideration.

The author of [Fle00] proposes a validation process that models the sys-
tem (design) under question in ASCET-SD (Advanced Simulation and Con-
trol Engineering Tool - Software Development). The system model is stimu-
lated with scenarios specified in extended UML (Unified Modeling Language)
sequence diagrams (requirements). The validation takes place by comparing
off-line the “simulated event sequences” (generated by a real-time simula-
tion of the design) with the “required event sequences” (generated from the
requirements). That approach uses an experimental target (prototype) to
execute the software in real-time and focuses on the validation of software
components. In contrast, the validation approach proposed in this thesis
also takes into account influences of faults of the target hardware (i.e. pro-
cessor, memory, and bus) on the system’s behavior, and considers distributed
systems as well.

An “essential part of the development” process of a safety-critical system
is test planning, which describes the activities of verification and validation
[Sto96, p. 313]. The IEC standard 61508 recommends to do an overall safety
validation planning, which covers testing activities from the safety require-
ment allocation until the overall safety validation (see Figure 2.5 on page 17).

A software safety validation plan, as part of the overall safety plan, shall
consider the following (extract from [IEC98b, p. 39–43]):

1. Details on when the validation shall take place.

2. Identification of the safety-related software components which need to
be validated for each mode of the EUC operation before commissioning.

3. Identification of the relevant modes of the EUC operation, for exam-
ple, startup, steady-state operation, shutdown, reasonably foreseeable
abnormal conditions, etc.

4. Technical strategy for the validation, for example, probabilistic testing,
simulation and modelling, and functional and black-box testing.

5. Specific reference to the specified requirements for software safety.

6. Pass/fail criteria:

• Required input signals with their sequences and their values.

• Anticipated output signals with their sequences and their values.

30 2. PROBLEM AND RELATED WORK

• Other acceptance criteria, for example memory usage, timing and
value tolerances.

7. Policies and procedures for evaluating the results of the validation,
particulary failures.

The validation proposed in this thesis considers most of the items above: item
(2.) by the Sections 4.2, 4.4, and 4.6; item (3.) by Section 4.6; simulation
and modelling of item (4.) mostly by Chapter 4; items (5.) and (6.) by the
Sections 3.9, 4.1 and 4.4; item (7.) by the Sections 3.10, 4.5, and 4.8.

Testing

Testing can be split into three major steps: creation, execution, and evalua-
tion of test cases [Pos96]. Test case creation is the most creative part of this
process (including automatic test case generation, where the creativity is in
the software program that generates the test cases). The test cases need to
be designed and developed for different stages of a life-cycle of a system. A
basis for a test case can be, for example, a requirement specification, a design
specification, or an implementation of a system.

The important thing in the test case creation process is not only to find
the stimuli (input combination, which stimulates the system under test) but
also the expected response of a system under test.

The creation, execution, and evaluation of test cases, as part of the val-
idation process proposed in this thesis, is described in the Sections 4.6, 4.7,
and 4.8.

It is out of the scope of this thesis to explain all known testing techniques
and methods in detail. The following overview does not cover the wide range
of hardware testing methods and techniques because it is out of the scope
of this thesis (e.g., production test of integrated circuits (ICs)). Instead, the
following paragraphs give an overview and a brief explanation of relevant
testing techniques and methods. Details are left to the literature, for ex-
ample, [Bei90], [Bei95], [Dae97], [How87], [Jor95], [Mye79], [Mye01], [Per00],
[Som01], and [Tha94].

The following selection and descriptions of techniques and methods are
mainly based on recommendations for safety validation of software and sys-
tems in the IEC standard 61508 ([IEC00a], [IEC98b], and [IEC00c]), and on
Storey’s selection and descriptions of relevant techniques and methods in the
development of safety-critical systems (chapter “Verification, Validation and
Testing” [Sto96, p. 309–346]).

Equivalence partitioning builds classes of input and output values of the
system or component. The goal of equivalence partitioning is to create

2.3. TECHNIQUES AND METHODS 31

classes, which achieve complete testing on one hand and avoid redun-
dant test cases on the other hand.

Boundary value analysis focuses on the boundary of the input space to
identify test cases (e.g., values at their minimum or maximum, or just
above the minimum or maximum).

State transition testing is concerned with testing states, the transitions
between states, the events that cause the transitions, and the actions
that are performed in the states.

Probabilistic testing aims to compute a quantitative figure about the reli-
ability properties of the system (e.g., failure probability during a certain
period of time).

Functional or black-box testing is concerned with studying the inputs
and related outputs based on the knowledge from the specification of
a system or component under test. The tester considers only the func-
tionality and not the implementation or structure of the test object.

Structure-based testing techniques use the knowledge of the structure or
implementation of the system under test (also called ‘white-box‘, glass-
box’, or ‘clear-box’ testing to distinguish it from black-box testing).
These techniques are usually applied to small software or hardware
units of a system.

Error guessing is a technique where experienced test engineers predict (in-
put) conditions, which are likely to reveal a fault that causes an error
within the system.

Error seeding techniques insert faults in a system and execute a number
of test cases under test conditions. The purpose of error seeding is to
get some indication on how effective the test process is.

Performance tests check whether the system fulfills certain performance
requirements (e.g., timing or memory constraints). For example, a test
case that checks whether the response time of a function of a real-time
system is less or equal a time-deadline.

Stress testing techniques impose a very high workload on the system in
order to evaluate the temporal behavior of the system under these
extreme test conditions (e.g., check of the right dimensions of internal
buffers or of computational resources).

32 2. PROBLEM AND RELATED WORK

The validation proposed in this thesis mainly concentrates on techniques
that are related to a combination of ‘functional testing’ and ‘structure-based
testing’, ‘error seeding’, ‘error guessing’, and ‘performance tests’ as described
above.

It has to be mentioned that testing, which provides techniques for verifica-
tion and validation, “demonstrates the presence, not the absence, of program
faults” [Som01, p. 442].

2.3.2 Fault Injection

Fault injection is a technique that injects artificially faults in a system in
contrast to naturally occurring faults of hardware components and of software
components. Fault injection techniques can be used for various reasons, for
instance:

• to determine “how well a system is designed to tolerate errors” [SS98,
p. 39], or

• to evaluate fault-tolerant systems, for example, the “effectiveness of er-
ror and fault handling mechanisms, i.e. their coverage” [ALR01, p. 11],
or

• to model the manifestation of a low-level fault on system-level [SS98,
p. 46], or

• to introduce or simulate faults of hardware components and to doc-
ument the system response (assessment of system dependability)
([IEC00c, p. 115] and [Kop97, p. 254]), or

• to evaluate system behavior at the occurrence of rare events (faults)
during normal operation (testing and debugging) [Kop97, p. 254], or

• to test safety-critical firewalls by placing the fault on a non-safety-
critical software module, and see “if ‘propagation across’ from noncrit-
ical to critical occurs” [VM98, p. 175–176].

In the last decade, fault injection has become a powerful technique to
evaluate and analyze the dependability of computer systems. The following
paragraphs outline and categorize already known fault injection techniques
and tools, which support different fault injection approaches. These para-
graphs also put them in relation to the fault injection approach proposed in
this thesis.

2.3. TECHNIQUES AND METHODS 33

The categories below of fault injection techniques are based on the sur-
vey by Hsueh et al. [HTI97] and extended for the purpose of this overview.
Figure 2.7 depicts basic categories of fault injection techniques, which are
explained in the following text.

Fault injection techniques

Faults injected
at run-time

Software-implemented

Faults injected
at compile-time

Hardware-implemented

Faults injected
with contact

Faults injected
without contact

Prototype-based Simulation-based

Electrical
simulation

model

Logical
simulation

model

Functional
simulation

model

Figure 2.7: Basic categories of fault injection techniques (based on [HTI97])

A fault injection technique can either be performed with a physical sys-
tem (prototype-based), or a simulation model of the system in question
(simulation-based), or a combination of both (hybrid techniques). During a
conceptual phase or in an early design phase, a simulation-based techniques
might be appropriate because it is less expensive than building an expensive
prototype. On the other hand prototype-based approaches yield “more accu-
rate results” when a physical system under consideration is available [HTI97,
p. 75].

The prototype-based approaches can be categorized as hardware-imple-
mented and software-implemented. A hardware-implemented fault injection
uses additional hardware and the target system to inject the faults. The
hardware-implemented fault injection falls into two categories: hardware
fault injection with contact between the fault injector and the target hard-
ware (often called pin-level injection; e.g., presented in [MGM+99]), and
hardware fault injection without contact between the fault injector and the
target hardware (e.g., to mimic natural physical phenomena such as electro-
magnetic disturbances).

The fault injection proposed in this thesis is a simulation-based approach
and does not use hardware-implemented fault injection techniques. Further
information and discussions on physical fault injection techniques can be
found, for example, in [KFA+95] and [BAS+02].

Software-implemented fault injection techniques are attractive to users,
because these techniques do not need expensive additional hardware. These
techniques target application software and operating systems, which is dif-
ficult to do with hardware-implemented techniques. Software-implemented

34 2. PROBLEM AND RELATED WORK

fault injection methods are categorized based on when the faults are injected:
during compile-time or run-time (e.g., presented in [Ade02], [FSRMA99], and
[Fuc98]).

The following text gives an overview of tools which are using software-
implemented techniques and which inject faults at run-time. The experimen-
tal environment FIAT (see [BCSS90]) is intended for exploring validation
methodologies for fault tolerant systems.

MAFALDA (see [FSRMA99]) is for analyzing micro-kernels of safety-
critical systems by corrupting memory images and input parameters of these
micro-kernels (simulates either software or hardware faults).

FERRARI (see [KKA95]) uses dynamic corruption of the process control
structure. It mimics transient errors and permanent faults in software in
order to validate the fault tolerance mechanisms of a system and to obtain
statistics on error detection coverage and latency.

Xception (see [CMS98]) targets systems, which use modern and complex
processors. It uses the debugging hardware and the performance monitoring
features of a processor. The injected faults emulate physical faults of internal
target processor units, for example, floating point unit, integer unit, memory
management unit, and main memory. The application software does not
need to be changed and the target (real-time) application is only interrupted
in case of a fault (the authors measured interrupt latencies in the range from
1 µs to 5 µs for a PowerPC processor).

FTAPE (see [TIJ96]) is for evaluating fault tolerance and performance of
dependable systems. The fault injector is able to inject processor, memory,
and I/O faults. The application software does not need to be changed in this
approach.

DOCTOR (see [HSR95]) is intended for the validation and evaluation of
of distributed real-time systems. The integrated modules inject processor,
memory, and communication faults and collect performance and dependabil-
ity data during the experiment. A permanent processor fault is realized with
DOCTOR by changing program instructions at compile-time (emulates in-
struction and data corruptions due to the faults). This is why DOCTOR
also fits in the category, in which faults are injected at compile-time.

The level of detail, in which the system in question is represented by the
simulation model, is a way to distinguish simulation-based fault injection
techniques. In case of an electrical simulation model, the electrical circuit of
the system in question is modelled and the faults are injected by changing
data representing the current or voltage inside of e.g., an IC. An experimental
environment, called FOCUS, that uses electrical simulation models for fault
sensitivity analysis is presented in [CI92].

2.3. TECHNIQUES AND METHODS 35

At the logical level, the system model represents logic gates (e.g., AND-
gate, OR-gate, etc.) of the system in question, and faults are injected at
this level, for example, as stuck-at-0, stuck-at-1, or inversion. The tools
MEFISTO (see [JAR+94]) and VERIFY (see [STB97]) cover fault injection
on the gate-level and are intended to support the development of dependable
systems.

A simulation at the functional level (or system-level) does not model
certain details of the underlying hardware and software of a system. For
example, a memory model at the functional level only needs to mimic the
storage of a value of a software variable over time, without considering logi-
cal gates or transistors which a memory consists of. The simulations at this
abstraction level primarily target complex single computer systems and dis-
tributed computer systems. The fault injection techniques at this level are
intended to model the effects of faults (hardware and software) on the sys-
tem’s behavior without modelling the cause of a fault in detail. The following
text gives an overview of tools that can be put in that category.

DEPEND (see [GIY97]) is an environment for system-level dependability
analysis. One of its ideas is, to evaluate the effect of faults (e.g., a transistor
fault) on the system-level, for example, software behavior due to an error
caused by the transistor fault. The system in question is described in the
C++ programming language and with components from the DEPEND ob-
ject library (e.g., models for a voter, communication channel). The system
model represents the hardware and software architecture of the system under
question.

PROPANE (see [HJS02]) uses fault injection in order to examine the
propagation of errors in software. That tool targets software developed
for embedded systems and focuses on single-process user applications. The
embedded control software is simulated on a windows-based desktop com-
puter. PROPANE allows to inject software faults (implemented as mutation
of source code) and data errors (implemented as manipulation of variables
and memory contents). For an experiment, the target software code needs
to be instrumented in order to inject faults and to trace the results of the
experiment.

The authors of [LRR+00] have enhanced the POLIS tool in order to evalu-
ate the dependability of embedded systems by using fault injection techniques
(see [BCG+97] for details on POLIS). They distinguish between behavioral
fault injection and architectural fault injection. The behavioral fault injection
is used to perturb the system behavior, where the system is modelled with
CFSMs (Co-design Finite State Machines) and no hardware or software im-
plementation is considered. At the architectural level, faults can be injected
in the hardware and in the software partition of the system under consid-

36 2. PROBLEM AND RELATED WORK

eration. For example, an instruction set simulator (ISS) is instrumented to
emulate memory faults or processor register faults that may have some effect
on a software partition of the system. The simple case study in [LRR+00]
focuses on behavioral fault injections. From the available information it is
not clear how their proposed architectural fault injection technique can be
used in a more complex design.

A hybrid fault injection technique results from a combination of the pre-
viously mentioned techniques. The idea is, to combine different type of tech-
niques in a complementary way to get a better approach. This is done to
compensate the limitations of each approach (e.g., accuracy, portability, ac-
cessibility). Some examples for such hybrid approaches are the fault injector
Loki (see [CCH+99] and [CLCS00]), the framework NFTAPE (see [SFB+95]),
and the fault injection method proposed in [GS95].

According to the classification described in the previous paragraphs, the
fault injection technique proposed in this thesis is simulation-based with a
functional simulation model. The most related approaches are DEPEND,
PROPAN, and enhanced POLIS (see description above).

The important differences between these three simulation-based fault in-
jection techniques and the fault injection technique proposed in this thesis
are that in this thesis:

• the influence of a fault of a hardware component is encapsulated in a
fault model (besides an independent performance model), which takes
into account the influence of faults of hardware components and inter-
ferences on system behavior, and

• the application software does not need to be changed for fault injection
purposes.

The fault injection technique proposed in this thesis eliminates also two
shortcomings of software-implemented approaches, which are raised by the
authors of [HTI97]:

• software instrumentation may disturb the workload on the target or
even change the structure of the original software, and

• faults cannot be injected into locations, which are not accessible to
software.

2.3.3 Real-Time Analyses

Techniques and methods of real-time analyses aim to prove, verify, or validate
timing behavior during the design and development of a real-time system

2.3. TECHNIQUES AND METHODS 37

before being put into operation. Following paragraphs outline principles of
real-time scheduling, worst-case execution time analysis, and response time
analysis.

The goal of real-time scheduling is to find a set of rules that at any time
determines the order in which tasks are executed. Such a set of rules is
called scheduling algorithm. A real-time scheduling algorithm is generally
part of the real-time operating system (RTOS) of a real-time system. Real-
time scheduling allocates computational resources (computation time of a
processor) and time intervals, so that each real-time task of a software pro-
gram meets its timeliness performance requirements (deadline). The results
of real-time scheduling help system designers of real-time systems to prove
that all tasks meet their deadlines, or in less critical applications, to minimize
the number of tasks which miss their deadlines.

Classical and best known scheduling algorithms for single processor sys-
tems are the rate-monotonic (RM) scheduling algorithm (originally published
in 1973 by Liu and Layland [LL73]), and the earliest deadline first (EDF)
scheduling algorithm. The RM scheduling algorithm has a static-priority
preemptive scheme (priority does not change with time), whereas the EDF
scheduling algorithm has a dynamic-priority preemptive scheme (priority can
change with time). The RM scheduling algorithm is one of the “most widely
studied and used in practice” [KS97, p. 48].

A further discussion on real-time scheduling is beyond the scope of this
thesis and left to the literature, for example, [BW01, p. 465–522], [But97],
[KRPO93], [Kop97, p. 227–243], [KS97, p. 40–137], and [SSRB98].

In many scheduling approaches (e.g., fixed-priority scheduling, EDF
scheduling) it is assumed that the worst-case execution time (WCET) of
each process is known [BW01, p. 480]. The execution time is the amount
of time that a task requires to respond when it is executed on a dedicated
processor, and the WCET is the maximum execution time that any task
invocation could require.

A WCET analysis addresses the correctness of the temporal behavior of
real-time systems. It computes upper bounds for execution times of pieces
of code (e.g., tasks), which run on a given processor. The bounds determine
the time quanta that a design team must reserve for the execution of tasks.

Note that the bounds are estimated values and not the exact values of the
WCET, and that the results of a WCET analysis does not include “waiting
times due to preemption, blocking, or other interference” [BP00, p. 116].

WCET can be obtained by measurement or by analysis. The results
should be in both cases not too pessimistic. The drawback of a measurement
approach is that it is difficult to know if the worst-case has been observed.
The drawback of an analysis is that an exact model of the processor, which

38 2. PROBLEM AND RELATED WORK

executes the task, must be available [BW01, p. 480].
A WCET analysis has two basic activities: the first activity is the de-

composition of the program code into a directed graph of basic blocks. The
second activity takes the machine code of the basic blocks and uses a pro-
cessor model to estimate its worst case execution time. Modern processor
features, for example, caches, pipelines, and branch predictors aim to reduce
the average execution time of a software program. But on the other hand,
those features make it difficult to estimate the actual execution of a software
program [BW01, p. 480–481].

The authors of [FP99] propose a method that uses the control flow graph
emitted from the compiler to analyze which program path can result in a
WCET. They use measurement techniques to estimate the execution time
instead of relying on processor models and static analysis. Their approach
addresses the problem of verifying the timeliness of data in embedded hard
real-time systems with modern processor architectures.

WCET analyses of all single processor systems (nodes) in a distributed
system by themselves are necessary, but not sufficient, to determine the tem-
poral correctness of a distributed real-time system:

• Necessary because each single node (single processor system) of a dis-
tributed system (composed of single nodes and a communication media)
has to fulfill the worst-case timing requirements, which are checked by
the WCET analysis. In case one node does not fulfill those require-
ments, the overall system does not fulfill the timing requirements (as-
suming a non-redundant system architecture).

• Not sufficient because a system service (generally composed of tasks
performed by single nodes) can still miss its deadline even if all nodes
fulfill the worst-case timing requirements on their own. This is due to
the fact that the objective of a WCET analysis is the WCET of a task
on a single node, and not the worst-case response times of a service
which tasks are distributed on multiple nodes. A worst-case response
time of a task can be defined as the “maximum time elapsed between
the release and the completion times of any of its instances” [SSRB98,
p. 67].

Consequently, the WCET analysis must be complemented by a worst-case
response time analysis, in which all nodes and the communication medium
of a system are considered.

The validation process in this thesis contributes to both WCET analysis
and worst-case response time analysis. Worst-case scenarios that are identi-
fied by a WCET analysis (beside of safety-critical non-worst-case scenarios

2.3. TECHNIQUES AND METHODS 39

identified by a dependability analysis (see Subsection 2.3.4)) can be incor-
porated into the test cases, which are used to validate the system behavior.
Such a testing approach is also called worst-case testing and related to stress
testing and performance tests (see Subsection 2.3.1 on page 31). The system
model includes all nodes and the communication medium so that worst-case
response times can be validated as well. Furthermore, the validation process
complements a WCET analysis in the sense that physical faults of hardware
components are part of a test scenario, and that values of data and not only
the time stamp of a service are considered.

2.3.4 Dependability Analyses

Designers of a system must prevent that a state or a set of conditions of
a system, along with other conditions in the environment of a system, will
lead to an accident. Such a state or set of conditions of a system is defined
as a hazard. A hazard is characterized by its severity or damage (worst
possible accident that could result from the hazard) and the likelihood of its
occurrence [Lev95, p. 176–179].

The goal of dependability analyses and safety engineering is to propose
measures to minimize the risk, which is inevitably associated with the oper-
ation of the system. Risk is defined as the severity and the likelihood of the
occurrence of a hazard combined with the likelihood of the hazard leading
to an accident and the hazard exposure or duration [Lev95, p. 179].

One important consideration for a validation process is that the mea-
sures which aim to minimize the risk are defined and specified in the safety
requirements specification. The following paragraphs give a brief overview of
dependability analyses such as:

• Hazard and risk analysis,

• Fault tree analysis (FTA),

• Event tree analysis (ETA),

• Cause-consequence analysis (CCA),

• Failure modes and effects analysis (FMEA), and

• Failure modes, effects and criticality analysis (FMECA).

The results of such analyses should be inputs to the validation process
proposed in this thesis. For instance, a fault tree analysis could identify
component failures that lead to a hazardous event and need to be considered

40 2. PROBLEM AND RELATED WORK

by the fault injection process (see Section 3.6 for details on the fault injection
technique proposed in this thesis).

A hazard and risk analysis process (phase 3 in Figure 2.5 on page 17) is
an iterative process. A hazard analysis should be performed throughout the
lifetime of a system and not only at the beginning of the project, or at fixed
stages [Lev95, p. 288].

A hazard and risk analysis process consists of the following steps [Som01,
p. 381–382]:

1. Hazard identification: Identification of potential hazards that might
arise depending on the environment in which the system is embedded.
The hazard identification phase is also called preliminary hazard anal-
ysis (PHA).

2. Risk analysis and hazard classification (risk assessment): Haz-
ards which are very unlikely ever to arise are sorted out, whereas poten-
tially serious and not implausible hazards remain for further analysis.
The results of a risk assessment are estimates of the severity and the
probability of each hazard. It uses engineering judgements to classify
the acceptability of a hazard as intolerable, as low as reasonable prac-
tical (ALARP), or as acceptable [Som01, p. 384–386].

3. Hazard decomposition: Each hazard is analyzed individually to dis-
cover potential causes of that hazard. In this phase techniques such as
FTA are used.

4. Risk reduction assessment: The results of the assessment are pro-
posals to eliminate the risk or to reduce the risk of an hazardous event.
The proposals are inputs for the overall safety requirements of the sys-
tem (phase 4 in Figure 2.5 on page 17).

The above described hazard and risk analysis process is simplified. Com-
plex systems require much more steps and are described in more detail in
[Lev95].

FTA is widely used in the aerospace, electronics, and nuclear industries
and is an accepted methodology to identify hazard and to increase the safety
of complex systems (see [Kop97, p. 259] and [Lev95, p. 317]). A fault tree
begins with the undesirable failure event, and then investigating the subsys-
tem failures that can lead to this top event. Failures are combined by logical
operations such as AND or OR.

An ETA begins at the events that can affect the system and investigates
what consequences can result from those events [Sto96, p. 35].

2.3. TECHNIQUES AND METHODS 41

A most effective FTA (and ETA) requires a completed system design. A
qualitative FTA may also be used to prove that a completed system or exist-
ing system is safe [Lev95, p. 323]. Both FTA and ETA applied for complex
systems, for example a power plant, will require many persons-year of effort
[Lev95, p. 330].

A CCA starts with a critical event and determines the cause of the event
and the consequences that could result from it. Cause-consequence diagrams
are useful in startup, shutdown, and other sequential problems. Cause-
consequence diagrams allow (in comparison an ETA does not), the repre-
sentation of time delays, alternative consequence path, and combination of
events [Lev95, p. 332–335].

A FMEA aims to establish an overall probability that the system will
operate without a failure for a specific period of time or, alternatively, that
the system will operate a certain duration between failures. A FMEA starts
to identify and list all system components and their possible failure modes.
Then the analyst determines the effects of failures of each component on
other components and on the overall system. The effects can be categorized,
for example, as critical or non-critical. Finally the analyst calculates the
probability of each failure mode [Lev95, p. 341–343].

One drawback of a FMEA analysis is that all the significant failure modes
must be known a priori, which is for complex system very difficult to identify
or just impossible. A FMEA is more appropriate for single units composed of
standard parts with few and well-known failure modes. A FMEA should be
performed at a life-cycle phase in which hardware items and their interactions
are already identified [Lev95, p. 343].

The FMECA is an extension of FMEA. It considers the consequences
of particular failures, and their probability or frequency of the occurrence
[Sto96, p. 35].

Leveson states that only few of many different proposed hazard and anal-
ysis techniques are useful for software analysis. One of the used techniques
for software analysis is FTA [Lev95, p. 358].

A detailed description, the use within a system’s life-cycle, and an eval-
uation of various hazard analysis models and techniques can be found in
[Lev95, p. 313–358].

The IEC standard 61508 recommends to use the results of failure analy-
ses, such as CCA, ETA, FTA, FMECA, and Monte-Carlo simulation for the
functional safety assessment of safety-related software [IEC98b, p. 73].

A Monte-Carlo simulation is based on stochastic methods. The idea is
to model a physical object (e.g., a safety-critical system or parts of it) and
to stimulate that object with random numbers, or to add random biases or
tolerances on parameters of that object.

42 2. PROBLEM AND RELATED WORK

An idea for future research is, to use the simulation model of the val-
idation proposed in this thesis and examine different configurations of the
system. Designers vary safety-related parameters and evaluate whether the
system still behaves as expected under those new conditions. The test case
scenarios are applied to the system model with different randomly chosen
system parameters.

2.4 Problems addressed in this Thesis

The previous sections of this chapter introduced current technologies and
methods that are used to design and develop safety-critical real-time systems.
The following section presents some of the major problems that designers face
and shows how the validation process in this thesis contributes to a solution
to those problems.

Time and cost expensive loops in the development process: The
validation process is laid out in such a way that it can take place in
an early phase of a system life-cycle. It simulates the system under
consideration in order to reveal whether or not the system will meet
its safety requirements before expensive prototypes are built, or worse,
before catastrophic failures occur after the system is in service.

Managing complex system designs: The validation process is formal-
ized with techniques and methods, which are supported by a tool avail-
able on the market. The safety system requirements are expressed by
formalized safety arguments, which are automatically checked by an
observer system during a run of the simulation. The validation process
targets complex system designs such as a brake-by-wire system of an
automobile.

Evaluating fault-tolerant system architectures: The validation pro-
cess proposes a fault-injection technique, which allows designers to
inject faults of hardware components or interferences from the envi-
ronment during the operation of the system. The faults are injected
in the simulated system where the faults actually occur in the physical
system. The application software, which is being validated does not
need to be changed for fault injection.

Chapter 3

Essentials for Validation

The techniques and methods for performing the validation of a safety-critical
distributed real-time system described in this chapter are the basis for the
validation proposed in this thesis. They build the framework for determining
whether or not the system under consideration will meet its safety require-
ments, before the hardware of the system is built.

3.1 Safety Arguments

One of the goals of the development of safety-critical systems is that an er-
ror, caused by a fault of a system component or by interferences from the
environment, does not lead to an event that causes death, injury, environ-
mental or material damage [Sto96]. In other words, a safety-critical system
must be always in a safe state even if faults or interferences during oper-
ational use occur. In the following text, the words ‘state’ and ‘mode’ are
used as synonyms. In most cases, the safety of a system does not depend on
the total correctness of the overall functional and temporal behavior of the
system. Instead, the safety of a system depends on the correctness of spe-
cific functional and temporal behavior, which satisfies safety requirements as
part of requirements specifications of the system under consideration (sim-
ilar statements in [GN99], [Som01], and [Sto96]). See Subsection 2.2.2 for
details on requirements specifications of a safety-critical real-time system. In
the following, it is concentrated on safety requirements that a system has to
fulfill.

For the development of safety-critical systems it is necessary that develop-
ers, testers, and authorities can measure whether or not the system fulfils its
safety requirements. The idea in this thesis is, to define specific arguments,
which a system has to follow so that it behaves not unsafe. In case a system

43

44 3. ESSENTIALS FOR VALIDATION

violates such an argument, the system does not behave safe. Those argu-
ments are called in this thesis ‘safety arguments’. Note that the expression
‘not unsafe’ should not be replaced by the word ‘safe’, even if it is logically
the same.

Sommerville introduces safety arguments to demonstrate that a “[soft-
ware] program meets its safety obligation” [Som01, p. 477]. For this work
that definition is adopted and extended in the sense that a safety argument
demonstrates that a system meets its safety requirements. It is not the
purpose of a safety argument to proof that a system is safe under all cir-
cumstances. Instead, safety arguments provide an evidence of safe system’s
behavior, in case the system under consideration does not violate any safety
argument during operation of the system. This statement reflects the fact
that it is theoretically impossible to prove that a system is safe, since “no
system is absolutely safe” [Sto96, p. 29]. A safety argument and its measure-
ment is informally defined as follows:

A safety argument consists of a set of conditions that the system must
fulfill to operate, normally or abnormally, without threatening people
or the environment. The conditions are measurable by data of one or
more signals that the system emits (the definition of the term ‘signal’
is in Subsection 3.3.2 on page 51).

A safety argument can be associated with a specific reaction of the system
in a specific scenario so that the system behaves safely in its environment.
A system reaction can be, for example, the transition from the current state
to a state in which the outputs are set in such a way that the system does
not endanger its environment. Another system reaction might be that the
system holds the current (safe) mode of operation even though in one of the
system components involved in that operation has a failure. That failure
should not affect the safety of the system.

The test creation process, as part of the validation process proposed in
this thesis, defines test scenarios to evaluate whether or not the system vi-
olates safety arguments during safety-related test scenarios. Note that such
a test provides only confidence that the system behaves not unsafe in that
specific test scenario, but one cannot conclude out of such a test that the
system is safe under all circumstances. On the other hand, in case a system
does not pass a test scenario, one can conclude that the system behaves not
safe in its environment.

3.2. BASIC ELEMENTS OF AN IMPLEMENTATION MODEL 45

3.2 Basic Elements of an Implementation

Model

An implementation model (IM) is the model of a distributed real-time sys-
tem that a design team is going to realize based on a design specification.
The design specification defines which functions of the system are realized
as software components and which functions are realized as hardware com-
ponents (partitioning of the functional network into hardware and software
components). The design specification describes how these components are
supposed to interact with each other in order to meet the functional and
temporal system requirements. It defines the interfaces and interactions be-
tween software components, between hardware components, as well as the
interfaces and interactions between the software and hardware components.
This includes the specification of a communication system (communication
medium, protocol, etc.) that is mandatory for the communication between
distributed nodes of a distributed real-time system, and for the communica-
tion between the system and its environment.

Throughout this thesis it is assumed that a design specification for the
system exists and is used to build the IM of the distributed real-time system.

In order to validate functional and temporal system behavior during spe-
cific scenarios with the presence of faults and interferences, a suitable model
of the system under consideration as basis for a validation is needed. It is
important to choose criteria that distinguish components according to their
influence on the system behavior.

An IM distinguishes three categories, in which components of a system
are classified:

• application components,

• application services (realizing an application programming interface
(API)), and

• architecture components.

Figure 3.1 sketches the models of an IM and illustrates the interaction
between the basic elements of such a system model.

Application components represent system functions as set of communicat-
ing processes (functional network), which communicate through signals with
each other and with the environment (a similar representation of a functional
network is chosen for the meta model of the Metropolis approach [Bal01]).

In this work it is assumed that each process is implemented as a software
program specified in the design specification.

46 3. ESSENTIALS FOR VALIDATION

Application Components

SW-functions use
variables (data)

Exchange of data

through signals

Architecture Components
Computes data
by executing
SW-functions

Stores data Bus

Processor

Memory Transmits data

Application interface

with services

Reading data
from a memory

Receiving data
from a bus

Writing data
to a memory

Sending data
to a bus

Scheduling
SW-functions

Application component

Signals to the

environment

Signals from the

environment

Figure 3.1: Interaction of all basic elements of an implementation model

This assumption does not limit the capability of an IM, because a process,
which will be implemented as a hardware element in a real system (e.g., as an
application specific integrated circuit (ASIC)) can be modelled in an IM as
a piece of software running exclusively on single processor. Since the focus
in this work is on effects of shared physical resources on system behavior,
this special case of an implementation of a process as an ASIC is not further
discussed.

The application components in Figure 3.1 use physical resources (hard-
ware elements) to perform their software functions. The architecture com-
ponents of an IM represent either a resource of computation (processor), a
resource of communication (bus), or a storage resource (memory), which is
used by an application component.

The application services in Figure 3.1 represent platform services used
by application components. They allow an application component to run its
software functions on a processor, to send and to receive its data to and from
a bus, to write and to read its data to and from a memory location, and to
store its data in a memory location (in a system that has been realized, those
services are usually provided by a RTOS). In other words, the application

3.3. CHARACTERISTICS OF ARCHITECTURE COMPONENTS 47

model runs on a virtual platform, which consists of architecture components
and application services. In the context of this thesis, the virtual platform
is used for validation purposes. This virtual platform supports validation
in the sense that the desired functionality of the application (application
components) and the hardware elements (architecture components) with its
services are separated from each other, so that effects of hardware elements
(e.g., faults of hardware elements that occur randomly) on the desired func-
tionality can be studied easier.

Liu introduces a reference model for real-time systems, which has a sim-
ilar level of abstraction as an IM presented in this work. The reference
model allows to focus on relevant characteristics of the system (e.g., timing
properties) and abstracts irrelevant details of an application and the system
resources (e.g., whether the algorithm is implemented in assembler or C++,
or whether the communication medium is cable or fiber). In Liu’s reference
model each system is characterized by three elements [Liu00, p. 34–59]:

1. a workload model that describes the applications supported by the
system,

2. a resource model that describes the system resources to the applica-
tions, and

3. algorithms that define how the application system uses the resources
at all times.

In comparison to the basic elements of an IM, a ‘workload model’ cor-
responds to the model of application components, a ‘resource model’ corre-
sponds to the model of architecture components, and ‘algorithms’ correspond
to algorithms of application services provided by the virtual platform.

3.3 Characteristics of Architecture Compo-

nents

The following section classifies models of architecture elements (architec-
ture components) and defines distinguishable characteristics for those mod-
els. This section gives a formal definition of signals in order to describe the
effects of different architecture components on system’s behavior.

3.3.1 Classification Scheme

Architecture components can be modelled in more or less details such that
a model represents more or less the real hardware element. This thesis uses

48 3. ESSENTIALS FOR VALIDATION

a two dimensional classification scheme in which temporal performance and
faults of an architecture component can be categorized (see Figure 3.2). The
classification scheme allows to compare different models of hardware elements
(architecture components) with each other and puts those models in relation
to the behavior of the real hardware elements. The values of each axis of the
two dimensional graph tells how detailed temporal performance and physical
faults of the real hardware element are represented by the model. The real
hardware elements are the upper limit of the classification scheme in both
dimensions.

It is not the purpose of the classification scheme to qualify all electri-
cal and mechanical criteria on which an architecture design of an electronic
system depends (e.g., power dissipation, memory size, or mechanical dimen-
sions).

Figure 3.2 shows a classification scheme of a processor model and ex-
amples of its characteristics in both dimensions. The vertical axis of the
classification scheme indicates the fact that hardware elements delay data of

Details of the

fault model

Details of the

performance model

Execution takes

zero time

Execution takes time (no

pipelining modelled)

Cycle accurate model

No faults Faults on

gate level

Faults on

logical level

Real

processor

Processor model

Figure 3.2: Classification scheme for architecture components (example: pro-
cessor)

signals, because computation, transmission, and storage of data takes a fi-
nite, non-zero amount of time in a real system. Each architecture component
has a performance model that defines how the simulation engine of the vir-
tual platform (see Section 3.2 on page 47) has to delay data produced by an
application component that uses an architecture component. A performance
model of a processor, for example, defines algorithms how the simulation

3.3. CHARACTERISTICS OF ARCHITECTURE COMPONENTS 49

engine has to calculate (estimate) the execution time of a piece of software
running on that processor.

The horizontal axis in Figure 3.2 indicates the fact that a hardware ele-
ment can fail during its life cycle. Each architecture component has a fault
model that defines how the simulation engine has to change data of an ap-
plication component that uses a faulty architecture component. In case of
a processor, for example, the fault model defines how the fault effects the
result of a computation of the faulty processor when the fault is present.

Note that a fault model defines effects on signals, which influence time
delays and values of signal data, whereas a performance model defines effects
that influence only the time delays of signal data.

The physical effects on system behavior from the two characteristics can
be modelled, simulated, and validated independently from each other. There-
fore, the two physical characteristics of a hardware element are orthogonal.
This reduces the complexity of the validation process proposed in this the-
sis. Influences of temporal performance and physical faults of a hardware
element can be separated from each other: temporal performance in a per-
formance model and physical faults in a fault model. For instance, a fault
of a processor can be modelled independently from its performance and vice
versa.

The origin of the coordinate system of Figure 3.2 represents the situation
in which the architecture components have neither a performance nor a fault
model. The models of processors, busses, and memories located in the origin,
do not affect the temporal or functional behavior of the system during the
processes of computation, transmission, or storage. In the terminology of this
thesis such a simulation model is called ‘idealized’, because the simulation
engine takes neither temporal performance nor physical faults into account.

The models that are not placed in the origin of the coordinate system
can have both limited and faulty characteristics. A behavior of an archi-
tecture component is called ‘faulty’ if the simulation takes physical faults of
that component into account, and ‘limited’ if the simulation takes temporal
performance into account.

Table 3.1 summarizes model characteristics of processors, busses, and
memories. The amount of detail with which an architecture component
should represent the real hardware element depends on the validation pur-
pose.

3.3.2 Signals of an Implementation Model

In this thesis, it is assumed that the system behavior can be validated by
observing specific signals within a simulation model of the distributed real-

50 3. ESSENTIALS FOR VALIDATION

Architecture
component

Characteristic if component is modelled as:

Idealized Limited Faulty

Processor Computation
takes zero time

Computation
takes time

No computation
or data gets
corrupted

Bus Communication
with zero time

delay

Communication
with time delay

No
communication

or data gets
corrupted

Memory Access takes zero
time

Access takes time No access or data
gets corrupted

Table 3.1: Characteristics of architecture components during simulation

time system.
In signal theory, “[a] signal is formally defined as a function of one or

more variables, which conveys information on the nature of a physical phe-
nomenon” ([HV99, p. 1] and a similar definition in [Kie98, p. 4]). This def-
inition fits especially to signals that an embedded system receives from the
environment and which the system sends to the environment.

This thesis uses mathematical representations of signals, which are based
on the definition above, although signals of an IM may or may not convey
information about a physical phenomenon. The signals are only defined at
discrete instants of time (discrete-time signals). This is in contrast to analog
signals, which are defined for all time (continuous-time signals).

The following definitions are based on signal representations in [HV99]
and [OW97].

A discrete-time signal Y can be mathematically represented as

Y (k) =
{
y(0), y(1), y(2), · · · , y(k − T), y(k)

}
(y(k) ∈ R) (3.1)

where Y (k) is sequence of function values y(k) that are ordered at discrete
instants of time k, with

k := m · T (m ∈ N, T ∈ R) (3.2)

and T as sampling period.
A function value y(k) can either be a function of:

• a single variable x(k) (one-dimensional signal)

y(k) = f(x) (x ∈ R), (3.3)

3.3. CHARACTERISTICS OF ARCHITECTURE COMPONENTS 51

• two variables x1(k), x2(k) (two-dimensional signal)

y(k) = f(x1, x2) (x1, x2 ∈ R), or (3.4)

• N variables x1(k), x2(k), · · · , xN(k) (multi-dimensional signal)

y(k) = f(x1, x2, · · · , xN) (x1, x2, · · · , xN ∈ R). (3.5)

Note that a function value y(k) may depend on the actual input value
x(k), on input values x(k−n ·T) from the past (with n ∈ N and 0 < n ≤ m),
or a combination of both. This statement is valid for one-, two-, and multi-
dimensional signals.

Example 1: The signal Y is a sequence of sampled signal values y(k) = x(k)
of a continuous-time signal x = x(t) that conveys temperature values
x(t) at the time t. The continuous-time signal is sampled at discrete
instants of time k = {0, 1 ·T, 2 ·T, 3 ·T, . . .} by a real-time system with
T as sampling period.

Example 2: The signal Y is a sequence of values y(k) of a software variable,
which represent the state of a real-time system. In this case, k =
{0, 1 ·T, 2 ·T, 3 ·T, . . .} corresponds to discrete time instants, when the
value is periodically written or read by the software program of the
real-time system. The time interval of a period is given by T .

In order to describe the correlation between influences on signals and
characteristics of architecture components, we extend the signal representa-
tion of Equation 3.1. The new signal representation allows to describe how a
performance model and a fault model, as described in Subsection 3.3.1, can
influence signals of a real-time system.

We define an output signal Y by

Y (lm) :=
{
v(l0), v(l1), v(l2), · · · , v(lm−1), v(lm)

}
(m ∈ N) (3.6)

as a sequence of values v(lm) at discrete instants of time lm. In the following
text the time lm is called ‘time-tag’ of the value.

The authors of [LSV97] use a similar representation to compare different
models of computation. They define an event as a “value-tag pair” event :=
(v, ttag), where the time-tag ttag defines at what time the event occurs and
the value v defines the function value of the event.

In analogy to the Equations 3.3, 3.4, and 3.5 the value v is defined as
follows:

52 3. ESSENTIALS FOR VALIDATION

• For one-dimensional input signals as

v(lm) := f
(
x, faultv(k)

)
(v, faultv(k) ∈ R). (3.7)

• For two-dimensional input signals as

v(lm) := f
(
x1, x2, faultv(k)

)
(v, faultv(k) ∈ R). (3.8)

• For multi-dimensional input signals as

v(lm) := f
(
x1, x2, · · · , xN , faultv(k)

)
(v, faultv(k) ∈ R). (3.9)

In comparison to the Equations 3.3, 3.4, and 3.5, the values v depend also
on the fault model of an architecture component expressed by faultv(k).

A value v of an one-dimensional input signal is calculated with an actual
input value x(k), input values x(k − n · T) from the past (with n ∈ N and
0 < n ≤ m), or a combination of both. In case a fault is present at time k,
the function faultv() models the influence of the fault on the value v. The
calculation of values v with two-dimensional and multi-dimensional input
signals use the same principle.

The time-tag lm of a value is defined as

lm := k + delay(k) + faultt(k) (m ∈ N, lm ∈ R), with (3.10)

delay(k) ≥ 0 (delay(k) ∈ R), and (3.11)

faultt(k) ≥ 0 (faultt(k) ∈ R). (3.12)

The time-tag lm is the sum of the time k, time delay delay(k) calculated
with the performance model, and time delay faultt(k) calculated with the
fault model of the architecture component that is involved in the computation
of the signal. A time-tag lm is calculated with the value v at time k so that
they form a consistent pair v(lm) (see Equation 3.6).

Let’s consider a special case in which the architecture components have
idealized characteristics (see for details Subsection 3.3.3 on page 54). For an
ideal architecture component the functions delay(), faultt(), and faultv()
are given by

delay(k) ≡ 0, and faultt(k) ≡ 0, and faultv(k) ≡ 0. (3.13)

Thus, with Equation 3.10 the time-tag is given by lm = k, and with
Equation 3.7 the value is given by v = f(x) (for an one-dimensional signal).
Then we can write Equation 3.6 with v = y as

Y (k) =
{
y(0), y(1), y(2), · · · , y(k − T), y(k)

}
. (3.14)

3.3. CHARACTERISTICS OF ARCHITECTURE COMPONENTS 53

A comparison between Equation 3.14 and Equation 3.1 shows that Equa-
tion 3.6 turns into the signal representation of Equation 3.1 for architecture
components with idealized characteristics.

The signal representation of Equation 3.6 allows to study how architecture
components influence signals of application components of an IM. A basic
assumptions in thesis is that the values and time-tags of a signal are only
influenced by architecture components. The functions delay(), faultt(), and
faultv(k) are used in this thesis to model those influences. The following
subsection describes this concept in more detail.

3.3.3 Idealized, Limited, and Faulty Architecture
Components

Figure 3.3 depicts principles of the interactions between application and ar-
chitecture components of an IM introduced in Section 3.2. The application

Application Components

Application
components
use
architecture
components

X Y

Architecture Components

Bus Memory

Processor

Architecture
components
influence
signals
of application
components

Figure 3.3: Interactions between application and architecture components

components use basic operations of architecture components in order to com-
pute an output signal Y based on data of an input signal X, with the help
of application services (see Figure 3.1 on page 46).

On the other hand during an execution of a basic operation, an architec-
ture component may delay the output signal (by changing the time-tag), or
may produce incorrect values of the output signal, for example, because a
fault occurs during computation of the output signal.

The following paragraphs explain in more detail, how different charac-
teristics of architecture components have influence on values and time-tags
of a signal. The examples in this subsection use one-dimensional input and
output signals to show the principles.

54 3. ESSENTIALS FOR VALIDATION

With Equation 3.1 we can express the input signal X of Figure 3.3 as

X(k) =
{
x(0), x(1), x(2), · · · , x(k − T), x(k)

}
. (3.15)

With the Equations 3.6, 3.7, and 3.10 we can express the output signal
Y of Figure 3.3 as

Y (lm) =
{
v(l0), v(l1), v(l2), · · · , v(lm−1), v(lm)

}
with

v(lm) = f
(
x, faultv(k)

)
, and

lm = k + delay(k) + faultt(k).

(3.16)

In the following it is assumed that the interaction between application and
architecture components can be split into five basic operations (see Figure 3.1
on page 46): computing, writing, reading, sending, and receiving.

The variety of operation types that architecture components (e.g., a pro-
cessor) can perform, are generally much bigger and much more complex. The
assumption of only five abstract operation types is still reasonable, because
all operation types can be grouped into those basic operation types. The
assumption is also based on the fact that the hardware architecture of an IM
consists of maximal three different types of hardware elements:

1. a processor that computes data,

2. a memory that allows to access stored data (read and write), and

3. a bus, which is the communication medium through nodes of a dis-
tributed network send and receive data.

The next paragraphs explain in detail how each architecture component
influences data of a signal, depending how an architecture component is
modelled: idealized, limited, or faulty.

Idealized Architecture Components

Table 3.2 summarizes how a a processor, memory, and bus effect the output
signal Y of Equation 3.16 in case they are modelled as idealized.

The first column defines the type of the architecture component, the
second column shows the operation that involve an architecture component
of this type, and the last two columns describe how this type of operation
influences the value and the time-tag of a signal.

With idealized architecture components signals are not influenced by per-
formance or fault models. The only component that influences a signal is a
processor, because a processor needs to execute the operation ‘compute’ so

3.3. CHARACTERISTICS OF ARCHITECTURE COMPONENTS 55

Idealized Architecture Components

Effects on a Signal
Component Operation Value Time-tag

v lm

Processor compute f
(
x(k)

)
delay(k) ≡ 0

faultv(k) ≡ 0 faultt(k) ≡ 0
Memory read/write v not affected delay(k) ≡ 0

faultt(k) ≡ 0
Bus send/receive v not affected delay(k) ≡ 0

faultt(k) ≡ 0

Table 3.2: Effects on signals caused by idealized architecture components

that signals are transformed according to the software algorithm. An ide-
alized processor performs the computation in zero-time, indicated by a zero
delay for all compute operations. An idealized bus or memory does not affect
a signal at all.

For idealized architecture components an output signal Y is given with
Equation 3.16 by

Y (lm) =
{
v(l0), v(l1), v(l2), · · · , v(lm−1), v(lm)

}
with

v(lm) = f(x), and

lm = k.

(3.17)

Note that performance models and fault models of the three architecture
components are generally different, although the function names delay(),
faultv(), and faultt() of all three elements are the same.

Limited Architecture Components

In case an architecture component has physical limited characteristics, the
performance model of that component comes into play. Table 3.3 summarizes
how limited architecture components affect signals during a simulation. The
formulas of all three elements indicate that signal values are not further
affected in comparison to an idealized component, but a signal is delayed
by the function delay() of all three elements (see the ‘Time-tag’ column of
Table 3.3). The function faultt() does not contribute to the time delay
because all elements do not have faults.

For limited architecture components an output signal Y is given with

56 3. ESSENTIALS FOR VALIDATION

Limited Architecture Components

Effects on a Signal
Component Operation Value Time-tag

v lm

Processor compute f
(
x(k)

)
delay(k) > 0

faultv(k) ≡ 0 faultt(k) ≡ 0
Memory read/write v not affected delay(k) > 0

faultt(k) ≡ 0
Bus send/receive v not affected delay(k) > 0

faultt(k) ≡ 0

Table 3.3: Effects on signals caused by limited architecture components

Equation 3.16 by

Y (lm) =
{
v(l0), v(l1), v(l2), · · · , v(lm−1), v(lm)

}
with

v(lm) = f(x), and

lm = k + delay(k).

(3.18)

The delay caused by a processor is due to the fact that it takes time
to schedule and to execute a software function. Every instruction executed
on a processor takes a finite amount of time. Generally, a processor is a
shared resource in the sense that more than one software function runs on
that processor. As part of a RTOS, a scheduler manages a processor resource
because two or more functions can not use simultaneous one processor. As
a result of scheduling, software functions run not instantly on the assigned
processor after they have requested the computational resource. The formula
delay() takes delays into account that are caused by both scheduling and
execution of software functions.

The time delays caused by the bus are due to the fact that an access
to the physical medium and the transmission of data through the physical
medium takes time.

A memory delays data because a write and read to a memory takes time
as well. Very often, the time delays caused by memories can be neglected
because they are on a different scale in comparison to delays caused by pro-
cessors or busses.

Other approaches which model real-time systems simplify their model in
the sense that they neglect the time delay caused by the memory and take
the speed of the memory by the speed of the processor into account (for
example in [Liu00, p. 36]).

3.4. CONFIGURABLE IMPLEMENTATION MODEL 57

Faulty Architecture Components

It is important that all three architecture component types (processor, mem-
ory, and bus) with faulty characteristics are able to influence both signal
values and signal time-tags. It is assumed that each architecture component,
which models a faulty hardware element, has a fault model that defines how
the element influences value and time-tag in case the fault is present. For
instance, a fault model of a processor may specify at what time the fault is
present, how long the fault will be present, and how the signal values and
time-tags are changed by the fault.

Table 3.4 shows that values and time-tags are only influenced by the fault
model of each component. Note that performance models are not valid if a
component is modelled as faulty and the fault is present.

Faulty Architecture Components

Effects on a Signal
Component Operation Value Time-tag

v lm

Processor compute f
(
faultv(k)

)
delay(k) ≡ 0
faultt(k) > 0

Memory read/write f
(
faultv(k)

)
delay(k) ≡ 0
faultt(k) > 0

Bus send/receive f
(
faultv(k)

)
delay(k) ≡ 0
faultt(k) > 0

Table 3.4: Effects on signals caused by faulty architecture components

For faulty architecture components an output signal Y is given with Equa-
tion 3.16 by

Y (lm) =
{
v(l0), v(l1), v(l2), · · · , v(lm−1), v(lm)

}
with

v(lm) = f
(
x, faultv(k)

)
, and

lm = k + faultt(k).

(3.19)

3.4 Configurable Implementation Model

An IM can imitate system behavior of a real system in which the hardware
elements are either idealized, limited, faulty, or a meaningful combination
of those characteristics, because each architecture component can be mod-
elled differently. A configurable IM supports the validation process of safety-
critical systems in the sense that a validation team is able to concentrate on

58 3. ESSENTIALS FOR VALIDATION

the effects on system behavior of hardware elements, which has been identi-
fied as safety-critical.

Figure 3.4 shows some examples of special configured IMs using the clas-
sification scheme of architecture components introduced in Subsection 3.3.1.

Execution takes

zero time

Cycle accurate model

Execution takes time (no

pipelining modelled)

Faults on

gate level

Faults on

logical level

Details of the

fault model

Details of the

performance model

No faults

Real system

IMIAC

IMLFAC IMLAC

Figure 3.4: Classified IMs with differently configured architecture compo-
nents

An implementation model with ideal architecture components (IMIAC)
simulates expected system behavior with idealized hardware elements. The
IMIAC reproduces the simulation results, for example, of a functional simula-
tion of the specification model in a previous development step. The validation
process uses an IMIAC and its simulation results as a reference, for example,
in a simulation of an IM with limited and faulty components (IMLFAC) to
calculate expected behavior assuming idealized characteristics of architecture
components.

In this context it is important to recall that this thesis addresses physical
faults and, for example, no design mistakes (see Subsection 2.1.4). Therefore,
it is assumed that all IMs have no mistakes in the design, neither in the
software components nor in the hardware components.

It is out of the scope of this work to prove that processors and buses in
a distributed system have sufficient computation power and communication
bandwidth that guarantee temporal correctness under all circumstances.

Within the scope of this thesis, it is assumed that a real-time analysis
of an implementation model with limited architecture components (IMLAC)
has proven that simulated response times of the system under consideration

3.4. CONFIGURABLE IMPLEMENTATION MODEL 59

are always lower or equal to specified deadlines under all circumstances (see
Subsection 2.3.3 for details on real-time analyses). Later on in the develop-
ment process, this assumption can be verified by measuring execution times
and response times of the real system using the same test scenarios as in the
simulation and vise versa.

The response time and deadline is defined as follows (both definitions are
adopted from [Liu00, p. 27] and adapted accordingly):

The response time of a system (or component) is the duration from the
time when an application component calls for the architecture resource
to produce an output signal of the system (or component), to the time
when the procedure (computation, transmission, read, or write) is com-
pleted.

The deadline is the instant of time by which an output signal of the system
(or component) is required to be produced.

The response time is the sum of the amount of time that an application
component needs to wait to get access to an architecture resource (e.g., deter-
mined by scheduling algorithms and media access protocols) and the amount
of time that the architecture resource actually needs to compute, transmit,
read, or write data. The latter amount of time under the assumption that
the component uses the resource exclusively and has all resources it requires
(Liu calls that amount of time “execution time” [Liu00, p. 38–40]).

A real-time analysis is taking into account that hardware elements have
temporal limitations but it is assumed in such analysis’s that the hardware
elements are not faulty. Therefore, even if a real-time analysis proves that
the system will meet the temporal requirements, a validation of the system
behavior still needs to prove that the system requirements will be met in
case one or more hardware elements are faulty. In other words, a real-time
analysis checks in one dimension of the classification scheme (limitations in
the performance of hardware elements) and the validation process checks in
the other dimension of the classification scheme (faults of hardware elements).

During a validation of a complex system it can make sense to group ar-
chitecture components into clusters, which can have different characteristics.
Figure 3.5 shows an example of an IM in which architecture components are
configured differently. One advantage of such an approach is that one can
inject faults of hardware elements (safety relevant elements) exactly where
the fault may occur in the real system. Consequently, the detection and re-
action mechanism of the application can be validated as closely as possible
to the real system behavior. Another advantage is that some clusters can
have faulty and limited characteristics, whereas other clusters are configured

60 3. ESSENTIALS FOR VALIDATION

#1

#4

#3

#2

Process #1
“uses”
Processor #2

Processor

#2

Mem

Local Bus

Bus #1

Process #3
“uses”
Processor #1

Signal Y
“uses”
Bus #1

Idealized

Limited

Faulty

Bus #1

Y

Idealized

Limited

Faulty

Mem

Idealized

Limited

Faulty

Processor #2

Idealized

Limited

Faulty

Processor

#1

Processor #1

Figure 3.5: Example of an IM configuration

as idealized because they are not real-time critical and not under test during
a particular test scenario.

3.5 Fault Models of Architecture Compo-

nents

A fault model characterizes specific faults that might exist within a system
[Sto96, p. 114–124]. In the context of this thesis, a fault model describes
physical faults of a hardware element, for example, a breakdown of the el-
ement during operational use or an abnormal deviation from the nominal
behavior caused by interferences.

One of the ideas in this thesis is to model a fault of a hardware element
explicitly in the model of the architecture component that represents the
real hardware element in the simulation. The advantage of this approach is
that the effect of a fault on the system’s behavior can be simulated in a way,
which is very close to a real system in which a hardware element has a fault.
The principle is the following: whenever an application component uses a
faulty architecture component and a fault of that component is present, the

3.5. FAULT MODELS OF ARCHITECTURE COMPONENTS 61

simulation engine of the virtual platform determines how signal values and
time-tags need to be changed, described by the fault model.

In contrast, one could also model effects of faults on system behavior in a
simulation of a functional network (functional simulation), where the effects
of faulty hardware elements need to be translated into effects on system be-
havior and then modelled in the functional simulation. Generally, functional
simulations do not consider effects of the hardware architecture of a system.
In such a functional simulation one needs to transform the effect of each
fault into the simulation model of the functional network. This transforma-
tion needs to be re-done when the functional network is changed, when the
hardware architecture is changed, or both.

In case the fault is modelled explicitly, as proposed in this thesis, there is
no need of a transformation and no additional work if the functional network
or the hardware architecture has changed.

An approach of modelling effects of faults on the specification level is
described in [Bre00]. That approach targets the specification of distributed
systems and contributes to the (correct) design of application components,
in order to detect faults and to react to those faults correctly. In comparison,
this thesis contributes to the validation of application components in case a
hardware element fails or interferences disturb the operation of a hardware
element.

The following example shows one advantage of the use of a fault model
and of the fault injection technique proposed in this thesis (see Section 3.6
for details on the fault injection technique).

Suppose a memory segment has a fault and this memory segment is used
by an application component (e.g., by a software function). There are two
cases that one might consider:

• No use of a fault model: one needs to manipulate explicitly each
variable (or signal value) that uses the faulty memory segment accord-
ing to the effects, which the fault causes on the system behavior (this
requires transformation effort, possible change of the functional model,
etc.).

• Use of a fault model: the memory has a fault model and the fault
can be injected during the simulation of an IM, the effects on system
behavior are implicitly simulated without further effort.

In the context of this thesis, fault models do not cover design mistakes
of software or hardware components. This kind of faults are normally sys-
tematic faults and can be caused, for example, by a wrong specification, by
incorrect coding, or by hardware elements that do not operate within their

62 3. ESSENTIALS FOR VALIDATION

temporal specification. Revealing design mistakes are out of the scope of this
work and will not be covered any further.

A fault can be characterized by its “nature”, its “extent”, and its “dura-
tion” (see [Sto96, p. 114–116] and similar in [Ise01]).

The nature of a fault is either random or systematic. This thesis con-
siders faults of hardware elements that occur randomly during operations
throughout a life cycle of a system. Systematic faults in the specification
of the system, mistakes in the software, or mistakes in the hardware design
(design faults) are not further considered as stated above.

The extend of a fault can be local or global in the sense that a local fault
affects only single hardware or software elements, whereas a global fault
affects the overall system behavior. The faults, which are considered in this
thesis, are physical faults of hardware elements that may effect the overall
system behavior (see Subsection 2.1.4 for more details on fault types).

The duration of a fault can be distinguished as follows [BW01, p. 103–
104]:

• Permanent fault: the fault appears and remains in the system until
it is repaired. For example, a memory segment that is not accessible
anymore. In a simulation of an IM a permanent fault is present until
the simulation ends.

• Transient fault: the fault appears and then disappears after a short
time. For example, a signal value gets corrupted by an electro magnetic
compatibility (EMC) related problem.

• Intermittent fault: the fault appears, disappears, and reappears at
some time later. For example, a poor solder joints of an electrical
contact of a hardware element can cause such an intermittent fault.

In the context of this thesis, a fault model of an architecture component
can define all three different types of faults. Figure 3.6 shows examples of
the three different temporal behavior of a fault as described above.

To summarize the main points of the previous discussion, a fault model
of an architecture component defines the following characteristics of a fault:

• Type and location define the type of the faulty architecture com-
ponent (processor, memory, or bus) and the location in the system
architecture (e.g., address range within a memory).

• Start time and duration define when a fault is supposed to be
present and how long the fault is present.

3.6. FAULT INJECTION TECHNIQUE 63

Permanent Transient Intermittent

time

fault

time

fault

Fault remains until

simulation ends

present

not present

Fault appears and then

disappears after a short

time

fault

time

Fault appears, disappears,

and reappears some time

later

Figure 3.6: Temporal behavior of a fault

• Fault functions define how the fault influences the values and time-
tags of a signal (faultv() and faultt(); see Equations 3.7 and 3.10). For
example: the function faultv() may define fake signal values and the
function faultt() may define a time delay, or defines that a software
function is not scheduled so that a signal is not produced.

• Fault conditions define under what circumstances a fault is supposed
to occur. For example, a condition can be a system state, a specific
value of a variable, or a logical expression of variables.

The fault model is the basis for the fault injection technique, which is
described in the next section.

3.6 Fault Injection Technique

The fault injection technique activates a fault of an architecture component
in case it has a fault model. The fault model defines how a fault will change
value, time-tag, or both of a signal that is being stored, computed, or trans-
ferred by a faulty architecture component. The manipulation of the signal
data models the occurrence of an error within the system that is caused by
that faulty architecture component. In the following text it is assumed that
the time that elapses between the activation of the fault and the occurrence
of the error is zero (fault latency = 0 s), if not otherwise noted. With this
assumption, the activation time of a fault is equal to the time when the error
occurs.

64 3. ESSENTIALS FOR VALIDATION

For instance, the fault injection technique changes the value of a variable
that is stored in a memory location from a the stored value to another value
i.e., incorrect value (Figure 3.7 illustrates this scenario). The application
component using that memory location will read or write ‘fake values’ (in
this case zeros).

Y X

y

1

time t1 tfault

x

t1
time

1

tfault time

fault

present

not present

Memory

fault

fake values

0 0

Figure 3.7: Example of an injected memory fault

The fault injection does only inject one fault at a time (single-fault as-
sumption) although an IM allows the simulation of multiple faults at a time.
The single-fault assumption reduces the complexity of a validation process,
because it is almost impossible to predict expected system behavior of dis-
tributed real-time systems in case multiple faults occur exactly at the same
time. On the other hand, the single-fault assumption is reasonable, because
it still allows to simulate two ore more faults in sequence which occurrences
have a little time difference. Apart from that, a fault can influence more
than one signal of a real-time system at a time even if only one fault at a
time occurs (e.g., a breakdown of a bus).

Application services transfer data from the architecture components to
application components and vise versa. Therefore, it makes sense to imple-
ment the fault injection as a software layer between architecture components
and the application interface (see Figure 3.8). Effects of faults and inter-
ferences on system behavior can be evaluated without changing application
components or their interfaces.

A software-implemented fault injection technique, which injects faults at
run-time, is proposed in [Ade02]. The objective of this work is to deter-
mine error detection coverage by emulating hardware faults using software-
implemented fault injection. The main shortcomings of this approach are
“the limited ability to inject faults that are inaccessible to software and the

3.6. FAULT INJECTION TECHNIQUE 65

Architecture Components
Computes data
by executing
SW-functions

Stores data Bus

Processor

Memory Transmits data

Application interface

with services

Reading data
from a memory

Receiving data
from a bus

Writing data
to a memory

Sending data
to a bus

Scheduling
SW-functions

Fault Models
Influences signal
data as defined in
the fault model

Specifies faults
of architecture
components

Application Components

SW-functions use
variables (data)

Exchange of data

through signals

Application component

Signals to the

environment

Signals from the

environment

Fault Injection

Figure 3.8: Fault injection layer in a simulation model

temporal intrusiveness that the fault injector implies” [Ade02]. To overcome
these shortcomings, the authors of [BAS+02] propose a combination of two
hardware-implemented (pin-level and heavy-ion) fault injection techniques
and the software-implemented fault injection technique proposed in [Ade02].
They expect from their approach a “more realistic error detection coverage
and better knowledge about the origin of the faults” [BAS+02]. The authors
use in both approaches the target system (real hardware) for their experi-
ments.

In contrast, the fault injection technique proposed in this thesis uses
models of the system’s hardware elements instead of the real hardware. On
one hand, this allows an evaluation of the error detection mechanism in an
early development stage, with control of all faults and full access to all faults
represented by the fault models. On the other hand, the simulation is limited
to the details of these fault models and is only a first estimation of the error
detection coverage depending on the details of the fault models.

A fault model in combination with the fault injection technique, proposed

66 3. ESSENTIALS FOR VALIDATION

in this thesis, can be used to estimate error-propagation time and to track an
error caused by a fault throughout the simulation model of the distributed
real-time system.

The error-propagation time is the time from the occurrence of the error
(caused by a fault) until the system posts an erroneous result to its out-
put. The error-propagation time is a random variable characterized by a
probability distribution function [KS97]. The authors of [HJS02] propose an
environment (PROPANE) for examining the propagation of errors in soft-
ware (see Subsection 2.3.2 on page 35).

3.7 Simulation Platform

In the context of this thesis, a simulation platform implements the function-
ality of a virtual platform and is the simulation environment in which the
validation process takes place (see Section 3.2 on page 47 for details on the
virtual platform). The simulation platform supports the classification scheme
of architecture components in the sense that it allows to simulate an IM that
consists of architecture components with different characteristics (idealized,
limited, and faulty). It enables the stimulation of an IM with predefined
test scenarios, allows to inject faults of hardware elements, and supports the
measurement of signals within the system under test by an observer system.

It is out of the scope of this work to describe or specify a model of com-
putation and a simulation engine that are necessary to model and simulate a
distributed real-time system. This work rather focuses on features that such
a simulation platform must have in order to perform the validation proposed
in this thesis.

In order to simulate the effects of hardware elements on signals respec-
tively on system behavior, it is assumed that a signal has passed an architec-
tural resource (processor, bus, or memory) before an application component
receives or sends the signal. The simulation engine takes performance models
and fault models of architecture components into account, before the signal
is processed by another application component, or before the signal is sent
to the environment. The value and time-tag of each signal is calculated by
the simulation engine of the simulation platform.

Figure 3.9 sketches an example of a simulation of an IM in which the
simulation engine calculates time-tags and values of a signal according to the
performance and fault models of the architecture components. The IM of this
example is configured as following: Bus1 as limited, Processor2 as idealized,
Processor1 as limited, and Mem as faulty. The arrows from the signals and
application components (software functions) to the architecture components

3.7. SIMULATION PLATFORM 67

Limited

Bus1

Faulty

Mem

Limited

Processor1

Idealized

SW3

Bus1

Y2 Y3 X3 X2

time

SW3

t1 t4

time

Bus1

Y2

t1 t3 t4

time

Processor1

SW1

SW2

t1 t3

time

Mem

Read
SW2

t1 t4 t2

time

Fault of Mem

Present

t1 t4 t2

t2

send Y2 (corrupted)
at t3

error Y2 at t2

receive X3 at t4 receive X2 at t1

higher priority of SW1

send Y3 at t4

X2

Processor2 Mem

Local Bus

Processor1

SW2

SW1

Processor2

Processor2

read at t2

Figure 3.9: Time-tags and values calculated by the simulation engine

in Figure 3.9 indicate that the signal is transmitted through a bus and that
the software function runs on a processor. The software functions SW1 and
SW2 run on Processor1 and the software function SW3 runs on Processor2.

The scenario of Figure 3.9 is as follows: the software function SW2 re-
ceives signal X2 at t1, which was sent by software function SW1 through bus
Bus1. The software function SW2 computes the output signal Y2 accord-
ing an algorithm, and emits Y2 at t3. During a read operation of SW2 at
t2 the fault of memory Mem is present (specified in the fault model of the
element Mem; see graph in the lower right-hand corner of Figure 3.9). This
fault causes an incorrect memory value (error). The wrong memory value
causes an incorrect computation result and consequently (in this example)
an incorrect signal Y2 (failure).

A further delay of signal Y2 is caused by the amount of time that the soft-
ware function SW1 needs to compute its algorithm with Processor1, because
SW1 needs the computational resource (Processor1) at the same time. Since

68 3. ESSENTIALS FOR VALIDATION

both software functions run on the same processor, the software function SW1
with the higher priority preempts the running software function SW2. The
preemption process delays the send process of signal Y2 in addition to the
delay caused by the computation of software function SW2. The delays are
indicated by the graph in the upper right-hand corner of Figure 3.9.

After the signal Y2 is produced by block SW2, it is delayed by the trans-
mission through bus1 by the time delay t4 − t3. The block SW2 sends Y2 at
t2 and block SW3 receives X3 at t4. The signal X3 has a new label because
it is different to signal Y2 after block SW2 has sent through bus bus1 (at
least the time-tags of Y2 are changed). The scenario of this example ends
after block SW3 has sent Y3 at t4. Note that receiving and sending of X3

and Y3 happens at the same time instance, because Processor2 is configured
as idealized.

The task of the simulation platform is to calculate and coordinate those
scenarios as described in the example above.

3.8 Signals being Observed

The definition of all signals that need to be observed is a crucial part of the
validation process, because those signals are used to determine the correct-
ness of system behavior during the execution of the specified test scenarios.

In the following, it is assumed that the system behavior is measurable
by signals, which application components send or receive. This assumption
is reasonable, because a system behavior that is not measurable can not be
validated.

A further assumption is that a previous system analysis has determined
which signals are necessary to be measured in order to perform an assessment
on the simulated system behavior. This assumption is based on the fact
that together with the definition of certain safety arguments also certain
signals have to be defined. The measured data of the defined signals are
used to evaluate whether or not the system violates those safety arguments
(see Section 3.1 for details on safety arguments).

The measurement of the signals and the assessment on the correctness of
the values and time-tags is independent of the simulation platform, where
those signals are produced. They can be measured and evaluated either in
a simulation environment (assuming an IM of the system exists), or in the
real environment after the system is realized. This makes it possible to reuse
the definition of the list of signals that need to be observed throughout the
overall development process.

In the following, the system components, which produce and emit the

3.8. SIGNALS BEING OBSERVED 69

signals to be observed, are called ‘system block under test’.

Looking on the input-output relation of a system block under test dur-
ing execution of a test case is known as “black-box” testing, whereas test-
ing that considers the internal software structure of the component under
test is called “white-box”-, “glass-box”-, or “clear-box” testing (e.g., [Jor95],
[Mye79], [Som01], and [Tha94]).

The validation and testing process could be simpler, if the system sends,
in addition to the output signals, also signals that indicate additional infor-
mation about internals of the system block under test (this can be seen as
a kind of white-box testing procedure). For instance, a signal that indicates
the internal state of the component under test. The use of a state (variable)
of a component under test is already known in functional testing. Howden
has stated: “Looking at a system in terms of its states rather than its state
transformation functions provides an alternative, orthogonal point of view”
[How87, p. 123].

Sommerville proposes to add “checking code” in programs of safety-
critical systems [Som01, p. 482]. Such program code checks a safety con-
straint during execution and could indicate any violation through a signal,
which the tester is able to measure. Such a signal could also be emitted by
the system to make the validation of a system easier.

A further signal that might support the validation of a system is a signal
that indicates at what time the component needs an architectural resource.
For example, it indicates at what time a software function of an application
component has requested to run on its assigned processor. An observer is
able to use that information to evaluate whether or not the component has
met its deadline.

Each system block under test has one or more output signals, and may
have input signals, and parameters and are defined as follows (see Fig-
ure 3.10):

An output signal can be defined as:

• A signal that the component emits to other system components
or to the environment.

• A signal that indicates the internal state of the system component
(such a signal may or may not exist in a component under test).

• A signal that indicates when the system component needs a com-
putational resource or resource of communication (such a signal
may or may not exist in a component under test)

70 3. ESSENTIALS FOR VALIDATION

moduleSetAngle

filterConst

velocity

getAngle
internalStatus

setAngle

readyToRun

System
Block Under

Test

Input

signals

Output

signals

Parameters

Figure 3.10: Single system block under test and an example

An input signal is a signal that the system component receives from other
system components or from the environment (such a signal may or may
not exist in a component under test).

A parameter is a set of values that are characteristic for an individual
system component i.e., the values do not come from other system com-
ponents or from the environment (such a signal may or may not exist
in a component under test). A parameter does not change its values
over time.

3.9 Test Case Table

A test case table holds all test cases or scenarios (a test scenario can be seen
as a more complex test case) that the system under test needs to pass in
order to satisfy safety-related system requirements. A test scenario provokes
execution of specific functionality of application components. During a test
scenario, the software functions of the application use hardware elements
that were identified as safety-related in a hazard and risk analysis.

A test case holds on one hand data, which initiates a fault of a hardware
element or an interference from the environment. On the other hand, a test
case holds data which defines the expected signals that the system needs to
produce according to the safety requirements.

A test case table includes the following columns (some columns are

3.9. TEST CASE TABLE 71

adopted from [Jor95, p. 5]):

Test case ID: A test case ID is an unique number and the name of the test
scenario.

❒ Example
No. 123: criticalSteeringAngle

Test purpose: The test purpose points to the system requirement that calls
for the specific test case or scenario.

❒ Example
A safety argument of an automotive application: The angle set at
the steering axle by the electronic system (in addition the angle
set by the mechanical part of the system) has to be less than 5
degree (0.087 rad) within 10 ms during a failure of any electronic
system component.

Test components: This column clarifies which system component needs to
be tested and which signals need to be observed.

❒ Example
System components: application components no. 1 and no. 3 with
it assigned processors, buses and memories.
Signals: setAngle, readyToRun, internalStatus, and errorDetec-
tionStatus.

Test preparation: This column defines the state in which the system
should be at the start of the test case execution.

❒ Example
All system components need to be initialized and must indicate
operational readiness.

Input signal(s) (stimuli): This column specifies signals that the compo-
nent or system under test has to consume. The data of the input signals
may reflect an operational profile (see Subsection 4.3.1 on page 90 for
details on operational profiles). The specification of stimuli includes
the following information:

• Type: single signal or multiple signals.

• Data of the input signal(s).

• Physical interpretation of the data.

72 3. ESSENTIALS FOR VALIDATION

❒ Example

X1 =
{
x1(0), x1(1), x1(2), . . .

}
X1 : vehicle velocity [m/s]

X2 =
{
x2(0), x2(1), x2(2), . . .

}
X2 : measured angle [rad]

Expected output signal(s): This column specifies each signal that the
component under test has to emit. The specification of the expected
output signal(s) includes the following information:

• Type: single signal or multiple signals.

• Expected data of the signal(s).

• Valid range of the expected data values (e.g., maximum, mini-
mum, or percentage values)

• Physical interpretation of data.

❒ Example

Y1 =
{
v1(l0), v1(l1), v1(l2), . . .

}
Y1 : additional angle [rad]

Fault model and fault injection: This column specifies the effect of a
fault on signals according to the fault model.

❒ Example
Link to the fault model of each architecture component, which is
modelled as faulty in the IM. Figure 3.11 shows the part of a fault
model of a processor (Proc1), which defines the occurrence of the
processor’s fault at time tfault.

Deadline: The deadline specifies for each signal the time after which the
value of a signal needs to be available at the output relative to the
time when the input event occurred, or relative to the time when the
computation should have started.

❒ Example
Condition for a time-tag lm:

lm < lidealm + ldeadm (m ∈ N)

3.9. TEST CASE TABLE 73

Y1
X1

tfault time

faultProc1

present

not present

IM

faultProc1

X2

Figure 3.11: Example test case table (column: fault model and fault injec-
tion)

lm: actual time-tag of the measured signal during the simulation.
lidealm : expected time-tag of the measured signal under the as-
sumption of idealized architecture components.
ldeadm : specified time delay for each value.

Sometimes it is necessary to specify a time range or jitter between
the value of a signal needs to be available. The time range takes into
account that signal values can be produced before time lidealm + lMAXm ,
but not before time lidealm + lMINm .

❒ Example
Condition for a time-tag lm:

lidealm + lMINm < lm < lidealm + lMAXm (m ∈ N)

with 0 < lMINm < lMAXm

Test duration: The test duration specifies the duration of each test case in
real-time (not the actual simulated time).

❒ Example
Test duration of scenario criticalSteeringAngle: 1 minute.

Fail and pass criterion: The pass and fail criterion defines the criterion
that the observer system is going to use to determine whether or not
the functional and temporal behavior is correct.

74 3. ESSENTIALS FOR VALIDATION

❒ Example
Measured output signal Y1:

Y1(lm) =
{
v1(l0), v1(l1), . . . , v1(lm−1), v1(lm)

}
result =

passed if (lm < lidealm + ldeadm) and

v1(lm) = {“safe values”} for all lm ≥ tfault

failed otherwise

Comments: This column is reserved for additional information to the test
case, for example, background information why this test case has been
created.

3.10 Observer System

The observer system measures all signals that are necessary to evaluate the
system behavior during a simulation of an IM (the characteristics of those
signals are described in Section 3.8). The observer system uses the collected
measurement data to determine whether or not the distributed real-time
system under consideration fulfills its safety arguments.

Figure 3.12 sketches an abstract view on an observer system. The observer
system monitors actual system behavior, compares it with expected system

 Observer System

From
System Components

Under Test

From
Test Case Table:

Fail & Pass Criteria (tolerances, etc.)

Measured
Signal Data

Expected
Signal Data

From
Test Case Table

To
Test Personnel:

Overall Assessment
Results

time

expSig

value

time

actSig

value

Figure 3.12: Overview of an observer system

behavior, and generates a report about its assessment. Thereby is assumed

3.10. OBSERVER SYSTEM 75

that the behavior of the system under test is measurable by a set of signals
within the system during a simulation of an IM (see Section 3.8 for details
on the signals being observed).

For a validation of a distributed real-time system, it is advantageous to
choose an observer system with the following structure (see Figure 3.13): an
observer system consists of individual observers and one master observer. An

System
Component

Under Test #1

System
Component

Under Test #2

System
Component

Under Test #3

Individual
Observer #1

Master
Observer

System Under Test Observer system

Individual
Observer #2

Individual
Observer #3

Measured
Signal Data

Single
Assessments

Overall
Assessment

Expected Signal
Data

Fail & Pass Criteria
(tolerances, etc.)

Figure 3.13: Example of an observer system for a distributed system

individual observer measures output signals of a system component under test
during the execution of a test scenario. Each individual observer determines
whether or not actual measured data of those signals are within the tolerances
of the expected signal data (calculated values or values from a look-up table).
An individual observer sends its assessment to the master observer (single
assessment). The master observer determines whether or not the overall
system violates a safety argument during a test scenario and generates an
overall assessment based on single assessments from the individual observers.
All observers get the expected behavior from a test case table.

The advantage, to use a master observer for assessing the overall system
behavior instead of an ordinary observer is that the complexity of the overall
assessment is split in single assessments among many observers. An algo-
rithm of a master observer can be very simple if the model of the system
components under test and the structure of the observer system is well cho-
sen. Nevertheless, an individual observer needs to handle a portion of the

76 3. ESSENTIALS FOR VALIDATION

overall system complexity but the size of its portion can be chosen by the
validation team who defines the observer system.

A similar approach is generally used by designs of complex systems where
the overall functionality is broken into ‘little portions’ of clear functions.

The structure of the observer system is also comparable with a voting
system, where individual voters report to a master voter whose overall as-
sessment is based on well-prepared assessments from those individual voters.

In addition, a master observer is able to determine whether the overall
system behaves according to the requirements even if one or more individual
observers report failures. This is a possible scenario in a fault-tolerant system,
where one component has a fault and a redundant component takes over its
functionality.

Another use of the observer system might be for a regression test. For
instance, after one or more system components have been changed, the ob-
server system provides a technique to validate the system behavior after a
design team has made those changes.

An individual observer needs the expected value and expected time-tag
for each signal in order to evaluate whether or not the signal is correct. In
this thesis it is assumed that both, expected value and expected time-tag are
given and collected in the test case table. The deadline before values of a
safety-related signal have to occur is calculated by the following formula:

deadlinem = lidealm + ldeadm (m ∈ N) (3.20)

lidealm: time-tag that is either specified, or given by measurements of the
signal under the assumption of idealized architecture components.

ldeadm: specified deadline for each value. In some cases, a value can be pro-
duced within a time range in order to consider a time jitter of a signal
(0 < lMINm ≤ ldeadm ≤ lMAXm).

The expected values of signals can be derived by two different techniques
(those techniques are adopted from [Pos96, p. 131–196]):

1. An Observer reads the expected signal values vexpV aluem (including tol-
erances) from a look-up table, which is part of the test case table (such
a technique is called “reference” or “lockup” technique [Pos96, p. 131–
196]). The values vreferencem (without tolerances) are collected, for
example, by measurements of the signal in a simulation of the IM un-
der the assumption of idealized architecture components. The values
vtolerancem are given by a look-up table derived from the system require-

3.10. OBSERVER SYSTEM 77

ments. The expected signal values vexpV aluem are given by

vexpV aluem = vreferencem + vtolerancem with

vreferencem : given by a look-up table,

vtolerancem : given by a look-up table.

(3.21)

2. An Observer executes the same software program as the system block
under test to obtain the expected signal values vexpV aluem (such a tech-
nique is called “oracle” technique [Pos96, p. 131–196]). The test case
table points to a software program to compute the values voraclem , and
to a formula to calculate the tolerances vtolerancem for each value. The
expected signal values vexpV aluem are given by

vexpV aluem = voraclem + vtolerancem with

voraclem : given by a software program,

vtolerancem : given by a formula.

(3.22)

Suppose another development step has proven the functional correctness
of the software program that implements the behavior of an application com-
ponent (the component that emits the signals being observed). Then, an
observer can use the identical software program to calculate the expected
values (oracle technique). The difference is that the observer uses another
computational resource to execute the software program (e.g., a more pow-
erful processor or an architecture with idealized components).

The expected values could also be generated by a previous program ver-
sion (which has been already validated) or by a prototype system (such “or-
acles” are proposed for software testing in [Som01, p. 463]).

For instance, the authors of [FSRMA99] use a fault injection and reference
technique to assess COTS (Commercial Off-The-Shelf) microkernels. First,
they launch a reference experiment with no fault injection to get the correct
results of the application software. Second, they start the experiment with
the same workload as in the first experiment, but with faults injected. Then,
they use the reference from the first experiment in the analysis of the second
experiment for the identification of errors propagated to the application level.

This reference technique is comparable with the technique proposed in
this thesis, where the simulation results of an IMIAC are used to generate
expected data of the system under consideration (see Section 3.4 on page 58).

Figure 3.14 shows an example of an experiment in which the system block
under test failed the test, because sig2 is out of the specified tolerances.
A tolerance specifies the allowed value range vMAXm − vMINm and time-tag

78 3. ESSENTIALS FOR VALIDATION

“sig2 failed!’’

Signals (measured)

test duration

t 0

t 1

value

time

sig2

sig1

t 0

t 1

value

time

expSig2

expSig1

Individual
Observer

Signals (expected)

Tolerances

VMAXm - VMINm

lMAXm - lMINm

V(lm)

Figure 3.14: Example of an experiment with an individual observer

range lMAXm− lMINm per signal value v(lm) (see Figure 3.14). The individual
observer works in that example with a reference technique, which reads the
expected signals expSig1 and expSig2 inclusive of tolerances from a look-up
table.

Chapter 4

Validation Activities and
Principles

A validation team needs to apply the techniques and methods described in
the previous chapter in order to perform the validation of the system under
consideration. This chapter describes those activities, and uses a simple
example to illustrate the validation principles.

4.1 Developing Safety Arguments

A hazard analysis is one of the key activities in the development process of a
safety-critical system and it is a prerequisite for developing safety arguments
(see Subsection 2.3.4 on page 40 for details on hazard analysis). One result
of the hazard analysis are the safety requirements that the system needs to
fulfill. Safety requirements generated out of the hazard analysis ensure that
hazardous conditions within the system do not arise or, if they occur, do not
result in a hazard event [Som01, p. 389].

In some safety-critical systems it is possible to define a set of output states
that prevents the system from causing a hazard event. In case of a system
failure (e.g., caused by a hardware fault) the system sets its outputs into these
predefined safe states. Such a system behavior is called a “failsafe” behavior
[Sto96, p. 22–23] (see definition of ‘fail-safe’ in Section 2.2.3 on page 23). The
system might also signal a uncertainty about the system’s correctness to a
human operator or to its user.

For other applications it is not appropriate that a safety-critical system
sets its outputs into a safe state and does not perform any further functional-
ity after the detection of a fault. A fly-by-wire control system of an aircraft,
or a modern brake-by-wire control system of an automobile are examples

79

80 4. VALIDATION ACTIVITIES AND PRINCIPLES

for such systems. In both examples, the electronic control system needs to
operate until it is unlikely that the system causes a hazardous event (e.g.,
until the aircraft is on the ground, or until the automobile stops). Such type
of systems are called fault-tolerant systems because on or more faults do not
result in a system failure (see [Som01, p. 393] and [Sto96, p. 113]).

Note that fault-tolerant systems are not necessarily safe, because a system
may still malfunction and cause a hazard event even if the system architecture
is fault-tolerant [Som01, p. 364].

Very often fault tolerance is accompanied with functional degradation in
case one or more system components are not able to operate correctly. Func-
tional degradation means that the system is still operational but with limited
functionality or performance (see also the definition of ‘graceful degradation’
in Subsection 2.2.3 on page 23). A flight control system might have different
control laws, in which the control system degrades the assistance for the pilot
in case of faults [Sto96, p. 395]. A brake-by-wire system of an automobile de-
grades its functionality, for example, by reducing the deceleration capability
of the system from high deceleration to low deceleration in case of faults.

For both types of systems, on one side systems with fail-safe behavior and
on the other hand systems with a degraded functionality, safety arguments
describe how a system needs to behave, so that no hazardous event occurs
during its operation. A safety argument defines expected data of one or
more signals that indicate either the safe state of the system or the degraded
functionality (i.e., values and time-tags of the events of one or more signals
emitted by the system).

In this thesis it is assumed that safety arguments are developed from the
safety requirements of a system and not from the specification of a system.

Example to illustrate the Principle

Figure 4.1 depicts the system with its environment. The system design under
consideration (within the doted boundary of Figure 4.1) reads data from two
sensors (Sensor 1 and Sensor 2) through the signals sens1 and sens2. The
system computes the input data, produces two outputs act and fail, and
sends the outputs to the electro-mechanical actuator (Actuator).

It is assumed, that the signals to and from the system (sens1, sens2,
act, and fail) are digital signals. The analog-to-digital and digital-to-analog
conversion of the data takes place in the sensors and the actuator.

The actuator transforms the electrical signal act in a mechanical move-
ment. In case the actuator receives a value 6= 0 from the signal fail, the
actuator sets its mechanical part in a safe state regardless of any value of
act. The sensors and actuator are part of the environment and the example

4.1. DEVELOPING SAFETY ARGUMENTS 81

Sensor 1

Sensor 2

System Design

Under Consideration

sens1

sens2

System

Actuator
act

fail

Figure 4.1: A simple system

only considers the interface to those components.
The system has to fulfill safety requirements defined as follows:

• The system has to detect all errors that may lead to a failure, but
it is not required from the system to tolerate an error. A failure of
the system is defined by a deviation of the signal act from the specified
static and dynamic range. Such incorrect values can cause uncontrolled
movements of the mechanical part of the actuator. An uncontrolled
movement represents a hazardous event. It is not expected that the
system fulfills its nominal function after an error has been detected.

• After an error has been detected by the system, it has to set either the
signal act to a safe value = actSaveV alue, or the signal fail to a value
6= 0, or both actions simultaneously (the system must have a fail-safe
characteristic; see definition in Subsection 2.2.3 on page 23).

The safety arguments for validation of the system’s behavior are derived
from the safety requirements described above. The three safety arguments
for the system of the example in this chapter are defined as follows:

Safety argument 1: The values of the signal act have always to be in the
range between maxValue and minValue (static range).

Safety argument 2: The difference between two values of the signal act in
the time interval diffTime has always to be within the range diffMax-
Value (dynamic range).

Safety argument 3: A deviation from the desired range of the signal act
has to be indicated by the signal fail with a value 6= 0.

82 4. VALIDATION ACTIVITIES AND PRINCIPLES

4.2 Building an Implementation Model

In today’s (advanced) development processes, ideally a specification of the
system’s functionality is available as an executable functional network model.
A functional network model is a composition of functional nodes, which ex-
change data with each other and with the environment. An example of such
a functional network is shown in Figure 4.2. The composed nodes represent

data flow

functional node

fkt1

fkt3
fkt4

fkt2

Functional network

Environment

Figure 4.2: Functional nodes in a functional network model

the desired functionality of a system according to the system’s specification.
A simulation of such a functional network model does not take any influence
of the system’s hardware architecture into account. Each computation within
a node takes zero time and every exchange of data between nodes takes no
time.

In the following it is assumed that a collection of architecture components
and application services exist, which can be used for building an IM. Such
an assumption is reasonable for future development processes, because some
branches of the electronic industry are moving in this direction. Rather than
to start every design of an electronic system from scratch, system integrators
rely on standard components provided by vendors (e.g., the COTS-Based
Systems (CBS) initiative by the Software Engineering Institute (SEI) goes
in that direction [AB02]). The system integrator puts these standard com-
ponents together to a complete system.

4.2. BUILDING AN IMPLEMENTATION MODEL 83

4.2.1 Building a Functional Network Model

The first step in building an IM is to build the application components and
their interactions.

In the following it is assumed that a functional network model exists and
can be used for building an IM. The functional network model represents the
application components and their interactions in an IM.

Ideally, the functional network model is already running on the simulation
platform, which is used for the validation of the system under consideration.
In case there is no functional network model available, one needs to model
all application components and their interactions from scratch according to
the system’s design specification.

A simulation of a functional network produces the same results as a sim-
ulation of an IMIAC. A comparison between the results of both simulations
is used to verify that the IMIAC simulates the system behavior exactly as
specified (see Section 3.4 on page 58 for details on an IMIAC).

4.2.2 Building a Hardware Architecture Model

In the next step, the validation team needs to build the model of hardware
architecture of the system. It is assumed that a design specification exists
from which the architecture model can be derived.

The results of a hazard analysis and risk analysis of the system tells which
architecture elements are safety relevant. The corresponding model of a
safety relevant hardware element (architecture component) will be configured
either as faulty or, as faulty and limited in an IM. Hardware components
which are not safety relevant are configured either as idealized or as limited.

After all architecture components have been composed to the architecture
model of the system, the parameters of architecture components need to be
set according to the design specification. Generally, each performance model
and each fault model have parameters. The parameters are used to configure
a (generic) model of a hardware element for a specific use case of the simu-
lation model (i.e., an IM). Some examples of parameters of hardware models
are: clock frequency of a processor, write and read latency time of a memory,
or transfer frequency of a bus. To avoid mistakes in the configuration of the
models, the configuration process should be automated in the sense that all
parameters are read from a configuration file or a database.

84 4. VALIDATION ACTIVITIES AND PRINCIPLES

4.2.3 Connecting Application and Architecture Com-
ponents

After the application components and the architecture components are mod-
elled, the assignment of application components to architecture components,
and the assignment of communication to busses takes place. The assignment
process uses application services to establish the connection (‘clue’) between
the application and architecture components in the IM. An assignment de-
fines which resources are used by which application component.

4.2.4 Example to illustrate the Principle

The validation in this example focuses on the safety related functions and on
the safety-concept of the system under consideration.

The safety concept of the system is a so-called “self-checking pair” and
is taken from Storey’s book with minor modifications [Sto96, p. 138–141].
Figure 4.3 depicts a self-checking pair arrangement where two sensors feed
two redundant modules with the same input values (acquisition modules).
The outputs of the acquisition modules are compared by two other modules,
which are redundant as well (comparative modules). A comparative module
indicates at its output any discrepancy between the output values of the two
acquisition modules.

A self-checking pair does not provide fault-tolerance, but is a technique
used to build a unit which detect faults, and which prevent that an error is
spread to other system components. Such a unit might be part of a “smart
sensor”, which sends a correct signal value or does not send a signal value at
all [Kop00, p. 205] (details on smart sensors can be found in [Fra00]).

Figure 4.3 shows the result of the first step in building an IM: the appli-
cation components of the system and the data flow between the application
components and the environment.

sens1 fail
sens2 1

Acquisition 1

Acquisition 2
act2

act1
�
 act

cmp2

cmp1 Compare 1

Compare 2

Figure 4.3: Application components and their interactions (model adopted
from [Sto96, p. 141])

4.2. BUILDING AN IMPLEMENTATION MODEL 85

The self-checking pair are the two identical acquisition blocks (Acquisition
1 and Acquisition 1), which are checked by two identical blocks (Compare 1
and Compare 2). The outputs of the comparative blocks cmp1 and cmp2 are
the inputs of logical-OR block (symbol: ≥ 1). This block produces a signal
value fail = 1, if any comparative block has detect a discrepancy between
the signals act1 and act2, otherwise the block emits the signal value fail = 0.

The functional and temporal specification of an acquisition module (Ac-
quisition 1 and Acquisition 1) are:

• Each acquisition block has to sample the two signals sens1 and sens2
from the sensors periodically. The sampling period for each sensor
is T = 1 ms. In order to have always consistent pairs of sensor
data, an acquisition block has to sample both signals not more than
maxSamplJitter = T · 10−2 apart from each other.

• The output values act1 (respectively act2) are stored within a look-up
table. The look-up table assigns each input value pair (sens1, sens2)
to an output value act1 (respectively act2). Output values for input
values that are between two table entries are calculated by linear inter-
polation.

• The output value act1 (respectively act2) has to be available after
deadline = T · 10−1 of each period T.

The functional and temporal specification of a comparative module (Com-
pare 1 and Compare 2) are:

• A comparative module has to read both signals act1 and act2, and
to compare the time-tags and values of these signals every cycle (T =
1 ms). The values of the signals have to be within the tolerance of
tolV al = 10−3. The time-tags of the signals have to be within the
tolerance of tolT ime = T · 10−1.

• Each comparative module has to indicate a discrepancy between the
input signals act1 and act2 by the output signal cmp1 (respectively
cmp2). A discrepancy produces the signal value cmp1 = 1 (respectively
cmp2 = 1), otherwise the signal value cmp1 = 0 (respectively cmp2 =
0).

Figure 4.4 depicts the hardware architecture of the system. The two re-
dundant processors are used to prevent that a failure of one processor causes
a failure of the complete system (such a failure is called “single-point failure”
[Sto96, p. 132]). To avoid a single-point failure, the acquisition and the com-
parison of the output signals is performed with two independent processors

86 4. VALIDATION ACTIVITIES AND PRINCIPLES

Processor 1

RAM 1

Processor 2

RAM 2

DPRAM

Local Bus 1 Local Bus 2

Figure 4.4: Hardware architecture of the system (adopted from [Sto96,
p. 140])

(Processor 1 and Processor 2). Acquisition and comparative blocks commu-
nicate through a dual-ported random access memory (DPRAM) with each
other. The acquisition and comparative blocks use the memories (RAM 1
and RAM 2) to store local data. The busses Local Bus 1 and Local Bus 2
model the connection between the memories and the processors.

The configuration of each architecture component and the parameters of
the architecture components are summarized in Table 4.1 and Table 4.2.

Component Idealized Limited Faulty

Processor 1 No Yes Yes
Processor 2 No Yes Yes

RAM 1 No No Yes
RAM 2 No No Yes
DPRAM No Yes Yes

Local Bus 1 Yes No No
Local Bus 2 Yes No No

Table 4.1: Configuration of architecture components

The write and read latency of the two memories Ram1 and Ram2 are not
considered in the simulation, because both components are not configured
as limited. This is expressed by the abbreviation ‘n/a’ (not applicable) in
Table 4.2.

The communication via a DPRAM is only one example for the communi-
cation between the two processors. A serial communication interface between
the processors might be also an option and worth it to evaluate during the
development process. The idea is to replace the DPRAM in the system ar-
chitecture with a communication interface, which has a higher reliability and

4.2. BUILDING AN IMPLEMENTATION MODEL 87

Component Type Value [s]
Processor 1 clock cycle 0.25 · 10−6

Processor 2 clock cycle 0.25 · 10−6

RAM 1 write latency n/a
read latency n/a

RAM 2 write latency n/a
read latency n/a

DPRAM write latency 3 · 10−6

read latency 3 · 10−6

Table 4.2: Performance parameter of architecture components

and which is less expensive than a DPRAM. A further discussion of this idea
is out the scope of this thesis.

After the application components and the hardware architecture of the
system model has been built, one needs to combine both to a complete system
model. Figure 4.5 shows the result of this process: the IM of the system.
The software functions of the blocks Acquisition 1 and Compare 2 run on the
processor Processor 2, the software of the blocks Acquisition 2 and Compare
1 run on the processor Processor 1, and data of the signals act1 and act2 are
stored in the DPRAM. The application services of the simulation platform
include services that model the real-time scheduling, and services that model
the read and write operations from the memories and to the memories (RAM
1, RAM 2, and DPRAM). These service are symbolized by ‘assignment arcs’
in Figure 4.5.

The logical OR-block will be realized as a single hardware element and
is seen as an idealized architecture component in the simulation. For this
example it is assumed that the logical OR-block (realized as ASIC) has a
much higher reliability than the other components of the system. The ASIC
has a very low failure rate (inverse of its reliability) and does not need any
fault-tolerant architecture beside to fulfill the dependability requirements.
The ASIC (logical OR-block) can be seen as a system component that have
to be trusted.1 Furthermore, it is assumed that time delays caused by ASIC
are negligible against time delays caused by the other hardware elements.
Thus, the ASIC does not appear in the architecture model of the system and
the logical OR-block is not assigned to an architecture component in the IM
of Figure 4.5.

1Lee and Anderson answer to the question “But who is to guard the guards them-
selves?” (originally asked by Juvenal, Roman satirical poet): “[T]he answer must (even-
tually) be ‘No one’. Some guards, like some system components, just have to be trusted.
All that can be done is to select honest guards and simple components” [LA90, p. 251].

88 4. VALIDATION ACTIVITIES AND PRINCIPLES

Processor 1

RAM 1

Processor 2

RAM 2

DPRAM

Local Bus 1 Local Bus 2

Means that architecture component x performs
basic operations of application component y.

not assigned (see text)

sens1 fail
sens2 1

Acquisition 1

Acquisition 2
act2

act1
�
 act

cmp2

cmp1 Compare 1

Compare 2

Figure 4.5: IM of the system

Table 4.3 summarizes the assignment of all application components to
architecture elements of the IM.

4.3 Building Fault Models

The characteristics of fault models of an architecture component are intro-
duced in Section 3.5. This section describes how to build those fault models.

The main characteristics of a fault that a fault model defines are:

• The time when the fault of a hardware element occurs, and the time
period how long the fault is present. The occurrence of a fault may
depend on conditions, for example, specific signal values or system
states.

• The formula to change time-tags of a signal when a fault is present.

• The formula to change values of a signal when a fault is present.

4.3. BUILDING FAULT MODELS 89

Architecture component Application component
Acq 1 Acq 2 Compare 1 Compare 2

Processor 1 0 1 1 0
Processor 2 1 0 0 1
RAM 1 0 1 1 0
RAM 2 1 0 0 1
DPRAM 1 1 1 1
Local bus 1 0 1 1 0
Local bus 2 1 0 0 1
1 (0): architecture component x is used (not used) by application component y

Table 4.3: Assignment of application to architecture components (see Fig-
ure 4.5)

A fault model has to provide these three fault characteristics, which are
necessary to perform the fault injection as proposed in this thesis during
simulation (see Section 3.6 for details on the fault injection technique). For
instance, a fault model of a processor may specify that no signal is computed
when a fault of the processor is present. Or a fault model of a memory may
specify that all values get changed to a certain value when the memory fault
is present.

A basic assumption in this thesis is that signals, and therefore the system’s
behavior, can be influenced only by hardware elements. Consequently, a
fault model of a hardware element does not only cover faults caused by
physical deterioration, but also faults caused by physical interferences (see
Subsection 2.1.4 on page 11 for details on fault types that are considered in
this thesis).

Rather than considering all possible faults of all architecture components,
it is assumed in this thesis that a dependability analysis has identified specific
architecture components which are safety relevant. Commonly used analysis
techniques are: FMEA, ETA, or FTA as part of a system hazard analysis
and are described for instance in [Sto96], [Lev95], and in Subsection 2.3.4.

A dependability analysis can tell, if a fault of a hardware element influ-
ences a signal and causes a hazardous event in the system. Such an approach
reduces the number of physical faults of hardware elements, and faults caused
by physical interferences within a complex system that need to be considered.

Furthermore, a dependability analysis reduces the number of test cases
that a validation process needs to consider. This statement is based on the
assumption “that the number of system faults which can lead to hazards
is significantly less than the total number of faults which may exist in the
system” [Som01, p. 477].

90 4. VALIDATION ACTIVITIES AND PRINCIPLES

4.3.1 Modelling Occurrences of Faults

This thesis concentrates on system failures that are the result of non-
systematic faults of hardware elements. These components will fail at random
time during operational use of the system. It is not possible to predict for a
given hardware element the time of failure, but it is possible to quantify the
rate (probability) at which members of an ensemble of those hardware ele-
ments will fail. Thus, the time when a fault is present can be chosen either
randomly during the test scenario, or deterministically, for example, upon
results of a system hazard analysis. The latter case leads to the injection
of safety relevant faults depending on the operational context and on the
system state.

Choosing the time of a fault occurrence deterministically rather than
randomly, reduces the number of test cases. This statement is based on
the assumption that all non-safety relevant scenarios are already eliminated
during a system analysis and hazard analysis performed before the validation
process starts.

In contrast, randomly chosen occurrences of a fault requires testing strate-
gies, which cover all possible faults at any time, regardless whether a fault
can cause a hazardous event or not.

The result of a system analysis defines an operational profile, in which an
occurrence of a hazardous event can threaten people or the environment. An
operational profile is “a quantitative characterization of how a system will
be used” [Mus93].

The idea is to use such an operational profile and to complement it with
occurrences of safety relevant faults, which may lead to hazardous events
within the system. The safety relevant faults are identified by the system
analysts during the hazard analysis. Then, the enhanced operational profile
is used as basis for the test scenarios of the validation process. The following
example illustrates this approach.

The system under consideration in this example is a electronic braking
system of an automobile. The operational profile is a braking maneuver,
which is supposed to decelerate the vehicle from a high velocity to a vehicle
velocity equal to zero. A failure of the electronic control system during such
a braking maneuver may lead to a hazard for the driver or the environment.
The hazard analysis has shown that any fault in the memory of the electronic
control system is a safety relevant fault. Consequently, the test scenario
should include the stimuli to model the braking maneuver, and should include
the occurrence of a memory fault before or during the braking maneuver. The
occurrence of the fault is defined in the fault model of the memory.

4.3. BUILDING FAULT MODELS 91

4.3.2 Modelling of Effects on Values and Time-tags

Apart from the time when a fault should occur, one needs to specify the
formula that transforms values and time-tags of a signal. The formulas have
an effect only in case the signal is processed by the faulty hardware element
when the fault is present. These formulas should be derived in the same
manner as the time of the occurrence of a fault and should be based on an
analysis of possible failures and on the causes of those failures (e.g., FMEA).
The analysis detects which values of a signal may lead to a hazard, or which
deadlines of a signal are safety relevant.

The formula may influence a signal in a way that the system under con-
sideration has to detect the abnormality and to react appropriate to this
situation. It changes, for example, a time-tag of a signal so that a safety
relevant system component will miss a specified deadline, or the formula
changes a signal value so that the value will be out of the specified range.

4.3.3 Example to illustrate the Principle

Architecture components which are configured faulty (indicated by a ‘Yes’ in
Table 4.1 on page 86) have a fault model. The hardware elements (Processor
1, Processor 2, RAM 1, RAM 2, DPRAM) are safety relevant, because a
fault in one of these elements can cause a wrong signal act or fail (based on
the IM in Figure 4.5 on page 88).

The processors (Processor 1 and Processor 2) can have faults during
operation. These faults are defined in a fault model represented by a text
file (see Figure 4.6).

Component t[s] t+dt[s] Value Delay[s]
**
Processor 1 0.2 0.3 -1 n/a
Processor 2 1.3 1.8 not computed n/a
Processor 2 3.0 3.6 n/a 0.00005

Figure 4.6: Fault model of processor faults

The file format of a fault model is as follows: the first column defines
the architecture component, the second and third column define the start
and end time of the fault. The column Value defines how signal values are
changed by the fault, and the column Delay defines how time-tags of signal
values are changed by the fault. The abbreviation ‘n/a’ (not applicable)
indicates that the value or time-tag is not influenced by the fault.

92 4. VALIDATION ACTIVITIES AND PRINCIPLES

When a fault of a processor is present, a function running on that proces-
sor is either delayed by a specified amount of time (e.g., caused by a spurious
interrupt load of a processor; see fault no. 2 of Processor 2 in Figure 4.6), or
is not processed at all (e.g., caused by a reset of a processor; see fault no. 1 of
Processor 2 in Figure 4.6). Another type of fault is that a processor produces
by all computations the value specified in column value, when the fault is
present. An example of such a fault is shown in Figure 4.6 by the fault of
Processor 1, where it produces by all computations the value −1 during the
time interval 0.2 s to 0.3 s.

All fault models of the memories have in common that only values are
corrupted, the time-tags of signals are unchanged by the fault. The formula
changes a stored signal value to −1 in all cases. Each memory component
has an associated text file that describes explicitly at what time the fault
occurs and how the value gets manipulated. Figure 4.7 shows an example in
which one text file describes all faults of the memories.

Component t[s] t+dt[s] Value Delay[s]
**
RAM 1 0.1 0.11 -1 n/a
RAM 2 1.2 1.24 -1 n/a
DPRAM 2.0 2.11 -1 n/a
RAM 2 2.8 2.84 -1 n/a
RAM 1 3.1 4.0 -1 n/a

Figure 4.7: Fault model of memory faults

In this example, the component RAM 1 has a permanent fault at time
3.1 s. A permanent fault is modelled by setting the end of the fault equal to
the end of the simulation session (in this example at time 4 s).

The local busses (Local Bus 1 and Local Bus 2) have no fault model,
because safety relevant faults of those elements can be studied based on fault
models of the other hardware elements.

4.4 Defining Meaningful Signals

Very often validation techniques measure either physical signals on pins on
the hardware board of the system being validated, or measure software vari-
ables through specific hardware interfaces of the system, or a combination of
both techniques.

4.5. DESIGNING AN OBSERVER SYSTEM 93

The same approach is used in the test activities within the validation
process proposed in this thesis. The physical signals and variables are repre-
sented by the signals of an IM and are measured on models of the real system
components.

The advantage of a simulation is that signals can be measured, which are
difficult or impossible to measure in the real system environment. Therefore,
the validation team, who performs the validation process, is able to evaluate
specific system behavior, which cannot be done or can be done only with
great efforts with the real system.

Especially the injection of hardware faults during the simulation enables
a validation team to investigate crucial and safety relevant corner cases of
the design, which are not possible to be investigated in the real system.

In both cases, simulation model and real system, the validation team has
to make sure that measurements do not influence the system behavior itself,
or at least that influences are negligible.

Example to illustrate the Principle

The signals to be measured by the observer system are the following (based
on the IM in Figure 4.5 on page 88):

• Output signals act and fail for measuring the safety arguments (see
the definition of the safety arguments in Section 4.1 on page 81)

• Output signal act1 to assess the behavior of the application component
Acquisition 1.

• Output signal act2 to assess the behavior of the application component
Acquisition 2.

• Output signal cmp1 to assess the behavior of the application compo-
nent Compare 1.

• Output signal cmp2 to assess the behavior of the application compo-
nent Compare 2.

4.5 Designing an Observer System

A prerequisite for the design of an observer system is that signals being
observed are already defined. A further condition for the operation of an
observer system is that the expected data of each signal is available to the
observer system.

The design of an observer system can be split into two steps:

94 4. VALIDATION ACTIVITIES AND PRINCIPLES

1. the design of individual observers, and

2. the design of a master observer.

Individual observers are independent from each other and do not have
interfaces between each other. An individual observer has three interfaces:
to a master observer, to the system component under test, and to the test
case table.

The interface between master observer and individual observers should
be as simple as possible. All complex assessments about the behavior of the
component under test should be done by individual observers, rather than
by the master observer. Ideally, an individual observer sends only a pass or
fail signal about its single assessment to the master observer.

The second interface of an individual observer is the interface to the
system component under test. The observer uses this interface to measure
the signals that are necessary for the assessment about the correct behavior
of that system component.

The third interface is to the test case table, where the observer gets
directly the expected data of the signal being measured. As an alternative,
the individual observer may receive an algorithm for the calculation of the
expected data online during the simulation.

A master observer has an interface to all individual observers and to the
test case table. A master observer gets its algorithms defining pass and fail
criteria for the overall system, through the interface to the test case table.
The master observer uses the interface to the individual observers to get the
individual assessments.

Example to illustrate the Principle

Figure 4.8 shows the architecture of the observer system (ObserverSystem).
It consists of 5 individual observers IndObs1–IndObs5 and one master ob-
server MasObs. The individual observers measure the signals act1, act2,
cmp1, cmp2, act, and fail and emit their assessments through the signals
ass1–ass5 to the master observer. The final assessment is indicated through
the signal assSys by the master observer. The individual observers and the
master observer get the expected data of the measured signals and the pass
and fail criteria through the signals expData and passFailCrit from the test
case table (TestCaseTable).

4.6. CREATING TEST SCENARIOS 95

assSys MasObs

IndObs4

IndObs5

IndObs3

IndObs2
act2

IndObs1

ass1
ass2
ass3
ass4
ass5

TestCaseTable

act1

cmp1

cmp2

act

fail

ObserverSystem

expData passFailCrit

Figure 4.8: Observer system

4.6 Creating Test Scenarios

Exhaustive testing, where every possible program path with combination of
all possible hardware faults are tested, is impractical for complex systems (a
similar statement in [Som01, p. 442]).

Rather than to create all possible test cases, the result of the test case
creation process has to include the definition of test scenarios, which give
a high confidence that the system under consideration will meet the system
requirements (provided the system passes the test). One approach to achieve
this goal is to find representative uses cases of the system (operational profile)
and to combine the operational profile with safety relevant faults of hardware
elements. It is still a challenge to find a ‘representative’ use case and to
identify the ‘safety relevant’ hardware elements.

In the following text is assumed that an operational profile has already
been developed. A detailed description of this process is out of the scope and
can be found in [Mus93].

Storey mentions similar test strategies to overcome testing problems of
complex systems. Because all properties of the system can not be tested, it
is important to identify “features of importance”, to determine a strategy to

96 4. VALIDATION ACTIVITIES AND PRINCIPLES

investigate them, and then use an appropriate number of test cases to test
them [Sto96, p. 328].

One task of a system with fault-tolerant architecture is to tolerate oc-
currences of faults. This ability of the system is described by its “fault
tolerance coverage” [Sto96, p. 124]. The test creation process should create
test scenarios that enables the validation team to evaluate, whether or not
the system under consideration fulfills its fault coverage. The goal of the
test is to demonstrate that the system under consideration detects all safety
relevant faults and that the system reacts appropriate to these faults.

A test creation process should take advantage of a previous analysis of the
system architecture and the functionality that the system needs to perform.
The goal of such an analysis is to identify how the system is supposed to react
to specific hardware faults. A FTA, as part of a hazard analysis, supports this
activity. It identifies all hazard events or undesired events and all potential
causes of such events (details on techniques of hazard analysis and FTA are
for example in [Som01, p. 381–384], [Sto96, p. 33–58] and in Subsection 2.3.4).

Other important inputs for the test creation process are test cases and an
operational profile, which have already been developed in a previous develop-
ment phase. This approach is based on the assumption that the development
team has already used test cases and an operational profile to develop the
functional network of the system. This assumption is reasonable because
(advanced) development processes are based on computer-aided design tools
and a simulation environment (see Chapter 5 for an example of such an
approach). The tools allows to record stimuli, which can be used in the
validation process to stimulate the IM.

A validation team adds faults to those test cases from previous devel-
opment phases and uses the safety requirements to specify the necessary
system reaction to those faults. It is important to choose an operational
profile, which stimulates the system in a way that the fault may lead to a
hazardous event, if the system does not react appropriate to the fault.

A fault of a hardware element may influence system behavior ‘directly’
or ‘indirectly’. Suppose a fault of a hardware element influences an output
signal of the system under consideration so that the system has a failure. In
this case, the fault influences the system’s behavior directly. For instance,
a fault of a processor, which computes the value of a signal that sets an
actuator of the system.

A fault of a hardware element that causes an error in one of the subsys-
tems of a system, influences the system’s behavior indirectly. For instance,
a fault of a memory, which holds a variable that is used by a processor com-
puting an output value. The fault is indirect in the sense that the fault of a
subsystem influences an output signal so that the system has a failure. The

4.6. CREATING TEST SCENARIOS 97

fault of the subsystem is caused by a previous fault of a hardware element
(e.g., a fault of a processor is caused by a fault of a memory). This statement
is based on the assumption that a fault (error) is propagated from one system
component to another (see Subsection 2.1.4 on page 10 for details on such a
‘fault-chain’).

A indirect fault is harder to specify, because of the dependencies between
an occurrence of a fault and its effect on the application may be very complex.
In this case, a FMEA can help to clarify which faulty hardware element has
influence on the behavior of the system during a specific operational profile.

Each test case scenario created is stated in the test case table. Each
row represents a valid test scenario and each column has to be filled out.
Therefore, the columns of the test case table can guide a validation team
through the test case creation process.

Example to illustrate the Principle

Figure 4.9 shows a simple fault tree of the system as result of a FTA (based on
the IM of Figure 4.5 on page 88). Note that this fault tree is incomplete and
demonstrates only the principle of this approach. The top event (hazardous

act out of
range

1

RAM 2
corrupted

Processor 2
failure

1

DPRAM
corrupted

Interference Loss of
clock

Figure 4.9: A simple fault tree

event) is that the signal act is out of range. This event can be caused either by
a failure of Processor 2, or by a fault within the memory component DPRAM,
or by a fault within the memory component RAM 2. A failure of Processor
2 can be caused either by an interference or by losing the processor clock.
Note that only one fault at a time is considered (single-fault assumption).

The operational profile stimulates the following system behavior:

98 4. VALIDATION ACTIVITIES AND PRINCIPLES

• Acquisition 1 and Acquisition 2 read and compute a stream of sensor
data.

• Compare 1 and Compare 2 are comparing the results of the two acqui-
sition blocks and produce the signals cmp1and cmp2.

The Table 4.4 holds the results of the test case creation process.

Test scenario 1 Test scenario 2

ID 1 2
TP safety argument no. 1 and 2 safety argument no. 3
CaS module: Acquisition 1 modules: Compare 1, Compare 2.

signal: act signals: act, fail, cmp1, cmp2.
TPP after system initialization after system initialization
IS profile1.txt profile2.txt
EOS expectedData1.txt expectedData2.txt
FM faultsProc1.txt faultsProc2.txt
DL detection of the fault: less than

10 ms after the fault is present;
detection of the fault: less than
10 ms after the fault is present;

reaction to the fault: act = 0 reaction to the fault: act = 0 and
fail = 1

TD 0 ≤ time[s] ≤ 4 0 ≤ time[s] ≤ 4
FaPC wrong value or missed deadline wrong values or missed deadline

ID: Test scenario identification number
TP: Test purpose
CaS: Component and signal
TPP: Test preparation
IS: Input signal
EOS: Expected output signal
FM: Fault model
DL: Deadline
TD: Test duration
FaPC: Fail and pass criterion

Table 4.4: Test case table of the example

4.7 Executing Test Scenarios

A simulation platform includes a test bench that sequentially feeds the system
under consideration with all test scenarios that are specified in the test case
table (as described in Section 4.6). The stimuli of the test scenarios determine
which application components of the IM are involved in the test scenario.
Application components use the architecture components to compute their

4.7. EXECUTING TEST SCENARIOS 99

algorithms and to communicate with other application components through
application services. The simulation engine, which is part of the simulation
platform, calculates all necessary time-tags and values of signals according
to performance models and the fault models of the architecture components.

Example to illustrate the Principle

The tool Cierto2 virtual component co-design (VCC) is a commercial avail-
able simulation platform, which supports some of the modelling and simula-
tion requirements presented in Chapter 3. The concepts of the tool Cierto
VCC are based on the POLIS approach [BCG+97].

Note that the product version 2.1 of Cierto VCC does not include fault
modelling and fault injection facilities, and does not include the concept of
an observer system as described in Chapter 3. We extended Cierto VCC with
those facilities in order to use the tool for validation purposes (see Chapter 5
for details on those extensions).

It is not within the scope of this work to describe the tool Cierto VCC in
detail, for further information about the tool see [Cad02] and [Cad01].

The authors of [BFSVT00] use the tool Cierto VCC for another purpose
than for a validation of a system as proposed in this thesis. They explore
with the tool different system architectures of an engine management system
of an automobile and evaluate the architectures using four different cost
functions such as: “CPU [Central Processing Unit] load, interrupt frequency,
task switching, and task number (strictly related to memory requirements)”
[BFSVT00, p. 266].

The following three pictures (Figure 4.10, Figure 4.11, and Figure 4.12)
are print-outs of simulation models of the example in this chapter, which
have been modelled with Cierto VCC.

Figure 4.10 shows the top-level diagram of the simulation model. The
hierarchical diagram in the middle shows the test bench and the system
under consideration. The system under consideration is expanded on the top
of Figure 4.10. This behavior diagram represents the functional network of
the example of this chapter.

In accordance with the Cierto VCC terminology, a behavior diagram is
a graphical representation of behavior models that are connected together.
The behavior models define the functionality of the system model used in
simulation [Cad01].

The test bench is expanded on the bottom of Figure 4.10. The test bench
consists of a model of the actuator and a model (feeder) that stimulates the

2Cierto is a registered trademark of Cadence Design Systems, Inc.

100 4. VALIDATION ACTIVITIES AND PRINCIPLES

testbench sysUnderCons

sens1

sens2

act

fail

Behavior diagram of the
system under
consideration

act

fail

sens1

sens2
feeder

actuator

Behavior diagram of the test bench

Top-level behavior of
the simulation model

Acquisition1

Acquisition2

sens1

sens2

OR
fail

act

Compare1

Compare2

case_study_map.pictureOnly:mapping 11/08/02 13:20:47

Figure 4.10: Top-level diagram and hierarchy of the simulation model

functional network.

Figure 4.11 shows the behavior diagram of the functional network with
probes. The probes collect data for the observer system, which evaluates
the system’s behavior. An example that illustrates the functionality of an
observer system and probes is described in Section 5.4 and will be not further
discussed here.

Figure 4.12 shows the mapping diagram of the system under considera-
tion. The components in the functional network on the top are assigned to
architecture components by so called ‘mapping links’ (represented by arcs
in Figure 4.12). The mapping links symbolize that software functions of
a behavior block (start of the mapping link) run on the processor that is
connected to a scheduler (end of the mapping link), which is scheduling the
software functions. This mapping diagram is the base for the performance
simulation in Section 4.8.

In accordance with the Cierto VCC terminology, a mapping diagram con-

4.8. EVALUATING TEST SCENARIOS 101

Acquisition1

Acquisition2

sens1

sens2

OR
fail

act

Compare1

Compare2

ProbeProbes

Probes
Probes

case_study_system.sysUnderCons:behav 11/08/02 13:10:09

Figure 4.11: Behavior diagram of the functional network with probes

nects the system behavior with the target architecture. It defines the hard-
ware and software partitions of the system. A mapping link is the connection
between a behavior block and an element of the target architecture. A per-
formance simulation takes the effects of the particular architecture on the
behavior into account [Cad01].

Note that the test bench and the OR-block are not mapped to any archi-
tecture component. The test bench is only for simulation purposes and does
not exist in a real system. It is assumed that the OR-block does not influence
the temporal behavior of the system, and that the OR-block does not have
any faults (see arguments in Subsection 4.2.4 on page 87). Although, the
functionality of both test bench and OR-block are simulated and considered
during the performance simulation of the system.

4.8 Evaluating Test Scenarios

The validation process finishes with the evaluation of the simulation results.
After all test scenarios are executed the observer system emits a final report,
which the validation team takes into account for its final assessment about
the system behavior.

Note that an execution of all test scenarios in this validation process only
demonstrates, whether or not a model of the system under consideration
performs as required for certain test scenarios. The simulation results do not
prove that the system is error-free, nor that the system behaves correctly
under all circumstances. Such a proof is out of the scope of this thesis.

Even if an observer system determines a final pass or fail signal, it is nec-
essary that experts determine whether the simulation results are acceptable
or not. For example, an expert team may check whether all test scenarios

102 4. VALIDATION ACTIVITIES AND PRINCIPLES

RAM1

RAM2

DPRAM

PROC1

PROC2Scheduler

Scheduler

Architetcure diagram

Functional
network

Mapping links

testbench sysUnderCons

sens1

sens2

act

fail

OR-block is
not mapped
(see text)

Acquisition1

Acquisition2

sens1

sens2

OR
fail

act

Compare1

Compare2

Test bench is
not mapped
(see text)

case_study_map.mapping:mapping 11/08/02 13:35:35

Figure 4.12: Mapping diagram of the system

were really executed, or if one or more test scenarios were skipped, because
of an exception during the simulation session. An expert team may also
check whether all configuration and parameters are set appropriate to the
validation purpose, and whether the system has reached the test preparation
state for each test scenario. Many procedures of a validation process can be
automated with a simulation environment, but the final assessment on the
system behavior still has to be done by human experts.

The test and error detection coverage by the test scenarios used in a
validation is another aspect that can be evaluated after execution of the test
cases, but not further discussed here.

An example, which illustrates the execution and evaluation of test sce-
narios in more detail is described in Section 5.7 on page 129.

Chapter 5

Brake-by-Wire Case Study

This chapter uses a case study to illustrate the techniques and methods
introduced in Chapter 3 and 4.

5.1 Purpose of this Case Study

The case study has two objectives:

1. To demonstrate the practical usage of the proposed validation method-
ology and techniques of this thesis in a real development project.

2. To evaluate whether or not the tool Cierto VCC can be used as a
simulation platform for a validation of a distributed real-time system.

For this case study, we extended the product version 2.1 of Cierto VCC
with features that support essential parts for the validation process proposed
in this thesis (see Chapter 3 for details on those essentials). These features
are the following:

• Fault models of hardware elements,

• Fault injection, and

• Observer system.

The system under consideration is a brake-by-wire (BbW) system of an
automobile. Similar BbW systems are subject of other case studies, which
focus on the communication network and on the time-triggered architecture
of these systems, for example, [BH98], [Hex99], [KBP01], and [RSBH98]. The
authors of [ATJ01] propose a design method for a by-wire control system and
apply their method to a drive-by-wire and fly-by-wire system.

103

104 5. BRAKE-BY-WIRE CASE STUDY

This case study illustrates how methods and techniques proposed in this
thesis can be applied in a development project for a complex system. It is
not the objective of this case study to perform a complete validation process,
which is far beyond the scope of this thesis.

5.2 Brake-by-Wire System

5.2.1 Overview

The goal of building a BbW system for an automobile is to replace a tradi-
tional hydraulic brake system by an electro-mechanical brake system. Some
assumed advantages of an electro-mechanical brake are: reduced produc-
tion costs, additional brake functionality, and improved fuel economy (see
[Bre01b] and [Jur99]). One of the drawbacks of a BbW system is the huge
development and maintenance expenses to achieve and maintain the required
safety.

Figure 5.1 shows an abstract view on a BbW system and allows to under-
stand some of the basic concepts of such a system. The brake pedal sensors

Handbrake
Switch

Wheel Speed
Sensor FL

Wheel Speed
Sensor FR

Wheel Speed
Sensor RL

Wheel Speed
Sensor RR

Brake
Actuator RL

Brake
Actuator RR

Brake Pedal
Sensors

Brake
Actuator FL

Brake
Actuator FR

Figure 5.1: Overview of the BbW system

transform a mechanical brake demand of the driver into electrical signals,
which are the input signals of a control algorithm of the BbW system. Based
on those inputs and on the current state of the BbW system, the control
algorithm computes the desired deceleration value, and produces four elec-
trical signals of four clamp forces to be applied by the four wheel brakes.
The four electrical signals are input signals of the four electro-mechanical
actuators (front left (FL), front right (FR), rear left (RL), and rear right

5.2. BRAKE-BY-WIRE SYSTEM 105

(RR)), which transform the electrical signal into a mechanical clamp force.
The BbW system is called ‘by-wire’ because the brake demand is transmitted
through an electrical wire, instead of using the mechanical connection of a
traditional brake system.

In addition, a handbrake switch allows the driver to switch the wheel
brakes on and off for parking. The handbrake switch is also used to switch a
constant deceleration on and off in the emergency mode of the BbW system
(see in the next subsection for details on the emergency mode).

5.2.2 Safety Functions Requirements Specification

The BbW system has to detect and tolerate two subsequent arbitrary faults
of sensors, actuators, or computational units without losing the chance to
apply the brakes. The BbW system has to detect a third arbitrary fault,
but it is not required to tolerate triple faults (see below for details on the
operation modes of the BbW system).

The fault tolerance capabilities of the BbW system have to perform a
partial degradation of functionality (also called ‘graceful degradation’ or ‘fail-
soft’; see Subsection 2.2.3 on page 23). The safety functions of the BbW
system are based on the following distinct operating modes:

Base mode: This is the normal operation mode in case no faults have oc-
curred. The BbW must achieve and maintain in the base mode a vehicle
deceleration of at least maxDecel. At the present, the absolute value of
the required deceleration is not yet determined.

The BbW system has to detect an error caused by a fault of sensors,
actuators, or computational units and switch into the partial mode
after the error has been detected.

Partial mode (after the first fault): After the occurrence of the first ar-
bitrary fault, the BbW system must use the remaining actuators, sen-
sors, and brake units to achieve and maintain a vehicle deceleration of
at least 60 % of maxDecel.

The BbW system has to detect an error caused by a fault of sensors,
actuators, or computational units and switch into the emergency mode
after the error has been detected.

Emergency mode (after the second fault): After the occurrence of a
second arbitrary fault, the BbW system must use the remaining ac-
tuators, sensors, and brake units to apply a constant deceleration (20
% of maxDecel) that leads to full-stop of the vehicle. In this mode, the

106 5. BRAKE-BY-WIRE CASE STUDY

driver is able to switch off and on the constant deceleration with the
handbrake switch.

The BbW system has to detect an error caused by a fault of sensors,
actuators, or computational units. After the error has been detected,
the BbW system has to open all brake actuators so that no incorrect
clamp force can be applied (safe mode). After the third fault, the
driver is not able to brake anymore. This requirement is based on the
assumption that an occurrence of a third arbitrary fault is very unlikely.

In addition to the partial degradation of functionality, the following func-
tional and temporal requirements must be fulfilled by the BbW system:

Error storage and driver warning: All detected errors by the BbW sys-
tem must be persistently stored, and each error must be signaled to
the driver.

Error propagation: System components, which are identified by the vot-
ing mechanism as faulty must be set out of operation to avoid error
propagation through their interfaces.

No self-healing: A component is not required to come back to operation,
after it was identified as faulty and set out of operation.

Maximal response time: The BbW system must set the desired clamp
forces within a period of 16 ms after the desired deceleration was set
by the brake pedal sensor, or in the emergency mode after the second
fault has occurred.

Maximal error latency time: An error must be detected by the BbW
system within a period of 12 ms after the occurrence of the error.
After this period, any component of the BbW system that either does
not deliver required data, or does deliver incorrect data is considered
as faulty. In the following, the term data means digital data of a digital
signal if not otherwise noted (in comparison to analog data of an analog
signal).

5.2.3 Basic Assumptions of this Case Study

The following assumptions were made to simplify the case study so that it
does not exceed the scope of this thesis. The assumptions are:

• System design has been completed. The application software,
which is the validation objective, has been implemented. The applica-
tion software modules of this case study are automatically generated

5.2. BRAKE-BY-WIRE SYSTEM 107

from the CASE (Computer Aided Software Engineering) tool ASCET-
SD (see [ETA99] for information on ASCET-SD). The hardware ar-
chitecture of the BbW system has been defined and specified. The
real-time scheduling of all software tasks has been defined and speci-
fied, including the scheduling of all messages exchanged between the
distributed nodes.

• Safety related hardware and software components are identi-
fied. The following BbW components are identified by a hazard and
risk analysis as safety-critical objects:

– Software functions that implement the voting algorithm.

– Software functions that determine the state of the BbW system.

– Memory segments which store relevant values of safety-critical
software functions.

Note that the list is not complete and contains only those components,
which are considered in this case study.

• Hardware faults. The case study only covers faults of hardware el-
ements of the BbW system that are naturally caused and that occur
during operation of the BbW system (e.g., interferences from the envi-
ronment; see Subsection 2.1.4 on page 10 for more details on faults).

• No malicious failures. It is assumed that the only faults that occur
are those that lead to non-malicious errors or failures. A malicious
failure is a behavior of a component that is arbitrary and can disturb
the operation of a system significantly. For instance a disturbance of a
voting algorithm: one sensor out of three has a malicious behavior and
sends three different values to three different voters at the same point in
time. As a consequence, the three voters may produce a different vote
depending on the values sent by the malicious sensor and depending
on the voting algorithm of the voters. A malicious failure is also called
Byzantine failure (see [Kop97, p. 60] and [KS97, p. 316–322]).

• Single fault assumption. It is assumed that two faults, which would
lead to more than one faulty output, never occur within the error la-
tency time period (the time period where an error must be detected).

• Correct software response times in case of no faults. In case of
no faults, it is assumed that the software response times of the BbW
system are not higher than the defined maximum values (deadlines).

108 5. BRAKE-BY-WIRE CASE STUDY

• Measurement of signals. It is assumed that system behavior can
be observed by measuring signals produced by the BbW system dur-
ing operation. For instance, such a signal conveys data of an internal
state that indicates the current mode of the BbW system (see Subsec-
tion 3.3.2 on page 49 for more details on signals).

• No extended control functionality. The BbW system, which is
considered in this case study, only implements the basic brake func-
tionality of an automobile (deceleration of the vehicle forced by the
driver by pushing the brake pedal). The BbW system does not in-
clude functionality of, for instance, an antilock braking system (ABS),
a traction control system (TCS), or a vehicle dynamics control system
(VDC). Those extended control functions are intended to assist the
driver in controlling the vehicle’s dynamic behavior, but they will not
be further discussed here (see, for example, [Bau96] and [Jur99] for
details on such extended control functions).

It is assumed in the context of this thesis that extended control func-
tions will be validated with the same methods and techniques as the
basic brake functionality is validated.

• Independent power supply. A validation of the power supply units
of the BbW system is excluded from this case study. It is assumed
that all power supply units meet their safety requirements and supply
sufficient electrical energy during operation of the BbW system.

Those assumptions are reasonable because the case study is focusing on
the validation of the BbW system design in an early development phase,
where components are not available yet (e.g., target hardware components),
or even are not designed yet (e.g., extended control functions).

5.2.4 System Architecture

The validation process proposed in this thesis aims to validate a software and
hardware architecture of a system by means of simulation. The following
paragraphs describe the overall system architecture of the BbW system.

Note that a complete discussion of the BbW system architecture, is out of
the scope of this thesis. This text includes only information relevant to this
case study. For instance, the case study does not discuss the reliability of the
BbW system architecture. This topic is discussed in [TGO00]. The authors
discuss different fault-tolerant system architectures and compare these with
respect to their reliability characteristics.

5.2. BRAKE-BY-WIRE SYSTEM 109

exclusive connection

Legend:

TTP bus

actuatorRR

vSensRR Brake Unit RR

(ECU_RR)

actuatorRL

vSensRL Brake Unit RL

(ECU_RL)

brPedSens3

brPedSens2

brPedSens1

actuatorFR

vSensFR
Brake Unit FR

(ECU_FR)

actuatorFL

vSensFL
Brake Unit FL

(ECU_FL)

 Other
Systems

(ECUs) handBrSw

Figure 5.2: Fault-tolerant system architecture of the BbW system

Figure 5.2 depicts the system architecture of the BbW system. The four
redundant velocity sensors (vSensFL, vSensFR, vSensRL, vSensRR), and
the four redundant brake actuators (actuatorFL, actuatorFR, actuatorRL,
actuatorRR) are directly connected (non-shared communication medium) to
the four redundant brake units (electronic control units (ECUs): ECU FL,
ECU FR, ECU RL, ECU RR).

The three redundant brake pedal sensors (brPedSens1, brPedSens2,
brPedSens3) are directly connected to the brake unit ECU FL, ECU RL,
and ECU FR, respectively. Since the BbW system applies a constant decel-
eration in the emergency mode independently from the brake pedal position,
only three brake pedal sensors are required to detect two faults of the brake
pedal unit.

The BbW system receives status and position (e.g., active, ON, OFF) of
the handbrake switch (handBrSw) from one of the other systems connected
to the bus (as shown in Figure 5.2).

The BbW system architecture is based on a time-triggered architecture
(TTA). In a time-triggered system, the start of a task is triggered by the
progression of a global notion of time. In contrast, in an event-triggered
system a task is started by an external event from the environment or by

110 5. BRAKE-BY-WIRE CASE STUDY

another task of the system (see for more details on TTA, e.g., [Kop97, p. 285–
297] and [Kop02]).

One important advantage of the time-triggered approach is that the tem-
poral behavior of a system is predictable. The reason is, that the predeter-
mined global schedule ensures that each node in the network knows the time
when it should send a message to other nodes, or receive a message from
other nodes. Besides other criteria, this advantage makes the time-triggered
approach preferable for safety-critical systems [Rus01b].

Note that a TTA is not the only architecture for a safety-critical dis-
tributed real-time system. A comparison of four different bus architectures,
namely SAFEbus, TTA, SPIDER, and FlexRay can be found in [Rus01a].

Each node of a TTA consists of a communication controller, a host com-
puter, and a communication interface between the host and the controller.
Each brake unit in Figure 5.2 represents a host computer, whereas the com-
munication controller is not shown for reasons of clarity. The four brake units
have redundant functionality and can replace each other during operation in
case of a fault.

All four brake units communicate through a fault-tolerant communication
system and use a time-triggered protocol (TTP) for fault-tolerant hard real-
time systems, called TTP/C. The three redundant TTP/C busses of the
BbW system can tolerate two subsequent faults and detect a third fault
within the communication system (e.g., a broken bus wire). Each TTP/C
bus consists of two independent channels in order to detect one fault within
the communication system (e.g., implemented with two independent physical
layers (wires)).

The letter ‘C’ in TTP/C indicates that the protocol meets the SAE (Soci-
ety of Automotive Engineers) requirements for a class C automotive protocol
[SAE93]. In the following text, the abbreviations ‘TTP/C’ and ‘TTP’ are
used as synonyms if not otherwise noted.

TTP is a time-division-multiple-access (TDMA) protocol where every
node sends a message on a shared communication channel within a prede-
termined and to all other nodes known time slot. All time slots are defined
statically at design or compile time (a detailed description of the protocol
can be found in [KG94]).

One fundamental characteristic of a time-triggered approach is the sep-
aration of the “temporal domain” and the “value domain” [Kop02]. In the
BbW system safety functions of each brake units have to ensure a fail silent
behavior in the value domain (the produced values are logical correct, or
no values are produced), where the implemented TTP ensures a fail silent
behavior in the temporal domain (values are produced before the defined
deadline, or no values are produced). The focus of this case study is on

5.2. BRAKE-BY-WIRE SYSTEM 111

validation of those safety functions of the BbW system in the temporal and
value domain.

The system design of BbW system implements the following strategy for
fault tolerance:

Fail silent actuators: The control loop between actuator and brake unit
(pictured by two lines between ECU and actuator in Figure 5.2) ensures
that a clamp force on a disc brake is either correct or no clamp force
is applied. In the latter case, a brake unit indicates to the other three
brake units that the faulty actuator is out of operation (‘fail silent’ or
‘fail stop’ failure mode; see Subsection 2.1.4 on page 14).

Fault detection: All four brake units vote on all data of signals from the
sensors (e.g., velocity) and on all data of signals to the actuators (e.g.,
clamp forces). The brake units use a majority voting algorithm that
detects the first fault by a three-out-of-four voting, and the second
fault by a two-out-of-three voting. The brake units detect the third
fault with at least two operational brake units (depending on which
system components have failed before) by a comparison of the signals
produced by other units.

A majority voter constructs classes of all inputs in which all values are
within a specified range. The voting result is chosen from the class
with more than N/2 elements (N is the number of outputs to be voted
on) [KS97, p. 292]. Special cases:

1. In case the majority is incorrect, the result of the voting is also
incorrect.

2. In case there does not exist a majority, for example, if all classes
have the same number of elements, the voter does not produce
any output (stalemate).

Redundancy: Whenever the voting mechanism detects a faulty component,
the brake units stop using that component (i.e., data from and to the
faulty component is either not sent, or ignored by the other brake
units). If required, a redundant component of the BbW system archi-
tecture takes over the functionality of the faulty component (sensor,
actuator, or ECU).

The fault tolerance concept of the BbW system is comparable with the
known concept of N-modular redundancy (NMR), which is a scheme for
forward error recovery. NMR uses N redundant, for example, processor units

112 5. BRAKE-BY-WIRE CASE STUDY

and votes on their outputs (N is usually an odd number to avoid a stalemate
in the vote). A NMR system requires

N = 2 ·m + 1 (5.1)

redundant units to sustain up to m failed units. It may have N voters or
only one voter. Figure 5.3 shows a NMR cluster with three sensors, which
outputs are being voted by three voters [KS97, p. 294–300].

Sensor 1 Voter 1

Sensor 2 Voter 2

Sensor 3 Voter 3

Figure 5.3: N-modular redundancy cluster with three voters (N = 3)

The BbW system has four redundant brake units, four wheel speed sen-
sors, three brake pedal sensors, and four actuators. Therefore, it can tolerate
the first fault with almost full functionality (partial mode). The full func-
tionality cannot be guaranteed, because a fault of an actuator limits the
maximal achievable deceleration. Although all of the four actuators have the
same interface to a brake unit and the same functionality, they are not fully
redundant with respect of the vehicle’s dynamics.

The second fault can also be tolerated, but only with a significant loss of
functionality (emergency mode). Assuming a NMR scheme, a full tolerance
of two subsequent faults (full functionality after the first and second fault)
would require a BbW system with five redundant and full operational units
(i.e., five brake units, five sensors, and five actuators; see Equation 5.1).

5.3 Implementation Model

For this case study, the BbW system is modelled with Cierto VCC. Cierto
VCC supports the distinction between application components, architecture
components, and application services as described in Section 3.2. In the
nomenclature of Cierto VCC an application component is modelled as a

5.3. IMPLEMENTATION MODEL 113

Cierto VCC behavior element (or model), an architecture component is mod-
elled as a Cierto VCC architecture element (or primitive), and some charac-
teristics of application services are modelled with Cierto VCC architecture
services.

In the terminology of Cierto VCC, elements such as bus, ASIC, processor,
memory, and scheduler are called ‘architecture primitives’. An architecture
diagram consists of architecture primitives, which are connected together.
It represents the hardware and software architecture of the target system.
The architecture services are C++ models that are used for analyzing the
performance of a system model [Cad01].

Note that there is not an one-to-one mapping between the characteristics
of basic elements of an IM (see Section 3.2) and the characteristics of Cierto
VCC models. For instance, in the Cierto VCC environment a scheduler is an
architecture element, whereas a scheduler of an IM should be modelled in an
IM as an application service and not as an architecture component.

The following subsections describe the behavior diagram, architecture
diagram, and mapping diagram of the BbW system model in more detail.

5.3.1 Behavior Diagram of the BbW System

Figure 5.4 shows the behavior diagram of the BbW system model. The be-
havior diagram consists of four behavior blocks representing the four brake
units, communicating through a dedicated behavior block which represents
a communication channel. The communication channel models the tempo-
ral and functional behavior of three TTP busses (see Subsection 5.3.2 on
page 117 for details on the TTP model).

Each of the four behavior blocks (brake units) are instances of the same
behavior block with individual instance parameter settings. They represent
replicas of the same functions in accordance with the required redundancy
for the brake units. The four behavior blocks model the functionality of the
BbW system.

Figure 5.5 shows the next level of detail of the brake unit model hierarchy.
The behavior blocks Brake 1, Brake 2, and Brake 3 model the brake control
functions and safety functions of the BbW system (see description below).
The other behavior blocks of Figure 5.5 model the time-triggered activation
of the BbW functions and time delay blocks used by the fault injection tech-
nique. More detail of the BbW system model is not shown, because it is
beyond the scope of this thesis to describe the complete BbW system.

The functionality of a brake unit can be split into brake control functions
and safety functions as explained in detail in the following paragraphs.

114 5. BRAKE-BY-WIRE CASE STUDY

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

go

Brake Unit FL

Brake Unit RRBrake Unit RL

Brake Unit FR

Communication Channel

Diss_figures.TopBehavior:Drawing 11/08/02 09:12:24

Figure 5.4: Behavior diagram of the BbW system

Brake Control Functions

The brake control functions of the BbW system implement algorithms, which
are necessary to translate the driver’s demand to decelerate the vehicle, and
to control the vehicle’s deceleration depending on the dynamic of the vehicle
(apart from extended control functionality, see Section 5.2.3 on page 108).
The brake control functions are part of a brake unit instance but not shown
in Figure 5.5. The brake control functions of the BbW system are:

Sensor data acquisition: This function reads and filters data of all input
signals produced by the wheel speed sensors, the handbrake switch, the
brake pedal sensor, and the actuators (see Figure 5.1 on page 104). It
determines the desired vehicle deceleration for use by the clamp force
computation.

Clamp force computation: This function transforms the desired vehicle
deceleration into four clamp forces to be applied by the four respective
actuators. The clamp force computation takes into account the speed
of each wheel, and the signals produced by the handbrake switch.

Actuator control loop: This function implements a control function,

5.3. IMPLEMENTATION MODEL 115

Brake_1

Brake_Message_Function

Brake_BusMessage_Sensor

Brake_Message_Sensor

send

go Brake_3

Brake_BusMessage

Brake_Message_Function

Brake_BusMessage_Actuator

Brake_Message_States

Brake_BusMessage_States

sendActgoSM
goAct

sendSM

Brake_2

Brake_BusMessage

Brake_Message_Sensor

Brake_BusMessage_Function

Brake_Message_Function

Brake_Message_States

goFu

goVote

send

delay

delay

delay

de
la

y

delay

delay

delay

delay

delay

Brake_BusMessage

go

Diss_figures.VCCbehavior2ndLevel:Drawing 11/08/02 09:12:00

Figure 5.5: Next level of detail of the brake unit model hierarchy

which ensures that the actual clamp force at the actuator is equiva-
lent or close to the desired clamp force. The control function reads
the feedback and sends a correction factor to a dedicated clamp force
computation module if necessary.

Safety Functions

The safety functions achieve and maintain the safe state of the BbW system,
also in presence of faults, based on the fault-tolerant system architecture (see
Subsection 2.1.3 on page 9 and Subsection 2.2.2 on page 22 for more details
on software safety functions). The safety functions are part of a brake unit
instance but not shown in Figure 5.5. The safety functions are the following:

Brake state computation: This function computes the global ‘health
state’ of the BbW system from the local view point of an individual
brake unit. This is based on the health status information of software
and hardware components of the BbW system, which is computed and
delivered by dedicated software components. The result of the brake
state computation is sent to the other three brake units.

116 5. BRAKE-BY-WIRE CASE STUDY

Brake state voting: This function votes on the results produced by the
four redundant brake state computations. The vote is based on a ma-
jority voting algorithm.

Clamp force voting: This function votes on the results produced by the
four redundant clamp force computations. The vote is based on a
majority voting algorithm. The clamp force voting result is sent to the
other three brake units.

The brake control and safety functions described above are represented in
the simulation model by C programs. The C-source code has been automat-
ically generated from a ASCET-SD model of the BbW system, whereas the
behavior diagrams, as shown in Figure 5.4 and 5.5, has been built manually.
The tool ASCET-SD was used in the project as a software specification tool
and for C-source code generation.

The tool supplier of ASCET-SD and Cierto VCC are currently working
on an interface between both tools. The development project aims to allow
an automatic import of software components of an ASCET-SD model into
the Cierto VCC simulation environment without the manual interaction as
mentioned above (the authors of [FS00] and [Sch02] describe that ASCET-SD
to Cierto VCC interface).

5.3.2 Architecture Diagram of the BbW System

Figure 5.6 shows the architecture diagram of the BbW system. It includes
four ECU replicas, one for each wheel. An ECU contains a processor, mem-
ory, internal bus, scheduler, three TTP communication controller, and the
interface to three TTP busses. The TTP communication controllers and the
processor of each ECU share the memory (DPRAM) for data exchange.

The Cierto VCC simulation of the BbW system does not use the TTP
components of the architecture diagram. This is due to the fact that at this
time no Cierto VCC models are available on the market, which model the
temporal behavior of a TTP communication controller and the TTP protocol.
It is left to future projects to use those TTP models in the architecture
diagram when they become available.

The following paragraphs outline how the TTP communication is mod-
elled for this case study, despite of this shortcoming. The paragraphs also
give a brief overview of the components of a TTP node.

The hardware structure of a TTP node basically consists of a host com-
puter and TTP communication controller, which is connected to the com-
munication medium (TTP bus). The host computer communicates with the

5.3. IMPLEMENTATION MODEL 117

Processor

Memory

Internal Bus

TTP
Controller

TTP
Controller

TTP
Controller

Scheduler

TTP
Controller

TTP
Controller

TTP
Controller

Processor

Internal Bus

Memory

Scheduler

ECU_FL

ECU_RL

Triple TTP Bus

TTP
Controller

TTP
Controller

TTP
Controller

Internal Bus

Memory

Scheduler

Processor

ECU_FR

ECU_RR

TTP
Controller

Internal Bus

TTP
Controller

Scheduler

Processor

Memory

TTP
Controller

Diss_figures.fourECUarch:Drawing 11/08/02 09:13:51

Figure 5.6: Architecture diagram of the BbW system

TTP communication controller via a communication network interface (CNI)
using a DPRAM. Two bus guardians, as a part of the TTP communication
controller, ensure a fail silent behavior of each TTP node in the temporal
domain. The application of a host computer is responsible for the fail silent
behavior in the value domain. The TTP communication controller signals
the tick of the global time so that the host computer can activate its tasks
based on that global time (time-triggered activation of application tasks)
[Kop97, 171–191].

The simulation model that is used in this case study idealizes and ab-
stracts the temporal behavior of TTP nodes as follows:

• The temporal behavior of the TTP communication is assumed to be
correct. It is not the objective of this case study to validate the tem-
poral behavior of the TTP communication of the BbW system.

A validation of the fault tolerance mechanisms of a TTP communica-
tion can be found in [Hex99]. For the validation of the fault hypoth-
esis of the TTP communication of a distributed real-time system, the

118 5. BRAKE-BY-WIRE CASE STUDY

author uses an environment, which combines hardware and software-
implemented fault injection techniques. This is different from the vali-
dation approach proposed in thesis. Hexel uses hardware components
for its validation method, whereas the validation method proposed in
thesis uses only models of the hardware and software components of
the system under consideration.

• The application tasks of a host computer are activated so that they
are able to send and receive data of messages defined in the message
descriptor list (MEDL). A MEDL determines at what point in time
a TTP node is “allowed to send a message”, and when a node “can
expect to receive” a message from one of the other TTP nodes in the
network [Kop97, 173]. The send and receive mechanism of a TTP node
is implemented in the BbW system model by a communication channel
(see Figure 5.4 on page 114).

• A ‘global sequencer’ of the BbW system model implements the time-
triggered behavior, which is enforced by the TTP communication con-
troller. The sequencer activates tasks of the BbW system so that a
task is able to provide data for send messages and able to compute
data of receive messages. The sequencer is a behavior timer that is
able to activate behavior blocks in the behavior diagram and is part of
the BbW test bench (see Subsection 5.3.4 on page 119).

In the terminology of Cierto VCC, a behavior timer models periodic or
scheduled activation of a behavior model [Cad01].

• The data transfer between TTP nodes is modelled with a memory
buffer management and a communication pattern. The memory buffer
management is part of the BbW test bench.

In the terminology of Cierto VCC, a communication pattern models the
communication between two behavior blocks mapped to architecture
elements [Cad01].

A processor, scheduler and memory compose and implement a host com-
puter of a TTP node. Note that the BbW architecture in Figure 5.2 (on
page 109) consists of only one processor per TTP node.

The memory, which is connected to the internal bus, is used as a DPRAM
by both host computer and TTP communication controller.

A scheduler in Figure 5.6 is a static priority scheduler that schedules all
tasks running on the processor assigned to the scheduler.

5.3. IMPLEMENTATION MODEL 119

5.3.3 Mapping Diagram of the BbW System

Figure 5.7 shows the assignment of the behavior to the architecture of the
BbW system. The four behaviors of the BbW system are mapped to the four
schedulers of four ECUs. An arc in the mapping diagram from a behavior
block to a scheduler symbolizes the fact that the assigned processor executes
the software program of that behavior block. The communication channel
is assigned to the communication pattern, which supports communication
between the four brake units through the TTP bus. The communication
pattern simulates TTP details of data transactions between two TTP nodes.

Due to a software bug in the current version 2.1 of Cierto VCC, the actual
mapping diagram cannot be printed; Figure 5.7 shows only principles of the
actual mapping.

In case the functionality of a behavior block is described according to the
syntax of the ‘whitebox C language’, Cierto VCC is able to estimate the exe-
cution times of that software (whitebox C is a subset of the C programming
language; see [Cad01]).

The software estimator of Cierto VCC estimates execution times by an-
notating a whitebox C source with time delays. During a simulation session,
the simulator takes those time delays into account, whenever a processor ex-
ecutes that piece of software. A processor model is implemented by a set of
parameters, which define time costs of processor instructions.

Note that the instruction set of a Cierto VCC processor model is not
equivalent to the instructions set of a real processor. Instead, the instruction
set of Cierto VCC is an abstraction and simplification of the real instruction
set of a processor. During a performance simulation, the simulator calculates
actual execution times of a piece of software, from those processor param-
eters. Then, the simulator adds the calculated time delays to the response
time of the behavior block associated with the piece of software (see [Cad01]
for more details on this software estimation approach).

For this case study it was not possible in a reasonable time to build
a simulation model of the BbW system that allows to estimate the BbW
software with Cierto VCC. Instead, we have built an IM of the BbW system
without using the software estimation facility of Cierto VCC. The software
estimation was ‘switched off’ during all performance simulation sessions of
this case study.

5.3.4 Test Bench and Environment

A simulation model of the BbW system requires, apart from the behavior
and architecture, a test bench and models of the environment.

120 5. BRAKE-BY-WIRE CASE STUDY

Communication
Pattern

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

Brake_BusMessage

Brake_BusMessage_Sensor

Brake_BusMessage_Function

Brake_BusMessage_Actuator

go Brake_BusMessage_States

go

Brake Unit FL

Brake Unit RL Brake Unit RR

Communication Channel

Brake Unit FR

ECU_FL

ECU_RL

Triple TTP Bus

ECU_FR

ECU_RR

Scheduler

Internal Bus

TTP
Controller

TTP
Controller

Scheduler
TTP

Controller

TTP
Controller

ProcessorTTP
Controller

Memory

TTP
Controller

TTP
Controller

TTP
Controller

Internal Bus

Processor

Memory

TTP
Controller

Processor

Internal Bus

Memory
TTP

Controller

Scheduler

Memory

Processor

Internal Bus

Scheduler

TTP
Controller

TTP
Controller

Diss_figures.mappingFourECU:Drawing 11/08/02 09:12:47

Figure 5.7: Mapping diagram of the BbW system

• The test bench consists of:

– A memory buffer management that models the data transfer be-
tween the behavior blocks of the BbW, including the data transfer
through the TTP bus. Furthermore, the memory buffer manage-
ment is basis of the data management of the fault injection and
the observer system.

5.4. OBSERVER SYSTEM 121

– A global sequencer that activates the software functions of the
behavior blocks of the BbW system model.

– An observer system that produces data of the observation between
expected and produced data (see Section 5.4).

– A feeder that holds the contents of the test case table (expected
data, faults, value tolerances, etc.; see Section 5.4).

– A facility that implements the functionality of fault injection (see
Section 5.5).

• The environment consists of:

– A model that stimulates the BbW system with signals from all
sensors and actuators.

– A model of the vehicle’s dynamic to calculate, for example, the
actual deceleration of the vehicle.

5.4 Observer System

The functionality of an observer system is implemented as a C++ program
in Cierto VCC. At the moment, the implementation of the observer system
is still rudimentary and does not support all features, which are described
in Section 3.10 (e.g., an individual observer does not prepare its assessment
results; instead, an individual observer just passes through its assessment
results to the master observer).

Figure 5.8 shows an observer system in a behavior diagram, which is
connected to another behavior block called Feeder. The observer system
of Figure 5.8 works in a cycle oriented fashion, where a parameter defines
the period of a cycle, in which signal data is collected and compared. The
interaction between the feeder and the observer guarantees, first, that an
observation interval is consistent with the time interval in which the feeder
injects faults, and second, that the time interval of the observed data is
identical with the time interval of the expected data.

The top-level of an observer system is a master observer, which commu-
nicates with N individual observers. The observer system of this case study
is implemented with Cierto VCC in a hierarchical behavior diagram. The
amount N of individual observers is determined by the number of signals that
need to be observed (Figure 5.8 shows an example with N = 2 individual
observers: Observer 1 and Observer 2).

An individual observer compares the data produced by the system under
test with the expected data. The data produced is collected by a probe (see

122 5. BRAKE-BY-WIRE CASE STUDY

finalize

put_record

initialize_cycle cycle_initialized

finish_cycle

go

Master Observer

Results

Feeder

finalize

put_record

initialize_cycle cycle_initialized

finish_cycle

finalize

put_record

initialize_cycle cycle_initialized

finish_cycle

AND

Results

Individual Observer_2

Timer

Results

Individual Observer_1

Hierarchy

Diss_figures.observerSystem:Drawing 11/08/02 12:15:30

Figure 5.8: Observer system

description below) and stored in a memory buffer of the simulation platform.
An observer reads that data and compares it with the expected data, which
is specified in a formatted text file (see Figure 5.9).

Figure 5.9 shows a portion of such a file, which is read by an individual

t[s] value

2.55 50.0

2.57 50.0

5.09 0

5.1 0

Figure 5.9: Example of expected data in a text file

observer. The format is as follows: the first column defines the simulated time
when the data has to be produced, and the second column defines the value
that has to be produced at that time. It is assumed, that a value between
two time instances of subsequent rows does not change (for future projects it
is planned to implement, for example, a linear interpolation algorithm, which
calculates values between two time instances). The time is relative to the

5.4. OBSERVER SYSTEM 123

time, when the simulation started.
The expected data can either be generated automatically by a probe, by

hand as far as the tester strictly adheres to the required text format, or a
combination of both. The observer writes the results of the comparison to
another text file.

Figure 5.10 shows the portion of a text file, which is generated by an indi-

Columns:

1 probe_nr

2 fail_mode: missedValue = -1,

missedTime = -2, omission = -3

3 expected_time [s]

4 allowed_time_delta [s]

5 observed_time [s]

6 expected_value

7 allowed_value_delta

8 observed_value

1 2 | 3 4 5 | 6 7 8

2 -1 | 2.55 0.001 2.55 | 50.0 0.001 62.33

2 -1 | 2.57 0.001 2.57 | 50.0 0.001 61.71

2 -1 | 5.09 0.001 5.09 | 0 0.001 10.0

2 -1 | 5.1 0.001 5.1 | 0 0.001 10.0

Figure 5.10: Example of an observer report file

vidual observer during a simulation session. The text file includes a descrip-
tion of each column, for example, probe number, expected time, expected
value, tolerances, and type of failure.

The master observer collects all results from its individual observers and
puts it together in a summary assessment of the system behavior. At the
present, the full functionality of a master observer, as it is described in Sec-
tion 3.10, is not implemented with Cierto VCC. The master observer should
implement a logical function that determines the correctness of the overall
system. Instead, the master observer in Figure 5.8 just appends report files
from all individual observers to one summary file, and signals whether the
system has passed or failed the test on its output. The system has passed
the test if all individual observers report no failure, otherwise the system has
failed the test.

Furthermore, the current implementation of the observer system is not
able to calculate expected signal data with a software program (oracle tech-
nique). Instead, all observers used in this case study work with the reference
technique (see Subsection 3.10 on page 76 for details on these observer tech-
niques).

124 5. BRAKE-BY-WIRE CASE STUDY

Figure 5.11 shows two probes at the outputs of a behavior block, which
models the functionality of a voter. A probe can be connected to any input
port, output port, or to a ‘viewport’ of a behavior block. Viewport is a term

Vote_State_Br
state_dbw_voted_ecu_p

states_br_des

status_vote_br

state_br_voted

go

Voter Probe `state_br_voted_RL'

Probe `status_vote_br_RL'

Diss_figures.Probes:Drawing 10/23/02 17:01:14

Figure 5.11: Voter with probes

of Cierto VCC and is used to get access to data of internal variables of a
behavior block during a simulation session.

A connected probe can either send the collected data to an individual
observer, or just trace data during a run of a simulation. In the latter case,
the data can be used to record expected data for an observer during a sim-
ulation, where no faults are injected and the BbW system model behaves as
specified. The data traced is stored in a formatted text file, that uses the
same format as shown in Figure 5.9 on page 122.

5.5 Fault Injection

The functionality of fault injection is implemented as a C++ program of the
Cierto VCC simulation model. The fault injection basically consists of three
elements:

1. an element that describes the faults,

2. an element that controls the fault injection, and

3. an element that injects the faults during a simulation session.

The functionality of the first element is implemented in a flat file format,
which describes all faults that happen during a simulation session. Fig-
ure 5.12 shows an example of such a file. The first two columns define at
what time the fault will occur and how long it will be present. The third
columns defines the element which behaves faulty during the specified period
of time. The two last column specifies how the fault will influence value and
time-tag of a signal. The abbreviation ‘n/a’ (not applicable) means that this

5.5. FAULT INJECTION 125

t[s] t+dt[s] location type parameter

0.01 0.10 memory_2 20 n/a

1.0 1.01 memory_1 30 n/a

2.5 2.8 memory_2 10 -1

Figure 5.12: Text file of a fault description

type or parameter is not applicable for this fault. The different fault type
values have the following meaning:

10: the value of a signal will be changed to the value of parameter.

20: the value of a signal will be delayed by a certain time. The delay time
is equal to the time interval dt when the fault is present.

30: the value of a signal cannot be changed (e.g., a memory cannot be written
anymore).

The second element of the fault injection is implemented in the function-
ality of the feeder (see Figure 5.8 on page 122). The feeder reads the fault
description file and stores all information, which are relevant in the actual
observation cycle into the memory buffer of the BbW test bench.

The third element is implemented as a fault injection module as an exten-
sion of architecture services of Cierto VCC. Originally, architecture services
of Cierto VCC only compute time delays, which are used in the performance
simulation to model the temporal behavior of a system (e.g., a time delay
that is caused by a processor executing a piece of software).

For the purpose of this case study, we extend those architecture services
with features so that a fault injection module can manipulate the value of
data, which is transferred from one behavior block to another.

At the present, the fault injection module cannot use architecture services
of Cierto VCC to change time-tags of a signal (to model time delays caused
by faults). The reason is, that for this purpose an interface to the Cierto
VCC simulation engine is not available to a user of Cierto VCC. As a result
of this shortcoming, time delays, which are caused by faults, are modelled
in this case study by additional blocks in the behavior diagram (the delay
blocks of Figure 5.5 (on page 115) are part of the fault injection as described
above).

To summarize, the fault injection technique, as proposed in Section 3.6,
could not be implemented with Cierto VCC completely. For instance, the
idea to have a layer between the application and architecture components

126 5. BRAKE-BY-WIRE CASE STUDY

with all its advantages (see text to Figure 3.8 on page 65) could not be im-
plemented. The reason is that, firstly, the simulation engine of Cierto VCC
does not allow to change time-tags of signals (as described above), and sec-
ondly, architecture services are not supposed to change values of signals. A
possible solution to these issues is to extend the architecture primitives of
Cierto VCC with additional fault models (in addition to the existing perfor-
mance model), to create an suitable interface to the simulation engine, and
to provide additional services that enable to change signal values. These fea-
tures would allow to avoid additional blocks in a behavior diagram for fault
injection.

5.6 Test Cases and Safety Arguments

The validation of the BbW system has to address the following safety-critical
functions:

• error detection and voting, and

• switching the mode of operation after error detection.

A failure in one of those functions can cause a hazard for the driver
because a failure may lead to a wrong clamp force, which either destabilizes
the vehicle’s dynamic behavior, or does not decelerate the vehicle in a critical
driving situation (e.g., emergency stop).

The following test scenarios are examples that the validation of those
safety-critical functions should cover:

• Error detection and voting:

– A system component produces incorrect signal values for more
than 12 ms.

– A system component does not produce any signal values for more
than 12 ms.

– A system component produces incorrect signal values for time
periods less than or equal to 12 ms (the BbW system has to
tolerate these values).

– A system component sends an incorrect state after an error has
been detected.

• Switching the mode of operation after error detection:

– Switch to the partial mode after the first fault.

5.6. TEST CASES AND SAFETY ARGUMENTS 127

– Switch to the emergency mode after the second fault.

– Switch to the safe mode after the third fault.

– Arrival of clamp force values at the actuator after the second fault.

The amount of test cases that one needs to consider for the validation
of the BbW system are huge. For instance, each test scenario described
above can be split into other test scenarios, if one considers different faults
that cause incorrect values or cause the switch to another operation mode,
and if one considers combinations of those scenarios. Moreover, the amount
of possible errors caused by faults of hardware elements or interference of
the BbW architecture increase the amount of test cases that need to be
considered.

During the preparation of this BbW cases study, we defined and exe-
cuted approximately fifteen test scenarios. Due to limited time and limited
resources, it was not possible to define and execute more test scenarios.

The following text describes exemplarily two test scenarios out of the
fifteen, which give useful insights into the BbW system design and the vali-
dation process. The case study illustrates how the tests are performed, and
how those techniques can be used for further experiments of a complete val-
idation of the BbW system. The two test scenarios are:

1. Reaction of the BbW system to a memory fault which is followed by
an actuator fault.

2. Reaction of the BbW system to two subsequent memory faults.

The test scenarios focus on the reaction of the BbW system to two sub-
sequent faults, because a system reaction to two subsequent faults is much
harder to evaluate than a system reaction to a single fault event. In complex
system designs, it is challenging for system designers to anticipate the system
reaction to such fault scenarios. This case study illustrates the methods and
techniques proposed in this thesis, which system designers can use to come
closer to achieving that goal, before the hardware is built.

Figure 5.13 illustrates a braking scenario of the BbW system, which is
basis of the two test scenarios described in this text. The pictured data is
produced by the BbW simulation model during a performance simulation
with Cierto VCC. The figure shows velocity, clamp force, and desired de-
celeration of the front left wheel during a braking scenario. The oscillation
of clamp force FL is the result of the oscillation of the input signal desired
deceleration. Note that in this simulation session, no faults are injected.

Due to the fact that vehicle dynamics are only rudimentary modelled
with Cierto VCC, the signals of the vehicle’s dynamic are more qualitative

128 5. BRAKE-BY-WIRE CASE STUDY

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

va
lu

e
am

pl
itu

de
/m

ax
im

al
V

al
ue

desired deceleration
clamp force FL
velocity wheel FL

Figure 5.13: Data from the front left wheel during a braking scenario

numbers rather than accurate values. This is acceptable, because it is not
purpose of the case study to validate algorithms of the BbW system that
control the dynamic of the vehicle.

5.6.1 Definition of Test Scenario 1: Actuator Fault af-
ter Memory Fault

The first test scenario for the BbW system uses the same stimuli as the
braking scenario of Figure 5.13, but with a memory fault followed by an
actuator fault:

• First fault: the DPRAM of front left brake unit can not be written
between 1.4 s ≤ time ≤ 1.7 s (transient fault).

• Second fault: the actuator of the front left wheel has a fault at time =
1.5 s and is out of operation from that point in time (permanent fault).

Note that the second fault occurs long after the first fault i.e., after the
maximal latency time of 12 ms has elapsed. Consequently, the BbW system
has to react according to the second fault.

5.7. EXPERIMENTAL RESULTS 129

5.6.2 Definition of Test Scenario 2: Two Subsequent
Memory Faults

The purpose of the second test scenario is to evaluate the reaction of the
BbW system to subsequent faults in two different DPRAMs:

• First fault: a transient fault in the DPRAM of the front left brake unit
during 1.0 s ≤ time ≤ 1.05 s.

• Second fault: a permanent fault in the DPRAM of the rear left brake
unit from time = 2.5 s.

The second test scenario aims to test the error detection mechanism of
the BbW system in presence of two subsequent faults in different brake units
of the BbW system (distributed nodes). The stimuli of the second scenario
is the same as of the first test scenario.

The Table 5.1 gives an overview of the test case specifications of the two
test scenarios.

5.6.3 Definition of the Safety Arguments

The safety arguments are derived from the safety functions requirements
specification (see Subsection 5.2.2 on page 105) and defined as follows:

Safety argument 1: In case of a fault of one of the actuators, the remaining
actuators have to be used to maintain the desired deceleration.

Safety argument 2: The BbW system has to signal to the driver each de-
tected error (driver warning).

Safety argument 3: After the first fault, the system has to switch to the
partial mode.

Safety argument 4: After the second fault, the system has to apply a con-
stant deceleration to the vehicle (emergency mode).

5.7 Experimental Results

The experimental results are produced by several performance simulations
with the tool Cierto VCC. The graphical user interface of Cierto VCC after
initializing the BbW simulation model is shown in Figure 5.14.

130 5. BRAKE-BY-WIRE CASE STUDY

Test scenario 1 Test scenario 2

ID 1 2
TP safety argument no. 1 safety argument no. 2, 3, and 4
CaS module: ECU FL modules: ECU FL, ECU RL.

signals: clamp force FL, signals: brake state voted FL,
clamp force RL, driver warning signal FL,
status actuator FL, brake state voted RL,
brake state voted FL. driver warning signal RL.

TPP after system initialization after system initialization
IS stimuli1.txt stimuli2.txt
EOS expectedData1.txt expectedData2.txt
FM faultsFile1.txt faultsFile2.txt
DL detection of fault no. 1: ≤ 1.412 s reaction to fault no. 1: ≤ 1.016 s

reaction to fault no. 2: ≤ 1.516 s reaction to fault no. 2: ≤ 2.516 s

TD 0 ≤ time[s] ≤ 3 0 ≤ time[s] ≤ 3
FaPC wrong value or missed deadline wrong value or missed deadline

ID: Test scenario identification number
TP: Test purpose
CaS: Component and signal
TPP: Test preparation
IS: Input signal
EOS: Expected output signal
FM: Fault model
DL: Deadline
TD: Test duration
FaPC: Fail and pass criterion

Table 5.1: Test case table of the two test scenarios

5.7.1 Results of Test Scenario 1

Figure 5.15 shows the result of two simulation sessions. The charts show
the clamp force values computed for the front left and rear left wheels, and
the desired vehicle deceleration forced by the driver. They illustrate how the
BbW system reacts to the faults of the first test scenario.

With the actuator fault alone (Figure 5.15(a)), the reaction of the BbW
system is correct. Shortly after the occurrence of the fault at time = 1.5 s,
the clamp force value computed for the faulty front left actuator drops to
zero. The respective value for the rear left actuator increases to compensate
the actuator loss and to maintain the desired deceleration during this fault.
In this first part of test scenario 1, the BbW system meets the temporal and
functional requirements that are defined in Table 5.1.

With the memory fault followed by the actuator fault (Figure 5.15(b)),

5.7. EXPERIMENTAL RESULTS 131

Figure 5.14: Graphical user interface of Cierto VCC (screenshot)

the BbW system does not react correctly and violates safety argument no.
1. Firstly, it does not detect the memory fault at time = 1.4 s. Secondly,
the BbW system does not react correctly to the subsequent actuator fault at
time = 1.5 s with an increased clamp force value for the rear left actuator, as
long as the memory fault is present (up to time = 1.7 s). The BbW system
produces the increased clamp force values too late. This is due to the fact,
that the actuator status value cannot be changed from ‘not faulty’ to ‘faulty’
during the presence of the DPRAM fault.

Figure 5.16(a) shows the location of the DPRAM of the BbW hardware
architecture of the Cierto VCC simulation model. The actuator model is
part of the BbW test bench and the actuator fault is modelled within that
test bench.

Figure 5.16(b) is a print-out of the text file faultsFile1.txt that describes at
what time faults of the first test scenario are active, which system components
are affected, and the type of the faults.

Figure 5.17 pictures the data of two state variables of the BbW system.
The data is collected by probes such as shown in Figure 5.11 on page 124.
The variable status actuator FL indicates the actual status of the actuator
of the front left wheel. A value of 1 means the actuator FL is functioning
correctly, a value of 3 means the actuator is defect and out of operation.

132 5. BRAKE-BY-WIRE CASE STUDY

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

va
lu

e
am

pl
itu

de
/m

ax
im

al
V

al
ue

desired deceleration
clamp force FL
clamp force RL

begin actuator fault

(a) Actuator fault only

0 0.5 1 1.5 1.7 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

va
lu

e
am

pl
itu

de
/m

ax
im

al
V

al
ue

desired deceleration
clamp force FL
clamp force RL

end memory fault

begin actuator fault

begin memory fault

(b) Memory fault, followed by the actuator fault of (a)

Figure 5.15: Results from two simulation sessions: (a) expected clamp forces
after an actuator fault and (b) delayed clamp forces after an actuator fault
in combination with a memory fault

5.7. EXPERIMENTAL RESULTS 133

Memory Fault

ECU_FL

Scheduler

Internal Bus

Processor

TTP
Controller

TTP
ControllerMemory

TTP
Controller

Diss_figures.memFault:Drawing 11/08/02 12:30:46

(a)

t[s] t+dt[s] location type parameter

1.4 1.7 DPRAM_FL 30 n/a

1.5 3.0 ACTUATOR_FL n/a n/a

(b)

Figure 5.16: First test scenario: (a) location of the faulty DPRAM and (b)
fault description of both faulty system components (faultsFile1.txt)

The variable brake state voted FL holds the value of the global state of
the BbW system, on which all four brake units have agreed on. The value
of the global state indicates the mode of BbW system operation. A value
of 0 indicates the ‘base mode’, and a value of 3 indicates the ‘partial mode’
of the BbW system. The vote is based on the value of the variable status
actuator FL broadcasted by the front left brake unit. The front left brake
unit broadcasts the value of status actuator FL by writing it to the DPRAM.
The TTP controller reads that value and sends it to the other brake units.

Since the DPRAM cannot be written during the time period of 1.4 s ≤
time ≤ 1.7 s, all brake units vote correctly but the vote is based on a wrong
input value (i.e., the brake units use the old value of the variable status
actuator FL which is 1).

In the first test scenario, the BbW system does not fulfill its requirements,
because the BbW system does not detect the DPRAM fault and does not
maintain the desired deceleration. The BbW system violates all safety ar-
guments (see Subsection 5.6.3 on page 129). As a consequence of the BbW
system failure, the vehicle’s dynamic might be destabilized in a critical driv-
ing situation.

An analysis of the problem reveals that the BbW system cannot detect
any error caused by certain types of memory faults. Those kind of memory
faults are those which prevent the software from updating variable values.

As a consequence of this experiment, the BbW system design must be
enhanced by appropriate additional error detection mechanism, otherwise
the BbW system will not pass the validation. For instance, a way to solve
this problem could be to add a time stamp that indicates at what time the
value was produced to each state or status variable. In this case, the brake

134 5. BRAKE-BY-WIRE CASE STUDY

1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time [s]

va
lu

e
st

at
e

va
ria

bl
e

status actuator FL
brake state voted FL

begin actuator fault end memory fault

Figure 5.17: Delayed brake state due to the memory fault

state computation modules of all brake units notice that the value of status
actuator FL is not updated. The modules can assume that the actuator FL
is out of operation and compute the correct value 3 for the variable brake
state voted FL.

5.7.2 Results of Test Scenario 2

Figure 5.18 shows the results of the simulation session with the first fault of
the DPRAM of the front left brake unit at time = 1.0 s. The fault causes a
change of a signal value to −1 that is sent from the front left brake unit to the
other brake units (the signal conveys the value of a state variable). The error
detection function detects that error and sends a signal to a diagnosis unit
of the BbW system, which is able to warn the driver about the hazardous
event. As Figure 5.18 shows, the signal driver warning signal FL conveys a
value of 2 after time = 1.005 s, which indicates that an error in the front
left brake has been detected by the BbW system. This reaction of the BbW
system is correct (see safety argument no. 2 in Subsection 5.6.3 on page 129).

Although the first part of the BbW system’s reaction is correct, the second
signal brake state voted FL in Figure 5.18 indicates that the BbW system does
not switch the mode after the first fault. The signal brake state voted FL is
sent by the front left brake unit and indicates the mode of the BbW system

5.7. EXPERIMENTAL RESULTS 135

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06
−1

−0.5

0

0.5

1

1.5

2

2.5

3

time [s]

va
lu

e
st

at
e

va
ria

bl
e

driver warning signal FL
brake state voted FL

driver warning after the first fault

Figure 5.18: Driver warning and brake state signal after the first fault

on which all brake units have agreed on. The value of that signal should be
3 (partial mode) after the first fault, but it still has the value 0 (base mode)
after the first fault. This reaction of the BbW system is not correct. The
BbW system behavior violates safety argument no. 3 (see Subsection 5.6.3
on page 129).

Figure 5.19 shows the results of the simulation session in which the second
fault at time = 2.5 s is injected. This time, the signals of Figure 5.19 are sent
by the rear left brake unit, which is also the location of the faulty DPRAM of
the second fault. The signal driver warning signal RL indicates the first fault
of the front left brake unit until time = 2.5 s (the signal conveys the value
of 2). In the next cycle at time = 2.504 s the value of that signal is 7, which
indicates that the BbW system has detected an error in the front left brake
unit followed by a second error in the rear left brake unit. This reaction of
the BbW system is correct (see safety argument no. 2 in Subsection 5.6.3 on
page 129).

Looking at the signal brake state voted RL of Figure 5.19, the second test
scenario reveals the second failure of the BbW system in test scenario 2.

The fault in the DPRAM of the rear left brake unit at time = 2.5 s
changes all input values of the voter to −1. In case of this second fault, it
is assumed that all cells of the DPRAM, where the input values of the voter

136 5. BRAKE-BY-WIRE CASE STUDY

2.46 2.47 2.48 2.49 2.5 2.51 2.52 2.53 2.54 2.55 2.56
−2

−1

0

1

2

3

4

5

6

7

8

9

time [s]

va
lu

e
st

at
e

va
ria

bl
e

driver warning signal RL
brake state voted RL

driver warning after the second fault

mode switch after the second fault

Figure 5.19: Driver warning and brake state signal after the second fault

are stored, hold the hexadecimal value ‘FF’ (integer value of −1) during
the fault. The majority voter of brake unit RL votes correct but on wrong
input values, which leads to the wrong brake state and consequently to wrong
clamp forces at the rear left brake unit (no constant deceleration). The BbW
system behavior violates safety argument no. 1, 3, and 4 (see Subsection 5.6.3
on page 129).

Figure 5.20 shows the data produced by the observer, which assessed the
data of the signal brake state voted RL (compare Figure 5.18 and Figure 5.19).
The measured data indicates that the BbW system did not meet the safety
requirements during this test scenario. After the first fault at time = 1.0 s
the value should be 3 (partial mode) after a latency time of 16 ms but the
measured value is 0. After the second fault at time = 2.5 s the value should
be 5 (emergency mode) but the BbW system does not detect the second
fault either and produces the wrong value −1 at time = 2.504 s and from
that time onwards. The symbols ‘. . . ’ in Figure 5.20 indicate that the data
produced in the subsequent cycles are identical with to the data produced in
the previous cycles.

Figure 5.21 is a print-out of the text file faultsFile2.txt that describes the
two subsequent faults of the second test scenario.

The second test scenario reveals several gaps in the safety-critical soft-

5.8. DISCUSSION 137

Columns:

1 probe_nr: state_br_voted_RL = 1

2 fail_mode: missedValue = -1,

missedTime = -2, omission = -3

3 expected_time [s]

4 allowed_time_delta [s]

5 observed_time [s]

6 expected_value

7 allowed_value_delta

8 observed_value

1 2 | 3 4 5 | 6 7 8

1 -1 | 1.016 0.001 1.016 | 3 0 0

1 -1 | 1.02 0.001 1.02 | 3 0 0

1 -1 | 1.024 0.001 1.024 | 3 0 0

...

1 -1 | 2.496 0.001 2.496 | 3 0 0

1 -1 | 2.5 0.001 2.5 | 3 0 0

1 -1 | 2.504 0.001 2.504 | 3 0 -1

1 -1 | 2.508 0.001 2.508 | 3 0 -1

1 -1 | 2.512 0.001 2.512 | 3 0 -1

1 -1 | 2.516 0.001 2.516 | 5 0 -1

1 -1 | 2.52 0.001 2.52 | 5 0 -1

...

Figure 5.20: Results from observing the signal brake state voted RL

t[s] t+dt[s] location type parameter

1.0 1.05 DPRAM_FL 10 -1

2.5 3.0 DPRAM_RL 10 -1

Figure 5.21: Memory fault description (faultsFile2.txt)

ware of the BbW system. In the next revision of the BbW system design, the
designers need to address the failures revealed by both test scenarios. For
instance, a possible way to solve this design problem could be to do a con-
sistency check between the driver warning signal and the state of the BbW
system. Another solution could be to protect each state variable by a check-
sum algorithm. Such a technique increases the probability that corrupted
values can be detected by the BbW system.

5.8 Discussion

The experimental results of this case study show that the methods and tech-
niques proposed in this thesis can be used to validate safety related proper-
ties of a safety-critical distributed real-time system. The two test scenarios

138 5. BRAKE-BY-WIRE CASE STUDY

revealed failures of a BbW system, before any hardware was built. The
designers of the BbW system take those experimental results and use them,
enriched with more test scenarios, for the next revision of BbW system. Such
an iterative process of design and validation gives a development team more
confidence that their product will meet its requirements, before the system
is built.

Note that a validation by simulation of a BbW system will never re-
place tests in a laboratory (e.g., hardware-in-the-loop test), or tests on the
street with the real system after it is integrated into an automobile. But
the experiments in the virtual environment are a good preparation for those
tests and are complementary to those tests. A good preparation, because
a system design can be tested, for example, with injected anticipated faults
that the fault-tolerant system has to tolerate. The tests are complementary,
because a system behavior can be tested under conditions, which are too
expensive or impossible with the real system in its real environment (e.g.,
faults in combination with high vehicle velocity, or faults of memories, which
are unaccessible in the real hardware).

For this case study we used the commercial tool Cierto VCC and extended
it with essentials for validation of a distributed real-time system (e.g., with
fault injection and an observer system). Even though the product version 2.1
of Cierto VCC has some shortcomings, the tool supports the distinction be-
tween software programs and hardware elements, which are used to execute
those software programs. This separation enables a development team to
study influences of safety-critical components (hardware and software com-
ponents) on the system’s behavior as shown in the experiments of this case
study.

The software estimation technique of Cierto VCC was not used in this case
study, because it was not possible in a reasonable time to create a executable
version of the BbW simulation model that uses this estimation technique.
However, this does not affect the quality of the experimental results, because
the validation process was focused on values of the results produced by the
BbW system. In a first approach we assumed that the temporal behavior of
the BbW system is imposed by the cycle time of TTP, and that response times
of software tasks are always within those cycles. An analysis and simulation
to determine wether or not that assumption is fulfilled by the BbW system
is left to future research.

It has to be mentioned that the modelling effort with Cierto VCC of
complex systems can be huge, in case that models of hardware architectures
do not exist, and in case that software programs under consideration can not
be imported into Cierto VCC automatically. Other aspects, which actually
have increased the modelling effort of this case study are:

5.8. DISCUSSION 139

• The architecture services of Cierto VCC are not practical to use for
fault injection and observation purposes, because necessary interfaces
to the simulation engine are not available (e.g., an interface which can
be used to influence and observe scheduling of software tasks).

• The architecture elements of an architecture diagram can not be located
during compile time for fault injection purposes, because an access to
internal data structures of Cierto VCC architecture elements is not
supported by the tool.

For modelling the BbW system we needed approximately two person-
months, the implementation of fault injection, observer system, and memory
buffer management took approximately eight person-months, and the effort
to create and run fifteen test cases was approximately one-person month (in
total eleven-person months). Note that the fault injection, observer system,
and memory buffer management can be reused in other projects.

The BbW system’s simulation of 3 seconds (test scenario 2) takes about
1560 seconds (450 seconds in the background mode, in which the user cannot
interact with Cierto VCC during the simulation session) on a Windows NT
4.0 PC (Personal Computer) with a 850 MHz Pentium III CPU and 256
megabyte memory. Thus, a simulation of the BbW system in a realistic
braking scenario of 120 seconds would approximately take 18000 seconds or
5 hours (background mode assumed). This performance is acceptable, if
someone runs the simulation overnight. Whereas the same experiment in the
interactive mode would take more than 17 hours, which is not acceptable.

140 5. BRAKE-BY-WIRE CASE STUDY

Chapter 6

Conclusion and Future Work

This thesis presents techniques and methods that use simulation to validate
a safety-critical distributed real-time system. The input signals stimulate
models of hardware and software components of the system in a way that
the system’s behavior can be evaluated during realistic and safety relevant
scenarios. An important element of the proposed validation is the injection
of faults of hardware elements during these scenarios. During the simulation,
an observer system assesses the system’s behavior and reports any failure of
the system based on defined pass and fail criteria derived from the safety
requirements. This allows a validation of the hardware and software design
of a safety-critical real-time system in an early development phase, before a
hardware is built.

The proposed validation in this thesis is part of the design and devel-
opment process of distributed safety-critical real-time systems and the tech-
niques and methods contribute to a systematic validation of those systems.
However, a validation is not an isolated activity. Rather, the analyses of the
design and development process that aim to ensure the safety of the sys-
tem (e.g., hazard and risk analysis, FMEA, FTA, real-time analysis, etc.)
complement the validation process. The knowledge from these analyses give
confidence in the validation of the system that

• the test scenarios of the validation cover all relevant safety related cases,
and that

• the system meets its specification under the assumption that no faults
occur (e.g., the correctness of the system’s temporal behavior).

The case study in this thesis illustrates how a design and development
team can take advantage of the validation in an early development stage. The
test scenarios of the case study reveal that the BbW system does not meet

141

142 6. CONCLUSION AND FUTURE WORK

its requirements. Operating the BbW system may lead to severe hazards in
case it is built and put into service as proposed by the development team.

An implementation of validation techniques with Cierto VCC and the case
study are showing that the tool has the potential to be used as a simulation
platform for the validation of a safety-critical system. However, the product
version 2.1 of Cierto VCC does not cover the essentials for validation as
described in Chapter 3. We had to extend the tool with features to make a
validation possible. The effort for building these features and building the
BbW model was approximately ten person-months.

Through the results of the case study in this thesis, the tool supplier
and certain users of Cierto VCC have realized that fault modelling and fault
injection are critical in the validation of a safety-critical distributed real-time
system. Based on those results, the tool supplier of Cierto VCC has launched
an implementation of a fault injection facility of Cierto VCC, inspired by the
fault injection technique presented in this thesis.

The future work should concentrate on building a simulation platform
for validating distributed real-time systems, that supports all essentials as
described in Chapter 3. This work should emphasize on developing features
like fault injection, fault models, and observer system in such a way that they
are available as ‘plug-and-play’ tools for the validation of an electronic sys-
tem. The simulation platform should have the ability to import a simulation
model (i.e., a functional network) from other simulation environments. The
simulation platform should have a verification facility, which ensures that the
simulation of the imported model produces the same results as in the simula-
tion environment from where the model is imported. Furthermore, a future
simulation platform should support a strict distinction between application
components, architecture components, and application services as described
in Section 3.2.

This thesis presents fault models of hardware elements. An idea for fu-
ture work is to extend this concept with fault models which cover design
faults of software functions. These fault models could influence the system’s
behavior in the same manner as fault models of hardware elements do, by
changing values and time-tags of signals. One difference is that a software
fault will always be permanent over time. With these new technique, one
could evaluate the robustness of a fault-tolerant system architecture against
software (design) faults.

Another idea for future work is to use the knowledge and the results
acquired from the validation in the simulation environment, and use them
in the validation of the realized system in its physical environment, after
the hardware is built. In that context, the designed observer system could
observe and assess signals that are produced by the physical system. The

143

signals to be observed, structure of the observer system, and fail and pass
criteria are already defined in the simulation environment and can be reused
for the validation in the physical environment. For instance, the observer
system could report whether the ‘real-world test’ covers test scenarios, which
were checked in the simulation environment, and whether the system behaves
as expected in the physical environment as well (e.g., the system’s reaction
to faults that occur naturally and are not artificially injected). Similarly, the
test scenarios in the simulation environment could be enriched with scenarios
of the test in the physical environment, inclusive faults that occur in the
physical environment but which are not injected in the simulation yet. For
instance, those test scenarios could be used to perform a regression test with
the simulation platform after a change in the design of the system.

The observer system could also be used in a future work to develop di-
agnostic capabilities. Since the observer system ‘knows’ how system compo-
nents have to react in certain scenarios, this knowledge could be used as a
basis for developing a built-in diagnosis system, or for the diagnosis of the
system at the service station.

144 6. CONCLUSION AND FUTURE WORK

Glossary

Availability Availability is a property of the system with respect to the
readiness for usage. The reliability of a system is the probability
that the system will be up and running and able to deliver services
correctly at any given time (see page 8).

Behavior of a real-time system The behavior of a real-time system is
what the system actually does [Lap92, p. 8]. It delivers services
to its environment or to another system, whereas a service imple-
ments the system function. A system function is what “the system
is intended to do, and is described by the functional specification”
[ALR01, p. 2] (see page 7).

Distributed real-time system A distributed real-time system is a set of
real-time systems (nodes) that interact with each other in order
to fulfill common task. The nodes are connected by a “real-time
communication network” [Kop97, p. 2] (see page 7).

Error An error is a part of the system state, which is different to its
(specified) valid state [LA90, p. 41] (see page 13).

Fail silent behavior A system which produces in both the value and in the
time domain either the correct service or no service. The system
is “quiet” in case it cannot deliver the correct service [Kop97,
p. 121] (see page 14).

Fail-safe behavior The system maintains its integrity while accepting a
temporary halt in its operation [BW01, p. 107–108] (see page 23).

Failure A failure in a system is an event that occurs when the actual be-
havior of the system starts to deviate from the intended behavior
(described in the system’s specification) [BW01, p. 103], [Lap92,
p. 4] (see page 13).

145

146 GLOSSARY

Fault A fault is the “adjudged or hypothesized” cause of an error (→
error) [JKK+01, p. 21], [Lap92, p. 4] (see page 10).

Full fault tolerance The system continues to operate in the presence of
faults with no significant loss of functionality or performance
[BW01, p. 107–108] (see page 23).

Graceful degradation (or fail-soft) The system continues to operate in
the presence of errors, accepting a partial degradation of function-
ality or performance during recovery or repair [BW01, p. 107–108]
(see page 23).

Real-time system A real-time system has to interact with its environment
in real-time. The correctness of a real-time system depends not
only on the logical result of the computation but also on the time
at which the results are produced [Sta88] (see page 6).

Reliability Reliability is a property of the system with respect to the conti-
nuity of service. The reliability is the probability that the system
correctly delivers services as expected by the user over a given
period of time (see page 8).

Safety Safety is a property of the system with respect to the avoidance
of catastrophic consequences. A system can be seen as safe to
a certain degree, if it is unlikely that the system will endanger
human life or the environment (see page 8).

Safety-critical system A system is called ‘safety-critical’ if an incorrect
service of the system may result in injury, loss of live, or major
environmental damage (see page 9).

Testing Testing is the process used to verify (→ verification) or validate
(→ validation) a system or its components [Sto96, p. 309–310] (see
page 24).

Validation Validation is the process of confirming that the specification of
a phase, or the complete system, is appropriate and is consistent
with the user or customer requirements [Sto96, p. 309–310] (see
page 24).

Verification Verification is the process of determining whether the output
of a life-cycle phase fulfills the requirements specified by the pre-
vious phase [Sto96, p. 309–310] (see page 24).

Bibliography

[AB02] Cecilia Albert and Lisa Brownsword. Evolutionary Pro-
cess for Integrating COTS-Based Systems (EPIC) — Build-
ing, Fielding, and Supporting Commercial-off-the-Shelf (COTS)
Based Solutions. Technical Report CMU/SEI-2002-TR-
005, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, November 2002. Avail-
able at http://www.sei.cmu.edu/publications/documents/
02.reports/02tr005.html; accessed on January 15, 2003.

[Ade02] Astrit Ademaj. A Methodology for Dependability Evaluation of
the Time-Triggered Architecture Using Software Implemented
Fault Injection. In Proceedings of the 4th European Depend-
able Computing Conference (EDCC-4), volume 2485 of Lecture
Notes in Computer Science, pages 172–190. Springer-Verlag,
2002.

[ADM+00] Sanket Amberkar, Joseph G. D’Ambrosio, Brian T. Murray,
Joseph Wysocki, and Barbara J. Czerny. A System-Safety Pro-
cess For By-Wire Automotive Systems. In SAE 2000 World
Congress, March 2000, Detroit, Michigan, USA. Society of Au-
tomotive Engineers (SAE), 2000.

[ALR01] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell.
Fundamental Concepts of Dependablity. Technical Report CS-
TR-739, Department of Computer Science, University of New-
castle upon Tyne, 2001. Available at http://www.cs.ncl.ac.
uk/research/pubs/2001.html; accessed on August 22, 2002.

[ATJ01] Kristina Ahlström, Jan Torin, and Per Johannessen. De-
sign Method for Conceptual Design of By-Wire Control: Two
Case Studies. In Proceedings of the Seventh IEEE Interna-
tional Conference on Engineering of Complex Computer Sys-

147

http://www.sei.cmu.edu/publications/documents/02.reports/02tr005.html
http://www.sei.cmu.edu/publications/documents/02.reports/02tr005.html
http://www.cs.ncl.ac.uk/research/pubs/2001.html
http://www.cs.ncl.ac.uk/research/pubs/2001.html

148 BIBLIOGRAPHY

tems (ICECCS 2001), pages 133–143. IEEE Computer Society,
2001.

[Bal01] Felice Balarin et al. Metropolis: Design Environment for Hetero-
geneous Systems. World Wide Web, http://www.gigascale.
org/metropolis/, accessed on February 5, 2002, Document
from January 2001.

[BAS+02] Sara Blanc, Astrit Ademaj, Hakan Sivencrona, Pedro Gil, and
Jan Torin. Three Different Fault Injection Techniques Com-
bined to Improve the Detection Efficiency for Time-Triggered
Systems. In Proceedings of the 5th Design & Diagnostic of Elec-
tronic Circuits & Systems (DDECS 2002), April 17–19, Brno,
Czech Republic, 2002.

[Bau96] Horst Bauer et al. (editors). AUTOMOTIVE HANDBOOK.
Robert Bosch GmbH, Stuttgart, Germany, fourth edition, 1996.

[BBB+99] Tom Bienmüller, Jürgen Bohn, Henning Brinkmann, Udo
Brockmeyer, Werner Damm, Hardi Hungar, and Peter Jansen.
Verification of automotive control units. In Ernst-Rüdiger
Olderog and Bernhard Steffen, editors, Correct System Design,
Recent Insight and Advances, volume 1710 of Lecture Notes in
Computer Science, pages 319–341. Springer-Verlag, 1999.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry
Hsieh, Attila Jurecska, Luciano Lavagno, Claudio Passerone,
Alberto Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki,
and Bassam Tabbara. HARDWARE-SOFTWARE CO-
DESIGN OF EMBEDDED SYSTEMS: The POLIS Approach.
Kluwer Academic Publishers, Boston et al., 1997.

[BCRZ99] Armin Biere, Edmund M. Clarke, Richard Raimi, and Yunshan
Zhu. Verifying Safety Properties of a PowerPC Microproces-
sor Using Symbolic Model Checking without BDDs. In Nicolas
Halbwachs and Doron Peled, editors, Computer Aided Verifi-
cation, 11th International Conference, CAV ’99, Proceedings,
volume 1633 of Lecture Notes in Computer Science, pages 60–
71. Springer-Verlag, July 1999.

[BCSS90] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek.
Fault Injection Experiments Using FIAT. IEEE Transactions
on Computers, 39(4):582–586, April 1990.

http://www.gigascale.org/metropolis/
http://www.gigascale.org/metropolis/

BIBLIOGRAPHY 149

[BDD+92] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs,
Thomas F. Gritzner, and Rainer Weber. The Design of Dis-
tributed Systems — An Introduction to FOCUS. Technical
Report TUM-I9202, Technische Universität München, Institut
für Informatik, 1992. Available at http://www4.informatik.

tu-muenchen.de/reports/TUM-I9202.html; accessed on Jan-
uary 2, 2003.

[Bei90] Boris Beizer. Software Testing Techniques. Van Nostrand Rein-
hold, New York, second edition, 1990.

[Bei95] Boris Beizer. Black-Box Testing: Techniques for Functional
Testing of Software and Systems. John Wiley & Sons, New
York et al., 1995.

[Bel03] Bell Laboratories, Lucent Technologies. VeriSoft. World Wide
Web, http://www1.bell-labs.com/project/verisoft/, ac-
cessed on January 5, 2003.

[Ber02] Ivan Berger. Can You Trust Your Car? IEEE Spectrum,
39(4):40–45, April 2002.

[BFSVT00] M. Baleani, A. Ferrari, A. Sangiovanni-Vincentelli, and
C. Turchetti. HW/SW Codesign of an Engine Management
System. In Proceedings of the conference on Design, Automa-
tion and Test in Europe (DATE 2000), pages 263–269. ACM
Press, 2000.

[BH98] R. Belschner and B. Hedenetz. Brake-by-wire without Mechani-
cal Backup by Using a TTP-Communication Network. In Inter-
national Congress & Exposition, February 1998, Detroit, Michi-
gan, USA. Society of Automotive Engineers (SAE), 1998.

[BLSS00] Peter Braun, Heiko Lötzbeyer, Bernhard Schätz, and Oscar Slo-
tosch. Consistent Integration of Formal Methods. In Tools and
Algorithms for the Construction and Analysis of Systems, vol-
ume 1785 of Lecture Notes in Computer Science, pages 48–62.
Springer Verlag, 2000.

[BMSU97] Nikolaj Bjørner, Zohar Manna, Henny Sipma, and Tomás
Uribe. Deductive Verification of Real-Time Systems Us-
ing STeP. In Miquel Bertran and Teodor Rus, editors,

http://www4.informatik.tu-muenchen.de/reports/TUM-I9202.html
http://www4.informatik.tu-muenchen.de/reports/TUM-I9202.html
http://www1.bell-labs.com/project/verisoft/

150 BIBLIOGRAPHY

Transformation-Based Reactive Systems Development, 4th In-
ternational AMAST Workshop on Real-Time Systems and Con-
current and Distributed Software, ARTS’97, Proceedings, vol-
ume 1231 of Lecture Notes in Computer Science, pages 22–43.
Springer-Verlag, May 1997.

[Boe79] Barry W. Boehm. Software Engineering: R&D Trends and De-
fense Needs. In P. Wegner, editor, Research Directions in Soft-
ware Technology, pages 44–86. MIT Press, Cambridge, Mas-
sachusetts, USA, 1979.

[Boe81] Barry W. Boehm. SOFTWARE ENGINEERING ECO-
NOMICS. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(5):61–72, May 1988.

[BP00] A. Burns and P. Puschner. Guest Editorial: A Review of Worst-
Case Execution-Time Analyses. REAL-TIME SYSTEMS, The
International Journal of Time-Critical Computing Systems,
Kluwer Academic Publishers, 18(2/3):115–128, May 2000.

[Bre00] Max Breitling. Modeling Faults of Distributed, Reactive Sys-
tems. In Mathai Joseph, editor, Formal techniques in real-
time and fault-tolerant systems: 6th International Symbosium,
FTRTFT 2000, pages 59–69, Pune, India, 20–22 September
2000. Springer-Verlag.

[Bre01a] Max Dieter Breitling. Formale Fehlermodellierung für
verteilte reaktive Systeme (Formal Modeling of Faults for Dis-
tributed Reactive Systems). Dissertation, Fakultät für Infor-
matik der Technischen Universität München, 2001. Avail-
able at http://tumb1.biblio.tu-muenchen.de/publ/diss/

in/2001/breitling.html; accessed on January 2, 2003.

[Bre01b] Elizabeth A. Bretz. By-Wire Cars Turn the Corner. IEEE
Spectrum, 38(4):68–73, April 2001.

[Bun97] Bundesministerium des Inneren, Koordinierungs- und Be-
ratungsstelle der Bundesregierung für Informationstechnik in
der Bundesverwaltung (ed.). Entwicklungsstandard für IT-
Systeme des Bundes, June 1997. Available at http://www.

v-modell.iabg.de/; accessed on August 22, 2002.

http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2001/breitling.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2001/breitling.html
http://www.v-modell.iabg.de/
http://www.v-modell.iabg.de/

BIBLIOGRAPHY 151

[But97] Giorgio C. Buttazzo. HARD REAL-TIME COMPUTING SYS-
TEMS: Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, Boston, Massachusetts, USA,
1997.

[BW01] Alan Burns and Andy Wellings. Real-Time Systems and Pro-
gramming Languages: Ada 95, Real-time Java and Real-Time
POSIX. Addison-Wesley, Harlow, England et al., third edition,
2001.

[Cad01] Cadence Design Systems, Inc., San Jose, California, USA. Vir-
tual Component Co-Design, Product Documentation, Version
2.1, March 2001.

[Cad02] Cadence Design Systems, Inc. Cadence Virtual Component Co-
Design (VCC) Environment, 2002. The white paper is available
at http://www.cadence.com/datasheets/vcc_environment.

html; accessed on August 30, 2002.

[Car03] Carnegie Mellon University, Model Checking Group. The
SMV System. World Wide Web, http://www-2.cs.cmu.edu/
~modelcheck/smv.html, accessed on January 3, 2003.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia,
Fausto Giunchiglia, Marco Pistore, Marco Roveri, Roberto Se-
bastiani, and Armando Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Computer Aided Verification,
14th International Conference, CAV 2002, Proceedings, volume
2404 of Lecture Notes in Computer Science, pages 359–364.
Springer-Verlag, July 2002.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia,
and Marco Roveri. NuSMV: A New Symbolic Model Verifier.
In Nicolas Halbwachs and Doron Peled, editors, Computer Aided
Verification, 11th International Conference, CAV ’99, Proceed-
ings, volume 1633 of Lecture Notes in Computer Science, pages
495–499. Springer-Verlag, July 1999.

[CCH+99] Michel Cukier, Ramesh Chandra, David Henke, Jessica Pistole,
and William H. Sanders. Fault Injection Based on a Partial
View of the Global State of a Distributed System. In Proceedings

http://www.cadence.com/datasheets/vcc_environment.html
http://www.cadence.com/datasheets/vcc_environment.html
http://www-2.cs.cmu.edu/~modelcheck/smv.html
http://www-2.cs.cmu.edu/~modelcheck/smv.html

152 BIBLIOGRAPHY

of the 18th IEEE Symposium on Reliable Distributed Systems,
pages 168–177. IEEE, 1999.

[CGH+93] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh
Jha, David E. Long, Kenneth L. McMillan, and Linda A. Ness.
Verification of the Futurebus+ Cache Coherence Protocol. In
David Agnew, Luc J. M. Claesen, and Raul Camposano, edi-
tors, CHDL’93: Proceedings of the 11th International Confer-
ence on Computer Hardware Description Languages and their
Applications, volume A-32 of IFIP Transactions, pages 15–30.
North-Holland, April 1993.

[CGP02] Satish Chandra, Patrice Godefroid, and Christopher Palm. Soft-
ware Model Checking in Practice: An Industrial Case Study. In
Proceedings of the 24th International Conference on Software
Engineering (ICSE 2002), pages 431–441. ACM Press, 2002.

[CI92] G. S. Choi and R. K. Iyer. FOCUS: An Experimental Envi-
ronment for Fault Sensitivity Analysis. IEEE Transactions on
Computers, 41(12):1515–1526, December 1992.

[CLCS00] Ramesh Chandra, Ryan M. Lefever, Michel Cukier, and
William H. Sanders. Loki: A State-Driven Fault Injector for Dis-
tributed Systems. In Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN 2000), pages
237–242. IEEE, 2000.

[CMS98] João Carreira, Henrique Madeira, and João Gabriel Silva. Xcep-
tion: A Technique for the Experimental Evaluation of Depend-
ability in Modern Computers. IEEE Transactions on Software
Engineering, 24(2):125–136, February 1998.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal Methods:
State of the Art and Future Directions. ACM Computing Sur-
veys (CSUR), 28(4):626–643, 1996.

[Dae97] Wilfried Daehn. Testverfahren in der Mikroelektronik: Metho-
den und Werkzeuge. Springer-Verlag, Berlin et al., 1997.

[Dep03] Department of Informatics at the Technische Universität
München. THE AUTOFOCUS HOMEPAGE. World
Wide Web, http://autofocus.informatik.tu-muenchen.

de/index-e.html, accessed on January 2, 2003.

http://autofocus.informatik.tu-muenchen.de/index-e.html
http://autofocus.informatik.tu-muenchen.de/index-e.html

BIBLIOGRAPHY 153

[ETA99] ETAS GmbH & Co.KG. ASCET-SD White Paper,
1999. Available at http://www.etas.info/html/download/

en_download_index.php; accessed on August 30, 2002.

[Fle00] Wolfgang Fleisch. Simulation and Validation of Component-
Based Automotive Control Software. In Proceedings of the 12th
European Simulation Symposium (ESS 2000), September 28–30,
Hamburg, Germany, 2000.

[FP99] Georg Färber and Stefan M. Petters. Making Worst Case Exe-
cution Time Analysis for Hard Real-Time Tasks on State of the
Art Processors feasible. In Proceedings of the Sixth International
Conference on Real-Time Computing Systems and Applications
(RTCA ’99), December 1999.

[Fra00] Randy Frank. Understanding Smart Sensors. Artech House,
Boston, London, second edition, 2000.

[FS00] Maximilian Fuchs and Peter Schiele. Transition Methodology
from Specifications to a Network of ECUs Exemplarily with
ASCET-SD and VCC. In SAE 2000 World Congress, March
2000, Detroit, Michigan, USA. Society of Automotive Engineers
(SAE), 2000.

[FSRMA99] J.-C. Fabre, F. Salles, M. Rodŕıguez-Moreno, and J. Arlat. As-
sessment of COTS Microkernels by Fault Injection. In Seventh
IFIP International Working Conference on Dependable Com-
puting for Critical Applications (DCCA-7). IEEE Computer So-
ciety, 1999.

[Fuc98] Emmerich Fuchs. Validating the Fail-Silence Assumption of
the MARS Architecture. In Sixth IFIP International Working
Conference on Dependable Computing for Critical Applications
(DCCA-6), 1998.

[GH02] Peter R. Glück and Gerard J. Holzmann. Using Spin Model
Checking for Flight Software Verification. In Proceedings 2002
Aerospace Conference, pages 105–113, Big Sky, Montana, USA,
March 2002. IEEE.

[GHJ98] Patrice Godefroid, Robert S. Hanmer, and Lalita Jategaonkar
Jagadeesan. Systematic Software Testing using VeriSoft: An

http://www.etas.info/html/download/en_download_index.php
http://www.etas.info/html/download/en_download_index.php

154 BIBLIOGRAPHY

Analysis of the 4ESS Heart-Beat Monitor . Bell Labs Techni-
cal Journal, 3(2), April-June 1998. Available at http://cm.

bell-labs.com/who/god/; accessed on January 5, 2003.

[GIY97] Kumar K. Goswami, Ravishankar K. Iyer, and Luke Young.
DEPEND: A Simulation-Based Environment for System Level
Dependability Analysis. IEEE Transactions on Computers,
46(1):60–74, January 1997.

[GN99] Michael Gunzert and Andreas Nägele. Component-Based Devel-
opment and Verification of Safety Critical Software for a Brake-
By-Wire System with Synchronous Software Components. In
International Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE 1999), May 17–18, Los Ange-
les, California, USA, pages 134–145, 1999.

[God97] Patrice Godefroid. Model Checking for Programming Lan-
guages using VeriSoft. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 174–186. ACM Press, 1997.

[GS95] Jens Güthoff and Volkmar Sieh. Combining Software-
Implemented and Simulation-Based Fault Injection into a Sin-
gle Fault Injection Method. In Proceedings of the Twenty-Fifth
International Symposium on Fault-Tolerant Computing (FTCS-
25), pages 196–206. IEEE, June 1995.

[HC94] H. Hecht and P. Crane. Rare conditions and their effect on
software failures. In Proceedings of the Annual Reliability and
Maintainability Symposium, pages 334–337. IEEE, 24–27 Jan-
uary 1994.

[Hex99] René Hexel. Validation of Fault Tolerance Mechanisms in a
Time Triggered Communication Protocol using Fault Injection.
Dissertation, Technische Universität Wien, Institut für Technis-
che Informatik, 1999. Available at http://www.vmars.tuwien.
ac.at/frame-papers.html; accessed on December 22, 2002.

[HJS02] Martin Hiller, Arshad Jhumka, and Neeraj Suri. PROPANE: An
Environment for Examining the Propagation of Errors in Soft-
ware. In Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 81–85. ACM Press,
2002.

http://cm.bell-labs.com/who/god/
http://cm.bell-labs.com/who/god/
http://www.vmars.tuwien.ac.at/frame-papers.html
http://www.vmars.tuwien.ac.at/frame-papers.html

BIBLIOGRAPHY 155

[HMS+98] Franz Huber, Sascha Molterer, Bernhard Schätz, Oscar Sloto-
sch, and Alexander Vilbig. Traffic Lights — An AutoFocus
Case Study. In 1998 International Conference on Applica-
tion of Concurrency to System Design (CSD’98), pages 282–
294, Fukushima, Japan, March 1998. IEEE Computer Soci-
ety. Available at http://www4.informatik.tu-muenchen.de/
papers/HMSSV98.html; accessed on January 2, 2003.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans-
actions on Software Engineering, 23(5):279–295, May 1997.

[Hol00] Gerard J. Holzmann. Logic Verification of ANSI-C code with
SPIN. In Proceedings of the 7th International SPIN Workshop,
volume 1885 of Lecture Notes in Computer Science, pages 131–
147. Springer-Verlag, September 2000.

[How87] William E. Howden. Functional Testing and Analysis. McGraw-
Hill Series in Software Engineering and Technology. McGraw-
Hill, New York, 1987.

[HS99] Gerard J. Holzmann and Margaret H. Smith. Software Model
Checking — Extracting Verification Models from Source Code.
In Formal Methods for Protocol Engineering and Distributed
Systems, pages 481–497. Kluwer Academic Publishers, October
1999.

[HS01] Franz Huber and Bernhard Schätz. Integrated Development of
Embedded Systems with AutoFocus. Technical Report TUM-
I0107, Technische Universität München, Institut für Informatik,
December 2001. Available at http://autofocus.informatik.
tu-muenchen.de/Publications/index-e.html; accessed on
January 2, 2003.

[HSR95] Seungjae Han, Kang G. Shin, and Harold A. Rosenberg. DOC-
TOR: An Integrated Software Fault Injection Environment for
Distributed Real-time Systems. In Proceedings of the Inter-
national Computer Performance and Dependability Symposium
(IPDS ’95), pages 204–213. IEEE, April 1995.

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.
Iyer. Fault Injection Techniques and Tools. IEEE Computer,
30(4):75–82, April 1997.

http://www4.informatik.tu-muenchen.de/papers/HMSSV98.html
http://www4.informatik.tu-muenchen.de/papers/HMSSV98.html
http://autofocus.informatik.tu-muenchen.de/Publications/index-e.html
http://autofocus.informatik.tu-muenchen.de/Publications/index-e.html

156 BIBLIOGRAPHY

[HV99] Simon Haykin and Barry Van Veen. Signals and Systems. John
Wiley & Sons, New York et al., 1999.

[IEC98a] IEC 61508-1. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 1: General
requirements. International standard, IEC International Elec-
trotechnical Commission, Geneva, Switzerland, 1998.

[IEC98b] IEC 61508-3. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 3: Soft-
ware requirements. International standard, IEC International
Electrotechnical Commission, Geneva, Switzerland, 1998.

[IEC98c] IEC 61508-4. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 4: Defi-
nitions and abbreviations. International standard, IEC Interna-
tional Electrotechnical Commission, Geneva, Switzerland, 1998.

[IEC98d] IEC 61508-5. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 5: Exam-
ples of methods for the determination of safety integrity lev-
els. International standard, IEC International Electrotechnical
Commission, Geneva, Switzerland, 1998.

[IEC00a] IEC 61508-2. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 2: Require-
ments for electrical/electronic/programmable electronic safety-
related systems. International standard, IEC International Elec-
trotechnical Commission, Geneva, Switzerland, 2000.

[IEC00b] IEC 61508-6. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 6: Guide-
lines on the application of IEC 61508-2 and IEC 61508-3. In-
ternational standard, IEC International Electrotechnical Com-
mission, Geneva, Switzerland, 2000.

[IEC00c] IEC 61508-7. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems — Part 7:
Overview of techniques and measures. International stan-
dard, IEC International Electrotechnical Commission, Geneva,
Switzerland, 2000.

[Ise01] Rolf Isermann. Fehlertolerante Komponenten für Drive-by-Wire
Systeme (Fault tolerant components for drive-by-wire systems).

BIBLIOGRAPHY 157

In Tagung Baden-Baden, Elektronik im Kraftfahrzeug (Elec-
tronic Systems for Vehicles), pages 739–765, Baden-Baden, Ger-
many, 27–28 September 2001. VDI-Gesellschaft Fahrzeug- und
Verkehrstechnik (VDI-Berichte; 1646).

[ITC03] ITC-IRST et al. NuSMV: a new symbolic model checker.
World Wide Web, http://nusmv.irst.itc.it/index.html,
accessed on January 3, 2003.

[JAR+94] Eric Jenn, Jean Arlat, Marcus Rimén, Joakim Ohlsson, and
Johan Karlsson. Fault Injection into VHDL Models: The
MEFISTO Tool. In Proceedings of the Twenty-Fourth Inter-
national Symposium on Fault-Tolerant Computing (FTCS-24),
pages 66–75. IEEE, June 1994.

[JKK+01] Cliff Jones, Marc-Olivier Killijian, Herman Kopetz, Eric Mars-
den, Nick Moffat, Michael Paulitsch, David Powell, Brian Ran-
dell, Alexander Romanovsky, and Robert Stroud. Revised Ver-
sion of DSoS Conceptional Model. Technical Report CS-TR-
746, Department of Computer Science, University of Newcas-
tle upon Tyne, 2001. Available at http://www.cs.ncl.ac.uk/
research/pubs/2001.html; accessed on August 22, 2002.

[Jor95] Paul C. Jorgensen. Software Testing : A Craftsman’s Approach.
CRC Press, 1995.

[Jur99] Ronald K. Jurgen (editor). AUTOMOTIVE ELECTRONICS
HANDBOOK. McGraw-Hill, New York, second edition, 1999.

[KBP01] Hermann Kopetz, Günther Bauer, and Stefan Poledna. Tolerat-
ing Arbitrary Node Failures in the Time-Triggered Architecture.
In SAE 2001 World Congress, March 2001, Detroit, Michigan,
USA. Society of Automotive Engineers (SAE), 2001.

[Ken92] Kenneth L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. PhD thesis, School of Computer
Science, Carnegie Mellon University, 1992.

[KFA+95] Johan Karlsson, Peter Folkesson, Jean Arlat, Yves Crouzet, and
Günther Leber. Integration and Comparison of Three Phys-
ical Fault Injection Techniques. In B. Randell, J.-C. Laprie,
H. Kopetz, and B. Littlewood, editors, Predictably Dependable
Computing Systems, pages 309–327. Springer-Verlag, 1995.

http://nusmv.irst.itc.it/index.html
http://www.cs.ncl.ac.uk/research/pubs/2001.html
http://www.cs.ncl.ac.uk/research/pubs/2001.html

158 BIBLIOGRAPHY

[KG94] Hermann Kopetz and Günter Grünsteidl. TTP — A Proto-
col for Fault-Tolerant Real-Time Systems. IEEE Computer,
27(1):14–23, January 1994.

[Kie98] Uwe Kiencke. Signale und Systeme. Oldenbourg, München,
Wien, 1998.

[KKA95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A. Abra-
ham. FERRARI: A Flexible Software-Based Fault and Error
Injection System. IEEE Transactions on Computers, 44(2):248–
260, February 1995.

[Kop97] Hermann Kopetz. REAL-TIME SYSTEMS: Design Principles
for Distributed Embedded Applications. Kluwer Academic Pu-
plishers, Boston, Massachusetts, USA, 1997.

[Kop00] Hermann Kopetz. Software Engineering for Real-Time: A
Roadmap. In Proceedings of the conference on The future of
Software engineering, Limerick, Ireland, pages 201–211. ACM
Press, 2000.

[Kop02] Hermann Kopetz. Time-Triggered Real-Time Computing. In
15th IFAC World Congress, Barcelona. IFAC Press, July 2002.

[KRPO93] M. H. Klein, T. Ralya, B. Pollak, and R. Obenza. A Prac-
titioner’s Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems. Kluwer Academic
Publishers, Boston, Massachusetts, USA, 1993.

[KS97] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-
Hill, New York, 1997.

[LA90] P.A. Lee and T. Anderson. Fault Tolerance — Principles and
Practice, volume 3 of Dependable Computing and Fault-Tolerant
Systems. Springer-Verlag, Wien, New York, second, revised edi-
tion, 1990.

[Lap92] J.C. Laprie (ed.). Dependability: Basic Concepts and Termi-
nology in English, French, German, Italian and Japanese, vol-
ume 5 of Dependable Computing and Fault-Tolerant Systems.
Springer-Verlag, Wien, New York, 1992.

[Lev95] Nancy G. Leveson. SAFEWARE: System Safety and Com-
puters. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts et al., 1995.

BIBLIOGRAPHY 159

[Liu00] Jane W. S. Liu. Real-Time Systems. Prentice-Hall, Upper Sad-
dle River, New Jersey, 2000.

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. Journal
of the ACM (JACM), 20(1):46–61, January 1973.

[LRR+00] M. Lajolo, M. Rebaudengo, M. Sonza Roerda, M. Violante,
and L. Lavagno. Evaluating System Dependability in a Co-
Design Framework. In Proceedings of the conference on Design,
Automation and Test in Europe (DATE 2000), pages 586–590.
ACM Press, 2000.

[LSV97] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A denota-
tional framework for comparing models of computation. Techni-
cal Memorandum UCB/ERL M97/11, Department of Electrical
Engineering and Computer Science, UC Berkeley, California,
1997.

[MAB+94] Zohar Manna, Anuchit Anuchitanukul, Nikolaj Bjørner, Anca
Browne, Edward Chang, Michael Colón, Luca de Alfaro, Har-
ish Devarajan, Henny Sipma, and Tomás Uribe. STeP: The
Stanford Temporal Prover. Technical Report STAN-CS-TR-94-
1518, Stanford University, Computer Science Department, June
1994. Available at http://www-step.stanford.edu/; accessed
on January 2, 2003.

[MGM+99] R. J. Mart́ınez, P. J. Gil, G. Mart́ın, C. Pérez, and J. J. Serrano.
Experimental Validation of High-Speed Fault-Tolerant Systems
Using Physical Fault Injection. In Seventh IFIP International
Working Conference on Dependable Computing for Critical Ap-
plications (DCCA-7). IEEE Computer Society, 1999.

[MS95] Steven P. Miller and Mandayam Srivas. Formal Verification
of the AAMP5 Microprocessor: A Case Study in the Industrial
Use of Formal Methods. In WIFT ’95: Workshop on Industrial-
Strength Formal Specification Techniques, pages 2–16, Boca Ra-
ton, Florida, April 1995. IEEE Computer Society Press. Avail-
able at http://www.csl.sri.com/papers/wift95/; accessed
on January 1, 2003.

[Mus93] John D. Musa. Operational Profiles in Software-Reliability En-
gineering. IEEE Software, 10(2):14–32, March 1993.

http://www-step.stanford.edu/
http://www.csl.sri.com/papers/wift95/

160 BIBLIOGRAPHY

[Mus99] John D. Musa. Developing More Reliable Software Faster and
Cheaper. In Proceedings of the Fifth IEEE International Confer-
ence on Engineering of Complex Computer Systems (ICECCS
’99), pages 162–176. IEEE Computer Society, 1999.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley &
Sons, New York et al., 1979.

[Mye01] Glenford J. Myers. Methodisches Testen von Programmen. Old-
enbourg, München et al., seventh edition, 2001.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
von Henke. Formal Verification for Fault-Tolerant Architec-
tures: Prolegomena to the Design of PVS. IEEE Transactions
on Software Engineering, 21(2):107–125, February 1995. Avail-
able at http://www.csl.sri.com/papers/tse95/; accessed on
January 1, 2003.

[OW97] Alan V. Oppenheim and Alan S. Willsky with Hamid S. Nawab.
Signals and Systems. Prentice-Hall, Upper Saddle River, New
Jersey, second edition, 1997.

[Pal00] Roman Pallierer. Validation of Distributed Algorithms
in Time-Triggered Systems by Simulation. Dissertation,
Technische Universität Wien, Institut für Technische Infor-
matik, 2000. Available at http://www.vmars.tuwien.ac.at/

frame-papers.html; accessed on December 22, 2002.

[Per00] William E. Perry. Effective Methods for Software Testing. John
Wiley & Sons, New York et al., second edition, 2000.

[Pos96] Robert M. Poston. Automating specification-based software test-
ing. IEEE Computer Society Press, Los Alamitos, California,
USA, 1996.

[RSBH98] Th. Ringler, J. Steiner, R. Belschner, and B. Hedenetz. In-
creasing System Safety for by-wire Applications in Vehicles by
using a Time Triggered Architecture. In Proceedings of the 17th
International Conference on Computer Safety, Reliability and
Security (SAFECOMP’98), pages 243–253. Springer, 1998.

[RSS99] Harald Rueß, Natarajan Shankar, and Mandayam K. Srivas.
Modular Verification of SRT Division. Formal Methods in Sys-
tems Design, 14(1):45–73, January 1999. Available at http:

http://www.csl.sri.com/papers/tse95/
http://www.vmars.tuwien.ac.at/frame-papers.html
http://www.vmars.tuwien.ac.at/frame-papers.html
http://www.csl.sri.com/papers/fmsd99/
http://www.csl.sri.com/papers/fmsd99/

BIBLIOGRAPHY 161

//www.csl.sri.com/papers/fmsd99/; accessed on January 1,
2003.

[Rus93] John Rushby. Formal Methods and the Certification of Crit-
ical Systems. Technical Report SRI-CSL-93-7, Computer Sci-
ence Laboratory, SRI International, Menlo Park, California, De-
cember 1993. Available at http://www.csl.sri.com/papers/
csl-93-7/; accessed on January 7, 2003.

[Rus99] John Rushby. Systematic Formal Verification for Fault-Tolerant
Time-Triggered Algorithms. IEEE Transactions on Software
Engineering, 25(5):651–660, Sep/Oct 1999. Available at http:
//www.csl.sri.com/papers/tse99/; accessed on January 1,
2003.

[Rus01a] John Rushby. A Comparison of Bus Architectures for Safety-
Critical Embedded Systems. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, Califor-
nia, September 2001. Available at http://www.csl.sri.

com/~rushby/abstracts/buscompare; accessed on August 22,
2002.

[Rus01b] John Rushby. Bus Architectures For Safety-Critical Embedded
Systems. In Tom Henzinger and Christoph Kirsch, editors, EM-
SOFT 2001: Proceedings of the First Workshop on Embedded
Software, volume 2211, pages 306–323, Lake Tahoe, California,
October 2001. Springer-Verlag.

[SAE93] SAE. Class C Application Requirement Considerations. Rec-
ommended Practice J2056/1, Society of Automotive Engineers
(SAE), June 1993.

[Sch02] Peter Schiele. Methodischer Übergang von Spezifikationen in
ein virtuelles Steuergerätenetzwerk. Dissertation, Fakultät für
Informatik der Technischen Universität München, 2002.

[SFB+95] David T. Stott, Benjamin Floering, Daniel Burke, Zbigniew
Kalbarczpk, and Ravishankar K. Iyer. NFTAPE: A Frame-
work for Assessing Dependability in Distributed Systems with
Lightweight Fault Injectors. In Proceedings of the International
Computer Performance and Dependability Symposium (IPDS
2000), pages 91–100. IEEE, 1995.

http://www.csl.sri.com/papers/fmsd99/
http://www.csl.sri.com/papers/fmsd99/
http://www.csl.sri.com/papers/csl-93-7/
http://www.csl.sri.com/papers/csl-93-7/
http://www.csl.sri.com/papers/tse99/
http://www.csl.sri.com/papers/tse99/
http://www.csl.sri.com/~rushby/abstracts/buscompare
http://www.csl.sri.com/~rushby/abstracts/buscompare

162 BIBLIOGRAPHY

[Som01] Ian Sommerville. Software Engineering. Addison-Wesley, Har-
low, England et al., sixth edition, 2001.

[SPI03] SPIN homepage. ON-THE-FLY, LTL MODEL CHECKING
with SPIN. World Wide Web, http://spinroot.com/spin/

whatispin.html, accessed on January 3, 2003.

[SRI03] SRI International Computer Science Laboratory. The PVS
Specification and Verification System. World Wide Web, http:
//pvs.csl.sri.com/, accessed on January 1, 2003.

[SS98] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer
Systems: Design and Evaluation. A K Peters, Natick, Mas-
sachusetts, third edition, 1998.

[SS01] David J. Smith and Kenneth G. L. Simpson. Functional Safety:
A Straightforward Guide to IEC 61508 and Related Standards.
Butterworth-Heinemann, Oxford, Massachusetts et al., 2001.

[SSRB98] John A. Stankovic, Marco Spuri, Krithi Ramamritham, and
Giorgio C. Buttazzo. DEADLINE SCHEDULING FOR REAL-
TIME SYSTEMS: EDF and related Algorithms. Kluwer Aca-
demic Publishers, Boston, Massachusetts, USA, 1998.

[Sta88] John A. Stankovic. Misconceptions About Real-time Comput-
ing: A Serious Problem for Next Generation Systems. IEEE
Computer, 21(10):10–19, October 1988.

[STB97] Volkmar Sieh, Oliver Tschäche, and Frank Balbach. VERIFY:
Evaluation of Reliability Using VHDL-Models with Embedded
Fault Descriptions. In Proceedings of the Twenty-Seventh Inter-
national Symposium on Fault-Tolerant Computing (FTCS-27),
pages 32–36. IEEE, June 1997.

[Sto96] Neil Storey. Safety-Critical Computer Systems. Addison-Wesley,
New York et al., 1996.

[TBYS96] Jeffrey J. P. Tsai, Yaodong Bi, Steve J. H. Yang, and Ross A. W.
Smith. Distributed Real-Time Systems: Monitoring, Visualiza-
tion, Debugging, and Analysis. John Wiley & Sons, New York
et al., 1996.

[TGO00] Irina Theis, Jürgen Guldner, and Ralf Orend. Reliability Pre-
diction of Fault Tolerant Automotive Systems. In SAE 2000

http://spinroot.com/spin/whatispin.html
http://spinroot.com/spin/whatispin.html
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/

BIBLIOGRAPHY 163

World Congress, March 2000, Detroit, Michigan, USA. Society
of Automotive Engineers (SAE), 2000.

[Tha94] Georg Thaller. Verifikation und Validation — Softwaretest für
Studenten und Praktiker. Vieweg & Sohn, Braunschweig, Wies-
baden, 1994.

[TIJ96] Timothy K. Tsai, Ravishankar K. Iyer, and Doug Jewitt. An
Approach towards Benchmarking of Fault-Tolerant Commercial
Systems. In Proceedings of the Twenty-Sixth International Sym-
posium on Fault-Tolerant Computing (FTCS-26), pages 314–
323. IEEE, June 1996.

[VM98] Jeffrey M. Voas and Gary McGraw. Software Fault Injection:
Inoculating Programs Against Errors. Wiley Computer Publish-
ing, New York et al., 1998.

	Abstract
	Abbreviations
	Introduction
	Problem and Related Work
	Basic Concepts and Terminology
	Distributed Real-Time Systems
	Dependability
	Attributes of Dependability
	Threats of Dependability
	Means to achieve Dependability

	Safety-Critical Real-Time Systems
	Design and Development Process
	Requirements Specifications
	Fault Tolerance

	Techniques and Methods
	Verification, Validation and Testing
	Fault Injection
	Real-Time Analyses
	Dependability Analyses

	Problems addressed in this Thesis

	Essentials for Validation
	Safety Arguments
	Basic Elements of an Implementation Model
	Characteristics of Architecture Components
	Classification Scheme
	Signals of an Implementation Model
	Idealized, Limited, and Faulty Architecture Components

	Configurable Implementation Model
	Fault Models of Architecture Components
	Fault Injection Technique
	Simulation Platform
	Signals being Observed
	Test Case Table
	Observer System

	Validation Activities and Principles
	Developing Safety Arguments
	Building an Implementation Model
	Building a Functional Network Model
	Building a Hardware Architecture Model
	Connecting Application and Architecture Components
	Example to illustrate the Principle

	Building Fault Models
	Modelling Occurrences of Faults
	Modelling of Effects on Values and Time-tags
	Example to illustrate the Principle

	Defining Meaningful Signals
	Designing an Observer System
	Creating Test Scenarios
	Executing Test Scenarios
	Evaluating Test Scenarios

	Brake-by-Wire Case Study
	Purpose of this Case Study
	Brake-by-Wire System
	Overview
	Safety Functions Requirements Specification
	Basic Assumptions of this Case Study
	System Architecture

	Implementation Model
	Behavior Diagram of the BbW System
	Architecture Diagram of the BbW System
	Mapping Diagram of the BbW System
	Test Bench and Environment

	Observer System
	Fault Injection
	Test Cases and Safety Arguments
	Definition of Test Scenario 1: Actuator Fault after Memory Fault
	Definition of Test Scenario 2: Two Subsequent Memory Faults
	Definition of the Safety Arguments

	Experimental Results
	Results of Test Scenario 1
	Results of Test Scenario 2

	Discussion

	Conclusion and Future Work
	Glossary
	Bibliography

