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Summary

Hard real–time system design requires both, a methodology that allows to control the
increasing functional complexity and additionally an a–priori proof that all timing require-
ments will be met even in worst case situations. This work introduces a design heuristics
based on the formal “Specification and Description Language” SDL aiming on the integra-
tion of a timeliness verification into an automated design process.

SDL’s semantics which is especially suited to event–driven systems relies on non–
blocking signal exchange, i.e. a receiving SDL process will be activated on signal arrival.
To enforce a deterministic behaviour of a SDL system, the vague semantics of SDL has
to be pinpointed to a predictable model of computation. For this, Message based Earliest
Deadline First scheduling (MEDF) will be suggested as basis for SDL’s processing sequence.

With MEDF, a task inherits the deadline transported by an incoming message, i.e. its
dynamic priority is adapted accordingly. Finally, the task bequeathes this deadline to its
outgoing messages. For predictability reasons, incoming messages carrying a new deadline
now have to be inserted into a task’s only queue in a deadline sorted order. Deadline
inheritance (DIP), respectively deadline ceiling (DCP) applied to message queues raise the
dynamic priority of the receiving task and assure the avoidance of priority inversion effects
caused by server tasks responding to multiple requests with unequal urgencies. Since
MEDF scheduling implicates an earliest deadline first processing sequence for all tasks,
Gresser’s schedulability analysis methodology for event–driven real–time systems [Gre93a]
can be applied to prove the timeliness of a MEDF system.

With these presumptions, a real–time system’s implementation and its worst case tim-
ing behaviour can be automatically derived on the basis of its SDL system specification
by one strike, if the system model has been extended by timing constraint annotations
(deadlines, execution times, timing of system stimuli). Code generation that preserves
MEDF processing sequence on the one hand, and mapping of the system specification
to a task precedence graph (TPG) mirroring the structural inter–relationships between
all resource–sharing components on the other hand, assures conformance between specifi-
cation, implementation, and analysis model. The latter incorporates all necessary timing
properties to perform the final schedulability analysis step and serves as information source
to reveal hidden unpredictability and optimization potential in SDL system models.

The MEDF scheduler has been integrated into the real–time operating system RTEMS.
An additional test suit validates the correct functionality of the scheduler and demonstrates
its timing behaviour. Tool support for the proposed design methodology has been proto-
typically realized and its applicability has been evaluated with design examples.
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Chapter 1

Introduction

In July 1997 the Mars probe Pathfinder survived its rubber ball landing on the Martian
surface due to its airbag protection. After successful deployment of the Sojourner rover, it
resumed its mission with gathering environmental data from this distant neighbor planet.
Caused by a priority inversion between a sensor, the communication, and the system
management task, the spacecraft experienced sporadically total system resets repeatedly
leading to a loss of measurement data. Press releases stated the “computer was trying
to do too many things at once”, but a detailed analysis of the software system showed a
watchdog timer had detected an avoidable deadline violation for the communication task.

The timing characteristics of this real–time system were considered as soft during this
phase of the mission. A similar failure during the more mission critical phase of approaching
the Martian surface would have probably led to a loss of the space vehicle. In this case, the
timing constraints and therefore the real–time software system would have been classified
as hard and a system reset of course would not have been a viable recovery strategy for
a deadline miss. Although functionally correct, and although single components had been
designed with efficiency in mind, inter–dependencies (resource sharing) of the concurrent
tasks had led to a timely incorrectness.

As can be seen, complexity of the whole application makes an analysis of timing re-
quirements difficult. Neither black box simulation, nor performance analysis with state–
of–the–art computation models like queuing theory or functional prototyping would had
revealed the additional blocking time caused by priority inversion for the communication
task in all probability. On the other hand, current practice in schedulability analysis theory
is based on very restrictive task models and could have been applied only if the real–time
software has been designed accordingly.

Software engineering methodologies like structured analysis/structured design (SA/SD)
or object oriented design (OOD) win increasing recognition even in the area of dedicated
systems. There exist sophisticated tool support for a multitude of design languages, be-
cause it is now generally accepted that software design automation will help shortening
development times and thus development costs. But when timing specifications are not
met, structural modifications may become necessary. In this case or when design changes
occur, e.g. through additional required functionality, a rescheduling of all components and

1
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Figure 1.1: Core Phases and Premises in a SDL based Design Methodology

consequently a reanalysis of the temporal properties has to be done. This means, for real–
time systems the schedulability analysis should have to be an automated design step as
well.

1.1 Contribution

This work introduces a methodology framework based on the “Specification and Descrip-
tion Language” (SDL) aiming on the integration of a timeliness proof into the automated
design process for hard real–time systems. For that purpose, SDL’s semantics is pinpointed
to a predictable model of computation allowing on the one hand to automatically derive an-
alyzable implementations. On the other hand the system specification can now be mapped
to a real–time analysis task graph that mirrors the structural inter–relationships between
the resource sharing components and is the basis for the final schedulability analysis step.
Message based earliest deadline first scheduling (MEDF) serves as a platform for this de-
sign process. Therefore MEDF’s predictability will be shown and algorithms to evaluate
timing properties of MEDF based software systems will be provided.

1.2 Prerequisites and Restrictions

A coarse survey of a design methodology for hard real–time systems based on SDL [Kol98]
is given in Fig. 1.1. In the follow section, motives for choosing SDL as the starting point for
this framework are outlined. Based on this, restrictions and requirements for automated
code generation and the applied scheduling policy are outlined.
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System Specification

Design automation in general needs a formal system description to capture the functional
and non–functional requirements. Beyond this, automated schedulability analysis requires
a formal semantics which suits to the applied analysis task model. Due to the concurrent
nature of the embedding environment, concurrency too is used as a means to structure
the design of a real–time application. Therefore process models are the basis of most
state–of–the–art specification or real–time programming languages. The Specification and
Description Language SDL as a formal description technique originally developed and
standardized [ITU94a] for telecommunication systems is more generally suitable for control
flow dominated systems. SDL’s message oriented, asynchronous communication and the
state–machine like behaviour of its processes matches well the event driven nature of many
real–time applications.

Like most specification languages SDL too implies some abstractions and non–
determinisms in its semantics due to its intended application in the early phases of the
design cycle. This fact is tolerable or even useful during the specification phase, but of
course not acceptable in the implementation, respectively during run–time. For this rea-
son, the execution model has to be pinpointed to the chosen scheduling policy to enforce
conformance between the language semantics, the model of computation during functional
simulation, the schedulability analysis task model, and the implementation strategy. Added
to that, there is a need to restrict the usage of some SDL language constructs to avoid
unpredictability.

Unlike general purpose systems, the dedicated functionality of embedded systems im-
poses additional constraints like maximal memory usage or maximal power consumption
on the design. Therefore the functional specification has to be complemented with a de-
scription of non–functional requirements. This work focuses on the analysis of timing
properties of hard real–time systems. Thus, the non–functional specification must include
a worst case description of the temporal behaviour of the embedding system and on the
other hand, must specify the deadlines to be reached by the final system realization.1 In
case of integrated control systems, deadlines are imposed by the system’s environment,
i.e. the embedding system that has to be controlled by the application. Consequently,
deadlines are understood as attributes of the stimulating events, i.e. they are end–to–end
constraints. A triggering event has to be responded within a specified deadline interval.
The event’s characteristics are added as annotations to the functional description.

Code Generation

CASE tools like Telelogic’s SDL Design Tool SDT support the mapping of a functional
specification to an executable prototype. Unfortunately, the semantical gap between the
assumed “each SDL process runs independently on its own processor” behaviour in the
specification and the sequential computation on a single–processor target can be the source

1As will be shown later (cf. Sec. 3.2.2), SDL’s timer mechanism is inappropriate for timing constraint
specification.
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for inefficiencies in automatically generated implementations preserving the process model.
This leads to the effect that a system designer will manipulate the generated target code in-
stead of the system model to achieve the required performance. Thus, system specification
and implementation diverge and become inconsistent.

This observation underlines the importance of an efficient decomposition of the system
model. This is especially necessary when the application is control flow dominated, i.e.
processing time for communication and synchronization of application threads is in the
order of magnitude of the application’s computation time. Maintainability is gained, if the
specification and only the specification is the place for changes. But instead of average or
best case throughput and latency, code generation strategies have to concentrate on guar-
anteeable, worst case performance and predictability. Since the model of computation of
the system specification and the processing order of the final implementation must corre-
spond exactly to enable a specification based real–time analysis, code generation strategies
must also preserve the semantics of the specification language.

Scheduling Policy and Run–Time System

Earliest deadline first (EDF) scheduling is often regarded as dangerous, because under
overload, it may show awkward behaviour. However, in a hard real–time system’s life
cycle an overload situation must not occur, because a deadline miss may lead to a loss of
money or even a loss of lives. This fact requires an a–priori proof that all timelines will
be met even in worst case situations, e.g. when burst events occur simultaneously2 and all
tasks in a system exhaust their worst case processing time budgets.

EDF has been shown to be an optimal scheduling strategy for single processor systems
[LL73], i.e. if you can find a schedule with an alternative policy, you will find a feasible
solution with EDF too. Furthermore, an existing deadline specification needs not to be
transformed into a process priority assignment, like it has to be done with e.g. rate mono-
tonic analysis (RMA, [KRP+93]). Therefore it is easier to integrate into an automated
design process. Finally, time–driven schedules for sporadic task activations result in un-
satisfactory achievable processor utilization. This fact and their inflexible design speaks
for a dynamic management for event–driven real–time systems.

Complex process networks in the final realization may emerge through the use of a
process based specification language. As a consequence, more than one task will be in-
volved in the processing of a stimulating event and on the other hand one task may serve
more than one type of event (with different required response times). Thus, a deadline
will span a whole task precedence system (TPS). Static partitioning of deadlines and that
followed an assignment of sub–deadlines to processes would lead to a loss of laxity, i.e.
an over–specification of the system. Consequently, there is a need to dynamically trans-
port a deadline to the succeeding tasks within a TPS. The resulting scheduling scheme is
scheduling with message deadlines (MEDF).

It will be shown that applying MEDF to a network of communicating processes will lead

2called critical instant
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to an EDF processing sequence of these processes. Thus, feasibility analysis algorithms like
[Gre93b, Gre93a], [SSRB98], or [Jef92] may be applied to prove the required timeliness.3

Unfortunately, there exists no known MEDF implementation in state–of–the–art real–time
operating systems. Therefore, necessary run–time system support has to be provided.

Schedulability analysis requires all best (BCET) and worst (WCET) case execution
times to be known in advance. There exist different approaches in research, based on mea-
surement or code evaluation, to derive processing time variations caused by e.g. different
program paths. Preemption delays caused by cache flushes and pipeline stalls may com-
plicate this problem. WCET/BCET determination is out of scope for this work. Thus,
processing times are assumed to be known. For a detailed problem description refer to
[PF99, Pet02].

1.3 This work’s background: Rapid Prototyping

Rapid prototyping has been proposed as a methodology to find design errors and flaws
in the embedded system’s requirements at a very early stage of its development cycle.
A re–usable, configurable and scalable target architecture serves as a platform to exe-
cute a system’s specification in the real environment in form of a working prototype. An
automated design process is needed to translate the formal system description into an ex-
ecutable in order to rapidly derive such a prototype. The rapid prototyping environment
REAR4 [PMK+99, PMK+00] realizes such a design framework and includes the design
methodology as introduced in this work.

REAR’s target architecture (8 in Fig. 1.2, [FKMF97]) consists of an heterogeneous
multi–processor system complemented with additional field programmable gate arrays,
tightly coupled with the microprocessor based units. Its processing nodes (High Perfor-
mance Unit (HPU), Real–Time Unit (RTU), and Configurable I/O Processor (CIOP))
are specialized according to the “task classification model” [FFKM97], where each type
of real–time task corresponds to a best suited type of processing unit (PU), in terms of
performance and deterministic execution times. Therefore, a straight–forward allocation
of the application tasks to the single PUs can be derived from a task grading according to
both, computing complexity and deadline.

Implementing a prototype in software means high flexibility, short design cycles, and
good debug facilities, therefore as much functionality as possible will be implemented in
software. Since target systems have to fulfill real–time characteristics, HPU and RTU
provide means to guarantee predictable limits for run time variations caused by caching or
pipelining effects. Application specific hardware on the other hand is very often necessary
as a link to the embedding process and as execution unit for processes with deadlines too
short to be met in software. A CIOP acts like a pre–processor for external events (CIOP–
IO) or may be used for timing measurement respectively trace collection (CIOP–T).

3These analysis methodologies take into account inter–task dependencies like precedence constraints or
blocking times caused by mutual exclusive access to shared resources.

4Rapid Prototyping Environment for Advanced Real–Time Systems
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Figure 1.2: REAR Design Framework

A Hardware/Software co–design methodology with SDL 1 as starting point allows to
translate the specification into C 3 and VHDL 4 code. C–code generation is partly based
on the CASE–tool family SDT (SDL Design Tool) from Telelogic, SDL to VHDL synthesis
is part of the research focus [MKMKF00, MF00]. Together with run–time and interface
libraries, executables can be compiled and mapped to the dedicated target nodes.

The worst (WCET) and best (BCET) case execution times 5 needed for the final
schedulability analysis 7 are on the one hand provided by synthesis tools for the HW–
part, on the other hand are determined measuring instrumented code during execution on
the target architecture for the SW–part [PF99]. The real–time analysis model (RTAM)
automatically generated from the SDL model reveals the structural inter–dependencies
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incorporated in the system. It includes the timing constraints 2 that are added to the
system specification by annotation. Furthermore, the RTAM is needed as information
source for the optimizing code generators. If the final timeliness proof reveals there are
no deadlines misses to expect, the prototype can be executed in the real environment. An
event filter 6 supervises a minimum distance between events.

In contrast to simulation, the idea of a prototype is to be executed in the real world with
real data. It allows to verify by execution if all assumptions were correct and the functional
and timing requirements have been modeled correctly. Temporal feasibility is the crucial
point in the development of hard real–time systems. Next to the proof that the prototype
will meet all specified timing constraints, a first estimation on minimum required processor
performance for the final realization can be gained. Furthermore, possible bottlenecks in
the SDL system model can be detected, e.g. the negative effect on the responsiveness of
a system caused by large areas of mutual exclusion, originating from long state transition
times in server processes can be revealed. Finally, the system’s predictability can be verified
by analyzing the communication structure of the SDL system.

1.4 Synopsis

This work is organized as follows: The next chapter covers state of the scientific and
technical knowledge in research topics tangent to this thesis.

Chapter 3 provides a detailed analysis of the SDL’s syntax and semantics. It will be
shown this language is appropriate for functional specification of hard real–time systems.
Its model of computation as well as use of its language features however has to be restricted
to gain predictability. A methodology to express non–functional requirements based on the
“Event Stream” model is introduced.

Mapping principles allowing the translation of a SDL system model to a final imple-
mentation thereby preserving SDL’s semantics are discussed in Chapter 4. Requirements
to the software architecture imposed by the “Scheduling with Message Deadlines” (MEDF)
model of computation are given. MEDF’s predictability will be proven in Chapter 5, before
implementation alternatives for the necessary run–time system support will be evaluated.

The mapping methodology to translate a SDL specification to a “Real–Time Analysis
Model” (RTAM) will be explained in Chapter 6. The RTAM consists of a network of task
precedences and shows processes monitoring shared resources. Both is necessary structural
information needed by the final scheduling analysis algorithms which will be shortly re–
introduced.

The Olympus AOCS case study, i.e. a specification of a satellite’s “Attitude and Orbital
Control System”, serves as sample application to demonstrate the proposed design process
and to evaluate the influence of modeling style and code generation strategy on results
of the final schedulability analysis step. For this, overhead caused by run-time system
directives will be taken into account (Chap. 7). This thesis concludes with a discussion of
proposed methodologies and finally outlines possible future work.
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Chapter 2

Related Work

The incorporation of schedulability analysis into an automated design process involves the
following research areas:

• What languages are used to describe the functionality of real–time systems and how
are non–functional requirements expressed?

• What methodologies are deployed to translate a system specification into a pre-
dictable realization?

• And finally, what analysis algorithms and heuristics exist to prove the required time-
lineness of the final implementation?

In the following sections, a closer look to answers provided for these questions will be
taken, before holistic approaches comparable with this work are evaluated in detail.

2.1 Real–Time Constraint Specification

It can be generalized that the main focus of all specification languages lies in managing
system complexity. For this, they provide means to deal with concurrency and hierarchy as
well as communication and synchronization mechanisms to organize data flow and timely
inter–dependencies [GVNG94, ELLSV97]. Therefore, common to most languages are pro-
cess models, whereas at this level of abstraction the term process denotes the concept of
an autonomous object with its own thread of control.

Synchronous languages like Esterel, Lustre, or Signal [Hal93] idealistically assume that
processing of data consumes no time and time progresses only on the occurrence of new
external stimulating events. This means actions are instantaneous and the underlying
broadcast communication takes zero time as well. Aiming on formal verification of charac-
teristics like causality, liveliness or safeness, this class of specification language necessitates
such a strong synchronization. A translation to an efficient implementation keeping this
restrictive semantics is difficult, for distributed applications even nearly impossible. This

9
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is even true for Statecharts [Har87, HLN+90], whose timing model is as well synchronous
in the sense that time elapses only in equally sized steps.

Asynchronous languages assume that progress of time is continuous, thus actions in
processes consume an unspecified but non–zero interval of time. Communication schemes
are mostly based on message exchange and may be either blocking, e.g. rendezvous concept
in Ada or waiting send in Hoare’s CSP [Hoa78], or non–blocking paradigms like the port
concept in ROOM (Real–Time Object–Oriented Modeling [SGW94]) or SDL’s (Specification
and Description Language [ITU94a]) signal communication. Especially for modeling of
event driven real–time applications, asynchronous (non–blocking) message communication
schemes are preferable, since they allow a timely decoupling of application threads, often
necessary to achieve real–time behaviour.

Although these specification languages are called “real–time”, they all lack means to
formulate non–functional requirements, e.g. like maximum allowed response times or to
describe timing constraints imposed by the system environment, e.g. minimum intervals
between external events. In a work–around like approach, expressiveness is improved
in combining functional specification languages with real–time temporal logic formulas
[Leu95, PB98]. Applicability however remains limited due to the cryptic appearance of
temporal logic languages.

In a similar solution comparable to this work, annotations to the system specification
are proposed in [SSD97]. Beneath mapping, resource, and cost requirements, the so called
SDL∗ allows to add timing requirements in form of comments. Two types of constraints
are distinguished: duration and jitter. With this, definition of response times is possible,
but constraining the behaviour of the system environment in a worst case manner remains
unsolved.

The later problem is addressed in PMSCs [FLMTS97]. Again annotations in comments
or text symbols, but now to Message Sequence Charts (MSC [ITU94b]) are used to express
“performance requirements”. So called traffic sources allow the specification of inter–arrival
times of system stimuli. Durations and spans between marks on the MSC time axis are
provided for timing constraint specification. PMSCs may be used as basis for an analysis to
calculate mean processing times of system scenarios, i.e. exemplary signal sequences that
cover parts of a SDL system [Lam97]. In [BAL97], the general expressiveness of MSCs for
timing constraint specification is discussed and an algorithm for verifying the consistency
of these timing specifications is presented. Conflicting constraints will be detected by
translating basic MSCs into (cycle–free) temporal constraint graphs.

Although there exist combined efforts to incorporate those language features into new
versions of SDL [MTMC99], even its latest release SDL’2000 provides no support for a
description of non–functional requirements.

A contrary trend can be observed with the Unified Modeling Language (UML [Obj99b]).
UML can be seen as a general–purpose specification language latterly applied even for de-
velopment of real–time applications. There exist different “flavors” of this language depend-
ing on the appropriate CASE tool manufacturer [TG00]. UML has still a vague semantics
and is itself under ongoing standardization [Kob99], but there are attempts to take care of
special requirements imposed by this application area: The “UML Profile for Scheduling,
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performance, and Time” [Obj99a] includes so called “mandatory requirements” for future
extensions to UML. Its section “Timing Specifications” aims on expressing constraints like
deadlines, periods, jitter, inter–arrival times, and so on.

2.2 Code Generation Efficiency

System synthesis and thus automatic translation of a system specification into (executable)
code is well understood in the field of “Electronic Design Automation”. There exist sophis-
ticated tool support (e.g. [Syn99]) to compile hardware description languages like VHDL
[IEE00] and Verilog [IEE95] into networks of target components, whereupon nearly any
chip manufacturer is supported. Optimizing synthesis steps allow a translation even of
behavioral descriptions into system realizations that are near to an optimal solution. This
means uncertainties caused by level of abstraction and granularity of the underlying timing
model are successfully resolved by stepwise refinement of the input description.

Unfortunately, the latter does not apply for design processes targeting software. For a
detailed problem statement refer to [Mok83] or read the discussion in Sec. 4.1. Research
on code generation from SDL is mainly based on implementation strategies developed in
the effort to efficiently realize multi–layered OSI protocols [Svo89]. Two different method-
ologies with different clustering concepts were identified: The Server Model centralizes a
whole OSI protocol unit into one single task in the final implementation. Inter–layer and
thus inter–task communication is based on message exchange. In contrast to this, the clus-
tering concept of the Activity Thread Model (ATM) forces all procedures that are involved
in serving an incoming request through all protocol layers into one software task. Since
inter–layer communication is now based on procedure calls, no overhead due to message
queuing or process scheduling can arise. The influence on efficiency when applying these
strategies on protocol implementations derived from Estelle specifications is evaluated in
[HK95]. The semantical correct mapping of SDL specifications to the Activity Thread
Model is evaluated in [HKMT97]. [LK97, LK99] present refinements of the initial ap-
proach that include serving multiple, concurrent external requests (Extended ATM) and
means to ensure a processing order as defined by the model of computation in SDL (e.g.
reordering of SDL statements at compile time).

SDL is as well used as a system level specification language for a rapid prototyping
design process [PMK+00] with both software and hardware [Mut02] as target. Since this
approach partly builds upon the above mentioned design methodology and thus relies
on the synchronous language VHDL for its hardware components, a timing paradigm shift
during system synthesis is indispensable. Thus, the necessary “hardware run–time library”
which provides components for synchronization and communication of concurrent entities
on the final chip has to include a certain overhead which is acceptable for rapid prototyping.
A performance evaluation of Server Model and ATM based code generation strategies can
be found in [MKMKF00, MF00].
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2.3 Schedulability Analysis

Especially hard real–time systems require an a–priori proof that all specified timing con-
straints will hold even in worst case situations. Reacting not until a deadline has been
missed in an overload situation may have harmful consequences on the system itself or in
case of a safety–critical application even on human lives.

There exist two general classes of scheduling strategies for real–time systems: The first
category, called static scheduling, includes all methodologies that use an off–line calculation
to establish a “task calendar”. This table defines start times for all task and is read by the
run–time system’s dispatcher to allocate a certain concurrent task at a pre–defined time to
the processor. The task calendar is repeatedly processed leading to cyclic task activations.
Start times are referring to the beginning of each round.

Static scheduling is the basis of the fault–tolerant architecture of MARS [DRSK89,
SRG89]. Since a single time table can not cope with all operational situations, multiple
calendars are prepared before run–time. A “schedule switch” is then initiated in emergency
situations or at pre–defined points in time when the operation mode has to be changed.
Timeliness of all schedules is achieved by construction. This approach proves to be inflexible
since all combinations of possible situations have to be analyzed in advance.

Off–line generation of a parametric calendar is as well proposed by [SGA93]. Their
concept of static scheduling allows processing times of single tasks to be in pre–specified
[cmin, cmax] intervals to increase flexibility. Processing order constraints (precedence con-
straints) lead to so called transactions that consist of partially ordered tasks, but there
are no further inter–dependencies between transactions supported. It has been shown
that the construction of a time–table for non–preemptive hard real–time scheduling is a
NP–complete problem.

Taking into account sporadic tasks that occur seldom but have a short deadline (e.g.
initiate the inflation of an airbag in a car crash) leads to a very pessimistic layout of the task
calendar. Since polling for the sporadic event is necessary, it will devour the majority of the
available processing time. Dynamic scheduling approaches utilize this wasted spare time
in dispatching a high priority task only in the moment of the sporadic event’s occurrence.
One differentiates between two approaches, scheduling with fixed priorities and scheduling
with dynamic priorities.

Liu and Layland [LL73] submitted the fundamental theorems to dynamic scheduling.
Their assumptions rely on a very simple task model: 1. All requests to tasks are strictly
periodic (cycle time Ti); 2. New requests occur only after the previous job has been com-
pleted; 3. No shared resources and no precedence constraints are allowed; 4. Run–times
have to be constant (execution time Ci). 5. Tasks are perfectly preemptible. Liu and
Layland introduce an overall “processor utilization factor” U for a number of m tasks.

U =
m∑

i=1

Ci

Ti

(2.1)

For fixed priorities, their rate monotonic analysis (RMA) algorithm requires priorities to
be assigned to tasks in the following way: the higher the task’s rate, the higher its priority.
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For a set of m tasks they proved that all deadlines will be met if the overall processor
utilization U remains below the least upper bound URMA (sufficient requirement).

URMA = m(2
1
m − 1) (2.2)

For a large number of tasks, this upper bound goes to URMA = ln(2) which is quite
pessimistic. This utilization bound can be relaxed and even set to URMA = 1, if task
periods are harmonic.

Much research has been invested to extend Liu and Layland’s restrictive task model
and incorporate e.g. release jitter, aperiodic tasks, and precedence constraints into RMA
analysis. A good summary is given in [KRP+93]. Special care to analyzing tasks sets
that share common resources and the application of the “priority inheritance” protocol
can be found in [Raj91]. An interesting approach in minimizing blocking times on shared
resources by adapting a “preemption threshold” is described in [WS99].

For dynamic priorities, Liu and Layland proposed in their deadline driven scheduling
algorithm, to assign priorities to tasks according to their deadline in the current request.
With this, tasks with the earliest deadline will be dispatched first (EDF). Now, for a
fixed set of m tasks they proved that it is sufficient to show that the overall processor
utilization U remains below or equals UEDF .

UEDF = 1 (2.3)

This means, in applying EDF scheduling a 100% processor utilization can be achieved,
although periods are not harmonic. Furthermore, EDF has been shown to be an optimal
scheduling algorithm. It is optimal in this sense, that if one can find a feasible schedule with
a task set with fixed priorities, one will always find a feasible schedule with the deadline
driven approach too.

Again, there exist innumerable research papers addressing the relaxation of the task
model strictness assumed by Liu and Layland. EDF analysis algorithms to schedule task
with precedences, aperiodic task activations and protocols to synchronize tasks with shared
resources are summarized in [SSRB98]. Feasibility conditions for sporadic task sets with
common resources are presented for example in [Jef92] and [CLB99]. Event driven systems
that are triggered by stimuli with sporadic or even burst behaviour are investigated in
[Gre93a, Gre93b]. Gresser’s EDF scheduling theorems and his “Event Stream Model” for
description of task stimuli is the basis for this work.

Astonishingly, although scheduling theory for both approaches is equally sophisticated,
tool support is given mostly for rate monotonic analysis. “TimeWiz” (TimeSys), “RT–
Architect” (Realogy), “PERTS” (Tri–Pacific) and others provide a real–time kernel as well
as a timing analyzer.

Further dynamic scheduling algorithms are e.g. “Least Laxity First” scheduling (LLF)
or distance constraint algorithms like the “Pinwheel” strategy [HL97]. The later has been
designed with purpose to minimize jitter between task activations and therefore is especially
suitable for multi–media applications.
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2.4 Real–Time System Design and Schedulability

As has been shown in Sec. 2.1, real–time specification languages lack means to express quan-
titative timing constraints. Furthermore, there exist only few approaches that integrate
a schedulability proof into the system design process as required to construct predictable
real–time applications.

“Hard Real–Time Hierarchical Object Oriented Design” (HRT–HOOD, [BW95b]) pro-
vides dedicated terminal object types to identify the characteristics of activities within a
real–time application. Decomposition rules force the designer to apply a defined calling
paradigm when decluttering active objects into terminal objects. Each terminal object
possesses certain non–functional properties. Cyclic objects are used to represent periodic
activities. Timing and criticality attributes for this object type are period, release time
offset, worst case execution time, deadline, and priority. Sporadic objects allow to specify
a minimum interval between successive task releases instead of a period, but are treated
equally during timing analysis. Protective objects are resource control objects that do not
possess an own thread of control, but may be activated by cyclic or sporadic objects. To
synchronize concurrent activations, and to minimize blocking times on common resources,
a ceiling priority can be assigned to them. Finally, passive objects encapsulate function-
ality, again without a controlling thread, that may be repeatedly used by other active
objects.

Unfortunately, HOOD and thus HRT–HOOD lacks a behavioural description for its
objects. Instead, release time offsets and deadline splitting is needed to ensure correct
processing sequence. To circumvent this, [PB98] proposes to use HOOD objects to specify
system structure, but to use Modecharts to describe object details. In contrast to this,
[CW95] enhance HOOD with so called transactions to specify object behaviour. Lack of
a behaviour specification is as well the cause, that execution times in HRT–HOOD apply
only to whole objects. Thus, timing resolution of schedulability analysis has to be coarse
grained. Burns and Wellings show how a HRT–HOOD specified system has to be mapped
to an Ada based software architecture to ensure predictability and provide a heuristic for
a rate monotonic analysis based timeliness proof that takes into account the implications
of an Ada real–time kernel [BW95a].

Saksena et. al. [SFR97, SK00] provide design style guidelines for ROOM (“Real–Time
Object–Oriented Modeling, [SGW94]) specifications to improve schedulability. For a fi-
nal implementation, they propose either a single–threaded (leading to a non–preemptive
schedule) or a multi–threaded software architecture in which several ROOM objects are
grouped into one real–time operating system (RTOS) thread. Fixed event priorities have to
be manually assigned to inter–thread as well as to inter–object messages. Their schedulabil-
ity analysis calculates the worst case blocking times of events on objects caused by ROOM’s
run–to–completion semantics of encapsulated transitions and the run–to–completion pro-
cessing of each implementation thread. To avoid priority inversion effects, either priority
ceiling or the above mentioned preemption threshold [WS99] protocol may be applied and
is incorporated into their analysis scheme. Even applying a deadline monotonic approach
to find a suitable allocation of priorities to internal and external events need not necessarily
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lead to an optimal schedule [SKW00].
Extensions to SDL to support a performance analysis based on queuing theory is pro-

posed in [DHHM95, DHM96]. “Queuing SDL” (QSDL) and the underlying tool QUEST
allow to estimate wait time distributions of signals in SDL queues at processes. The later
are bound to so called machines that provide one or several services. System stimulations,
i.e. triggering events are created by traffic sources. Although a multitude of traffic sources
and machine service types are made available, only stochastical predictions on system be-
haviour can be made. Parameters like a utilization distribution of a machine or a mean
response time for a service request are not suitable for hard real–time systems which require
a worst case consideration.

Transition priorities instead of normally applied process priorities are proposed for SDL
systems in [ADL+00, ADL+99]. A thereof derived rate monotonic analysis is embedded
in an object–oriented design process starting with “Object Modeling Technique” (OMT),
respectively UML. To avoid priority inversion (PI) on transitions monitoring shared re-
sources, the priority ceiling protocol has to be applied. Due to the run–to-completion
semantics of SDL transitions, and due to the retained “first–in first–out” (FIFO) seman-
tics of SDL process queues, i.e. a high priority event will be appended behind low priority
events, blocking times of events can be become very large despite the PI avoidance mecha-
nism.1 Though this effect is covered in their timing analysis, maximum achievable processor
load however has to be very pessimistic.

1This is also true for the ROOM/RMA integration [SK00].
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Chapter 3

SDL Semantics and Timing
Constraints

On the one hand, advantages in applying specification languages like SDL or UML/RT1 for
the design of hard real–time systems are increasingly accepted in industrial practice. For
example, newest trends in standardization of the “Unified Modeling Language” [Dou98]
follow SDL and ROOM language concepts. Furthermore it can be observed that these two
languages will be included into the specification and design process as proposed by the
“Object Modeling Group” (OMG). State–of–the–art case tools like Telelogic’s Tau frame-
work provide a tool chain, covering a continuous design process, starting with UML for
requirement specification and concluding with SDL for detailed design and implementation
for exactly this application domain.

But on the other hand, applicability of these languages especially for the domain of
real–time systems is criticized in theoretical computer science [Hin98b, Hin98a]. Main
points of criticism include:

1. Expressiveness to capture real–time requirements that are complementary to the
functional description of a real–time system is poor in SDL2 [Leu95].

2. Its asynchronous message passing communication scheme which allows a loose cou-
pling of independent system parts (a sender will never be blocked through a non–
ready–to–communicate receiver) is unsuited for real–time systems because the delay
until the receiver proceeds its execution can not predictably be bounded [BGK97].

Having this in mind the question arises, what is the general purpose of a specification
language, especially its semantics? A language should provide a frame of rules that allow
the system designer to describe the application under development in an abstract and
implementation independent way. Furthermore the language’s strictness and formality
should help to avoid design mistakes in advance, e.g. its communication paradigm should

1Formerly known as ROOM and used with this name in this work. Ongoing (Spring 2001) lawsuit
regarding Rational’s new product name.

2For this purpose, only a timer concept is supported with SDL.

17
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ensure synchronization on mutual access to common devices or data. In addition to this,
its semantics should provide for executability (i.e. system model simulation, even if in
an incomplete state), its formality should allow automatic code generation, and finally
its predictability and analyzability should enable the proof of certain characteristics, e.g.
timeliness.

As can be seen, these are very broad requirements emerging from the fact that a spec-
ification language will be used in the very early phases of a design cycle, but likewise may
be applied very lately, e.g. even for an implementation description. Thus, it has to support
very abstract and therefore probably indeterministic language concepts on the one hand,
but has to provide the possibility to pinpoint these non–determinisms finally in the detailed
design. As will be shown later in this chapter, this all can be done with SDL.

This work aims on the proof that a system under development, when finally imple-
mented, will show real–time behaviour. This can only be done, if the model itself and
the description language used behave predictable. Beyond this, for real–time analysis im-
plementation details like execution times must be known or have to be estimatable. We
provide an improved predictable finalization for SDL’s semantics (process activation with
signal deadlines) which is only a refinement of its original model of computation. It will be
applied when approaching the final realization. In order to have real–time analysis results
correspond with implementation’s behaviour and in order to have a simulation meet the
designer’s expectations, it is necessary, that all three the semantics of the specification
language, as well as a simulation’s timing model, as well as the scheduler of the applied
real–time operating system behave in a conform way.3

SDL’s timer concept will be interpreted only as a functional language concept and will
not be used to express non–functional constraints. For this purpose, we propose to extend
a SDL specification with (timing) attributes to capture real–time requirements.

This chapter provides in its first part a short introduction into SDL’s syntax and stan-
dardized semantics. It proceeds with an evaluation of expressiveness and analyzability
of its language concepts. Next section introduces an improved execution model (MEDF
scheduling) and a supplementary notation to express timing behaviour of the model itself
and its environment. Finally, attributes used to specify real–time constraints are presented.

3.1 Specification and Description Language SDL

Recommended by the ITU–T (formerly CCITT) as design language for telecommunication
systems, SDL is a formal specification language with well defined syntax and semantics
[ITU94a]. Being continuously extended and improved, its newest version SDL’2000 is under
standardization in the moment. All main language concepts are already included in version
SDL’92 on which this work focuses. Its object–oriented concepts and thus dynamic process
creation must be excluded in this work for predictability reasons (cf. Sec. 3.3.5).

SDL offers two different kinds for its representation, a graphical one (SDL/GR) used
in this thesis in all examples because of its expressiveness and understandability, and a

3[Für01] realized a MEDF simulator kernel on RTEMS basis for Telelogic’s SDL design tool SDT.
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Figure 3.1: SDL System Syntax (graphical representation)

textual one (SDL/PR) used as input language in all parsing tools throughout the design
framework4.

In the following, basic SDL concepts are shortly explained. For a more detailed de-
scription of its language features and further recommendations on its use, the reader is
referred to [Ols94, BHS91, BH93, ITU94c].

3.1.1 Syntax

SDL system structure: A SDL specification consists of a system model that commu-
nicates with the environment. The system model can be decomposed with hierarchically
decluttered blocks connected via uni– or bidirectional channels. Blocks can be further de-
composed into a set of processes which communicate asynchronously via signalroutes and
messages (called signals), whereby signalroutes can be bundled in channels between blocks.
All processes are assumed to run concurrently and each SDL process owns its private infi-
nite queue that holds incoming messages according to a first–in first–out strategy5. Since
there are no shared variables6 allowed between blocks and even processes, data exchange
must be done on message basis. A simple example is given in Fig. 3.1 showing the structure
of a SDL system S with a refined block (B2) and its process network (B22).

SDL system behaviour: System behaviour is expressed through SDL processes. A
process itself is specified as an extended finite state machine (EFSM, Fig. 3.2) that con-
sumes incoming signals and in turn produces outgoing messages (signal output). Signals
are processed in the order of their signal queue position and trigger a state transition. If
there is no appropriate input statement, the signal will be discarded7, except it is saved
by means of a save statement.

SDL allows to add an enabling condition to a transition that is tested after signal
receival. If the test result is invalid, the incoming signal will be saved. Continuous signals

4Telelogic’s SDL design tool SDT supports SDL/GR to SDL/PR conversion without loss of information.
For vice versa additional graphical layout information has to be added, but this conversion is also supported.

5except for priority input
6SDL provides an explicit reveal/view concept for shared variables between processes.
7called “implicit transition”
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Figure 3.2: SDL Process Syntax (graphical representation)

are a means to express permanent surveillance of boolean expressions which may include
external variables from within a SDL process. A transition is initiated when the input queue
is empty and the boolean expression computes to true. Incoming signals take precedence
over continuous signals.

Manipulation of local data in task symbols, setting and resetting of the processes own
timer, and sending of signals may be done during a state transition in arbitrary order.
Similar or equal parts of a state machine can be packed into a procedure. These sub
state machines can be activated from within a transition. Furthermore, SDL’s language
includes a mechanism to dynamically create processes and provides a symbol for process
termination.

Most of the advanced language features like import/export or remote procedure calls
may be substituted through SDL macros, e.g. a synchronous protocol of sending and re-
ceiving signals between exporter and importer. SDL provides some shorthands like e.g.
asterisk states (∗ in a state symbol), or asterisk signals (∗ in an input symbol). They can
be resolved through an enumeration of all states respectively all signals allowed and known
within this process.

3.1.2 Semantics

SDL’s computation model can be described as follows. As already mentioned above, all
processes run concurrently with equal priorities. They are activated on arrival of an in-
coming signal.

Communication between processes occurs on base of asynchronous signal exchange
with non–blocking send but blocking receive. For this, each SDL process owns one single
message queue. Incoming signals are sorted according to their arrival times (FIFO). The
signal on first queue position will be processed first, i.e. if two or more signals (e.g. m11
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and m21 in Fig. 3.2) are available and several transitions may be enabled simultaneously,
execution order relies on queue sorting. An exception to this rule may be realized through
a priority input. With this, a later arrived messages can be preferred (timeout signal T is
privileged compared to signals m11 and m21 in the example).

Neither process priorities nor signal priorities are included in the original Z.100 seman-
tics. Sequence of process activations only depends on arrival order of incoming signals.
Signal transmission via channels between blocks may be delaying, but signalroutes be-
tween processes deliver instantaneously.

SDL assumes a global system time that can be accessed through the operator now from
every process. There may exist several SDL timers per process. They can be set and reset
during state transitions. When a timer expires, a timeout signal is sent to the processes
signal queue.

3.2 Abstractions and Non–Determinisms

SDL can be used during the early phases of a system’s design cycle for simulation of even
incomplete specifications. For this purpose abstract and non–predictable language features
like any decisions or spontaneous transitions are supported.

If a transition including an any decision is executed, an arbitrary transition alternative
will be chosen non–deterministically from the set of all possibilities. Using the SDL keyword
none in an input symbol enables a SDL process to spontaneously trigger the appropriate
transition without an available incoming signal.

These constructs are meant to be replaced when approaching the final implementation.
They allow a stepwise refinement of the behavioural part of a system specification. This
method of stepwise refinement has to be transferred to SDL’s semantics. The compu-
tational model must be pinpointed for the final realization to circumvent non–predictable
executions in the implementation and to allow an a priori analysis of the system’s real–time
behaviour. For this, we take a closer look on weaknesses of its timing and computation
model before a predictable finalization of its semantics can be introduced in Sec. 3.3.

3.2.1 Notion of Time

Time consumption in processes, respectively state transitions is not clearly specified in
Z.100 [ITU94a]. Its proposed interpretation of time depends on application domain, im-
plementation architecture, or purpose of simulation. There are different timing models
imaginable. Time may proceed only on expiration of a timer, or it may elapse exclusively
in states and thus state transitions are atomic and consume zero time, or it may elapse
continuously.8

The timing concept of a semantics has to fulfill two tasks. On the one hand, it should
allow an implementation independent description of time progress during design and simu-

8First and third concept can be found as timing models in SDT’s kernels for functional and wall–time
(called “real–time”) simulation (cf. Sec. 4.2).
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lation. On the other hand, it should include possible timing behaviours of final realizations.
Since our goal is to proof real–time characteristics of an application’s final realization, we
need a timing model, that allows to attach certain bounded (best case or worst case)
execution times to processes, respectively state transitions. For that, we assume time pro-
gresses continuously and state transitions consume an arbitrary, but bounded and non–zero
amount of time.

Often rejected for formal verification methodologies, this model can be said to be com-
mon understanding in system design and is also proposed in [Hin98b, Hin98a].

3.2.2 SDL Timers

An expired timer sends a signal to its own process using the same incoming message queue,
normally sorted FIFO. Thus a timeout signal may be appended to already waiting signals.
Even if the timer signal is privileged (e.g. through priority input), the point in time, when
the process will consume this signal, can not be determined. Scheduling of concurrent
processes, and thus preemption of the process to be activated by the timeout, will impose
an unspecified jitter to this “wakeup” call. This means, even if it has been assured, the
process to alarm is idle, duration of waiting time for the signal in the input queue would
be unbounded. To emphasize this fact, it even can not be guaranteed, in a system with
two processes alarmed by two timers, the more urgent timer signal will be consumed first.

Would process priorities help? Regarding the constellation above with several alarms
to consider, for processes with lower priority, it could only be predicted, they will react
within an bounded time after the receival of the timeout message.

As can be seen, without additional rules for process activation, timers are not appli-
cable for the surveillance of any real–time attributes. This fact is not inherent to SDL
systems only, but a problem of all asynchronous communication schemes. Proposed so-
lutions include an “emergency timer” concept [BGK+00] or an exception mechanism for
SDL (SDL’2000).

3.2.3 SDL Process Activation

Processing sequence of concurrent processes having all equal rights is unspecified in SDL.
This can lead to the effect, signals will arrive in arbitrary non–predictable order at a
receiving process. Unless all message sequences are taken into account in the receivers
state machine (see process PrD in Fig. 4.3(a) on p. 39 as an example), a loss of signals is
possible (“implicit transition”). To avoid this, signals can be deferred by means of a save
statement.

In contrast to SDL signalroutes which transport signals without delay channels may be
delaying. Detention of signals on a channel is bound but arbitrary, but order of consecutive
signals is maintained. Furthermore, there is no means to broadcast a signal to several
processes over block boundaries, making it impossible to determine a common state of a
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whole system. For this, explicit synchronization by message exchange is necessary9. Since
Statechart–like [HLN+90] behavioural concurrency within SDL state machines is not part
of the language, the only means to directly access state data of parallel processes is to use
reveal/view. This feature explicitly allows a process to share data with its competitors,
but its use is not further recommended in SDL’9210.

3.2.4 Atomicity and Run–To–Completion Semantics

A further point for discussion is the atomicity level of SDL state transitions. Z.100 [ITU94a]
allows statement level, transitions level or no atomicity at all. For real–time applications,
preemption is often needed to fulfill required timing constraints by minimizing task la-
tencies. Perfect interruptability is also assumed by most real–time analysis algorithms.
Since all data is local to SDL processes and access to a competitor’s data has to be explic-
itly declared with reveal/view, thus warning the designer of possible data–inconsistencies,
preemption may be allowed without further consequences (cf. Sec. 3.3.3).

Conclusion: SDL’s asynchronous communication scheme and its non–privileged process
activation rules impose non–determinisms on model behaviour. Predictability can be im-
proved by adding priorities which originally are not part of the language, to SDL processes
or signals11. Nevertheless, because of message overtaking effects correct behaviour of a
functional model should not depend on sort order of incoming signals.

3.3 Finalization/Restriction of SDL´s Semantics

As explained above, signal or process priorities are used in an attempt to assure timely
correct behaviour of a SDL system. In this section, an alternative execution scheme,
“Scheduling with Message Deadlines” (MEDF) is introduced. Its applicability to SDL is
shown with some examples. MEDF code generation is evaluated in Chap. 4, predictability
of MEDF is proven in Chap. 5.

3.3.1 MEDF Semantics

An event triggered reactive system has to respond to an external stimulus within a spec-
ified deadline. This means, a chain of process activations inside a SDL system has to be
processed and completed within a time span, the specified end–to–end timing constraint.
This relative deadline is a non–functional requirement of the system specification and given
through the embedding system to control.

9This again is inherent to all asynchronous communication paradigms.
10As will be shown later, use of reveal/view is needed for efficiency reasons
11SDT’s C–Micro kernel provides support for process and/or signal priorities. Its code generator (cf.

Sec. 4.2.2) evaluates #PRIO keywords attached via comments to process, respectively signal declarations.
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Figure 3.3: a) End–to–end Deadline vs. b) Triggering Less Stringent Processing

With occurrence of an external event an absolute deadline can be calculated and will be
attached to signals coming in from the environment. A receiving SDL process adopts this
deadline and is scheduled accordingly. In turn, outgoing signals get assigned this deadline
and thus, successive processes will receive the same absolute deadline. As a consequence,
all processes will be dispatched on an Earliest Deadline First (EDF) basis (cf. Chap. 5).
To synchronize several incoming signals, a process’ signal queue has to be deadline sorted.
With this, signals may overtake each other, but as will be shown later, EDF queues are
needed to achieve predictability, respectively minimize signal blocking times.

Internal events like timeouts are treated equally to external stimuli, i.e. timer signals
get assigned their own absolute deadline. Depending on this chosen deadline value, timeout
messages will be inserted according to their urgency into the process’ signal queue.

To summarize, a deadline token (called “EDF event”, represents an absolute deadline)
is transported with each SDL signal. With signal receival, the consuming SDL process
adopts the signal’s deadline and operates on this new dynamic priority. Outgoing signals
are passing the deadline token on to the subsequent process.
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3.3.2 Scope of Deadlines

Deadlines normally span a whole task precedence system. On arrival of an external event,
a deadline token is created and passed through a set of consecutive processes. After
completion of the final computation in the last process within the communication chain,
this EDF event would be deleted, if the deadline was reached.

In some systems, it is necessary to trigger a successive processing with less stringent
timing constraint to relax the overall computational requirement. To demonstrate this
case, the SDL model of an example application “collection of measurement data” is shown
in Figure 3.3.

This very simple system illustrates the need to split up an end–to–end deadline (case a:
deadline d) into several deadlines (case b: deadlines d1, d2) to achieve required real–time
behaviour. Process PrA, which assembles measurement data (variable a) to a data array
(variable b(i)) has to preempt process PrB to keep up with the stream of incoming data
sent from the interrupt service routine (ISR). Functionality of the ISR which is shown in
SDL notation for demonstration purposes only includes cyclic reading of an input value,
creation12 of EDF event E1 and attaching the appropriate deadline (d in case a and d1

in case b). With receival of a data block and thus receival of a new deadline, process
PrB calculates the final result (variable c). After it is sent back to the environment, PrB

concludes with deletion of the triggering EDF event (E1 in case a, E2 in case b).
If there exist non–time critical signals in a SDL system, appropriate EDF events, trans-

ported with these signals, will get assigned an infinite deadline.

3.3.3 MEDF Process Sequencing

SDL’s Z.100 specification [ITU94a] states, all SDL processes will run independently and
concurrently, as if each process is mapped to its own processor. This idealized assumption is
now replaced through MEDF scheduling of processes. To better understand the necessity of
run–to-completion semantics of state transitions, the following definitions for precedences
and concurrency are introduced.

Definition 1 Precedence13: If there exists a precedence constraint between two processes
P1 → P2, then execution of P1 will have to be finished before activation of P2.

Definition 2 Concurrency: Two processes P1‖P2 will be concurrent, if there does not
exist a precedence constraint (Def. 1) between them, i.e. if their computational results are
independent of processing sequence.

With Def. 2 and the assumed locality of (state) data in processes, one can easily follow,
that state transitions may be preempted through concurrent processes only.

12For end–to–end deadlines, event creation and deletion may be completely hidden from the system de-
signer, event and thus deadline transportation has to be undertaken by the run–time–system (cf. Chap. 5).

13This definition will be extended in Chapter 5 (Scheduling with Message Deadlines) to Def. 3 (Task
Precedence System).
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Figure 3.4: Timeout with MEDF Timer

Assuming a process network like P11 → PS → P13, and additionally P21 → PS → P23.
Without MEDF and run–to–completion of state transitions, a signal from PS to P13 may
activate P13, preempting PS and leaving its state transition unfinished. A now arriving
signal from P21 to PS would either destroy the consistency of PS state data or will have to
be delayed until P13 has completed its computation.

As can be seen, run–to–completion of state transitions is necessary in processes serving
different requests (signals) transporting deadlines originating of different triggering event
types (later called “server process”). With MEDF, process precedence constraints (Def. 1)
are resolved through process sequencing (cf. Lemma 1 in Sec. 5.2.2), thus a successive
process will be only activated after completion of its predecessor.

The described phenomenon of overtaking SDL signals due to non–predictable process
activations will not occur anymore. But with deadline sorted signal queues, MEDF allows
and needs signal overtaking in message queues.

3.3.4 MEDF Timers

With MEDF semantics, timer signals get assigned their own deadline14 and are inserted
into the signal queue according to their (absolute) deadline value. Depending on the
urgency of this timer signal, it will be immediately consumed by the process to alarm, but
preemption through third party processes may cause a jitter comparable to normal SDL
timeout signals.

To demonstrate consequences with an example, a simple telephone handler application
[BGK97] is shortly analyzed (Fig. 3.4). There exists the following requirement: Process
“TelHandler” has to respond within deadline d to incoming signal offH, process “Caller”
uses timeout signal T to monitor a timely response of process TelHandler. For expressive-
ness reasons, a message sequence chart (MSC) is used to illustrate signal exchange between

14Deadline administration with timers is explained in Sec. 4.3.3.
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Caller’s timer, process Caller itself, and process TelHandler. We further assume, deadline
DT = DAlarm is attached to timer T and deadline DR = D is assigned to signal offH.

With these assumptions, different behaviours of the system are imaginable:

a) TelHandler has not achieved to complete its computation and to respond before
time D and additionally Caller has not been activated: A deadline violation occurred
and will have to be handled by the exception handler of the run–time system.

b) TelHandler responds in time and Caller resets timer T: Everything went well.

c) Timeout signal T and response dtB are sent nearly simultaneously.

To be able to undertake “alarm” actions in Caller, one has to choose the deadlines
DT < DR. Otherwise, if DT ≥ DR execution order will be forced to be TelHandler before
Caller and the timeout signal will be ignored. This means, Caller must be released before
time D is reached to react to signal T, thus stealing TelHandler processing time to fulfill its
task in time. Considering the worst case, TelHandler may complete its computation and
respond with signal dtB, but dtB will be appended behind signal T in the signal queue of
Caller. This shows, that timeout time and timeout deadline must be chosen wisely.

3.3.5 Discussion of further SDL Language Constructs

The finalization of SDL’s semantics to MEDF influences the use of some language features
of SDL. Restrictions and changes are discussed below.

SDL–88

priority input : This preferential treatment of some signals according to their impor-
tance regarding the processing sequence within a SDL process is not needed anymore
since MEDF signals are sorted into the incoming message queue according to their
transported deadline.

save : SDL provides the save mechanism, to avoid implicit transitions and thus signal loss
caused by unexpected signal arrival. But since storage time of a signal save can not
be bounded without knowledge of all timely inter–dependencies of incoming signals,
this language feature is forbidden with MEDF.

enabling conditions : If a transition is guarded by an enabling conditions which cal-
culates to “false” on arrival of a triggering signal, the signal is saved. Thus, this
construct must also be precluded (→ save), at least with this model of computation.

continuous signals allow the surveillance of conditions of variables and will trigger a
state transition, if the condition evaluates to “true”. In case of an external variable,
i.e. if the variable change is caused by the system environment, an additional timing
constraint has to be specified to describe the temporal behavior of this trigger.
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reveal/view provide a means for unsynchronized data access to variables in concurrent
processes. They can be seen as a form of declaration to remind the system designer
that data consistency may be at risk. Usage is unrestricted under MEDF.

channels: An arbitrary retardation can be attached to a SDL channel in its original
meaning. With MEDF, channels are non–delaying.

SDL–92

With this 1992–version of SDL, object–oriented concepts were introduced into the language.
Most of these language constructs can be understood as a means to further organize the
system structure of a SDL system. As long as these features are not resolved at run–
time, i.e. if they can be substituted by basic SDL language, their usage is allowed further
on. Language constructs like multiple process instances or dynamic process creation by
instantiation, anyway not recommended for design of real–time systems, have to be deferred
due to their unpredictable behaviour.

3.4 Non–functional Specification

A reactive (event–triggered) real–time system can be generally defined as a system that has
to respond to certain external and internal stimuli (state changes) within given timelines.
As can be seen, beneath a functional description of the system, a specification of the
timing characteristics of the embedding environment as well as of the application part
itself is needed to verify that required timelines will hold.

3.4.1 Timing Constraints

A non–functional specification of the embedding system consists of deadlines (i.e. maximum
allowed response times), event streams (i.e. a description of the timely behaviour of system
stimuli), and finally event dependencies.

Deadlines (d) determine the relative available amount of time for an application to
respond to a certain stimulus. They have to be specified for external signals as well as for
internal timers.

Event Streams (ES) characterize the temporal behaviour of the embedding process.
They are a formal means to express the maximum possible number i of events of a certain
type within any arbitrary interval ai−1 that will reappear at most with the cycle time zi

[Gre93b]. An event stream consists of at least one or more event tuples (ai zi)
T .

Considering the occurrence of events on the left side of Fig. 3.5, the resulting ES is
shown on the right. There are no two simultaneous events in the example, but since at
least one event must occur within an instant, the interval in the first event stream tuple
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Figure 3.5: Event Stream Example

must be a0 = 0. A maximum of two events occurs in an interval of length one time–unit
(a1 = 1) and a maximum of three events in interval a2 = 3. All event occurrences are
repeating with a cycle time of z = 7.

As with deadlines, ES specifications have to be added to all stimulating external events,
i.e. SDL signals coming from the environment, and to all stimulating internal events, i.e.
to all timers.

Event Dependencies specify the minimal distance between occurrences of events of
different types. For each group of dependent events an Event Dependency Matrix EDM
may be additionally specified.

EDM =

(
ed11 ed12

ed21 ed22

)

Each element ekl of the EDM denotes the minimal temporal distance between an oc-
currence of event of type k and a subsequent occurrence of event l.15

3.4.2 Extensions to the Functional Model

Further extension to the functional model include the specification of execution times,
limits for cycles in transitions or signal loops, process priorities, and system modes.

Minimal and Maximal Calculation Times (cmin, cmax) describe the expected
amount of computation time a processor will need to execute a given task. To simplify
the specification process, calculation times can be added to a whole SDL process and thus
are valid for all transitions and the initial receive. Additionally calculation times can be
attached for modeling refinement to single state transitions or even to parts of a transition.

Transition and Signal Loop Bounds (l) define a minimal and/or maximal allowed
limit for either loops in transitions or for signals that are sent back to predecessor processes
in a precedence system. The lower limits are needed to calculate earliest possible start times
of server processes, the upper bounds are used to derive the worst case computation times.

15edkk is the distance between two events of the same type, thus is equal to a1 given in its event stream.
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Priorities (p) are used in a MEDF SDL system specification to divide the system
model into hard and soft real–time application parts. Only processes, that execute on
a pre–defined hard real–time priority level are scheduled and analyzed using MEDF.
Processes running on levels below this priority are considered to be soft real–time.16

Timing constraints and model extensions are added to process and signal declarations
or are directly specified in SDL task–symbols within state transitions. For this, a new
keyword #RZA is introduced, such that annotations can be embedded in SDL comments
within the functional SDL model. An application example showing the use of annotations
during the design flow is given in App. A.1. A summary of all possible annotations can be
found in Table A.1.

Operation Modes

Real–time analysis (cf. Chap. 6) can not declutter all possible state combinations in all
concurrent processes to evaluate the worst case situation of a whole system. A methodology
that follows such a concept, e.g. simulation verification or model checking, faces the state
space explosion problem [SBMJ01]. Instead, the proposed analysis algorithm relies on
an abstraction of the SDL system. A worst case path within a precedence system of
SDL processes is evaluated and considered to be the response to an external or internal
event. The algorithm then assumes a critical instant of all stimuli to calculate the worst
case processing load. Because of this, the analysis result may be very pessimistic, but will
always cover the worst case. To weaken this effect, the system designer has several different
possibilities:

1. Breaking up deadlines, and specify additional event streams at the beginning of each
new deadline (Sec. 3.3.2 and Fig. 3.3).

2. Specification of additional event dependencies, e.g. to take into account setting of
Timers in state transitions triggered by an external signal.

3. Consideration of mutual exclusive operation modes.

Operation modes take into account that there may exist different processing conditions
for the SDL system, either because groups of external or internal events will not occur
in the same situation (captured by event dependencies) or groups of state transitions will
only be executed in different system scenarios (e.g. during system initialization, normal
mode, failure recovery, panic, . . . ). To recognize operation modes during the derivation of
the worst–case task precedence graph, mode identifiers could be as well annotated to SDL
processes and/or transitions. The concept of operation modes is evaluated among other
things in Chap. 7.

16Tasks on a priority higher than MEDF priority resolve supplementary functions, e.g. the Timer Task.
These priorities are not allowed on specification level.



Chapter 4

Code Generation

SDL processes with their explicit parallelism are used for structuring the system under de-
velopment into functional units, i.e. capsuling functionality into independent design prob-
lems. On the other hand, concurrency in the implementation is often needed to achieve
real–time performance, e.g. for minimizing task latency or for synchronizing tasks with
different, non–compatible timing constraints (e.g. double buffering of data in exercise “Col-
lecting Measurement Data”, [MB00]). Unfortunately, granularity as well as structure of
concurrent units may differ in system model and system realization. Automatic mapping
is made difficult through this fact and therefore is the focus of attention in this chapter.

Code generation is one step within software automation design process and has to fulfill
different, often diametrical tasks:

1. Preserve semantics of specification language. Computation within implementation
must be the same as execution order specified (and probably simulated) with system
model.

2. Provide real–time behaviour and allow timing constraints specified to be met. For this
purpose, incorporated overhead needed to synchronize between concurrent processes
should be minimal, i.e. code generation must be efficient.

3. Scheduling scheme employed must be analyzable.

4. Generated code should be “human readable” and easy to understand, since test and
debugging will be undertaken after target integration and generated code will be used
as source1.

This chapter deals with following topics: At first, possible decomposition principles of
system descriptions based on process models are analyzed. In a next step, state–of–the–art
generator tools are evaluated and classified accordingly, before code generation strategies
for MEDF semantics are presented finally.

1Because of its automatic generation, design changes will effect only the system specification. Therefore,
maintainability of target code is not the main focus anymore.

31
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4.1 Decomposition Principles

“Owing to a semantical gap, this translation [to the process model] can be a se-
rious source of inefficiencies during system design and substantially complicates
software maintenance later on.” [Mok83]

There exist some tradeoffs, which are inherent to decomposition techniques of system
descriptions, based on concurrent processes.

Maintainability vs. efficiency tradeoff: A highly efficient system realization may
abandon structuring concepts as introduced by the specification language to meet strin-
gent timing requirements. For example, giving up SDL’s process capsuling will lead to
“unreadable” and therefore unmaintable code. But, e.g. replacing SDL’s (asynchronous)
message exchange through (synchronous) procedure calls will minimize execution times
and help to fulfill timing constraints.

Amount of computation vs. amount of communication tradeoff: Depending
on the system’s properties, i.e. amount of computation to perform compared to its
communication and synchronization effort included, one of the proposed strategies will
fit best, i.e. there won’t be no overall best strategy for a system’s decomposition into
concurrent tasks.

Common to all strategies is the minimal granularity used for mapping. Due to the finite
state machine characteristics of SDL processes, the obvious rule for system decomposition
is to always keep one state transition unfragmented. Depending on the strategy, several
transitions will be merged into one task or one process will be split up and its transitions
will be integrated into several different concurrent tasks.

The classification below follows Mok’s decomposition ontology [Mok83], but takes spe-
cial care of SDL’s communication and computation concepts. To commemorate, SDL’s
messages are used for both, triggering consecutive operations as well as synchronizing
mutual exclusive executions (monitor concept).

The notion “process” is used for a functional unit within the specification language (e.g.
SDL process), the term “task” denotes an executional unit within the implementation (e.g.
RTOS task), whereas “thread” describes a clustering concept for consecutive computation
steps (e.g. activity thread). Actions in SDL state transitions are specified in so called “SDL
task symbols” in contrast to simply (RTOS) “tasks”.

4.1.1 Decomposition by Maximizing Parallelism

Decomposition policy of this straight forward principle is to assign one separate task to
each SDL process. Since SDL server processes will be mapped to their own tasks, no
additional synchronization mechanisms are required in the implementation.
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In case of a multiprocessor platform, this strategy will achieve the most stringent timing
constraints2, because of execution will benefit from application’s inherent concurrency. But
on a single processor architecture as assumed in this thesis, both types of synchronization
concepts, i.e. triggering of the next execution as well as synchronizing mutual executions,
will be included in the final realization, bringing in some probably avoidable overhead.

The resulting task architecture will reflect the SDL design with its process structure,
and therefore will be easy to understand and maintain.

4.1.2 Decomposition by Timing Constraints

A task is built of a sequence of function calls, each of them representing one single state
transition of one SDL process.

Calling sequence of state transitions inside a task is derived from the data path between
input and output actions, starting with one triggering input signal. Following send/receive
pairs within the SDL system, state transitions, which perform the output to the envi-
ronment conclude execution of the task. Since state transitions within SDL processes
have to share common (state) data, but may be realized through different tasks in the
implementation, state variables will become non–local to the corresponding tasks. There-
fore, data integrity has to be assured through additional synchronization mechanisms, like
semaphores or server queues.

This technique abandons SDL’s message exchange for triggering the activation of con-
secutive processes and resolves SDL’s process structure along end–to–end timing con-
straints. With this, functional capsuling will be lost and the resulting software architecture
won’t reflect the design problem anymore.

4.1.3 Minimizing Interprocess Communication

Server processes in SDL are a modeling concept used to monitor requests with different
computational requirements to shared executions or devices (see Fig. 4.1). The use of
additional communication mechanisms (like semaphores or server queues) for resolving this
synchronization problem in the implementation can be avoided through the integration of
several competing computational requirements into the same task.

Prerequisite for this are compatible timing requirements, i.e. processes have to be acti-
vated with same periods3 (and same activation times) or periods are multiples of a common
unit. The task, performing the computation of all processes merged, will be triggered with
the greatest common divisor of all periods. In the latter case, scheduling decisions must be
generated into the implementation task, since with each activation not all program paths
(state transitions) have to be executed, i.e. with every computation cycle, some program
paths, respectively state transitions have to be skipped. In case of state transitions belong-
ing to a server process, sequence of their activation has to be determined manually or by

2Assumption: Computation predominates communication times.
3Assumption: Deadline is equal (or in same order of magnitude) to period.
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Figure 4.1: a) Synchronizing Mutual Exclusion and b) Monitoring Shared Function

random. If a server process contains only one function, triggered by several different events,
with this strategy multiple executions of this monitored function can be economized.

Replacing sporadic computational requirements through their equivalent periodic ones
(period will be the same as the smallest minimal activation interval), this technique can
be assigned to a whole SDL system. With the consequence, the complete system will be
represented through one single task in the final software architecture.

Task latency and thus reaction time, i.e. time till the appropriate state transition for
one input event will be activated, will increase.

Conclusion

Each of the decomposition principles has its advantages and drawbacks, depending on
system’s properties and its timing characteristics. This is summarized in the following:

• Server state machine structure (alternative state transitions with different function-
ality in each transition, but to be synchronized timely, cf. Fig. 4.1(a)) vs. monitoring
shared execution (common functionality, cf. Fig. 4.1(b)): Elimination of redundant
computation (Sec. 4.1.3) as deduced in [Mok83] will only occur in the second, the
monitoring case, i.e. the body of a monitor process will only be executed once with
each activation. This means, an efficiency improvement can only be realized, if there
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exists any functionality to be duplicated unnecessarily with strategy “Decomposition
by Timing Constraints” (Sec. 4.1.2).

• Strategy “Minimizing Interprocess Communication” (Sec. 4.1.3) is hard to automate,
because scheduling information has to be “hand–coded” into the task’s body.

• As mentioned above, non–compatible timing constraints and a design problem, which
can not be pipelined as described in Sec. 4.1.3 necessitate the straight forward strat-
egy “Maximizing Parallelism” (Sec. 4.1.1) to minimize task latencies.

4.2 State–of–the–Art Code Generators

Telelogic’s SDL Design Tool SDT provides different code generators, C–Basic/C–Advanced
and C–Micro. These code generators are dedicated for different purposes. On the one hand,
for a multitude of simulation techniques, e.g. functional, simulated time, wall time4 (SDT
notion: “real–time simulation”) and performance simulation, but on the other hand can be
used for target integration as well. With the latter aiming on different targets, embedded
as well as general purpose processors.

4.2.1 SDT’s C–Basic and C–Advanced

Newest tool release (since SDT Rel. 4.0, [Tel01]) does not distinguish anymore between
these two code generators, and therefore the term C–Advanced is used for both tools in
the following.

Light Integration Model: The complete SDL model will be integrated into one single
operation system task (e.g. an Unix process) for on–host simulation, respectively one single
RTOS task on an embedded system. Mapping principle follows “Maximizing Parallelism”,
since each SDL process will be assigned to its own so called PAD function (Process Activity
Description).

The “Light Integration” is based on SDT’s proprietary kernels, which implement one
single process ready queue for the whole SDL system. Sort order of this ready queue
may be FIFO or priority based. Following SDL’s rules for process activation, with each
incoming, a process readying signal, the appropriate PAD function is called. This results
in non–preemptive execution of state transitions.

Since the whole SDL model will be processed in a single main loop, thus polling the
system environment, the resulting realization resembles a model interpreter. The main
loop consists of several consecutive steps, beginning with an initial call to an input function
xInEnv, which feds triggering signals into the SDL system part on an environment’s state

4The notion “wall time” describes the concept of synchronizing an internal system model time to the
“real” time of the system’s environment. The later may be varying, e.g. the simulator environment (UNIX
host), the target’s RTOS clock, . . .
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Figure 4.2: a) Simple SDL System and b) its Tight Integration with SDT’s C–Advanced

change. In a next step, it will check timers for timeouts. Thereupon the appropriate
PAD functions of processes, which are currently ready to run, are called. Depending on
the input signal, the corresponding state transition is processed. Output operations are
piped through a specific xOutEnv–function. Thus, xInEnv and xOutEnv are building the
interface to the system’s environment in case of a target integration or to the simulator’s
user interface (through SDT’s postmaster tool).

Tight Integration Model: Again principle “Maximizing Parallelism” is applied, but
with a “Tight Integration” (cf. Fig. 4.2) each SDL process is mapped to its own RTOS task
and an additional RTOS message queue, thus leaving scheduling and process, respectively
task activation to the employed RTOS kernel. With this, many different scheduling schemes
are available, but mostly preemptive priority scheduling, with process priorities as specified
with a #PRIO–directive in the SDL system model, is used. Depending on the scheduler,
preemptive as well as non–preemptive execution of state transitions is possible.

Now, a PAD function, i.e. the body’s code representation of a SDL process, consists of
an eternal loop with a releasing blocking initial receive. SDL semantics is preserved through
non–blocking RTOS send and the aforementioned blocking RTOS receive directives.

SDL timer services are assigned to an additional timer task (see Sec. 4.3.3 for details).
Interfacing to and from the environment is directly done through RTOS send and receive
directives. One proposed implementation suggests a polling external task, which again
translates environmental state changes into input signals and performs output actions
triggered by output messages. Alternatively, ISRs for input operations and input signaling
can be used.
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4.2.2 SDT’s C–Micro

Restricting SDL to a language subset, the C–Micro code generator mainly aims on em-
bedded targets. Generated code is again built upon a proprietary kernel, the so called
C–Micro kernel. Instead of a process ready queue, SDL process scheduling is realized in
this core with one or more signal queues, one signal queue for each process priority level,
whereas signal queues may be sorted FIFO or by signal priorities and process priorities
take precedence over signals.

If preemption is enabled, an output statement in a lower priority process’ state transi-
tion to a process with higher priority will then cause the execution of this transition to be
interrupted immediately. Given that a combination of both, signal and process priorities
is allowed, the resulting scheduling scheme and thus execution order of SDL processes is
not predictable.

Two integration models are supported in the moment, “Bare” and “Light Integration”,
a “Tight Integration” as introduced above is announced for future tool releases. Interfacing
to the environment with a Bare Integration, i.e. without run–time support of an additional
RTOS is done through calls to xInEnv and xOutEnv functions, thus polling the environment
as explained above or through direct send into the global signal queues (xMK Send Env())
from within ISRs. Implementations based on a Light Integration, i.e. whole SDL system
is processed by one single RTOS task, may be additionally connected through RTOS send
or receive directives to the environment.

Since one SDL process is represented through one PAD function in the final code,
mapping principle follows again “Maximizing Parallelism”.

Conclusion

Both code generators, though employing different scheduling kernels, always apply gener-
ation principle “Maximizing Parallelism”. Efficiency improvement with C–Micro is gained
through a reduction of SDL’s language concepts to a smaller subset. For example, a per
run–time determination of a receiving SDL process (function xFindReceiver in C–Advanced
code) is forbidden with C–Micro. Beyond this, C–Micros possibly non–predictable execu-
tion scheme violates SDL’s semantics. C–Advanced code is in conformance to SDL.

4.3 Code Generation for MEDF Semantics

As outlined earlier, beneath efficiency the preservation of SDL’s semantics has to be the
main focus of automatic code generation. Following the definition of concurrency (Def. 2)
and execution precedences (Def. 1) in Chap. 3.3, MEDF processing can be summarized as
follows: A deadline token is transported with each SDL signal. With signal receival, the
consuming SDL process adopts the signal’s deadline and operates on this new dynamic
priority.
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4.3.1 Server Model

The Server Model (SM) code generation strategy follows as well principle “Decomposition
by Maximizing Parallelism”. Thus, this implementation technique maps each SDL process
instance to one RTOS task (e.g. SDL process PrA to RTOS task A in Fig. 4.2), whereby
each RTOS task will additionally get assigned its own (incoming) message queue (qA).
Although preemption of state transitions through a parallel executing task will be allowed,
execution order and consequently SDL semantics are preserved by the ordering of messages
in the process’ queue. This means, as every SDL state transition belongs to exactly one
RTOS task, the execution of state transitions is implicitly serialized (a task may not
preempt itself). Together with the fact, that there exist no shared variables between
the SDL processes and consequently the RTOS tasks, this avoids the necessity for explicit
synchronization, which is in contrast to the “Activity Thread Model” (ATM, Sec. 4.3.2).

With MEDF, task preemption will only occur, if a parallel task, respectively SDL pro-
cess will be activated with a more urgent deadline. In a precedence system, all consecutive
tasks will have the same deadline (they are processing the same deadline token, transported
by the appropriate SDL signals) and therefore state transitions of SDL processes building
a precedence system will run to completion. This fact is independently true for the case
a transition includes a SDL output statement before a SDL task statement, which is in
conformance to SDL’s semantics.

Server processes with MEDF semantics synchronize between messages originating of
triggering events of different types. With this, signals in the incoming message queue have
to be sorted according to their deadline value. Beyond this, it has to be guaranteed, that
blocking times of signals of different types are bounded, presuming a priority inversion
avoidance strategy with MEDF. This execution scheme and thus MEDF task scheduling
has to be assured through the applied RTOS kernel: The (absolute) deadlines, transported
by messages, have to be adopted by the respective RTOS task in the moment of the signal’s
arrival at the incoming queue (cf. Sec. 5.3).

With a modified macro package for SDT’s C–Advanced “Tight Integration” [Lar98], an
MEDF kernel could be easily included into SDT’s code generation process. Using SDT’s
#PRIO and #CODE–directives in the SDL system model only to adjust the application for
MEDF usage5, deadline transportation is completely hidden in the functional specification.
A more detailed but simple example of the code synthesis and build process can be seen
in Appendix A.2.

With MEDF, not only external events, but internal events like timeout signals as well,
get assigned their own deadline. Thus SDL’s timer service is realized through a special
timer task, which has to administrate signal deadlines in addition to normal timer opera-
tions (Sec. 4.3.3).

Advantages of the SM implementation technique include the improved testability and
maintainability — the software structure resembles the structure of the specification —
and the availability of code generators in state of the art CASE–tools.

5Only deadline creation and set of task and message queue creation parameters have to be specified
explicitly
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Figure 4.3: a) SDL System with Two Timing Constraints and b) its Activity Threads

4.3.2 Activity Thread Model

Based on principle “Decomposition by Timing Constraints”, granularity of concurrency in
an Activity Thread Model (ATM) implementation corresponds to the scope of an end–
to–end deadline specification. This means, one signal path, responsible for transporting
a different event type through a SDL system (the thread of activity, AT) is mapped into
one single RTOS task (e.g. PrA, PrB, PrC , and PrD of ES1 in Fig. 4.3(a) are mapped
to Th1 in Fig. 4.3(b)). That part of a SDL process, handling the same message type, is
implemented by its own procedure (e.g. SDL processes PrA and PrC in Fig. 4.3(a) are
mapped to the procedures PrA and PrC,1 in Fig. 4.3(b)). One single SDL state transition
is executed per procedure call, depending on the signal’s values, respectively on the SDL
state information (e.g. either PrE’s transition EX → EY or EY → EX will be processed).
Signal communication within ATs, i.e. the sequence of output → input, output → input
statements, is replaced by a sequence of procedure calls.

Only one event at a time can be handled per AT, therefore consecutive burst events,
transformed by an ISR to a message, have to be saved in a FIFO message queue at the
thread’s beginning (Queues q1 and q2 for threads Th1 and Th2 for two different kinds of
external events in Fig. 4.3(b)). With means of MEDF scheduling, the complete RTOS task
representing an AT “inherits” the absolute deadline from the incoming event.

This straight forward mapping algorithm will fail, if the SDL process includes either sev-
eral output statements in one transition6 or any output statement before a task statement

6Send order of signals in a SDL output statement is defined as “arbitrary” in SDL’s semantics and
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(see transition AX → AX of process PrA in Fig. 4.3(a)). To guarantee the “run–to–
completion” requirement of SDL’s semantics, procedure calls of subsequent processes in
one AT have to be delayed until the transition currently executed has been finished. To
do so, new signals to send, their receivers and parameters transported will be appended at
run–time to a FIFO sorted procedure list. Thus, each AT administrates its next procedures
to call by himself.

This mechanism is similar to SDT’s C–Basic Light Integration scheduling scheme (one
process list for the whole SDL system, cf. Sec. 4.2.1). Managing execution order with
a FIFO procedure list is likewise the principle applied in the “Basic Activity Thread”
implementation scheme in [HKMT97], but again the whole SDL system will be represented
with one single AT, leading to large latency times for events with short deadlines.

Observing the resulting calling sequence in thread Th1, procedures PrA, PrB, PrC,1

will be activated once (order as displayed in Fig. 4.3(b)), finally procedure PrD will be
called twice, executing the transitions DX → DX ′ and subsequently DX ′ → DX. The
latter effect is caused by the join of messages mBD and mCD in SDL process PrD. As can
be seen, this execution scheme is equal compared to the order of computation of single
transitions within a MEDF server model implementation. This is due to the fact, that
succeeding SDL transitions within a precedence system have the same deadline.

Simultaneous processing of different event types leads to parallel execution of several
ATs, therefore state information and internal variables of SDL processes, serving messages
of different event sources (Fig. 4.3(b): PrC,1, PrC,2), have to be protected with a semaphore
(S1). By this means sequencing of transitions can be enforced, i.e. preemption of their
procedures by transitions of the same SDL process is avoided. To preserve MEDF execution
order, ATs blocked on such a semaphore have to be inserted on a deadline sorted task wait
list. Analogous to the Server Model, deadlines in this regions of mutual exclusion have to
be modified (e.g. deadline inheritance, deadline ceiling) to get rid of priority inversion (cf.
Sec. 5.2.4).

Timers are internal events, whose behaviours are described with own event stream
specifications. Therefore a timer signal is the triggering source of an AT of its own, i.e.
it will hold its own initial message queue (e.g. Queue q3 in Fig. 4.3(b)). Other SDL
language constructs are either not applicable (analyzable) for hard real–time systems (e.g.
signal save, see Sec. 3.3.5) or have to be translated to their own AT (e.g. cyclic polling of
continuous signals) as well.

therefore may be non–deterministic. But on the other hand, send order will be pinpointed through the
code generators’ parser. Regarding a transition like AX → AX (PrA in Fig. 4.3(a)), but sending signals
m1AB and m1AC in one single output statement instead, and a join in process PrC : Only the specification
has to take care of both possible receive sequences of incoming signals. In the implementation, there
will be both state transitions included, but because of the specification’s interpretation through the code
generator only one transition alternative will be executed in all cases. The superfluous transition may
reside in the code but will never be processed.
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Figure 4.4: Timer Task: Signal and Timeout Handling

4.3.3 System Time and MEDF Timers

SDL’s system time, which is expressed through now in SDL, has to be connected to the
so called wall clock [Tel01, Chapters 57, 68]. This wall time is often established through a
clock manager within the underlying RTOS kernel. For instance, in VxWorks or RTEMS
the clock manager increments a tick counter based on a periodical timer interrupt, thus
providing equidistant ticks7.

Timer service requests will be translated to a protocol of message exchange operations
between a client SDL process and a timer task (cf. Fig. 4.4). Therefore, the timer task

7Macro SDL DURATION LIT(...) maps the SDL time to the local RTOS representation of time in SDT’s
code generation.
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will have it’s own timer queue (see qT in Fig. 4.3(b)). At first, SDL semantics requires to
reset a formerly set timer (signals ResetTimer to and from timer task; includes a removal
of a formerly set and already fired timeout signal in the incoming queue of the client SDL
process). Subsequently, a send to the timer task with a set(Timer-x) request follows and
completes the set timer operation. When this timer expires, the timer task will respond to
the request with an appropriate timeout Timer-x message.

For this, the timer task administrates a list of active SDL timers. This timer list is
sorted according to timeout times. Beneath the timeout time and the client’s address, each
timer list entry now additionally stores a pointer to an EDF event (and thus is linked to a
belonging deadline) to implement MEDF timer signals.

Each timer service request transports an EDF event in its data buffer. Since the timer
task is a non–EDF task, the deadline of the event transported will be ignored by the
scheduler. Timer task priority is higher than EDF priority. Thus servicing a timer request
or initiating a timeout are timer task operations that can not be preempted through further
MEDF tasks, respectively through further SDL processes.

Timer task structure as can be seen8 in Fig. 4.5 is derived from SDT’s C–Advanced
Tight Integration Macro Package [Tel01] and extended with EDF event management for
timer deadlines. To avoid periodical activations of the timer task to check for an expired
timer, timeout surveillance is realized in the message queue receive operation9. This
initial receive solves two tasks. On the one hand, the timer task awaits a new timer service
request (timeout time will be set to WAITFOREVER, if no timer has been set before). On
the other hand, if one or more timers have to be administrated, the receive’s timeout time
must be adjusted to the next expiration time of the first timer in the timer list.

4.3.4 System Environment and Software Architecture

For both code generation strategies, ISRs are responsible for MEDF event creation. They
assign the specified deadline to the newly created EDF event according to its type, and
finally feed this triggering token into the SDL system using an “EDF event send” directive.
External tasks (external to the SDL system model) build the interface to the system’s
environment. Their duty is to delete EDF events, i.e. the system has achieved to fulfill the
specified deadline and to translate the outgoing SDL signals to output operations.

SDL system’s processes, respectively their thereof generated tasks will run in the same
priority level under MEDF scheduling. This is again true for both strategies, SM and
ATM, whereby a task in ATM implements a whole activity thread and with SM, a task
represents only one single SDL process. Additional priority levels are required and used
for the timer task and external tasks. Due to the chosen higher priority levels for these

8No wall time wrap around management shown.
9Alternative mechanisms for SDL Timer service realization, but only for non timeout surveillance

functionality (see Sec. 3.4), include e.g. a cyclic task with a task wake after RTOS system call or a
cyclic timer interrupt for polling of state changes in system environment. For this, SDL system model
functionality is out–sourced into environment functions (e.g. into an external task or ISR).
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task TimerTask( ) {

Initialize_TimerList();

while( FOREVER ) {
if ( No_Timer_in_TimerList ) {
message_queue_receive( TimerTaskQueue, &TimerTaskRequest,
WAITFOREVER );

CurrentTime = Now;
}
else { /* Timer_in_TimerList */
CurrentTime = Now;

if ( First_Timer_in_TimerList->TimerTime <= CurrentTime ) {
/* Timeout */
message_queue_send_edf_event(
First_Timer_in_TimerList->SenderQueue,
First_Timer_in_TimerList->EDFEvent,
First_Timer_in_TimerList->TimerSignal );

Delete_First_Timer_in_TimerList();
}
else {
/* Wait on TimerTaskQueue until next Timeout or TimerTaskRequest */
message_queue_receive( TimerTaskQueue, &TimerTaskRequest,
First_Timer_in_TimerList->TimerTime - CurrentTime );

}
}

if ( TimerTaskRequest_is_not_empty( TimerTaskRequest ) ) {
/* Handle requests "reset timer", "timer x is active",

"remove timer x", "set timer x" */
Handle_TimerTaskRequest( TimerTaskRequest );

}
}

}

Figure 4.5: Timer Task with Timer Deadline Management

tasks, timer as well as output operations will behave like unpreemptible executions seen
from tasks within the MEDF priority level (see Sec. 6.1.3 for details).
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Conclusion

Execution order in SM is identical to ATM, therefore latency regarding the processing
of stimulating events is identical too, but with ATM, communication overhead needed to
trigger succeeding transitions may be avoided.

As already mentioned above, a mixing of decomposition principles to achieve the most
efficient implementation is possible and probably necessary, depending on the amount of
communication compared to the processing effort. ATM implementations could be equally
realized by substituting the synchronization mechanism semaphore through SM message
queues, thus mixing AT tasks based on procedure calls with server tasks.

A general requirement on the design of SDL server state machines is to keep state
transition times as short as possible, thus minimizing blocking times of concurrent input
event streams. Necessary deadline modification to avoid priority inversion effects leads to
a higher processing performance to be scheduled (cf. Sec. 7.2).

Abandonment of a very strict interpretation of SDL’s semantics, particularly the relax-
ation of the run–to–completion requirement for state transitions, may lead to even more
efficient realizations of SDL specifications. This is done by the C–Micro code generation
principle, where a send may immediately result in an interruption of the current state
transition (call of consecutive transition, respectively its PAD function). Unfortunately,
this could lead to complex nestings of process executions. Computational results may nev-
ertheless remain correct, but the arising execution scheme will be difficult to predict and
understand.



Chapter 5

Scheduling with Message Deadlines

Earliest deadline first scheduling with deadlines transported on messages (MEDF) is used
as a platform for the proposed design process. As mentioned in the introduction, with
MEDF a manipulation of specified end–to–end timing constraints with purpose to find a
feasible schedule is not necessary anymore.

In order to apply an EDF feasibility algorithm like [Gre93a] or [Jef92] on MEDF schedul-
ing, it will be proven in this chapter that under all circumstances execution order of tasks
remain earliest deadline first when scheduled with message deadlines. For this purpose,
task structures as generated through automatic mapping from SDL specifications are an-
alyzed and, where necessary, design rules for SDL are derived.

Predictability of the execution scheme, but likewise predictable upper bounds for the
(worst case) execution times of scheduling directives are needed for real–time analysis.
This chapter outlines the MEDF scheduling scheme, takes a closer look at its analyzability
and finally sketches an implementation concept and belonging worst case performance
considerations and measurements.

5.1 MEDF Scheduling Scheme

An EDF ready list is the basis of EDF task scheduling, which in turn is the platform for
the MEDF scheme. Task entries on this EDF ready list are sorted according to the tasks’
deadlines. The first entry, the task with the shortest deadline, will be dispatched and
executed. Tasks communicate with asynchronous message exchange, i.e. blocking receive
directives based on queues and non–blocking send operations. Tasks in the blocked state
are managed in an appropriate wait list. Therefore a queue consists of both, the message
queue itself and an additional task wait list.

A Task is activated with a message receive. The task’s body, implementing the extended
finite state machine’s (EFSM) transitions, includes zero, one or more send operations to
release and ready succeeding tasks and finally the triggering receive is tested again. The
task will remain in the ready state, if another message waits in the message queue, otherwise
it blocks.

45



46 CHAPTER 5. SCHEDULING WITH MESSAGE DEADLINES

A deadline can not be parameter in a message’s (user) data buffer, because the receiving
and possibly blocked task has to inherit the deadline before it will have to be inserted into
the EDF ready list. Instead, the deadline transport mechanism based on messages has to
be supported by the run–time system’s kernel (cf. Sec. 5.3).

With MEDF, one has to distinguish four different cases:

Send operation:

A No waiting receiver: the message is enqueued according its transported deadline,
therefore the message queue will be sorted by deadline value. The sending task
proceeds with its operation.

B A waiting (blocked) receiver adopts the transported deadline as well as the new
message. It will be unblocked by this operation and has to be inserted into the EDF
ready list following its new deadline.

Receive operation:

C No pending message: the receiver is appended to the wait list. Since there is no job
to fulfill at the moment, the deadline of this now blocked task is set to infinity.

D A pending message, the first one, i.e. the message with the shortest transported
deadline, is dequeued. The receiving task will get assigned the deadline and has to
be inserted into the EDF ready list.

As can be seen, in no point of time there may simultaneously reside a message in the
message queue together with a blocked tasks in the belonging wait list1.

5.2 Predictability of MEDF

For the following considerations a fixed number of sporadic tasks is assumed. A triggering
event Em is translated to a message mm1 with help of an interrupt service routine (ISRm)
and sent to the responding task Tm1. The receival of a message releases the task. Deadlines
are specified as end–to–end constraints between the time a stimulus is initiated from the
environment and the time, when a response is sent back to the environment. Thus a dead-
line dTm will span a whole task precedence system TPSm. Task model and environment
parameters are summarized in Table 5.1.

5.2.1 Task Precedence Constraints

Communication requirements are modeled as precedence constraints among tasks, that is,
if a task Tj has to communicate to another task Tk, the pair (Tj, Tk) is introduced in a

1Regarding SDL server as well as activity thread model implementations, with only one task listening
at a message queue, the depth of the task wait list reduces to one.



5.2. PREDICTABILITY OF MEDF 47

Task Parameters
Tm,i ith task T in task precedence system TPSm

T (TPSm) set of tasks {Tm,1, . . . , Tm,n} in TPSm

rm,i release time of task Tm,i

sm,i start of computation of task Tm,i

fm,i completion time of task Tm,i

cm,i, (cmaxm,i) worst case computation time of task Tm,i

cminm,i best case computation time of task Tm,i

dm,i relative deadline of task Tm,i

Dm,i absolute deadline of task Tm,i

Environment Parameters
Ej

m jth instance of event E of type m triggers Tm,1 ∈ T (TPSm)
eTm time of occurrence of triggering event Em of type m
dTm relative end–to–end deadline for triggering event Em

Table 5.1: Task and Environment Parameters

partial order →, i.e. if there exists the constraint Tj → Tk, Tj has to be scheduled preceding
the execution of Tk.

To enforce the execution order of two preceding tasks Tj → Tk, [Bla76] suggests to
manipulate the deadlines (dj of task Tj), such that ∀j, d∗j ≤ dj and Tj → Tk ⇒ d∗j < d∗k.
With these shortened2 deadlines, the EDF scheduler is forced to dispatch Tj before Tk. At
run–time, whenever a request of execution for the tasks Tm,j ∈ T (TPSm) arrives at eTm,
the value eTm + d∗j is assigned statically to the absolute deadlines Dm,j.

In SDL, a process may respond to several different messages originating from several
events of different type. Thus the appropriate task in the implementation will be a member
of several task precedence systems in parallel. For instance, TS in Fig. 5.1 responds to m42,
originating from E4, and to m52 with its origin in E5. Since these events may occur
simultaneously (eTm = eTn = eT ), a statical assignment of absolute deadlines Dm,j at eT

is not possible.

A receive triggers the execution of a state transition, thus the appropriate task in the
implementation gets released with the receival of a message (time rm,i). Since release times
rm,i,∀i > 1 are varying during run–time due to non–constant computation times of the
single tasks in the precedence system, relative (remaining) deadlines dm,i except dm,1 at rm,i

are unknown too. This inhibits an on–line, per task determination of absolute deadlines
Dm,i at release time rm,i. A solution for this problem is to transport DTm, determined at
occurrence of the external event, with inter–task messages. The receiving task adopts the
transported deadline and is scheduled accordingly (Sec. 5.1).

2Reducing deadlines will lead to a loss of laxity in task systems.
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Figure 5.1: Examples of Task Precedence Systems

Definition 3 A set of n communicating tasks T (TPSm) = {Tm,1, . . . , Tm,n} such that
Tm,i → Tm,i+1;∀i ∈ {1, . . . , n − 1} is called a Task Precedence System (TPS). The first
task Tm,1 ∈ T (TPSm) is released at time of occurrence eTm of the external event Em.

Example task precedence systems, e.g. TPS1 can be seen in Figure 5.1.
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Figure 5.2: Feasible Schedule without a) and with b) Precedence Constraint

Definition 4 All tasks Tm,i ∈ T (TPSm) scheduled under MEDF get assigned the same
absolute deadlines Dm,i at their release time rm,i. Dm,i = eTm + dTm;∀i ∈ {1, . . . , n}.

dTm is the relative end–to–end response time for event Em, specified through the non–
functional requirements. Preserving this deadline within a TPS leads to the following
alternative definition of task precedence constraints (cf. Fig. 5.2(b)).

Definition 5 Given a precedence constraint → on the tasks Tj, Tk:

Tj → Tk ⇒ rj < rk ∧Dj = Dk

With this definition, Tk is released through a message from Tj. Positions of send
operations are allowed to be variable in the task’s body, that is may be the first action
after the triggering receive, hence rm,j < rm,k for two tasks Tm,j → Tm,k and rm,k =
rm,j + ε; ε → 0.

Theorem 1 Tj → Tk is feasible, if there exists a feasible schedule for Tj, Tk without prece-
dence constraint.

Proof. Assume there exists a feasible schedule compliant with EDF scheduling. That
is there may be a couple of tasks Tj and Tk released by the same event but without
precedence constraint such that, execution of Tk precedes execution of Tj, i.e. rk = rj, fk <
fj (Fig. 5.2(a)). Since the schedule is feasible and there is no precedence relation between
these two tasks, it is possible to swap execution of the intervals [sj, fj) and [sk, sk+[fj−sj)).



50 CHAPTER 5. SCHEDULING WITH MESSAGE DEADLINES

Feasibility is unaffected by this inversion, since the completion time f ′j of task Tj is
only be shortened, while the new completion time of task Tk becomes f ′k = fj ≤ Dj = Dk.
With a finite number of such inversions a feasible schedule for all precedence relations can
be found. As shown in Figure 5.2(b), at t = r′k a message from task Tj may release task Tk,
therefore this new release time will always reside in interval [rj, f

′
j). 2

5.2.2 Sequencing

In a MEDF task system, an ISR translates an external event into a message together with
an specified end–to–end deadline and sends this message to the initial message queue of a
TPS. Similar to “event handlers”, this message queue buffers stimulating events, provides
their timely decoupling, necessary to achieve real–time behaviour.

On asynchronous occurrences of external events, e.g. burst of events of same type, i.e.
Ej

m, j ∈ {1, . . . , l} with deadlines d(Ej
m) = dTm,∀j ∈ {1, . . . , l}, triggering the same TPSm

(e.g. TPS1 in Figure 5.1), the processing of events happens in a sequenced manner.

Lemma 1 Consecutive events are serialized, such that Tm,n ∈ T (TPSm) (last task in
TPSm) will finish its computation released through Ei

m before Tm,1 (first task in TPSm)
will start the processing of event Ei+1

m .

Proof. The times of occurrence of events in a burst are defined through e(Ej
m) = ej

m |
ej

m ≤ ej+1
m . With Dj

m = ej
Tm + dTm,∀j ∈ {1, . . . , l} (Definition 4) their absolute deadlines

result in D(Ej
m) = Dj

m | Dj
m ≤ Dj+1

m . The appropriate messages transporting these
triggering events are serialized in first queue qm,1 of TPSm. Since D(T (TPSm)) = Dj

m

(Definition 4) and subsequent tasks with same deadline are appended to predecessors in
EDF ready list and thus get ordered according to their release times, an event within a
burst will have to wait until its predecessor has been processed through TPSm. 2

Maximum Message Queue Length With Lemma 1, maximum number of messages
pm,i+1 in queue qm,i+1 between consecutive tasks Tm,i and Tm,i+1 is pm,i+1 = 1;∀i > 1.

Remark(s): [Gre93a]: pm,i+1 = Em(di − di+1); with di = di+1 = dTm ⇒ pm,i+1 = Em(0).
Em(t) denotes the Event Function of event Em.

More complex task systems may contain forks and joins as can be seen with TPS2 in
Figure 5.1 or even loops as in TPS3.

Forks

Receivers like tasks T2,2,a, T2,2,b in Figure 5.1 have same absolute deadline, i.e. messages
mm,i+1,a and mm,i+1,b refer to same event Ej

m. EDF ready list is organized as “first come
first serve” for subsequent tasks with same deadline. Therefore the processing sequence
depends on send operation order in sending task.
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Joins

Sort policy for messages transporting references to the same EDF event is “FCFS” as well,
i.e. succeeding messages with equal deadline are simply appended to their predecessors.
Processing order of events is related to sort order of the incoming message queue, in turn
being equal to the execution order of preceding tasks in the TPS.

Bounded Loops

Receival of a loop message in queue qm,i;∀i > 1, i.e. message was sent back from
task Tm,j; j ≥ i within TPSm. Due to Lemma 1, there is no other event being pro-
cessed by task Tm,i in the moment, therefore no additional blocking times have to be taken
into account. Queue length of queue qm,i remains pm,i = 1.

Exception: Receival of loop message in first queue qm,1. Loop message transports
event Ei

m, subsequent events Ej
m; j > i are waiting with their appropriate messages in

queue qm,1. Task structure is derived from SDL FSM, i.e. initial receive is executed as
first and last operation within task’s body. If several event messages are waiting in the
initial queue in case of a burst, the succeeding event to the currently processed one will
be consumed with the final (second) execution of the Tm,1’s initial receive, consequently
Tm,1 is instantly reinserted into the EDF ready list with new deadline D(Ei+1

m ). The same
effect can be caused through ISR sends during active periods of tasks Tm,i; i ≥ 1. Thus, the
message transporting event Ei

m may have been overtaken from “younger” messages with
later deadlines. For this reason, (non–predictable) loop structures with joins at TPS’s
initial queue qm,1 are forbidden.

In contrast to joins into a TPS’ initial queue, joins into a server queue are allowed, since
preceding tasks sending an event with longer deadline must not preempt the processing of
the current event in the loop. If a preceder sends a more critical deadline, preemption will
occur and therefore processing order will remain EDF.

Generally, a specification of an upper loop bound is required for predictability and
processing times can be easily calculated through loop unrolling.

5.2.3 Message Blocking on Server Tasks

As stated above, there exist no shared resources among SDL processes and consequently
no mutual exclusion between tasks in the “Server Model” implementation. To handle
I/O–devices or common data the so called server process principle is used. Comparable
to Hoare’s monitors [Hoa74], SDL processes observe and manage the access requests on
resources. Consider the following scenario in a task system as shown in Figure 5.3.

Scenario 1 Two tasks TS, Tm,k: A task TS responding on several different messages
m12, m22 and Tm,k, a task like T31 in TPS3. Each message mm,i transports a deadline DTm

through TPSm. At r12 task TS consumes m12, adopts deadline DT1 and begins to compute
response m13. At r22 message m22, transporting DT2 < DT1, arrives and is inserted into
message queue qS, which belongs to task TS. At r31 the occurrence of an external event,
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Figure 5.3: a) Server Task and b) Priority Inversion

which triggers TPS3 may lead to an activation of task T31. In this situation, absolute dead-
lines may be in relation DT2 <DT3 <DT1. T31 will preempt TS, which can be considered a
typical priority inversion, because the most critical deadline DT2 of message m22 will not
be assigned to TS as long as the whole TPS3 is processed and TS has finished execution of
job m12.

Definition 6 A Server Task TS responds to at least two different message mx respectively
my, received from a common queue qS. The messages originate from different triggering
event sources Ex and Ey.

In this context, the Server TS serializes the execution order of its single transitions
without respect to EDF (s(T 1

S) < s(T 2
S) though D(T 1

S) > D(T 2
S)) and in consequence

Priority Inversion (PI) corrupts processing order of transitions and any further preempting
task with deadline in the middle of DT2 and DT1, i.e. sequence does not correspond to EDF
anymore (s(T31) < s(T 2

S) though DT3 > DT2).
As can be seen in Figure 5.3(b), PI can only occur, if r22 > r12, otherwise any processing

of events of type E2 will preempt tasks of TPS1 and execution sequence remains EDF.
The worst case, i.e. blocking time for T 2

S is at its maximum, occurs, if r22 = r12 + ε, ε → 0.
PI can be avoided in any case through a deadline reduction for the blocking task. In

the example, any reduction to D′(T 1
S) = DT2 will resolve the PI constellation. Following

Figure 5.4, d(T 1
S) has to be reduced to at most d′ = c11,min + dT2. Or more generally:

d′ = min
∀x
{sT x

S ,min}+ dTy (5.1)

With sT x
S,min

as earliest possible start time3 for the blocking parts of server TS and dTy

for the deadline of the blocked part.

3To determine the earliest possible start time sT x
S,min

for transition T x
S the sum of all best case execution

times of tasks T ∈ T (TPSx) preceding the server can be calculated. Additionally event dependencies can
be taken into account.
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Figure 5.4: Priority Inversion Avoidance

Remark(s): [Gre93a]: d′ = sT x
S ,max + dTy, but with sT x

S ,max PI can occur, e.g. if c11 < c11,max.

Well known strategies for PI avoidance based on priority adaption are Priority Ceiling
with an a priori raising of the blocking priority and Priority Inheritance with an on–line
priority manipulation [Raj91]. Adapting these two mechanisms to MEDF leads to the
following protocols.

Deadline Ceiling Protocol

Definition 7 With Deadline Ceiling Protocol (DCP) and MEDF, the deadline D = D(TS)
of a server task TS is reduced at release time to ceiling deadline DC. With DC = eTs +
dQC , s ∈ {x, y, . . .} and dQC = d′ = sT x

S ,min + dTy (Eq. 5.1) the server’s queue (qS) relative
ceiling deadline.

EDF is known as optimal in that sense, if there exists a feasible schedule, EDF will
find it. But only with EDF processing order, optimality is given and proven. With DCP, a
possible PI is avoided a priori and therefore execution order between the blocked task (resp.
transition T 2

S) and all preempting tasks, like task T31 in the example is in conformance with
EDF. Since a TPS’s execution order is administered through MEDF message exchange,
deadline reduction within a TPS violates the precedence constraint requirement (cf. Def. 5),
i.e. T11 → T 1

S with D(T11) = DT1 > D(T 1
S) = DC will violate EDF. As a consequence,

influence of DCP on tasks preceding a server has to be examined:

Theorem 2 Using DCP on a server task TS within a TPS, schedulability of the task set:
Tx → TS with dx, Ty → TS with dy, and Tz with dz concerning end–to–end deadlines
dx, dy, dz will remain unaffected, if the independent task set, i.e. Tx with dx, Ty with dy, Tz

with dz, and TS with dQC is schedulable (in the worst case).
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Figure 5.5: Violation of Ceiling Deadline D′ without Priority Inversion

Proof. Assumption: There exists a feasible schedule even in the worst case for the inde-
pendent task set. For the example in Figure 5.4 and 5.5 this means deadlines d(T11) = dT1,
d(T 1

S) = dQC , d(T 2
S) = dT2, and d(T31) = dT3, but no precedence constraint T11 → T 1

S is
given.

1. r22 ≤ r12, PI can not occur. Taking into account the precedence constraint T11 →
T 1

S , all tasks, except T 1
S will finish execution earlier compared to an equal task set

without this communication requirement, i.e. these tasks will meet their deadlines
(cf. Fig. 5.5). However T 1

S will at least fulfill its “physical” (specified end–to–end)
deadline dT1, because with this deadline, execution order corresponds to EDF and
schedulability must be given with the assumption of above and through the additional
laxity dT1 ≥ dQC .

2. r22 > r12. PI is avoided through D′. T11 has already completed its processing! Again,
the rest of the task set obeys EDF and with the assumption above, all deadlines, even
the deadline d(T 1

S) = dQC , will hold (cf. Fig. 5.4). 2

Summary:

• Due to Theorem 2, it is only necessary to reduce the deadlines of servers within a
TPS and leave the preceding and succeeding tasks untouched.

• During run–time, in case of no PI, the ceiling deadline DC may be missed (cf. Fig. 5.5
and Sec. 5.3.3).

Remark(s): In “Strategy 2”, [Gre93a] suggests to reduce all deadlines of the preceding tasks in
a TPS as well, loss of laxity may lead to an infeasible schedule.
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Deadline Inheritance Protocol

Definition 8 With Deadline Inheritance Protocol (DIP) and MEDF, the current dead-
line D = D(TS) of a server task TS is shortened to DI = DTy, only when a new message my

with deadline DTy is inserted into the message queue qS and DTy < D.

Following Equation 5.1 and Figure 5.4, with DIP a deadline of a server task will be
reduced to at most DI,min = eTx + dI,min and dI,min = d′ =

∑
n cx,n,min + dTy.

Applying DIP on Scenario 1, at r22 task TS inherits DT2 and can not be preempted
anymore by tasks of TPS3, i.e. it finishes the processing of m12, resumes with m22 and
finally executes transitions of T31.

Lemma 2 With DIP and MEDF scheduling, each transition τi of a server task TS can be
blocked by at most the duration of the longest transition of TS.

Proof. Transitions can be considered to be within a critical region, i.e. they behave
equivalent to EDF tasks sharing a common resource with mutual exclusion and Priority
Inheritance Protocol (PIP). Therefore the proof is analogous to Theorem 6.1 in [SSRB98].
2

Theorem 3 Using DIP on a server task TS within a TPS, schedulability of the task set:
Tx → TS with dx, Ty → TS with dy, and Tz with dz concerning end–to–end deadlines
dx, dy, dz will remain unaffected, if the independent task set, i.e. Tx with dx, Ty with dy, Tz

with dz, and TS with dI is schedulable.

Proof. Assumption: There exists a feasible schedule even in the worst case for the inde-
pendent task set.

1. r22 ≤ r12, PI can not occur (cf. Fig. 5.5), therefore no deadline in the TPS will be
shortened at run–time, i.e. the precedence constraint requirement (cf. Definition 5)
will not be violated, schedule and schedulability remain unchanged.

2. r22 > r12. PI is avoided through D′ > DI,min (cf. Fig. 5.4). Analogous to Theorem 2,
in this case Tx has already completed its processing! Again, the rest of the task set
obeys EDF and with the assumption above, all deadlines, even the deadline d′ > dI

will hold. 2

Conclusion: DCP and DIP are equivalent protocols and have to be treated in the same
way during schedulability analysis.

Remark(s): In “Strategy 5”, [Gre93a] suggests to reduce to deadline di = dTy in all cases.
Due to this additional loss of laxity, none of both strategies “2” and “5” may outplay the other
in advance.
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Figure 5.6: RTEMS Priorities, Ready List, EDF Thread List and EDF Event List

5.2.4 Mutual Exclusion on Semaphores

Semaphores are used in ATM realizations of SDL models, when synchronizing mutual
access to state data of SDL server processes. Analogous to server queues, PI can also occur.
The protocols DCP and DIP are well known with semaphores. A detailed evaluation of
the resulting timing behaviour and analysis algorithms can be found in [SSRB98].

5.3 Runtime System Support

This section sketches the realization of MEDF on the basis of “normal” EDF scheduling.
Both strategies have been integrated into the Real–Time Executive for Multiprocessor
Systems (RTEMS4 [OAR96]). Implementation details are outlined in Appendix B.

RTEMS is a light-weighted RTOS, i.e. tasks are threads without support of memory
protection. It provides so called managers and real–time objects, e.g. a semaphore and a
message manager. Each RTEMS object gets assigned an unique object id after its creation.

4www.OARcorp.com
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5.3.1 The EDF Event Object

Scheduling and thread state management is based on manipulation of doubly linked lists,
e.g. a transition from the ready to the blocked state is handled by removing the thread
from the ready list and inserting it into a wait list for the resource. Critical sections, i.e.
non–interruptible code segments are protecting data consistency during list adaption.

Fixed preemptive priority scheduling is supported with 256 priority levels (zero is high-
est). For each of these priority levels the RTEMS thread handler administers an inde-
pendent ready list (Fig. 5.6). Ready list headers are collected in an array for fast indexed
access, based on the priority level of a thread. Ready lists only contain threads in the ready
state with a single exception: The first thread on the first non empty ready list in priority
order is considered to be in the executing state. Preemption causes a currently executing
thread to be in the ready state again. Execution order is maintained by processing threads
from the first to the last node within the ready lists and from the lowest to the last element
of the thread list array. EDF scheduling is realized by manipulating the sort order of the
ready lists.

EDF thread list. The absolute deadline of a thread Tj is computed at deadline acti-
vation aj: Dj = aj + dj. To administer these deadlines, an additional EDF thread list
[Wro97] contains all the currently existing EDF threads in sorted order according to their
deadline (cf. Fig. 5.6). The deadline values are set up as delta relative to the previous
entry on the list (e.g. ∆dB, ∆dC and ∆dH) or relative to the start of the list for the first
thread (∆dA = dA). Adding the deltas, each deadline is correctly defined relative to the
list start. To keep track of time, with a delta list only one timer (Fasttick Timer) is needed
for surveillance of the most critical deadline on the list. A detailed description of deadline
management with delta lists is given in Appendix B.1.

EDF ready list. As explained above, the RTEMS scheduler uses an array of ready
lists, one list per priority level. Each level is sorted by FIFO, except the EDF level. EDF
scheduling influences the sort order of threads in a single priority level. Therefore priorities
take precedence over deadlines and the application designer has to choose a correct priority
level (probably the highest during “normal” operation) to guarantee real–time capability.
To handle non–EDF threads without exception, an infinite deadline is assigned to them.

To get this EDF ready list sorted by deadlines, a new EDF thread is appended to all
threads on that ready list with less or equal deadlines. New non–EDF threads, with infinite
deadlines, are simply appended at the end of the list. Since the EDF thread list is already
sorted by deadline order, the search algorithm for the ready list insertion point can rely
on this order: Assuming that a thread T is no longer blocked and has to be inserted into
the EDF ready list, the insertion point can be found behind all EDF threads on the EDF
ready list, which lie before T on the EDF thread list. Therefore, the insertion algorithm
(see Appendix B.2 for details) uses a parallel search in both the EDF ready and the EDF
thread list.
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If the EDF thread list contains n threads, the EDF ready list will contain at most
n threads. The linear walks through both lists imply a maximum of 2n identity comparisons
in total, leading to a complexity of O(n).

EDF event list. As shown in Section 5.2.1, a requirement for analyzability of MEDF is
transportation of absolute deadlines. Conceptually, deadlines spanning a TPS belong to
stimulating events. The new RTEMS EDF event manager provides directives to create and
delete EDF event objects, which represent the stimulating event and its belonging absolute
deadline. Each EDF event object gets assigned its unique object id according to the
RTEMS philosophy and at its creation a deadline has to be set. Deadline management of
EDF event objects relies on a third list, the EDF event list (Fig. 5.6). List administration
is identical to EDF thread list’s one. This means the EDF event list is as well a delta
deadline list and list manipulation works in the same way.

Comparing life cycles of EDF thread list entries and EDF event list entries, one can
observe that the number of EDF threads will stay constant but their relative position on
the list varies. In contrast to this, the number of EDF events is varying (several occurrences
of the same event type, e.g. a burst of the same trigger) but the relative position on the
their list remains constant. When the last thread of a TPS fulfills its job, it will delete the
triggering event.

Remark(s): Alternatively, the sending thread could have been calculated an absolute deadline
using the RTEMS clock get() directive and sent this point of time to the subsequent thread
in the TPS. Since the clock get directive relies on the cyclic RTEMS clock tick mechanism
(cf. App. B.3), the resolution of deadlines would have been of the same granularity. To achieve
high deadline resolution, one should have had to shorten the clock tick period, leading to a high
interrupt load.

5.3.2 The MEDF Message Queue

Messages are transporting a reference to an EDF event list entry. The receiving thread will
adopt the message’s, respectively the event’s deadline when the sender inserts the message
into the receiver’s queue. With this, the absolute deadline of the receiving thread becomes
the absolute deadline of the triggering EDF event. A thread will adopt the deadline by
manipulation of its EDF thread list position. After its removal from the EDF thread list
(with infinite deadline) follows a re-insertion using the Add To ThreadList With EDF algo-
rithm (Fig. B.3 in Appendix B.2) and the EDF event list as sorted basis. In a subsequent
step, the EDF ready list is updated following the new EDF thread list order.

In case of no waiting receiver, the message has to be inserted into a message queue.
Sort order of this queue follows likewise the EDF event list order.

Below, the implementation of EDF event send and EDF event receive is outlined in
more detail. Again, one has to distinguish four possible cases (refer to page 46):
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EDF event send:

A No waiting receiver: the message is enqueued according its transported deadline,
therefore the message queue will be sorted by deadline value. The sending task
proceeds with its operation.

Implementation and processing sequence:

1. Insertion of message into message queue based on EDF event list (analogous to
Add To ThreadList With EDF algorithm)

B A waiting (blocked) receiver adopts the transported deadline as well as the new
message. It is unblocked by this operation and has to be inserted into the EDF
ready list following its new deadline.

Implementation and processing sequence:

1. Calculate relative deadline due to EDF event list position.

2. Insert receiving task into EDF thread list.

3. Insert now unblocked task into EDF ready list.

EDF event receive:

C No pending message: the receiver is appended to the wait list. Since there is no job
to fulfill at the moment, the deadline of this now blocked task is set to infinity.

Implementation and processing sequence:

1. Append task on (empty) thread queue (server model as well as ATM architec-
ture: only one task per message queue) and assign deadline D = ∞ (append to
EDF thread list).

D A pending message, the first one, i.e. the message with the shortest transported
deadline, is dequeued. The receiving task will get assigned the deadline and has to
be inserted into the EDF ready list.

Implementation and processing sequence: Identical to case B.

5.3.3 Priority Inversion Avoidance

Thread queues in RTEMS are wait lists that keep non ready threads in either FIFO or
priority sorted order. With FIFO queues, adding a thread means appending it to the queue
and dequeuing is just removal of the first node.

In contrast to this, priority sorted thread queues have to be searched and manipulated.
Multiple threads of the same priority are kept in FIFO order on an additional list, with
the first thread on this list as the head thread and member of the priority list (Fig. 5.7).
Again, dequeuing is just removal of the first node of the priority list. For enqueuing, an
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insertion point is reached, when a thread with greater or equal priority number is found.
In the second case, the thread is just appended to the FIFO list of equal priority threads.

As well as for non–EDF threads, for a blocking EDF thread exists two queuing alter-
natives, the FIFO sorted or the priority sorted thread queue. Handling of FIFO queues is
identical for both kinds of threads, but for an insertion into a priority sorted thread queue,
the order of the list of threads in the priority level belonging to EDF must be changed to
deadline sorted (cf. Fig. 5.7). Identically to the ready list insertion, comparison of dead-
lines relies on the sort order of the EDF thread list, therefore the enqueuing procedure uses
again the same Add To ThreadList With EDF algorithm (cf. App. B.2).

Deadline Inheritance with Message Queues

For DIP implementation purposes, the message queue control structure holds a pointer
to the last receiver thread, the so called inheritor thread. Whenever DIP is enabled for a
queue, this pointer will be set during dequeuing send or receive operations. On arrival of
a new message, the deadline of the transported event is compared to the deadline of the
inheritor thread. If the deadline is shorter, the inheritor will adopt the event’s deadline.

Inheriting, respectively shortening a deadline of a thread means manipulation of its
EDF thread list position. The thread has to be removed and reinserted into the EDF
thread list. Its new position is determined from the reference EDF event’s list position.

List manipulation for deadline inheritance will only occur, if no waiting receiver is
currently blocked at the message queue (EDF event send case A). All three other cases are
identical to the remaining “normal” EDF event send and EDF event receive cases C – D.

EDF event send:

A No waiting receiver: the message is enqueued according its transported deadline. An
active inheritor thread has to adopt the new event’s deadline, in case it is shorter.
The sending task proceeds with its operation.
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Implementation and processing sequence:

1. Insertion of message into message queue based on EDF event list.

2. Calculate relative deadline due to EDF event list position.

3. Reinsert inheritor thread into EDF thread list.

4. Reinsert now unblocked task into EDF ready list.

Since a server thread will not send its (inherited) deadline to the succeeding thread
in the TPS, but a reference to the triggering EDF event, the inherited deadline will not
spread over the whole TPS. There exists no deadline restauration with DIP. It is assumed
that the inheritor thread either will adopt the new deadline of a just enqueued message
after the completion of its current job or in case of no new pending message its deadline
will be set to infinity. In the latter case the thread will be appended at the end of the
queue’s thread list.

Deadline Ceiling with Message Queues

For this purpose an EDF event has to remember its original set end–to–end deadline
interval dTm. With the static ceiling deadline of a queue dQC , the current deadline d and
the deadline dTm stored at events’ creation em, the adapted ceiling deadline dC can be
calculated at run–time with dC = d − (dTm − dQC). In the example of Figure 5.4 on
page 53: Current (remaining) deadline is d = DT1 − r12 of thread T 1

S . This d is stored in
the delta list of EDF thread list, respectively is the content of fasttick timer FT .

With enabled DCP, the kernel would set the deadline of thread TS to dC during de-
queuing sends (case B) or receives (case D), i.e. TS would be inserted with dC into the EDF
thread list. Therefore the processing sequence will be analogous to the non deadline ceiling
operations as described in section 5.3.2. Analogous to DIP, there is no need for deadline
restauration, when TS “finishes”.

Since dC may be missed in a scenario without priority inversion, e.g. a thread activation
sequence as can be seen in Figure 5.5, deadline surveillance must be disabled for dC but
has to be kept enabled for all other deadlines dTm. This feature would require complex
exception handling in fasttick timer state machine (cf. App. B.3) and therefore DCP is not
yet implemented.

Deadline Inheritance with Semaphores

Whenever a task blocks while obtaining a semaphore, the inheritance check is made. If
the thread currently holding the semaphore has a longer deadline than the one trying to
obtain it, it will inherit the shorter deadline. The original deadline is reinstated when the
thread no longer locks the resource. The blocking thread has to be enqueued into the wait
list according to its deadline.

In this case, inheriting the deadline of a thread in contrast to adopting it from an
event, the inheritor has to be removed and reinserted behind the reference thread in the
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Figure 5.8: Transitive Deadline Inheritance with a) Nested Semaphores and b) Servers

EDF thread list. The delta deadline of the manipulated thread is set to zero. Since it
will re-obtain its original deadline after releasing the semaphore, the deadline difference
between reference thread and the inheriting thread is summed up during the re–insertion
list search walk and stored for future restauration.

Nested Mutual Exclusion

The following example describes a PI scenario caused through a complex mutual exclusion
structure in spite of enabled deadline inheritance. Task Ti obtains semaphore S with the
operation Ti.P (S), respectively releases S with Ti.V (S).

Scenario 2 Let T11, T21, T31, T41 be four tasks with following deadlines (D(T31) >
D(T21) > D(T41) > D(T11)), i.e. T11 is the most critical task in this example. T11, T21

are mutual exclusive synchronized with a semaphore S1, and T21, T31 are competing for
S2 (cf. Fig. 5.8(a)). Considering the following sequence t1 : T31.P (S2), t2 : T21.P (S1)
and at t3 : T21.P (S2) ⇒ D′(T31) := D(T21). At t4 task T11 preempts T31, requests S1:
T31.P (S2) ⇒ D′(T21) := D(T11) and finally blocks. T31 will resume its job. A now acti-
vated T41 will preempt T31 and a PI situation will emerge.
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To avoid this PI, task T31 would have to inherit the deadline of task T11 at t4: D′(T31) :=
D(T11) (transitive inheritance [Raj91]). An analogous situation can occur using server tasks
together with semaphores (cf. Fig. 5.8(b)):

Scenario 3 Given are T31, T41, and a server TS. T31 and TS are synchronized with
semaphore S. Considering the following sequence t1 : T31.P (S), at t2: TS gets assigned
DT2 < DT3 with the receival of m21, resuming with t3: TS.P (S) ⇒ D′(T31) := D(TS). At
t4: ISR1 preempts T31 and sends message m11 with deadline DT1 < DT2 to TS. Again DIP
causes D′(TS) := DT1. Since TS is blocked, waiting for semaphore S, an additional T41

with DT4 < DT3 will preempt T31. Again a PI situation will emerge.

Having a closer look at the RTEMS thread queue implementation, one will see that in
case of deadline inheritance the deadline of a new thread to be inserted is compared to the
semaphore holder’s deadline, respectively the inheritor’s deadline. If necessary, the deadline
of the inheritor will be adjusted as described above. If the resource holder is also blocked,
its wait list position will be corrected according to the inherited deadline. Because there is
no recursive deadline adjustment for new blocking thread, this implementation strategy is
insufficient to fulfill the requirement for transitivity. Therefore PI can occur with RTEMS
and nested areas of mutual exclusion.

Fortunately, both code generation strategies SM and ATM do not rely on task systems
as shown in Figure 5.8. With SM, there are no semaphores necessary due to the server
task as monitor for resources. With ATM, a SDL server process is implemented using a
semaphore for synchronizing single transitions, but conflicting parts are only triggered by
one event type. This means, there exists no combination of server task and semaphore as
in Figure 5.8(b). Due to the sequencing of events within a TPS (Lemma 1), deadlines in
queues are in ascending order and a deadline adaption is not necessary.

5.4 Complexity and Execution Times

MEDF as well as EDF scheduling are belonging to the class of dynamic scheduling strate-
gies. Main characteristic of these techniques is the varying execution order of tasks during
run–time, leading to the effect of a changing sort order of the necessary ready list. In
contrast to EDF or MEDF, there exist other scheduling strategies, which could be imple-
mented through simple list appends, e.g. fixed priority preemptive scheduling in RTEMS,
keeping execution times constant. Although the latter property is preferable (and often
used as refutation against EDF), it is sufficient even for hard real–time systems, if an upper
bound for execution times of scheduling directives used can be given.

This section examines the worst case effort of MEDF processing sequences implemented
in the run–time system as introduced in Sec. 5.3. An optimized but specialized (for Server
Model software architectures) MEDF realization is introduced as conclusion.

Task structure and thus scheduling operations employed depend on code generation
strategy, Server Model or Activity Thread Model:
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• SM tasks rely on EDF event receive and EDF event send operations, which enclose
the task’s body (cf. Fig. 5.9).

• ATM tasks use a releasing EDF event receive, optional EDF semaphore obtain and
EDF semaphore release directives to synchronize about mutual exclusive regions.

Common to both strategies (cf. Sec. 4) are ISRs for event creation (EDF event create).
EDF event send is used to feed in triggering events into SDL system part. An external
task, respectively output tasks or output parts of activity threads delete triggering events
with EDF event delete.

The MEDF run–time system implementation as proposed in the previous chapter sup-
ports both, the SM as well as the ATM software architecture. Because of its flexibility,
supporting EDF message deadlines on the one hand and semaphores with EDF sorted
thread queues on the other, processing sequences for the scheduling operations are unop-
timized and necessary overhead is incorporated. Execution times of scheduling directives
depend on the following:

• State of run–time system, which is given through 5 lists (list types):

1. EDF ready list.

Maximum number of elements on ready list (tasks in ready state):

NTReady ,max = 2k (5.2)

This is two ready tasks per TPS, one active and one released just now (initial
task in TPS); k is the number of different event types, respectively number of
TPSs.

2. EDF thread list.

Maximum number of tasks with non–infinite deadline on EDF thread list:

NTD 6=∞,max = 2k (5.3)

This is likewise two tasks per TPS, one active and one released just now.

3. EDF event list.

This list contains all events simultaneously processed by the system and waiting
in initial input queues. In the worst case the maximum calculates to:

NE,max =
k∑

i=1

NEi,max + k (5.4)

NEi,max is maximum number of events of type Ei in initial queue of TPSi.
NEi,max = Ei(tp,max) = Ei(di), tp,max: maximum duration of processing of one
event Ei in TPSi. If all timing constraints will hold, tp,max < di is valid at
all events, which is the definition of real–time processing. There may be one
additional event per TPS currently processed. This means in total k additional
events on this list.
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4. EDF thread queue.

One for each object (semaphore or message queue). Maximum number of ele-
ments depends on way of usage, e.g. maximum thread queue length of a message
queue is 1 (one task per message queue in SM and one activity thread listening
to one input queue).
Maximum thread queue length of a semaphore equals the number of activity
threads being synchronized for mutual exclusive access to state variables.

5. EDF message list (message queue).

Depends on way of usage (see below).

• Task’s position within communication structure (corresponds to real–time analysis
model):

SM architectures rely on initial (input) tasks, server tasks and “linear” hand–over
tasks using three different typed of queues:

1. Input queues for buffering of bursty events (cf. q11 to q51 in Fig. 5.1 on p. 48).

Maximum queue length: pm,1 = NEi,max = Ei(tp,max) = Ei(di) (see Eq. 5.4).

2. Server queues for synchronization of different event streams (qS in Fig. 5.1).

Maximum queue length: pS = NES
. NES

is number of different event streams
to be synchronized on server queue qS.

3. “Hand–Over” communication queues (e.g. q12, q13 in Fig. 5.1).

Maximum queue length: pm,i+1 = 1 is sufficient due to event sequencing
(Lemma 1).

In contrast to SM, ATM architectures only employ initial input queues (cf. queue q61,
q71 in Fig. 5.1) and semaphores (e.g. semaphore S between tasks T62 and T72 in
Fig. 5.1).

A necessary assumption for the timing considerations below is, the system has already
completed its initialization phase. This means, all tasks have already fulfilled their own set–
up and have run into their initial triggering EDF event receive (and thus are blocked). The
first triggering external events with hard deadlines are only allowed after this initialization.
The init phase is irrelevant for timing and schedulability analysis of hard real–time modes.

All timing data5 presented in following sections have been collected on a MIPS R4650
processor based Galileo 4 Evaluation Board [Gal95, Gal96] with 50 MHz clock frequency,
using the processor’s cycle counter as time base (resolution 20 ns).

5Run–time variations based on caching or pipelining effects are out of scope of this work.
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Figure 5.9: Server Model Task States and Structure of Task Body

EDF event create is called from within ISR. As described above, there exists only one
single EDF event list for all events in proposed implementation. One linear list walk is
needed for EDF event insertion. Upper bound of execution time depends on maximum
number of all events, being simultaneously in the system: NE,max (cf. Eq. 5.4).

As a prerequisite to derive NE,max, real–time analysis has to proof timely correct be-
haviour (tp,max < di). To solve this bootstrapping problem, the following method is pro-
posed:

1. Assumption: System fulfills timing requirements, therefore all processing times of
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Figure 5.10: Timing: a) EDF Event Create and b) EDF Event Delete

events in all TPS will be equal or lesser than deadline!

2. Estimation of execution times with this assumption and re–check of real–time be-
haviour.

The influence of EDF event list position on EDF event’s creation execution time can
be seen in Fig. 5.10 (a). Overhead on list position zero is explained by time needed for
EDF timer adjustion (deadline surveillance).

EDF event delete is called from within external task or from output transitions within
last TPS task. Execution time will be constant, simply because only well defined list
manipulation is needed to delete one event from EDF event list. Timing can be seen in
Fig. 5.10 (b). Again overhead on list position zero can be explained by time needed for
EDF timer adjustment.

EDF event send and EDF event receive are responsible for transporting triggering
events with their deadlines between concurrent respectively consecutive tasks. Both direc-
tives depend on list manipulations to fulfill the stipulated EDF execution order. Since the
proposed implementation for MEDF scheduling is based on only one type of EDF message
queue, the “Server Queue” (SQ), send and receive operations for all queue types will in-
dependently rely on the Add To ThreadList With EDF algorithm (cf. App. B.2), which is
a linear list walk. A summary of lists involved and processing effort to be derived thereof
is given in Table 5.2.

IQ–A First task in TPS (Ti1), respectively task representing activity thread is active, i.e.
there is no waiting receiver. Thus insertion of message into message queue depends
on EDF event list including one linear list walk with a maximum of NE,max steps.
An exemplary timing can be seen in Fig. 5.11(a).
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Typea Caseb EDF event send EDF event receive Caseb

IQ A EDF event list (NE,max). Append receiver to (empty)
thread queue.

C

B EDF event (NE,max), thread
(NTD 6=∞,max), and ready list
(NTReady ,max).

EDF event (NE,max), thread
(NTD 6=∞,max), and ready list
(NTReady ,max).

D

HOQ A —c Append receiver to (empty)
thread queue.

C

B EDF event (NE,max), thread
(NTD 6=∞,max), and ready list
(NTReady ,max).

—c D

SQ A For message queue insertion:
EDF event list (NE,max).

Append receiver to (empty)
thread queue.

C

For DIP: EDF event list
(NE,max), EDF thread list
(NTD 6=∞,max), and EDF ready
list (NTReady ,max).

B EDF event (NE,max), thread
(NTD 6=∞,max), and ready list
(NTReady ,max).

EDF event (NE,max), thread
(NTD 6=∞,max), and ready list
(NTReady ,max).

D

aIQ: Input Queue, HOQ: Hand–Over Queue, SQ: Server Queue
bA) no waiting receiver, B) receiver readied, C) no pending message, D) message available (cf. page 46)
cwill/must not occur

Table 5.2: EDF event send and EDF event receive list dependencies and processing effort

*Q–C (IQ–C, HOQ–C, SQ–C): Server as well as Activity Thread Model: Only one task
per message queue, i.e. thread queue used as wait list will be empty in all cases and
for all queue types. Simple append is sufficient, processing effort will be constant.
Magnitude of execution time can be seen in Fig. 5.12 (thread queue position 1).

*Q–B (IQ–B, HOQ–B, SQ–B): Receiving task (e.g. in case of an input queue, first task
in TPS Ti1 or task representing activity thread) is blocked. This means, task is
waiting for an triggering event. Processing involves all three EDF lists and hence
processing effort depends on NE,max, NTD 6=∞,max, and NTReady ,max. The EDF event
send’s dependency on ready list position on the one hand and thread list position on
the other is shown in Fig. 5.13.

IQ–D Message available, caller remains ready, but will be preempted through succeeding
task in TPS with shorter deadline (processing of an older event, see “Input Task”
state diagram in Fig. 5.9). Processing effort is analogous to IQ–B. Execution time
dependency on the EDF thread list position is displayed in Fig. 5.11(b).
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Figure 5.11: Timing: a) Send (No waiting task) and b) Receive (Message available)

HOQ–A Due to sequencing of events of the same type (Lemma 1), there will always be a
waiting receiver on an “Hand–Over Queue” (see HOQ–D for details).

HOQ–D When an “Hand–Over Task” finishes the processing of an event, it will conclude its
processing with the initial EDF event receive and block. In no case there will be a
further consecutive message available, because these events are all stored in an initial
input queue (see “Hand–Over Task” state diagram in Fig. 5.9). Thereof it follows,
necessary message queue length for an HOQ is zero.

SQ–A Insert message into message queue. DIP (or DCP) must be enabled for predictabil-
ity, therefore push the receiver’s deadline to deadline to inherit (sender’s deadline)
in case it is shorter. Message insertion effort is analogous to IQ–A, DIP deadline
manipulation analogous to IQ–B due to the necessary re-insertion of the inheritor
thread.

SQ–D Analogous to IQ–D, but receiver will remain in the “Executing” state (cf. “Server
Task” state diagram in Fig. 5.9). Processing effort is equal to IQ–B.

5.5 Optimized Server Model Scheduler

The run–time support system as proposed in the previous sections supports both, the SM
as well as the ATM software architectures. Since the latter needs an additional EDF thread
list, to park blocked threads with non–infinite deadlines, e.g. on semaphores, and due to
the straight–forward implementation of the EDF event list as linear delta–deadline list,
scheduling operations incorporate some avoidable overhead. Therefore upper bounds for
execution times of scheduling directives have to be quite pessimistic. In contrast to this,
a scheduler designed exclusively to support only one single code generation strategy will
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have the opportunity to be more optimized. But in consequence, the loss of flexibility
has to be taken. This section introduces a scheduler implementation specialized for Server
Model architectures.

For predictability reasons, neither semaphores nor additional non–Server–Model tasks
will be allowed with this scheduler (and will be obviously unnecessary with the server resp.
monitor concept for devices or shared resources to be synchronized). Therefore, one single
list structure for threads in the “Ready” state (with non–infinite deadlines) and blocked
threads (with infinite deadlines) is sufficient (cf. “Ready List” in Fig. 5.14).

The concept of an additional EDF event list for end–to–end deadline administration
is kept, but burst events will now be stored on separate event type lists. Each of them
structured as FIFO buffer. Delta deadline management (only with root nodes, e.g. EvA1,
EvB1, . . . ) and time–out surveillance (EvA1 has shortest deadline) will be done exclusively
with this doubly linked list. EDF ready list sort order will be kept up–to–date with each
EDF event send and EDF event receive operation. For this purpose references between
EDF events and EDF threads on the ready list are established resp. broken up during the
MEDF operations (see Tab. 5.3 for details).

This SM scheduler provides three different queue types: an input queue (to save bursty
events), a hand–over queue (for communication within TPS) and a server queue (for syn-
chronization at shared resources). Different implementations for each queue type provide
optimized processing sequences tailored for their dedication.

EDF event create is used to assign an end–to–end deadline to a new EDF event object
on the occurrence of a stimulating event. One has to differentiate between two different
cases:

1. New EDF event is first or sole instance of this event type:
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Insert new EDF event into deadline sorted EDF event list. This insertion can be
done with one linear list walk. The upper bound for processing steps needed depends
on maximum length of EDF event list. Since only root nodes have to be searched,
this calculates to number of different EDF event types k, i.e. number of different
stimulating external or internal event sources.

2. New EDF event is burst event, this means there already exists an EDF event root
node of the same event type:

Append new burst event on FCFS list for this event type (e.g. append EvA2 on root
node EvA1 in Fig. 5.14). Execution time to be scheduled will be constant.

EDF event delete destroys an EDF event object, which has normally already been
processed by the SDL task system. Again two different cases are distinguished:

1. Deletion of bursty events:

Deletion from FCFS list is of constant complexity. This operation is very unlikely,
because burst events should still be unprocessed.

2. Deletion of first event in burst list (root node):

This operation requires a re-insertion of the consecutive, i.e. now new first event into
the EDF event list (e.g. event EvA2 in Figure 5.14). Again processing effort will be
O(n), because only one linear list walk is needed, upper bound of processing steps is
k again.
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EDF event send and EDF event receive A survey of necessary processing steps,
required for EDF event send and EDF event receive operations is given in Table 5.3.

IQ–A Sequencing of subsequent events of the same type (Lemma 1). Append burst events
to message queue. Absolute deadlines of succeeding events of the same type will be
increasing, therefore no comparison with EDF event list is needed.

*Q–C (IQ–C, HOQ–C, SQ–C): Only one task per message queue is allowed with Server
Model. Append receiver to empty thread queue and set its deadline to infinity.

*Q–B (IQ–C, HOQ–C, SQ–C): Assumption: EDF event create and EDF event send are
consecutive and non–interruptible operations within ISR. With every new event, one
have to differentiate between two cases:

1. EDF event to be sent is first event or event with shortest deadline in task system:

Receiver will automatically be executing thread, i.e. first thread on EDF ready
list. Processing steps needed are: Build reference to receiver (Pointer EvA1 →
A1) and simply append receiver to empty ready list.

2. There exist already events with more urgent deadlines:

Reference of transmitted event’s left neighbor to its processing thread must have
already been built. Insert receiver behind left immediate neighbor event/thread
pair. Example of Fig. 5.14: Left neighbor event of EvH1 is EvC1. Its processing
thread C1 can be derived through pointer EvC1 → C1. Insert H1 behind C1.
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Typea Caseb EDF event send EDF event receive Caseb

IQ A Append message to message
queue.

Append receiver to (empty)
thread queue.

C

B Insert receiver behind
left immediate neighbor
event/thread pair.

Receive subsequent (burst)
event.

D

HOQ A —c Append receiver to (empty)
thread queue.

C

B Insert receiver behind
left immediate neighbor
event/thread pair (respec-
tively, append to sender).

—c D

SQ A Message queue insertion:
EDF event list (with a max.
of k root nodes).

Append receiver to (empty)
thread queue.

C

For DIP: Move receiver be-
hind sender.

B Insert receiver behind
left immediate neighbor
event/thread pair (respec-
tively, append to sender).

No ready list manipulation is
needed.

D

aIQ: Input Queue, HOQ: Hand–Over Queue, SQ: Server Queue
bA) no waiting receiver, B) receiver readied, C) no pending message, D) message available (cf. page 46)
cwill/must not occur

Table 5.3: EDF event send and EDF event receive processing sequences with optimized
server model scheduler

Amount of execution time needed for insertion point determination and insertion
into ready list will be constant.

For a HOQ or a SQ, receiver could be alternatively inserted directly behind sender
(who is processing same event with same deadline).

IQ–D Append receiver for the time being with infinite deadline to EDF ready list. Establish
reference from burst event to receiver (cf. event EvC2 and thread B2 in Fig. 5.14).
On deleting the first event (event EvC1 in the example), the new first event will have
to be reinserted into the EDF event list (see EDF event delete) and the ready list
position of its associated thread will be updated too (analogous to IQ–B).

HOQ–A see case HOQ–A on p. 68.

HOQ–D see case HOQ–D on p. 69.
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SQ–A A Server Queue unites events of different types, resp. event sources. Therefore dead-
lines of consecutive events may be unsorted with regard to their deadline value. In
consequence, sort order of message queue has to rely on EDF event list, which may
have a maximum of k root nodes in total. DIP must be enabled. In case of a shorter
deadline of a new incoming event (exactly, if message must be inserted on message
queue position number 1), deadline inheritance must take place and receiver (inher-
itor thread) will have to be moved behind sender thread. Deadline value will be set
to the sender’s one.

SQ–D Since DIP must be enabled, receiver (inheritor thread) will already have adopted
deadline of succeeding event (see SQ–A).

Only EDF event create and EDF event delete will initiate (re–)insertion and manip-
ulation of the EDF event list (list search needed). This can be done with one linear list
walk and complexity will depend only on number of different event types. Both other
directives EDF event send and EDF event receive will rely on list appends, respectively
the point for list insertion can be directly derived without list search from the list neighbor
of the event transported. Therefore scheduling complexity and hence execution time to be
expected will be constant. Single exception: The DIP case of EDF event send, which can
be done likewise with a maximum effort of k steps.

As can be seen, MEDF scheduling processing effort is identical to normal EDF task
scheduling complexity, but MEDF allows separation of functional design (SDL process
network respectively RTEMS task structure) and timing constraint specification with end–
to–end deadlines and message communication.



Chapter 6

SDL Real–Time Analysis

Although SDL is widely used in industry for construction of real–time and communication
systems, there comes little or no support from methodologies or tools for proving real–time
behaviour of an application designed with SDL.

“Verifying that a time deadline is always met obviously requires a model of
real resources. [. . . ] Verifying the timing (that is — proving that it is correct)
would not be an easy task, even with sophisticated tools.” [Ree98]

Most of commonly accepted methodologies which can be found in well known literature
rely on mean and/or peak load considerations of computing nodes involved or propose
to compare processing performance of the underlying hardware architecture with timing
intervals to be achieved.

“As a rule of thumb the mean peak load on a single computer should not exceed
0.3 in order to give room for statistical peak loads.” [BH93, p. 247]

“Allocate processes to computers such that the mean load on a single computer
not exceeds 0.3 Erlang of its total capacity. [. . . ] Consider the implications
of real–time requirements. Calculate the response times for time critical func-
tions and check that requirements will be satisfied. Use priority to ensure fast
responses.” [ITU94c, p. 106]

“Whether the time constructs of SDL are sufficient for specific real–time re-
quirements depends as much on the implementation of time–constructs in the
final system, as it depends on the particular constructs in the language. [. . . ] As
a first rule of thumb for implementation, it is possible to use the constructs for
system design if the tolerances on the time intervals are ≥ 100 times the average
instruction time of the CPU used for implementation. [. . . ] These observations
are without any theoretical evidence: they are only based on experience with
some implementations of SDL and similar timing schemes.” [Ols94, p. 101]

75
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Figure 6.1: Information Flow and Dependencies of Real–Time Analysis

The reader will surely agree these approaches to be insufficient for hard real–time
systems, where a prove that timing constraints will be met even in worst case situations is
inevitable.

With the goal to enable the automatic verification of real–time requirements, SDL’s
process activation rules and thus its semantics has been pinpointed to MEDF scheduling.
In Sec. 5.2 it has been shown that all processes under MEDF will be activated according
to EDF scheduling policy, therefore an EDF analysis methodology can be applied to task
systems, automatically generated from SDL specifications, in case MEDF semantics has
been preserved (cf. Sec. 4.3).

For this purpose the feasibility prove as introduced by Gresser [Gre93a, Gre93b] can
be applied. Gresser’s approach suits well to event driven systems due to its capability to
take into account even a sporadic behaviour of external stimuli. In the following section
Gresser’s assumptions regarding the underlying task model and the analysis algorithm
itself are shortly explained and, where necessary, adapted according to the predictability
requirements of MEDF.

The second part of this chapter deals with the automatic transformation of a SDL
system to a network of task nodes as a preparation for the final analysis step. The in-
termediate actions and the interdependencies of all information necessary to perform the
verification can be seen in Fig. 6.1.

In a first step, the so called task precedence graph (TPG, 5 ) is automatically derived
from the signal exchange between SDL processes. Since it includes all possible execution
paths and thus all alternatives, i.e. all transitions even if they are mutual exclusive due
to exclusive start states, the next step uses the worst case execution times (WCET, 4 )
of transitions to refine the TPG to a network of analysis tasks (real–time analysis model,
RTAM, 6 ). On the other hand best case execution times (BCET, 4 ) of transitions are used
to determine the earliest possible start times of tasks (7 ) within areas of mutual exclusion.
As has been shown in Sec. 4.3, the chosen code generation strategy influences the number
of tasks in the final implementation and controls the RTOS directives used. The maximum
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number of tasks as well as the maximum possible number of events processed concurrently
in the system in turn affect the upper bounds of execution times of RTOS directives (8 ).

6.1 Real–Time Analysis

In this section, Gresser’s feasibility analysis for event driven real–time systems [Gre93a,
Gre93b] is shortly introduced. For this, the assumptions regarding the underlying task
model, the methodology itself, and the environment’s influence on the system’s real–time
behaviour are surveyed.

6.1.1 Task Model

A task of a software system is represented through an analysis task node that holds the
following parameters1: A single stimulating event Ej (time of occurrence ej) releases the
task Tj (release time rj) and, when dispatched, it starts with its computation (start time
sj). Preemption caused by concurrent tasks may occur repeatedly before the processing
of this task will finally end at completion time fj. For each task, an upper bound (worst
case execution time cmax) and a lower bound (best case execution time cmin) for the over-
all computation time without preemption as well as a worst case response time (relative
deadline d) must be given. As can be seen in Fig. 6.2(b), the timing constraint d will be
fulfilled, if the task completes its processing before the absolute deadline Dj = ej + dj.
Fig. 6.2(a) shows the graphical representation of an analysis task node with the most
important parameters.

Conceptually, Gresser assumes a fixed internal task structure, consisting of non inter-
ruptible sections at the beginning and at the ending of each analysis task, enclosing a
fully preemtable task body. The opening section may consist of blocking operating system
directives like semaphore obtain (P ()–operation) and/or receive operations. The clos-
ing section in turn may only include non blocking directives like send, semaphore release
(V ()–operation), calls of timer services and finally input or output operations. Thus, the
resulting task communication is as well asynchronous and consequently comprises SDL’s
message exchange paradigm.

1As can be seen, these parameters are identical to task model and environment parameters used to
prove the predictability of MEDF in Sec. 5.2 (cf. Tab. 5.1 on page 47), but are shortly re-introduced for
readability purposes.
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Comparing these assumptions to the structures of tasks, server model task as well as
activity threads, the following differences can be observed:

• Position of terminating send/out operation in Server Model tasks (cf. Fig. 5.9) is
varying and may reside within task body (send before task symbol in SDL).

Since a MEDF send is non blocking and since the now released receiver task will be
activated only after the sender blocks again at its initial receive (MEDF Sequenc-
ing, Lemma 1), the send position has no influence on scheduling order. Thus, the
introduced analysis task model will fit to SM tasks too.

• Pairs of semaphore obtain and release operations protect mutual access to common
state data in Activity Thread Model tasks within task body.

This structure originates when several state transitions of consecutive SDL pro-
cesses are packed into one single task (the activity thread) to avoid unnecessary
message exchange. The data synchronization of server processes will be maintained
by semaphores enclosing a complete state transition. In this case, an ATM task has
to be split up into several analysis task nodes, i.e. one node for the section before
the P ()–operation, one node for the state transition protected by the semaphore and
finally one node for the section after the releasing V ()–operation.

With this, the resulting analysis model for ATM task systems will resemble an analysis
task network of the appropriate SM task system. Only difference: Analysis nodes of TPSs
triggered by one single event type, e.g. TPS1 to TPS3 in Fig. 5.1 may be merged to one
single analysis node.

6.1.2 Analysis Algorithm

The schedulability analysis algorithm requires the Event Streams ESj (cf. Sec. 3.4) to be
transformed into an Event Function Ej(I), expressing the maximum number of events per
interval I (m event types with nj, j ∈ [1, m] event tuples each.).

Ej(I) =
nj−1∑
i=0


0 ; I < aij⌊

I − aij

zij

+ 1

⌋
; I ≥ aij ∧ zij < ∞

1 ; I ≥ aij ∧ zij = ∞

(6.1)

Figure 6.3 shows E(I), derived from the sample Event Stream2 in Figure 3.5.
The computation function C(I) is defined as maximum computation time requested

and due within interval I. For a single task Tj Cj(I) can be calculated easily from Ej(I)
by shifting by the deadline dj and multiplication with the WCET cmax,j (Fig. 6.3). The
resulting C(I) for a number of independent tasks on a computing node is simply the sum
of all Cj(I) functions

2ES =
{
(0 7)T , (1 7)T , (3 7)T

}
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Figure 6.3: Event Function E(I) and Requested Computation Time C(I)

C(I) =
∑

j
Cj(I) =

∑
j
Ej(I − dj) · cmax,j (6.2)

For EDF Gresser proved that all tasks on one processing node meet their deadlines, if
the resulting C(I) always runs under the bisector which specifies the available computing
time in each interval.

C(I) ≤ I ∀ I ≥ 0 (6.3)

Task Dependencies Communication between SDL processes and thus within the re-
sulting task networks is responsible for task dependencies like precedences and mutual
blocking. Precedence relationships between tasks under MEDF leave the schedulability
uninfluenced (Theorem 1 in Sec. 5.2.1), and thus do not need further consideration during
the analysis. On the other hand, dependencies through message blocking on server tasks3

can be resolved by independently taking into account all execution times of all competing
parts of server tasks (i.e. all state transitions) plus an additional necessary deadline ma-
nipulation. For this, the deadlines of the resulting analysis nodes that are possibly blocked

3The same is true for semaphores (Sec. 5.2.4).
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must be adapted at most to the deadline of the most urgent transition4 (Theorem 2 for
DCP, Theorem 3 for DIP in Sec. 5.2.3).

Event Dependencies Task dependencies will tighten the computation time require-
ments to be scheduled. In contrast thereto, event dependencies can be used to give a closer
specification of the worst case behaviour of triggering events. Without these additional
minimum intervals between (two) event types, a simultaneous occurrence of events would
have to be considered. The methodologies provided by [Gre93a] transform dependent event
streams into one event stream with less stringent computation time requirements.

A delay between two analysis tasks and thus as well a delay caused by a timer signal with
its set operation depending on an external event can be considered as an event dependency
between triggering external event and the delayed internal event stream, i.e. the ES of the
timer signal.

6.1.3 Influence of System Environment and Timer Task

Overall available computation time per interval C(I) must be shared between tasks that are
generated automatically from the SDL system model (running in the MEDF priority level)
and supplementary tasks and ISRs to connect the SDL system part to the environment.
Activations of all necessary ISRs as well as the worst case expirations of all set timers are
given through the timing constraint specification or can be derived thereof.

• The triggering of ISRs needed to translate external events (k event types) to MEDF
signals is specified through the given timing constraints (ES1, ES2, . . . , ESk).

• The cyclic clock ISR to increment the clock tick is activated with period zCl, thus
owns the event stream ESClock−ISR = (0 zCl)

T .

• Activations of the timer task by expired timers with a subsequent send of the appro-
priate timeout signal are described by an event stream that consists of a concatenation
of all single timer ES specifications.

In contrast to MEDF tasks, ISRs and supplementary tasks are scheduled with fixed
priorities. ISR priorities are given through HW interrupt priorities and obviously are as
well higher than the MEDF priority level, thus disabling preemption for MEDF tasks.
From the MEDF tasks point of view, an ISR or supplementary task completely seizes the
processor for an interval that is of equal length to its processing time (cf. cISR1 , cISR2

in Fig. 6.4). Assuming a simultaneous occurrence of all events (i.e. the critical instant),
the (longest possible) busy period IBP of all ISRs and high priority tasks will emerge

4[Gre93a] additionally provides a methodology for deadline manipulation to deal with nested mutual
exclusion in complex task structures. Since nested mutex constellations can not occur with SDL server
processes, this methodology needs not be introduced here.
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Figure 6.4: Busy Periods due to ISRs and Supplementary Tasks

starting with interval I = 0. In this case, busy period5 denotes the fact that all available
computation time is consumed by ISRs or further supplementary tasks. It is necessary to
take into account IBP as a minimum amount of laxity to take care of delays caused by
disabled preemption to fulfill all specified deadlines.

For example, the occurrence of an external event during a timer set or reset operation
will be immediately recognized by an ISR, but the thereof activated SDL task will be
delayed until the timer task has completed its operation (cf. Fig. 4.4).

As can be seen in Fig. 6.4, IBP is already included in the ISR’s computation function
F (I). Thereof it follows, all deadlines of MEDF tasks will be met, if their overall computa-
tion function C(I) requests less processing time than the remaining available computation
time [Fär00].

C(I) ≤ I − F (I) ∀ I ≥ 0 (6.4)

5Starting with the highest priority ISR, one has to iteratively consider the processing times of ISRs/tasks
with higher priority preempting the ISR/task under evaluation until the lowest priority ISR/task can
complete its processing and no further bursty events are pending.
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Figure 6.5: Syntax of Task Precedence Graph and its Annotations

6.2 Derivation of the Real–Time Analysis Model

The automatic generation of the analysis task network has to be split up into two phases.
In a first step, all information of an application’s SDL system model, like structure, be-
haviour and the interface to the environment is used to derive a Task Precedence Graph
(TPG). Thereupon, worst case execution times of processes, respectively state transitions
are evaluated to find the complete Real–Time Analysis Model (RTAM), i.e. the worst case
path in the TPG.

In contrast to the RTAM derivation, the best case execution times of transitions can
be used to calculate earliest possible start times of server processes to alleviate the effects
of deadline reduction necessary to consider priority inversion avoidance during real–time
analysis.

6.2.1 Task Precedence Graph (TPG) Synthesis

Gresser’s real–time analysis model consists of a network of analysis task nodes and thus
only shows the communication and synchronization structure of a software system. In
contrast to this, the Task Precedence Graph (TPG) as introduced here additionally in-
cludes behavioural information. State transitions are attached to nodes representing a
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Figure 6.6: TPG Synthesis Example SDL System

SDL process respectively a resulting analysis task (cf. Fig. 6.5). The signal(s) sent to
trigger consecutive processes are shown within these transitions.

To build up the TPG, a SDL parser flattens the hierarchical SDL blocks into a network
of “leaf” SDL processes, whereby only processes in the priority level reserved for hard
real–time are analyzed. The main translation principle is to map one SDL state transition
to one analysis task node. The transformation algorithm ([KF98], [Lar98]) starts at each
triggering external event or each triggering internal SDL Timer signal and traces the trans-
ported deadline tokens through the complete SDL system. Consecutive SDL processes are
identified by means of send statements. The correlating analysis tasks, respectively state
transitions, can be resolved by the corresponding receive statements. The algorithm will



84 CHAPTER 6. SDL REAL–TIME ANALYSIS

time: 2.0 time: 4.0

time: 8.0 time: 256.0

ENVm41

DD

DDPrDm31
Choice

time: 16.0 time: 512.0

ENVm42

EE

EEPrEm32
Choice

Decision

BB

BBPrBm21

time: 64.0
time: 1024.0

EE
EEPrEm33

CY

CXState Choice

time: 128.0
time: 1024.0

EE
EEPrEm33

CX

CYState Choice

PrCm22

AA

AAPrAm1

Figure 6.7: Task Precedence Graph Including All Transition Alternatives

terminate, if no more send statements can be found in state transitions, or if a send is
addressed to the system environment (endpoint of end–to–end deadline).

SDL server processes, i.e. processes responding on several different messages, stimulated
by different ESs are mapped onto several analysis nodes (number of nodes corresponds to
number of different event types to be responded). These nodes are additionally marked to
be processed mutual exclusively (mutex annotation in Fig. 6.5).

There are two kinds of forks possible within the TPG, enumerations or choices. The first
kind will occur, if several send statements6 are included within the same state transition.
The processing times of all these branches contribute altogether to the overall computation
time. Choices will be caused by decisions in state transitions, if the same message is
consumed in different states (state choice), or if several signalroutes appear on the receiver
side of a block to block communication versus a channel (signalroute choice). Forks in
SDL signalroutes lead to TPG choices, since only one of several possible receivers will
(non–deterministically) process the message sent. Processing times belonging to branches
originating from a TPG choice only have to be taken into account alternatively in the
real–time analysis (cf. Sec. 6.2.2).

Loops in a TPG will emerge, if signals are sent back to predecessor processes. To un-
cover this effect, each already parsed state transition will be marked. When this transition
will be re-reached during the TPG synthesis, the message currently traced by the parser
must be tested, whether it is in the set of sent signals of the current TPG. If this is the
case7, the actual task node corresponding to the marked state transition will be signed as
a loop start– and endpoint.

6Not necessarily with different receivers. In this case, the succeeding TPG is simply triggered repeatedly
and therefore must be replicated several times.

7Otherwise, this message belongs to a different event type and thus, the task node under investigation
is simply a server process.
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Figure 6.8: Worst Case Task Precedence Graph

The resulting TPG will consist of several independent chains of analysis tasks, each
being triggered by a different type of ES. The single branches of the TPG share regions
of mutual exclusion. All analysis nodes in one precedence system have the same deadline,
leading to the effect that different SDL state transitions originating from the same SDL
(server) process may have different timing constraints.

As an example, the generated TPG of a simple exemplary SDL system (Fig. 6.6) is
depicted in Figure 6.7.8 The sending of messages m21 and m22 in the state transition AA →
AA in process PrA has to be mapped to the two main TPG branches (type enumeration).
The decision (a < b) in process PrB leads to two TPG choices, headed by the SDL signals
m31 and m32. A state choice emerges due to the alternative receive statements in states
CX and CY in process PrC . As can be seen, there exists no area of mutual exclusion for
process PrE, since message m32 as well as m33 are triggered from the same event stream
ES1, thus process PrE is no server process.

6.2.2 Derivation of the Worst–Case TPG

Branches in the TPG, caused by state, decision and signalroute choices are resolved by
evaluating the specified (or measured) execution times to find the worst case path in the
TPG. This means, all state transitions belonging to a signal path that do not contribute
to the overall worst case computation time are eliminated.

Starting with the root node, i.e. the triggering signal, execution time annotations of all
sub-graphs will be recursively summed up. With this, each child returns its WCET to its
parent node. Depending on the type of the parent node, choice or enumeration, one has to
add the maximum of all sub-node’s WCETs (node PrC and node decision in PrB in TPG
of Fig. 6.7) in a choice. In case of an enumeration, the sum of all returned WCETs has to
be calculated and added to the node’s own WCET (e.g. node PrA).

An advantage of this recursive approach (cf. Fig. 6.9) is its ability to handle loops in
the TPG as well. If the function TPG next subnode() is called on a node connected by an
arc that is directed to an ancestor node in the TPG, the annotated loop count of the arc
will be decremented. After reaching zero, this arc and thus its connected subtree will not
be considered for the WCET calculation anymore.

8TPG visualization is based on the graph drawing tool daVinci [FW94].
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max_ct Worst_Case_Execution_Time( TPG_node node ) {
max_ct ct = 0;
max_ct lct = 0;

while ( TPG_node_has_subnodes( node ) {
lct = Worst_Case_Execution_Time( TPG_next_subnode( node ) );

if ( TPG_node_is_of_type_ENUM( node ) ) {
/* sum of all subnode WCETs */
ct = ct + lct;

} else if ( TPG_node_is_of_type_CHOICE( node ) ) {
/* find maximum WCET of all subnodes */
if ( lct > ct ) {
ct = lct;

}
}

}

ct = ct + node.ct;
return ct;

}

Figure 6.9: Recursive TPG WCET Calculation (simplified)

Figure 6.8 shows the worst case TPG, that is the Real–Time Analysis Model, derived
from the TPG of the example SDL system (Fig. 6.6 and Fig. 6.7). As can be seen, there
is only one branch of each choice left.

6.2.3 Calculation of Start Times

Deadline reduction during real–time analysis is necessary for tasks that will be processed
mutual exclusively to take into account possible additional blocking times caused by prior-
ity inversion avoidance strategies. Since shortening deadlines will decrease the slack time
available to schedule the requested computation, earliest possible start times of server tasks
can be used to minimize these necessary deadline reductions (see Equation 5.1).

For this purpose, the best case execution times of all tasks prior to a server task will
simply be added up. In case of several possible activation chains, the minimum resulting
start time has to be chosen (sT x

S ,min). A known dependency exy (minimum interval) between
an event Ex triggering the blocking and an event Ey triggering the blocked part of a server
task can be finally added to sT x

S ,min.
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Conclusion

As has been shown above, real–time analysis of SDL systems is threefold. On the one side,
processing time requirements (the overall computation function C(I)) resulting from the
SDL system itself can be derived automatically, if worst and best case execution times of
all system model parts are given.

In addition to computation times of state transitions, processing times of the underlying
RTOS directives must be known as well. Upper bounds of their execution times depend
on the configuration of the final software system, i.e. implementation model and scheduler
used, number of tasks involved and maximum number of stimulating events.

Finally, tasks and functions of the infrastructure, necessary to connect the SDL model
to its environment are influencing the schedulability of the whole real–time application.
Their processing impose additional blocking times to the model tasks and have to be taken
into account in the analysis. The interface to the embedding system is more seldom subject
to changes during the design process compared to the application core itself. Due to this
fact, execution times of these supplementary tasks only will have to be measured once.

It must be stressed that the designer’s modeling style may have harmful consequences
on the schedulability of the whole system. A fine granular system structure (design goal:
“emphasizing the data flow”) will lead to complex message exchange between SDL pro-
cesses. State transitions then will be very simple and the portion of the application to be
scheduled will be small or at most in the order of magnitude compared to the overhead
of the run–time system (cf. Sec. 7.2). This negative effect may be weakened through the
application of the activity thread model during code generation, however the overhead
imposed through the environmental functions (ISRs etc.) will remain the same.
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Chapter 7

Case Study and Evaluation

This chapter provides a step by step demonstration of all phases necessary to evaluate the
real–time characteristics of a SDL system. Its organization follows the proposed modus
operandi as shown in Fig. 6.1.

The “Attitude and Orbital Control System” (AOCS) of the communication satellite
“Olympus” exemplifies an application with tight timing requirements. Its real–time prop-
erties have been analyzed by Burns et. al. [BWBF93] in a similar case study. Showing a
HRT–HOOD [BW95b] specification of the AOCS, deadline monotonic schedulability anal-
ysis has been used to prove the timelineness of an Ada implementation on a Motorola
68020 board. Real–time analysis requires that processing times of the application itself,
i.e. execution times of algorithms and state transition times are known. The cited evalua-
tion as well as the case study in this chapter rely on results of a performance analysis for
Motorola 68020 based processing units. In [BWBF94] execution time estimations of the
AOCS are given.

7.1 Olympus Attitude and Orbital Control System

The “Olympus”, launched in July 1989, was planned as a platform for telecommunication
applications, as well as for television and radio broadcasting over Europe. The three–axis–
stabilized satellite suffered its most serious in-orbit problems when during 29th of May
1991 it lost its earth lock and automatically entered “Sun Acquisition Mode”. Due to
thereof initiated improper operator commands, the satellite turned its solar panels side–on
to the sun and froze. Fortunately, according to a fall–back strategy the thrusters fired
autonomously and control could be regained. This incident gave reason to reevaluate the
real–time properties of Olympus’ control system and lead to the former cited case study.

As with most geostationary satellites, an “Attitude and Orbital Control System”
(AOCS) has the task to maintain the spacecraft’s position and orientation on its orbit,
such that broadcast antennas remain directed to earth. This is achieved by forcing roll,
pitch as well as yaw angle of the satellite to zero during this so called “Normal Mode”
operation.

89
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Figure 7.1: Olympus AOCS Sensors and Actuators

On “Olympus”, necessary angular momentums can be either created by accelerating
respectively decelerating four reaction wheels (RW) or by thruster firing. An “Infra–Red
Earth Sensor” (IRES) provides the earth vector (roll, pitch). Yaw angle derivation is based
on an integration of rate–gyrometer data (RGS, gyro data is received approximately once
per 100 ms) and thus is subject to a constant drift. Therefore, for two spells per day, when
sun reaches a specified position, the gyro has to be re–calibrated using the “Digital Sun
Sensor” (DSS) based yaw. A survey view of AOCS input/output data flow can be seen in
Fig. 7.1.

Beneath the Normal Mode control loop with a cycle time of as well 100 ms, additional
attitude control functions have to be processed.

• When the speed of any reaction wheel exceeds a preset threshold, momentum dump-
ing is initiated. Burst of thruster firings compensate the speed reduction of the wheel
in question.

• Ground operators have the possibility to influence the satellite’s behaviour through a
telecommand function. It allows to preset control values, to choose a dumping mode
(zero dumping vs. normal dumping) or to trigger the gyro calibration by hand (min-
imum inter–arrival time is 190 ms). Telemetry requests satellite equipment status at
most every 62.5 ms.

In contrast to the original hardware setup, where a serial bus connects sensors and
actuators to the AOCS, a memory mapped access to input and output data is assumed
for simplicity. Interrupts are released on gyro data receival or telecommand and telemetry
status data request. Further sensor data as well as RW speed is polled by either control
loop or additional cyclic tasks (Timer interrupt).

7.1.1 SDL System Model

The SDL system of the AOCS models only the control structure of the application layer.
This means, that process decomposition and data exchange as well as activation rules are
shown, but algorithms and attitude control laws itself are hidden in comments, respectively
in calls to appropriate procedures.

A survey view of the AOCS SDL system with its first and second level decomposition
included can be seen in Figure 7.2. DSS, IRES and RW data readings as well as process
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Figure 7.2: AOCS SDL System Survey

activations by timer expiration can not be expressed with SDL on a structural level, i.e.
system or block layers, but are incorporated for clarity reasons.1 Signal names are not
shown. The complete AOCS system with all SDL process descriptions can be seen in
App. A.1.

7.1.2 Timing Constraints

Table 7.1 summarizes event streams of AOCS input data and shows the appropriate dead-
lines to fulfill. Gyro data is received without request. Since this sensor has a different clock
there may be some jitter2 (j ≤ 1 ms) on the incoming data (cf. Fig. 7.3 with x = z − 2j).
IRES roll and pitch angles are polled with a frequency of once every 100 ms.

Momentum dumping is initiated very rarely. Therefore, the minimum inter–arrival time
of the “Critical Wheel Speed” event is considered to be by order of magnitude longer than
the longest cycle time in the system (zDSS = 1000 ms) and thus modeled with zCWS = ∞.

The DSS announces sun presence twice a day and subsequently initiates “Calibrate
Gyro”. Thereof it follows, both events can not occur simultaneously.

1Additions are not conform to SDL syntax.
2Without jitter, a cyclic event is described by a single event stream tuple

{(
z
0

)}
with cycle time z

(Fig. 7.3 (a)). Considering jitter, the first tuple
{(∞

0

)}
of ESGy specifies a single event in an interval 0 with

consecutive events not earlier than ∆x,∆x + z,∆x + 2z, . . . leading to an additional event tuple
{(

z
x

)}
with

x = z − 2j (Fig. 7.3 (b)).
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Event Type Event Stream Deadline

Gyro Raw Dataa ESGy=
{(

∞
0

)(
100

100−2j

)}
dGy=100

IRES Data Processing ESIDP =
{(

100
0

)}
dIDP =100

Control Law ESCL=
{(

200
0

)}
dCL=200

Critical Wheel Speed ESCWS=
{(

∞
0

)}
dCWS=100

Digital Sun Sensor ESDSS=
{(

1000
0

)}
dDSS=1000

Calibrate Gyro ESCG=
{(

1000
0

)}
dCG=1000

Telecommands ESTc=
{(

190
0

)}
dTc=190

Telemetryb ESTm=
{(

62.5
0

)}
(dTm=62.5)

aCyclic occurrence with jitter j.
bFunctionality is not covered by SDL model, but influence on interrupt load will be considered.

Table 7.1: AOCS Event Streams and Deadlines

Finally, the main control loop has to be executed within a 200 ms cycle and deadline.
The “bursty” behaviour of operator commands (Telecommand) could be taken into account
with further event tuples to decrease the processor demand imposed through interrupt load.

7.1.3 Computation Times of MEDF Run–Time System

Worst Case Execution Times of MEDF directives considering a scheduler3 as proposed in
Section 5.3 mainly depend on three parameters: maximum number of EDF events NE,max

being processed simultaneously, maximum number of tasks NTReady ,max in a ready state,
and maximum number of tasks NTD 6=∞,max with non–infinite deadline on EDF thread list
(cf. Sec. 5.4).

Number of different event types k in this example is k = 8 (cf. Tab. 7.1), but can
be reduced to k = 7, when taking into account mutual exclusive processing modes
“DSS”/“Calibrate–Gyro”. Taking into consideration that momentum dumping will be
initiated on threshold overrun from within the control law activity thread, i.e. the “Con-
trol Law Timer Event” will be just forwarded, k further reduces to k = 6. Since telemetry
requests are considered soft real–time, no EDF events will be created here, i.e. k = 5.

Each message queue (of type IQ) saves a maximum of NEi,max = Ei(di−cmax,i) incoming

3This case study concentrates on the MEDF scheduler supporting Server Model as well as Activity
Thread Model implementations. MEDF send/receive directives of the “Optimized Server Model Scheduler”
(cf. Sec. 5.5) would have constant run–times, except EDF event create or EDF event delete. Processing
times of the later depend only on the maximum of the EDF event list length.
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Figure 7.3: Cyclic Event a) without and b) with Jitter

events. With given event streams (only one single event tuple per event type) and deadlines,
this can be simplified to NEi,max = Ei(di)− 1 = 1. This means, there will be at most one
additional event saved per incoming message queue, because there exist no event bursts
and processing of each event in the appropriate activity thread will be finished before
subsequent events arise. This will be even true for gyro raw data events, if the jitter is
smaller than the worst case processing time in this activity thread.

With this, the total number of events calculates to NE,max = 10 (Eq. 5.4). For simple
periodic task activations this number can be regarded as very pessimistic. Only if the
processor is charged to or near its maximum, the processing of a few events will not be
completed before their successor event will be created.

Assuming a Server Model implementation strategy, the final software architecture would
contain 5 sensor tasks, 1 control task, and 3 actuator tasks (cf. SDL model in Sec. 7.1.1),
i.e. a total number of 9 MEDF tasks. With an Activity Thread Model realization the
overall task number would reduce to 6 MEDF tasks, with either “DSS” or “Calibrate
Gyro” exclusively executing.

Taking a closer look to the resulting task precedence systems (cf. Fig. A.16), the maxi-
mum number of tasks waiting on the schedulers ready list as well as the maximum possible
number of tasks with non–infinite deadline on the EDF thread list can be derived to
NTReady ,max = NTD 6=∞,max = 9, which is below the worst case to be assumed by Eq. 5.2 and
Eq. 5.3. This is due to the fact that TPSIDP as well as TPSTC consist of only one task
node and TPSDSS and TPSCG operate in mutual exclusive modes only.

In the following, a closer look to the single MEDF directives will be taken. Upper
bounds for their processing times in the AOCS application are derived on the one hand
from the measurements4 as carried out on the Galileo Evaluation Board (Sec. 5.4) and on
the other hand from the influencing parameters as calculated above.

To evaluate the amount of overhead imposed through the MEDF run–time system itself

4For this case study, the mean times of measurement data are used. Influence of jitter on the run–times
caused by cache flushes, pipeline stalls or ISR preemption will be ignored. Prediction and worst case
estimation of these effects are not focus of this work.
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RTEMS Message Queue Galileo Galileo M68020
Operation Cyclesa [µs] [µs]b

cM68020

cGalileo

rtems message queue create 5167 103.34 207 2.00
rtems message queue delete 643 12.86 85 6.61

rtems message queue send
no waiting tasks 233 4.66 103 22.10

task readied — returns to caller 422 8.44 107 12.68
task readied — preempts caller 956 19.12 129 6.75

rtems message queue receive
message available 180 3.60 87 24.17

message not available — NO WAIT 103 2.06 51 24.76
message not available — caller blocks 1100 22.00 119 5.41

rtems message queue flush
no messages flushed 59 1.18 36 30.51

messages flushed 83 1.66 46 27.71

rtems message queue urgent
no waiting tasks 231 4.62 103 22.29

task readied — preempts caller 955 19.10 130 6.81
task readied — returns to caller 441 8.82 107 12.13

aMIPS R4650 processor clock frequency is 50 MHz.
bMotorola MVME135 with a 20 MHz 68020 CPU according to [OAR96].

Table 7.2: Execution times of RTEMS message queue directives

and necessary additional I/O (environmental) functions like ISRs and timer facilities, the
Galileo processing times will be translated to M68020 processing times by multiplication
with a constant delay factor.

As can be seen in Table 7.2, which compares execution times of RTEMS message queue
directives on both architectures as provided by the RTEMS timing test suite, ratio of run–
times varies widely. This is due to the different characteristics of the underlying processing
units on the one hand and different memory layouts, internal bus structures with different
clock frequencies on the other. For simplicity reasons, only a constant (average) delay
factor d = cM68020/cGalileo = 10 will be assumed which is comparable to the Mips R46505

to Motorola M680206 performance ratio. A summary of all estimated execution times is
given in Table 7.3.

5Galileo Board, Mips R4650 CPU with 50 MHz clock frequency, RISC architecture with 1 cycle per
instruction, performance 50 MIPS.

6Motorola 68020 CPU with 20 MHz clock frequency, CISC architecture with about 6 cycles per instruc-
tion, performance 5.2 MIPS [Boy96].
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Galileo [µs] M68020a [µs]

EDF event create 5.2 52
EDF event delete 4.3 43

Typeb Casec EDF event send Casec EDF event receive
Galileo cmaxA,B

M68020a Galileo cmaxC,D
M68020a

[µs] [µs] [µs] [µs] [µs] [µs]

IQ A 7.7 C 34.1
B 24.0

24.0 240
D 10.4

34.1 341

HOQ A —d C 34.1
B 24.0

24.0 240
D —d 34.1 341

SQ A 31.7 C 34.1
B 24.0

31.7 317
D 10.4

34.1 341

aProcessing times estimated with delay factor d = 10.
bIQ: Input Queue, HOQ: Hand–Over Queue, SQ: Server Queue
cA) no waiting receiver, B) receiver readied, C) no pending message, D) message available (cf. page 46)
dwill/must not occur

Table 7.3: Execution times of MEDF directives for a AOCS Server Model implementation

EDF event create and EDF event delete

Regarding both operations, only execution times of EDF event create are varying. As
can be seen in Fig. 5.10 (a), processing times ccr only depend on NE,max. On Galileo, ccr

exceeds the initial additional processing time ccr,1 for NE,max ≥ 6 and constantly increases
further on. For NE,max = 10, this results in an upper bound ccr,10 = 5.2 µs.

In contrast to the create operation, EDF event delete run–times cdl are independent of
list search operations and thus remain constant for all NE,max (cf. Fig. 5.10 (b)). One only
has to be aware of the initial timer adjustment that dominates the worst case run–times
of cdl. With this the upper bound derives to cdl = 4.3 µs.

EDF event send and EDF event receive

Processing times of EDF event send and EDF event receive operations depend not only on
the list parameters as evaluated above, but also depend on state and on type of the queue
involved, respectively on the situation the task under consideration currently faces. This
makes a distinction of cases (A and B for send directives, C and D for receive operations)
necessary. Worst case run–times then result from respective maxima (columns 4 and 8 in
Tab. 7.3).

*Q–B (IQ–B, HOQ–B, SQ–B) Send with receiver readied depends on search walks on both
lists, ready list and EDF thread list, processing time increases linearly with both
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parameters. As can be seen in Fig. 5.13, an upper bound for EDF event send with
NTReady ,max = NTD 6=∞,max = 9 derives to csnd,B = 24.0 µs.

IQ–A Send into an input queue with no receiver waiting means inserting a message into
an empty queue for this application example, with NEi,max = 1 for all event types.
Thereof it follows, csnd,IQ−A = 7.7 µs (cf. Fig. 5.11 (a)).

HOQ–A Must not appear.

SQ–A Send into a server queue with DIP enabled consists of both, adding a message to a
queue (similar to case IQ–A) and adapting the deadline of the task currently active.
Maximum number of messages Nk already waiting in a server queue is at most the
number of different event types sent to this queue. For example, Nk = 3 for the
IRES server queue. But deadline inheritance and thus the worst case regarding the
execution time will only occur, if the currently arriving signal transports the shortest
deadline, i.e. place of insertion is first place in message queue (c′ = csnd,IQ−A =
7.7 µs). Coding of DIP, the second part, is analogous to case “Send with receiver
readied” (SQ–B). Thus, an overall upper bound calculates to csnd,SQ−A = 31.7 µs.

*Q–C (IQ–C, HOQ–C, SQ–C) Receive and caller blocks in a Server Model is built of ap-
pending to an empty thread queue. With Fig. 5.12, the processing time derives to
crcv,C = 34.1 µs for all queue types.

IQ–D
SQ–D Receive and message available initiates as well a search walk on ready and EDF

thread list. An upper bound for the processing time for NTReady ,max = NTD 6=∞,max = 9
can be found at csnd,D = 10.35 µs (Fig. 5.11 (b), csnd,D exceeds threshold at N > 8).

HOQ–D Must not occur.

7.1.4 System Environment and Timer Task

Tasks that result from code generation share the processor with Interrupt Service Routines
(ISRs) and additional functionality needed to ensure full SDL language support. In case
of the AOCS system the later mainly means system time, which is provided by a cyclic
Clock ISR and Timer Service, realized by the Timer Task. This pre–load F (I) has to be
taken into account in real–time analysis. Basis for the following considerations are either
the above estimations or run–times measurements as given by the timing test suite on a
M68020 [OAR96].

RTEMS Clock Tick ISR increments RTEMS internal time and is additionally responsi-
ble for MEDF deadline surveillance (cf. App. B.3). Since SDL Timer services rely directly
on wake–up calls to the Timer Task within a RTEMS integration, Clock Tick resolution is
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Figure 7.4: a) AOCS Interrupt Load and b) Busy Period at Interval 0

set to a cycle time zCl = 10 ms, leading to an event stream ESClock−ISR =
{(

10
0

)}
. Execution

time for Clock isr according to [OAR96] is cClock−ISR = 20 µs.

Context switch times are included in EDF event send and EDF event receive mea-
surements. RTEMS interrupt entry and exit overhead on M68020 is specified with
9 µs + 8 µs = 17 µs. Incoming Gyro Data, Telecommand functions, and Telemetry status
each initiate their own ISR. In the former case, an ISR consists of an EDF event create
and a subsequent EDF event send to an input queue. Both operations together with ISR
overhead consume processing time of cISR = 309 µs. Telemetry ISR only triggers soft
real–time tasks. Thus, no deadline management and with this no event creation is needed.
ISR processing time calculates to cISR,Tm = 257 µs.

All of Control Law, DSS respectively Calibrate Gyro, and IDP activity threads are
released with the receival of a timeout signal. Execution times of set(Timer) operations are
included in state transition times (cf. Fig. 4.4). In contrast to this, Timer Task processing
on a timeout additionally has to be taken into account as extra time to F (I). On a timeout
the Timer Task initiates an EDF event send before it blocks on the attempt to receive a
new request on its empty message queue. Therefore its processing time for this case is
assumed to be cTT = 460 µs.

With the event streams as specified in Table 7.1 the Interrupt Load F (I) can be derived.
The result is shown in Fig. 7.4 (a), intervals I as well as execution times are normalized
with cISR. Since the overall load F (I) is very small compared to the available computation
time per interval (function f(I) = I), y–axis scale is heavily enlarged.

A detailed view of interval I = [0, 80] can be seen in Fig. 7.4 (b). It displays the busy
period that arises from a critical instant including all event types and the clock tick ISR.
Busy period length calculates to cbusy−period = 2275 µs = 7.4 · cISR.
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Figure 7.5: a) CWS Task Precedence System and b) Real–Time Analysis Model

7.1.5 Schedulability Analysis

First step for the final real–time analysis is the generation of the Task Precedence Graph
(cf. Sec. 6.2.1). A full view of the AOCS TPG with all triggering events included can be
seen in Fig. A.16. For clarity reasons, only the Task Precedence System of the “Critical
Wheel Speed Event” is shown here (Fig. 7.5 (a)).

The structure of this TPS is dominated by the state choice in process “MomDump”
that will be resolved when evaluating the worst case execution times of transitions and
send/receive operations as annotated7 to each node (cf. Sec. 6.2.2). The resulting worst

7Multiple annotations per node consist of EDF event receive WCETs (crcv = 34.1 µs, cf. Tab. 7.3),
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TPS Server Processes in TPS dTPS cTPS

Abbr. Tc Gy CWS CL IDP CG [ms] [ms]
dDIP 190 100 100 200 100 1000

Mom.
Telecommands Tc X

Dump
190 0.34

Gyro Raw Data Gy X (IRES) 100 5.73

Crit. Wheel Speed CWS X 100 48.62

IRES, Rea.
Control Law CL

Gyro Wheel
X IRES 200 105.19

IRES Data Proc. IDP (IRES) X 100 8.55

Calibrate Gyro CG X 1000 13.57

Server Process TPS dTPS dDIP cServer sServer

[ms] [ms] [ms] [ms]

Mom.Dump Tc 190 100 0.34 0.00
IRES CL 200 100 0.58 1.56
Gyro CL 200 100 1.96 1.56
Rea.Wheels CL 200 100 46.67 58.51

Table 7.4: Processing Times of AOCS Task Precedence Systems and Server Processes

case graph is shown Fig. 7.5 (b). Processes “MomDump” and “ReaWheels” are servers and
therefore additionally connected to MutEx nodes that are shared with server processes in
concurrent Task Precedence Systems (clipped and not shown here). The complete Real–
Time Analysis Model of the AOCS can be seen in App. A.1, Fig. A.17. The TPS for
Digital Sun Sensor data processing is suppressed in the overall RTAM, since computation
of the mutual mode “Calibrate Gyro” poses the more stringent computation requests to
the worst case.

Adding up all timing annotations in each TPS, the total worst case processing time
cTPS for each event can be derived (rightmost column in Tab. 7.4(a)). Together with
timing constraints as summarized in Tab. 7.1 and the assumption all processes to run
independently (no blocking on servers), the overall computation function C(I) can be
calculated.

As can be seen in Fig. 7.6, at interval I = 647 ·cISR = 200 ms, laxity L(I) = I−F (I)−
C(I) = 40.3 · cISR = 12.5 ms reaches its global minimum.8

and EDF event send or EDF event delete WCETs (e.g. cdl = 43 µs), and one or more (for compound
transitions) additional state transition times.

8This is true for all intervals I ∈ R+ : C(I) > 0. For intervals within busy period, laxity is zero per
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Next step during schedulability analysis is to take into account possible mutual blocking
of state transitions within server processes by reducing the deadline of the blocking part of
the server process. The matrix in Table 7.4(a) gives a survey of servers shared by different
TPS (cf. Fig. A.17), whereas table entries occur only, when a server process may cause
a blocking due to its longer deadline (E.g. process “MomDump” in TPS “Telecommand”
with deadline dTc = 200 ms may block state transitions released by events of type “Gyro
Raw Data” with deadline dGy = 100 ms. Process “IRES”may cause blocking in the “CL”
TPS, but is scheduled with unshortened deadlines for “IDP” and “Gy”. Due to equal
deadlines dGy = dIDP no blocking is possible.). Server process parameters are summarized
in Tab 7.4(b), cServer identifies the amount of computation to be scheduled with shortened
deadline, i.e. the blocking part of the server process.

With deadline reduction for servers as deduced above, the overall computation function
C(I)DIP can be derived. This time Fig. 7.6 shows a possible deadline violation for C(I)DIP

at interval I = 323 · cISR = 100 ms. This results in a negative laxity LDIP (I) = −50.1 ·
cISR = −15.5 ms.

For simplicity, no distinction between worst case and best case execution times has
been made in annotations to the AOCS SDL system model. To demonstrate the influence
of start times to decrease the necessary deadline reduction for servers in real–time analysis
(cf. Eq. 5.1), timing as given in the AOCS Task Precedence Graph (Fig. A.16) is used.
In applying the algorithm as described in Sec.6.2.3, earliest possible start times sServer of
AOCS servers (see Tab 7.4(b)) can be derived.

As can be seen in Fig. 7.6(b), computation requests C(I)DIP,s are relaxed in this way
that minimum laxity will occur again at interval I = 647 · cISR = 200 ms, i.e. L(I)DIP,s =
L(I). Particularly, processing load caused by the “ReaWheels” server is shifted to interval
I = dGy + cRW = 513 · cisr = 158 ms, thus all deadlines can be guaranteed.

Conclusion

This case study demonstrates the influence of message blocking at SDL server processes
on processing load and shows how, by considering server process start times, the processor
demand can be re–relaxed. On the other hand, deadline reduction caused by priority
inversion avoidance need not–necessarily lead to a tightening of processing requests. This
depends on the application, respectively the timing constraints involved. Considering an
AOCS with a Critical Wheel Speed Event deadline of e.g. dCWS = 200 ms, minimum laxity
L(I) will not change (see Fig. 7.7 (b)) when taking into account deadline inheritance. Worst
case occurs, when signals with deadlines of different magnitudes of order are synchronized
at a server that consists of “long” state transitions in the blocking part.

In this example, communication structure, transition times of the application itself,
and their deadlines have been chosen to force a deadline violation. Relying on start times
as single means to ensure that all deadlines will hold would certainly be questionable in a

definition; L(I) = 0,∀I ∈ [0, IBP ].
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Figure 7.6: a) AOCS Overall Computation Function, b) Detailed View in Interval 0

real–world application, but could be used as a means to increase a requested safety margin.

With this AOCS SDL system model, control part compared to application part is
almost negligible. Transition times compared to run–time system execution times are in
magnitude of 1000, overall execution time spent in transitions is cApp = 171.2 ms, whereas
overall execution time spent in run–time system directives is cRTS = 10.9 ms. For this
reason, this case study analyzed only a pure server model implementation. Regarding
an Activity Thread Model implementation, the number of tasks implementing an activity
thread would be nearly equal to the number of overall processes, respectively to the number
of SDL servers.9

Assuming nearly equal execution times for semaphore obtain and release operations
(compared to EDF event send and EDF event receive directives) as needed in an ATM
implementation for SDL servers and substituting receives and sends from/to Hand–Over
Queues with function calls, the overall execution time spent in run–time system directives
would reduce at best to cRTS = 6.8 ms. Naturally, this improvement depends on application
type and modeling style. Influence of ISRs and supplementary functions is equal for SM
and ATM realizations.

More positive effect on schedulability analysis than an optimized implementation
promises the consideration of operation modes as already shown with “DSS” vs. “Calibrate–
Gyro”. In the example above, the crucial blocking in process “ReaWheels” can only occur,
when it must be assumed that “Critical Wheels Speed Events” have to wait due to process-
ing of “Control Law” events. This means, momentum dumping is allowed to be performed
concurrently with normal mode control.

To take into account these mutual exclusive operation modes, one would have to add
additional control structure to the AOCS system model, since this functionality is not

9There can be only one real activity thread identified in the AOCS, the “Control Law” loop.
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Figure 7.7: a) AOCS C(I) with dCWS = 200 ms, b) Detailed View in Interval 0

covered in the current SDL system. The achievable gain would be twofold. On the one
hand, processing times of only either CL–TPS or CWS–TPS would add to overall C(I)
calculations: On the other hand, the necessary deadline reduction for analysis of process
“ReaWheels” would cease to exist.

7.2 SDL Style Guidelines for Real–Time Systems

Regarding the experiences gained in the AOCS case study, the following design style guide-
lines for real–time systems based on SDL and MEDF scheduling can be derived.

7.2.1 General Rules

The identification of mutual exclusive operation modes seems to be of utmost importance
to confine the pessimism in schedulability analysis. Process actions belonging to different
modes should be placed in different state transitions (triggered by different signals or
originating in different states) or even placed in different SDL services (SDL-92). The
avoidance of state or modes variables is strictly recommended.

Signals in SDL should only be used to model the control structure of a system to restrict
the overhead imposed by MEDF scheduling. This means, SDL process granularity should
follow the “natural” concurrency that characterizes a system. In any event, SDL process
syntax is not adequate for modeling of algorithms.

Of minor importance is the avoidance of “dead code” in SDL transitions. Transitions
that are never executed can occur through the discrepancy between SDL semantics and
MEDF run–time system implementation (see Chap. 3). Since processing order of multiple
consecutive sends in a state transition is a–priori known with MEDF, and thus scheduling
order on receiver side is known too, order of receives in a process synchronizing several in-
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coming signals must cover only the original sender’s order (cp. process “Attitude”, Fig. A.7
in contrast to process “PrD”, Fig. 4.3). With this, resulting superfluous forks in TPG and
RTAM are avoided.

7.2.2 Minimizing Number of SDL Servers

Beneath system modes and MEDF scheduling, possible blocking caused by SDL servers
may lead to an undesirable intensification of processor demands to be planned. With this,
a substitution of SDL message exchange through reveal/view may be preferable, if data
consistency at time of variable readings can be assured (e.g. collecting of measurement
data in “Gyro” or “IRES” processes, Figures A.5 and A.6). An alternative may be to
combine server processes with equal timing constraints and merge them into one single
SDL process, thus giving up modularity for the benefit of efficiency.

7.2.3 Minimizing Length of Blocking Transitions

Comparable to the negative effect of uninterruptable regions to scheduling latency or the
general real–time design rule to minimize amount of computation within critical regions,
state transitions in server processes should be as “short” as possible, at least in the block-
ing part, i.e. the transition processed with a longer deadline. If possible, complex state
transitions should be subdivided. This can be carried to extremes by out–sourcing of com-
putation intensive state transition parts to consecutive SDL processes. The later is only
possible if transitions do not share common variables or access a common resource.
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Chapter 8

Conclusion and Future Work

This thesis introduced message based earliest deadline first scheduling (MEDF) as a model
of computation for hard real–time SDL systems. With MEDF, each task is assumed to
have its own message queue. A task inherits the deadline transported by an incoming
message and bequeathes this deadline to its outgoing messages. To assure predictability
when dispatching tasks according to message deadlines, incoming messages carrying a
new deadline have to be inserted into this queue in a deadline sorted order. Priority
inversion avoidance mechanisms must be integrated into send and receive directives to avoid
unbounded blocking times for high priority messages caused by server tasks responding to
multiple requests with unequal urgencies. For this, deadline inheritance (DIP) and deadline
ceiling (DCP) at message queues were proposed. These protocols raise the dynamic priority
of the receiving task according to the deadline of the succeeding message that is stored in
the incoming queue (DIP), respectively is expected to arrive (DCP).

Two implementation alternatives to realize the run–time system for MEDF scheduling
were suggested. The first strategy allows tasks to be blocked either by receive–operations
on empty queues or by P–operations on seized semaphores, i.e. permits the use of additional
semaphores beneath asynchronous message exchange to synchronize concurrent tasks. This
fact makes a differentiation of ready and deadline surveillance list (EDF list) within the
MEDF scheduler necessary and leads to concatenated list search walks to derive correct
processing order. The second alternative prohibits the usage of semaphores, thus relying
on server tasks only to monitor access to shared resources. This allows to unify ready and
EDF list, thus leading to simpler list operations (mostly list appends) and a low overhead
implementation of the MEDF scheduler. Common to both run–time system layouts is the
provision of EDF event objects. They represent an end–to–end deadline interval that is
transported by messages and has to be inherited by the receiving task. It could be shown
that MEDF scheduling effort equals EDF scheduling. In effect, MEDF can be seen as
an event scheduling (in contrast to EDF task scheduling), i.e. processing order of tasks is
predetermined on the occurrence of a stimulating event.1

Since it could be demonstrated that MEDF scheduling implicates an earliest deadline

1In case of burst events, a re–scheduling of tasks will be initiated when the succeeding event will be
processed.

105
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first processing sequence for all tasks, Gresser’s schedulability analysis methodology for
event–driven real–time systems [Gre93a] can be applied to prove the timeliness of a MEDF
system. Improvements to his verification algorithms were made in dealing with resource
control tasks (servers). The necessary deadline reduction to schedule server tasks which
results in a more straining processor demand could be confined. This means, necessary
over–dimension of processing power to cope with load peaks in worst case situations could
be reduced.

Construction of a software architecture that does not hide any pitfalls (e.g. synchro-
nization deadlocks or communication bottlenecks) and is efficient at the same time is not
an easy task. The idea of this thesis is to automatically derive a real–time system’s im-
plementation and its timing analysis model on the basis of its SDL system specification
by one strike. For that purpose, SDL’s semantics had to be pinpointed to the predictable
MEDF model of computation, restricting the usage of few language features (e.g. signal
save is prohibited), but enhancing the applicability of its timer concept.2

Two code generation strategies were evaluated to translate a SDL model to a final
task system. The so called “Server Model” preserves MEDF by a one–to–one mapping of
SDL processes to MEDF tasks, relying on signal exchange as a single means for inter–task
synchronization. To minimize communication overhead, the “Activity Thread Model” re-
places inter–process messages by procedure calls. Thus, processing sequence of consecutive
state transitions is scheduled at compile time. Monitoring of shared resources, achieved by
a single (server) task with the Server Model, now has to be fulfilled in a classical way by
semaphores. In the Activity Thread Model, MEDF queues are only needed to cope with
bursts of triggering events. The later strategy is superior to the Server Model especially in
implementations of SDL systems that incorporate only few server processes and in system
models with an application part rather small compared to its control part (“short state
transitions”).

On the other hand, the system specification extended with timing characteristics of
embedding as well as embedded system can now be mapped to a task precedence graph
(TPG) that mirrors the structural inter–relationships between all components of the final
implementation. State transition processing times as well as worst case execution times of
MEDF directives (annotated to the TPG nodes) can be evaluated to derive a worst case
task graph, the so called real–time analysis model (RTAM). It incorporates all necessary
timing properties to perform the final schedulability analysis step, and serves as information
source to reveal design flaws and optimization potential. On the basis of the RTAM, earliest
possible start times of server tasks can be calculated and included to confine the necessary
deadline reduction when proving the schedulability of the whole task system.

Upper bound estimation for execution times of MEDF directives has to be performed
manually in the moment. Their dimension depend on the chosen code generation
strategy (number of resulting tasks, realization of MEDF scheduler) and the timing
characteristics of the stimulating events. Although this step could be automated as well,

2Timer signals transport as well a signal deadline. Hence, timer signal consumption is subject to
deadline surveillance and is performed according to the timer’s urgency.



107

this modus operandi seems to be justifiable, since the interface to environment changes
more seldom than the SDL model itself and timing requirements (events and deadlines)
are predetermined by the application to be controlled and thus will not change during the
development. The same information as used to calculate these execution time estimates
is needed to configure the real–time operation system. This means, the specification of
objects (tasks, queues, semaphores, EDF events) involved could be automatically derived
from the system specification. Furthermore, the interface to the environment consisting
of interrupt service routines and external tasks could be generated without additional effort.

Scheduling with message deadlines was introduced in this thesis as a platform for devel-
opment of hard real–time SDL systems targeting single processor hardware. Future work
emerges when restrictions to this type of application are abolished:

• Mixed soft and hard real–time applications. Application parts with soft real–time
requirements are assumed to run with fixed priorities on levels below the MEDF
priority level. Although interference of the soft real–time part is included in the
analysis algorithm for the hard real–time part, a response time estimation for the
soft real-time tasks has to be developed.

In the moment, the boundary between soft and hard real–time has to be drawn on
process level, since priorities can only be assigned to whole SDL processes. The
possibility to mix hard and soft real–time requirements within a single process, i.e.
a boundary on state transition level (transition priorities), would be desirable.

• Tightly coupled multi–processor based target systems. At first sight, MEDF scheduling
with message deadlines spanning processing unit boundaries seems to be an intuitive
way to synchronize multi–processor systems. Taking a closer look, the following
problems arise:

– How can resulting event streams at processing unit boundaries be derived in
spite of jitter due to dynamic processing order on the predecessor processing
unit and varying execution times of tasks?

– How much laxity has been used up until the message reaches its new processing
unit, i.e. how long is the remaining deadline? Or alternatively, what is an
optimal algorithm for pre–splitting of deadlines and their assignment to the
single processing units?3

– Without pre–splitting of deadlines, the EDF analysis methodology as introduced
in this work has to be enhanced for multi–processor systems.

Even if deadlines spanning processing unit boundaries are avoided, predictable means
to synchronize between application parts on different processors have to be developed
(e.g. global semaphores or spin locks on shared memory to divide server processes in
ATM realizations).

3Deadline splitting would artificially increase the urgency of the message.
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• Distributed systems. The former facts are true for tightly coupled multi–processor
systems but apply all the more for distributed systems. Furthermore, a bus arbitra-
tion protocol for communication between processing units has to be found that suits
MEDF scheduling. Time division media access (TDMA) strategies (e.g. Time Trig-
gered Protocol) or bus arbitration according to fixed priorities with non–preemptive
messages (e.g. CAN bus like arbitration) would disrupt the MEDF philosophy.

At the latest since development complexity of embedded systems can not be handled
anymore by one single programmer, control software development has been recognized as
an engineering discipline. Therefore, software engineering methodologies based on stan-
dardized specification languages and supported by CASE tools have been developed. As-
tonishingly, ad–hoc attempts in real–time system design still prevail in industry. This is
due to the fact that capturing non–functional requirements in a system specification is
poorly supported until now and analysis methodologies to verify timing properties are not
integrated into the design process for real–time applications. The methodology framework
as suggested in this thesis shows how a SDL based design methodology can be enhanced by
incorporating a timeliness proof as an automated step into the design process for hard real–
time systems, allowing to generate a quality product that will meet not only all functional
but as well all timing requirements.
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Appendix A

Application Examples

A.1 Olympus Attitude and Orbital Control System

This appendix contains the complete AOCS SDL system model. Syntax of annotations
needed to specify non–functional requirements within the SDL model is shown in Table A.1.
All extensions follow either the keyword #RZA or keyword #PRIO and have to be placed
within SDL comments.

Timing Constraints
#RZA ES{ [m] (z a0) [, [m] (z ai)]∗ } event stream ES
#RZA ED k l ed event dependency edkl

#RZA Deadline d deadline d

Extensions to the Functional Model
#RZA [Max]CalculationTime c calculation time cmax

#RZA MinCalculationTime c calculation time cmin

#RZA [Max]LoopBound l loop limit lmax

#RZA MinLoopBound l loop limit lmin

#PRIO p process priority p

Table A.1: Annotations to the SDL Model

Fig. A.16 and Fig. A.17 present the AOCS task precedence graph and its appropriate
analysis model.
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RT-SDL System Structure

Gyro
Attitude
IRES
DSS
CalibGyro

Sensors

Control
ControlLaw

ReaWheels
MomDump
Thrusters

Actuators

AOCSController
OlympusAOCSsmall

Figure A.1: Olympus AOCS System Structure
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System OlympusAOCSsmall 1(1)

SIGNAL
GyroRawData,
ThrusterCommand,
WheelCommand,
SetDumpMode;

AOCSController
EnACCh

GyroRawData

ACEnCh

ThrusterCommand,
WheelCommand

SetDumpMode

Figure A.2: Olympus AOCS SDL System
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Block AOCSController 1(1)

SIGNAL
ReadAttitude,
Attitude,
DemandTorque;

Sensors ControlLaw

Actuators

EnACCh
EnSeCh

GyroRawData

SeCLCh

AttitudeReadAttitude

CLAcCh

DemandTorque

ActEnCh

ThrusterCommand,
WheelCommand

SetDumpMode

ACEnCh

Figure A.3: Block AOCSController
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Block Sensors 1(1)
SIGNAL
IRESAnglesGyro,
ReadIRESAnglesGyro,
IRESAnglesAttitude,
ReadIRESAnglesAttitude,
ReadGyroYawAngle,
GyroYawAngle,
GyroCorrectedData,
SunPresence,
SunAbsence,
DSSAngle,
ReadDSSAngle;

Gyro

Attitude

IRES

DSS CalibGyro

SeCLCh

EnSeCh
EnGySR

GyroRawData

GyAtSR

GyroYawAngle

ReadGyroYawAngle

AtCLSR

Attitude

ReadAttitude

IRAtSR

IRESAnglesAttitude

ReadIRESAnglesAttitude

IRGySR

IRESAnglesGyroReadIRESAnglesGyro

DSCGSR

SunPresence,
SunAbsence,
DSSAngle

ReadDSSAngle

GyCGSR

GyroCorrectedData

Figure A.4: Block Sensors
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Process Gyro 
/*#PRIO 2*/
/*EDF receive from SQ */
/*#RZA CalculationTime 0.000341*/

1(1)

GyroWaitCommand

ReadGyroYawAngle

’Gyro State’
/*#RZA CalculationTime 0.00138*/

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

GyroYawAngle

GyroWaitCommand

GyroRawData

’EDF Send to SQ’
/*#RZA CalculationTime 0.000317*/

ReadIRESAnglesGyro

WaitIRESAngles Read (!) IRES Angles
-> reveal/view

IRESAnglesGyro

’Integration’
/*#RZA CalculationTime 0.00408*/

GyroCorrectedData

’Gyro State’
/*#RZA CalculationTime 0.00138*/

Figure A.5: Process Gyro
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Process IRES 
/*#PRIO 2*/
/*EDF receive from SQ */
/*#RZA CalculationTime 0.000341*/

1(1)

Timer IRESCyclicTimer := 100;

set(IRESCyclicTimer)

IRESWaitCommand

ReadIRESAnglesGyro

’EDF send to SQ’
/*#RZA CalculationTime 0.000317*/

IRESAnglesGyro

-

ReadIRESAnglesAttitude

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

IRESAnglesAttitude

IRESCyclicTimer

set(IRESCyclicTimer)

’Process IRES Data’
/*#RZA CalculationTime 0.00821*/

IRES roll and
IRES pitch 
second order filter

Figure A.6: Process IRES
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Process Attitude
/*#PRIO 2*/
/* EDF receive from HOQ */
/*#RZA CalculationTime 0.000341*/

1(1)

AttitudeWaitCommand

ReadAttitude

’2 EDF send to SQ’
/*#RZA CalculationTime 0.000634*/

ReadIRESAnglesAttitude

ReadGyroYawAngle

WaitIRESAngles

WaitIRESAngles

IRESAnglesAttitude

’do nothing’
/*#RZA CalculationTime 0.0000*/

WaitGyroYawAngle

WaitGyroYawAngle

GyroYawAngle

’EDF send to HOQ (Control)’
/*#RZA CalculationTime 0.000240*/

Attitude

AttitudeWaitCommand

Figure A.7: Process Attitude
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Process DSS 
/*#PRIO 2*/
/*EDF reveive from HOQ */
/*#RZA CalculationTime 0.000341*/

1(1)

Timer DSSCyclicTimer := 100;
Dcl SunIsPresent Boolean := False;

set (DSSCyclicTimer)

WaitDSSTimer

DSSCyclicTimer

set (DSSCyclicTimer)

’’
/*#RZA CalculationTime 0.00516*/

SunIsPresent

’’
/*#RZA CalculationTime 0.000*/

-

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

reset (DSSCyclicTimer)

SunPresence

WaitReadDSSAngle

WaitReadDSSAngle

ReadDSSAngle

’’
/*#RZA CalculationTime 0.00516*/

SunIsPresent

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

DSSAngle

-

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

set (DSSCyclicTimer)

SunAbsence

WaitDSSTimer

False

True

True

False

Figure A.8: Process DSS
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Process CalibGyro 
/*#PRIO 2*/
/*EDF receive rom HOQ */
/*#RZA CalculationTime 0.000341*/

1(1)

Timer CGTimer := 10;

CGWaitSunPresence

SunPresence

set(CGTimer)

’’
/*#RZA CalculationTime 0.000*/

WaitCGTimer

CGTimer

set(CGTimer)

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

ReadDSSAngle

WaitDSSAngle

WaitDSSAngle

DSSAngle

’’
/*#RZA CalculationTime 0.00691*/

WaitCGTimer

SunAbsence

reset(CGTimer)

’EDF send to SQ’
/*#RZA CalculationTime 0.000317*/

GyroCorrectedData

CGWaitSunPresence

Figure A.9: Process CalibrateGyro
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Block ControlLaw 1(1)

Control
SeCLCh CLAcCh

SeCoSR

ReadAttitude Attitude

CoAcSR

DemandTorque

Figure A.10: Block ControlLaw
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Process Control
/*#PRIO 2*/
/*EDF receive from HOQ */
/*#RZA CalculationTime 0.000341*/

1(1)

Timer CLCyclicTimer := 100;

set(CLCyclicTimer)

CLWaitCommand

CLCyclicTimer

set(CLCyclicTimer)

’EDF send to HOQ’
/*#RZA CalculationTime 0.000240*/

ReadAttitude

WaitAttitude

WaitAttitude

Attitude

’’
/*#RZA CalculationTime 0.05284*/

Control Law:
roll, pitch, yaw second order filter,
roll, yae first order filter

’EDF send to SQ’
/*#RZA CalculationTime 0.000317*/

DemandTorque

CLWaitCommand

Figure A.11: Process Control
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Block Actuators 1(1)

SIGNAL
FeedForward,
CriticalWheelSpeed,
ThrusterDemand;

ReaWheels

MomDump

Thrusters

ActEnCh

CLAcChClRWSR

DemandTorque

RWEnSR
WheelCommand

ActEnCh
EnMDSR

SetDumpMode

RWMDSR

FeedForward

CriticalWheelSpeed

MDThSR

ThrusterDemand

ThEnSR

ThrusterCommand

ActEnCh

Figure A.12: Block Actuators
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Process MomDump
/*#PRIO 2*/
/*EDF receive from SQ*/
/*#RZA CalculationTime 0.000341*/

1(1)

NormalDumpWaitCommand

SetDumpMode

’’
/*#RZA CalculationTime 0.000*/

ZeroDumpWaitCommand

CriticalWheelSpeed

’’
/*#RZA CalculationTime 0.0102*/

’EDF send to SQ + EDF send to HOQ’
/*#RZA CalculationTime 0.000557*/

FeedForward

ThrusterDemand

-

ZeroDumpWaitCommand

SetDumpMode

’’
/*#RZA CalculationTime 0.000*/

NormalDumpWaitCommand

CriticalWheelSpeed

’’
/*#RZA CalculationTime 0.0192*/

’EDF send to SQ + EDF send to HOQ’
/*#RZA CalculationTime 0.000557*/

FeedForward

ThrusterDemand

-

Figure A.13: Process MomentumDump
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Process ReaWheels
/*#PRIO 2*/
/*EDF receive from SQ*/
/*#RZA CalculationTime 0.000341*/

1(1)

Timer CriticalWheelSpeedEvent:= 0;
Dcl RWSpeedAboveThreshold Boolean := False;

RWWaitCommand

DemandTorque

’ProcessWheelDemand’
/*#RZA CalculationTime 0.0441*/

RWSpeedAboveThreshold

’EDF event create’
/*#RZA CalculationTime 0.000052*/

set(CriticalWheelSpeedEvent)

CriticalWheelSpeedReached

CriticalWheelSpeedEvent

’EDF send to SQ’
/*#RZA CalculationTime 0.000317*/

CriticalWheelSpeed

RWWaitCommand

’WheelCommand’
/*#RZA CalculationTime 0.00219*/

’EDF event delete’
/*#RZA CalculationTime 0.000043*/

WheelCommand

-

FeedForward

’ProcessFFDemand’
/*#RZA CalculationTime 0.0220*/

’WheelCommand’
/*#RZA CalculationTime 0.00219*/

’EDF event delete’
/*#RZA CalculationTime 0.000043*/

WheelCommand

True

False

Figure A.14: Process ReactionWheels
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Process Thrusters
/*#PRIO 2*/
/*EDF receive from HOQ */ 
/*#RZA CalculationTime 0.000341*/

1(1)

ThrusterWaitCommand

ThrusterDemand

’Thruster Command’
/*#RZA CalculationTime 0.00291*/

’EDF event delete’
/*#RZA CalculationTime 0.000043*/

ThrusterCommand

-

Figure A.15: Process Thrusters
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Figure A.16: Olympus AOCS Task Precedence Graph
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Figure A.17: Olympus AOCS Real–Time Analysis Model
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Model

Network

Code
Generator

.ifc
.h .c

Macros

SystemSDL

gcc

.exe

RTEMS

external
task

ISRs

hand coded Libraries

hand coded Libraries

Application

Task

Figure A.18: SDT C-Advanced System Build Process

A.2 Code Generation with MEDF Integration

This section demonstrates how to incorporate MEDF scheduling into a tight integration
with SDT’s C–Advanced code generator (Telelogic).

A.2.1 SDT’s Code Generation

SDT’s different code generation priciples have been evaluated in detail in Sec. 4.2.1. As
can be seen in Figure 4.2, tight integration maps one SDL process to one RTOS task and
one additional RTOS message queue. Scheduling of SDL processes, respectively RTOS
tasks is managed by the RTOS kernel (in contrast to the light integration model) [Sta97].
SDL signal exchange is replaced by RTOS send and receive directives. To connect to the
SDL system environment, hand coded interrupt service routines have to translate external
events to messages, which will be sent into the generated task system and a hand coded
external task translates SDL signals to the system environment to output functions.

Generated tasks together with ISRs and the external task are linked to the final appli-
cation (Fig. A.18). A likewise synthesized interface file (.ifc) that contains types, contents
and names of signals from and to the environment assures consistency at modul bound-
aries. RTOS primitives, responsible for SDL process and signal management, are hidden
with multi level C–macros, allowing an easy porting to other real–time operating systems.
Telelogic provides an integration for e.g. VxWorks, PSOS and OSE. RTEMS macros were
derived from the very similar VxWorks package. RTEMS itself is linked in form of a library
to the application.

User directives in a SDL specification allow the application designer to add implemen-
taion details to the system model.
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#PRIO This keyword will be mapped to C–macros (mainly RTOSSDL STATIC CREATE) that
influence the priority and modes of a task and the queue modes during their creation.

#CODE Code following this directive in SDL state transitions, signal or process declarations
will be included unchanged in the generated C–code.

A.2.2 MEDF Scheduling Application Interface in RTEMS

Instead of attaching a deadline as an absolute point of time to a SDL signal, a so called EDF
event object is transported by the underlying RTEMS message. Each unique EDF event
represents a relative deadline starting with the point in time of the EDF event’s creation.
Sending a deadline message, the receiving task will adopt the transported deadline, respec-
tively the deadline of the transported EDF event and will be scheduled accordingly, i.e.
will be inserted into the earliest deadline first (EDF) sorted RTEMS ready list. RTEMS
directives, object modes and attributes provided by the different RTEMS managers are
summarized in Table A.2.

EDF task manager
RTEMS EDF (task mode) enforces EDF scheduling
set deadline( tid, deadline ) sets deadline of a task

MEDF event object manager
edf event create( name, deadline, &eid ) creates an event and sets its deadline

interval
edf event delete( eid ) deletes an event
edf event ident( name, &eid ) returns object id of an event
edf event get deadline( eid, &deadline ) returns remaining deadline of an

event

MEDF message queue manager
RTEMS EDF (queue mode) enforces MEDF scheduling
RTEMS INHERIT DEADLINE (queue attribut) enables deadline inheritance
send edf event( qid, eid, ... ) attach event to message and send it

to queue
receive edf event( qid, &eid, ... ) receive message and adopt deadline

from event

Table A.2: MEDF directives, object modes and attributes

RTEMS administrates 256 different priority levels. For each priority level a single ready
list is kept up to date. Since the EDF scheduling is integrated into RTEMS by modifying
the sort order of one single ready list of a dedicated priority level, it is up to the user to
choose an appropriate priority for the tasks with EDF mode (obviously the highest priority
in normal mode operation).
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System MEDFIntegrationExample 1(1)

/*#CODE
#TYPE
#include "medfexample.ifc"
#include "system.h"
*/

SIGNAL m11,m21,m31,m14,m24,m34;

ISRs

MEDFExample
I1Ch

m11

O1Ch

m14

I2Ch

m21

O2Ch

m24

I3Ch

m31

O3Ch

m34

Figure A.19: Application Example: SDL System

A.2.3 Example System

This very simple application example consists of a SDL process network with 3 prece-
dence systems, i.e. there exist 3 stimulating external events. Event recognition is done
by interrupt service routines (ISRs). For simplicity and demonstration reasons the ISRs
are modelled in SDL too (Block ISRs in Fig. A.19 and Fig. A.20). SDL process ISR1 in
Figure A.21 shows the deadline specification in a transition including a #CODE directive
with the statement XSIGNALDEADLINE(1000). The XSIGNALDEADLINE command is a new
C–macro, defined in the RTEMS integration macro package. It will be replaced with a
rtems edf event create directive.

#define XSIGNALDEADLINE( SIGDL ) \

{ \

rtems_status_code status; \

status = rtems_edf_event_create( \

++rtems_name_count, \

SIGDL, \

&yVarP->SignalEvent); \

XOS_ERROR("CREATE", \

"rtems_edf_event_create", \

status); \

}
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Block ISRs 1(1)

ISR1

ISR2

ISR3

I1R

m11
I1Ch

I2R

m21
I2Ch

I3R

m31
I3Ch

Figure A.20: Application Example: ISR Block

SIGDL specifies the new event’s deadline in ticks, respectively so called fastticks [Wro97],
rtems name count is used instead of a real name. The process variable SignalEvent

holds the unique RTEMS object id for the EDF event and will be passed to the
rtems message queue send edf event within the SDL output m11 command in the same
SDL transition. Therefore the deadline transportation within the SDL specification is hid-
den from the user.

The second macro in this transition, XSIGNALPERIOD as well as the endless loop struc-
ture would not appear in a real ISR implementation and is only used for the RTEMS unix
simulator realization.

#define XSIGNALPERIOD( SIGPERIOD ) \

{ \

rtems_status_code status; \

status = rtems_task_wake_after( \

SIGPERIOD ); \

XOS_ERROR("PERIOD", \

"rtems_task_wake_after", \

status); \

}

The main application is encapsulated within the MEDFExample block (cf. Fig. A.22).
It shows a network of 8 SDL processes, all except process S with a state machine structure
identical with process 11 in Figure A.23. A state transition is triggered with a SDL receive
command (signal m11). After some action (empty SDL task symbol in this simple example)
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/*#PRIO XENVPRIO,

   RTEMS_DEFAULT_MODES,

   RTEMS_DEFAULT_ATTRIBUTES*/

Process ISR1

’’
/*#CODE

XSIGNALPERIOD(TICKS_PER_SECOND)
*/
’’

/*#CODE
XSIGNALDEADLINE(1000)

*/

m11

Figure A.21: Application Example: Interrupt Service Routine

a new SDL signal (signal m12 in process 11) is forwarded together with the attached EDF
event. As mentioned above, receiving, passing and sending the EDF event is hidden from
the user and has not to be modelled.

SDL process S (Fig. A.24) acts like a server process, i.e. it responses on serveral different
requests (signals m12 and m22). To avoid priority inversion with this message queue, the
attribut RTEMS INHERIT DEADLINE is enabled during the message queue’s creation. For
this purpose, one can use the #PRIO directive in the process’ name specification field. The
(modified) syntax of this directive is defined as:

#PRIO( task priority,

task creation modes,

queue creation attributes )

In this example, two different task priorities are used: One level for all processes with
EDF message scheduling (process 11 to process 33), selected with the macro XEDFPRIO and
one priority level for the external task and the pseudo ISRs (ISR tasks in the UNIX sim-
ulation, macro XENVPRIO). According to this, the EDF processes must be created with
RTEMS EDF mode enabled and for the queues the attribut RTEMS EDF EVENT has to be
switched on.

The hand coded external task finally receives all messages sent to the environment
(m14, m24 and m34) and deletes the transported EDF events at the end of each task
precedence system (external task is not shown in Fig. A.25).
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Pr21
m21

ChBC

m22

ChIB
Pr23

ChCE

m23

ChEO
m24

Pr11
m11 ChAC

m12ChIA
Pr13

ChCA

m13

ChDO

m14

PrS

Pr31 Pr32 Pr33
m31

ChFG

m32

ChGH

m33

ChHO

m34

ChIF

Block MEDFExample 1(1)

SIGNAL m12, m22, m13, m23,m32,m33;

Figure A.22: Application Example: SDL Process Network

Process Pr11

/*#PRIO XEDFPRIO,

  RTEMS_DEFAULT_MODES|RTEMS_EDF,

  RTEMS_EDF_EVENT*/

AX

m11

’’

m12

AY

AY

m11

’’

m12

AX

Figure A.23: Application Example: Process 11
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Process PrS

/*#PRIO XEDFPRIO,

   RTEMS_DEFAULT_MODES|RTEMS_EDF,

   RTEMS_EDF_EVENT|RTEMS_INHERIT_DEADLINE*/

SX

m12

’’

m13

SX

m22

’’

m23

Figure A.24: Application Example: Server Process S
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Figure A.25: Generated Task System
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SDL System with MEDF

ISR1
ISR2
ISR3

ISRs

Pr11
Pr21
Pr31
PrS
Pr32
Pr13
Pr23
Pr33

MEDFExample

MEDFIntegrationExample

Figure A.26: Application Example: Organizer View



Appendix B

MEDF Implementation Details

B.1 Delta Deadline Management

To keep track of time (cf. Fig. B.1), with a delta list only one timer (Fasttick Timer FT )
is needed for surveillance of the most critical deadline df on the list. Adding a thread to
the EDF thread list, one has to distinguish two cases:

1. For a new later deadline Dl = al+dl and Dl ≥ Df , i.e. dl+FT ≥ df , FT = al−af (at
af : FT = 0): ∆dl = Dl−Df = FT +dl−df . More generally, while walking from the
first item ∆d0 = df to the end of the EDF thread list, deltas are subtracted from ∆dl

as long as they are smaller. As soon as the new deadline value gets smaller than the
current delta, the correct insertion point has been found. ∆dl = FT+dl−

∑
i ∆di until

∆dl < ∆di+1. After insertion the calculated new delta value needs to be subtracted
from the next thread’s delta deadline to keep delta continuity: ∆d′i+1 = ∆di+1−∆dl.

2. For a new earlier deadline De = ae+de and De < Df , i.e. de+FT < df , FT = ae−af :
∆de = Df −De = df −(FT +de). The new first entry becomes d′f = de, the corrected
second ∆d′1 = ∆de. Finally, the deadline timer has to be restarted FT = 0.
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Figure B.1: Deadline Management
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EDF

∆ d A ∆ d B ∆ d C ∆ d F

A x B x xC xF

xD xExFB x

Insertion position

Ready

Thread to insert

Figure B.2: Inserting into the Ready List

When a thread completes or its EDF mode has been cleared to turn off EDF scheduling,
it has to be removed from the EDF thread list. If this thread is not the first thread on
the EDF thread list, only its deadline value will have to be added to the delta deadline of
the immediately following thread on the list. If the first thread is removed, the deadline
timer interrupt will be cancelled during removal. The timer itself will keep on running,
but additionally has to be adjusted (cf. Sec. B.3) to the new first thread on the list.

B.2 EDF List Insertion

This section details the list insertion algorithm with EDF sort order, in this example
insertion into EDF ready list, based on the EDF Thread List.

A new EDF thread to insert is appended to all threads on the EDF ready list with less
or equal deadlines. New non–EDF threads, with infinite deadlines, are simply appended
at the end of the list. Since the EDF thread list is already sorted by deadline order, the
search algorithm for the ready list insertion point can rely on this order (cf. Fig. B.3). The
EDF thread list may contain more threads than the EDF ready list, as some EDF threads
may currently be blocked. On the other hand, the EDF ready list may contain more than
EDF threads because some of the threads may be normal non–EDF threads (e.g. threads D
and E in Fig. B.2).

Assuming that thread C in Figure B.2 is no longer blocked and has to be inserted into
the ready list, the insertion point of C can be found behind all EDF threads on the ready
list, which lie before C on the EDF thread list. The algorithm uses a parallel search in
both the ready and the EDF thread list. Starting with the first thread on the ready list
(B), the search seeks this thread on the EDF thread list. Remembering this look–up EDF
thread (B), the search advances to the next thread on the ready list (F). If the thread to
insert (C) is detected before the thread under investigation (F in the example) on the EDF
thread list, the correct insertion point is found before the current thread (F) on the ready
list. Exceptions are an empty ready list or if the search advances to a non–EDF thread on
the ready list. For the first case, the thread may be inserted directly, for the second case
it will be inserted before the non–EDF threads with infinite deadlines.
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Add_To_ThreadList_With_EDF( node insert_thread,
list thread_list, list EDF_list ) {

if ( list_is_empty( thread_list )
Append( thread_list, insert_thread ); return;

EDF_node = EDF_list->first;
thread_node = thread_list->first;

for ( entire thread_list ) {
if ( not is_EDF( thread_node ) ) break;

for ( EDF_list beginning with EDF_node ) {
if ( thread_node == insert_thread )
Insertion_position_found = True; break;

if ( thread_node == EDF_node )
EDF_node = EDF_node->next; break;

}

if ( Insertion_position_found ) break;
}

Insert( insert_thread before thread_node );
}

Figure B.3: Insertion with EDF List Algorithm

B.3 Fasttick Board Support

The RTEMS clock tick() function is called once per timer interrupt within the board
support package (BSP). “Tick” resolution is set up by the application’s designer by telling
RTEMS about how many ticks will occur in a second. Common periods are in the magni-
tude of 10 ms, which leads to 100 timer interrupts per second. As explained above, EDF
lists require together one single deadline timer to keep track of time. This deadline timer
will be loaded with the shortest deadline intervall, an expiration would indicate a deadline
violation. Using the clock tick, a deadline timer would at best have the same precision.
Higher resolutions of the clock tick would increase timer interrupt load significantly.

For this reason, an additional fasttick timer is introduced. For list management the
fasttick has to support the following operations: Beneath intervall setting and resetting, it
must provide on request the time used up of the set intervall (“deadline so far”) and must
allow an adjustment of the deadline currently set to a new deadline without stopping the
timer to achieve deadline continuity.

The clock device driver for the processing unit, a MIPS R4650 processor based Galileo–
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fasttick_callback()

inactive

Clock
Interrupt

Deadline
Interrupt

Deadline Int.
cancelled

Deadline
Violation

Fasttick

FT active FT active

FT active

C

clock_isr()/
mips_set_timer

clock_isr()/

T C

T D

adjust_interval

set_interval

clock_isr()

cancel_interruptcancel_interrupt

Figure B.4: Deadline Supervision with Clock and Fasttick Support (simplified)

4 Evaluation Board [Gal95, Gal96], uses the processor’s cycle counter and compare register
interrupt to generate the clock tick. For the fasttick an additional hardware timer within
the Galileo controller could have been used, but the interrupts from controller to proces-
sor are already occupied by the IPC layer of the multiprocessing environment. Alterna-
tively a cooperative tick/fasttick implementation was realized with a software statemachine
(Fig. B.4) on top of the processor’s cycle counter. Transitions between states can be trig-
gered either by the fasttick interface or by the clock isr(). In transitions to fasttick
timer active states, the current deadline intervall will be compared (decision C in Fig. B.4)
to the number of cycles to the next clock interrupt. If smaller, the next interrupt will be
an expiring deadline timer (transition TD), otherwise a clock interrupt will be expected
(transition TC).

An interrupt in state “FT active Deadline Interrupt” signals a deadline violation and
causes the clock isr() function to call the RTEMS fatal error manager. A connected
user extension may then take appropriate measures to react on this situation, e.g. switch
the system into a fail safe state.
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Monitor Task

SDL System
Symbol Table

Figure B.5: MEDF Simulation based on SDT Tool Suit

B.4 MEDF Semantics with SDT’s Simulator

All three, the semantics of the specification, the behaviour of the final implementation,
and of course the processing sequence of the simulation have to match, to allow a system
designer to verify the functionality of his SDL model. Telelogic’s SDT tool suite provides
different models of computation during simulation1, but regarding scheduling policies only
fixed process priorities are supported. For this reason, a MEDF simulator kernel has to be
integrated into the SDL design framework.

MEDF simulation uses different software packages: SDT’s remote–target simulation via
TCP/IP sockets, SDT’s C–advanced code generation with tight integration onto RTEMS,
RTEMS itself with a so called “Unix Board Support Package” (RTEMS Simulator run-
ning as a stand–alone process under Linux) and an additional RTEMS monitor task (see
Fig. B.5). SDT’s remote–target simulation normally requires the “Master Library” to be
included in the target, i.e. the master library’s own monitor, which is responsible for the
scheduling of all SDL processes in the implementation, assures communication of simu-
lation control commands from and to SDT’s Simulator User Interface (Communication
via modul “Postmaster Interface”, modul “sctpost”, TCP/IP socket, “SDT Postmaster”,
“SimUI”). Since a tight integration with RTEMS is needed to enforce MEDF processing

1Mainly different interpretations of time progress (see Sec. 3.2.1).
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during simulation, the above mentioned monitor of the master library has to be replaced
by a monitor that leaves scheduling of tasks to the RTOS kernel, i.e. the monitor now has
to be an RTOS tasks for itself.

Again, the monitor tasks establishes connection via TCP/IP to SDT’s postmaster us-
ing moduls “Postmaster Interface” and “sctpost”. Furthermore, the monitor realizes the
following basic simulation commands [Für01]:

Tracing allows as usual to observe process creations, state transitions, set and reset op-
erations of timers, and signal receive, respectively signal output. Since signals now
transport a deadline interval, the appropriate MEDF event object id and the remain-
ing response time will be shown on the Simulator User Interface. Tracing has to be
enabled by compiler switches within the tight integration macro package.

Signal This command allows to feed signals with a deadline interval attached into the
system model. By dialog, the user will be prompted for a target process and may
select a valid signal.

Break This directive stops and resumes simulation time. During a break the global sys-
tem clock is halted, i.e. state of SDL timers as well as deadlines will not change,
consequently deadline surveillance is disabled.
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