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Abstract

The foundations of the TLM method with symmetrical condensed node in
the original formulation of JOHNS for the solution of three-dimensional electro-
magnetic field problems are investigated in this dissertation. It is shown that the
mapping between the discretized electromagnetic field components and the TLM
wave pulses determines the asymptotic convergence rate of the TLM algorithm.
For this, the convergence of the original symmetrical condensed node TLM formu-
lation introduced by JOHNS is proved for the first time. The proof is achieved in
three steps. First, the appropriate function spaces providing a suitable norm for
proving convergence are constructed. Second, the cell-centred field-mapping is ap-
plied at every iteration step yielding a mapping induced finite difference scheme,
which is the well known LAX-FRIEDRICHS scheme. Third, it is shown using norm es-
timations that the difference between the TLM scheme and this mapping induced
finite difference scheme approaches zero for Al approaching zero. It emerges that
using a cell-centred field-mapping results in O(v/At) convergence. Other work has
shown that using a bijective boundary oriented field-mapping gives second order
convergence. This influence of the field-mapping on the asymptotic convergence
order is verified in a numerical experiment, where the propagation of a plane wave
in a one-dimensional parallel-plate waveguide is studied at various discretizations.
Furthermore, the suitability of the recently proposed Alternating Transmission
Line Matrix Method for the solution of electromagnetic field problems is discussed.
The application’s part of this dissertation deals with the characterization of planar
microwave components using the TLM method. A TLM algorithm for considering
first order dispersive media is derived. The influence of dielectric losses of the
adhesive that is used to embed chips into multichip module (MCM) substrates on
the transmission properties of MCM interconnects is investigated applying this
TLM algorithm. It emerges that a lossy adhesive even slightly improves the trans-
mission properties of such MCM interconnects due to loss impedance matching.
Further, the influence of substrate losses on the properties of planar microwave
transformers, which are used in mobile communication amplifiers, is investigated.
For this, layered absorbers for the truncation of the computational domain have to
be implemented. The TLM characterization of a simplified transformer indicates
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a potential use of such transformers up to 100 GHz. The lossy substrate has a
negligible influence on the transformer characteristics up to 30 GHz.
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CHAPTER 1

Introduction

1. Introduction

The recent years have seen an unprecedented boom in mobile communication.
For example, in the United States, the number of subscribers to cellular phones has
grown exponentially since 1985, which is illustrated in Fig. 1.1 taken from [83]. The
same development can be recognized in Europe. Nevertheless, there are far more
wireless applications coming up. An example is a wireless communication project,
known as ‘Bluetooth’ that aims at linking indoor computer equipment, such as the
main unit and peripheral equipment like printers or scanners, without the wiring
that is necessary today. However, the more applications are developed, the need
for higher bandwidth becomes imminent. This desire can be satisfied by moving
to higher frequency bands. However, using higher frequency bands makes it more
difficult to find the optimum circuit design of amplifiers, transmitters and the like,

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

o 5 10 15 20 25 30 35 40 a5 50

Millions of subscribers

FIGURE 1.1. The exponential growth in communications is il-
lustrated by cellular telephone subscribers in the United States,
tabulated as of June in each of the reported years.
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as many components cannot be treated as concentrated any more. Appropriate
characteristic parameters for describing the components of those circuits at higher
frequencies are the so called scattering parameters or S-parameters. They describe
a device in terms of incident and reflected power waves. One can obtain these
S-parameters of a device not only by measuring real devices, but also from an
electromagnetic full-wave analysis of a discrete model of the device. Once the S-
parameters are known, they can be fed into a circuit simulator to see whether the
device under consideration meets the specifications of the desired circuit. However,
obtaining the S-parameters from a simulation has the advantage of saving the
extremely costly actual fabrication of many test devices. Moreover, simulating
devices is faster than the fabrication of test devices. For this, the need for reliable
and efficient numerical electromagnetic full-wave analysis tools is growing more
and more.

2. The Transmission Line Matrix Method

Transmission Line Matriz (TLM) - methods are powerful and versatile al-
gorithms for the numerical full-wave analysis of electromagnetic field problems.
They are based on the analogy between the propagation of electromagnetic fields
according to HUYGENS principle and the propagation of voltage pulses in trans-
mission line networks [30]. Most TLM methods operate in time domain. To obtain
S-parameters, the time domain signals need to be transformed to the frequency
domain. At first glance, this seems more complicated than a direct field com-
putation in frequency domain. However, one gets the desired parameters for a
very large bandwidth, depending on the bandwidth of the input signals, whereas
in frequency domain one gets the solution only at certain frequencies. Moreover,
the transient electromagnetic field can easily be visualized in time domain, which
yields a greater physical insight into the problem under investigation.

Already in the 40ies of this century, physical network models were used to
solve electromagnetic field problems. In those days, the propagation of current and
voltage waves on a real mesh of interconnected transmission lines, thus modelling
the propagation of electromagnetic waves, was analysed by network analysers
[39,110, 111].

In 1971, JoHNS and BEUERLE suggested to solve two-dimensional scattering
problems by implementing such transmission line methods on a computer [37].
Soon, the TLM method was extended for the solution of three-dimensional prob-
lems and for the treatment of inhomogeneous, lossy, and anisotropic media. Also,
ways to treat curvilinear problems were suggested [4]. In 1987, the TLM method
with Symmetrical Condensed Node (SCN) was introduced by JoHNS [35]. It was
not long until this method and its generalizations became the most commonly used
TLM methods. As the original derivation of the SCN-TLM method by JOHNS was
mainly based on analogy, various authors suggested formal derivations. In 1991,
CHEN, NEY, and HOEFER presented a Finite Difference scheme that is equivalent
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to the SCN-TLM formulation without stubs [14]. Although most TLM methods
operate in time domain, a TLM method for the frequency domain was presented
in 1992, which has also found many applications since then [33]. Later, JIN and
VAHLDIECK suggested a derivation of the SCN-TLM method with stubs from
MAXWELL’s equations based on finite differencing and averaging [34]. KRUMPHOLZ
and RUSSER contributed a Method-of-Moments (MoM) derivation of the TLM
method without stubs [44]. LOVETRI and SIMONS presented a conservation law
approach for the derivation of the SCN-TLM method without stubs [52]. In 1993,
HEIN published a paper that presented a derivation of the SCN parameters from a
consistent Finite Difference Scheme approximating MAXWELL’s equations [23]. In
that paper, the issue of consistency of the various formulations of the SCN-TLM
methods was hinted at for the first time.

To save memory resources, RUSSER and BADER suggested the ATLM method
in 1995 that exploits the inherent redundancy in the usual SCN-TLM algorithm.
A further refinement of the ATLM method is the ARTLM method, presented
by RUSSER in 1996, which theoretically needs only 25% of the memory resources
of the common SCN-TLM method [85]. This method appears to be especially
interesting for the treatment of thin layers in planar microwave circuits.

3. Objectives

Although the symmetrical condensed node TLM method has been intensively
investigated and different views of the basic scattering algorithm have been estab-
lished, the decisive question of consistency and in-the-end convergence has only
been dealt with in special cases, such as [23]. However, consistency - and in con-
nection with stability, the convergence - of a difference scheme is by no means
guaranteed by the derivation of a difference scheme alone [100]. Especially the
convergence of JOHNS’ original formulation [35] has not been proved yet, although
it is presumably the most widely used TLM method with condensed node. The rate
of convergence is of prominent interest when applying mathematical approxima-
tion methods. The faster a method converges, the lesser computational resources
are required. As the TLM method has a somewhat larger computational effort
than the popular Finite-Difference-Time-Domain (FDTD) method [113,115],
this issue is of strong interest.

4. Original Contributions

The work presented in this thesis contributes the following original ideas to
the subject:

1. The TLM algorithm is considered as a mathematical approximation
scheme of MAXWELL’s equations in a rigorous functional analytical set-
ting and not in terms of equivalent lumped element models.
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2. The convergence of Johns’ original TLM formulation with cell-centred
field-mapping against solutions of MAXWELL’s equations is formally proved
for the first time.

3. It is shown that the field-mapping between the discretized electromagnetic
field and the TLM wave pulses determines the type of approximation of
MAXWELL’s approximation and consequently the asymptotic convergence
rate.

4. All theoretical predictions are verified in a numerical experiment.

5. It is shown that the field-mapping also determines the type of approxi-
mation in the recently proposed Alternating Rotated Transmission Line
Matrix Method. A proof of the non-existence of a consistent mapping is
given.

6. A novel approach for the simulation of dispersive media with the TLM
method is presented. It is based on the propagator approach to TLM.

7. A comprehensive study on the optimum parameter combination of
matched layer absorbers for truncating the computational domain in open
problems with inhomogeneous planar substrates is performed. It is shown
that the performance of these absorbing boundary conditions is mainly de-
termined by the differences in dispersion due to different media parameters
in neighbouring regions. The numerical reflections play a minor role.

8. Challenging state-of-the-art field problems are solved using the TLM
method. An example is the determination of the influence of conductive
substrate losses on the electrical properties of planar microwave transform-
ers.

5. Outline

In the first part of this work, various commonly used SCN-TLM formulations
are analysed and compared with respect to their convergence both analytically and
numerically. The second part of this work describes the application of the TLM
method with symmetrical condensed node to the solution of some challenging
state-of-the art problems in the area of planar microwave circuits. The outline of
this thesis is as follows.

In Chapter 2, the principles of the TLM method with symmetrical condensed
node are explained. The discretization of the computational domain using TLM
cells and nodes is illustrated. The TLM scattering algorithm is presented and
the symmetrical condensed node both with and without stubs is recalled. Various
mappings between the TLM wave pulses and the discretized electromagnetic field
components are given. Finally, the HILBERT space formulation of the TLM method
following [87], which will be used throughout this study, is introduced.

Chapter 3 contains an overview of the published theoretical work on the sym-
metrical condensed node. The various derivations of the symmetrical condensed
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node are discussed and the dispersion characteristics of the TLM mesh with sym-
metrical condensed node are also considered. Furthermore, a brief overview of
recent applications of the TLM method with symmetrical condensed node to the
solution of electromagnetic field problems in planar microwave circuits is given.

In Chapter 4, the terms consistency, stability, and convergence classifying finite
difference schemes are introduced and means of analysing them are presented.
Moreover, appropriate function spaces for investigating the convergence of the
TLM method are constructed. They form the basis of the proof of convergence of
the SCN-TLM formulation given by JOHNS in the subsequent chapter.

In Chapter 5, a proof of convergence of the most commonly used formulation of
the Transmission Line Matrix method - JOHNS’ original formulation - is presented.
The convergence of both the SCN-TLM method with and without stubs is given.
Furthermore, the asymptotic rate of convergence is estimated.

In Chapter 6, the convergence of the Alternating Rotated Transmission Line
Matriz (ARTLM) scheme is investigated and its suitability for solving electromag-
netic field problems is discussed. The basics of the ARTLM scheme are explained
and the four possible ARTLM schemes are distinguished. The consistency of var-
ious proposed mappings between rotated TLM wave pulses and the discretized
electromagnetic field components is studied. It emerges that no consistent map-
ping exists and a proof of the non-existence of a consistent mapping is presented.

Chapter 7 contains a numerical study on the convergence of the various dis-
cussed formulations of the TLM method with symmetrical condensed node. For
this, the propagation of a plane wave with GAUSSian transient in a one-dimensional
TLM model of an infinite parallel plate wave guide is studied at various discretiza-
tion. The asymptotic convergence orders predicted by the convergence analysis of
Chapter 5 and of other work for other formulations is verified in this experiment.

A TLM algorithm for treating first order dispersive media, known as DEBYE
media, is derived in Chapter 8. This TLM algorithm is based on the propagator
approach following [26]. The derivation is formulated in terms of the HILBERT
space formulation of [87]. For deriving the updating relations of a dielectric node,
the procedure presented in [26] for perturbed TLM processes is applied.

Applications of the TLM method for characterizing planar microwave compo-
nents for mobile communications and Multichip Modules (MCM) are presented
in Chapter 9. First, the influence of frequency dependent dielectric losses of the
adhesive in MCM embeddings on the performance of a microstrip-to-coplanar
transition using the TLM algorithm derived in Chapter 8, is investigated. Fi-
nally, the influence of substrate losses on the S-parameters of a planar microwave
transformer, used in the driver stage of a microwave power amplifier, is studied.

Chapter 10 concludes this thesis by summarizing and discussing its main re-
sults.
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CHAPTER 2

Principles of the TLM Method

The basic ideas of the TLM methods with symmetrical condensed nodes for the
solution of electromagnetic field problems are presented in this chapter. The dis-
cretization of space using TLM cells and nodes and the TLM scattering algorithm
are explained. The symmetrical condensed node is introduced. The differences be-
tween the TLM methods without stubs and the TLM methods with stubs is shown
and various mappings between discretized electromagnetic field components and
TLM state variables are presented. Finally, the HILBERT space formulation of the
TLM method is introduced.

1. The TLM Scattering Algorithm

In all TLM methods, continuous space is separated into TLM cells by defining
intersecting planes. This step is called the discretization of space and is shown
in Fig. 2.1 (a) and Fig. 2.1 (b). Therefore, the TLM method is a member of
the ‘family’ of space-discretizing methods - another very popular member of
this family is the Finite-Difference-Time-Domain (FDTD) method originating
from [115]. Ports are defined at the tangential planes between two neighbouring
cells and a scattering centre is defined at the centre of each cell as indicated in
Fig. 2.1 (c). Transmission lines connect the centre of each cell with the ports (see
also Fig. 2.1 (¢)). The physical model, comprising the scattering centre at the cen-
tre of a cell that is connected via transmission lines with the ports at the tangential
planes between neighbouring cells is called a TLM node. Consequently, continuous
space is approximated by a mesh of TLM nodes interconnected by transmission
lines as depicted in Fig. 2.1 (d). TLM pulses propagate on these transmission lines
between the nodes of interconnected cells. These pulses are scattered at the nodes
and the scattered pulses propagate to the neighbouring nodes where they are
scattered again. The propagation of TLM pulses in a TLM mesh is schematically
shown in Fig. 2.2. A matrix equation of the form

(2'1) bk;l,m,n = Sl,m,nak;l,m,n7

is defined in each of these cells, describing the scattering process. The matrix
S1,m,n is the scattering matrix of the TLM node (I, m,n). The TLM node (I, m,n)

25
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(c) (d)

FI1GURE 2.1. The approximation of space by an interconnected
mesh of TLM nodes in the TLM method. The definition of TLM
cells is shown in (a) and (b) and the introduction of intercon-
nected TLM nodes is shown in (c) and (d).

is located at (IAl, mAl,nAl) in a CARTESIAN coordinate system, where Al con-
stitutes the spacial increment and [, m,n are the spatial indices in x—,y—, and
z—direction of the grid constituted by the location of the TLM nodes. The vec-
tors @k, m,n and by m.n comprise the incident and reflected TLM pulses that
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FiGUre 2.2. The propagation of TLM wave pulses in a TLM mesh.

propagate on the transmission lines. They can have different meanings. In many
papers ar;;,m,» denote voltage pulses that are incident on the cell, commonly writ-
ten V';;;l,m,n, whereas the reflected voltages by;i,m.» are denoted by Vi ., ... The
use of voltage pulses has historical reasons, as the TLM-methods originated from
real networks, where one could measure physical voltages using network analysers
[39,110,111]. It is equally possible to assign incident and reflected power ampli-
tudes to the vectors @i, m,»n and bg.;,m.n, as done by AibAM and RUSSER [2]. The

exchange of pulses between neighbouring cells is achieved by a connection matrix
C

(22) Zak;l,m,n - Czak;l,m,n-
l l

Iterating equations (2.1) and (2.2), i.e. scatter and connect in the physical picture,
simulates a wave propagation process that closely resembles the propagation of
electromagnetic waves in free space or media. An elaborate discussion of the prop-
agation of pulses in TLM meshes with symmetrical condensed nodes can be found
in [28]. The iteration of equations (2.1) and (2.2) is called the TLM scattering
algorithm. An excellent review of the principles of the TLM method was given by
HOEFER [30].

2. The Symmetrical Condensed Node

Today, the commonly used TLM node is the Symmeitrical Condensed Node
(SCN), which was introduced by JOHNS in 1987 [35], and its generalizations such
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10
12 ~

11

9

FIGURE 2.3. The symmetrical condensed node.

as the Hybrid Symmetrical Condensed Node (HSCN) or General Symmetrical Con-
densed Node (GSCN) [11, 67, 89,104,105, 107]. The scattering matrix of JOHNS’
original node for homogeneous media writes

( a c 0 0 0 0 d —-d 0 0 b b \
c a 0 0 0 0 —-d d 0 0 b b
0 0 a c b b 0 0 d —-d 0 0
0 0 c a b b 0 0 —-d d 0 0

0 0 b b a c 0 0 0 0 d —d
0 0 b b c a 0 0 0 0 —-d d
(23) §= d —-d 0 0 0 0 a c b b 0 0
—d d 0 0 0 0 c a b b 0 0
0 0 d —-d 0 0 b b a c 0 0
0 0 —-d d 0 0 b b c a 0 0
b b 0 0 d —-d 0 0 0 0 a c

K b b 0 0 —-—d d 0 0 0 0 ¢ a)
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The abstract multi-port that is assigned to it and referred as TLM symmetrical
condensed node is depicted in Fig. 2.3. The length of the node in each direction
of space is Al. Each branch that protrudes from the centre in all six directions
of space consists of two, with an angle of 90 degrees between them, two-wire
transmission lines. Each of them supports one of the two possible polarizations of
transverse electromagnetic (TEM) waves on the link lines. The polarization of the
TLM pulses follows the direction of the port vectors. Each TLM pulse has an E-
field and an H-field component assigned to it. The E-field component is in parallel
to the polarization of the TLM pulse, the H-field component perpendicular to it.
All six transmission lines of length Al/2 have the same characteristic impedance
and propagation velocity. The characteristic impedance equals that of free space,
i.e. 377 2. The drawn connection of the two wire lines in the centre of the node in
Fig. 2.3 does not correspond to the actual scattering process. It is simply a mental
picture. In brief, JOHNS determined the 12 x 12 scattering matrix heuristically as
follows:

e each incident pulse is according to the field component assigned to it, only
connected with some of the other ports. The pulse a’ for example having
an E” and an H” field component assigned to it, can according to

OE® OH* OHY

(24) ot T oy o-

only be scattered into ports 7, 8, 9, and 10, as E® and H” are also associ-
ated with port 8 on a y—directed line, whereas E” and HY are associated
with ports 7 and 9 on z—directed lines,

e by symmetry, there are only four unknown parameters,

e the scattering process must preserve charge,

e the scattering process is supposed to be lossless, so energy must be con-
served meaning that the scattering matrix must be unitary

(2.5) STS =1
With this, the unknown parameters a, b, c, and d can be determined as
1 1
2. = b= =—, d=-.
(2.6) a=0, b=0, c=3, d=;

This constitutes one of four possible solutions. The other three solutions are dis-
cussed in [1].

3. The Symmetrical Condensed Node with Stubs

To account for inhomogeneous media and non-cubic TLM cells, JOHNS added
open and short circuited stubs to the node. Each stub has a length according
to a propagation time of At¢/2. The port numbers 13-18 are assigned to the six
stubs. The first three stubs couple to E*, EY, and E*. They are open, as to
add additional capacitance to the node. The other three stubs are shorted and
couple to H”, HY, and H® and add further inductance to the node. As each



30 2. PRINCIPLES OF THE TLM METHOD

Column No. |1 2 56 7 8{9101112(1314151617 18
o/c Stub (V)|Y ¥V 2 2|2 2 X X|X X YV V|X ¥V 2z
s/cStub (2) |2 2 V V|X X z z|y ¥y X X Xy z
1 y z|ac d-d b b g -d
2 y z|c a -d d b b g d
3 z y aclbb d -d g d
4 z y c alb b -d d g -d
5 z X b bla ¢ d -d g -d

6 z x b bjc a -d d g d

7 x z|d-d ac|/bb g d
8 x z|dd c alb b g -d
9 x vy d -d b bja ¢ g -d
10 x y -d d b bjc a g d
11 y x|b b d -d a c g d
12 y x|b b -dd c a g -d

13 x b b|b b 0lh

14 vy b b b b h

15 =z b b|b b h

16 X -f f f -f j

17 y f -f -f f j
18 z |-f f f -f j
Row (Y) (Z)

TABLE 2.1. The scattering matrix with stubs.

stub only couples to one of the field components, it is possible to account for
anisotropic material properties, namely permittivity €, €y, €., and permeability
Wz, My, b= The scattering matrix of the SCN with stubs can be found in table 2.1.
JOHNS obtained the normalized values of the stubs as follows. A field component
E?® experiences a total capacitance of C, = ¢;vwAl/u. The dimensions of a non-
cubic TLM cell in z—, y—, and z—direction are uAl, vAl, and wAl. A symmetrical
condensed node without stubs has the following capacitance

AlEo
h )

(2.7) CSON without stubs,z =

where h is a stability factor given by

2Al
2.8 h =
( ) co At
and co the speed of light. Consequently, the capacitance of the stub connected with
E7 is the difference between total capacitance and capacitance of the symmetrical
condensed node without stub, or
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exvwAl _ Aleo

2. stub,g = 2
(2.9) Cistus, " .

The total capacitance is multiplied by 2 in order to account for the fact that
the symmetrical condensed node models a medium of twice the permittivity and
permeability of the transmission lines it consists of. The admittance of the stub is
calculated using the relation between admittance and low frequency capacitance

At Ale
(210) Cstub =YoYstur— = stub—oa

2 h
where ¢¢ is the permittivity of free space. With this and normed to the free space

impedance Zp, the admittances of stubs 13 to 15 are calculated by

(211) Yo =2(Dhere —2),Y, =2 (“Lher, —2) V. =2 (Lhe,. —2),
u v w

where €., €ry, and €,, denote the relative permittivities. The impedances of stubs
16 to 18 are calculated in a similar manner, which results in

vw

(212) Z, =2 ( hitrs — 2) 7, =2 (ﬂhpry - 2) 7, =2 (@hmz . 2) .
v w

u
The relative permeabilities are denoted by prz, piry, and pr,. If ohmic and mag-
netic losses have to be considered, six additional stubs are connected to the centre
of a node [67]. The scattering in these stubs needs not explicitly be considered
as the energy dissipated in these lines is lost. The values of the loss stubs for
simulating ohmic losses are given by

(213) Go = 200llZy, Gy = —0yAlZ, G.= —0e.AlZ,
u Y v y w

where 0¢;, 0cy, and o, stand for the electric conductivities in x—, y—, and
z—direction. The loss stubs considering magnetic losses calculate analogously

VW Oz Al UW Oy Al UV Oz Al
2.14 r = — mo = — my , = — mz
( ) R w Zy Ry v Zy R w Zy

with anisotropic magnetic conductivities omz, Omy, and o, . Considering the loss
stubs, the coefficients of the scattering matrix of the symmetrical condensed node
are given as follows
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(1, m,n+ 1)

1
(tym = 5.m) (1—1,m,n)

Y4
X)—y (,m+%,n)

\ (I, m, n)

FiGURE 2.4. A TLM cell.

. G+Y  R+Z 2

20G+Y +4) ' 2(R+Z +4)’ G+Y +4’
G+Y R+ Z 2

(2.15) “TTAG+Y+4) 20R+Z+4) = T YRY4
2z 2y

f_R+Z+£ I=Gyy+4

p_ _G-Y+4 . _4—-Z+R

G+Y +4° TRy zZ 4

The subscripts z, y, and z of the stubs are assigned according to Table 2.1. A
lumped equivalent circuit descriptions that can be assigned to the symmetrical
condensed node is reported in [62]. The scattering given by the modified JOHNS’
scattering matrix following Fig. 2.1 can be calculated very efficiently using equiv-
alent node voltages and equivalent loop currents [66,101]. The most efficient al-
gorithm is provided by the representation introduced in [66]. The influence of the
number of floating point operations of a particular representation of the scattering
matrix on the performance of TLM codes was recently investigated in [5, 55].

4. Field-Mappings for the Symmetrical Condensed Node

If we consider a TLM cell as depicted in Fig. 2.4, it is possible to define the
mapping between the TLM state variables and the electromagnetic field com-
ponents either at the centre of the cell located at (I,m,n), or at the centre of
the tangential planes, i.e. at positions (I,m,n + 3), (I,m,n — 3), (I, m + 3, n),
(I,m—3,n), (I+3,m,n), and (I— 3, m,n). The mapping in the centre shall be re-

ferred to by cell-centred field-mapping (CFM) and the mapping at the boundaries
of the TLM cell by boundary oriented field-mapping (BOFM).
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Originally, the mapping was defined at the centre. Consequently, this mapping
is not bijective, as in the TLM algorithm one has twelve or more variables and in
MAXWELL’s equations, there are only six electromagnetic field components in one
point of space. The CFM following JOHNS writes

(2.16) fk';l,m,n — Pak;l,m,n,
(217) Ak;l,m,n = Q.fk;l,m,n'

The vector f,; . . comprises the six electromagnetic field components, sampled
in the centre of a TLM cell

(2.18)
_ T Y z T Yy z T
-fk;l,m,n - [Ek;l,m,naEk;l,m,naEk‘;l,m,naZOHk;l,m,nazOH ZOHk;l,m,n] )

kil,m,n>
whereas ai;i,m,» is the vector of the incident TLM pulses
21 _r.1 2 3 4 5 6 7 & 9 10 11 _127T
( . 9) Ak;l,m,n = [a' ya ,a ,a,a,a,a,a,a,a ,a ,04 ]k'lmn’

or in case of stubs

(2.20) AL;l,m,n —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18T
[a",a%,a”,a",a",a",a",a",a",a ",a ,a",a",a",a’,a"a ", ]k;l’m’n.

For the symmetrical condensed node without stubs, JOHNS gave the matrices P
and @ as

(0.0 0 00 0 1 11 1 0 0

1 1 0 00 0 O 0O 0O 1 1

o 1|0 0o 1 11 1 0 00 O 0 O

(221) P=Q 210 0 0 01 -1 0 0 0 0 -1 1
0 -1 10 0 0 01 -1 0 0

\1 -1 0 00 0 -1 10 0 0 0

For the symmetrical condensed node with stubs considering ohmic and magnetic
losses, P and Q take the following form
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S oocococoo

> o
8 8

(2.22) P=

o
,_<c>o§"
8

o~
oooc:@%og,?g?c:ooooooo@@‘@@‘
N3

[ev R en il en B e B en)

with the coefficients

__?2
ou(Yy +4)’

2
d:c = . N
u(Zy + 4)

(2.23)

(2.24)

0 0 0
0 0 0
b. 0 —d
b, 0 dy
b, ds 0
b, —dy 0
0 0 0
0 0 0
0o 0 d,
0 0 —d
0 —d 0
0 ds 0
0 0 0
0 0 0
b.Y, 0 0
0 —d 0
0 0 —d
0 0 0

b= 2

v(Yy +4)

2
W=, )

<

<

<

N

="
n
—

183

S}

é_ooooooooo&glﬂooool

183
N—

b= . 7 4)

dy = ———.
w(Z, + 4)

The mapping from field components to TLM pulses to excite the TLM mesh is

given by
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N | =

(2.25) Q=

coggggoocococo o
O e oo ococoococo e
coococococoocoog g e g oo

with the coefficients

- Y:z: 9 y— Yy 9
C$:Z$+Rm, Cy :Zy +Ry,

(2.26) ax
(2.27)

0 —w
0 w \
v 0
—v 0
0 0
0 0
0 w
0 —w
—v 0
v 0 ’
0 0
0 0
0 0
0 0
0 0
0 0
—vCy 0
0 —wcz/
a, = v,
c.=272,+R,.
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The coefficients a, and ay, and a, are slightly modified in comparison to [62].

This modification originates from an equivalent circuit representation in terms of

the total voltage in the centre of a node [102]. However, this modification is also

nescessary due to a more profound analysis in terms of consistency of mapping

induced finite difference schemes of the SCN-TLM scheme, which will become

evident in Chapter 5.

Assuming a correspondence between the TLM state variables and the electro-
magnetic field components at the centre of the tangential planes yields a bijective

field-mapping introduced by KRUMPHOLZ and RUSSER [44, 46] and independently

by HEIN [23]. This field-mapping is given by

(228) Ek;l,m,n - PE'(age;l,m,n +b
1

(2.29) Hyimn = Z—PH(agc;l,m,n -
0

with the matrices

k;l,m,n)a

l
bk;l,m,n))
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B(y, z) 0 0
(2.30) Pz=| 0 B(zz) 0
0 0 B(z,y)
and
C(z,y) 0 0
(2.31) Py = 0 C(z,z) 0
0 0 C(y,x)

The submatrices B(y, z) and C(z,y) constituting P and Py write

ALy 0 0 0
0o X 0 0
2.32 B — Ay
(2.32) WA=,y ¥ L
0 0 0 =
and
~ 0 0 0
0 -~ O 0
(2.33) C(z,y) = 0 0 _A%y 0
0 0 0 ALy

The vectors Ex;i,m,n and Hy, m,n comprise the tangential field components on
the surface of a TLM cell

"EY 1 Nk 1

k;l—%,m,n k;l—%,m,n
K Hz
Ek,l+2,m,n k;l+25man
z Hy
Ek,l 5N kil—5,m.n
z H?/
Ek,l+2,m,n k';l+2,m,n
z T
k;l,m 5.7 Hk';l,m R
E? 1 HY 1
kil,m+=.,n _ kil m+=,n
(2.34) Ek;l,m,n - T 2 b) Hk;laman - HZ 2
k;l,m 5.7 k,l,m 5.7
T z
Ek,l,m-}—%,n Hk;l,m+%,n
E” HY
k;l,m,n % kil,m,n—3
E? y
k;l,m,n+ % Hk;l,m,n+2
E? i
k;l,m,n—% Hk;l,m,n—%
Yy T
_Ek;l,m,n—}-%_ _Hk,l,m,n—l-%_
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The vector afk;l’m,n comprises the incident TLM pulses on the link lines (hence
the superscript 1) as given by eqn. (2.19). The vector of the reflected TLM pulses
on link lines is denoted by b} m -

5. The TLM Algorithm in Hilbert Space Notation

The set of all state vectors a and b represents the complete state of the dis-
cretized electromagnetic field at time k. If we discretize the physical space as
described in Section 2.1 we get an enumerable infinite number of TLM cells. The
field state of each cell is given by the 12- or 18-dimensional vectors of incident and
reflected TLM pulses. The whole set of these vectors comprises an approximate
solution of the electromagnetic field problem. As one has not only in space but
also in time an enumerable infinite number of intervals, it is possible to define an
HILBERT space for describing the discrete field problem [87]. The relation to an
appropriate function space is shown in Chapter 4. In this abstract HILBERT space,
it is possible to investigate the TLM algorithm algebraically, which facilitates the
calculation of the dispersion characteristics of TLM meshes [42]. A basevector,
characterized by the number triple (I, m,n), is assigned to each TLM cell. If the
HILBERT space is chosen appropriately, the base vectors fulfil the orthogonality
relation

(2.35) <p,q,rll,m,n>=,10gm0rn-

The HERMITIAN conjugate is denoted by < p,q,r|. The CARTESIAN product of
the space of base vectors with the space of TLM pulse vectors defines a space for
describing the complete field state at time k. The state vector of all incident TLM
pulses |a(k) > at time k is given by

—+oo oo +o0
(2.36) h(E)>= > D ) arimall,mn>.
l=—0co m=—00 N=—00

Applying the projection operator |I, m,n><1I, m,n| yields the vector of the inci-
dent wave pulses of TLM cell (I, m,n)

(2.37) I, m,n> <l,m,n|la(k)> = ar,mnl|l,m,n>.

Unitary shift operators X, Y, Z, and their HERMITIAN conjugate X', YT, Z1
are defined as
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(2.38) X|l,m,n> =|l+1,m,n>,
(2.39) XH,mn> =1-1,mn>,
(2.40) Yii,mn> =|l,m+1,n>,
(2.41) Y, mn> =|l,m—1,n>,
(2.42) Zll,m,n> =|lm,n+1>,
(2.43) ZHUl,m,n> =|l,mn—1> .

Using these operators, the connection matrix (2.2) can be defined as connection
operator I

0

-

—

(244) T =

NoNoNoNaNoNoNoNoNe N
Nooococooooo

coccocococoococo™o
Coococoococo0co oo M
cococcococooMooo
Coococoocococo Moo
c:oc:ooc:"ioc:oc:o
coocococoocoMoooo
cocoNocoocooooo
coccoMooocoocoo
coNcocoococoocoocooo
CooNococoococoo o

\

The connection operator I' is unitary and HERMITIAN. As the reflected pulses
from one TLM cell are the incident TLM pulses of the neighbouring cells, the
field state is completely defined by |a(k) > and |b(k) >. Hence,

N

0

(2.45) la(k)> =T|b(k)> and |b(k)>=T"]a(k)>.

A base vector |k > is assigned to each point in time to account for the evolution
in time, which also fulfils the orthogonality relation

(2.46) <klk>=10,,.

Building the CARTESIAN product of the HILBERT space of temporal base vectors
and the HILBERT space of all state vectors at time k, yields a HILBERT space
where all state vectors at all times are defined. In this space the state vector of
all incident wave pulses at all times is given by
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+oo
(2.47) a> = > k> ®la(k)>

k=—o0
- Z |k> ak;l,m,n®|l7m7n>

k,l,m,n

= E ak;l,m,n|k;l,m,n> .

k,l,m,n

The vector of all reflected wave pulses at all times is given by

(2.48) b>= " brmnlk;l,mn>.

k,l,m,n

For describing the time evolution, a unitary time shift operator is defined by

(2.49) Tk>=k+1>

and its HERMITIAN conjugate by

(2.50) THE> = [k —1> .
With these vectors and operators, the TLM algorithm writes

(2.51) b> =TS|a>,
(2.52) la> =T|b>.

The scattering operator S is given by

(2.53) S= > Iklmmn> Skimn <kjl,m,nl|,

kil,m,n
where Sk.;.m.» denotes the local scattering matrix of cell (I, m,n), i.e. eqn. (2.3)
in case of the symmetrical condensed node without stubs or Fig. 2.1 in case of the
symmetrical condensed node with stubs. In the sequel of this study, the indices
k,l, m,n indicating local operators are omitted.
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CHAPTER 3

State of Research

The historic development of the TLM method with symmetrical condensed
node was roughly sketched in Chapter 1. This development can be seen as a suc-
cession of different interpretations of the basic TLM scattering algorithm. In this
chapter, we classify the various formulations of the SCN-TLM method using the
utilized mapping between TLM state variables and electromagnetic field compo-
nents. Further, an overview of the theoretical work with relevance to convergence
and accuracy of the SCN-TLM method is given. Finally, we discuss some recent
applications of the SCN-TLM method for the characterisation of planar microwave
circuits.

1. Overview of SCN-TLM Formulations

For deriving the symmetrical condensed node, it is necessary to sample the
electromagnetic field components at certain points of the TLM cell, as discussed
in the previous chapter. This was originally done in the centre of a TLM cell. It is
equally possible to define a correspondence between electromagnetic field compo-
nents and TLM pulses at the tangential planes between neighbouring cells. This
was explicitly introduced by KRuMPHOLZ and RUSSER [44, 46] and independently
by HEIN [23]. These authors were the first to discover that the mapping between
the TLM wave pulses and the discretized electromagnetic field components has an
important influence on the interpretation of the basic scattering algorithm in the
sense of different approximation schemes of MAXWELL’s equations. Some authors
like CHEN, NEY, HOEFER, JIN, and VAHLDIECK, utilized implicitly both mappings
for their formulations [14, 34]. An overview of the derivations of the SCN-TLM
method gives Table 3.1.

For deriving the finite difference scheme that CHEN, NEY, and HOEFER pro-
posed to be equivalent to the symmetrical condensed node, the electromagnetic
field was sampled both at the centre of a TLM cell, where all six components
are considered, and at the boundaries of a TLM cell, where only the tangential
components were taken into account [14]. MAXWELL’s equations were replaced in
each cell by a set of difference equations where the partial derivatives were ap-
proximated by centred differences. The energy conservation principle was applied
to get updated values of both the E- and H-field components. Total voltages and
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author year method mapping auxiliary mapping SCN with stubs
Johns 1987 analogy CFM - yes
Chen, Ney, Hoefer 1991 finite differencing CFM BOFM no
LoVetri, Simons 1993 conservation law CFM - no
and generalized inverse matrices
Hein 1993 propagator integral BOFM - yes
Krumpholz, Russer 1994 method of moments BOFM - no
Jin, Vahldieck 1994 finite differencing modified CFM BOFM yes
and averaging
Aidam, Russer 1997 finite integration BOFM - no
Tardioli, Hoefer 1998 finite integration CFM BOFM no
and TEM wave propagation
TABLE 3.1. Overview of formulations of the symmetrical condensed node.
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currents that are the sum or the difference of incoming and reflected pulses were
defined at the boundary of a cell. The correspondence between voltages in the
TLM mesh and field components is essentially the same as described by the bijec-
tive boundary oriented field-mapping, introduced by KRUMPHOLZ and RUSSER. At
the node, JOHNS’ original mapping was applied to get a correspondence between
field components and TLM voltages. A numerical convergence study, where the
cutoff frequency of a finned waveguide was calculated using various discretizations,
concluded the paper.

LOVETRI and SIMONS started from MAXWELL’s curl equations written as a
system of hyperbolic conservation laws, to derive the set of constituting equations
of the SCN-TLM algorithm [52, 53]. These conservation laws were then approx-
imated in each TLM cell as three systems of equations, as it was assumed that
propagation along a certain direction (i.e. along the x—, y—, or z—direction), does
not involve any variation along the respective transverse directions. Each of these
three systems of hyperbolic conservation laws was then uncoupled by diagonal-
ization. New variables called RIEMANN invariants were defined and constitute the
propagating pulses in the TLM mesh. They represent the plane wave solutions of
these equations corresponding to nonzero eigenvalues or speeds of propagation.
These RIEMANN invariants are equivalent to the voltages that JOHNS defined. The
mapping between the RIEMANN invariants and the electromagnetic field compo-
nents was given by JOHNS’ original mapping. Considering the propagation of the
RIEMANN invariants and defining scattering events at the centre of the TLM cells,
scattering matrices could be constructed using MOORE-PENROSE generalized in-
verses. One of the constructed scattering matrices was the one originally given
by JoHNS. Although a mapping induced finite difference scheme was derived and
analysed with respect to dispersion and dissipation, the differences to the usual
mode of operation of the TLM algorithm when not mapping forth and back be-
tween field components and TLM pulses at each time step, were not considered
[63]. Hence, no estimation of the asymptotic error of SCN-TLM using JOHNS’
mapping was given.

The basic idea behind HEIN’s approach to TLM was to consider the TLM al-
gorithm as a state system whose response should fulfil a second order FD scheme
at every iteration step. From this fulfilment requirement one was led to a pro-
cedure to determine the scattering parameters of the scattering matrix from the
discretized MAXWELL’s equations. MAXWELL’s equations were discretized by fi-
nite differencing. The stub ports of the scattering matrix were eliminated alge-
braically leading to a geometrical series representation of the scattering response
of a TLM cell. This series representation is formally equivalent to a discrete prop-
agator integral. To decouple the scattering response, the scattering matrix were
transformed into its eigensystem. The discretized field components in the finite
difference equations were replaced by TLM wave pulses using the bijective bound-
ary oriented mapping. The finite difference scheme was also transformed in the
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same manner. For sampling the field at the centre of the TLM cell, the arithmetic
mean of the tangential field components was assumed. The decoupled scatter-
ing responses were inserted into the transformed finite difference scheme and the
scattering parameters of the TLM scattering matrix were calculated. As a con-
sequence of this construction, consistency and second order convergence of the
TLM solutions were guaranteed, as the TLM scattering parameters were directly
calculated from a consistent second order finite difference scheme approximating
MAXWELL’s equations. When ohmic and magnetic losses had to be considered,
the values of the open and short stubs and thus the matrix elements were calcu-
lated slightly differently with this approach, compared to the original scattering
matrix with stubs. This approach was extended to non-orthogonal cells and for
solving the coupled BLOCH-MAXWELL equations [24, 26]. For these applications,
MAXWELL’s equations are discretized by finite integration. In Chapter 8, this ap-
proach is employed to derive a SCN-TLM algorithm for simulating single pole
dispersive media.

KrumMPHOLZ and RUSSER applied the Method-of-Moments to MAXWELL’s
equations to derive the fundamental TLM equations for the symmetrical con-
densed node without stubs [44]. The field components were represented by an
expansion in subdomain base functions. Triangle functions in time and a prod-
uct of two-dimensional triangle functions and rectangular pulse functions with
respect to space were used as subdomain base functions. As test functions, delta
functions and their derivatives were chosen. The test functions were shifted by half
an interval in space and time with respect to the maximum of the base functions.
Calculating the inner products, discretized field equations for the electric and
magnetic field components were obtained. Applying the bijective cell boundary
mapping between field components and TLM variables, the TLM equations were
obtained. As in one spatial coordinate a step approximation was assumed and
a piecewise linear approximation in the other three coordinates, a second order
approximation error was predicted.

JIN and VAHLDIECK introduced a rectangular grid, where the electromagnetic
field was sampled both at the centre of the tangential planes between neighbour-
ing TLM cells and at the centre of a TLM cell to get the SCN-TLM scattering
equations [34]. In the tangential planes, only the tangential field components were
considered. Stubs were introduced and a new coordinate system of mixed space-
time coordinates was introduced and with the aid of these, the six MAXWELLian
equations were transformed. Then, a set of finite difference equations was ob-
tained by centred-differencing with respect to even time steps. A second set of
difference equations was obtained by centred-differencing of MAXWELL’s equation
with respect to half time steps. Both sets of equations were averaged and yielded
the scattering equations of the symmetrical condensed node. The boundary ori-
ented field-mapping was implicitly used to sample the electromagnetic field in the
tangential planes. A slightly modified JOHNS’ field-mapping was introduced for
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mapping the nodal field components. As centred differencing was used to get the
TLM scattering equations, a second order convergence was assumed. However,
the difference between mapping at the tangential planes and mapping at the node
was not considered. Excitation of the TLM mesh and sampling the electromag-
netic field at the boundaries of the cells yields indeed second order convergence
as shown by HEIN’s construction [23]. This is only assured in the lossless case, as
the stubs and matrix elements are calculated slightly differently in case of losses
when using the propagator approach.

A1bAM and RUSSER obtained six of the twelve linearly independent TLM equa-
tions of the symmetrical condensed node without stubs by finite integration of
MAXWELL’s equations in integral form and by applying the cell boundary ori-
ented field-mapping [1, 2]. The other six equations were obtained by taking the
gradient of MAXWELL’s equations and integrating over the volume of the cube.
This yields eighteen additional equations, where the six non-diagonal elements
of the symmetrical part of these tensor equations were taken to get the com-
plete TLM scheme. For the discretization of time, a CRANK-NICOLSON scheme
was used, i.e. the time derivative was replaced by forward differences and the re-
maining terms by the arithmetic mean of the two time steps involved. In terms of
accuracy, this suggested second order accuracy, as the CRANK-NICHOLSON scheme
is second order accurate in time and second order accurate in space [100].

Recently, TARDIOLI and HOEFER presented a derivation of the scattering ma-
trix of the symmetrical condensed node without stubs from the integral formula-
tion of MAXWELL’s equations [99]. The integral form of MAXWELL’s equations,
i.e. AMPERE’s and FARADAY’s law, were discretized using finite integration and
centred differencing in time. This yielded in connection with the cell boundary
oriented field-mapping six difference equations. The second set of equations that
is necessary to get the twelve constituting equations of the SCN were obtained by
considering plane waves, which propagate through a TLM cell, and applying con-
siderations on energy conservation. However, the authors emphasized that their
procedure is only applicable for cubic cells and for a symmetrical condensed node
without stubs. The authors did not comment on the presumed order of conver-
gence of their formulation.

2. Properties of the SCN-TLM Mesh

A different way of showing convergence and determining the asymptotic ac-
curacy of finite difference schemes is the investigation of their dispersion charac-
teristics. Generally, one desires that the difference scheme approximating certain
partial differential equations has the same dispersion and dissipativity proper-
ties as the corresponding partial differential equations [100]. For that reason, the
dispersion characteristics of the TLM mesh were extensively investigated both
numerically and analytically. If the dispersion and dissipativity properties of two
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schemes are the same, then the solutions they provide are equivalent. This fact
was exploited in synthesizing fourth order TLM models [95].

The first complete dispersion analysis of a condensed node TLM mesh was pre-
sented by NIELSEN and HOEFER [70—72]. In these work, the eigenvalue equation
was solved numerically. It emerged that the symmetrical condensed node exhibits
superior dispersion properties when compared to the popular FDTD scheme, based
on the YEE-cell [115], and to the expanded node TLM. The reason for this is that
the symmetrical condensed node without stubs exhibits no dispersion along the
principal axes. Although the symmetrical condensed node has distinct advantages
in comparison to other types of nodes such as better dispersion properties, a
correct modelling of boundaries, and a collocated field sampling of all field com-
ponents in one point in space, it was found that an SCN mesh has the undesired
feature of supporting propagating unphysical low-frequency modes.

The numerical anisotropy and the dispersion in TLM meshes for different
types of nodes, i.e. Johns’ SCN and various types of hybrid symmetrical condensed
nodes, were investigated by BERINI and WU [10]. The study considered also graded
meshes and lossy media. For graded meshes, the symmetrical condensed node
mesh exhibits more anisotropic dispersion than hybrid symmetrical condensed
node meshes. However, when simulating lossy media, the SCN does not introduce
anisotropy in contrast to hybrid symmetrical condensed node meshes.

MORENTE et al. derived the dispersion relation for an SCN-TLM mesh with
stubs as an implicit function of the wave number, frequency, dielectric permit-
tivity, and magnetic permeability. Group and phase velocities were calculated as
a function of frequency for three fundamental directions [65]. It was shown that
an increase in the permittivity of the modelled medium, which in turn leads to
higher stub values, resulted in a decrease in the cutoff frequency for the validity
of the numerical results. The analytical expressions of group and phase velocities
as a function of frequency in the SCN-TLM mesh without stubs were given by
MORENTE et al. in [64]. It emerged that the [1,1,1]—direction is more dispersive
than the [1,1,0] and [1, 0, 0]—directions.

CELUCH-MARCYSIAK and GWAREK observed that when calculating resonant
frequencies of structures with inhomogeneous media that exhibited large differ-
ences in media parameters, bilateral dispersion can occur [12]. This means that
the calculated resonant frequencies may be both under- and overestimated. An ex-
act analytic formula evaluating the SCN dispersion errors within arbitrary media
was presented and experimentally verified.

The dispersion in irregularly graded TLM and FDTD meshes was investigated
by GERMAN et al. [21]. The authors of these work found that irregularly graded
hybrid symmetrical condensed node meshes show significantly smaller propagation
errors than irregularly graded FDTD meshes.

The dispersion of three-dimensional TLM condensed nodes under realistic and
practical situations, i.e. an investigation of the velocity and resolution error in the
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case of inhomogeneous cavities, was investigated in [74]. A structured mesh using
variable parallelepipedic cells was used. It emerged that the SCN gave the smallest
error of the propagation constant when compared to YEE’s FDTD scheme and two
generalized symmetrical condensed nodes, the hybrid symmetrical condensed node
and the super symmetrical condensed node. The results of this study corroborate
the findings of the study presented in [21].

DE MENEZES et al. studied the dispersion error and performance of absorbing
boundary conditions and also found that SCN-TLM yields a smaller dispersion
error when compared to the FDTD method [59]. In this study, a plot of the relative
error calculated from the analytic dispersion relation versus the number of cells per
wavelength, was shown indicating second order accuracy. However, the influence
of the mapping between discretized electromagnetic field components and TLM
wave pulses was not considered.

Not only numerical dispersion studies were published, but also analytical ex-
pressions for dispersion related quantities were derived. A generalized method for
the calculation of TLM dispersion relations was presented by KRUMPHOLZ and
RUSSER [42]. The method was successfully applied to derive the dispersion re-
lations of the scalar TLM node and the symmetrical condensed node without
stubs. A detailed presentation of this method can be found in [45]. The dis-
persion characteristics for the TLM scheme with Symmetrical Super-Condensed
Nodes (SSCN) was presented by KRUMPHOLZ et al. [41], using the same method.
A comparison of the dispersion characteristics of the stub loaded SCN and SSCN
for modelling anisotropic media can be found in [32], also applying this general
method. Although both meshes support unphysical modes, in SSCN meshes they
propagate with the same velocity as the physical solutions. An earlier dispersion
analysis of the symmetrical super-condensed node was given in [103]. An analytic
expression for the dispersion relation of hybrid symmetrical condensed nodes and
super symmetrical condensed nodes was presented by TRENKIC et al. [106].

The effect of field singularities on the accuracy of SCN-TLM solutions was
investigated by SIMONS et al. [92]. In this work, the SCN-TLM, FDTD, and
Integer Lattice Gas Automata (ILGA) solutions for a cavity containing a metallic
fin were compared. It emerged that SCN-TLM requires a coarser mesh than FDTD
and ILGA to achieve the same accuracy for this type of problem. The FDTD and
ILGA meshes must be approximately 1.5 and 3.0 times as fine as the TLM mesh.
The curves of the percentage difference of the TLM, FDTD, and ILGA solutions
for b/ A (b denoted the width of the cavity and A the wavelength corresponding
to the first resonance of the cavity) from the benchmark solution versus mesh
discretization indicated a first order convergence. However, it is known that the
asymptotic convergence order is easily reduced by an order in the presence of
field singularities and interfaces between different media [60]. DE MENEZES and
HOEFER investigated the physical origin of the coarseness and dispersion errors
influencing TLM solutions of MAXWELL’s equations [60]. For this, the difference
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equations of the numerical method were solved analytically. It was confirmed that
the accuracy of the discrete solution is reduced in the vicinity of field singularities.
This effect is caused by the finite number of spatial modes supported by the
discretized domain. The reduced accuracy in the vicinity of field singularities
causes frequency shifts originating from a reduction of the convergence order to
first order in the presence of infinitesimally thin walls. Further, it emerged that in
inhomogeneous problems not dispersion effects are the main source of error, but
interface effects between media of different constitutive parameters. It is pointed
out again in that paper that from the dispersion analysis it follows that SCN-TLM
has second order convergence. However, in Chapter 5, it will be shown that the
process of averaging for the calculation of the nodal fields as proposed by Johns
reduces the order of accuracy in contrast to the bijective field-mapping at the
cell boundaries, which retains the convergence order predicted by the dispersion
relation.

3. Spurious Modes

As a consequence of temporal and spatial sampling of the electromagnetic field,
not only dispersion errors are introduced, but also spurious modes that may cor-
rupt the numerical solution [69,90]. A detailed analysis of the unphysical modes
that can exist in condensed node TLM meshes was presented in [32]. GERMAN et
al. pointed out that although these unphysical modes theoretically exist, they do
not have a significant influence on practical problems. However, the excitation of
these spurious modes can be generally suppressed by applying a special mapping
of the field excitation to the wave amplitudes of the TLM algorithm [50]. An
alternative way of generally suppressing the excitation of spurious modes consists
in exploiting the inherent redundancy within the SCN-TLM scheme, which was
proposed by RUSSER and BADER [86)].

4. Summary of Characteristic Features of the SCN-TLM Method

Summarizing the theoretical and numerical investigations of the character-
istics of the SCN-TLM method, one is led to the conclusion that the TLM
method with symmetrical condensed node exhibits superior dispersion charac-
teristics when compared to the FDTD method. The SCN without stubs shows no
dispersion along the principle axes at all. In irregularly graded meshes, the SCN-
TLM method introduces significantly smaller propagation errors when compared
to irregularly graded FDTD meshes. Analysing the propagation constants of in-
homogeneously layered waveguides may show bilateral dispersion effects. In the
vicinity of field singularities and media inhomogeneities, the convergence order
may be reduced by an order. However, SCN-TLM allows to use a coarser mesh
in comparison to the FDTD method for achieving the same accuracy, at least
for certain types of problems. The SCN allows a field sampling of all six com-
ponents of the electromagnetic field in one point of space and the modelling of
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boundaries is much simpler when compared to the FDTD method. Although the
SCN-TLM mesh supports unphysical static and propagating modes, their practi-
cal significance, particularly of the spurious propagating modes, is questionable.
The second order convergence of the SCN-TLM method was shown for the SCN
in connection with the bijective boundary oriented field-mapping.

However, a proof of convergence of JOHNS’ original formulation for a cell-
centred field-mapping has not been presented yet, although there have been pub-
lished a number of derivations of the constituting equations of the symmetrical
condensed node. A proof of convergence is of great practical importance, as the
formulation of JOHNS’ with cell-centred mapping is mostly used in practise and
the asymptotic convergence rate influences the overall accuracy of the field com-
putation.

5. Characterization of Planar Microwave Components

Amongst the numerous applications of the TLM method with symmetrical
condensed node to electromagnetic field problems, the characterization of planar
microwave circuits and components plays a more and more dominant role. The
first applications in this field were the computation of the propagation constants
of planar transmission lines such as microstrip and coplanar lines. The ATLM
method was also applied to study coplanar discontinuities [7]. Recently, multigrid
meshing techniques for TLM were studied for the example of microstrip impedance
steps [29]. Multichip-module interconnect-transmission-line crossings were stud-
ied in [57]. The time domain signals obtained from the TLM simulation were used
to generate lumped element equivalent circuits. In [56], the TLM modelling of a
WILKINSON power divider with design frequency of 4-GHz was described. In [20],
the analysis of a planar 3dB-stripline-coupler using a nonorthogonal TLM mesh
was presented. Planar inductors were investigated by BADER using the ATLM
method [5]. A variety of planar structures on general anisotropic material were
investigated by WU et al. [114]. An even more interesting field of research is the
investigation of patch antennas. The TLM method was successfully applied in a
number of cases. H-shaped patch antennas were investigated by LINDENMEIER et
al. using the ATLM method [48]. Patch antennas on ferrite substrates were inves-
tigated by SOBHY et al. [97, 98]. The bandwidth of such antennas can be tuned
depending on the magnetization of the ferrite substrate. This is of particular in-
terest for mobile communication applications. DUBARD and POMPEI reported the
characterization of microstrip antennas using BERENGER’s perfectly matched lay-
ers (PML) to truncate the computational domain [18]. The TLM simulation of
a multi-segment dielectric resonator antenna was compared to solutions obtained
by finite integration techniques and FDTD simulations [94]. Recently, the TLM
method and the integral equation method were hybridized to treat electrically
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large problems. This is particularly interesting for the investigation of electro-
magnetic compatibility problems [75]. Using this method, the radiation from mi-
crostrip waveguides was analysed [76]. The coupling between spiral inductors was
also investigated with the aid of this method [51].



CHAPTER 4

TLM Formulations and Appropriate Function
Spaces

The TLM method with symmetrical condensed node is closely related to dif-
ference methods. This is evident when we reconsider the basic equations of the
TLM algorithm

(4.1) b> =TS]|a>,
(4.2) la> =T|b>
and insert (4.1) into (4.2) resulting in

(4.3) la>=TTS|a> .

This equation constitutes a difference scheme with the incident TLM pulses as
unknowns. If one wants to investigate the convergence of the SCN-TLM method,
the mathematical tools that have been developed to study difference methods are
hence appropriate. Therefore, we want to present the necessary tools provided
by functional analysis in this chapter. Moreover, not only the symmetrical con-
densed node TLM scheme is closely related to finite difference methods but also
many other TLM methods [36, 93, 96]. Approximating a differential equation by
a difference equation always means to approximate the function spaces of the con-
tinuous problem by function space of finite or enumerable infinite dimension [88].
Therefore, we will also construct appropriate function spaces in this chapter for
the approximate solution of an initial value problem (IVP) given by MAXWELL’S
equations using the SCN-TLM scheme.

1. Approximation of Differential Equations by Difference Schemes

Finite difference methods are a universally applicable tool to solve differen-
tial equations approximately. The basic idea of all difference methods consists of
replacing the differential quotients by difference quotients. A system of partial
differential equations can generally be written as a linear operator equation' [22]

I This is of course also true for scalar partial differential equations.

51
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(4.4) Lv =g,

where £ denotes a linear differential operator, v the vector of unknown functions
and g the vector of the known data. Analogously, the approximate system of
difference equations can be written as

(4.5) Qu = gy,

where Q denotes a general difference operator approximating £. The vector w
comprises the unknown lattice functions and g, is the vector of the discretized
data. The corresponding approximation scheme may be represented by

X;)y

(4.6) l l

X —2— W

where X' and ) are the function spaces of the IVP to be approximated and A},
and ), are the function spaces of the discretized IVP [117]. In the case of homo-
geneous problems one usually has X = ) and &}, = ). Using difference methods,
one tries to convert initial value problem (4.4) in the respective initial value prob-
lem of difference equations (4.5). The IVP of difference equations is essentially
an algebraic system of equations®. This means that the discrete problem involves
functions of discrete argument, or functions defined on a grid of points instead
of functions with continuous argument [100]. Therefore, finite difference meth-
ods are also called lattice point methods or grid point methods [118]. Hence, the
function spaces of the continuous problem are approximated by spaces of finite or
enumerable infinite dimension. The following fundamental questions arise, when
dealing with finite difference methods (e.g. [100]),

e construction of the difference operator Q,

e existence and uniqueness of the boundary- and/or initial value problem of
difference equations,

e convergence of the solution of the difference problem to the exact solution
of the original problem,

e convergence order or estimation of the error of the method,

e solution of the difference equations.

The construction of a difference operator consists of two steps. First, a discretiza-
tion of the domain of definition (usually a subdomain of RY x R). This is done
by introducing a cubic or locally orthogonal grid. Second, approximation of the

2This general procedure applies of course also to boundary value problems and to bound-
ary and initial value problems.
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differential operator by appropriate difference operators. There exist a wide va-
riety of methods to derive difference operators, such as PETROV-GALERKIN [80],
TAYLOR-series expansion (e.g.[100]), Finite Volume techniques, conservation law
approaches and many more. Some of these or a combination thereof have been ap-
plied in attempts to derive the TLM scattering operator directly from MAXWELL’s
equations. An overview of derivations of the SCN-TLM method was given in the
previous chapter. In this work we will not deal with such fundamental questions
as existence and uniqueness. The interested reader may refer to the mathematical
literature such as [22]. However, the most important question when dealing with
approximation methods is the question of convergence. There exists a fundamental
theorem for difference methods, known as LAX Theorem, stating that consistency
and stability imply convergence [100, 117]. This theorem is the ‘working horse’ of
the theoretical analysis of difference schemes. The terms convergence, consistency,
and stability will be explained in the next section. The determination of the or-
der of convergence is part of the consistency analysis. The last question, i.e. the
solution of the difference equations is not a matter of issue in the TLM method,
as the iterative TLM scattering algorithm is solvable by definition, as no matrix
inversion is necessary to solve the inherent algebraic system of equations.

In order to be able to answer the question of convergence and accuracy of
the TLM method, one needs to specify the discrete function spaces X, and )
of the above general approximation scheme. Very important is the relation to the
function spaces of the IVP (X and )), as the TLM algorithm involves at least
twelve unknowns per cell and MAXWELL’s equations only six.

2. Consistency, Stability, and Convergence

The terms consistency, stability, and convergence, are illustrated for the ex-
ample of an initial and boundary value problem of the TELEGRAPHER’s equations

oV 1 oI
4. —_— = 1),t
( 7) at CO ax7 z e (O’ )7 > 07
ol 1 0V
(48) a——L—Oa—x, $€(0,1),t>0,
with initial conditions
(49) V(LL’,O) :fV(x)a I(LL‘,O) :f[(il,'), S [O: 1]
and periodic boundary conditions
(4.10) V(0,t) =V (1,¢), I1(0,t) =1(1,¢).

The discrete problem writes
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A .

(4.11) Uk+1;1 = Uk — Lo 2Atx (Gki+1 — Tkii—1),
At

(4.12) U415 = Tkl — Com(uk;lﬂ — Uk;i—1).

The initial and boundary conditions of the problem are approximated by

(4.13) Uo;1 = fu(lA:B), io;l = fz(lALB), l == O, ceey M,

(4.14) Ur+1;0 = Uk41;1, ik+1;0 == ik+1;1, k= O,

2.1. Consistency. In the course of a consistency analysis, one can see how
well a difference scheme approximates the desired partial differential equation
[100]. For this, the truncated TAYLOR series expansion of the exact continuous
solution is inserted into the finite difference equation. From the truncated TAYLOR
series exemplified at the voltage on the transmission line

(4.15) Vi1 = V(lAzL', (k + 1)At) =

oV At oV? At?
IAz, kAL —‘ = =
ViiAz, )+ Ot linz kat 1! 0t line,kae 2!
follows the difference quotient
Viv1g — Veg OV At OV?
4.16 7 L ‘ at .
( ) At Ot liaz, kAt + 2 0t2 linz, kAt
This can be written in ’big (O’ notation as
Vit — Vi, ov

(4.17) bl Thit + O(AY),

At Ot liaz kAt

where it is assumed that the higher order derivatives of V' at points (IAx, kAt)
are bounded. This means that the error introduced by the finite difference ap-
proximation is bounded by |err| < K |At|, where K is a constant. Using the same
argument, one arrives at

Visigr — Veg—1 OV

2
2Ax 0z ling kAt +0(Az7)

(4.18)

for the approximation of the spatial derivative. With this, the following approxi-
mation
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oV 1 01
4.19 —‘ & -
( ) Ot linz,kar  Co Ox liaz, kAt
Vit = Vg | 1 Teag1 — k-1 2
A7 + Co 5 AL + O(At) + O(Az”),
oI 1 oV
120 & EEAS -
( ) Ot linz,kat Lo Ox LAz, kAt
Ik —Ikg | 1 Viggr — V- 2
BN + I 5AL + O(At) + O(Azx™)

follows for the TELEGRAPHER’s equations (4.7) and (4.8). Thus, the finite differ-
ence scheme (4.11) and (4.12) approximates the TELEGRAPHER’s equations (4.7)
and (4.8) to the first order in At and the second order in Az. In other words, if the
space-time mesh is refined by a factor of two, the approximation error decreases
linearly as the lowest order term dominates the error asymptotically.

2.2. Stability. The definition of stability for a two level difference scheme
of the form

(4.21) Ur+1 = Q’u,k, k 2 0

is according to [100]: “A difference scheme (4.21) is said to be stable with respect
to the norm || - || if there exist positive constants Az and Ato, and non-negative
constants K and 3 so that

(4.22) 1] < Kefluoll,

for 0 < (k+1)At, 0 < Az < Az, and 0 < At < Atp.”

2.3. Convergence. We define the vectors ur = (..,uk;_l,uk;o,uk;l,..)T
and vy, = (.., Ug,_1, Vk;0, Uk:1,..) . . Following Thomas [100], “A difference scheme
Qruur;y = G, approximating the partial differential equation Lv = F is a con-

vergent scheme of order (p, q) if for any t, as (n + 1)At converges to t,

(4.23) ki1 — vega|l = O(AZP) + O(AL?)

as Az and At converge to 0”. We see that the definitions of stability and conver-
gence involve a norm. So before discussing convergence, it is necessary to define
an appropriate norm and hence an appropriate function space.
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2.4. The Lax Theorem. Convergence, consistency, and stability are con-
nected via the LAX Equivalence Theorem, which states [100,117], “A consistent,
two level difference scheme for a well-posed linear initial-value problem is conver-
gent if and only if it is stable.”

For proving the convergence of TLM, a somewhat restricted version of the above
theorem is even more useful [100], i.e. “If a two-level difference scheme

(4.24) Up+1 = Qui + AtGy

is accurate of order (p, q) in the norm || - || to a well-posed linear initial-value
problem and is stable with respect to the norm || - ||, then it is convergent of order
(p, q) with respect to the norm || - ||.” Using this theorem, the convergence of the
SCN-TLM scheme in the formulation of JOHNS will be proven in Chapter 5.

3. Construction of Appropriate Function Spaces

When defining the terms consistency, stability, and convergence in the previous
section, it has become evident that proving convergence is not possible without
specifying the function spaces comprising those functions that are admissible solu-
tions of the difference problem and the approximated differential. In this section,
appropriate function spaces for proving the convergence of the SCN-TLM method
are constructed.

3.1. Function Spaces for Maxwell’s Equations. Analysing electro-
magnetic field problems means essentially solving the following IVP involving
MAXWELL’s equations [82]

(425) €W = V x H,
OH ,
(426) “W = -V X E,

with appropriate initial conditions,

(4.27) E(r,t =0), H(r,t =0),

and auxiliary conditions,

(4.28) V.-E=0 and V- -H=0.

Electric or magnetic losses are neglected, as they have no influence on the class
of functions. Introducing an operator notation for (4.25) and (4.26) yields the
operator equation
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(4.29) D.f =Drf
or
(4.30) D.f -Drf=Lf=0.

The state of the electromagnetic field is determined by elements f of a function
space at every point in space and at any time. The vector f can be regarded as
a two-tuple of two vector functions or as a six-tuple or six element vector of six
scalar functions

(4.31)  f=[E@),H@)]" = [E°(r), E(r), E*(r), H" (r), H (v), H* (r)] "

with » € R®. The differential operators D; and Dr write in matrix representation

(3¢ 0 0 0 0 0)
0o 2 0 0 0 0
o0 2 0 0 0
(4.32) Di=|, o & 2 o o]
o 0 0 0 2 o
\0 0 0 0 0 2Z)
0 0 0 o -2 Z
( 0 0 o £ 0 _j%\
4.33 pe—| 0 9 O & & O
(4:33) Tl 2 -2 0o 0 0
—Baa—z o £ 0 0 0
2 -2 0 0 0 0/

Introducing operators only makes sense, if the space on which their elements act
is defined. Following (4.31), each scalar component of the electromagnetic field
is described by a scalar function on R3. Hence, it is sensible to admit all square
integrable functions of £2(RR?) 3[16,116]. Consequently, f is an element of the
space

(4.34)  Hs = {52(1&3) x L2(R3) x L2(R®) x L2(R®) x L2(R?) x 52(1&3)}.

It is necessary to equip this HILBERT space with a scalar product of physical
meaning, for example

3The HILBERT space £2(IR) is the space of all LEBESGUE measurable functions u : R — R,
that are summable in the sense of fz|u(a:)|2da: < oo with pointwise operations and inner
product (u,v) = [Zu(z)v™(z)dz.
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(4.35)  (f1, f) = / /7 (Ei(r)Es(r) + Hi(r)Hy(r))d*r =

///(Ei”E;“* +EYEY + FiES + HEHE + HYHY + HIH;)dr,

where E; = E; (r),H} = HJZ (r) with 4 = x,y, 2z;j = 1,2. This expression equals
the field energy functional. In order to describe an IVP, it is also necessary to de-
scribe the time evolution. Usually, time evolution is described in BANACH Spaces,
which are complete and equipped with a norm®* [82,117,119]. The vector f(t)
represents the field state at all times . Hence, the time evolution is described by
vector-valued functions

(4.36) t — s

that are elements of this BANACH space. The family of LEBESGUE spaces

(4.37) L,(0,T;Hs)

with 1 < p < 0o is an appropriate choice for describing time evolution processes
[82,117,119]. These are the spaces of all measurable (vector-valued) functions
£:10,T [— Hs with

(4.38) 191, = ([ 15l at)? <,

where |[|-[|;, . denotes the norm in Hs, i.e.

@39) N, = ( [[[1B°@F +1B/ @) + 1B )

+ [H () + | HY ()] + [H (r)]” ).

Again, p = 2 is the appropriate choice for specifying the required space. Conse-
quently, the initial value problem constituted by eqn. (4.25) and (4.26) is ade-
quately described in the LEBESGUE space

(4.40) Hu = L2(0,T; (L2(€2))°),

“BEvery HILBERT space is also a BANACH space.
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(a) cell-centred grid (b) uniform grid

FiGURE 4.1. Cell-centred and uniform grid corresponding to
cell-centred and boundary oriented field-mapping in the SCN-
TLM method.

taking the necessary smoothness conditions for the admissible functions solving
the problem into account. The restrictions on the admissible functions for solving
the IVP of (4.25) and (4.26) are discussed in detail in Appendix A. In the sequel,
the required smoothness of the considered solutions is assumed.

3.2. Function Spaces for the Discrete IVP. In this section, the spaces
Xy, and Yy, (refer to the general approximation scheme (4.6)) that are appropriate
for investigating the convergence of the TLM method with symmetrical condensed
node are constructed. Suitable spaces are discrete LEBESGUE spaces, which are
essentially sets of lattice functions with appropriate norms and inner products
[118].

3.2.1. The Discretized Domain. In the TLM-method with symmetrical con-
densed node, the field-mapping between the discretized electromagnetic field com-
ponents and the TLM wave pulses defines the grid where the approximate discrete
solution of MAXWELL’s equations is defined. In Chapter 2, the cell-centred field-
mapping and the boundary oriented field-mapping were introduced. Defining the
field-mapping at the centre of the TLM cells constitutes a so called cell-centred
grid as depicted in Fig. 4.1(a). Defining a bijective field-mapping of the tangential
field components in the centre of the cell faces constitutes a different grid, which
is called uniform grid according to [100]. This grid is shown in Fig. 4.1(b). The
fact that the CFM and the BOFM define two different grids indicates that these
two field-mappings also imply different approximations of MAXWELL’s equations.

3.2.2. Discrete LEBESGUE Spaces. The discrete initial value problem can be
described appropriately in discrete LEBESGUE spaces. These spaces comprise all
admissible lattice functions. Lattice functions are functions, whose continuous
values are only known on a grid, i.e. at discrete points (see Appendix C). Discrete
LEBESGUE spaces are essentially sequence spaces equipped with a special norm.



60 4. TLM FORMULATIONS AND APPROPRIATE FUNCTION SPACES

For this, the construction of vector-valued sequence spaces is recalled in Appendix
B. The only difference between discrete LEBESGUE spaces and sequence spaces is
a slightly altered definition of the norm and the inner product. This is due to the
fact that the ¢, norms diverge for Az — 0 [100]. As this is a serious drawback
when studying convergence, the norms of discrete LEBESGUE spaces are weighted
by the spatial increment Az

S 1
(4.41) I2ll, A, = ( 3 Jzal? Az ) v
n=1

This refers to the one-dimensional case. When more dimensions are considered,
the norm is weighted accordingly. This is explicitly shown in Appendix D.
The discrete initial value problem, corresponding to (4.30) can be written as

(442) fk;l,m,n = Q fk—l;l,m,n’

where k denotes the time step and (I,m,n) the cell, where the field components
are located at points specified by a cell-centred grid or uniform grid. The operator
Q represents an arbitrary difference operator. In Section 3.1, it was shown that
the solutions of the IVP (4.25) and (4.26) are sufficiently smooth functions of

(4.43) Ly (0,T; (L2(2))°),

where Q denotes a bounded region in R®. The discrete analogue of this space is
the discrete LEBESGUE space

(4.44) Cp,at (0,T; (€2,a0nya:(1))°)

where I denotes the set of indices, describing the grid according to (C.1) with
I € R3 e.g I =273 Inthe TLM algorithm, we have more unknowns than in the
continuous problem given by MAXWELL’s equations. Hence, a higher dimensional
space is required. Therefore,

(4.45) Huw = Lo,at (0,T; (bo,a0nya= (1))

is the appropriate space for solving the discrete initial value problem using the
TLM algorithm.

3.2.3. Definition of the Bases of the TLM State Space H.,. In order to use the
HILBERT space notation introduced in [87], we need to choose the appropriate base
vectors for the TLM state space Hu, introduced by KRUMPHOLZ [44]. Moreover,
a suitable norm and inner product need to be defined for this space. The function
vn = @(xo + n Azx) represents a function of discrete argument of ¢2 A, (D). The
set
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(4.46) By s, = {Lpn = (.,0,0,0,2n = 1,0,0,0,..),n € JN}

represents a base of £2 A (ID). With the aid of this one-dimensional base, we can
construct a base for the product space (£2,a5)"

(447) By, , v =

{{(‘pllanlaml = ("'7050707xl1,n1am1 = 17070)07 ")7l17n17m1 € IN}
X {(1012an2am2 = (“')050) 0, Lig,ng,mg = 1)0)0)0)“)3l27n2)m2 € IN}
X o e
X {(plN,nNamN = (---,O,O,nglN,nN,mN =1,0,0,0, .-),lN,’I’LN,’ITLN € ]N}}

An element ¢ of B, A~ 18 an N-fold cross-product of lattice functions whose
values are defined at discrete points. The set of indices is enumerable infinite.
Therefore, it is possible to reorder it arbitrarily [82]. We want to arrange the
index set in that way that an element (; j » = ((iAz, jAy, kAz) is assigned to the
number tuple (4, j, k), i.e. to the location of a TLM cell at (iAz, jAy, kAz). Using
bra-ket notation, the base vectors write

(4.48) l,m,n> = mn.

An inner product of (f2,az,Ay,A2)" is given by

(4.49) <flg> =2 3> (@l mnYimna) AzAyAz
l m n

with the state vectors

(450) |f>= > @imall,mn> and  |g>= > gy, llLmn> .

I,m,n I,m,n

The vectors ®im,, and y, ,, , comprise the components of the state vectors at
point [, m,n. The bases are constructed such that they constitute a complete
orthonormal system. Consequently, the relations concerning orthogonality and
completeness are fulfilled, which is easily verified

(4.51) <p,q,r|ll,m,n> = 6p10gmorn ArAYyAz ; I, m,n,p,q, 7 € Z

and
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(4.52) ZZZ:|l,m,n><p,q,r|:I;l,m,n,p,q,reZ.

l,p m,g n,r

Describing the discrete time evolution, one proceeds analogously. The vector-
valued functions of f>a¢ ({k}; (£2,a2,ay,4:(D))") on domain D = Z* C R?,
are elements of the sequence of LEBESGUE spaces (£2,azayaz(I))f, indexed by
k C INo. In the sequel, k is element of Ix,, = {k|k € INo}, describing a BOFM
based approximation with uniform grid and I.., = {k £ 1 | k € No}, describing

a CFM based approximation with cell-centred grid. A base for this space is given
by

(4.33) By, \,():(t2,anapaz(@)N) =
{{ o0 =(0,0,0,2% = Gnn,0,0,0,..),
eret = (0,0,0,24 1 = (mn,0,0,0,.) )5
k C Nol,m,n € Z}.
In bra-ket notation the base vectors write

(4.54) |k;l,m,n> = @,
(4.55) |k £i;l,m,n> = Prt 1+

The norm of this space is defined by

(o9}

2
(4.56) ully, = Yo lMurllfey oonyanoyy At

ke[kug ’Ikccg

with ug € (2,Azaya2(D))x . The inner product in this space is given by

(4.57) <flg>= ) (<fk|gk>(e2,MAyAz<n>)fj)kAt'

kelkug ’[kccg

The base is defined such that it constitutes an orthonormal system. Hence, the
orthogonality and completeness relations are fulfilled, i.e.

(4.58) <ki;li,mq, n1|k2; la,ma,n2> = 6k1k25l1l25m1m26n1n2 A.’EAyAzAt
V li,mi,n1,l2,me,ne € Z Nk1,k2 € Iy, I,

and
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(4.59) Z Z Z Z = |ki;li, m1,m1 > <ko;la,ma,ma| =1

k1,k2 l1,lo0 m1,ma ny1,na

V li,mi,n,la,me,n2 € Z/\kug,kccg € Ikug’Ikccg'

The operator I denotes again the identity operator. With the definition of the
appropriate function spaces, suitable norms for proving the convergence of the
SCN-TLM scheme were introduced. The convergence of the TLM-method using
the CFM in these norms will be shown in the following chapter.
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CHAPTER 5

The Convergence of the SCN-TLM
Formulation of Johns

There has not been given a proof of convergence of the SCN-TLM formu-
lation with cell-centred field-mapping yet, although it is presumably the most
widely used TLM method and there have also been presented a number of formal
derivations thereof. However, in all these derivations apart from JOHNS’ original
introduction and LOVETRI and SIMONS’ conservation law approach, a boundary
oriented field-mapping was additionally employed. In this chapter, the conver-
gence of Johns’ original SCN-TLM formulation towards solutions of MAXWELL’s
equations is proved for the first time. The proof is performed in two steps. First,
the convergence of a mapping induced finite difference scheme (MIFD) of the
SCN-TLM algorithm is shown by using the techniques presented in the previous
chapter. The MIFD is derived by mapping between the TLM wave pulses and the
electromagnetic field components at every time step and not just at the begin-
ning and the end of a simulation. Second, it is shown that the distance between
the original SCN-TLM method and this mapping induced finite difference scheme
approaches zero in the norm of the previously constructed function spaces when
taking the limit.

In order to show the relation between the involved function spaces, the ap-
proximation scheme for the classic JOHNS’ formulation can be envisaged as

X —£ 5 x

! !

(5.1) X X,

(TTS)*

The space X is the LEBESGUE space

65
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(5.2) X = L(0,T; (L2(£2))°)

of the continuous IVP with MAXWELL’s equations, where 2 denotes a bounded
region in R>. This space was constructed in the previous chapter. The space X
is its discrete analogue given by eqn. (4.44)

(5.3) Xn = Lo, a0 ({k}; (£2,Am,Ay,Az(G))6)-

The integer set {k} denotes the discrete time interval. The grid of discrete points
where the electromagnetic field is sampled is denoted by G C €2, which describes
a cell-centred grid as depicted in Fig. 4.1 (a). The TLM state space H., of the
TLM state vectors |a> and |b> is the space (4.45)

(5.4) Huw = L2,at({k}; (£2,82,89,8:(G))?),

with ¢ = 12 or 18, depending on the considered TLM-SCN method. The integer
set {k} denotes the discrete time interval and G C € denotes the set of points,
where the TLM nodes are located. The norm in the TLM state space is defined
by

2
(5.5) lu> I, = \/Z > 12, .. .. A,
k

with
) .
(5.6) k> g, oo ayae = Z u] . o [PATAYAzZ,
l’m’n’j
and
(5.7) lu>= " Uk mnlk;l,m,n>,
k,l,m,n
as shown in the previous chapter. The vector Uk, m,n = [Uki . m.ns ...,ui;l,m,n]T

denotes an arbitrary TLM state vector.

1. Proving Convergence via Mapping Induced Finite Difference
Schemes

The TLM algorithm is characterized by the two operations scatter and connect

(5.8) b> =TS|a>,
(5.9) la> =T[b>.

Inserting (5.8) into (5.9) yields a finite difference scheme of the incident TLM
wave amplitudes ax;;,m.n
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(5.10) la>=TTS |a> .

The idea of writing the TLM algorithm as an equivalent finite difference scheme
involves the mapping of the TLM operator to the equivalent difference operator for
each time step. Consequently, the operation conditions are altered such that before
each scattering event, the TLM state variables are mapped to the discretized field
components and the TLM mesh is re-excited immediately again at every time step.
In practical field computations the TLM mesh is excited only at the beginning
of the simulation and the field is sampled only at the end. The field and wave
amplitudes are related by the cell-centred field-mapping

(5.11) la> =Q[f>,
(5.12) |f> = Pla>.

Applying the mapping operator P from the left side to (5.10) and substituting
(5.12) on the right side of (5.10) results consequently in the mapping induced
finite difference scheme

(5.13) |f>=PITSQ|f>,

or

(5.14) Y lfe> =) PTSQ|fi>,
k k

better showing the nature of a finite difference scheme. The approximation scheme
of the MIFD scheme is given by

x -t 5 x

(5.15) l l

k
X (TPTSQ) X

As

(5.16) QP +#1

holds [44] (I denoting the identity operator), one has to consider the differences
between the mapping induced finite difference scheme and the classic TLM scheme
before one can draw conclusions on the properties of one scheme from the prop-
erties of the other scheme. Using LAX’s theorem, we can prove the convergence of
the mapping induced finite difference scheme via consistency and stability. This
means
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(5.17) lim [[(PTTSQ)* £(0) - F(kAL)]| — 0,

where f(0) is the discrete initial field distribution and f(kAt) is the discrete field
distribution at observation time kA¢. Convergence of the TLM method means

(5.18) dim |P(TTS)*Qf(0) — f(kAt)|| — 0.
_}

Consequently, we need to show that

(5.19) dim I(PTTSQ)" — P(TTS)* Q|| — 0.
._)

This can be accomplished by exploiting the boundedness of the operator product
and operator norm estimations for both the TLM method without stubs and with
stubs.

2. Convergence of the TLM Method without Stubs

In this section, the basic considerations for the formulation of the SCN-TLM
method without stubs are summarized and the convergence of the scheme is shown
using the procedure just described. We will find out that the MIFD scheme is
the well known LAX-FRIEDRICHS scheme. Then, it is shown that from the con-

vergence of the mapping induced finite difference scheme the convergence of the
TLM method indeed follows.

2.1. Mapping Induced FD Scheme of SCN-TLM without Stubs.
Recalling Chapter 2, the scattering matrix of the TLM-SCN algorithm without
stubs is given by

(5.20)
(00 0 0 0 0 : -2 0 o0 % %\
o o o o O 0 -3 + 0 0 3 3
o o o o ¢ +£ 0 0 L -3 0 0
o o o o 1 <+ 0 o -2 I 0 o0
o o <+ +£ 0O O O O O0 0 I -3
s=|°% © 5 3 0 0 0 0 0 0 -1 2
A B R A B
2 2 2 2
o o ¢+ -2 0 o L L 0 0 0 0O
o o -+ L& 0o o L 4+ 0 0 0 O
1 1 1 1
SO R A A
2 2 2 2

The connect operator I' writes in matrix representation



2. CONVERGENCE OF THE TLM METHOD WITHOUT STUBS 69

—

—

—-

(521) T =

O OO OO O OO oo
O OO OO OO oo o

—

o

Z

\ ARY,

The cell-centred mapping between electromagnetic field components and TLM
wave amplitudes is given by

cococcococoococo™o
Coococococoo0c0 oo M
cococoocococoMooo
cCoococococococo Moo
oooooo"iooooo
coococococoMoooo
coocooNocoooocoocoo
coococoMooocoocoo
coNococoocoooocoocoo
OCo o Nococococooo o

010 0 0 1\T
010 0 0 -1
001 0 -1 0
001 0 1 0
001 1 0 0

r 110 0 1 =1 0 o0
(5.22) P=@Q =511 00 0 o -1
1 00 0 0 1
100 0 1 0

1 00 0 -1 0
01 0 =1 0 0

\0 10 1 0 0/

According to (5.14) and (5.20)-(5.22), we can calculate the mapping induced finite
difference operator of the SCN-TLM method without stubs, resulting in

Dy z 0 0 0 —Dz Dy
0 Dxz 0 Dz 0 —Dx
1 0 0 Dxy —-Dy Dx 0
(5.23) PT'SQ = 1 0 Dy Dy Dyz 0 0 )
—D 0 Dx 0 Dxz 0
Dy —Dx 0 0 0 Dxy

with the scalar difference operators
Dx=X"-X, Dxy=X'+X+Y'+Y,
(5.24) Dy =Y'-Y, Dxz=X'+X+2Z"+2Z,
Dz=2"-2, Dyz=Y'+Y+ 2" +2Z.
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The operator (5.23) is equivalent with the difference operator of equation (31)
given in [53].

2.2. Consistency of Mapping Induced FD Scheme. To prove consis-
tency, we expand the sampled exact continuous solution at the point (k;I, m,n)
in a TAYLOR series, insert this solution into the finite difference scheme, and let
At — 0 and Al — 0. After taking the limit, the approximated partial differen-
tial equation should remain [100]. Written componentwise, this yields the follow-
ing finite difference scheme. The first three MAXWELL equations are approximated
by

(525) Elf—l—l;l,m,n =

1 x T T T
” (Ek;l,m+1,n+ Ek;l,m—l,n + Ek;l,m,n—l—l + Ek;l,m,n—l)

1
1 At 1 At

LAt gy —HY y= 28 (g _H:
. . — k;l 1 kil,m—1
€0 2Al ( kil,m,n+1 kil,m,n 1) €0 2Al ( ilh,m+1,n XD an) )

(5:26) By i1y mn =

1
Yy Yy Yy Y
Z (Ek;l+1,m,n+ Ek;l—l,m,n + Ek’;l,m,n+1 + Ek;l,m,n+1)

+5E (Hedmon41 — Hk;l,m,n—l)_gm (Hisittmm = Hisim1,m.n)

(527) Ez+1;l,m,n =

1
Z (Elg;l+1,m,n+ EZ;I—l,m,n + Ez;l,m+1,n + Elz;l,m—l,n)
1 At . 1 At
~ oAl (HEt,m+1,n — Hk;l,m—l,n)+g2—m (H i 1,mon = HY o 1mim) »

and the second three MAXWELL equations are approximated by

(528) Hlf—l—l;l,m,n =

1 T T T T
” (Hk;l,m+1,n+ Hk;l,m—l,n + Hk;l,m,n—l—l + Hk;l,m,n—l)

4
1 At 1 At . .
+'u_0m (Ez;l,m,n+1 - Ez;l,m,n—l)_u_om (Ek;l,m+1,n — Ek;l,m—l,n) ,
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Y —
(5.29) Hyy1gmn =
1
Y Y Y Y
N (Hk;l+1,m,n+ Hk;l—l,m,n + Hk;l,m,n+1 + Hk;l,m,n+1)

4
_1At 1 At

po 2A1 (Exiummns1 — Elf;l,m,n—l)_l-p_()?—Al (Bktttmn = Brg—t,min)

(530) Hl§+1;l,m,n =
1
n (Hllcl;l—}—l,m,n_i_ Hllcl;l—l,m,n + ng;l,m—}—l,n + lec/'l,m—l,n)

4 )
1 At . . 1 At
+/,L_02_Al (Ek;l,m—l—l,n - Ek;l’m_l’n)_lL_02_Al ( z;l—l—l,m,n - Ez;l—l,m,n) :

This scheme is exactly the well known LAX-FRIEDRICHS finite difference scheme.
A thorough treatment of its properties can be found in [100]. For showing that
the LAX-FRIEDRICHS scheme is indeed a consistent scheme for approximating
MAXWELL’S equations, we develop the sampled exact continuous solution E®,
EY, E*, H®, HY, and H* in a TAYLOR series. For example, the expansion of the
E?® component at point (I, m,n) writes

(6.31)  Eki1a.mn = E°((k+1)At;l1Az, mAy,nAz) = E*(kAt; IAz, mAy, nAz)
OE” At 0’E" A_t2 n
ot kAt I Az, mAy,nAz 1! ot? kAt Il Az, mAy,nAz 2!

The expanded field components are inserted into (5.25) to (5.30). This yields

Al?

HZ
+ O(AP®) + 0
kAIALMALRAL oy

OFE"
ot

(5.32) €0

kEALIAL,mMALnAL
oHY
0z

+O(A),
EALIAL, mALnAl

EY Al?
0 +omn+mz%::

(533) o,

EALIALmALRAl
OH”"
0z

+or) - 28

O(AP),
EAGIALmALRAL or +0O( )

EAGIALmALnAl

+O@n+m%§p:

Yy
+ O(AP®) + oH

EAHIALmALRAL 0T |kALIALmALRAL

OE~*
Ot |kAtiAlL,mALRAL
OH”"
Oy

(5.34) eo

+ O(APP),
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OH*® Al?
5.35 O(A —) =
( ) Ho Ot |kAtIALmALRAL +0(At) + O( At )
OFEY 9 OE* 5
O(Al7) — O(Al
0z lkAtiAlLmALRAL +O(Al) Oy lkAt;iAlLmAlLRAL +0(An),
OHY Al?
X At —) =
(5.36) o ot ‘kAt;lAl,mAl,nAl +0(at) +0( At
OE”* 9 OE* 5
— O(Al O(Al
0z |kALIALmALRAL +O(A) + 0T |kALIALmALRAL +O(Al),
OH* Al?
5.37 O(At —) =
( ) o Ot kAt iALmALRAL +0(At) + O At )
OE” 9 OEY 5
O(Al") — — O(Al7).
0y kALIALMmALRAL +O(Al) 0% |kAt;IALmALRAL +0(A)

As expected from a LAX-FRIEDRICHS scheme, the inherent equivalent finite dif-
ference scheme of the classic free space TLM is first order accurate in time and
O(AL) in space. By taking the limit At — 0 and Al —s 0, the higher order
terms vanish, and MAXWELL’s equations remain, i.e.

T Y z
(5.38) €0 BaEt = B;IZ +6;; ;
y T z
(5.39) €0 a(,iz = a;iw_a;iya
(5.40) €0 aaEt Z—BBI_; 8;1 )
T Y z
(5.41) m = e =
y T z
(5.42) o 8;1 :_aéiw +8£:y,

2.3. Stability of Mapping Induced FD Schemes. LAX’s theorem re-
quires that a consistent finite difference scheme is stable for being convergent.
The SCN-TLM scheme without stubs is stable by definition as a consequence of
its energy conserving nature and the fixed stability factor. As the LAX-FRIEDRICHS
scheme is dissipative, the mapping induced finite difference scheme of the SCN
without stubs is also stable and hence convergent.
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2.4. Convergence of the SCN-TLM Scheme without Stubs. In the
previous section, we have shown using the LAX theorem that

(5.44) lim [[((PTTSQ)" £(0) - f(kAL)|| — 0.

In this section, we want to show that this also implies the convergence of SCN-
TLM scheme

(5.45) lim [|[P(TTS)*Q£(0) — f(kAt)| — 0.

Consequently, it remains to be shown that the difference between the two differ-
ence operators vanishes in the norm of A} when At — 0, hence

(5.46) lim I(PTTSQ)" — P(TTS)" Q|| — 0.

Exploiting the boundedness of the operator product in (5.46) yields
I(PTTSQ)" - P(TTS)*Q||
(5.47) = ||PT*(rSQP —TS)" 'I'SQ||
<[ PT*Y|(TSQP —TS)[I*~H|TTS|lIQ]l-
Obviously, all norms on the right side of inequality (5.47) are bounded. Now we
need to show that one of the terms on the right side of the inequality becomes

arbitrarily small and constitutes an upper bound for the distance between the two
schemes. The induced norm of an operator is defined by [100]

(5.48) Al = sup [[Az]|.

Izl <1

As this operator norm cannot be calculated directly, we can estimate it by the
norm of the sum of the columns

(5.49) Sup [Az]| <> IAs1llAel,
wli< i

as a matrix representation of the operators P,I',S,Q is given. The \; denote
constants. We will focus on the factor ||[I'SQP — I'S|| on the right hand side of
inequality (5.47). For j = 1 we get

(5.50) |[(TSQP —TI'S)ei||

2¢0)2 A¢3
RS AR s Y2+ |~ YT 4| = 22 4| - ZTP) Ay

It is only summed over [, m,n (see the definition of the norm in H., (5.5), (5.6)),

since the operators T', S, Q, P act on (£2.az Ay, a-(G))'?. Taking the limit, Az,
mAy, nAz converge against the width of the domain in directions z, y, z (assuming
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a block domain). Exploiting the fixed relation between Al and At, we are left with
VAt C;. The constant Cs denotes the squared absolute value of the shift operators
in (5.50). The same results for all other terms and hence, we have an upper bound
of the order O(V/At).

2.5. Order of Accuracy Estimation. In the previous sections, we have
shown that for the mapping induced finite difference scheme

(5.51) [(PTTSQ)" £(0) — f(kAL)|| < O(At)
holds and that the relation
(5.52) [(PTTSQ)" £(0) — P(TTS)*Qf(0)|| < O(VAY)

is fulfilled for the distance between MIFD and the TLM scheme. With this, we
want to estimate the asymptotic convergence order of the SCN-TLM scheme with-
out stubs, yielding

|P(TTS)*Q£(0) — f(kAL)|
= |P(TTS)*Qf(0) — (PTTSQ)" £(0)
+ (PTTSQ)" £(0) — f(kAt)]|
< |P(TTS)* Qf(0) — (PTTSQ)" £(0)]|
+ |(PTTSQ)* £(0) — f(kAt)]|
< O(VAY).

Surprisingly, the SCN-TLM scheme is asymptotically only of the order of O(v/At),
as this term dominates for small At¢! At first sight, this appears to contradict com-
mon belief, but from the numerical studies presented in Chapter 7, this asymptotic
rate of convergence can be experimentally verified. We can envisage this such that
not mapping between the discretized field components and the TLM wave am-
plitudes at each time step adds an error term with a small constant of the order
O(V/At) to the first order equivalent finite difference scheme (5.25) to (5.30) that
otherwise cancels.

(5.53)

3. Convergence of the SCN-TLM Method with Stubs

The proof of convergence for the stub-loaded SCN-TLM method runs com-
pletely analogously as the one just presented for the SCN-TLM method without
stubs. First, the mapping induced finite difference scheme for the SCN with stubs
is derived and then its consistency shown. Finally, the convergence of the SCN-
TLM method with stubs is shown from the mapping induced finite difference
scheme exploiting again the boundedness of the operator product and operator
norm estimations. First, we will show the convergence of the SCN-TLM method
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without losses and second, the convergence of the SCN-TLM method considering
ohmic losses is proved.

3.1. Mapping induced FD Schemes of SCN-TLM with Stubs. When
ohmic and magnetic losses are included, we consider the extensions proposed by
NAYLOR and DEsAI [67]. For calculating the mapping induced finite difference
operator PT'SQ as in (5.23), the operators P, I', S, @ for the SCN-TLM method
with stubs can be found in Sections 3 and 4 of Chapter 2.

3.2. Consistency of Mapping Induced FD Scheme. Again, to prove
the consistency of the MIFD scheme with MAXWELL’s equations, we expand the
sampled exact solution at point (k;1, m,n) in a TAYLOR series, insert the expanded
sampled exact solution into the finite difference scheme, and take the limit At —
0 and Al — 0. For simplicity, we set Az := uAl, Ay := vAl, Az := wAl in the
sequel.

3.2.1. Mapping Induced FD Scheme of SCN-TLM without Losses. Evaluating
(5.14) for both o = 0 and o,, = 0, yields the following finite difference scheme
in componentwise notation

T T
Ek+1'l m,n — Ek;l,m,n

U re - .
w 2Zy ( kil,m+1,n — 2-E’k';l,'m,n + Ek;l,m—l,n)
'Uf Ta:z
(554) v 2Z ( kil,m,n+1 — 2El€;l,m,n + Elzg;l,m,n—l)
T
- % ( z;l,m,n+1 - Hl:g;l,m,n—l)
e
+ Ty (leﬂ;;l,m+1,n - Hg;l,m—l,n) )
with the stability factors
1 At 1 At
9.99 Toy = ———— — and Ppy = ———— ——
(5.55) Y eohogrs Ay gohogre Az’
EI:Z+1 il,m,n = Ez;l,m,n
2 Tve (g —2EY EY
+ E 2Z ( kil+1,m,n k;l,m,n + k;l—l,m,n)
vr
5.56 + - = (Elg;l,m,fﬂ—l - 2E’Iz;l,m,n + Ez;l,m,n—l)
( ) u 229
r T
+ ;z (Hk;l,m,n+1 - Hk;l,m,n—1)
Tyz

- 9 (leﬂ;;l+1,m,n - lec:;l—l,m,n) 3
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with the stability factors

1 At 1 At

G5 = T T e A2

z z
Ek+1;l,m,n = Ek;l,m,n

+ — 55 (Biasimn = 2Bkt mn + Eii-1mn)
- =t (Hfymt1,n = Hitmo1,0)
+ me (Hz;l“,m,n - Hz;l—l,m,n) )
with the stability factors
(5.59) = 1 At and . 1 At

eohoer. Ax Y eohoer. Ay’

T T
Hk+1;l,m,n - Hk;l,m,n

U ZO"“:cy P z x
( kil,m+1,n — 2-Zq'k';l,'m,n + Hk;l,m—l,n)

w2
u Zo’l";;z T T x
(560) + Z 9 (Hk;l,m,n+1 - 2Hk;l,m,n + Hk;l,m,n—l)
Tze
+ T (Ez;l,m,n—l—l - Ez;l,m,n—l)
Toy

—_ 7 (Ez;l,m+1,n - Ez;l,m—l,n) ’

with the stability factors
1 At . 1 At

(5.61) Toy = ———— — and T, = —
Y pohoptre Ay % pohopre Az’
K — Yy
Hk+1;l,m,n - Hk;l,m,n
v 20Ty 70y y y
E 9 (Hk;l—i—l,m,n - 2Hk:;l,m,n + Hk;l—l,m,n)
v ZoTy, y y y
(562) + E 9 ( kil,m,n+1 2Hk;l,m,n + Hk;l,m,n—l)
’r.*
Yyz T T
- 9 (Ek;l,m,n+1 - Ek;l,m,n—l)
v (g EY
+ ( kal+1aman - k,l—l,m,n) )



3. CONVERGENCE OF THE SCN-TLM METHOD WITH STUBS 7

with the stability factors

1 At 1 At
5.63 = — d - =
(5.63) Ve T ohopiey Ax " VT Lohopiry A2
and
Hlj+1;l,m,n = Hlj;l,m,n
w ZOT':I; z z z
+ ; 9 (Hk;l+1,m,n - 2Hk;l,m,n + Hk;l—l,m,n)
(5.64) t o “ (Hitmont1 = 2HE g mon + Higtmon—1)
T: xr xr
+ 2y (Ek;l,m+1,n - Ek;l,m—l,n)

*

r
- % ( Z;l—l—l,m,n - Ez;l—l,m,n) ’
with the stability factors

1 At X 1 At

5.65 Ty and T, = —.
(5.65) Y pohoprz Ay

pohopr. Az
Looking more closely at (5.54) to (5.64), one recognizes a forward-in-time-centred-
in-space (FTCS) scheme that is stabilized by adding artificial dispersion in form of
the (Hlf;l,m—}—l,n - 2Hl:g;l,m,n + Hl:g;l,m—l,n) and (El:g;l,m—}—l,n - 2E’lsg;l,m,n + Ez;l,m—l,n)
terms [100]. Expanding the sampled exact continuous solution in a TAYLOR series,
yields for the scheme approximating the first MAXWELL equation

OE”
(566) hOEra:EO ot
oHY

0z

+ O(At) =
Az, mAy,nAz;kAt
oOH*

O(AZ?
kAt I Az, mAy,nAz + ( z )+ By

+ O(Ay?),
kAt I Az, mAy,nAz ( y)

Ey

ot
OH?”
0z

+O(At) =

kEAtIAz, mAYy,nAz
oH*

+ O(AZ®) —

kAt I Az, mAy,nAz or

+ O(Az?),

kAt IAz, mMAYy,nAz

(5.68) hoErzEfoai

ot
OH”
Oy

and for the scheme approximating the second MAXWELL equation

+ O(A) =
kAt IAz,mAy,nAz
oHY

+ O(Ay®) +

kAL IAT, mAYy,nAz ox |kAt;lA:c,mAy,nAz

+ O(Az?),
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OH”

. h rr At =
(5 69) 0Hrafio ot kAt IAz,mAy,nAz + O( )
OFEY 2 OF~* 2
O(Az") — O(A
0z kAt IAz, mAy,nAz + ( ¢ ) 8y kAt IAz, mAYy,nAz + ( y )’
OH"Y
(5 70) 0Hry KO ot kAL IAT, mAYy,nAz + O( )
OFE”® 2y . OF* 2
- oA oA
0z kAL AT, mAYy,nAz + ( ‘ ) + ox kEALIAT, mMAYy,nAz + ( o )7
OH~
5.71)  hopr O(At) =
( ) 0frHo ot kAt IAz, mMAYy,nAz + ( )
OE® .. OEY \
O(Ay”) — — O(Azx”).
3y kAt IAT,mAYy,nAz + ( J ) ox kAt IAT, mMAYy,nAz + ( o )

Hence, the mapping induced scheme is accurate of the order O(At) in time and
of the order O(Az?) + O(Ay?) + O(Az?) in space. It should be remarked that
regardless whether the spatial or the temporal approximation orders are higher,
asymptotically the lowest order term will dominate the accuracy of the solution.
This was extensively investigated by AIDAM when assessing Wavelet-GALERKIN
methods [3]. By taking the limit At — 0 and Al — 0, the higher order terms
vanish, and we are left with

z y p
(5.72) hoEr;ch% :_BOHZ a;; 3

y z p
(5.73) h05ry5066—E;z = aafim—agiy,
(5.74) hoerzsoaait =—%+%,
and

z y p
s oo 22— OO
(5.76) hottrytio e =074 O

2 z y
(5.77) houmuoag - aai —3;; |

As both the permittivities and the permeabilities are scaled by ho, it is evident
that SCN-TLM models a medium with higher permittivity and permeability than
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indicated by the values of ¢, and u,. Consequently, the relation between modelled
media parameters and physical media parameters is given by

(5'78) 6'r‘”rn.od = hOEfr, I‘I’Tmod = hol’l""'

The reason for this is that in the TLM mesh we have ho-times the propagation
velocity of the medium to be modelled. In case of TLM without stubs, the higher
propagation velocity of the TLM mesh could also be seen as a consequence of
the inherent LAX-FRIEDRICHS scheme of the symmetrical condensed node mesh
without stubs.

3.2.2. Mapping Induced FD Scheme of SCN-TLM with Losses. To illustrate
how a mapping induced equivalent scheme following (5.13) and (5.14) looks alike
if we include losses, we consider the case with ohmic losses. It is abstained from
considering both both ohmic and magnetic losses, as this would yield a scheme
with a very large number of terms only concealing the main idea. Considering
only ohmic losses, the MIFD scheme writes for the three components of the first
MAXWELL equation

2(eohoere)” — Ato?,

E;. = z
Rl m.n 2(50}’/057':1:)2 + 25057"1;0'6:0 + Atagw Fatm.m
U Ty T T T
+ E 2Zy0 ( kil,m+1,n — 2-E’k';l,'m,n + Ek;l,m—l,n)
u ’rmz T xr xr
(579) + E% (Ek;l,m,n+1 - 2Ek;l,m,n + Ek;l,m,n—l)
Trz
- 92 ( I:tc/;l,m,n+1 - Hz;l,m,n—l)
T .
+ % (Hk;l,m—l-l,n - lec/;l,m—l,n) )
with the stability factors
2h At At
(580) Tay = 025057“1; + Ocx - :
2(50h05rw) + 25051':v0'e:c + Ataew Ay
(5 81) r _ 2h050€7‘;{: + UemAt At

2(50h05rw)2 + 2€0€r20er + Atagaz A_Z’

Ey - 2(60h06ry)2 — Atafy y

1. - .

vr
__yr Y _ Y Yy
+ (Ek;l—l—l,m,n 2‘E’k;l,m,n +Ek;l—1,m,n)

w QZO
.82 v
(5 i ) + a 2%2 (Ez;l,m,n+1 - 2‘E’I:g;l,m,n + El:g;l,m,n—l)
Tr . -
+ ;z (Hk;l,m,n+1 - Hk;l,m,n—1)
Tya

2 (Hist41,mn = Hitm1,m,n)
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with the stability factors

Qhoeoé‘ry =+ JeyAt At
2(e0hoery)? + 2e0€ryTey + Ato2, Az’

(5.83) Tye =

(5.84) Tys =

Eiimon
2(50h0€rz)2 + 25051"2:0'62: + Atagz kit m,

W Tze

—+ ;ﬁ (E]i;l+1,m,n - 2Ei;l,m,n + Ez;l—l,m,n)

w T, 2 z z
(585) + E 2ZZ/ (Ek;l,m+1,n - 2Ek;l,m,n + Ek;l,m—l,n)

Ly (Hk;l,m—l-l,n - ngcc;l,m—l,n)

2
T
+ ;x (HIZ I+1,m,n — ng;l—l,m,n) ’

z
Ek+1;l,m,n -

with the stability factors

(5 86) r . 2h0€061~z + O'ezAt At
’ = 2(50h057‘Z)2 + 25057'z0'ez + Atagz Ail?’
2h05051°z + UezAt At
(587) T2y =

2(50h05rz)2 + 26067‘2082 + AtO'eQz A_y

For the MIFD for the three components of the second MAXWELL equation, we get
the same scheme as in the lossless case

T T
Hk+1'l m,n — Hk;l,m,n

u ZOT €T T T
+ - 9 (Hk;l,m+1,n - 2-Zq'k:;l,'m,n + Hk;l,m—l,n)

u Z T;Z T T T
(588) + Z 02 (Hk;l,m,n+1 - 2Hk;l,m,n + Hk;l,m,n—l)

Yy
Eil,m,mn+1 Ek;l,m,n—l)

5 (PX
_ 7 (Ek iL,m+1,n Ez;l,m—l,n) ?

with the stability factors

1 At 1 At
5.89 Ty = ——— — and Toy = ———— —,
(5.89) Y pohopre Ay pohopirs Az
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ng—f—llmn kalmn
v ZoTy,
E 2y (Hg I4+1,m,n QH;CII m,n + ng;l—l,m,n)
v Z()T
(590) + E 2 (ng;l,m,n+1 2ngl m,n + lec/;l,m,n—l)
( k;l,m,n+1 — Elf;l,m,n—l)
+ = (Ek il+1,m,n Ez;l—l,m,n) 3

with the stability factors

N 1 At . 1 At
(5.91) Tyw = —F—— ~— and Tye = ——— —,
pohopry Az pohopry Az
and
Hli+1'l m,n — Hli;l,m,n
w ZO’rz:n z z z
+ Z 9 (Hk;l+1,m,n - 2Hk;l,m,n + Hk;l—l,m,n)
w ZOT: z z z
(592) E 9 . (Hk;l,m-l-l,n - 2Hk;l,m,n + Hk;l,m—l,n)
Tiy (e z
2y (Ek;l,m+1,n - Ek;l,m—l,n)

*

r,
2 (EIZ I+1,m,n EZ;Z—I,m,n) )
with the stability factors

X 1 At X 1 ﬂ

5.93 Vg = ———— — and r,, = —————— .
(5.93) pohoptr. Az Y pohopr. Ay

In (5.88) to (5.92), we can recognize again the FTCS scheme with added artificial
dispersion as in (5.60) to (5.64). The scheme considering ohmic losses (5.79) to
(5.85) is of the same type, whereas the forward-in-time term is modified to account
for the losses. A Taylor series expansion of the sampled exact solution results for

the MIFD approximating the first MAXWELL equation in

81
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OE”
ot
+0'e:cEm

(594) h0505r:c + O(At)

kAt I Az, mAy,nAz
+O(AY) =

oOHY
0z

OH?
Oy

kAt I Az, mAy,nAz

+ O(At) + O(AZ%)
kAt I Az, mAy,nAz

+ O(At) + O(Ay?),

kAL IAT,mAy,nAz

OFEY

(595) hoEIoEryw —+ O(At)

kAt I Az, mAy,nAz
+O(AL) =

OH”
0z
OH*
dy

+UeyEy

kAt I Az, mAy,nAz

+ O(AL) + O(AZ?)
kAt I Az, mAy,nAz

At Ay?
kAtIAz, mAyYy,nAz + O( ) + O( Y ))

and

OFE”*
ot
+0e: E*

+ O(At)
kAL IAz,mAYy,nAz

+O(A) =

OH”"
dy
OHY
+ ox

kAt I Az, mAy,nAz

A Ay?
kAt I Az, mAy,nAz + O( t) + O( Y )

+ O(AL) + O(Az?),
kAt Il Az, mAy,nAz

and for the MIFD approximating the three components of the second MAXWELL
equation in

OH”
ot

+O(AL) =

EAtIAz,mAy,nAz

OEY
0z

OF*
dy

hOMOHrm

+ O(At) + O(AZ?)

kAt I Az, mAy,nAz

+ O(At) + O(Ay?),

kAt IAz,mAYy,nAz

(5.97)
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Yy
houo“w% kAtIAz,mAy,nAz +0(AY) =
OE”"

0z

OF*

ox

(5.98) + O(At) + O(AZ?)

kAt Il Az, mAy,nAz

+ O(At) + O(Az?),

kAt IAz, mAy,nAz

and
OH”?
ot

+O(AL) =

kAt Az, mAy,nAz

OE”®
dy

OFEY
ox

Hence, the mapping induced finite difference scheme is accurate of the order
O(At), as the spatial derivatives have also associated with them higher order
terms of the order (O(At). This is a consequence of considering losses. Taking
the limit At — 0 and Al — 0 the higher order terms vanish and MAXWELL’Ss
equation considering ohmic losses remain

hOHOHrz

(5.99) +O(At) + O(Ay?)

kAt I Az, mAy,nAz

+ O(At) + O(Az?).

kEAtIAz, mMAYy,nAz

(5.100) h0€rm€oaai: + 0 E” :—a;iy+a;j,
(5.101) hoawsoéaity + oy EY = B(i” —a;f,
(5.102) h0€rz€0% + 0e. E* :—agjﬁta;f,
and

z y 2
(5.103) houmuoa; = ai —a;; :
(5.104) o firy fho 5;? =—8£m+6£z,

z T Yy
(5.105) houmuoa; = 85 _68Ex .

The scheme models again a medium with ho-times the indicated physical relative
permittivity and permeability as given by eqn. (5.78). Again, this is a consequence
of the increased propagation velocity in the TLM mesh.

3.3. Stability of Mapping Induced FD Schemes of SCN-TLM with
Stubs. To satisfy LAX’s theorem, we need to show that the mapping induced
equivalent finite difference scheme of the SCN with stubs is stable. The stability
of the SCN-TLM scheme without stubs is given by energy conservation and a
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fixed stability factor. In the stub-loaded SCN-TLM scheme, the stability factor
directly enters the stubs and hence influences the stability.

One way of showing stability is to apply a discrete Fourier transform in the
spatial variables to PI'SQ and show that the eigenvalues are bounded by one
[100]. As one can only calculate the eigenvalues of square matrices of order greater
than five analytically in special cases, we have to follow a different argument. It
is a matter of fact that if

(5.106) Y2 >0 A |20 A Y[ >0,
(5.107) 1Z:] >0 A |Zy| >0 A |Z:] >0,
is fulfilled, the TLM algorithm is stable. As S is unitary, it is bounded, too [16].

I" is a shift operator, therefore it is isometric [16] and hence, there exists an upper
bound for the operatornorm of I'S*

(5.108) ITS|| < Ch.

We essentially want to show that

(5.109) ITS|| < Ci = [|[PTSQ|| < Cs,
which is equivalent to

(5.110) IPTSQ < [|P|lITS][|QIl < Cs.

All HILBERT spaces of the same dimension are isomorphic and consequently, P and
Q can be represented by matrices € R™*™. All matrices € R™*"™ are continuous.
Moreover, the mappings P and Q are both linear. All linear and continuous op-
erators are bounded [16], and hence the mapping induced finite difference scheme
of the SCN-TLM scheme is stable if the TLM algorithm is stable, which indeed is
the fact.

3.4. Convergence of the SCN-TLM Scheme with Stubs. Analogous
to the case of SCN-TLM without stubs, we have shown using LAX’s theorem that
for the MIFD scheme

(5.111) lim [[(PTTSQ)* £(0) — f(kAD)|| — 0

holds. Now, we want to show that this also implies the convergence of the stub-
loaded SCN-TLM scheme
(5.112) i |P(TTS)*Qf(0) — f(kAt)|| — 0.
_*
For this, we need to show again that the difference between the two difference

operators vanishes in the norm of A} when At — 0, i.e.

(5.113) dim I(PTTSQ)" — P(TTS)* Q|| — 0.

TS| = ||IT'TS|| as the time shift operator T is also isometric.
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Exploiting the boundedness of the operator product in (5.113) yields

(5.114) ||(PTTSQ)* — P(TTS)*Q)||
<IPT*(TSQP —TS)|*HTTS|QI.

Again, we need to show that one of the terms on the right side of the inequality
becomes arbitrarily small and constitutes an upper bound for the distance between
the two schemes. Estimating the norm of |T’'SQP —TI'S|| by the norm of the sum of
the columns, but neglecting ohmic and magnetic losses for simplicity, but without
loss of generality, we get for j =1

(5.115) [(TSQP —T'S)ei||

. \/ At (64huv(4huurv —8w) = 16u*(4u — 2e,hvw)?

h2u?v? L e2w?(erhvw — 2u)?

N (8u2p, — 16€, purhuvw + 8, w?)?

(Buru? — 8e,w?)?
e2ptw? *

Y’r
¥l 2

Y]

2 4
(x4 X ) + S

2 2012
I e2w

+

(1Z|? + |ZT|2)> IAzmAynAz .

It is only summed over I, m,n (see the definition of the norm (5.5), (5.6)), as the
operators T', S, Q, P act on ({2, Az Ay, A-(G))"?. Taking the limit, [Az, mAy, nAz
converge against the width of the domain in directions z, y, z, assuming again a
rectangular domain. Exploiting the fixed relation between Al and At, we are left
with /At C,. The constant Cs denotes the squared absolute value of the shift
operators in (5.115). The same results for all other terms and hence, we have again
an upper bound of the order O(v/At).

3.5. Order of Accuracy Estimation. The estimation of the asymptotic
approximation order is completely analogous to the case without stubs. Hence,
from

(5.116) [(PTTSQ)" £(0) — f(kAt)|| < O(At)
and

(5.117) (PTTSQ)" £(0) — P(TTS)* Q£(0)|| < O(VAt)
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follows again
|P(TTS)*Q£(0) — f(kAL)|
= |P(TTS)*Qf(0) — (PTTSQ)" £(0)
+ (PTTSQ)* £(0) — f(kAt)]|
< |IP(TTS)*Qf(0) — (PTTSQ)" £(0)]|
+ ((PTTSQ)" £(0) — f(kAt)]
< O(VAY).

Consequently, also the stub-loaded SCN-TLM scheme converges asymptotically
only with order O(v/At). The numerical verification is presented in Chapter 7.

(5.118)



CHAPTER 6

The Alternating Rotated Transmission Line
Matrix Scheme

1. Introduction to ARTLM

In order to discretize thin layers more accurately, a TLM method is desired
that requires less floating point operations for a scattering event and less un-
knowns, which allows a finer discretization of the structures under consideration.
The Alternating Rotated Transmission Line Matriz (ARTLM) scheme recently
proposed by RUSSER [85] requires theoretically only 25 % of the usual number
of unknowns in TLM simulations. Also the number of floating point operations
and the number of scattering parameters that need to be stored is considerably
lower than in usual TLM methods. This makes the ARTLM scheme a promis-
ing method for the characterization of planer microwave circuits. However, apart
from the original derivation, a detailed analysis of its consistency and conver-
gence has not been given yet. This will be presented in this chapter. We briefly
sketch the derivation of the ARTLM scheme in the sequel. The detailed derivation
can be found in [85]. If one rotates the polarization states of the mesh lines of
the SCN-TLM scheme by 45° and combines it with the Alternating Transmission
Line Matriz (ATLM) scheme, the SCN-TLM scheme degenerates into four inde-
pendent schemes, known as the ARTLM method. For this, the ATLM scheme is
sketched and the RTLM scheme is introduced. Finally, these two schemes are com-
bined, yielding the four possible schemes of the ARTLM method. Various proposed
field-mappings between the discretized electromagnetic field components and the
rotated TLM pulses are analysed for studying the consistency of the ARTLM
method with MAXWELL’s equations.

1.1. The ATLM Scheme. The starting point of the alternating transmis-
sion line matrix method is the observation that the TLM pulses that propagate
through an infinite TLM mesh of symmetrical condensed nodes without stubs can
be separated into two independent subsets. In Fig. 6.1 a section of an infinite TLM
mesh is shown. The sets of pulses that are assigned to the white and gray nodes
are completely independent. This can be exploited to reduce the computational
effort by considering only one subset. In principle, one could reduce the storage

87
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FIGURE 6.1. A section of a condensed node TLM mesh without

stubs. The pulses assigned to the white and gray nodes form two
completely independent sets.
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requirement by 50 % if no medium is required [86]. This means no loss of accuracy
in the sample points. Only information from the second subset is lost, which has
no practical consequences as these field values can be interpolated without loss
of accuracy. In comparison to the conventional SCN-TLM method the boundary
conditions and the stubs for simulating media need to be modified. This is to avoid
that the pulses from the subsets of the two parities are mixed up. The bound-
aries need to be shifted into the centre of the TLM cells. Consequently, special
boundary nodes for all types of walls, edges, and corners have to be designed,
which means an additional effort in contrast to conventional TLM [5]. To keep
the two sets of TLM pulses independent, the length of the open and short cir-
cuited stubs needs simply to be doubled in order to double the propagation time
of pulses that propagate on them. Practically, when inhomogeneous media have
to be considered, the storage savings are of the order of 33 %. A further advantage
of the ATLM method is the absence of excitation induced spurious modes, which
is illustrated in Fig. 6.2, showing the ATLM dispersion diagram. The dispersion
surfaces of constant phase encompassing the origin represent the wave numbers of
the physical modes. The dispersion surfaces of constant phase in the upper right
corner represent the wave numbers of the spurious modes of the conventional TLM
method. They are ‘cut away’ in the ATLM method by using only one set of the
TLM pulses so that the ATLM mesh only supports the physical modes. A detailed
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FIGURE 6.2. The ATLM dispersion diagram. The first octant
of the three-dimensional k—space is shown. The dispersion sur-
faces of constant phase encompassing the origin represent the
wave numbers of the physical modes. The dispersion surfaces of
constant phase in the upper right corner represent the wave
numbers of the unphysical modes of the conventional TLM
method. These are ‘cut away’ in the ATLM method and only
the physical modes are supported in the ATLM mesh.

investigation of the ATLM method can be found in [5]. The ATLM method has
successfully been applied to simulate coplanar waveguide discontinuities [7] and
microstrip antennas [48, 49].

1.2. The RTLM Scheme. If one rotates the polarization states of the mesh
lines of the conventional SCN-TLM scheme by 45°, one gets two independent
scattering algorithms with 6 x 6 scattering matrices. These schemes are called the
left- and righthanded Rotated Transmission Line Matriz (RTLM) schemes. First,
the amplitude vectors |a > and |b> are transformed to rotated amplitude vectors
|a> and |b>
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(6.1) la> = Rla> ,
(6.2) b> = R[b>

by using the rotation matrix

/10 1 0 00 0 0 00 0 0)
01 0 -1 00 0 0 00 0 O
00 0 0 10 1 0 00 0 0
00 0 0 01 0 -1 00 0 O
00 0 0 00 0 0 1L 0 1 0
1]oo o 0 00 0 0 01 0 -1
©3)  B=-%5110 -1 0 00 0 0 00 0 0
01 0 1 00 0 0 00 0 O
00 0 0 10 -1 0 00 0 0
00 0 0 01 0 1 00 0 O
00 0 0 00 0 0 1 0 -1 0
\0o 0 0 0 00 0 0 01 0 1)

This rotates the polarization states of the TLM waves |a > and |b > by 45°,
respectively. The scattering matrix So relating the rotated wave amplitude vectors
|a> and |b> is calculated from the free space SCN-TLM scattering matrix So by
transformation

(6.4) So=RSoR ',
with So given by (5.20). This results in the RTLM scattering matrix
& Sa 0
6.5 Sy = ~
(6.5) = (%)
with the submatrix
(0 0 1 1 1 —1\
0 o -1 -1 1 -1
~ 1 1 -1 0 0 1 -1
(6.6) Sa=311 -1 0 0 -1 -1
1 1 1 -1 0 0
-1 -1 1 -1 0 0)

The twelve-port describing the symmetrical condensed TLM node degenerates
into two six-port nodes if the polarization state of the TLM waves is rotated by
45°. This is illustrated in Fig. 6.3. The two six-port nodes are called the lefthanded
and righthanded rotated TLM nodes or RTLM nodes.
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FIGURE 6.3. The twelve-port describing the symmetrical con-
densed TLM node degenerates into two six-port nodes in the

rotated representation.

The connection operator T relating the scattered rotated wave amplitude vector

|b> to the incident rotated wave amplitude vector |&> calculates

(6.7)

I'=RTR™',

where T is given by eqn. (5.21). From eqn. (6.7) one obtains the rotated connection

operator
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(6.8) I= (~0 FA)

with

(6.9) 'a=

cooc oo M
oo’iooo
coo Moo

coocoo
ONocoo o

VAl

1.3. The ARTLM Scheme. Combining the ATLM and RTLM schemes
results in four independent schemes. A righthanded node is always connected to six
lefthanded nodes and vice versa. As a SCN at point (I, m,n) degenerates into one
lefthanded RTLM node at (I, m,n) and one righthanded RTLM node at (I, m,n)
as indicated in Fig. 6.3, one gets two independent RTLM meshes. The first RTLM
mesh has the lefthanded nodes at (I, m,n) with even spatial parity ps = l+m+mn,
and the other has the righthanded nodes at (I, m,n) with even spatial parity. A
section of one of the (A)RTLM mesh is shown in Fig. 6.4. Taking further into
account that the pulses that are assigned to the lefthanded and the righthanded
node at a certain time step are independent, one gets four independent schemes.

First, let us consider the ARTLM mesh that has the lefthanded nodes at
(I, m,n) with even spatial parity. The set of pulses that is assigned to the left-
handed nodes at even time steps shall be called LE and the set of pulses that is
assigned to the lefthanded nodes at odd time steps shall be called LO.

In the other mesh, when the righthanded RTLM nodes are located at (I, m,n)
with even spatial parity, we get the scheme RE for the set of pulses that is assigned
to the righthanded nodes at even time steps and the scheme RO for the set of
pulses that is assigned to the righthanded nodes at odd time steps.

For scheme LE, the pulses propagate in the following manner. At the first
time step, scattering takes place at lefthanded nodes, whereas the neighbouring
righthanded nodes at (I,m,n) with odd spatial parity are not ‘visible’ during
this time for pulses of scheme LE. Then the scattered pulses propagate to their
neighbours with odd spatial parity. In the next time step, the pulses of the LE
scheme are scattered at righthanded nodes with odd spatial parity and the left-
handed nodes with even spatial parity are invisible to them. After propagating
to the neighbouring lefthanded nodes again, the LE pulses are scattered again at
lefthanded nodes. This procedure repeats itself further and further.

Scheme LO operates in an analogous way. At odd time steps (considering
the same temporal basis), scattering takes place at lefthanded nodes with even
spatial parity. Consequently, the righthanded nodes with odd spatial parity are



1. INTRODUCTION TO ARTLM 93

/ (I, m+1, n+1) V (I, m+2, n+1)(
,,,,,,, , ] L / |

@, m, n) (I, m+1, n) (I, m+2, n) /\

/

uﬂj 7

FIGURE 6.4. The RTLM mesh of ARTLM schemes LE and LO,
i.e. lefthanded nodes are located at (I, m,n) with even spatial
parity. The RTLM mesh of schemes RE and RO is shifted by one
spatial index, i.e. righthanded nodes are located at places with
even spacial parity, or, at places where in this picture are the
lefthanded nodes. Considering even time steps, the set of pulses
that is assigned to all lefthanded RTLM nodes at (I, m,n) with
even spatial parity is called scheme LE and the set of pulses
that is assigned to the righthanded RTLM nodes at (I, m,n)
with odd spatial parity is called scheme LO.

(I, m, n+1)

not visible to pulses of scheme LO. After the connect operation, the scattering of
the LO pulses takes place at the righthanded nodes with odd spatial parity at the
next time step.

Schemes RE and RO are iterated analogously. The four schemes can be trans-
formed into each other by shifting one of the two RTLM meshes one increment in
space and by shifting time by one temporal increment.

The bijective mapping following [85] between the field vector of all field com-
ponents at all lefthanded nodes |f; > and the vector of the rotated TLM wave
amplitudes assigned to all lefthanded nodes is given by

(6.10) 1fi> = Qlai>,
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with the lefthanded mapping operator

(O 1 1 0 -1 1

0 1 -1 0 -1 -1

1 0 1 1 0 -1

(6.11) Qu = -1 0 1 -1 0 -1
1

1 0 -1 1 0
\1 -1 0 -1 -1 0

The relation between incident rotated TLM wave pulses and the electromagnetic
field components at the righthanded nodes is given by

(6.12) |fr>=Q,,lar >,

with the righthanded mapping operator

0 1 -1 0 1 1
0 1 1 0 1 -1
-1 0 1 1 0 1
(6.13) Qur = 1 0 1 -1 0 1
1 -1 0 1 1 0
1 1 0 1 -1 0

2. Analysis of Consistency of ARTLM Schemes

In order to analyse the comsistency of the four ARTLM schemes with
MAXWELL’s equations, equivalent finite difference schemes are derived by apply-
ing the bijective field-mappings at the lefthanded and at the righthanded nodes.
The resulting finite difference schemes are then investigated in the known manner
by developing the exact solution in a TAYLOR series and taking the limit At — 0
and Al — 0, respectively.

2.1. Equivalent Finite Difference Schemes. First, the schemes LE and
RE are investigated. The basic scattering equations of these two schemes are
written as

(6.14) lbre>| _ (TSa 0 |C~LLE> .

lbrE > 0 —TSa lare >
The index LE denotes the state vector whose elements belong to the set of pulses
of scheme LE and the index RFE indicates that the elements of this state vector

belong to the set of pulses of scheme RE. The connection operation is described
by the following equation
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lare >] ( 0 f‘A) [|5LE >]
6.15 - = | =~ ~ .
( ) [|GRE > Ta 0 |bRE>
Inserting (6.15) into (6.14) yields
(6.16) laLe > _ (. 0 _ —TATSA laLe >
' larE > TATS A 0 lare >| "

Applying the mapping between electromagnetic field components and the rotated
TLM pulses at lefthanded and righthanded RTLM nodes, (6.10) to (6.13), respec-
tively, yields the following schemes written in finite difference operator notation

(6-17) fLE;k—H = _Q;llf‘A‘g’AQarfRE;k = ‘I’LEfRE;k

with the difference operator

(DYZ —-Dz; —Dy D;Z —D Dy

—-Dz Dxz —-Dx Dz DEX —Dx
1|-Dy —-Dx Dxy —-Dy Dx D7,

6.18 d = - _ XY ,

(6.18) ""~4|Dy, Dz -Dy Dyz Dgz Dy

—Dz DEX Dx Dz Dxz Dx

\ Dy -Dx Dy, Dy Dx Dxy

and

(6-19) .fRE;k+1 = Qa_,rlf‘A‘g’AQalfLE;k = ‘I’REfRE;k

with the difference operator

Dy z Dz Dy DEY —Dz Dy \
Dz Dxz Dx Dz D,, -Dx
_ 1| Dy Dx Dxy —-Dy Dx Dy,
4| D3y Dz -Dy Dyz -Dz -Dy
-Dz Dy, Dx -Dz Dxz -Dx
Dy -Dx D,y —-Dy -Dx DXY)

(6.20) P

The scalar difference operators of (6.18) and (6.20) are given as follows

(6.21) Dx=X'-X
Dxy=X"+X+Y'+Y,
(6.22) Dyx =(Y'+Y)— (X" + X).

Analogously, the scattering of the remaining schemes LO and RO is given by
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lbr.o > TS A 0 laro >

6.23 2 — 3 a _
( ) l|bRo > 0 —TS,4) |laro >
The connection process is again described by

lazo >} ( 0 f‘A) l|gLo >]

6.24 - = (- - )
(6.24) l|aRO > Ta 0/ [|bro>
Inserting (6.24) into (6.23) yields
(6.25) laro>| _ 0 ~ —TaTSa laro >

) laro>| \T'aTSa 0 laro >| "

Applying the mapping between electromagnetic field components and the rotated
TLM pulses (6.10) to (6.13) yields the following schemes

(6-26) fLo;k+1 = —Q;llngAQarfRo;k = (I'LO.fRO;ka
with

(6.27) ®r0=PLE

and

(6-28) .fRo;k+1 = Q;rlf‘AgAQal.fLO;k = ‘I’ROfLo;k
with

(6.29) Pro =Pre.

2.2. Consistency of ARTLM Schemes. In this section, we want to in-
vestigate whether all four ARTLM schemes ® i, 10, PrE, and ®ro converge
to solutions of MAXWELL’s equations. For this, we perform a consistency analysis
of the equivalent finite difference schemes, analogously to the one presented in
Chapter 5. Only the first component of the ARTLM equivalent finite difference
operators is considered, as the other components follow by symmetry and duality.
Written componentwise, the first component of difference operator (6.18) writes
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(6.30)
Elf—l—l;l,m,n =
|
n Ek;l,m+1,n+ k'Elljm—l,n + Elf;l,m,n—}—l + Elf;l,m,n—l)
4
1 Y Yy 1 z z
- Z (Ek;l,m,n+1 - Ek;l,m,n—l) - Z (Ek;l,m+1,n - Ek;l,m—l,n)
+ gQ_Al (Hk';l,m—}—l,n + Hk';l,m—l,n - Hk';l,m,n—l—l - Hk';l,m,n—l)
1 At
- 52Al ( kil,m,n+1 Hg;l,m,n—l)

1 At 2 z
gQ—Al (Hk;l,m-f-la” - Hk;l’m_l’n) ’

Expanding the exact continuous solution E*, EY, E*, H* 6 HY, and H® in a
TAYLOR series up to second order, i.e.

(6.31) Epiiimn=E"((E+1)At; 1Az, mAy,nAz) = E* (kAt; 1Az, mAy,nAz)
OE" At | O°E° At?
ot kEALIAz, mAYy,nAz 1! ot? kAt I Az, mAy,nAz 2!

and inserting these expressions into (6.30), yields

+

OFE”® Al?

OAt)+0O0(—) =
&0 Ot kAt 1AL mALRAL +0(AH) +0( At )
OHY 2
— Al
0z kAt IALmALRAL +O(A)
(6.32) +8H + O(AP)
0y lkAtIAlLmALRAL
1 OFEY 2
_Z O(Al
200 0z kAt IALmALRAL +O(AL)
1 OF~? 2
_= O(AlY).
9 0y |kAtIALmALRAL +O(Al)

Taking the limit, i.e. Al — 0 and At — 0, results in

OFE”® OHY OH® 1 OEY 1 OF~
= - + — =Co — =Co .
ot 0z Oy 27 0z 27 0y
However, this is not the first component of the AMPERE-MAXWELL equation.
Consequently, ARTLM schemes LE and L.O do not approximate MAXWELL’S equa-

tions. Considering the first component of difference operator ® rg, i.e. eqn. (6.20),
yields in componentwise notation

(6.33) €0
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(6.34)
El:g—f—l;l,m,n =

e

1
+Z E
1 At "
+52_Al(
1 At
BN
1 At

* 2 oAl

Y

(Ex -
ki;l,m,n+1
k;l,m,n+1
El,m,n+1

(Hz;l,m—l—l,n -

Ez;l,m,n—l)

T
+ Hk;l,m,n

K
Hk;l,m,n

_|__
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T T T T
(Ek;l,m+1,n+ Ek;l,m—l,n + Ek;l,m,n—l—l + Ek;l,m,n—l)

1
4

T T
-1 Hk;l,m+1,n - Hk;l,m—l,n)

1)

Hé;l,m—l,n) .

Inserting the expanded exact continuous solution into (6.34) yields

(Ez;l,m+1,n - Ez;l,m—l,n)

T 2
€0 agi kAGIALmALRAL +0(A1) + O(%lt -

Y

B a(i kAtIALmALRAl +O(Ar)

(6.35) +6(‘§gl/ kAtIALmALRAL +O(Ar)
Yy

+%CO a(‘fz kALIALmALRAL +O(AF)

+%CO 65 kAGIALMALRAL +O(AL).

Taking again the limit, i.e. Al — 0 and At —> 0 results in

OE*  OHY

0z

OH* n lc
oy 2°

OEY
0z

OFE*
dy

€0

(6.36) =

N 1

2
This is also not the first component of the AMPERE-MAXWELL equation. Hence,
also ARTLM schemes RE and RO do not model MAXWELL’s equations. Conse-
quently, the ARTLM scheme with the mapping between field components and
rotated TLM pulses proposed in [85] does not approximate MAXWELL’S equa-
tions. For this reason, alternative mappings have been proposed that will be dealt
with in the following section. It was pointed out that all four ARTLM schemes
should contain the full information [85]. As a consequence, the operators ®rg,
PrE, Pro, and Pro would have to be equal, which they are obviously not. In
view of eqns. (6.18) and (6.20), this must be denied for this field-mapping.
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Interestingly, adding difference operators ® g and ® g results in the mapping
induced difference operator (5.23) of the SCN-TLM method with stubs derived in
Chapter 5.

(6.37)
(DYZ 0 0 0 —Dz Dy
0 Dxz 0 Dz 0 -Dx
1| o 0 Dxy -Dy Dx 0
Crpt+ ®rp =PLSQ =71 Dz -Dy Dyz 0 0
D 0 Dx 0 Dxz 0
\ Dy -Dx 0 0 0 Dxvy

This corroborates the view that the full information on the field evolution is not
contained in each of the four ARTLM schemes.

This means, without applying an alternative mapping between (rotated) TLM
pulses and electromagnetic field components a separation of the two RTLM meshes
is not allowed.

2.3. Equivalent Finite Difference Schemes Using Alternative Map-
pings. LINDENMEIER suggested the following mapping between the rotated TLM
wave pulses and the discretized electromagnetic field components [47]

0 1 0 O 0 1 \
0 1 0 O 0 -1
110 0 1 1 0 0
(638) Qal,Li - 5 0 0 1 -1 0 0
1 0 0 O 1 0
100 0 -1 0)
and
0 0 1 0 1 0\
0 0O -1 0 1 0
1 1 0 0O 0 0 1
(639) Qar,Lz’ - 5 -1 0 0 0 0 1
0 1 0O 1 0 O
0 -1 0 1 0 0/

The equivalent finite difference schemes using this mapping calculate

(6.40) Preri =Pro,ri = —Q;ﬁLif‘AS'AQM,Li
with
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(6.41)
_D; 0 0 0 —Dz 0
0 -D%¥ 0 0 0 —-Dx
B 1| o 0 -Dy -Dy 0 0
Pre,Li =Pro,Li = 5 0 0 Dy D} 0
—Dy 0 0 0 D} 0
0 Dx 0 0 0 D%
where
(6.42) DL = X"+ X,
and
(6.43) Pro,Li = PrE,Li = Qc:rl,Lif‘AS’AQal,Li
with
(6.44)
-D} 0 0 0 0  —Dy)
0 -Dj} 0 —Dz 0 0
B _1f o 0 -Dy 0 -Dx 0
Pre.Li = Pro,1i = 3 0 Dy 0 + 0 0
0 0 Dx 0 D} 0
Dy 0 0 0 0 D3

The first equation of (6.41) writes componentwise

(Elsg;l,m,n—l—l + Elf;l,m,n—l)

1 At
- g 2Al ( Ig;l,m,n+1 - Hl:g;l,m,n—l) :

AN

(645) E1:§+1;l,m,n =

The other components of the equivalent finite difference scheme follow again by
symmetry and duality.

2.4. Consistency of ARTLM Using Alternative Mappings. Develop-
ing the exact continuous solution E*, EY, E* H®, HY, and H”* in a Taylor series
and inserting into (6.45) yields
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OE*
O(At) =
€o ot kAt;lAl,mAl,nAl+ (&%)
OHY 2
) - O(Al
(6.46) 0z ‘kAt;lAl,mAl,nAl+ ( )
1 AL
2Al EALIALmMALRAL At

With Al — 0 and At —» 0 the term associated with E approaches infinity and
the algorithm diverges. Consequently, this scheme also does not model the first
component of the first MAXWELL equation. Moreover, there is no approximation
of the partial derivative of H* in scheme (6.45). Similar results are obtained for
the remaining three ARTLM schemes RE, LO, and RO.

3. Proof of Non-Existence of a Consistent Mapping

In the previous sections, we have seen that none of the hitherto suggested
field-mappings between rotated TLM pulses and electromagnetic field compo-
nents yields a consistent equivalent finite difference scheme and hence a consistent
ARTLM scheme modelling MAXWELL’s equations. In this section, we want to deal
with the question whether a consistent mapping exists at all and how it would
look like. For this, we start by the proposition that all four ARTLM schemes LE,
LO, RE, and RO should approximate MAXWELL’s equations in the same manner.
We assume A is a consistent difference operator, hence

(6.47) A=®rp=®L0,
(6.48) A = ®grr = Pro,
or

(6.49) A=-Q;'Ta54Q,,,
(6.50) A=Q, TaS4Q,.

Rearranging (6.49) yields

(6.51) Q. =-Ta54Q, A7

and rearranging (6.50) yields

(6.52) Q. =Ta54Q,A7".
Inserting (6.52) in (6.49) results in
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(6.53) A=-Q, (Ta854)’Q, A"
or
(6.54) Q A’ =—-(TaS4)°Q,.

If we insert (6.51) in (6.50), we get

(6.55) A=-Q; (TaS4)’Q, A”"
or
(6.56) Q.. A’ = -(TaS4)’Qq,,.

Comparing (6.55) and (6.56), one recognizes that the mappings at the lefthanded
nodes and at the righthanded nodes must be the same, i.e.

(6.57) Q,=Q,,.

With this, we can substitute @, in (6.49) and (6.50) by Q,, resulting in the
contradiction

(6.58) Q./'Ta54Q, = -4,

(6.59) Q. TaS4Q, = A.

Consequently, this means that there does not exist a consistent mapping between
rotated TLM pulses of an ARTLM scheme and discretized electromagnetic field
components for arbitrary difference operators modelling MAXWELL’s equations! In
turn, this means that the separation of the RTLM scheme eqn. (6.5) into two or
four independent schemes when considering the independence of sets of different
parity in time, is not allowed. Moreover, the TLM and RTLM matrices equs. (5.20)
and (6.5) are of checker board type II with zero diagonal elements. This means
that considering the off diagonal block matrices alone as done in deriving the
ARTLM schemes, leads to matrices having different eigenvalues than the complete
original matrix [120]. In view of the analysis presented in this chapter, it remains
questionable whether a six-port TLM scheme with symmetrical condensed nodes
exists at all.



CHAPTER 7

Numerical Convergence Analysis of TLM
Schemes

The proof of convergence of the SCN-TLM method presented in Chapter 5
showed that when the TLM mesh is excited using a nodal field-mapping and
the electromagnetic field components are also sampled at the centre of the TLM
cell, the SCN-TLM method exhibits an asymptotic convergence order of O(v/At).
Thus, the field-mapping determines the convergence order of the SCN-TLM
method, as using a TLM formulation with a bijective boundary oriented field-
mapping has been shown to be of second order [23, 44]. Nevertheless, we want to
verify the convergence order of these differing formulation in a numerical exper-
iment. For this, a simple numerical initial value problem is solved using various
formulations of the SCN-TLM method at various discretizations. The investi-
gated formulations are compiled in Table 7.1. Formulation A is JOHNS’ original
formulation of the SCN-TLM method without stubs, where the electromagnetic
field components are sampled at the node and the TLM mesh is also excited
at the node [35]. Formulation B refers to the mapping induced finite difference
scheme without stubs introduced in Chapter 5. Formulation C is the SCN-TLM
formulation without stubs given by KRUMPHOLZ and RUSSER utilizing a bijec-
tive mapping between TLM wave pulses and electromagnetic field components at
the tangential planes between neighbouring TLM cells [44]. The remaining cases
are formulations of the SCN-TLM method with stubs. Formulation D is JOHNS’
original formulation with cell-centred field-mapping [35]. Formulation E refers to
the extensions of the SCN considering ohmic losses given by NAYLOR and DESAI
[67]. Formulation F denotes the mapping induced finite difference scheme with
stubs derived in Chapter 5. Finally, formulation F refers to the formulation of the
SCN-TLM method using a discrete propagator integral following Hein [23].

1. Numerical Convergence Analysis of Various SCN-TLM
Formulations

1.1. The Test Problem. The propagation of a linearly polarized TEM
wave in an infinite parallel-plate waveguide with perfectly conducting (PEC) walls
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no. author(s) mapping stubs losses convergence order
A JOHNS CFM no - O(VAt)

B REBEL CFM no - O(At)

C KrumpPHOLZ, RUsSER  BOFM  no - O(At?)

D  JoHNS CFM yes no O(VAt)

E  NAYLOR, DESAI CFM yes  yes O(VAt)

F  REBEL CFM yes yes O(At)

G HEeN BOFM  yes yes O(At?)

TABLE 7.1. Overview of investigated formulations of the SCN-
TLM method.

is modelled by a linear row of TLM cells, with only a single cell in the transverse di-
rections. The ports of the TLM cells are short-circuited in z-direction and open in
y-direction, modelling electric walls in the z-direction and magnetic walls in the y-
direction, respectively. Fig. 7.1 shows the TLM model of this infinite parallel-plate
waveguide. For a plane wave, linearly polarized in z-direction and propagating in
x-direction, a linear row with a single TLM cell in the transverse directions is
representative, as the TLM mesh without stubs exhibits no dispersion in axial
direction. The parallel plate waveguide was discretized using cubic TLM cells.
The size of a TLM cell is Al. The initial field of GAUssian shape is distributed
across the distance Azx.,. The distance between initial field and observation point
is denoted Ax,,. This numerical IVP was solved using various discretizations.
The respective simulation parameters can be found in Table 7.2. Fig. 7.2 shows
schematically the TLM models for two subsequent discretization steps. It is obvi-
ous that with each finer and finer discretization level the real distance between the
grid points is filled with twice as many spatial increments as at the previous level.
Naturally, the spatial increments are half the length of the previous coarser level.
When mapping at the node, i.e. in case of a cell-centred grid, the centres of the
TLM-cells of all discretization levels are aligned with each other. Consequently,
the cell faces are not aligned. This can be seen in the upper part of Fig. 7.2.
Sampling the field components in the tangential planes between two neighbouring
cells, the cell faces of all discretization levels are aligned with each others. This
refers to a uniform grid. Hence, the cell centres are shifted with respect to different
discretization levels. This relation is depicted in the lower part of Fig. 7.2. The
initial field distribution, given by the discretized truncated GAussian pulse
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FI1GURE 7.1. TLM model of parallel-plate waveguide.

m—mo

2
(7.1) Ei_i(z) = Eoe_"( 20 ) for 71 <zxz—x20 <72

0 elsewhere

with ;1 = Ng" Al,, and 2 = (% + 1)Aly,, is distributed across the distance

AZeyz = NpoAlno. The region, where the initial field is given, is marked by the
shaded cells in Fig. 7.2. The pulse is centred around Azg = (Nypo/2 + 1)Al,, (see
the dashed line in Fig. 7.2). The width of the pulse is V20 = NpoAlno/p, where
p was chosen 3v/2. The overall length of the structure was chosen such that in
connection with the duration of the simulation no reflections from the terminating
walls in the positive and negative x-direction occurred at the observation point.

In the case with stubs, a medium with e, = 2, and y, = 1 was assumed. In
the case of a lossy medium, the electric conductivity was chosen isotropically
ge = 30 Sm™'. The reference solution for calculating the relative error was

obtained from a simulation with very small cell size (no. 7 of Table 7.2). The
relative error between reference solution and solutions obtained with larger cell
sizes is calculated using the norm of the discrete LEBESGUE space (5.3), i.e.



106

7. NUMERICAL CONVERGENCE ANALYSIS OF TLM SCHEMES

~ truncated Gaussian pulse

n M, Al

N

2N"‘_A'2_ 2Mn%

[o]« |- [§Ta s [aTo o e o o e o e [e[o e e [e[t]e e]]
truncated Gaussian pulse

[ M, Al

Al

2Nn5¥ 2M, 5
“.‘.‘..............‘.‘.‘.‘.‘.‘.‘. .‘.‘.‘

n-th discretization

(n+1)-st discretization

observation point

n-th discretization

(n+1)-st discretization

FIGURE 7.2.

subsequent discretization steps.

no. Alp, [pm] Npo Mpo
1 1.0 70 6
2 0.5 140 12
3  0.25 280 24
4 0.125 260 48
o 0.0625 1120 96
6 0.03125 2240 192
7 0.015625 4480 384

TLM models of parallel-plate waveguide for two

TABLE 7.2. Parameters of different discretization levels.
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FIGURE 7.3. Relative error between simulated solution and
benchmark solution of various SCN-TLM formulations with-
out stubs versus normalized Al. The normalized Al is given
by Alnorm = (70/3)Al,,/o. Formulation A is JOHNS’ original
TLM formulation. Formulation B refers to the mapping induced
finite difference scheme and formulation C refers to KRUMPHOLZ

and RUSSER’s TLM formulation.
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FIGURE 7.4. Propagating pulses in the TLM model of parallel
plate waveguide for formulations A and B. Plot (a) was obtained
using JOHNS formulation. In plot (b), the dissipative nature of
the LAX-FRIEDRICHS scheme is clearly visible.

1.2. Results. In Fig. 7.4, the propagating pulses in the TLM model of the
parallel-plate waveguide are shown for formulations A and B. The numbers refer
to the respective discretization level of Table 7.2. Clearly, the dissipative nature of
the TLM inherent LAX-FRIEDRICHS scheme can be recognized (see Subfigure (a)),
whereas in JOHNS’” TLM formulation (Subfigure (b)), no loss of energy is evident
from the pulse propagation. This is a consequence of the conservation of energy
in the SCN scheme [35]. The pulses obtained at different discretizations are in-
distinguishable in this plot.

1.3. SCN-TLM without Stubs. The relative error between simulated so-
lution and reference solution of the SCN-TLM formulations without stubs ver-
sus the cell size normalized to the width o of the initial Gaussian pulse, i.e.
Alporm = (70/3)Alyo /o is plotted in Fig. 7.3. For JOHNS’ original TLM scheme
(formulation A of Table 7.1), one observes a second order convergence for coarse
discretizations, but the slope of the error curve reduces towards finer discretiza-
tions very quickly. Asymptotically, one can deduce a convergence rate of /At in
the log —log plot of Fig. 7.3. The slope of the error curve reduces at relatively
fine discretization levels, which indicates that only in case of large mesh sizes of
about 500 x 500 x 500 cells for three-dimensional problems one can observe any
effect. This seems to be the reason, why one has not observed this reduction of
the convergence rate before. Moreover, this result clearly shows that the mapping
between the discretized fields and the TLM states determines the (asymptotic)
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accuracy of the TLM solution, as the SCN mesh without stubs exhibits no disper-
sion in axial direction and thus should exhibit a constant error independent of the
discretization of the order of numerical round-off errors. Looking at the relative
error 77 of the mapping induced finite difference scheme according to (5.25) to
(5.30), which is equivalent to a LAX-FRIEDRICHS scheme, one can clearly discern
a first order convergence rate. The reason why the slope of the error curve slightly
increases towards the finest discretization is that the reference solution and the
solution obtained at the previous discretization step are too close together. For
formulation C, when the initial data are imposed on the SCN-TLM network at the
boundary and the fields are also sampled at the boundary, a much smaller rela-
tive error 7 is observed. As the SCN-TLM scheme without stubs has no dispersion
in the axial directions and thus models the propagation of plane waves exactly
in axial direction, we only see the numerical round-off error (the code operated
with single-precision arithmetic (4 Byte)), as expected. It is noteworthy that the
magnitude of the error constant of the mapping induced finite difference scheme
(formulation B) is larger than that of the SCN-TLM formulation of JOHNS. This
is a consequence of the dissipative nature of the LAX-FRIEDRICHS scheme, which
is reflected in the variation of the pulse amplitudes at different discretizations as
indicated in the graph on the right side in Fig. 7.4.

1.4. SCN-TLM with Stubs. The relative error 1 of JOHNS’ original for-
mulation is plotted versus the cell size normalized to the width of the initial
GAussian pulse (see Fig. 7.2). Again, a second order decrease in error can be rec-
ognized for coarse discretizations. However, asymptotically the convergence rate
reduces to v/At, as shown in Chapter 5. Comparing the error curves for TLM
without and with stubs, one realizes that in the case of TLM with stubs, the
reduction of the convergence rate appears at coarser discretizations in compari-
son to the TLM scheme without stubs. This is a consequence of the stubs adding
additional dispersion to the scheme, which further corrupts the solution, whereas
one has no dispersion in axial direction in a TLM mesh without stubs. Again, the
error constant of the mapping induced finite difference scheme is larger than that
of JoHNS’ SCN-TLM formulation, which is a consequence of the dissipative nature
of the mapping induced finite difference scheme. For TLM with stubs including
losses, i.e. following NAYLOR et al.’s formulation E of Table 7.1, we can observe the
same behaviour as for the other formulations with a mapping at the centre of the
TLM cell. The error decreases with second order for coarser discretization levels,
but we can again recognize a decreasing slope of the error curve towards smaller
cell sizes, resulting in asymptotic convergence of O(v/At), as shown in Chapter 5.
The error of the mapping MIFD scheme with stubs, i.e. (5.54) to (5.64), decreases
again linearly, thus meeting the predictions of Chapter 5. That the slope of the
error curve slightly increases towards the finest discretization, is again caused by
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FIGURE 7.5. Relative error between simulated solution and
benchmark solution of various SCN-TLM formulations with
stubs versus normalized Al. The normalized Al is given by
Alnorm = (70/3)Aln, /o. Formulation D refers to JOHNS’ origi-
nal SCN-TLM formulation and curve F denotes the case of the
mapping induced finite difference scheme with stubs.

the fact that the reference solution and the solution obtained at the previous dis-
cretization step are too close together. The same behaviour can be observed in
Fig. 7.6 for the MIFD scheme (5.79) to (5.92).

Now we want to have a look what happens when we impose the initial field at
the boundaries of the TLM cells in a TLM mesh with stubs. If the field components
are mapped at the boundary (formulation G of Table 7.1), one can observe the
excitation of spurious modes (see Fig. 7.7). This is caused by a wrong initialization
of the stub variables. However, it was emphasized in [23] that the initial electric
and magnetic fields have to be zero, when the TLM scheme is started. If this
condition is neglected, one will inevitably excite spurious modes. The excitation
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FIGURE 7.6. Relative error between simulated solution and
benchmark solution of various SCN-TLM formulations with
stubs and ohmic losses versus normalized Al. The normalized
Al is given by Alnorm = (70/3)Aln,/o. E denotes the error
curve for NAYLOR and DEsAI's TLM formulation and F refers
to the mapping induced finite difference scheme.

of spurious modes when imposing an initial field at the boundary was also observed
by others [20]. A proper excitation would involve a temporally smooth excitation,
e.g. of GAUssian shape. However, this does not constitute an initial value problem
in the sense investigated here. It then constitutes an initial value problem of
MAXWELL’S equations with current sources where the initial field is zero. How
to treat current sources in TLM was shown by BADER et al. [6]. As it makes no
sense to study the convergence when spurious modes are excited, as they do not
present approximate solutions of MAXWELL’s equations, no error curves for this
case are plotted in Fig. 7.3 and Fig. 7.6. Interestingly, sampling the fields at the
node when imposing the initial field at the boundary [23], averages out most of
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FIGURE 7.7. Excitation of spurious modes, when applying an
initial field at £ = 1 to the cell boundary. The electromagnetic
field is also sampled at the cell boundary (formulation G of

Table 7.1).
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FIGURE 7.8. Excitation with spatial field distribution at k =1
at the cell boundary. Field sampling at the node averages out
most of the spurious modes (formulation G of Table 7.1).

the spurious modes (see Fig. 7.8), which is presumably due to the symmetry of
the simple field problem considered here.



CHAPTER 8

Modelling Dispersive Media

Many materials exhibit frequency dependent properties. Examples are magne-
tized ferrites, biological tissues, and dispersive media. Also materials used in planar
microwave circuits may be dispersive. Examples are PCB boards, polyimide and
many more. The latter are extensively used in multichip modules. These materials
contain molecules which possess a permanent electric dipole moment. When they
are subject to an electric field, the molecular dipoles will align along the direc-
tion of the electric field. If a time harmonic electric field is applied, the molecular
dipoles will rotate back and forth up to a certain cut-off frequency. This rota-
tion consumes energy and hence energy is dissipated. This dielectric relaxation
mechanism can be described by a so called DEBYE model. Losses influence the
characteristics of microwave components. For example, resonant frequencies may
be shifted. If one desires accurate modelling of planar microwave structures, also
losses due to dielectric relaxation should not be neglected. In this chapter, we
derive the updating relations for a SCN-TLM algorithm modelling DEBYE type
dielectrics using the propagator approach following [23, 24]. This approach allows
the analytic derivation of the updating relations of a dielectric TLM node from a
finite difference approximation of the polarization current. In published work on
SCN-TLM algorithms for dispersive media and magnetized ferrites, usually equiv-
alent voltage and current relations are exploited [15,31,61,73,97,98,108]. In
view of the results of Chapter 5, this will be an approximation with lower asymp-
totic convergence and hence accuracy as the formulation derived in the sequel.
Besides, the use of controlled voltage sources for modelling of complex media such
as DEBYE, LORENTZ, fourth order, and cold plasmas in TLM was reported [81].

In the following section, the DEBYE model describing certain types of dispersive
media is introduced. Then, the propagator approach is outlined and the algorithm
for the dielectric node derived. Finally, the algorithm is validated at a simple
parallel-plate waveguide partially filled with a dispersive dielectric.

1. The Debye Model for Dielectric Relaxation

In DEBYE’s model, the dielectric relaxation is described by a relaxation time
whose reciprocal is the relaxation frequency. When the frequency of an applied
field is higher than the relaxation frequency, the molecules will not follow or
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respond to the field. DEBYE has found that the orientational part of the polariz-
ability of a material depends on the applied frequency w as

o
8.1 o(w) = ———
where ap is the static orientational polarizability and 74 the relaxation time [38].
The polarizability is related to the permittivity of a material via the CLAUSIUS-

MossoOTTI relation [38]

e—1 4
2 = — N; ;.
(8.2) £+ 2 3; @

The relative permittivity of a dielectric is given by [84]

X

(8.3) er(W) =€ +e(w) = e — je
with
65 - 800
A4 — =5 =
(8.4) ) = fe

for first order dispersive media. The permittivity s denotes the permittivity when
a static field of frequency zero is applied. The real and imaginary part of the
permittivity can be written as

! €s — o
(8.5) € =tot T 53 o772

" (e — __wWTd__
(8.6) e = (s —€wo) Tl

In Fig. 8.1, eqns. (8.5) and (8.6) are plotted versus frequency for a model medium
with €, = 10, €00 = 2, and 74 = 107 '%s to illustrate the nature of this frequency
dependence. A commonly used measure for the losses introduced by the frequency
dependency of the material is the loss tangent or loss angle 6 which is given by

"

g
8.7 tand = —-.
(8.7) and =5,

The angle 4 is the phase angle between the vector of the electric field E and the
vector of the dielectric displacement D. The relation between dielectric displace-
ment, the electric field and the polarization is given by

(8.8) D =¢eoE + P.

In time domain, dielectric losses can be considered by a polarization current
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FIGURE 8.1. Graph of ¢ and e versus frequency for €5, = 10,
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(8.9) ipor(t) = //%—IZ .dA = f(P,E),

which adds to ohmic and dielectric currents in the AMPERE-MAXWELL equation

(8.10) /Er-dg:crf/E-dﬁ+eoe//%—f-dﬁ+im,.
dA A A

For first order dispersive dielectrics, the polarization current density is given by a
first order differential equation

(8.11) %—IZ —UP+VE.

If we allow anisotropic orientational polarization along the principal axes, U and
V take the following form
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-=—= 0 0 U, 0 0
812) U=| 0 - 0 |=(0 U, 0],
0 0 -5 0 0 U
50(53m_500m) O O V O O
Tde i
(8.13) V = 0 £0lEsy=cooy) 0 =0 v, o
Tdy Y
0 0 €0(€sz—€oc0z) O 0 ‘/z

Tdz

2. Derivation of SCN-TLM Algorithm for Modelling Dispersive Media

The basic idea of the propagator approach to TLM is to consider the SCN-TLM
algorithm as a state system whose response fulfils a second order finite difference
scheme at every time step. From this condition, one is led to a procedure to
determine the scattering parameters of the scattering matrix of the symmetrical
condensed node directly from the finite difference equations. Furthermore, the
second order convergence of the TLM solution is guaranteed by this construction.
The propagator approach can be outlined as follows. MAXWELL’S equation are
approximated using finite integration yielding a consistent second order finite
difference scheme. The cell boundary orientated mapping between the discretized
electromagnetic field and the TLM wave pulses is applied to write this finite
difference scheme in TLM variables. The stub ports of the scattering matrix are
eliminated resulting in a series representation of the scattering response of the
SCN. For decoupling the scattering response of the SCN, the scattering matrix is
transformed into its eigensystem. The finite difference scheme in TLM variables
is also transformed to eigenvariables. Finally, the decoupled scattering response
is inserted into the finite difference scheme and the scattering parameters are
calculated. To account for dielectric losses according to the DEBYE model, the
polarization current in the AMPERE-MAXWELL equation is discretized separately.
The updating relations are obtained by a perturbation ansatz using the procedure
described in [24]. Finally, the stability criteria for the algorithm are derived.

2.1. Approximation of Maxwell’s Equations. We start from
MAXWELL’s equations in integral representation for homogeneous and lin-
ear media

(8.14) /ﬁ-dé’ = a//E“-dA’HOE//%—]tE-dA’,
0A A A

(8.15) —/E-dé’ = MON/ %_dej
8A A

The material tensors are given as & = Diag(0z,0y,0;), €r = Diag(erz,Ery,€rz),
@, = Diag(prz, piry, pr-) to account for anisotropic materials. Rectangular TLM
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cells of dimension Az, Ay, Az, as depicted in Fig. 8.2 are assumed. On the surface
of each TLM cell, the tangential field components of the E and H-field are defined
in the centre of the cell faces. The line integrals are discretized by applying the
midpoint rule. This yields for AMPERE’s law the approximation

¢

(8.16) / Hds ~

—Az Hk,l,m ntAyH kl — Ay HY

—% m-l— k;l,m, n—l—1 ’
(8.17) Hds ~
dA,
Az Hkl 1 ,n+A$ HZ;l,m n+1 Az Hk,l+%, , T — Az Hl:cclmn %7
(8.18) / Hd3 =~
DA
Ay H kl+2’ n Akalm+ Akal__ o +Akalm_§,n.
For FARADAY’s law one gets the following approximation
(8.19) / Eds ~
DA
_AzEklm+1 +AyE ’+5+AzEklm L AyEklmn_%,
(8.20) / Eds ~
- Az Ek;l—%, I RAY Ek,l,m nti + Az By, d+1,mn + Az Ek,z,m O
(8.21) / Eds =~
Ay EZ;Z_%’m,n — Az EZ;l,m— — Ay E] 141 man + Az B mtdne

The area integrals over area A in (8.14) and (8.15) are approximated by multi-
plying the mean value of the field components at the midpoints of the edges with
the area. The shaded area in Fig. 8.2 indicates the area for calculating the area
integral A,. The other integration areas A, and A, are defined analogously. This
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FIGURE 8.2. The three integration paths for finite integration
of MAXWELL’s equations. The area for approximating the area
integral with normal in x-direction is shaded.

yields for the right side of AMPERE’s law the following approximation

(8.22) o, //Emdjw+aoarw/ OBz 1%, ~
Az

ot

@

AyAz [ . z AyAz (o z
O'mT <Ek+%;l,m,n + Ek—%;l,m,n)+goermA—t (Ek+%;l,m,n - Ek—%;l,m,n) )

— E —
(8.23) oy // E,dA, +€0€ry/ %d/&y ~
Ay

Ay

AxAz (_, y AzAz (., y
Ty 2 (Ek—l—%;l,m,n + Ek—%;l,m,n) +506TyA—t ( k—}—%;l,m,n o Ek—%;l,m,n) ’
— EZ —
(8.24) o, // E.dA, —i—soerz/ a@t dA, ~
A, z
AxAy . . AzxAy . .
GZT (Ek—l-%;l,m,n + Ek—%;l,m,n) +€OETZA—t ( k—}-%;l,m,n - Ek—%;l,m,n) )
whereas for the right side of FARADAY’s law one gets the approximation
(8.25) Holra // WdAz ~ MOZ—t (Hk+%;l,m,n - Hk—%;l,m,n) ’
Az
oH, , - AxzAz
(826) Holhry // —aty dAy ~ o AL (HZ—}—%;Z,m,n — H:—%;l,m,n) ,
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(827) Holrz // %dz‘lz ~ MOAZ—?y (Hz+%;l,m,n — HZ—%,l,m,n) .

A
In order to synchronize the updating relations with the operating conditions of
the TLM algorithm, the field components in the centre of the cell are expressed
as the arithmetic mean of the respective tangential field components, i.e.

(828) Eji1y,. R

i [EZJF%;l,m—%,n + EZ—{—%;l,m—I—%,n + Ek+1,l,m n—1 + Ek+2, ,m,n+%] )
(8.29) Ez+_ S

i I:Ez-l—%;l—%,m,n + EZ+%;Z+%,m,n + EZJF%;l m,n—1 Lt EZ+ l,m,n+%:| ’
(8:30) Ejy1ymn™

i [EZ+ tm—tn T B iumatn ¥ Brita1mn + By ;z+%,m,n] ;
(8.31) H,f+2” N

i [H,er dm—1.n +Hk+ Lm+Ln +Hk+1 dm,n— +H:+%;l,m,n+%:| :
(8.32) Hz+27 A

% [Hz+1 =L min +Hy+ L .|_Hk+1 i _|_Hy+ l,m,n+%:| ’
(8:33) Hi,1y,.~

|
N Hk+ lm——n+Hk+1,lm+ ,n+Hk+1l ,mn+Hk+1,l+ ,m,n | °
4 2 3 2Ty

Inserting (8.28) into (8.22) and (8.16), one gets the following second order finite
difference scheme for the x-component of AMPERE’s law

(834) —AzHg, . 1,+AyH, %+AzH,j;l,m+%, — Ay HY =

b,m k,l,'mn—|—2
AyAz
00— (4 [E‘“ Sttt Byt tn t Bt s F Bt ]+

1

Z[EZ—ll,m +Ek——lm+1 +Ek——lmn——+Ek——lmn+2])+

AyAz (11 i
At (Z [Ek+1 ilm—g.n +Ek+1 slm+5,n +Ek+1 sLm,n— 1 +Ek+%;l,m,n+%]_

1 x x x
" k—l;l,m—l,n_'-E —l;l,m+l,n+E —-Lim,n— +Ek——lmn+
4 2 2 2 2

2

E0€rz
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The other five equations of the difference scheme follow accordingly.

2.2. Finite Difference Scheme Written in TLM Variables. Now we
insert the one-to-one correspondence between the TLM state variables and the
tangential fields on the surface of a TLM cell given by the BOFM

(835) Ek;l,m,n - PE'(agc;l,m,n + bic;l,m,n)a
1
(836) Hk;l,m,n - Z_PH(aic;l,m,n - bic;l,m,n))
0
with
B(y, 2) 0 0
(8.37) Py = 0 B(z,x) 0 ,
0 0 B(z,y)
and
C(z,y) 0 0
(8.38) Py = 0 C(z,z) 0 :
0 0 C(y,x)
where

ALy (1) 0 0
0 L 0 0
839 B, —= Ay ,
(8.39) (v, 2) 0 0 L 0
0 0 0 ~
and
2 % 00
_ T Az
(8-40) C(z,y) = 0 0 _ALy 0 )
0 0 0 ALy
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into the FD scheme (8.34). This yields the following TLM-FD scheme

7 7 8 8
(841) ((ak;l,m—%,n - bk;l,m—%,n) + (ak;l,m+%,n B bk;l,m-i-%,n)

9 9 10 10 _
+(a'k;l,m,n—% - bk;l,m,n—%) + (a'k;l,m,n+% - bk;l,m,n+% ) -

Zoeoere AyAz 7 7 8 8
4 AtAzx I:((a'k—}—%;l,m,n + bk—}—%;l,m,n) + (ak—}—%;l,m,n + bk—}-%;l,m,n) +

9 9 10 10
(ak—}—%;l,m,n + bk—l—%;l,m,n) + (a’k—}—%;l,m,n + bk—l—%;l,m,n)) -

7 7 8 8
<(ak—%;l,m,n + b —%;l,m,n) + (ak—%;l,m,n + b —%;l,m,n) +

9 9 10 10
(ak—%;l,m,n + bk—%;l,m,n) + (ak—%;l,m,n + bk—%;l,m,n))]

ZOO’;E AyAZ 7 7 ] 3
4  2Ax [((a’“"r%;hman bk Litmn) T @i L T 0kt Limn) +

9 9 10 10
(ak—f—%;l,m,n + bk—l—%;l,m,n) + (a'k-}-%;l,m,n + bk+%;laman)) +

7 7 8 8
((ak—%;l,m,n + bk‘—l'l m,n) + (ak—%;l,m,n + bk—l'l m,n) +

2% 217

) + (alleo—%;l,m,n + bllco—l'l m,n))] :

27

9

9
(ak—%;l,m,n + bk—%;l,m,n

The next step is to express the scattering responses bq;rs.¢ (¢ = k, k + 3,k — 3,
r=LI+3,l-3, r=m,m+3,m—3, 7 =n,n+3,n—3) in terms of the incident

wave pulses ag;r s.¢. For this we eliminate the state variables of the stubs.

2.3. Elimination of Stub Variables in Scattering Response. For elim-
inating the state variables of the stubs, we start from the following state space
representation of the TLM algorithm with stubs

b, > S11 Si2) [lal, >
8.42 bes>| _ pn cb
( ) [|b§b>] (521 Sa2) |lai>]’
! r 0) [p,>
4 |a’cb> — cb .
649 2= G or) ]

The superscripts I and s refer to the TLM pulses on link lines and stub lines,
respectively. For decoupling the eigenmodes, the scattering matrix in eqn. (8.42)
is transformed into its eigensystem using the transformation

(8.44) B = (E(’)O f(;l) ,

where the submatrices By and B, are given as
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(00 0 0 0 0 1 1 1 1 0 0
1 1 0 0 0 O O O O o0 1 1
o o 1 1 1 1 0 0 0 0 0 0
o 0 O 0 0 0 1 1 -1 -1 0 0
-1 -1 0 0 0 O 0 O 0 O0 1 1
o o 1 1 -1 -1 0 0 0 0 0 0
845) Bo=19 o o 0 1 -1 0 0 0 0 -1 1|’
o o0 -11 0 0 0 0 1 -1 0 0
1 -1 0 0 0 0 —-11 0 0 0 O
o 0 0 0 -1 1 0 0 0 0 -1 1
o 0 -1 1 0 0 0 0 -1 1 0 0
\-=1 1 0 0 0 0 —-11 0 0 0 0
(2 00 0 0 0
0 2 00 0 0
00 2 00 0
(8.46) Bi=10 00 2 0 0
000 0 2 0
\0 0 0 0 0 2

The submatrix By constitutes the eigenvector matrix of the SCN without stubs.
Applying this orthogonal transformation yields JOHNS’ scattering matrix in canon-
ical representation

(8.47) S=BSB ' = (*?“ 512) :

521 522

The submatrices take the following form

(8.48) .§11 = Diag(sEn, SE22,SE33, —1, —1, —1, SH11,SH?22,SH33, 1, 1, 1),
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(SE14 0 0 0 0 0 \
0 sges 0 0 0 0
0 0 SE36 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
~ 0 0 0 0 0 0
(8.49) Siz=1 0 0 swia O o |’
0 0 0 0 SH25 0
0 0 0 0 0 SH36
0 0 0 0 0 0
0 0 0 0 0 0
\ 0 0 0 0 0 0 )
(8.50)
(5E41 0 0 0 0 O 0 0 0 0 0 0
0 SE52 0 0 0 O 0 0 0 0 0 0
5., — 0 0 sgez 0 0 O 0 0 0 0 0 0
271 0 0 0 0 0 0 swgar O 0 0 0 0f’
0 0 0 0 0 O 0 SH52 0 0 0 0
\0 0 0 000 0 0 s 0 0 0
and
(8.51) S22 = Diag(spa4, Suss, SE66, SHA4, SH55, SHEE)
For eliminating the stub variables, we rewrite (8.42) as
(8.52) |bly> = T'S11|al, > +TS1alas, >,
(8.53) (b3 > = TSz de, > +TS2eldcs>,
(8.54) as,> =T,|b% > .
Inverting (8.54) yields
(8.55) b5, > = Tf|as, > .
Inserting (8.53) into (8.55) and rearranging yields
i &\ ' ma
(856) &ib> = (Fs — TSQQ) T521|5Lib> .

Inserting eqn. (8.56) into (8.52) and solving for b., yields’

~ ~ -1
1T commutes with S12 and with (I‘l — TSQQ) .
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- ~ ~ ~ -1 <
(8.57) |blcb > = TS11|C~L5;1, > +T2S12 (I‘I — TSQQ) SQ1|C~Llcb> .

Inserting the definition of a geometrical series

-1

(8.58) (1‘1 —~ T§22)_1 = (1“;1 - T.§’22) _

r ! -1,y (I‘STS*QQ)“ ,

"I-T.,TS»

into eqn. (8.57) results in the following series representation of the scattering
response of the TLM process

- - - x - T
(8.59) |blcb> = TS11|dlcb > 4+T°81,T Z (F5T522) S21|C~Lib> .

n=0

This expression is formally equivalent with a discrete propagator integral. There-
fore, this method of determining the scattering coefficients of JOHNS’ scattering
matrix is called Propagator Approach or Propagator Integral Approach [9,25].

2.4. The Transformed TLM-FD Scheme. For establishing the connec-
tion between the decoupled scattering response of the SCN-TLM scattering pro-
cess and the consistent finite difference scheme, it is necessary to write the finite
difference scheme in transformed TLM state variables. The spatial indices I, m,n
are omitted in the sequel for clarity. Rearranging the quantities in the TLM-FD
scheme (8.41) yields
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(8.60) ((ar + ak + ai + az”) — (br + by + by + bi°)) =

Zoeoers AyAz 7 8 9 10
4 AtAz [((“H% t iy gy tagy)

+(yy +bh1 +00y s +0151))

7 8 9 10
~ (el +aiy+aly +aily)

+(bz_% +b,8c_% +b,96_% +b,1€0_%)):|

Zoo, AyAz
4 W[((ak+1 +ak+1 +ak+1+ak+ )

+(Opyy + 81 +0 1 +5% 1))

+ ((al_% +ak—% +ak—% + ak—%)
(8.61) +(bz_% +bi_% +b2_% +b,1€°_%))].

Obviously, one can substitute for the transformed TLM state variables (see eqn.
(8.44)) resulting in

Z05057':c AyAz -1 ~1 1 -
4  AtAzx [(ak+% + bk+%) - (“k—% + bk—%)]
ZOU$ AyAz -1 ~1 1 -
4 2Ax [(ak+% +b 1)+ (@ g +bk—%)] '

Rearranging (8.62) results in the transformed finite difference scheme for the x-
component of AMPERE’s law

(8.62) (ax —bi) =

ZOAyAz Oy E0Cre ~1 71
ne (3 Tar) @y +higy)
ZoAyAZ (O':p 6057’;13) ~1 71
— = - b .
T Tiae 2 T Ar ) @y Thioy)
Introducing coefficients gr11 and gg11, results in

(8.63) (ax —bi) =

(8.64) ((?i;lc — Z);lc) = gEn(d}H% + Bi+%) + §E11(C~L,1€_% + Z)i_%),

where gr11 and gg11 are given by

ZoAyAz (a_x soem) . ZoAyAz (& _ eoem)
Az \2 T At ) IPUT TaAr 2T A

A further simplification can be achieved by introducing transformed field compo-

nents

(8.65) grE11 =
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~1

(866) €L:l,m,n — &fk;z,m,n + bk;l,m,n7
1 . ~1

(8.67) hrii,m,n = Z—(a’éc;l,m,n = briim,n)-
0

With these, the transformed TLM-FD scheme (8.64) writes

(8.68) Zohy, = gE116,lc+% + griie,_

1.
2

The other five equations follow by symmetry and duality as

8.69
8.70

2 2 - 2
Zohy, = ge22€) 1 + gEa2ey_1,
3 2 .9
Zohy = grsse; 1 + grsse;,_1,

k+2 k 2

-1 7 7 ~ 7
8.71 Zy e = THllhk+% + 'I“H11hk_%,

(8.69)
(8.70)
(8.71)
(8.72) Zy'lep = 7°H22h2+% + szzhi_%,
(8.73) Zylep = TH33hZ+% + fH33h2_%-

The coefficients in (8.69) to (8.73) are calculated according to

606ry )
At /'’

5051“2)
At /7

?

(8.74)  ge2 :% (% +22), §E22=—Z°f§fz (2 -
670 = = s
(8.77)  rmas = fzﬂziz M(ZLtry’ S f;)iz M(Ktry
(8.78)  rmss = fziiyz M(ZLtTZ | FH33= — LLAZ:ZiZ “‘Z‘t” ,

2.5. Calculation of Scattering Parameters. The scattering parameters
of the transformed SCN scattering matrix (8.47) are now calculated by inserting
the expressions of the scattering response for a fictitious DIRAC excitation at the
boundary into the transformed TLM-FD scheme. This results in three independent
equations for four unknown parameters for each equation of the Sr and Sy
blocks. The remaining degree of freedom is due to the introduction of the stubs,
which represent a gauge degree of freedom [25, 27], and can be chosen arbitrarily.
Finally, the scattering coefficients are calculated choosing the degree of freedom
appropriately. From expression (8.59) follows the following response at the cell

boundary
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FIGURE 8.3. Dirac excitation at the boundary of a TLM cell
for the calculation of the scattering parameters.

(o @)
71 ~1 " ~1
(8]79) br, = sg110,_1 + SE14 E SE44SE410K_2_ -
n=0
The response at the node is given by
(e @]
(8.80) byt = SE1184_1 + SE14 Y Sy BN,
. k—}-% E11 k—% E14 E44° E41 k—%—p'
n=0

Assuming an excitation at the cell boundary at k& = 0 with a DIRAC pulse (see
Fig. 8.3), one gets the response of a TLM cell at the subsequent time steps accord-
ing to (8.80) and (8.79). The responses for subsequent time steps are tabulated in
Table 8.1.

71 71 1
k by, bk+% bk_%
~1
0 0 SE11Q0 0
~1 ~1 ~1
1 SE11ag SE14SE41Q0 SE11Qg

k—2 ~1 k—1 ~1 k—2 ~1
> 2 SE14Sp4,SE4100 SE14Sp,4SE4100 SE14Sp4,SE410)

TABLE 8.1. Response of SCN-TLM cell in eigensystem repre-
sentation to a Dirac excitation of ports 7-10.

With the response for k = 0 from Table 8.1, one gets from (8.64) for k =0
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(8.81) ao = gr11(ag + SE11ao).-

For k = 1, scheme (8.64) writes

1 1, o~ 1 -1
(8.82) —SE11Q0 = gE118E14SE4100 + gE11G9 + SE110Q0,

and for k = 2, one gets

-1 _ -1, = ~1
(8.83) —SE14SE4109 = JE11SE14SE44SE4100 + JE11SE14SE410g.

There are now three equations for the four coefficients sg11, Sg14, SE41, and sg41.
As the stubs are internal degrees of freedom, one can choose one of the coefficients.
Consequently, it is possible to set sg14 = 1. After some calculus, the first four
scattering coefficients of the transformed scattering matrix of the SCN are given

by
(8.84) sE11 = gp11 — 1,
(8.85) sg14 = 1,
1 - _

(8.86) SE41 = — (14 e — ge11) 9o,

SE14

1 (. 1
(8.87) SE44 = gp11 (gEll - )

SE14

The remaining coefficients of the canonical scattering matrix are calculated in the
same way.

2.6. Discretization of the Polarization Current. The discretization of
MAXWELL’S equations without the polarization current was presented in the pre-
vious sections. Now we derive a finite difference expression for the polarization
current that can be solved by a modified TLM scattering algorithm. A special
solution of (8.11) is given by the convolution integral

t
(8.88) pP=¢" / e "UVE(6)db.
0

This convolution writes componentwise
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t —

(889) P:c — 6_ T;m / erLz 50(Esw 500:13) Ew (e)de,
0 Tdx
__t_ [t _e -

(8.90) Py iy [ emay 2w = Eoon) g gy
0 Tdy
_ t g _

(8.91) P - o / e7az E0(Esz ~ Cooz) oy
0 Tdz

Substituting eqns. (8.89) to (8.91) into expression (8.11) yields the three compo-
nents of the polarization current density in the following form

t o — —

(8.92) 6;? __ 1 -z, / o Tds MEx(H)dH + go(ese Soox)Ew(t)’
Tdx 0 Tdx Tdx

OP, 1t boe (Esy — Ecoy) €0(€sy — Eooy)
) — = ——©¢ Td Ty ~—— <" F (0)df E,(t

3.99) Gk = ——c fu [ o Ca—fml g g)ap 4 S gy,
L - —

894y OF= _ _ 1 e—%dz/ e7ar (B2 = Co0x) gy 4 £0(Bex —Ecoz) )
at Tdz 0 Tdz Tdz

For discretizing these convolution integrals, the following step function for the
electric field is assumed

i At
(8.95) E(t)~ ) Buxu(t— =),

pn=0
where

1 for 0<t<1
(8.96) Xp = {0 elsewhere '

The pulses are delayed by At/2, as the centre of a TLM cell experiences the electric
field applied at the cell boundary with a delay of A¢/2 due to the propagation of
the TLM pulses with finite velocity.

Inserting (8.95) into (8.88) results in the following expression for the polarization
vector

t oo
 tU —oU 8
(8.97) Pxe /0 e "V E Eux.(t 2)d0.

n=0

In the centre of a cell, the electric field is a step function of time as depicted in
Fig. 8.4. For the time interval [ty,tm+1) we have to distinguish the two cases
t <tmyiy2andt >t,,11/0.In case 1,t < t,,41/2, (8.97) evaluates to
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E(t)
En
E,. 1 E
Ey o m—1 m o By
| | | | | | T
0 1 2 3 4X\ m—1m | m+1 k= a3
tm+%

FIGURE 8.4. Electric field variation in the centre of a TLM cell.

(8.98)
m—1
P(t < tm+1/2) ~ e(t—tm+1/2)U [Z Ve(m—N)AtU(EN . Ep,—l) —VE,, ..
pn=0

For case 2, t > t,,,_1/2, one gets

elt=tmt1/2)U {e_AtU (Z Ve(m“_“’)AtU(Eu — Eu—l))] — VE,.
pn=0

Consequently, one gets the following approximation for the polarization current
density

oP (t—tmi1/2)U | for t< tm+1/2
— m /2
(8100) ot € E_AtUFm for t> tm—|—1/2 ’
where
(8.101) Tm=)Y Vel"H=waU(g, _E, ).

u=0

As OP /0t is discontinuous at times t = At(m + 1/2), we consider the mean value
of 0P /0t for a time interval [tm,, tm41)
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AP

(8.102) N3
tm+1/2

1 m+1 HP 1 tm41/2 1 tm 41

— —dt = Ipoidt + — [').dt

At /tm ot At / Y /t 112

AtU At AtU
_—W( : )e’s = Eu) + W (== 5 Lty
with
(8.103) W (z) =~ 'sinh(z).
The sum I',,, can be written as
(8.104) T = YuBm—yu
p=0
with
AtU
. e \'4 for p=20

(8105) Yo = {epAtU(eAtU _ 1)V fOI_ w > 0 .

If we sample the electromagnetic field at times t = At(k+1/2), k = 0,1, 2, ... at the
centres of the TLM cells [, m,n, we get a discrete convolution sum approximating
the polarization current density

s106) 2F ~

At k+1 il,m,n
AtU\ atu AtU
EW( - Ve ST V(E 1 imn = Br i) + W (07 > k-1,
The operator I';,_1 is calculated according to the sum expression (8.104). If we
again calculate the nodal field components as the average of the respective tan-
gential field components, i.e.

(8.107) Ek+1 dmn R
1
4
and apply the BOFM between electromagnetic field components and TLM state
variables, we can express the polarization current in terms of canonical TLM
state variables. Finally, the components of the polarization current are given as a
function of transformed field components by

€T xr xr
[Ek+%;l,m—%,n + Ek+%;l,m+%,n + Ek+%;l,m,n

1 +Ek+%,l m n+2:|
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(8108) ipol,m(kAt) - / aéptx : d/_l'z

A

4Ax At

—2ng;
t A
(8.109) ipol,y(kAt)://aa%-d/_fz
A
AJ;AZ 260(533/ _6ooy) . _At _47-Adt
1Ay l Y s1nh(47_dy)e v (e
—2Tqy
T A
(8.110)  ipor,- (kKAL) = / a;? dA ~
A
AzAy [ 2e0(sz —€coz) . o (A — AL
e [ A7 s1nh(47_dz)e az (e
—27T42
t Az
with
k
(8.111) Tha = D Yuw€hoppds
pn=0
k
(8.112) Thy = D YuwChppds
pn=0
k
(8113) Fk,z = ny;ﬁ,zez_u_}_%)
pn=0
(8.114)

and

AyAZ |:_ 250(55:0 - 500:0) Slnh(_At) — _At (61
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AtU
_ e~V for pu=
(8115) Y,z = {e/,J,AtUm (eA'l:Um _ 1)Vg:; fOI' u >0 ’
AtU
B e~V for pu=20
(8.116) Y,y = {epAth (eAth _ 1)Vy for pu>0’
AtU
B e~V for p=
(8117) Y,z = {euAtUz (eAtUz _ 1)Vz for 0> 0"
Rearranging yields
(8118) Zpol :c(kAt) - gp116k+ 1+ gpllek 1 + G [(ellc p—%)oozo]’
(8.119) ipol,y (KAE) = gyzaey 1 + Gomoey_1 + Gy [(eh_, 1) ],
(8120) Zpol z(kAt) = 9p33€k+1 + gp33ek 1 + G- [(ei u-}-%)oozo]’
with
(8.121) gpi1 =— AélyAAz 260(652t Eooz) s1nh(4_At)e_ Tras ;
x Tdz
— A
(8.122) gp11 = A4yAAz QEO(SWAt Eooz) smh(4 At)e_ Traz ;
x Tdz
_ _ _ _At
(8.123) gp22 =— AéleAz 260(6syAt Eooy) smh(4 At)e 4Tdy
Y Tdy
_ _ At
(8.124) gp22 = AéleAz 260(6syAt Eooy) smh(4 At)e 4Tdy |
Yy Tdy
— — A
(8.125) gp3s =— AfAAy 250(65& ) sinh( y At)e‘ Tz
z Tdz
- _ AxAy 260(65,3 - EOOZ) . _At - 41_At
(8.126) 9p33 = A7 Y smh( o )6 =,
and
1 o 1 2T4s . —At\ AyAz
(8.127) Gal(erousy) o) = =1 sinh ( 2%) Tt
9 o 1 2Tay . —At\ AzAz
(8.128) Gy[(ek—u+%)p=o] BN Smh(QTdy) 47y Tk—1,y,
3 o 1 2Tq, . Aty AzAy
(8.129) G [(ehurs)ime) = 5 smh(Qsz ) o T

2.7. TLM-FD Scheme for First Order Dispersive Media. Consider-
ing the polarization current in the transformed TLM-FD eqns. (8.64) to (8.73)
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approximating AMPERE’s law, results in the following modified TLM-FD equa-
tions

(8.130)  Zohi = (9511 + gp11)eyy 1 + (Gou1 + Gpur)ey_1 + Ga[(e

D=
N—

(8.131)  Zohi = (gme2 + gp11)e,2€+% + (gr22 + flpll)@i_% + Gy [(ei_w

(8.132) Zohy = (grss + gp11)€z+% + (gEss + gpll)ei_% + G- [(62 /J+%)p,:0:|'

Using matrix operator notation, the transformed TLM-FD scheme considering the
polarization current thus writes

(8133) ZOhk = GlEek_}_% + éEek—% + G[(ek—ﬂ+%;l,m,n)oo ]

n=0

The coefficient matrices G’IE and G are given by

(8.134)
, 9;311 ,0 0 ge11 + gp11 0 0
Gp = 0 9E22 0 = 0 gE22 + gp22 0 )
0 0 9;333 0 0 9E33 + gp33
(8.135)
w e ,0 0 gr11 + gp11 0 0
Gg = 0 JE22 0 = 0 gE22 + gp22 0 ,
0 0  Ggas 0 0 JgE33 + gp33

with the coefficients

(8.138) gmas = ZoLanlcyAz ((;—y + 8(25;3, - 250(652; Eooy) sinh(;iyt)e_‘ﬁdty ),
B
10 = B bt 0 )
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2.8. Derivation of Recursive TLM Algorithm. How to solve finite dif-
ference schemes that include a discrete convolution sum of unknowns of all past
time steps with modified SCN-TLM algorithms was proposed in [24]. Employing
this method, one can derive recursive relations that avoid the storage of all past
values of the unknowns and calculate the coefficients for additional stubs which
account for the recursion. In Sections 2.1 to 2.5 of this chapter, it was shown that
the solutions of the TLM scattering algorithm

(8.142) @r+1 = Baji1,
(8.143) brt1 = Pay,
(8.144) biy1 = B 'bit1,
(8.145) apt1 = Dbris

fulfil a second order finite difference scheme

(8146) R-fk:;l,m,n = Z Qu-fk—p,ﬁ—%;l,m,n
n

at every time step, if an appropriate mapping between discretized field components
and TLM pulses is applied and the scattering coefficients of JOHNS’ scattering
matrix are derived appropriately. The unknown vector f, in (8.146) comprises
the transformed field components following (8.66) and (8.67) in complex notation,
i.e.

(8147) .fk;l,m,n = €L;l,m,n +jhk;l,m,n

- ~1 N 1
(8148) = (a'gc;l,m,n + bk;l,m,n) + ]Z_O(a’i:;l,m,n - bk;lam,n),
(8149) = SI + jZO_lI)Jagc;l,m,n +$I - jZO_lI)Jbéﬁ;l,m,n'

Considering dielectric losses in time domain using a discrete convolution, one has
a finite difference scheme (in transformed field components) of the form

(8150) vak;l,m,n = Z Qufk—p,—l-%;l,m,n + G[(-fk—p—l—%;l,m,n)zozo]'
"

In order to generate solutions for (8.150), we assume a TLM algorithm
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8151) alk+1 = Ba;g+1,
8152) 5k+1 - \Illd;g,

(
(
(8.153) byi1 = B by,
(

8154) a;H_l = Fblk+1,

where the scattering operator T s given by

(8.155) Ve =& 4 D[(fy  yam) o)

n=0

This expression can be rearranged such that it constitutes the following recursion

(8.156) a"QuD[(fi i timn) o) = (R=Q)a D[(Fi 1, 0.)00 ]

D RAR] [,L=0

- Z Qy—}—la*D[(fk—p—%;l,m,n)zozo] + G[(-fk—u+%;l,m,n)zo=0:| :

v=1

To solve for the discrete convolution of eqn. (8.156), we identify the unknown oper-
ators of eqn. (8.156) from the transformed TLM-FD scheme (8.133) by inspection,
yielding

(8.157) R = Iml[],
(8.158) Q, = GyRe[],
(8.159) Q, = GpRe[),
(8.160) Q.- =0,

The operators Gy and G are given according to (8.134) and (8.135). It follows
from (8.156)

(8.161) Qoa’dy 1 =(R-Q)a"d,_1 - G[(fk_w%;l,m’n):ozo].
Inserting (8.158) and (8.159) yields

(8.162) Godyyy =20 T+ Gr)dy 1 = Gl(Fypitimn) o)

2 n=0

Finally, solving for d, 1 results in

(8163)  dyy1 =-G5' (20" T+ Gr)dy 1 — G5 Gl(Fi it imn) ol
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Looking more closely at the convolution sum GJ|.], one gets by rearranging and
substitution

(8164) G[(fk—u-l—%;l,m,n):ozo] =
G[(ek—u+%;l,m,n)oo ] = AFk_lan

n=0

_ AeAtUVe,,H_% + AeAtU[(eAtU _ 1)Velk_%
+ eAtU[(eAtU . 1)Velk_3 + eAtU [ ) ]”

2

The coefficient matrix A is given by

(8.165)
o s 220 S : :
A= 0 — 20 sinh (7L ) A28 0
0 0 — 2= sinh (FAL) 422

From (8.164) follows the recursive algorithm for computing the discrete convolu-
tion sum G[.]

!

(8.166) G[(ek_u+%;l’m’n):°=0] = AeAtUVe}H_% + Ae®YUm, 1,
(8.167) myyy = (€57 =) Ve 1+ +my_y.

The complete TLM algorithm for first order dispersive media is thus given in
general notation as follows (after substituting (8.166) and (8.167) into (8.163))

(8.168) i1 =Bay,

(8.169) byt =%a + D[(.fk—u—%;l,m,n)f;o]’
(8.170) byi1 =B by,

(8.171) aps1 =T by

The updating relations of the dielectric node write
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(8.172) Gri1 = Bag,,

(8.173) R -

(8.174) elk+% =ay + I;Ik+1,

(8.175) dir1 = Sp1 di+ Sp2 e,y + Sps mu,
(8.176) Miy1 = Sp4 6;_,_% + Sps mg,

(8.177) by1 = B~ By,

(8.178) apsr =T by,

yielding a solution of (8.150) at every time step. The coefficient matrices Spi,
t=1,..,5 are given by

(8.179) Sp1=—G5' (Z™'I + Gp),
(8.180) Sps=-Gz'Ae”YV,

E
(8.181) Sps= -Gz A,

E
(8.182) Spi= (2" - IV,
(8.183) Sps =™,

These updating relations of the TLM node simulating first order dispersive media
can easily be implemented into a computer code.

2.9. Stability of Modified SCN-TLM Algorithm. The modified TLM
algorithm is stable for proper initial values, if the spectral norm of the eigenvalues
of

Sp1+Sp2 Sps
184 T =
(8.184) ( SDa S D5>

is bounded by one [24]. Furthermore, this condition provides a simple means
of calculating the time step for the TLM simulation using the modified TLM
algorithm for first order dispersive media.

3. Validation of Modified SCN-TLM Algorithm

To validate the SCN-TLM algorithm for dispersive media of DEBYE type,
the reflection of a plane electromagnetic wave from an air-dielectric interface was
studied. An infinite parallel-plate (PPL) waveguide was partially filled with a dis-
persive model dielectric, as depicted in Fig. 8.5. The static dielectric constant of
the model medium was e; = 65 (for simplicity, €0, was set to 1), its relaxation
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FiGUure 8.5. TEM parallel-plate waveguide, partially filled
with dispersive dielectric.
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FIGURE 8.6. Relative magnitude error between solution ob-
tained by equation (8.185) and a TLM simulation.

time was 70 = 1.0- 10~ '® s. The structure was modelled by a one-dimensional row
of TLM nodes, 30 for free space and 70 for the dielectric. A pulse of GAUSsian
shape E, (k1) = E,oexp(—((kT —t0)?)/T?) was launched onto the air-dielectric
interface and the transient fields calculated. From these data, the complex reflec-
tion coefficient was evaluated. Magnitude and phase were then compared to the
exact values given by the analytical expressions

1= /er(w)
(8.185) ICana| = ik
(8.186) P C)

e'(w)

In Fig. 8.6 the relative error ||T'ana| — |T'sim]|| / |Tana| between the magnitude of
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FiGURE 8.7. Relative phase error between solution obtained by
equation (8.186) and a TLM simulation.

discretization Al [pm] At [s] T (pulse width) [At]
coarse 1.4 0.2.107'* 25
medium 0.7 1.0-107"° 50
fine 0.35 0.5-10~*° 100

TABLE 8.2. The simulation parameters.

the reflection coefficient obtained from the TLM simulation, |Tsim|, and the ex-
act values calculated using formula (8.185) is shown. Apparently, excellent agree-
ment is found between the analytical and simulated solution, as the magnitude
of the relative error is of the order of 10~°. Surprisingly, the error increases with
finer discretization. In contrast, Fig. 8.7 indicates that the relative phase error
|ana — @sim| / |Pana| Detween the analytical solution given by equation (8.186)
and the computed result using TLM, reduces as expected. The deviation of the
phase of the TLM solution from the analytical solution is quite significant and
can be explained as follows. In the analytical case, the interface between the two
media is ezactly defined. In the TLM mesh, the interface is supposed to be at
the middle of two nodes. As the dispersion characteristics of the nodes at either
side of the interface differ considerably, one does not know where to assume the
exact interface plane. That this is indeed the case, can be seen when the relative
phase errors for three different discretizations specified in Table 1 are compared.
The finer the discretization, the lower is the relative phase error, as the interface
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between the two media is better localized in the simulation. The increase of the
magnitude error with finer discretization using more and smaller cells can be ex-
plained by neglecting the continuity conditions of the normal field components at
the air-dielectric interface. In SCN-TLM, only continuity of the tangential field
components is enforced at interfaces and boundaries.

Nevertheless, the SCN-TLM algorithm for dispersive media achieves excellent ac-
curacy compared to other ways of implementing algorithms for dispersive media
in TLM, such as [61, 81]. In none of these work, the error between simulated and
exact solution was investigated. Therefore the influence of the normal continuity
conditions at air dielectric interfaces on the accuracy of the approximation was
not noticed.
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CHAPTER 9

Characterization of Planar Microwave
Components

1. Layered Absorbers for Mesh Truncation in Open Problems

A prerequisite for simulating planar microwave components in time domain
using the SCN-TLM method is truncating the finite computational domain with
absorbing boundary conditions. An improper mesh truncation results in back
scattering of electromagnetic waves into the computational domain. These back
scattered waves interfere with the propagating modes in the simulated structure
such that they corrupt the field solution. Hence, the obtained time domain signals
at the ports of the device contain artefacts and inhibit a proper calculation of
the frequency domain S-parameters of the device under consideration. Eventually,
this leads to a misinterpretation of the results of a simulation. For this, a number
of different methods have been proposed to absorb electromagnetic waves that im-
pinge on the boundaries of an open space problem [8,13,40, 63, 68]. Examples
are boundary conditions obtained by discretizing one-way analytical conditions de-
rived for the analytical wave equations [63] and TAYLOR’s expansion of the plane
wave solution [13]. Another approach is the use of discrete GREEN’s functions
[40, 43]. However, absorbing boundary conditions based on one-way analytical
conditions often suffer from instabilities [8], which generally limit their applicabil-
ity. Using GREEN’s functions implies using large amounts of memory when regions
with different media are to be truncated. Moreover, the calculation of the GREEN’s
function is not simple in case of inhomogeneous media, which further limit their
use with respect to the analysis of planar circuits. However, they have been proved
to be efficient in closed waveguide problems. Still, the simplest absorbing bound-
ary condition is a matched load with I' = 0, truncating the transmission lines of
the TLM mesh that touch the boundary of the computational domain.

The best choice for truncating layered media, as they are encountered in planar
microwave circuits appear to be layered absorbers. The principle setup of layered
absorbers is shown in Fig. 9.1. The computational domain of the sketched mi-
crostrip line shall be truncated by a layered absorber in positive x-direction and
negative y-direction. For this, each region of the boundary that truncates a region
with different media parameters requires a number of stacked boxes in direction

143
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FIGURE 9.1. Principle of layered absorbers such as matched
layer and perfectly matched layer.

of the outer normal. This is specified by plate regions in Fig. 9.1. At the edges
of the computational domain these regions may intersect and require different
parameter. Such regions of intersection are denoted as edge regions.

The first type of such absorbers are matched layer (ML), where the impedance
of the absorbing medium matches the impedance of the medium to be truncated.
Electric and magnetic losses are introduced to absorb the incident electromagnetic
energy, such that this medium represents a MAXWELLian absorber. With respect
to Fig. 9.1, the conductivity of the matched layers rise in outward direction normal
to the boundary. One can specify isotropic or anisotropic conductivities requiring
the specification of edge regions when two plate regions intersect, and corner
regions, when three plate regions intersect.

The same principle applies to a second type of layered absorber, which has
been introduced by BERENGER [9], recently. It constitutes an artificial medium
known as perfectly matched layer (PML) that achieves a much better absorption
than previously suggested absorbing boundary conditions. For the use with the
TLM method with symmetrical condensed node, there have been different ap-
proaches of implementing the PML. The first reported use of PML in TLM was
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given by ESwWARAPPA and HOEFER, where a FDTD implementation of PML was
interfaced with the TLM computational domain [19]. A modified SCN simulating
PML media was proposed by DUBARD and PomPEI [17]. Although the authors
report various applications to three-dimensional antenna problems, it seems that
this TLM PML node is numerically extremely critical, which limits its practical
use tremendously, especially when the PML layers are supposed to truncated lay-
ered inhomogeneous media [54, 78]. Very recently, an improved TLM PML node
that exhibits much improved stability was proposed by LEMAGUER and NEY.
In addition, this PML-SCN is able to absorb also evanescent waves [54]. As the
implementations of PML in TLM still suffer from instabilities, the use of the
unconditionally stable matched layer was preferred.

1.1. Implementation of Matched Layer Generator. Recalling Fig. 9.1,
it is obvious that for practical problems, such as characterizing planar structures
described in [57, 112], the specification of the matched or perfectly matched layer
parameters and computational regions has to be automatized. A manual calcu-
lation of the required parameters is impracticable, as realistic problems, such as
the transformers described in a later section, involve about 3000 different com-
putational regions within a single TLM mesh. For this, an automatic matched
and perfectly matched layer generator was implemented in the TLM program. It
allows the specification of arbitrary conductivity profiles and theoretical reflection
coefficients from the truncated boundary, which in turn automatically calculates
the necessary parameters for the SCN of the respective region. This matched layer
generator can of course equally be utilized for specifying PML absorbers.

1.2. Optimization of Matched Layer Absorbers. The conductivity
profile in the matched layer is given according to

(9.1) o(L) = amaw(%)p,

where o4, denotes the maximum matched layer electric conductivity at the outer
layer N of the matched layer, L € 1,..., N denotes the index of the matched layer.
The maximum conductivity is calculated according to

B ared(p + 1) In(Ro)
2NAlZ, ’

with Ro being the theoretical reflection coefficient when the matched layer ab-
sorber is terminated by an electric wall and Zy being the free space impedance.
Using a constant areq = 1.0 results in conductivity values that change the dis-
persion in neighbouring layers with different media parameters such that a worse
absorption is achieved in contrast to using lower conductivity values [78]. A value
of areq = 0.1 performs much better thus reducing the differences in dispersion be-
tween neighbouring layers. In layered media, the matched condition is as follows

(92) Omazxr =
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FIGURE 9.2. Details of the test coplanar waveguide used for
optimizing the matched layer absorber. All dimensions are in
the mm range. Cubic cells with Al = 0.125 mm were used. The
discretization is analogous to the CPW presented in [68].

ol o, ot _
(9.3) Te _Tm _ T _Tm__
61 l'l’z €'L+ /'I’Z+

+1
Trn

Although there are some rules of thumb reported in the literature for choosing
the parameters to get optimum absorption from ML absorbers [68], no compre-
hensive investigation on the optimum parameter combination has been presented
yet. For this, the return loss of a coplanar waveguide truncated with different
number of matched layers for various conductivity profiles and theoretical reflec-
tion coefficients is studied. The geometry and the dimensions of the test CPW
line is depicted in Fig. 9.2.

It turns out that the optimum conductivity profile depends on the number
of matched layers. In the cases of 5 and 10 matched layers, a linear conductivity
profile gives the best results in terms of minimum return loss, whereas for 15
matched layers, a steep profile with p = 2.4 yields the best results [78]. For the
optimum parameter combination the theoretical reflection coefficient is found to
be 1.0-107*. A graph of the optimum return loss curves for each layer thickness is
shown in Fig. 9.3, where the return loss is compared to that of a simple matched
load. The influence of the conductivity profile, expressed by the exponential
coefficient p in eqn. (9.1), on the absorption for three different layer thicknesses,
i.e. 5, 10, and 15 matched layers is investigated. In each case the profile coefficient
is varied from p = 1.0 to p = 1.2,1.5,1.8,2.0, 2.2, 2.4. The maximum conductivity
is in each case varied by setting Ry = 1.072, 1.07%,1.07°%,1.078. The ML is always
terminated with a matched load.

First, we want to compare the return loss curves for the CPW on a substrate
with &, = 9.9 obtained using 5 matched layers (see Fig. 9.4 to 9.7). Surprisingly,
the difference between curves with different profile coefficient is less pronounced
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FIGURE 9.3. Minimum return loss curves for 5, 10 and 15 layers
ML compared to matched load termination for CPW on sub-
strate with ¢ = 9.9. For each ML thickness Ry = 1.0~* yielded
the best result. The profile coefficients are p = 1.0 for 5 and 10
ML and p = 2.4 for 15 ML.

as previously expected. Below 20 GHz, a difference of only +1 dB can be recog-
nized for different profiles. Interestingly, if Ry is chosen too low, i.e. ~ 1.072, the
return loss is only 5 dB less than the one obtained by using only a matched load
termination (see Fig.9.4). By inspecting Fig. 9.4 to 9.7, one can find the optimum
combination of parameters of the ML with 5 layers as Ro = 1.07* and p = 1.0
in Fig. 9.5. This parameter combination gives a uniform return loss of at least
—40 dB up to 20 GHz.

Increasing the number of ML to 10 results in a return loss of almost —50 dB
up to 10 GHz and —43 dB up to 20 GHz for the optimum parameter combination
Ro =1.0"* and p = 1.0, which can be found from Fig. 9.9. Again, if R is chosen
too low, as depicted in Fig. 9.8, the return loss is only about 10 dB better then
when using a matched load termination. Compared to using 5 matched layers, the
influence of the profile coefficient p is more pronounced, which is evident when
looking at Fig. 9.9 to 9.11. This is particularly the case when choosing Ry = 1.07*,
where varying p results in a =3 dB change in return loss in the 0-10 GHz region.
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A similar picture is generated when 15 layers ML are used. Comparing Fig. 9.12
to 9.15 indicates that only for Ro = 1.0™* the profile coefficient p has a pronounced
influence on the return loss in the low frequency region. Again, the ‘best’ return
loss up to 20 GHz is achieved for Ry = 1.0™*. However, using a steeper profile
with p = 2.4 gives the lowest overall return loss of almost below -57 dB up to
20 GHz.

Looking at the return loss curves for the CPW on a substrate with approx-
imately half the dielectric constant, i.e. &, = 5.0 (see Fig. 9.16 to 9.18), one
immediately realizes that the more or less uniform low frequency absorption re-
gion extends up to approximately 40 GHz. The absorption of the 5, 10, and 15
ML was investigated for Ry = 1.07* and the previously mentioned values of p.
Interestingly, for 5 and 10 ML a linear profile, i.e. p = 1.0, yields the most uniform
absorption, whereas in case of 15 ML a profile with p = 2.4 yields again the most
uniform absorption.

Return Loss [dB]
Return Loss [dB]

0 20 40 60 80 100 0 20 40 60 80 100

Frequency [GHZz] Frequency [GHz]
FIGURE 9.16. Re- FIGURE 9.17. Re-
turn loss for 5 ML turn loss for 10 ML
with Ro = 1.07% for with Ro = 1.07* for
CPW on substrate CPW on substrate
with ¢, = 5.0. with ¢, = 5.0.

In Fig. 9.19 to 9.21, the return losses for the CPWs on the two substrates with
identical ML parameters are compared. It is evident that the media parameters
of the substrate have a distinct influence on the performance of the ML absorber.

For the CPW with &, = 5.0 substrate, the absorption in the lower frequency
region up to 40 GHz is much better when compared to the return loss for the
CPW on a substrate with €, = 9.9. In the latter case, the absorption in the upper
frequency region is better. This shows that the main source of reflection in the
matched layer does not originate from parasitic numerical reflections due to the
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abrupt change in conductivity, but from the differing dispersion in neighbouring
media with different media parameters.
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2. Dielectric Losses in Multichip Module Interconnects

2.1. Multilayer Multichip Modules for Microwave Applications.
Multichip modules (MCM) combine several integrated circuits on a specially de-
signed substrate. This allows integrating devices and monolithic integrated subcir-
cuits based on different material systems and from various processing technologies
into a single system. Therefore, the MCM technology offers an integration tech-
nology for future low-cost mobile communication systems in the millimetre-wave
frequency bands that is as reliable, cheap, and small in dimensions as common
monolithic integration technology. This is particularly interesting if extremely low
noise figures are desired, thus GaAs devices can be incorporated into the system.
The highest integration density is achieved by thin film multilayer structures on
ceramic, silicon or metal.

100pm

via

port 1 port 2
—_— e
microstrip coplanar
h=25um ; ! w=20pm
w=T70pm s=15um

signal layer

metalization layer

FIGURE 9.22. Schematic layout of microstrip to coplanar MCM
substrate chip interconnect in chip-last technology. Only one
half of the structure is shown.

A special MCM for high frequency applications was reported in [58]. In this
technology, bare dice are directly integrated into substrate openings. The intercon-
nection and wiring system is fabricated using thin film technology on the planar
chip/substrate surface. This configuration allows short interconnections between
chip and substrate, a planar topology, and a high integration density. Furthermore,
all transmission lines can be realized with a controlled impedance.

To embed active or passive components in thin film multilayer structures, two
mounting principles have been developed [58]. In the chip-first technology, the
chips are mounted into openings in the MCM substrate. The wiring and the inter-
connects are fabricated by depositing the metalization on top of a first polymer
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layer that covers chips and substrate. In order to contact the embedded chips
with the first metalization layer, via holes are opened up photolithographically
in the photosensitive polymer film. The first metalization layer is deposited by
sputtering and electroplating using a photoresist mask. The second polymer layer
is deposited with a thickness of 25 micron. Finally, the second metalization layer
is sputtered and structured in adjustment to the first metalization layer. In the
chip-last technology, the thin film wiring is realized on the substrate before the
chips are embedded into the substrate. The interconnects from the substrate to
the embedded chips are achieved by a final thin film metalization.
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FIGURE 9.23. Graph of tand versus frequency for 74 = 4.2 -
10712, s = 5.1, and €0 = 4.9.

The thin film metalization is based on a Ti:W/Cu (100 nm/200 nm) tie layer
that is electroplated using a photoresist mask. The metalization is 5 microns thick.
To interconnect different chips and passive components on the carrier substrate,
microstrip and coplanar waveguides are promising, as they are highly reproducible.
Chip connections are preferably realized using coplanar waveguides, whereas mi-
crostrip wiring can be used for interconnecting the remaining parts of the MCM.
However, reflections at such transmission line discontinuities cannot be neglected
at higher frequencies. The adhesive that holds a chip in the substrate lies directly
underneath the chip-substrate interconnect. As the employed adhesive has highly
dispersive properties, it might influence the transmission properties in an unknown
manner. The influence of the dispersive adhesive on the transmission properties
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of the microstrip-to-coplanar interconnect are determined in this section. For this,
the parameters for describing the dispersive properties of the adhesive system by
a DEBYE Model are estimated and the transmission characteristics of an MCM
interconnect in chip-last technology are investigated. The interconnect is shown
in Fig. 9.22. An exact layout with all dimensions in the ym range can be found in
Appendix E. A comparison of the transmission characteristics with and without
dispersive losses is presented.

2.2. Parameter Estimation for Dielectric Losses of Adhesive.
Although dispersive dielectric materials are frequently used in microwave appli-
cations, precise data on their characteristic parameters such as permittivity and
loss tangent are not available. Especially for epoxy based adhesives no data are
available. Therefore, we estimate parameters for a worst case loss tangent function
following a DEBYE model. A loss tangent value of 0.01 at 1 GHz for printed circuit
boards consisting mainly of epoxy was given in [109]. With this value, we want
to estimate parameters for the worst case loss tangent function. Plotting eqn. 8.7
versus frequency for the parameters 7y = 4.2 -107'? 5, e, = 5.1, and €0 = 4.9
yields a sensible estimation of the true loss tangent curve of pure epoxy. A plot of
this estimated loss tangent function can be found in Fig. 9.23.

2.3. Transmission Properties of MCM Interconnects. The TLM sim-
ulation of the MCM interconnect involved the following parameters. The irregu-
larly graded mesh comprised 264x79x93 or 1939608 cells and the structure was
discretized as follows, written in the number of cells (N) per section in ym (W),
as N1 : Wi, N2 : Wy, ..., N, : W,. In x-direction, we have 60:380, 52:260, 25:160,
16:100, 8:50, 34:170, 60:380, 9:57 cells per section, in y-direction 3:10, 6:18, 1:4,
11:33, 4:14, 9:51.5, 8:26, 7:43.5, 30:200 cells per section, and in z-direction 19:129,
2:10, 2:10, 5:1, 8:25, 1:5, 1:5, 20:5, 20:120, 15:100 cells per section. The basic cell
size was 3 pm. The simulation was run for 30000 iterations. The interconnect
was excited from the MCM-substrate side. For this, the E* field component was
excited in the microstrip line using a GAUSSian transient. Two simulations were
performed, one with lossless adhesive and one considering dielectric losses accord-
ing to a DEBYE model with the parameters estimated in the previous section.
For considering these frequency dependent losses of the adhesive, the TLM algo-
rithm derived in the previous chapter was employed. All conductors were treated
as ideally conducting. The parameters of the TLM simulation are summarized in
Table 9.1.

In Fig. 9.24 the voltage at the input and at the output of the MCM microstrip-
to-coplanar waveguide interconnect is shown. The top graph shows the voltage in
the microstrip line considered as input and the bottom graph shows the voltage in
the coplanar line on the GaAs chip considered as output. The solid line refers to
the signals obtained from the simulation with lossless adhesive, and the dashed line
refers to the case of considering dielectric losses. From a model simulation of a sole
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TLM model of MCM interconnect
iterations 30000
total mesh size 264x79%x93 = 1939608 cells
mesh grading (x)  60:380, 52:260, 25:160, 16:100, 8:50, 34:170, 60:380, 9:57
mesh grading (y)  3:10, 6:18, 1:4, 11:33, 4:14, 9:51.5, 8:26, 7:43.5, 30:200
mesh grading (z) 19:129, 2:10, 2:10, 5:1, 8:25, 1:5, 1:5, 20:5, 20:120, 15:100

basic Al 3 pm

At 1.92:107'% s

h (stability factor) 5.2

ABC matched load
Excitation E* beneath microstrip

TABLE 9.1. Parameters of TLM simulation of MCM interconnect.

microstrip line running directly through the gap filled with the epoxy adhesive and
through the GaAs chip (which does not reflect any physical situation), the nature
of the second largest peak in the input voltage could be identified. It originates
from the reflection of the microstrip mode at the BCB-epoxy interface, when the
open running microstrip is terminated by the epoxy adhesive. Note that in case
of dielectric losses, the reflection is lower indicating ‘loss impedance matching’
to a certain degree, as some of the energy of the incoming pulse is absorbed by
the adhesive. The output signal in the coplanar line does show a slightly higher
amplitude as a consequence of the loss impedance matching (see bottom graph in
Fig. 9.24).

By a reference simulation of the pure input signal on the microstrip line, the
S-parameters of the interconnect could be calculated. As the slot of the copla-
nar output line was only discretized with three cells in transverse direction, the
field was not modelled very accurately in the slot. For this, the voltage that was
obtained by integrating the transverse E-field was calculated slightly incorrectly.
This could be seen in a constant DC-offset in the transmission factor S21. As
the input voltage and the output voltage must be the same in the lossless case,
a correction factor for the voltage at the output could be calculated. Using this
correction, the transmission factor was evaluated and a graph of S21 versus Fre-
quency is shown in Fig. 9.25. The lossy epoxy adhesive seems to have virtually no
effect on the transmission properties of the interconnect. Interestingly, the trans-
mission properties are even slightly better in case of the dielectric losses being
caused by a better termination of the open microstrip line as a consequence of
the lossy adhesive. However, the deviation is very small, at 75 GHz it is about
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FIGURE 9.24. The voltage in the microstrip line (input) of the
MCM microstrip-to-coplanar waveguide interconnect is shown
in the graph at the top. The bottom graph shows the voltage at
the output in the coplanar line on the GaAs chip.

0.3 dB. To get the complete picture, the return loss is plotted versus frequency
up to 200 GHz together with the transmission factor in Fig. 9.26. Comparing the
S-parameters for lossless and lossy adhesive, the return loss S11 shows a more
pronounced deviation from the lossless case than the S21 curve. The difference is
of the order of 2 to 3 dB up to 130 GHz. The return loss is higher in the lossy case
clearly indicating that a lossy epoxy adhesive represents a better termination of
the open running microstrip.

To illustrate the unsatisfactory termination of the input microstrip line, a
three-dimensional field plot of the E* field is shown for various time steps in
Fig. 9.27(a)-(d). In (a), the leading edge of the pulse is just on the brink of hitting
the interface. In (b) one can recognize a spherical wave radiating into the gap
caused by diffraction at the edge of the finite ground plane of the open microstrip
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FIGURE 9.25. Transmission factor S21 of the MCM intercon-
nect for lossless and lossy adhesive.

line. Some iterations later, the pulse is already coupling into the coplanar line and
the back scattered wave is clearly visible, which can be seen in (c). The final plot
(d) shows the pulse travelling in the coplanar line and also the propagation of the
reflected wave is clearly discernible.

Summarizing the results of this investigation, it has become evident that the
dielectric losses of the epoxy adhesive have very little effect on the transmission
characteristics of this MCM interconnect. The presence of losses in the epoxy
adhesive even improves the termination of the open running microstrip line as
a consequence of loss impedance matching. This investigation has also shown
that one can characterize MCM interconnect structures without considering the
dispersive losses of the materials constituting such interconnect structures. In
turn, neglecting dielectric losses allows using a more efficient TLM code, which
produces faster results. Moreover, this study has indicated that the transmission
properties of MCM interconnects can be enhanced by optimizing the termination
of the open running microstrip line that interfaces the epoxy adhesive.
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FIGURE 9.26. Return loss and transmission factor of the MCM
interconnect for lossless and lossy adhesive.

3. Characterization of Planar Microwave Transformers

Low cost and highly efficient RF power amplifiers with high output power at
low supply voltages around 3 V are required in mobile communication applica-
tions. Such a monolithic integrated RF power amplifier in silicon technology was
presented in [91]. It yields 5 W output power at 0.8-1 GHz and achieves 59 % max-
imum efficiency. It operates at voltages of 2.5-4.5 V. The linear gain is 36 dB. The
amplifier is based on the 25 GHz-fr silicon bipolar technology SIEMENS B6HF.
This process uses 0.8 pm lithography and LOCOS isolation and a 3-layer alu-
minium metalization. A balanced 2-stage circuit design is utilized. The RF part
of the balanced 2-stage power amplifier consists of an on-chip transformer as in-
put balun, a driver stage, two transformers as interstage matching network and
a power output stage. The input transformer acts as a balun and represents also
a matching network. Two further transformers with a turn ratio of N=5:2 act
as an interstage matching network. A three-dimensional view of these interstage
transformers can be found in Fig. 9.29. They measure 274x274 pum?. Using trans-
formers in power amplifier design has a number of advantages. For example, using
a transformer at the input, allows no restrictions to the external DC potential
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FI1GURE 9.27. Reflection at adhesive-substrate interface.

at the input terminals, no external input DC blocking capacitor is required, and
the input signal can be applied balanced or single-ended if one input terminal is
grounded. For the circuit design, one of the most important objectives is an accu-
rate modelling of these on-chip transformers. In [91], the interstage transformers
were modelled using relatively simple lumped equivalent circuits that accurately
model the low-frequency behaviour of the transformers up to 2 GHz. One of the
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FiGURE 9.28. Reflection at adhesive-substrate interface.

major problems in developing an accurate equivalent lumped circuit model is
the precise characterization of the loss mechanisms present in these transformers.
Examples are ohmic losses in the conductor material of the windings and sub-
strate losses. To gain further insight into the nature of these loss mechanisms,
a profound understanding of the physics of these transformers is necessary. This
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understanding also aides in further improving their design. This physical insight
can be gained with the aid three-dimensional electromagnetic full-wave analyses
in time domain. On the one hand, the propagation of the electromagnetic field
can be visualized and on the other hand, the consideration of lossy material is
fairly simple in contrast to frequency domain simulation methods.

FIGURE 9.29. Interstage transformer with turn ratio N=5:2.

As the characterization of such transformers is a challenging problem for a
time domain method, one needs to find reasonable parameters for this type of
simulation such as how many cells are sufficient to discretize the gap between
the conductor windings, how far away to place the boundaries, where to com-
pute the field integrals, etc. Therefore, the time domain characterization of a
simplified planar transformer similar to the interstage transformers in the power
amplifier mentioned above, using the SCN-TLM method is presented. As the pri-
mary objective of this characterization is to determine the general influence of
the lossy silicon substrate on the S-parameters, it does not matter whether the
transformers has a turn ratio of 5:2 or 2:1 or the like. Moreover, studying simpli-
fied transformers has the advantage of shorter simulation times, as the simulation
of such problems takes several days on state-of-the-art workstations. The consid-
ered simplified transformer has a turn ratio of N=2:1 using the same conductor
widths as the N=>5:2 transformer. A three-dimensional view is shown in Fig. 9.30.
It measures 166x166 um?®. The layout of this simplified transformer can be found
in Appendix A. The gap between the windings is doubled from 2 to 4 ym. The
planar transformers can be characterized in two different modes of operation.
First, differential mode excitation with differential output and the centre tap of
the secondary winding as common output reference terminal. Second, one input
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and one output terminal grounded and the centre tap of the secondary winding
floating. The differential mode of operation is considered in the following TLM
characterization of the transformers.

FiGURrE 9.30. Simplified interstage transformer with turn ratio N=2:1.

3.1. TLM Simulation of Planar Microwave Transformers. Referring
to the top view of the simplified transformer in Appendix F, all dimensions in this
top view are in the pm-range. The dashed shaded polygons represent structures
on metal plane ALU 1. The dark shaded regions denote vias between the respec-
tive metal planes. The vertical location of the metal planes within the substrate
is specified in Fig. 9.32. In Fig. 9.31, a cross-section of the transformer design
is shown. Metalization planes 1 and 2 (i.e. ALU 1 and ALU 2) are connected
through vias in order to reduce the resistance in the windings. At the crossing
of the conductors of the primary winding, only one metal layer can be used, as
indicated in Fig. 9.30. A cross-section of the substrate of the 25 GHz- fr silicon
bipolar technology SIEMENS B6HF is shown on the left side of Fig. 9.32. The
original substrate set-up comprises a number of very thin layers. To achieve a
more uniform discretization and a reasonable time step, it is necessary to slightly
simplify the substrate set-up for the TLM model as indicated in the sketch on the
right of Fig. 9.32. This variation of the layer thicknesses will practically not affect
the simulation results. An irregularly graded mesh is used to discretize this trans-
former. The TLM mesh is schematically shown in Fig. 9.33. The dark regions
of the two background planes reflect regions with smaller cells. The irregularly
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FIGURE 9.31. Schematic cross-section of transformer in B6HF technology.
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FIGURE 9.32. Schematic cross-section of the SIEMENS B6HF
silicon production technology and simplified model substrate
used in the TLM simulation.

graded mesh discretization is as follows, written in the number of cells (N) per
section in pm (W), as N1 : Wi, N2 : Wa, ..., N, : W,. In x-direction, we have
30:75, 5:10, 4:4, 5:10, 4:4, 10:20, 30:70, 10:20, 4:4, 5:10, 4:4, 5:10, 30:75 cells per
section, in y-direction 30:75, 5:10, 4:4, 5:10, 4:4, 10:25, 30:60, 10:25, 4:4, 5:10, 4:4,
5:10, 30:75, and in z-direction 40:100, 7:8.4, 1:1.2, 50:125. In positive and nega-
tive x-direction and at bottom of the substrate, a matched layer absorber with
8 cells and a theoretical reflection coefficient of Rg = 1.0 - 10~* was used. A lin-
ear conductivity profile was chosen. This yields a mesh with 162x146x106 cells.
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The basic cell size was 1 ym. The simulation was run for 50000 iterations. A pre-
computed two-dimensional field template was used to excite the TLM mesh of the
model transformer. It represents a two-dimensional cross-section of the fundamen-
tal propagating field mode in terms of TLM wave amplitudes. This precomputed
field template is then superposed on the wave amplitudes in the TLM cells of the
excitation plane using a GAUssian transient. The excitation plane runs through
the ends of the conductors of the input terminal. The time-domain signals are

FIGURE 9.33. Three-dimensional view of the metal planes in
the TLM mesh describing the topology of the simplified planar
transformer. The background planes at the bottom an in the
background show the discretization with an irregularly graded
mesh. The darker regions indicate regions of smaller cells.

monitored by field integrals. The voltages at the (differential mode) ports that
are indicated in Fig. 9.30 is obtained by computing the line integral between the
respective conductors at the input and at the output terminal. The voltage at port
1 is calculated by a line integral running from one conductor to the other conduc-
tor in the slot. At port 2, the integral runs from the upper conductor on the right
side in Fig. 9.30 to the centre tap. At port 3, the line integral runs from the lower
conductor on the right side in Fig. 9.30 to the centre tap. The current flowing in
the terminals of the transformer is calculated by loop integrals encompassing the
respective conductor. The current flowing through port 1 is obtained by a loop
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TLM model of N=2:1 transformer
iterations 50000
total mesh size 162x146x106 = 2507112 cells
mesh grading (x)  30:75, 5:10, 4:4, 5:10, 4:4, 10:20, 30:70,
10:20, 4:4, 5:10, 4:4, 5:10, 30:75
mesh grading (y)  30:75, 5:10, 4:4, 5:10, 4:4, 10:25, 30:60,
10:25, 4:4, 5:10, 4:4, 5:10, 30:75
mesh grading (z) 40:100, 7:8.4, 1:1.2, 50:125

basic Al 1 pm

At 6.54-107'%s

h (stability factor) 5.1

ABC 8 ML, p=1.0, Ry = 1.0 - 10~* (x-dir./bottom)
Excitation precomputed field template

TABLE 9.2. Parameters of TLM simulation of simplified N=2:1 transformer.

integral around the upper input conductor in Fig. 9.30. The loop integrals for
calculating the current through ports 2 and 3 encompass the upper and the lower
conductors indicated in the upper right corner of Fig. 9.30. Both current and volt-
age integrals of a particular port lie in the same plane, which is indicated by the
thick dashed lines in Fig. 9.30. The parameters of the TLM simulation are sum-
marized in Table. 9.2. JOHNS’ original formulation in equivalent node voltage and
equivalent loop current representation was employed to characterize the planar
transformers as this formulation currently represents the fastest TLM algorithm

[5]-

3.2. TLM Simulation Results. The time-domain signals obtained at the
ports are shown in Fig. 9.34. The solid line refers to the transformer on a lossless
substrate and the dashed curves denote the signals obtained from a simulation
where the substrate losses were modelled with o, = 18.5 Sm™' neglecting the
conductive epi-layer. The dotted lines stand for the voltages when considering a
substrate with both losses with oo = 18.5 Sm~! and a conductive epi-layer with
e = 200 Sm™'. The curves represent the voltage obtained at the ports. The
graph at the top shows the reference input pulse recorded during a simulation of
the input lines alone. The second graph from the top shows the voltage between
the input terminals at port 1 of the simplified transformer. The third graph shows
the output voltage at port 2 and the graph at the bottom shows the output voltage
at port 3 of the simplified transformer.
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FIGURE 9.34. Excitation and voltage at the ports of the trans-
former. From top to bottom: temporal GAUSSian excitation,
voltage between input terminals (port 1), voltage between first
output conductor and centre tap (port 2), and voltage between
second output conductor and centre tap (port 3).

Comparing the voltages at port 2 and 3 in the bottom graphs of Fig. 9.34,
one notices that the output is not balanced in the simplified transformer. This is
caused by the conductors of the primary winding crossing each other only once,
whereas in the original design (see Fig. 9.29) there are multiple crossings yielding
a fully balanced output. Note that the amplitude of the dashed and dotted signals
is always lower. This reflects the dissipation in the lossy substrate. The presence
of a relatively highly conductive epi-layer reduces the amplitudes of the signals
more significantly. Consequently, the epi-layer acts somehow like a screening to
the substrate.

The S-parameters S11, S21, and S31 up to 30 GHz are shown in Fig. 9.35. The
solid curves denote the S-parameters of the transformer on the lossless substrate
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and the dashed curves refer to the transformer on the lossy substrate with o, =
18.5 Sm™". The dotted lines denote the case of the substrate including both losses
and the conductive epi-layer. Looking at the S-parameters, one realizes that the
losses in the silicon substrate have virtually no effect on the properties of the
transformer in the frequency band of interest up to 5 GHz. Only at very high
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FI1GURE 9.35. Comparison of S-parameters of simplified N=2:1
transformer on lossless and lossy substrate. The solid curves
refer to the lossless case and the dashed curves to the case with
lossy substrate.

frequencies, the substrate losses seem to play a more profound role as indicated
in Fig. 9.36. In this graph, the S-parameters are plotted up to 300 GHz. The
substrate losses start having a more significant influence on the S-parameters at
approximately 25 GHz. The deviation from the curve denoting the lossless case
is around 1 dB. Consequently, these simulations suggest that the principle loss
mechanism in the planar transformers of the type considered here originates from
ohmic losses in the conductors of the transformer windings. The lossy substrate has
a less significant influence on their properties. Nevertheless, the negative influence
of capacitive coupling to the substrate must not be neglected.
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FIGURE 9.36. S-parameters of simplified N=2:1 transformer
on lossless and lossy substrate up to 300 GHz. The solid curves
refer to the lossless case and the dashed curves to the case with
lossy substrate.

By considering the S21 curves in Fig. 9.36, one can locate the first resonance
of the simplified transformer at around 150 GHz. This indicates a potential use
of such transformers up to nearly 100 GHz, before the transmission (521, S31)
breaks down.

The tangential H-field in a horizontal cross-sectional plane located between
ALU 2 and ALU 3 is shown at various times in Fig. 9.37. It reflects the current
distribution in the conductors. One can discern two dark regions at the input
conductors that represent the incident pulse after 0.73 ps simulation time in Sub-
figure (a). In Subfigure (b) one can recognize a relatively large reflected current at
the top edge of the picture (recorded after 1.203 ps). The currents that flow into
the primary winding are also clearly discernible. A radiated spherical wave into
the transformer or into the substrate, respectively, can also be recognized. Inter-
estingly, a parallel current is also excited in the second winding of the primary
winding. After 1.674 ps simulation time, one can also recognize a current flowing
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FIGURE 9.37. Tangential H-field in the plane of the trans-
former between ALU 3 and ALU 2 reflecting the current distri-
bution in the conductors.

in the second winding of the primary winding. Interestingly, when the currents
flow around the corners of the conductors, the pulses are better localized. This
is shown in Subfigure (d) after 2.145 ps. Comparing Subfigures (c) (H-field after
1.792 ps) and (d), one recognizes that the currents in the second winding flow
in the same direction as the ones in the first. When the current pulses reach the
vias at the conductor crossing of the primary winding, one can recognize current
peaks, which indicate that the vias present a remarkable obstacle for the current
to flow (see Subfigure (e) after 2.616 ps). The principle current pulse crosses from
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the first to the second winding of the primary winding after 3.21 ps, which can
be seen in in Subfigure (f). The current peak at the central via of the secondary
winding, which connects the windings on ALU 2 and ALU 3 (Subfigure (g)), can
be recognized after 4.028 ps. The current pulses flowing in the primary winding
reach again the input terminal after 4.5 ps, which can be seen in Subfigure (h).
The outgoing current pulse from the input can be clearly recognized in Subfigure
(i) after 5.44 ps. The further current flow is indicated in Subfigure (j), which shows
the tangential H-field after 5.91 ps. From the images of the tangential H-field
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FIGURE 9.37. Tangential H-field in the plane of the trans-
former between ALU 3 and ALU 2 reflecting the current distri-
bution in the conductors.
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FIGURE 9.37. Tangential H-field in the plane of the trans-
former between ALU 3 and ALU 2 reflecting the current distri-
bution in the conductors.

in Fig. 9.37 one can identify another loss mechanism in the planar transformer.
The interconnection between the ALU 2 and ALU 3 conductors through the vias
represent a remarkable obstacle for the current. It might be worth while using
vias all along the conductors to reduce the current crowding effects. Furthermore,
the field images suggest improving the design of the crossings of the conductors.
For example, one could consider a bridge in parallel on metalization layer ALU 1
to reduce the resistance.

3.3. Comparison with HP-Momentum MoM Simulation Results.
For comparison, the simplified transformer was also characterized using the com-
mercially available HP-Momentum field solver, based on the method-of-moments.
The Momentum solver operates in frequency-domain and therefore considers the
steady state. The parameters of the Momentum simulation of the transformer
can be found in Table 9.3. As using an infinite substrate layer without ground
plane yielded very poor results, a ground plane was specified in the simulations
although this does not completely reflect the physical problem. However, consid-
ering a ground plane produced much better results.

Although the specification of differential mode ports is available with the HP-
Momentum solver, specifying 50 Ohm microstrip ports in connection with ground-
ing the other conductor (i.e. the centre tap of the secondary winding at the output)
and using an artificial via to ground, proved much better. The mesh depicted in
Fig. 9.38 was automatically generated using the parameters given in Table 9.3 of
the Momentum mesh generator.
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FIGURE 9.38. Automatically generated mesh for HP-

Momentum simulation of simplified transformer with turn ratio
N=2:1.

Momentum MoM model of N=2:1 transformer

mesh parameters
global 60 cells/A

edge mesh 5 cells

mesh frequency 100 GHz

mesh size 1798 rectangles
664 triangles
414 vias

ports 50 Ohm microstrip TL ports

TABLE 9.3. Parameters of Momentum simulation of N=2:1 transformer.

In Fig. 9.39, the S-parameters obtained by the time-domain simulation us-
ing SCN-TLM with a lossless substrate and the ones obtained from the HP-
Momentum simulation are compared. As the S-parameters from the Momentum
simulation are related to 50 Ohm ports, they were transformed to the respective
port impedances of the TLM simulation. Port 1 has an impedance of 77 Ohm and
Ports 2 and 3 have an impedance of 340 Ohms. When the S-parameters obtained
from the two methods are related to the same impedances, one can see a reason-
able agreement between the two methods as indicated by the curves in Fig. 9.39.
Nevertheless, it seems that the frequency-domain HP-Momentum solver is not
suitable for proper simulations of the planar transformers without ground plane.
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FiGUurRe 9.39. Comparison of S-parameters for simplified
N=2:1 transformer on lossless substrate up to 100 GHz obtained
from TLM simulation and HP-Momentum simulation.

Furthermore, it is not possible to consider lossy substrates as the simulation will
yield S-parameters greater than one.
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CHAPTER 10

Conclusion

The foundations of the TLM method with symmetrical condensed node in
the original formulation of JOHNS were investigated in this work. The TLM al-
gorithm was considered as a mathematical approximation scheme of MAXWELL’s
equations in a rigorous functional analytical setting and not in terms of equiv-
alent lumped element models. It was shown that the field-mapping between the
discretized electromagnetic field and the TLM wave pulses determines the asymp-
totic convergence rate of the TLM algorithm. For this, the convergence of the
original SCN-TLM formulation introduced by JOHNSs [35] was proved for the first
time. The proof was achieved for both the SCN-TLM method with and with-
out stubs. As the original field-mapping proposed by JOHNS is not bijective, a
proof of convergence is not straightforward. Therefore, the proof was performed
in three steps. The first step consisted in constructing the appropriate function
spaces providing a suitable norm for proving convergence. In the second step,
the cell-centred field-mapping was applied at every iteration step yielding a map-
ping induced finite difference scheme that was accessible to standard methods
for proving convergence. It emerged that the TLM inherent mapping induced fi-
nite difference scheme is the well known first order LAX-FRIEDRICHS scheme. In
a third step, it was shown using norm estimations that the difference between
the TLM scheme and this mapping induced finite difference scheme approaches
zero for Al approaching zero. Using the field-mapping of the original formulation,
which defines the electromagnetic field components in the centre of a TLM cell,
leads asymptotically to O(v/At) convergence. In view of this, the TLM algorithm
can be seen as an energy-conserving LAX-FRIEDRICHS scheme. Energy conserva-
tion of the TLM scheme using a cell-centred field-mapping is achieved at the cost
of a lower convergence order. However, applying the bijective boundary oriented
field-mapping, where the electromagnetic field is sampled at the centre of the cell
faces of a TLM cell, will indeed result in second order convergence [23, 44, 46].
This influence of the field-mapping on the asymptotic convergence order could be
confirmed in a numerical experiment, where the propagation of a plane wave in
a one-dimensional parallel-plate waveguide was studied at various discretizations.
From the proof of convergence of JOHNS’ original formulation follows that the
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commonly used picture of the TLM-SCN in terms of equivalent circuits leads to
a misinterpretation of the underlying mathematical approximation.

The convergence of the recently proposed ARTLM scheme was also investi-
gated. It is shown that the field-mapping also determines the type of approxima-
tion in the ARTLM Method. A proof of the non-existence of a consistent mapping
was given. As the ARTLM scheme is based on exploiting the inherent redundancy
of the TLM scheme, it follows that fully exploiting this redundancy does not lead
to a convergent scheme modelling MAXWELL’s equations. Consequently, it is only
possible to utilize the redundancy with respect to time, as done in the ATLM
method.

Moreover, the SCN-TLM method was applied to challenging problems in char-
acterizing planar microwave circuits. In the course of the characterization of such
planar components it emerged that in many practical situations the use of simple
absorbing boundaries for truncating the computational domain is not sufficient.
Therefore, the matched layer technique was optimized and made applicable by im-
plementing an automatized layer generator into the TLM code. A comprehensive
study on the optimum parameter combination of such matched layer absorbers
for truncating the computational domain in open problems with inhomogeneous
planar substrates was performed. It was shown that the performance of these
absorbing boundary conditions is mainly determined by the differences in disper-
sion due to different media parameters in neighbouring regions. The numerical
reflections play a minor role.

One objective was the investigation of the influence of dielectric losses of the
adhesive used in multichip module interconnect structures on the transmission
properties of these interconnections. The interconnect structure consisted of a
microstrip-to-coplanar transition. For this, a novel symmetrical condensed node
algorithm for simulating dispersive dielectrics of Debye type was derived using the
propagator approach. It offers the advantage of guaranteeing second order con-
vergence, whereas methods based on equivalent circuits may lead to algorithms of
lower asymptotic convergence. As no accurate data on the dispersive properties of
the epoxy adhesive applied in this interconnect structure are available, worst case
parameters of the adhesive were estimated. It could be shown that the frequency
dependent losses of the adhesive only have a slight influence on the transmission
properties. The lossy adhesive even improves the transmission properties as it
presents a loss impedance match to a certain degree to the open running input
microstrip line. It follows that MCM interconnects can be modelled neglecting
the dielectric losses without a misinterpretation of the simulation results. This
leads to shorter simulation times, as more efficient TLM algorithms can be used.
Furthermore, it was found that the MCM interconnect structure can be optimized
by better matching the impedance of the interfacing media.

The second studied problem consisted of determining the influence of a lossy
substrate on the performance of planar microwave transformers. As this problem
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involved using a very large mesh, the most efficient TLM algorithm which is based
on a special representation of JOHNS’ original formulation was utilized to shorten
the simulation times. It was found that in the frequency regime of interest up to
5 GHz the losses of the substrate have a negligible influence on the performance
of such transformers. Hence the main source of loss stems from the resistance of
the conductors. Moreover, the S-parameters obtained from the TLM simulation
indicate a possible use of such transformers up to 100 GHz, which is very interest-
ing for next generation mobile communication applications. The field visualization
yielded an insight into the operation of such transformers. It could be shown that
the via-holes and the conductor crossings represent a bottle neck for the flowing
currents. These two substructures should be optimized to reduce the overall losses
in the transformers.

The characterization of these planar microwave structures has shown that the
TLM method with symmetrical condensed node is a reliable and competitive tool
for the analysis and the design of such structures. I expect the contributions
presented in this thesis to have the following impact on the future development
of the TLM method and its use as an electromagnetic modelling tool:

1. It will be necessary to explicitly show consistency and convergence of a
particular TLM algorithm, as deriving TLM algorithms in terms of equiv-
alent lumped element circuits may lead to false conclusions on the chosen
approximation of MAXWELL’S equations.

2. The question of the existence of a six-port TLM has to be tackled from a
different line of thought. A further exploitation of the inherent redundancy
of the TLM algorithm appears to be impossible.

3. New types of absorbing boundary conditions for use in open problems in-
volving inhomogeneous layered media need to be developed. The currently
used matched layer (this also applies to PML) absorbers are practical but
still not perfect.

4. The TLM method seems to be particularly suited for the characteriza-
tion of arbitrary loss mechanisms in planar microwave circuits. Using the
propagator approach has indicated a promising direction with respect to
modelling dispersive media, as the asymptotic convergence rate can be
guaranteed.
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APPENDIX A

Smoothness Conditions for Solutions of
Maxwell’s Equations

In Chapter 4, the LEBESGUE space

(A.1) Har = L2(0,T; (L2(€2))°)

was specified for solving an initial value problem of MAXWELL’s equations. How-
ever, not all functions of (L2(€2))° are a solution of (4.25) and (4.26). The gener-
alized rot-operator Dr admits only certain functions of (L2(£2))°®. Moreover, the
time derivative on the left side of (4.25) and (4.26) further restricts the number
of admissible functions from #s. The first restriction can be seen as a condition
for the domain of the operator Dgr

(A.2) D(Dr) = {f € Hs: Rf € 7{5}.

It simply means that the wanted functions are differentiable with respect to
space at least once. A LEBESGUE space comprising such functions is called a
SOBOLEV space [16,117]. In the case considered here, the SOBOLEV space

(A.3) V= (Wi(RY)".

would be appropriate to comprise all admissible functions. A scalar product in
this space may be defined as

a0 Fof)=( [ /7 (B (r) B3 () + Hi(r)H3(r)

1

+ D'Ei(r)D'Ej(fr) + D' Hi (r)D' H3(fr))d*r. ) 2

It should be noted that this scalar product no longer equals the energy functional.
D denotes following ZEIDLER [117], a generalized derivative
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D' = — o
oL - ENY

where 7 denotes a ‘multiindex’ and £ a general variable. Using the same argument,

it is sensible to restrict the domain of functions of ¢t — H or t — V to those,

whose partial derivatives up to order one exist. Consequently, all functions of the
SOBOLEV space

(A.5) with |i| = |i1 + - - +in],

(A.6) W, (0,T; V)

are admissible. In case of p = 2, the scalar product is defined according to (A.4).
Still, the divergence condition of the electromagnetic field needs to be considered.
For this we define the extended divergence operator Div [82]

(A.7) Div = (VO v()) .

This leads finally to the SOBOLEV space

(A.8) WL(0,T;Ve)  with Vo= {f € V|Divf € V}.

for the given initial value problem involving MAXWELL’s equations of eqn. (4.25)
and (4.26). The additional restrictions on the admissible functions ensure that the
considered solutions are sufficiently smooth.



APPENDIX B

Sequence Spaces

Sequence spaces are spaces that are often used as introductory example to the
theory of HILBERT spaces. They are very similar to the spaces of lattice functions.
The sequence spaces ¢,,p > 1 are the spaces of all bounded sequences [16,116].
They are complete and a norm is defined on them. A typical example of this class
of spaces is the space 2, which is a HILBERT space. Each element @ is a sequence
(2n)S2; of real or complex numbers, such that 3.°° . |z,|> < oo is fulfilled. This
means that the sequence converges to a finite number. Hence, the space ¢» is given
by

(B.1) 0 = {:1: = (zn)22 : i RS oo}.

The norm in this space is given by

(B.2) llly = [[(zn)n=1ll =

As /5 is naturally a linear vector space over R or C, componentwise addition and
multiplication is declared. An inner product is given by

(B.3) (@,9) =) _ euyn

with « = (z,),y = (y») [82,116]. Related spaces are the spaces

(B.4) b, = {:1: = (Tn)pe i |zn [P < oo},

which are BANACH spaces but not HILBERT spaces. Their norms are defined as
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(B.5) lall, = (3" loal? )
k=1

for p > 1. These spaces can be generalized in the way that the elements z,, of the
sequence (x,)o—; denote BANACH spaces, indexed n, (B,,) instead of real or com-
plex numbers as before. The element x,, still denotes an element of the sequence,
but it is now an element of B,. Hence, the space ¢,(B,) denotes a sequence
of BANACH spaces indexed n (n = 1,2,3...) whose elements x, are sequences
(rm)oe—; of elements of the BANACH spaces (B,). The sequence converges in the
sense of Y ° | ||zl < oo. |||, denotes the norm of (B,). Now, the spaces
look as follows

(B.6) £(Bn) = {@ = (@n)i21 + Y Ilonll}, < 00,20 € Ba },
n=1

with norms

1

(B.7) foll, = (Sl )

for p > 1. An example of such spaces are the FOCK spaces in quantum mechanics
with p = 2 and B,, denoting HILBERT spaces [82].



APPENDIX C

Lattice Functions

Lattice functions are functions, whose continuous values are only known on
a grid, i.e. at discrete points of an interval in the one-dimensional case or at
discrete points of a higher dimensional domain in higher dimensional cases. As an
example,

(C.1) g =g(zo +1Ax), leZ

is a lattice function, where g(z) € C(R). This shows that a grid can also be
described by a set of numbers I. In example (C.1) the equality I = Z would
hold. The values of the function g can be written as an enumerable infinite tuple
(....g—2,9-1, 9o, 91, g2, ...), which is also a sequence of real or complex numbers of
index [ € 1. Hence, lattice functions are functions of discrete argument.
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APPENDIX D

Discrete Lebesgue Spaces

In Appendix B, the sequence spaces ¢2, ¢, and ¢,(B,) were considered. Finite
difference methods are usually investigated in discrete LEBESGUE spaces p Aq
[100, 118]. They represent the discrete analogue to the LEBESGUE spaces intro-
duced when defining the initial value problem for MAXWELL’s equations in Chap-
ter 4. The only difference between discrete LEBESGUE spaces and sequence spaces
is a slightly altered definition of the norm and the inner product. This is due to
the fact that the ¢, norms diverge for Az — 0 [100]. As this is a serious draw-
back when studying convergence, the norms of the discrete LEBESGUE spaces are
weighted by the spatial increment Az

3=

(D.1) lpae = ( Z [zal? Az )

In case of p = 2 this norm is called energy norm. The norms of the spaces £, A (Br)
are defined analogously as

02 ol s = (3ol A2 )

In case of discrete initial and boundary value problems, one has spaces of finite
dimension. These spaces are simply R" (or CV) equipped with £, a-norm (or
the appropriate inner product in case of p = 2), consequently the norms are given
by

s =

(D3) 2lly.00 = (Z [2al” A )

For problems that involve more than one dimension, the norms are defined ac-
cordingly [100, 118] such as
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(D.4)

D. DISCRETE LEBESGUE SPACES

|@am)ml meny = (D0 D loaml” Azay )

w3 =



APPENDIX E

Layout of MCM Interconnect
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APPENDIX F

Layout of Simplified Transformer
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