Technische Universität München Institut für Organische Chemie und Biochemie

> Max-Planck-Institut für Biochemie Abteilung Strukturforschung

Nuclear Magnetic Resonance Spectroscopic Investigations on the Green Fluorescent Protein, the Cyclase Associated Protein and Proteins Involved in Cancer Development

Till Rehm

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender:

Univ.-Prof. Dr. St. J. Glaser

Prüfer der Dissertation:

1. Univ.-Prof. Dr. H. Kessler

2. apl. Prof. Dr. L. Moroder

Die Dissertation wurde am 30.10.2002 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 21.11.2002 angenommen.

Publications

Parts of this thesis have already been published or will be published in due course:

Rehm, T., Huber R. and Holak T.A. *Application of NMR in structural proteomics: Screening for proteins amenable to structural analysis*, Structure, 10:1613-1618, 2002.

Stoll R., Renner C., Hansen S., Palme S., Klein C., Belling A., Zeslawski W., Kamionka M., *Rehm T.*, Mühlhahn P., Schumacher R., Hesse F., Kaluza B., Voelter W., Engh R.A. and Holak T.A. *Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53.*, Biochemistry, 40(2):336-344, 2001.

Kamionka, M., *Rehm, T.*, Beisel H.G., Lang K., Engh R.A. and Holak T.A. *In silico and NMR Identification of inhibitors of the IGF-I and IGF-Binding Protein 5 interaction*, J. Med. Chem., 45(26):5655-5660, 2002.

Brüggert, M., *Rehm, T.*, Shanker, S. and Holak, T.A. *A novel medium for expression of selectively* ¹⁵*N labled proteins in SF9 insect cells*, J. Biomol. NMR, in press 2003.

Rehm, T., Mavoungou, C. Israel, L., Schleicher, M. and Holak T.A.: *Letter to the Editor: Sequence-specific (*¹*H,* ¹⁵*N,* ¹³*C) resonance assignment of the N-terminal domain of the cyclase-associated protein (CAP) from Dictyostelium discoideum,* J. Biomol. NMR, 23:337-338, 2002.

Rehm, T., Mavoungou, C. Israel, L., Ksiazek, D., Schleicher, M. and Holak T.A.: Solution structure of the adenylyl cyclase associated protein (CAP) from Dictyostelium discoideum, in preparation

Seifert, M.H.J., Georgescu, J., Ksiazek, D., Smialowski, P., *Rehm, T.*, Steipe, B. and Holak T.A. *Backbone Dynamics of Green Fluorescent Protein and the Effect of Histidine 148 Substitution*, Biochemistry, in press, 2003.

Georgescu, J., *Rehm, T.*, Wiehler, J., Steipe, B. and Holak T.A. *Letter to the Editor: Backbone* H^N , *N*, C^{α} , and C^{β} assignment of the *GFPuv mutant*, J. Biomol. NMR, in press, 2003. ii

Abbreviations

Amino acids are abbreviated according to either one or three letter IUPAC (International Union of Pure and Applied Chemistry) code. The customary acronyms are used for the NMR experiments.

2D	two-dimensional
3D	three-dimensional
CAP	cyclase associated protein
DMSO	dimethylsulfoxide
DMSO-d6	deuterated dimethylsulfoxide
DNA	deoxyribonucleic acid
ELISA	enzyme-linked immunosorbant assay
FMOC	9-Fluorenylmethoxycarbonyl
GFP	green flourescent protein
GST	glutathione-S-transferase protein
HSQC	heteronuclear single-quantum coherence
IC ₅₀	inhibitior concentration wit 50% inhibition
IGF-I	insulin-like growth factor-l
IGFBP-4	IGF binding protein-4
IGFBP-5	IGF-binding protein-5
IPTG	Isopropylthiogalactosid
K _D	Dissociation constant
kDa	Kilodalton
MDM2	human murine double minute clone 2 protein

iv

Ni-NTA	Ni-Nitrilotriacetic acid
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser enhancement
OD_{600}	optical density at 600 nm
PBS	phosphate buffered saline
PDB	Protein Data Bank
PIP_2	phosphatidylinositol 4,5-bisphosphate
ppm	parts per million
Sf9	spodoptera frugiperda
SH3	Src homology 3 domain
Tris	C,C,C-Tris(hydroxymethyl)-aminomethan

Contents

1 Introduction				
2 Application of NMR in structural proteomics			5	
	2.1	Introduction	5	
	2.2	Screening for proteins amenable to structural analysis	5	
	2.3	One-dimensional NMR	6	
	2.4	Two-dimensional NMR	11	
3	3 Chalcone Derivatives Antagonize Interactions between the Human Oncoprotei			
	MDI	M2 and p53	15	
	3.1	Introduction	15	
	3.2	Biological Context	16	
	3.3	Ligand Binding	16	
	3.4	NMR Spectroscopy	21	
4 In silico and NMR Identification of Inhibitors of the IGF-I and IGF-Binding Protein-		1		
	Inte	raction	25	
	4.1		25	
	4.2	Biological context	25	
	4.3	Results and Discussion	27	
	4.4	Experimental Section	33	
5	A n	ovel Medium for Expression of selectively ¹⁵ N labeled Proteins in SF9 insect		
	cell	S	39	
	5.1	Introduction	39	
	5.2	Biological context	40	
	5.3	NMR Spectroscopy	41	
	5.4	Results and Discussion	41	

6	NMR Characterization of the cyclase-associated protein (CAP) from Dictyostelium				
	discoideum 4				
	6.1	Biological context	47		
	6.2	The folded core of CAP-N	47		
	6.3	Material and Methods	50		
	6.4	Sequence-specific (1 H, 15 N, 13 C) resonance assignment	51		
	6.5	Three-dimensional structure determination	56		
	6.6	¹⁵ N-Relaxation	59		
	6.7	Is CAP a Dimer?	61		
7	NMF	R Characterization of the Green Fluorescent Protein	65		
	7.1	Biological context	65		
	7.2	NMR Spectroscopy	66		
8	Summary		69		
9	9 Zusammenfassung				
Α	A BioMagResBank entry for CAP-N				
Ri	Bibliography 9				

Chapter 1

Introduction

NMR Spectroscopy on Proteins in solution

Multi-dimensional nuclear magnetic resonance spectroscopy (NMR, for a list of abbriviations see appendix) is widely used for determining three-dimensional structures of small and medium sized proteins in solution. As NMR observes signals from individual atoms in these complex macromolecules, it is also possible to investigate further properties with atomic resolution. Among these are the mapping of binding sites of ligands, monitoring of folding and aggregation, detection of multiple conformations and dynamical properties. In this thesis no general description of the theory and application of the NMR method will be given as it was felt, that a comprehensive introduction into the wide field of high resolution, multidimensional NMR is outside the scope of this work and also because there are excellent books, covering all aspects of modern NMR techniques. The following text books are highly recommended for understanding the power of NMR:

Canet (1996) Nuclear Magnetic Resonance. Concepts and Methods; John Wiley & Sons, New York [a nice introduction]

- Croasmun & Carlson (1994) Two dimensional NMR Spectroscopy. Applications for Chemists and Biochemists, VCH Publisher, Weinheim [an extensive treatise on multidimensional experiments]
- **Derome** (1987) *Modern NMR Techniques for Chemistry Research*, Pergamon Press, Oxford [a more technical approach]

- Ernst, Bodenhausen & Wokaun (1997) Principles of Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford [from the father of NMR]
- **Evans** (1995) *Biomolecular NMR Spectroscopy*, Oxford Univ. Press [the biomolecular aspects of NMR]
- **Freeman** (1988) *A Handbook of Nuclear Magnetic Resonance*, Longman, Essex [an encyclopedia like reference book]
- James & Oppenheimer (1994) Nuclear Magnetic Resonance, Academic Press, New York
- James, Dötsch & Schmitz (2001) Nuclear Magnetic Resonance of Biological Macromolecules, Part A and Part B, Academic Press, New York [three volumes on NMR of the excellent monography series Methods in Enzymology]
- Neuhaus & Williamson (2000) The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH Publisher, New York [a comprehensive study of the NOE Effect]
- Cavanagh, Fairbrother, Palmer III & Skelton (1996) Protein NMR Spectroscopy. Principles and Practice, Academic Press, New York [one of the best]
- **Reid** (1997) *Protein NMR Techniques*, Humana Press, Totowa [a very practical approach]
- Wüthrich (1986) *NMR of Proteins and Nucleic Acids*, John Wiley & Sons, New York [the *Bible* of Protein NMR]

Scope of this work

This thesis is a collection of several NMR projects conducted at the Department of Structural Research of the Max Planck Institute of Biochemistry in the recent years. The wide range of applications of NMR in biochemical research is reflected in the diversity of the used methods. In Chapter 2, a general overview of the role NMR spectroscopy plays in structural proteomics is given. Especially the advantages of using NMR as a screening tool for proteins that can be

subjected to structural characterization by both NMR spectroscopy and X-ray crystallography are reviewed.

NMR is not only an excellent tool to select proteins amenable to structural analysis, but also to screen for inhibitors of protein-protein interactions. This is demonstrated in Chapter 3 by the discovery of inhibitors of the interactions between the human oncoprotein MDM2 and p53.

The combined application of computer simulations and NMR spectroscopy to find inhibitors of the IGF-I and IGF-binding protein 5 interaction is discussed in Chapter 4.

For heteronuclear NMR spectroscopy labeled protein samples are needed. A novel medium for expression of selectively ¹⁵N labeled proteins in SF9 insect cells was recently invented in our group. The role NMR spectroscopy has played in understanding the metabolism of these cells is shown in Chapter 5.

The royal discipline of biochemical NMR spectroscopy remains the solution of the tertiary structure of medium sized proteins. In Chapter 6 work on the determinaton of the solution structure of the adenylyl cyclase associated protein (CAP) from *Dictyostelium discoideum* is reported. Finally, Chapter 7 describes the NMR characterization of the green fluorescent protein, which paved the way for investigations of its dynamical properties.

Chapter 2

Application of NMR in structural proteomics

2.1 Introduction

In the time of structural proteomics when protein structures are targeted on a genome-wide scale the detection of "well-behaved" proteins that would yield good quality NMR spectra or X-ray images is the key to high-throughput structure determination. Already simple one-dimensional proton NMR spectra provide enough information for assessing the folding properties of proteins. Heteronuclear two-dimensional spectra are routinely used for screenings that reveal structural as well as binding properties of proteins. NMR thus can provide important information for optimizing conditions for protein constructs that are amenable to structural studies.

In this chapter an overview of the applications of NMR in screening for protein samples that are suitable for structure elucidation by both NMR spectroscopy and X-ray crystallography is given. These applications could be the main contribution of NMR to structural proteomics as securing "well-behaved" samples is expected to be the rate-determining step in any structural proteomics project (Christendat et al., 2000).

2.2 Screening for proteins amenable to structural analysis

It has been widely assumed that nuclear magnetic resonance spectroscopy will play an important role in structural proteomics complementing X-ray crystallography for small and medium size proteins (below 30 kDa) (Montelione et al., 2000; Prestegard et al., 2001). About 17% of the structures deposited in the Protein Data Bank (PDB) have been solved by NMR spectroscopy, most of which do not have corresponding crystal structures (Prestegard et al., 2001; Sali, 1998). Even if NMR will remain a "poor daughter" of the X-ray method in determining structures of large proteins, it nevertheless can deliver strong results in several areas of structural biochemistry. It is the basis for a wide range of experiments to determine structure-function relationships, to find binding partners with their specific binding sites (Shuker et al., 1996), to investigate dynamics of proteins (Renner & Holak, 2001), to distinguish multiple conformations (Mühlhahn et al., 1998), to compare apo and holo forms of proteins and map the binding sites of their cofactors (Wijesinha-Bettoni et al., 2001) or to determine pKa values of ionizable groups (Fielding, 2000), to name just a few. A series of spectra taken under different conditions may be used to monitor aggregation and even formation of amyloid fibrils (Zurdo et al., 2001), to determine K_D values of binding partners (Shuker et al., 1996) or to track hydrogen exchange with real time NMR in proteins dissolved in D₂O (Canet et al., 2002). The ability to detect ligands binding only very weakly to target molecules has made NMR also increasingly important in drug discovery (Diercks et al., 2001; Pellecchia et al., 2002).

In a recent investigation of roughly 500 proteins from the genome of a single organism Christendat et al. (2000) found that only 10-15% of these proteins yielded samples that where of sufficient quality for structural analyses by either NMR spectroscopy or X-ray crystallography. Clearly a method to screen for these "well-behaved" proteins as well as to optimize the samples of the vast rest is needed.

The unique strength of NMR lies in its capability to semi-quantitatively estimate unstructured regions of the polypeptide chain in the otherwise partially folded protein and to identify proteins that are heterogeneous because of aggregation or other conformational effects. The various applications of NMR in structural proteomics will be illustrated by typical examples in the following sections.

2.3 One-dimensional NMR

A simple one-dimensional proton experiment, the most basic spectrum in NMR spectroscopy that can be acquired in a short time (usually not longer than a few minutes) for samples as dilute as 0.01 mM contains already a great amount of information. The lower panel of Figure 2.1 shows an example of an unfolded protein with a large and broad signal at approximately 8.3 ppm. An unfolded protein shows a small dispersion of the amide backbone chemical shifts

Figure 2.1: Characterization of protein structures by one-dimensional NMR spectroscopy: Upper panel: A typical one-dimensional proton NMR spectrum of a folded protein with signal dispersion downfield (left) of 8.5 ppm and upfield (to the right) of 1 ppm. Spectra show the N-terminal 176 residue domain of the cyclase associated protein (CAP) at pH 7.3. Lower panel: An unfolded protein sample. Strong signals appear around 8.3 ppm, the region characteristic for amide groups in random coil conformation. No signal dispersion is visible below approximately 8.5 ppm. Also to the right of the strong methyl peak at 0.8 ppm no further signals show up. The sample is an unfolded domain of the IGF binding protein 4 (IGFBP-4, residues 147 - 229).

(Wüthrich, 1986). Particularly the appearance of intensities at chemical shifts near 8.3 ppm is an excellent indicator for a disordered protein, as this is a region characteristic of backbone amides in random coil configuration. On the other hand signal dispersion beyond 8.5 ppm (8.5 - 11 ppm) proves a protein to be folded. Due to the different chemical environment and thus the varying shielding effects the resonances of the single protons will be distributed over a wide range of frequencies. A typical intensity pattern of a folded protein is shown in the upper panel of Figure 2.1. Following the same argument, in the aliphatic region of the spectrum between 1.0 and -1.0 ppm a large signal dispersion versus a steep flank of the dominant peaks at approximately 1 ppm separates a structured from an unfolded protein (Figure 2.1 upper and lower panel, respectively).

Close inspection of one-dimensional spectra will also yield quantitative information on the extent of folding in partially structured proteins or their domains. Figure 2.2 shows two spectra of a 20 kDa protein. In the upper spectrum a mixture of approximately 50% folded and 50% unfolded protein can be identified by observing both the signal dispersion and the prominent peak at 8.3 ppm. The lower spectrum shows the same sample after removal of the unfolded macromolecules by gel filtration. The "random-coil peak" disappeared and the signal pattern is that of a completely structured protein.

While the signal dispersion of the resonances is generally connected to folding, aggregation can be detected by observing the line width of the signals. Due to faster relaxation mechanisms, the NMR signal from larger molecules will decay much faster than that from smaller ones (Abragam, 1961). This in turn will produce broader lines for the resonances of larger molecules. Thus the line widths of the signals in any NMR spectrum are correlated to the size of the molecule. Both these aspects may be appreciated in Figure 2.3. The upper panel shows the spectrum of the 246 residue IGFBP-5 (Kalus et al., 1998) that exhibits a rather large peak at the random-coil value of 8.3 ppm and some signals down-field (that is shifted to higher ppm values) close to the noise level. The IGFBP-5 protein comprises conserved N- and C-terminal domains of 90 and 112 amino acids respectively and a central domain of 40 amino acids. Spectra of the C-and N-terminal fragments of the same protein (Figure 2.3 middle and lower panel respectively) show, that the unstructured regions are located in the C-terminal fragment. The N-terminal fragment shows nice signal dispersion, characteristic of a structured protein. Again in this example the quantitative information on the extent of folding that is available from 1D-NMR can be appreciated. The full-length protein is only to about 50-60% folded. This spectrum (Figure 2.3 upper panel) may be seen as a superposition of the two other spectra which show

Figure 2.2: The amide region of a 20 kDa protein: The upper trace shows a 1:1 mixture of folded and unfolded proteins, the lower trace the same sample after removing the unfolded proteins by gel filtration.

the C-terminal fragment which is to about 30% folded and the fully folded N-terminal fragment (middle and lower panel respectively, the rest of the unstructured residues originate from the central domain of IGFBP-5).

Note that also the line width of the individual signals has improved dramatically in the smaller fragments. Using the line width from known monomeric proteins of a given size as a reference, observation of the line width in a one-dimensional spectrum will also yield information on the molecular weight and aggregation of the molecule under investigation. Furthermore, attempts to prevent aggregation by e.g. dilution of the sample, addition of mild detergents as CHAPS or lowering the pH value can thus be monitored by NMR to find optimal sample conditions (Kalus et al., 1998; Anglister et al., 1993; Edwards et al., 2000).

While the extent of folding is crucial both for X-ray crystallography and NMR, aggregation is not. Actually some proteins that yield rather poor NMR spectra due to aggregation or low solubility might give excellent crystals as was the case for p19^{*INK*4d} (Kalus et al., 1997; Baumgartner et al., 1998). Thus sample conditions that are optimal for crystallography might not necessarily be optimal for NMR spectroscopy and vice versa. This fact does not however reduce the value of insights given by NMR for crystallography.

Figure 2.3: Amide region of one-dimensional spectra of the IGF binding protein-5: The upper, middle and lower panels show the full-length protein of 246 amino acid residues, a C-terminal fragment of 112 residues and a N-terminal fragment of 94 residues, respectively.

2.4. TWO-DIMENSIONAL NMR

Comparing Figures 2.2 and 2.3 it has to be pointed out that distinguishing between a protein that is only partially folded and a mixture of folded and unfolded proteins is difficult with NMR without having additional information from e.g. gel filtration or other biochemical methods.

One-dimensional spectra may additionally provide information on α -helical or β -strand structures in a protein. The C^{α} protons in a helix display few resonances in the region between 5 and 6 ppm, while those in a β -sheet resonate in this region (Wishart et al., 1991).

The use of one-dimensional spectra to screen for optimal, fully folded protein fragments may be illustrated by the example of the cyclase associated protein (CAP) (Gottwald et al., 1996, see also chapter 6). The initial construct of the protein comprising 226 amino acids showed considerable line width and would not crystallize (Figure 2.4 A). After the sample was left at room temperature for 7 days, another one-dimensional spectrum showed, on the one hand, degraded peptide fragments but on the other hand still broad lines not in agreement with the expected shorter protein fragment (Figure 2.4 B). Mass spectrometry revealed the presence of several protein fragments of different length ranging from 226 to 173 amino acids. Thus the very sharp peaks around 1 ppm could be attributed to the cleaved peptide fragments, while the line width corresponds to the overlap of slightly varying resonances from several fragments of different length. Based on these results a new fragment of the protein of 176 residues which contained only the unchanged core of the protein was cloned and expressed in E. coli. This fragment was not further degraded even after several months. The spectrum of this protein fragment is shown in Figure 2.4 C. Note the absence of the sharp resonances and the superior line width. NMR has revealed a stable folded core of the protein that was then successfully subjected to the NMR and X-ray structure analysis.

The prominent signals from the small peptide fragments provide also an example for the examination of a sample's purity. Any small compounds, be it peptides or other impurities will readily show in a one-dimensional spectrum.

2.4 Two-dimensional NMR

Due to the greatly improved resolution of two-dimensional experiments, these are frequently used for screening and binding studies. The simplest and most powerful among them is the heteronuclear single-quantum coherence (HSQC) experiment. In a large scale approach Yee et al. (2002) have recently investigated more than 500 proteins from five different organisms, using ¹⁵N-HSQC experiments to screen for those proteins amenable for NMR structure analysis.

Figure 2.4: The aliphatic region of one-dimensional spectra of the cyclase associated protein (CAP): A) The N-terminal 226 residue construct as indicated in the scheme above. B) A mixture of several constructs of different length (residues 1-226, 44-226, 51-226, 56-226). The overlap leads to broader lines compared to spectrum A). Short peptides give rise to sharp signals around 1 ppm. C) The stable core of the protein (residues 51-226) only. The sharp signals from impurities are removed and the linewidth is substantialy improved compared to spectrum A).

2.4. TWO-DIMENSIONAL NMR

This spectrum is the first step in any structure elucidation as it maps the backbone amide groups of a protein according to their proton and nitrogen frequencies. A whole set of three-dimensional spectra later used to assign the NMR signals to their respective amino acid residue is based on the HSQC experiment. For this kind of spectrum ¹⁵N-labeled protein samples are required. The HSQC shows one peak for every proton bound directly to a nitrogen atom and thus exactly one signal per residue in the protein (apart from proline which is devoid of proton bound nitrogen and some additional side chain signals appear which can easily be identified).

The positions of the peaks are indicative of structured or disordered proteins in the same way as described above for the one-dimensional spectrum (Figure 2.5). In the spectrum of an unfolded protein all signals cluster in a characteristic "blob" around a 1H frequency of 8.3 ppm with little signal dispersion in both dimensions. In the spectrum of a structured protein, the peaks show large signal dispersion. Thus if the peaks are assigned their respective sequential position in the polypeptide chain, disordered regions may be identified.

As the number of signals in the HSQC spectrum corresponds approximately to the number of residues in the protein under investigation, conformational heterogeneity can easily be detected by a surplus of peaks. To optimize sample conditions pH titrations or titrations with cofactors or other molecules as well as variation of temperature may be performed while repeatedly recording HSQC spectra. This is feasible since the NMR method is non-destructive and experiments may be repeated several times. It has, for example, been shown by NMR observed titrations that low temperatures and neutral pH stabilize the folded state of a SH3 domain of Drosophila drk, while high temperatures and low pH tend to favor the unfolded state (Zhang & Forman-Kay, 1995). On the other hand low pH has also been reported to prevent aggregation as observed by line width comparison (Anglister et al., 1993).

For full NMR structure investigations samples of 200 - 400 μ l with a protein concentration of 0.5-1.0 mM to are required. This corresponds to about 10 - 15 mg/ml of the protein which is the concentration usually used for crystallographic screening. Spectra can also be recorded in up to 1 mM Tris buffer. Note again that NMR does not destroy the sample, so it is possible to continue with crystallization attempts after NMR characterization.

Figure 2.5: ¹⁵N-HSQC spectra of unfolded and folded proteins. The left panel shows a ¹⁵N-HSQC spectrum of partially unstructured protein fragment of 80 amino acid residues. All signals cluster around a ¹H frequency of 8.3 ppm. Also the signal dispersion in the ¹⁵N dimension is limited. The broad unresolved signals in the middle of the spectrum indicate either aggregation in the sample or conformational heterogeneity on a ms- μ s timescale (both cases being unfavorable for NMR studies). The signal at 10 ppm is not diagnostic for a folded protein, but stems from the sidechain amide group of a tryptophan residue. The right panel shows the spectrum of a folded, 55 residue long construct of the IGFBP-5 protein. The peaks show a large signal dispersion in both dimensions.

Chapter 3

Chalcone Derivatives Antagonize Interactions between the Human Oncoprotein MDM2 and p53

3.1 Introduction

The oncoprotein MDM2 (human murine double minute clone 2 protein) inhibits the tumor suppressor protein p53 by binding to the p53 transactivation domain. The p53 gene is inactivated in many human tumors either by mutations or by binding to oncogenic proteins. In some tumors, such as soft tissue sarcomas, overexpression of MDM2 inactivates an otherwise intact p53, disabling the genome integrity checkpoint and allowing cell cycle progression of defective cells. Disruption of the MDM2/p53 interaction leads to increased p53 levels and restored p53 transcriptional activity, indicating restoration of the genome integrity check and therapeutic potential for MDM2/p53 binding antagonists. In this chapter it is shown by multidimensional NMR spectroscopy that chalcones (1,3-diphenyl-2-propen-1-ones) are MDM2 inhibitors that bind to a subsite of the p53 binding cleft of human MDM2. Biochemical experiments showed that these compounds can disrupt the MDM2/p53 protein complex, releasing p53 from both the p53/MDM2 and DNA-bound p53/MDM2 complexes. These results thus offer a starting basis for structurebased drug design of cancer therapeutics.

3.2 Biological Context

Amplification of the MDM2 gene is observed in a variety of human tumors (Juven-Gershon & Oren, 1999; Momand et al., 1998). MDM2 is an oncogene product that binds to the transactivation domain of the p53 tumor suppressor protein (Lane & Hall, 1997; Oliner et al., 1992; Lozano & Montes de Oca Luna, 1998; Kussie et al., 1996). By binding to p53, MDM2 inhibits the ability of p53 to activate transcription (Oliner et al., 1993) and promotes the rapid degradation of p53 (Haupt et al., 1997; Kubbutat et al., 1997). Increasing MDM2 levels thus raises the signal threshold necessary for p53-induced apoptosis (Oliner et al., 1993; Haupt et al., 1997; Kubbutat et al., 1997; Momand et al., 1992; Midgley & Lane, 1997) and retards the rate of the p53-induced expression of the cell cycle inhibitor p21 (Momand et al., 1992; Chen et al., 1993). Studies comparing MDM2 overexpression and p53 mutation concluded that these are mutually exclusive events, supporting the notion that the primary impact of MDM2 amplification in cancer cells is the inactivation of the resident wild-type p53 (Juven-Gershon & Oren, 1999; Momand et al., 1998; Oliner et al., 1993). It has been shown recently that a peptide homologue of p53 is sufficient to induce p53-dependent cell death in cells overexpressing MDM2 (Wasylyk et al., 1999). This result provides clear evidence that disruption of the p53/MDM2 complex might be effective in cancer therapy. Chalcone derivatives (compounds derived from 1,3- diphenyl-2-propen-1one) have been described in the literature as inhibitors of chemoresistance (Daskiewicz et al., 1999), ovarian cancer cell proliferation (Devincenzo et al., 1995), pulmonary carcinogenesis (Wattenberg, 1995), proliferation of HGC-27 cells derived from human gastric cancer, and other tumorigenic effects (Shibata, 1994). Licochalcone-A, a chalcone derivative found in the licorice root, has been associated with a wide variety of anticancer effects, along with other potential benefits (Park et al., 1998).

3.3 Ligand Binding

Determination of binding sites of lead chalcone compounds (Figure 3.1) were carried out using ¹⁵N-HSQC NMR spectroscopy of the ¹⁵N isotopically enriched domain of human MDM2 including residues 1-118. A nearly complete assignment of the backbone ¹H and ¹⁵N NMR resonances was obtained for the uncomplexed MDM2 previously (Stoll et al., 2000, see also Figure 3.2). The NMR ¹⁵N-{¹H} NOE experiment indicated that the folded core of the MDM2 domain in solution extends from T26 to N111 (Figure 3.3). This is in good agreement with the

Figure 3.1: A representative collection of basic chalcone skeletons used in this study. Inhibition of MDM2 binding to p53 measured by ELISA (IC₅₀ values given on the left side of the slash) and by NMR titration experiments (K_D values given on the right side of the slash). Compound D was studied as a negative control.

crystal structures of N-terminal domains of human and Xenopus MDM2 in complex with a transactivation domain peptide of p53, where the MDM2 structure was also defined from T26 to V109 (Kussie et al., 1996). The p53 peptide, comprising the residues 15 to 29, binds to an elongated hydrophobic cleft of the MDM2 domain. The interaction is primarily hydrophobic in character; only two hydrogen bonds are found between MDM2 and the p53 peptide. The hydrophobic surfaces of MDM2 and p53 are sterically complementary at the interface. The binding surface of p53 is dominated by a triad of p53 amino acids (F19, W23, and L26) that bind along the MDM2 cleft and define the corresponding phenylalanine, tryptophan, and leucine subpockets for the p53/MDM2 interaction (Kussie et al., 1996). In this classification, the leucine pocket is defined by Y100, T101, and V53, the tryptophan pocket is defined by S92, V93, L54, G58, Y60, V93, and F91, the phenylalanine pocket is defined by R65, Y67, E69, H73, I74, V75, M62, and V93 (Kussie et al., 1996). As a control experiment using a known stable MDM2/ inhibitor complex, MDM2 was titrated with the p53 peptide comprising residues E17 to N29 (Figure 3.3, panel A). NMR spectra showed that the p53 peptide/MDM2 complex was long-lived on the NMR chemical shift time scale. This is in agreement with ELISA data that showed an apparent K_D of 0.6 μ M (Kussie et al., 1996). As can be seen in Figure 3.3, panel A, almost all amino acids of the free MDM2 exhibit changes in chemical shifts upon complexation with the p53 peptide. The analysis of ligand-induced ¹H^N and the ¹⁵N shifts was performed by applying the equation of Pythagoras to weighted chemical shifts which is in concordance with the recent literature (Pellechia et al., 1999). The largest shifts lined the three binding subpockets of p53 on MDM2 (Figure 3.3, panel A). The full set of MDM2/p53 interface residues comprises M50, L54, L57, G58, I61, M62, Y67, H73, V75, F91, V93, H96, I99, and Y100 of MDM2 (Kussie et al., 1996). Additionally, significant shifts are observed for β -strand residues T26, L27, V28, R29, L107, and V108 and for residues L34, L37, and K64. Shifts observed for amides outside the binding regions may be caused by secondary effects, such as allostery or change in mobility upon binding, and do not necessarily indicate direct binding of the p53 peptide to MDM2. Such possible secondary effects (e.g., residues L34, L37, and K64) must be considered when analyzing ligand binding to allosteric proteins.

All K_D values determined by NMR spectroscopy fully agree with the affinities measured by the ELISA binding assay (see Figure 3.1). Compound A, with an ELISA IC₅₀ value of 206 μ M, shows the strongest shifts at the peptide groups of E52, V53, L54, F55, Y56, L57, G58, Y60, I61, and H73 (Figure 3.3). Except for H73, all of these are found on the α -helix comprising residues M50-R65; the H73 shift is attributed to secondary or allosteric effects. The shift pat-

3.3. LIGAND BINDING

Figure 3.2: 500 MHz 2D ¹H-¹⁵N HSQC spectrum of human MDM2 titrated with increasing amounts of chalcone C. Cross-peaks for apo- MDM2 are marked in blue; green and red cross-peaks indicate 50 and 100% complexation of MDM2 by chalcone C. Residue specific assignment of the backbone ¹H and ¹⁵N frequencies is indicated.

Figure 3.3: ¹⁵N{¹H}-NOE for the backbone amides of human MDM2. Residues for which no results are shown correspond either to prolines or to residues where relaxation data could not be extracted.

tern is consistent with binding in the tryptophan pocket of MDM2. Compounds B and B-1 yielded similar chemical shift patterns as compared to compound A (Figure 3.3). The shifts observed for compounds B and B-1 cannot reliably be used to localize the inhibitor interaction site because these inhibitors induce precipitating MDM2/MDM2 interactions that also contribute to the chemical shift pattern. The same is true for compounds N and O. Chalcone C differs from A by the addition of two methyl groups near the acid terminus, an alteration that insignificantly affects the IC₅₀ value (250 μ M). The overall NMR shift perturbation pattern is similar to that observed for chalcone A (Figures 3.1 and 3.3). The detailed shift perturbation pattern, however, is changed by the dimethyl substitution: the perturbations observed for T26, K51, and E52 are new or greater, while the perturbations at Y56 and I61 caused by compound C are weakened (Figure 3.3, panels B and E).

In conclusion, it could been shown that chalcone derivatives bind to the tryptophan pocket of the p53 binding site of MDM2 and are able to dissociate the p53/MDM2 complexes. Therefore chalcones, as antagonists of the p53/MDM2 interaction, offer the starting point for structurebased drug design for cancer therapeutics in strategies that abolish constitutive inhibition of p53 in tumors with elevated levels of MDM2 or, more generally, in strategies that enhance p53

activity.

3.4 NMR Spectroscopy

NMR measurements consisted of monitoring changes in chemical shifts and line widths of the backbone amide resonances of uniformly ¹⁵N-enriched MDM2 samples (Shuker et al., 1996; McAlister et al., 1996) in a series of HSQC spectra as a function of a ligand concentration. No changes in chemical shifts were observed between samples of different concentrations (0.03-0.5 mM) and pH values between 6.5 and 7.5. For titration experiments, 0.1-0.3 mM of human MDM2 in 50 mM KH₂PO₄, 50 mM Na₂HPO₄, 150 mM NaCl, pH 7.4, and 5 mM DTT was used. The chalcone derivatives were lyophilized and finally dissolved in DMSO-d6. No shifts were observed in the presence of 1% DMSO (the maximum concentration of DMSO in all NMR experiments after addition of inhibitors). All chalcone-MDM2 complexes showed a continuous movement of several NMR peaks upon addition of increasing amounts of inhibitors. From these experiments, the spectra of MDM2 could be assigned unambiguously. The complexes of human MDM2 and the chalcones were prepared by mixing the protein and the ligand in the NMR tube. Typically, NMR spectra were recorded 15 min after mixing at room temperature. An initial screening of all compounds used in this study was performed with a 10-fold molar excess of chalcone to human MDM2. All subsequent titrations were carried out until no further shifts were observed in the spectra. Saturating conditions were achieved at a molar ratio of chalcone to MDM2 of 6 for chalcone A, of 2 for chalcone B, of 2 for chalcone B-1, and of 6 for chalcone C, for example. Typically, the concentration of human MDM2 was 0.1 mM and the final concentration of the chalcone ligand was 50 mM in each titration. All K_D values obtained by NMR spectroscopy are based on at least six data points. From the independently determined IC₅₀ values and the K_D constants, one ligand binding site for these chalcones per MDM2 is calculated taking into account the molar ratio of ligand to protein in the NMR experiments. Quantitative analysis of induced chemical shifts were performed on the basis of spectra obtained at saturating conditions of each chalcone. Analysis of ligand-induced shifts was performed by applying the equation of Pythagoras to weighted chemical shifts: $\Delta \delta_c({}^{1}H,{}^{15}N) = [\{|\Delta \delta({}^{1}H)|^2 + 0.2 \cdot |\Delta \delta({}^{15}N)|^2\}^{0.5}].$ The p53 peptide/MDM2 complex was long-lived on the NMR chemical shift time scale (lifetimes \gg 0.2 ms) (Wüthrich, 1986). Two separate sets of resonances were observed in the $^{1}\mathrm{H}^{-15}\mathrm{N}$ HSQC spectra, one corresponding to free MDM2 and the other to MDM2 bound to the p53 peptide. For well-resolved, isolated peaks, the assignment of Figure 3.2 could be transferred to

Figure 3.4: Plots of induced differences in the NMR chemical shifts versus the amino acid sequence. (A) The p53 peptide; (B) inhibitor A; (C) inhibitor B; (D) inhibitor B-1 (for the maximum induced shifts for B and B-1 see explanation in experimental procedures); (E) inhibitor C. Dots mark the leucine-, tryptophan-, and the phenylalanine-binding site on human MDM2. the resonances in the peptide complex (54% of all backbone amide resonances in the ¹H-¹⁵N HSQC). For the rest of the shifts, assignment of $\Delta \delta_c({}^{1}H, {}^{15}N)$ upon complex formation was carried out in a conservative manner, i.e., for these shifts the distance in ppm to the closest peak in complexed MDM2 was chosen. In addition, all selectively enriched samples of human MDM2 (¹⁵N-Val, ¹⁵N-Leu, ¹⁵N-Phe, and reverse ¹⁴N-His) were titrated with the p53 peptide to confirm a subset of MDM2/p53 complex assignments. Only $\Delta\delta_c({}^{1}H, {}^{15}N)$ values larger than 0.1 ppm were considered to be significant. $\Delta \delta_c$ (¹H, ¹⁵N) smaller than 0.1 ppm were found for 37 residues. Erroneous conclusions could result if some of the residues with $\Delta\delta_c(^1H,^{15}N) < 0.1$ ppm were actually in contact with the inhibitor. However, the internal consistency of our results corroborates our analysis; for example, no core buried residue was found that had $\Delta \delta_c({}^{1}H, {}^{15}N) > 0.1$ ppm. Furthermore, all residues of human MDM2 involved in binding to the p53 peptide also show significant shifts $\Delta \delta_c({}^{1}H, {}^{15}N)$ upon complexation with the peptide (Kussie et al., 1996). For compounds B and B-1 (Figure 3.3, panels C and D), the maximum shifts shown at $\Delta \delta_c =$ 0.5 ppm correspond to the cross-peaks of the folded core of MDM2 whose line-widths broaden 2-fold upon addition of either B or B-1 in the molar ratio of B-1 to MDM2 1:1 and disappear thereafter at the titration ratio 2:1 (McAlister et al., 1996). Compound D (Figure 3.1) was studied as a negative control because it did not inhibit MDM2 binding to a p53 peptide as measured by ELISA. This compound does not bind to apo-MDM2, as no ¹H and ¹⁵N shifts greater than 0.1 ppm were observed in the NMR spectra. As this compound was available in our laboratory and because of its similar size as compared to the chalcone skeleton, we have selected this heterocyclic system as a negative control for any organic compound. Other negative control NMR titration experiments included the chemically synthesized chromophore of the green fluorescent protein as well as a synthetic 22-residue peptide. None of the control ligands led to significant chemical shift perturbations (data not shown). Chalcone B-1 generally enhances the intrinsic tendency of MDM2 to aggregate at higher concentrations. Therefore, an additional experiment was performed to test their specificity and to rule out a property as a general protein precipitant. For this purpose, the human tumor suppressor p19^{INK4d} was purified as previously described (Baumgartner et al., 1998). Chalcone B-1 did not induce aggregation of p19^{INK4d} when applied under the same experimental conditions.

Chapter 4

In silico and NMR Identification of Inhibitors of the IGF-I and IGF-Binding Protein-5 Interaction

4.1 Introduction

Recently the crystal structure of the insulin-like growth factor-I (IGF-I) in complex with the N-terminal domain of the IGF-binding protein-5 (IGFBP-5) was determined (Zeslawski et al., 2001). Computer screening was then employed to find potential inhibitors of this interaction using the crystal coordinates. From the compounds suggested by *in silico* screens, successful binders were identified by NMR spectroscopic methods. NMR was also used to map their binding sites and calculate their binding affinities. Small molecular weight compounds (FMOC derivatives) bind to the IGF-I binding site on the IGFBP-5 with micromolar affinities, and thus serve as potential starting compounds for the design of more potent inhibitors and therapeutic agents for diseases that are associated with abnormal IGF-I regulation.

4.2 Biological context

The insulin-like growth factors (IGF-I and IGF-II, ca. 50% identity with insulin) are potent mitogens that promote cell proliferation and differentiation (Wetterau et al., 1999; Hwa et al., 1999). Most of the effects of IGF-1 (70 amino acids) are mediated by binding to the type I IGF receptor (IGF-IR), a heterotetramer that has tyrosine kinase activity. The level of free systemic IGF

is modulated by the extent of binding to IGF binding proteins (IGFBPs) (Jones & Clemmons, 1995; Martin, 1999). Signaling at the target organ is induced by proteolytic cleavage of IGFBP in the complex by kallikreins, cathepsins, and/or matrix metalloproteinases, which releases IGF from the fragmented IGFBP and enables binding of IGF to the receptor (Wetterau et al., 1999; Jones & Clemmons, 1995; Martin, 1999). The IGFBP family comprises six proteins (IGFBP-1 to 6) that bind to IGFs with high affinity and a group of IGFBP-related proteins (IGFBP-rP 1-9), which bind IGFs with lower affinity. The proteins are produced in all tissues, typically however with tissue specific relative amounts of the various IGFBPs (Hwa et al., 1999). A key conserved structural feature among the six IGFBPs is a high number of cysteines (16-20 cysteines), clustered at the N-terminus (12 cysteines) and also but to a lesser extent at the C-terminus. The proteins share a high degree of similarity in their primary protein structure (identities around 30-40%), with highest conservation at the N- and C-terminal regions. It has been shown that these regions participate in the high-affinity binding to IGFs (Baxter et al., 1992; Clemmons, 2001). Full length IGFBP-5 is a 29 kDa protein. It is expressed mainly in the kidney, and is found in substantial amounts in connective tissues. Unlike other IGFBPs, IGFBP-5 strongly binds to bone cells because of its high affinity for hydroxyapatite. IGFBPs regulate not only IGF action but appear also to mediate IGF-independent actions, including inhibition or enhancement of cell growth and induction of apoptosis. Recently, the presence of specific cell-surface IGFBP receptors were discovered. IGFBP-3 and IGFBP-5 have recently been shown also to be translocated into the nucleus, compatible with the presence of a nuclear localization sequence (NLS) in their mid-region. This raises the possibility that nuclear IGFBP may directly control gene expression (Baxter, 2001). IGFBPs were also shown to bind to important viral oncoproteins such as HPV oncoprotein E7 (Wetterau et al., 1999). The IGFs, with their potent mitogenic and antiapoptotic effects, have been widely studied for their role in cancer (Khandwala et al., 2000; Hankinson et al., 1998; Holly, 2000; Wolk, 2000). Serum IGF-I and IGFBP-3 have been proposed as candidate markers for early detection of some cancers. In addition, IGF-I and IGF-II exhibit neuroprotective effects in several forms of brain injury and neurodegenerative disease (Loddick et al., 1998). This implies that targeted release of IGF from their binding proteins in brain tissue, for example, might have therapeutic value for stroke and other neurodegenerative diseases (Loddick et al., 1998). Compounds which disrupt the IGFBP-IGF interaction thus represent potential drugs. This idea has been explored by Liu et al. (2001), who screened successfully a large library of compounds to identify molecules that could displace IGF from its binding proteins. In a structure based attempt to identify IGF releasing substances, the computer docking

4.3. RESULTS AND DISCUSSION

Figure 4.1: Formula of the compounds proposed by FlexX screening. (A) N1-(3,4-dichlorophenyl)-2-2-[5-(3,5-dichlorophenyl)-2H-1,2,3,4-tetraazol-2-yl]acetylhydrazine-1-carbothioamide (B) N- α -FMOC-O-phospho-L-tyrosine (C) 4-(2,5-dichlorophenylazo)-4'-fluorosulfonyl-1-hydroxy-2-naphthanilide.

program FlexX identified IGFBP-5 ligands, FMOC derivatives, that bind to the IGF-I binding site on IGFBP-5 with a micromolar affinity. These results should aid the search for more potent inhibitors of the IGF-I and IGFBP-5 interactions and thus potential IGF-I releasing therapeutics.

4.3 Results and Discussion

The FlexX program (Rarey et al., 1996a,b) and the crystal structure of the IGF-I complex with the N-terminal mini-IGFBP-5 fragment (Zeslawski et al., 2001) was used to identify potential inhibitors of the N-terminus-IGFBP-5/IGF-I interaction. Screening through the ACD database identified three dissimilar compounds (figure 4.1) with a theoretically predicted binding capacity to the IGFBP-5 region responsible for IGF-I interaction. Then NMR was applied to test for the predicted ligand-protein interactions (Shuker et al., 1996; McAlister et al., 1996). Titrations of the ¹⁵N-labeled mini-IGFBP-5 with the potential inhibitors revealed no binding affinity for compounds A and C to mini-IGFBP-5. This is not unexpected and is a common drawback of in silico screenings as the produced possible binding modes do not necessarily reflect real ligand binding. For this reason hits from virtual screening must be verified by other methods. Compound B, however, clearly altered the ¹⁵N-HSQC spectrum of the protein, indicating binding of this compound to mini-IGFBP-5 (figure 4.4). Compound B, because of its low solubility in water, was initially dissolved in DMSO. Titration of the protein with DMSO (e.g. lacking compound B) as a control was also performed. To investigate the influence of DMSO on the compound B binding to the protein, compound B dissolved in PBS buffer (at a lower concentration) was also titrated. Dissociation constants were estimated by monitoring several amino acid residues that display ligand induced changes in ¹⁵N-¹H chemical shift (figures 4.2, 4.3 and 4.4). The values

residue	ligand in DMSO	ligand in PBS	DMSO
	$\mathbf{K}_{\mathrm{D}}[\mathbf{m}\mathbf{M}]$	$\mathbf{K}_{\mathrm{D}}[\mathbf{m}\mathbf{M}]$	$\mathbf{K}_{\mathrm{D}}[\mathbf{m}\mathbf{M}]$
Y50	1.58 ± 0.09	$\textbf{1.82} \pm \textbf{0.95}$	648 ± 370
L73	1.31 ± 0.17	$\textbf{2.93} \pm \textbf{1.41}$	541 ± 306
L81	$\textbf{2.78} \pm \textbf{0.30}$	$\textbf{2.88} \pm \textbf{1.18}$	610 ± 343
S85	$\textbf{1.38} \pm \textbf{0.10}$	$\textbf{2.33} \pm \textbf{0.94}$	650 ± 373
Y86	1.90 ± 0.17	$\textbf{1.72} \pm \textbf{0.99}$	$\textbf{783} \pm \textbf{498}$
R87	$\textbf{1.64} \pm \textbf{0.12}$	$\textbf{2.36} \pm \textbf{1.00}$	921 ± 662
K91	$\textbf{2.42} \pm \textbf{0.18}$	$\textbf{2.12} \pm \textbf{1.03}$	$\textbf{719} \pm \textbf{434}$
average:	$\textbf{1.9} \pm \textbf{0.5}$	$\textbf{2.3}\pm\textbf{0.4}$	$\textbf{700} \pm \textbf{100}$

Table 4.1: Dissociation constant calculations for compound B or DMSO binding to IGFBP-5 using data from distinct amino acid residues. Given errors are due to the fitting procedure.

of the dissociation constants for ligand B dissolved in DMSO and in PBS were similar (1.86 and 2.31 mM, respectively; Table 4.1 and Figure 4.4). These residues are concentrated mostly in a contiguous region of the three-dimensional structure of the mini-IGFBP-5 (figure 4.5 A) which comprise the binding site of IGF-I.

Dissociation constants for compound B and mini-IGFBP-5 interactions are significantly higher than the constants for interactions of the mini-IGFBP-5 with IGF-I, which are in the nanomolar range (Kalus et al., 1998). In the gel filtration studies compound B was not able to abolish the IGF-I/IGFBP-5 interactions (data not shown). Compound B was, however, used as a starting lead compound in search for higher affinity inhibitors for the IGF-I and IGFBP-5 interaction. Analysis of the IGFBP-5 residues involved in the compound B binding, as resolved by the present NMR study (Figures 4.2 and 4.5) and confirmed by molecular modeling predictions (figure 4.5 B), show that the binding region is in a similar location to that responsible for interactions with IGF-I (Zeslawski et al., 2001). It was tried to find derivatives of compound B with enhanced binding to IGFBP-5. Analogs of compound B are commercially available as they are commonly used in peptide synthesis. The binding surface between IGF-I and mini-IGFBP-5 appears mostly hydrophobic (Zeslawski et al., 2001), so first a compound B derivative N α -FMOC-O-tert-butyl-L-tyrosine was tested, where the hydrophilic phosphate group of B is replaced by a similarly sized hydrophobic tert-butoxy group (compound B1). This substitution resulted in an increase

Figure 4.2: Differences in chemical shifts of free and inhibitor B-complexed mini-IGFBP-5 for all residues. Large shifts indicate residues involved in the compound B binding. Data for (A) ligand dissolved in DMSO (B) DMSO (C) ligand dissolved in PBS.

compound	chemical name	$\mathbf{K}_{\mathrm{D}}[\mathbf{m}\mathbf{M}]$
В	$N\alpha$ -FMOC-O-phospho-L-tyrosine	$\textbf{2.78} \pm \textbf{0.30}$
B1	$N\alpha$ -FMOC-O-tert-butyl-L-tyrosine	$\textbf{0.718} \pm \textbf{0.079}$
B2	$N\alpha$ -FMOC-L-phenylalanine	$\textbf{1.075} \pm \textbf{0.507}$
B3	N α -FMOC-N-BOC-L-tryptophan	$\textbf{0.0432} \pm \textbf{0.0115}$
B4	$N\alpha$ -FMOC-L-leucine	$\textbf{1.088} \pm \textbf{0.519}$

Table 4.2:	Dissociation	constants	calculated	for	compound	В	and	its	derivatives	binding	to
IGFBP-5 u	sing changes	in chemica	al shift for th	e re	esidue L81.						

of the binding affinity by about threefold (table 4.2). The next compound tested resembled B1 but the tert-butyl group was completely omitted, resulting in N α -FMOC-L-phenylalanine (compound B2). Binding of compound B2 was weaker than of compound B1 but still better than for compound B. The decrease in ligand binding affinity correlated with the reduction of compound size suggested that larger hydrophobic substituent may enhance affinity. Therefore an analog of compound B with a larger aromatic group (N α -FMOC-N-BOC-L-tryptophan; compound B3) was tested; the substitution enhances ligand affinity into the micromolar range (43.2 μ M; table 4.2). Substitution of the aromatic tryptophan by the aliphatic leucine did not improve the affinity of the binding (Nα-FMOC- L-leucine, compound B4, table 4.2). Compound B3, our best lead, was still not able to abolish IGF-I/IGFBP-5 interactions at concentrations tested in gel filtration studies (data not shown). Since it is well known that DMSO might have a considerable effect on proteins we finally performed two control experiments. Titration of the protein with DMSO (e.g. lacking compound B) as a control revealed very weak binding of DMSO to mini-IGFBP-5 (Figure 4.3 and table 4.1). The DMSO interaction is most likely non-specific, as indicated by the small and similar extent of the chemical shift perturbations of a large number of amino acid residues (Figure 4.3 B). Compound B was soluble in PBS buffer at low concentrations. Comparison of a titration of compound B in PBS and DMSO (Figures 4.3 A and B) shows that most significant changes appear at the same amino acid residues. Note that the changes in chemical shift do not necessarily go in the same direction for both experiments. So values in Figures 4.3 C and B might not be simply added to arrive at values in Figure 4.3 A, but will for different residues partially cancel or add up.

IGFs are known for their neuroprotective properties. Brain injury is commonly associated

Figure 4.3: Titration of the mini-IGFBP-5 sample with the compound B dissolved in DMSO. Data for residue S85.

with increase in IGF expression but, paradoxically, also with increased expression of the inactivating binding proteins. Attempts to administer IGF-I exogenously as protective therapy in cases of brain injury (Gluckman et al., 1992) may thus be hampered by the increased expression of brain IGFBP. Combined administration of IGFs and IGFBP ligand inhibitors may optimize treatment of neurodegeneration. Alternatively, displacement of the large "pool" of endogenous IGF from the IGF-binding proteins might elevate "free" IGF levels such that administration of IGFBP ligand inhibitors elicit neuroprotective effects comparable to those produced by administration of exogenous IGF. Bayne et al. (1990) reported an IGFBP ligand inhibitor, [Leu24,59,60, Ala31] IGF-I mutant, with high affinity to IGF-binding proteins (0.3 - 3.9 nM) but with no biological activity at the IGF receptors (> 10μ M). Loddick et al. (1998) examined effects of this high-affinity IGFBP ligand inhibitor in in vitro studies of release of "free" bioactive IGF-I from rat cerebrospinal fluid and in in vivo studies to evaluate its neuroprotective effects in a rat model of focal ischemia. This successful targeting of IGFBPs suggests that it may be possible to identify non-peptide small molecules that act as IGFBP ligand inhibitors, with the potential for good blood-brain barrier penetration and oral activity. The data collected by Loddick et al. (1998) demonstrate that displacement of IGFs from IGFBPs in the brain is a potential treatment for stroke. Moreover, in view of the potent actions of IGFs on survival of neurons and glial cells

Figure 4.4: ¹⁵N-HSQC spectrum illustrating the titration of the mini-IGFBP-5 with the increasing amounts of compound B. The reference is shown in red. 1:1, 1:5 and 1:10 titration steps (protein : ligand) in purple, green and blue, respectively.

as well as the widespread protective affects against a variety of brain insults, IGFBP ligand inhibitors may have broader utility for the treatment of various neurodegenerative disorders as well as traumatic brain and spinal cord injury.

Conclusion

Because of their high structure similarity, it was assumed that all B analogs bind similarly to IGFBP-5. This is supported by the fact, that mostly the same residues of IGFBP-5 are affected in the NMR titrations. Figure 4.5 shows compound B docked in the IGF-I binding site of IGFBP-5 and overlaid with IGF-I. Analysis of the structures shows the prediction that the phenyl group of the compound B mimics Phe16 from IGF-I (figure 4.5), and that the FMOC-group binds at the equivalent position of IGF-I-Leu54. The Glu3 binding region of IGFBP-5, however, seems not to be involved in interactions with compound B. Thus, this region offers binding interactions for new IGFBP-5 ligands, which when combined with compound B3 could significantly enhance binding affinities.

4.4 Experimental Section

Molecular Modeling

The protein model for flexible docking was taken from the high resolution X-ray structure of the IGF-I/mini-IGFBP-5 complex (Zeslawski et al., 2001) without further modification, i.e. the model neither underwent additional minimization nor were any side chain conformations changed. As the small molecule database, the Available Chemicals Directory (ACD, MDL Information System) of commercially available compounds was used and filtered to include approximately 90,000 compounds with Mr \leq 550 Da that contain at least one atom from the set N, O, F, S. The stereo chemical information was used as provided by ACD. The set of molecule files were converted to the mol2 format with SYBYL (Tripos, St. Louis) with all hydrogens added. This set served as input to FlexX (GMD, St. Augustin) for flexible docking into a binding site on IGFBP-5 to identify small molecules which might bind to IGFBP-5 and thereby block the interaction with IGF-I. The binding site was defined as a sphere around all residues of IGFBP-5 towards the interaction site plus a 5 Å border (taking whole residues). The side chain conformations of mini-IGFBP-5 were not adjusted by the docking protocol. The small molecule conformations for each compound generated by FlexX using the standard FlexX scoring function were clustered

Figure 4.5: (A) Surface plot of mini-IGFBP-5 as resolved by X-ray crystallography superimposed with the docking result of compound B (yellow) and with the interface residues of the IGF-I/mini-IGFBP-5 complex. IGF is shown in blue. Four IGF-I residues most essential for interactions with IGFBP-5 (from the top: Glu3, Leu57, Leu54 and Phe16, respectively) are shown as blue balls. Residues with chemical shift changes due to binding of compound B as revealed by the present study are shown in red (the more intense the color the bigger changes). (B) A close-up of the mini-IGFBP-5 and compound B only.

by an r.m.s.d. of 2.3 Å and each best scoring pose within a cluster was saved as the cluster representative. Analysis of all the saved conformations of all docked ligands was carried out using a distance-based filter defining the following criteria: (1.) A substructure of the ligand must interact with the region Val49/Leu70/Leu73/Leu74. (2.) A substructure of the ligand must interact in the deep pocket around Cys47/Thr51. As a result, three compounds were selected for an NMR screening (Figure 4.1).

Materials

Mini-IGFBP-5 (amino acids 40-92 of human IGFBP-5) was expressed and purified using the construct described by Kalus et al. (1998). Compounds A, B and C were purchased from ChemPur (Karlsruhe, FRG), Fluka (Buchs, Switzerland) and Sigma (Deisenhofen, FRG), respectively. Compound B derivatives were generously provided by Prof. Luis Moroder.

NMR assignment

Previously the NMR assignment of IGFBP-5 has been reported by Kalus et al. (1998) at pH 4.7. The ligand binding studies reported here were performed at a more physiological pH value of 7.2. Even after several pH titration experiments, the assignment of the amide groups in the HSQC spectra could not be transfered completely. Several important residues could not be traced through all titration steps. To resolve the assignment, a 2-D NOESY and a ¹⁵N-NOESY-HSQC spectrum were recorded. Thus NOESY patterns from each residue could be compared to those assigned by Kalus et al. (1998). From the structure (available under the PDB ID: 1BOE at the Brookhaven Data Bank, www.rcsb.org/pdb; Berman et al. (2000)) distance constraints were also used to identify NOESY crosspeaks and thus backbone amide groups in the 2-D and 3-D NOESY spectra (see Figure 4.6). Additionally a selectively ¹⁵N leucine labeled sample was prepared to verify the assignment of the crucial residues Leu70, Leu73 and Leu74. The HSQC spectrum from this selectively ¹⁵N leucine labled sample superimposed on the HSQC of the uniformly labeled sample is shown in Figure 4.7. The single isoleucine present in this protein shows a peak as strong as those from the leucines due to cross-labeling. Also all three valins can be identified, their resonances slightly less intense. Interestingly, leucine 74, which is involved in ligand binding could not be assigned unambigousely from this spectrum. It could be identified in the 2-D NOESY though (Figure 4.6). The corresponding peak is also indicated in the HSQC in Figure 4.7. For the complete assignment see Figure 4.4.

Figure 4.6: Part of the 2D NOESY spectrum of IGFBP-5. Some of the cross-peaks which were crucial for the assignment are labeled with their respective sequence numbers.

Figure 4.7: The HSQC spectrum from the selectively ¹⁵N leucine labeled sample superimposed on the HSQC of the uniformly labeled sample. The assignment is given only for leucine, valine and isoleucine residues. Leucine 74 was ambiguous.

Detection of Ligand Binding

Ligand binding was detected by acquiring ¹⁵N-HSQC spectra. All NMR spectra were acquired at 300 K on Bruker DRX600 spectrometer. The samples for NMR spectroscopy were concentrated and dialyzed against PBS buffer. Typically, the sample concentration was varied from 0.3 to 1.0 mM. Before measuring, the sample was centrifuged in order to sediment aggregates and other macroscopic particles. 450 μ l of the protein solution were mixed with 50 μ l of D₂O (5-10%) and transferred to an NMR sample tube. The stock solutions of compounds were 100 mM either in water or in perdeuterated DMSO. pH was maintained constant during the whole titration. The binding was monitored by observation of the changes in the ¹⁵N-HSQC spectrum. Dissociation constants were obtained by monitoring the chemical shift changes of the backbone amide of several amino acid residues (Table 4.1) as a function of ligand concentration. Data were fit using a single binding site model.

Chapter 5

A novel Medium for Expression of selectively ¹⁵N labeled Proteins in SF9 insect cells

5.1 Introduction

In the last years a growing number of proteins was expressed using the baculovirus expression vector system. Whereas bacterial expression systems are widely used for production of uniformly or selectively labeled proteins the usage of the baculovirus expression system for selective labeling is limited to very few examples in the literature. Two insect media, IML406 and IML455 for the production of selectively labeled protein in insect cells were recently developed in our group. The same levels of cell densities and proteins compared to other insect media could be obtained. The utilized amounts of ¹⁵N-amino acids for the production of labeled GST as a sample protein were similar in the case of bacterial and viral expression. For most amino acids the ¹⁵N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross-labeling and provided therefore spectra of better quality as compared to the NMR spectra of the protein expressed in E. coli. The reason was the large number of amino acids, which are essential for insect cells. Also in the case of non-essential amino acids selective labeling could be accomplished. Therefore the selectively labeling using the baculovirus expression vector system represents a complement or even a powerful alternative to the bacterial expression system. The quality of the new media and the extent of cross-labeling in the baculovirus system was monitored by ¹⁵N-HSQC experiments.

5.2 Biological context

The baculovirus based expression systems are among the most powerful expression systems known in biochemistry. They have several advantages over bacterial expression systems, as they allow for simple production of functional heterologous proteins like, for example, enzymes (Lawrie et al., 1995; Kumar et al., 2001), antibodies (Brocks et al., 1997) and receptors (Cascio, 1995; Zhu et al., 2001). There are also a number of proteins that can only be efficiently expressed in their folded and functional forms in insect cells. High cell densities are needed for obtaining high protein yields and therefore several media (Doverskog et al., 1998; Ferrance et al., 1993) and feeding strategies (Kim et al., 2000; Doverskog et al., 2000; Mendonça et al., 1999; Chiou et al., 2000) were developed to enhance cell growth. Identification of essential and non-essential amino acids for cell growth is also important. So far, alanine, cysteine, glutamic acid, glutamine, aspartic acid and asparagine were found to be non-essential amino acids (Öhman et al., 1996; Doverskog et al., 1998). The other amino acids are supposed to be essential for insect cells. The insect cells require also growth factors, vitamins and other compounds for higher cell densities (Mendonça et al., 1999; Öhman et al., 1995). These components are provided by chemically-not-defined substances, like yeastolate or fetal calf serum (Drews et al., 1995; Ferrance et al., 1993).

NMR-based structural studies and NMR-based ligand binding studies require selectively and/or uniformly ¹⁵N-labeled proteins. For expression of uniformly labeled proteins in *E. coil* ¹⁵N-ammonium chloride can be used as a sole source for nitrogen, whereas commercially available media for uniformly labeling in insect cells contain all ¹⁵N-amino acids, which increase the costs dramatically. For selectively labeling in bacteria a medium is used that contains all amino acids in a similar manner as for insect cells. In this case comparable costs can be expected. Only few reports can be found in the literature on labeling proteins in insect cells (Creemers et al., 1999; DeLange et al., 1998), in addition the total composition of the used media was kept confidential. A novel optimized medium to label proteins expressed in Sf9 insect cells was developed in our laboratory, using the glutathione-S-transferase protein (GST) as a model. This protein was chosen because it expresses well in *E. coli* and therefore labeling can be compared with that in SF9 insect cells. It also possesses high stability and has a size of 27 kDa, which is in a typical range for many proteins expressed with the baculovirus expression vector system. The goal of the work was to develop a novel medium and to investigate the possibility of uniformly and selectively labeling proteins with ¹⁵N-amino acids in insect cells.

5.3 NMR Spectroscopy

To investigate the quality of the new media IML455 and IML406, selectively ¹⁵N labeled samples of GST were expressed using ¹⁵N- glycine, leucine, lysine, phenylalanine and valine, which are in general easily labeled in bacterial expression systems. In a further step aspartic acid, glutamic acid and ammonium chloride were used for labeling studies in Sf9. The formulation of the novel media is reported by Brüggert (2002). The medium IML455 contained NH₄Cl instead of aspartic acid and glutamine used in IML406. To assess the quality of the new media, also selectively labeled samples from the *E. coli.* system were prepared. The bacterial media for selective labeling of proteins was prepared as described (Senn et al., 1987). Just after induction the same amount of the ¹⁵N-labeled amino acid as that used in the medium was added.

For the NMR experiments the protein solutions were concentrated with a Centricon10 (Amicon) to the volume of 450 ml and 50 ml D₂O (99.9%) was added to the sample. The sample concentration ranged from 0.2 to 0.8 mM. All NMR spectra were acquired at 300 K on a Bruker DRX-600 spectrometer. ¹H-¹⁵N-HSQC spectra (Mori et al., 1995) were recorded with 128 increments in the indirect ¹⁵N dimension with a number of scans varying from 4 to 1024 depending on the concentration of individual samples. Measurement times ranged thus from 2 to 24 hours. Processing and analysis of the spectra was performed using the programs xwinnmr (Bruker) and Sparky (Goddard & Kneller, 2001), respectively.

5.4 Results and Discussion

For protein-ligand binding studies or for structure determination with NMR on proteins expressed in insect cells the use of selectively labeled protein samples is essential. Whereas uniformly labeled media are available from several companies the possibility to obtain selectively labeled media is restricted. This kind of medium is only prepared on request and the composition is secret. The formulation of a medium, which can be flexibly utilized for selectively labeling, is highly desired. This medium has to fulfill requirements for high level expression with as small as possible amount of amino acids. The media IML 406 and IML 455, developed in our laboratory, were used for ¹⁵N-labeling studies using ¹H-¹⁵N-HSQC experiments.

Table 5.1: Used amounts of ¹⁵N-compounds, number of peaks visible in the ¹H-¹⁵N-HSQC spectra (the expected number is given in parenthesize as the C-terminus in the proteins from the two expression systems is not identical) and the number of corresponding peaks, each given for expression in *E. coli.* or Sf9 cells.

	Amount of ¹⁵ N-compound		Numbe	r of signals	identical signals
	used	l in medium	(strong/we	eak(expected))	(strong/weak)
¹⁵ N-compound	E. coli Sf9		E. coli	Sf9	
GLY	800 mg/l	650 mg/l	16/-(17)	17/-(16)	15/-
LYS	625 mg/l	200 mg/l	19/-(21)	19/2(21)	17/-
VAL	200 mg/l	200 mg/l	13/7(10)	11/6(10)	10/-
PHE	100 mg/l	250 mg/l	18/6(9)	9/3(9)	8/2
LEU	200 mg/l	400 mg/l	27/4(28)	34/10(28)	22/-
GLU	800 mg/l	600 mg/l	50/18(16)	40/4(16)	31/-
ASP	500 mg/l	350 mg/l	49/18(18)	0/0(19)	-

¹⁵N-labeling with glycine, lysine, valine, phenylalanine and leucine

For the labeling studies GST was expressed in Sf9 and *E. coli* using single ¹⁵N-amino acids. Table 5.1 gives an overview of the amounts of amino acids used for different media. The selective labeling with ¹⁵N-amino acids in Sf9 results in most cases in equal or better quality NMR spectra compared to the spectra obtained from GST expressed in bacteria. Since most of the amino acids are essential for insect cells a conversion between these amino acids is not possible. The labeling with ¹⁵N-glycine and ¹⁵N-lysine lead to nearly identical results in both expression systems. The positions of most of the peaks in the spectra were identical. The number of signals was close to the number of both amino acids in GST (see Table 5.1). In insect cells no cross-labeling from glycine to the essential amino acids serine is detectable. In *E. coli* this conversion is suppressed by an excess of ¹⁴N-serine in the medium. In the case of ¹⁵N-lysine in both expression systems no cross-labeling is visible. This amino acid is not efficiently used for formation of other amino acids. Two peaks differ in chemical shift depending on host cell indicating pH-sensitivity or posttranslational modifications of these lysines.

The problem of cross-labeling in *E. coli* appeared for labeling with ¹⁵N-phenylalanine and

Figure 5.1: ¹⁵N-labeling with glycine, lysine, valine, phenylalanine and leucine. Superposition of HSQC spectra of selectively labeled GST from Sf9 (blue) and *E. coli* (red) A) ¹⁵N-glycin, B) ¹⁵N-lysin, C) ¹⁵N-phenylalanine, D) ¹⁵N-valine and E) ¹⁵N-leucine.

¹⁵N-valine. In the HSQC-spectra of GST expressed in bacteria the number of signals clearly exceed the number of the two amino acids. Phenylalanine is converted to tyrosine and valine to alanine. These reactions are not detectable in Sf9. Tyrosine is essential for insect cells and cannot be formed from phenylalanine. The formation of alanine from valine is also not visible, though the medium IML406 contains no additional alanine in contrast to the medium for bacterial expression. This pathway seems not to be efficient in Sf9. The use of ¹⁵N-leucine in IML406 yields a HSQC-spectrum in which the number of intensive signals clearly exceeds the number of leucines in GST. This indicates cross-labeling via a yet unknown pathway. In the case of bacterial expression the number of intensive peaks is lower and close to the number of leucines in GST. In *E. coli* leucine is used for the formation of isoleucine. Isoleucine is converted in a second step to valine. Both reactions are not possible in Sf9. In conclusion, for ¹⁵N-labeling with glycine, lysine, valine, phenylalanine or leucine cross-labeling is mainly a problem of bacterial expression.

¹⁵N-labeling with ammonium chloride, glutamic acid or aspartic acid

In a further step the possibility to use ammonium chloride, aspartic acid or glutamic acid for ¹⁵N-labeling of GST was investigated. It was reported that ammonium is used for formation of alanine and the amide group of glutamine (Drews et al., 2000). This would be a cheap alternative for selective labeling for alanine. The incorporation of ¹⁵NH₄ in the amide groups of arginine and glutamine could be confirmed (Figure 5.2 A). The formation of ¹⁵N-alanine was not detected. The reason may be that the efficient formation of ¹⁵N-alanine from ¹⁵NH₄ starts 72-80 hours after the beginning of fermentation (Drews et al., 2000). At this point in time the infected cells are already harvested. In both expression systems a powerful conversion between glutamic acid and aspartic acid was detected (Figure 5.2 B). In insect cells no spectrum for GST labeled with ¹⁵N-aspartic acid could be obtained. The reason is the high amount of unlabeled asparagine, glutamine and glutamic acid, which is about six times higher than the content of ¹⁵N-aspartic acid in IML406. The labeling of ¹⁵N-aspartic acid is efficiently suppressed. In *E.* coli the fraction of ¹⁵N-aspartic acid is higher resulting in an interpretable spectrum (Figure 5.2 B). For efficient labeling in insect cells the amount of this amino acid has to be increased. A better alternative is to remove aspartic acid from the medium and to label this amino acid and glutamic acid simultaneously. The higher amount of ¹⁵N-glutamic acid in IML 406 yields a spectrum of good guality (Figure 5.2 B). The formation of alanine from glutamic acid is better visible

Figure 5.2: ¹⁵N-labeling with ammonium chloride, glutamic acid or aspartic acid. A) HSQC spectrum of GST labeled with ¹⁵N-ammonium chloride in SF9 cells. B) Superposition of the HSQC spectra of GST clabeled with ¹⁵N-glutamic acid in SF9 (blue) and ¹⁵N-aspartic acid in *E. coli* (red)

in Sf9 than in bacteria. In contrast to the medium for bacterial expression IML406 contains no additional alanine and the cross-labeling is not suppressed. The total number of peaks in the spectrum of GST labeled with ¹⁵N-glutamic acid in Sf9 was only lower by four peaks than the total number of aspartic acid, glutamic acid and alanine in GST. Thus these three amino acids can be labeled efficiently using ¹⁵N-glutamic acid. No cross-labeling to other amino acids is visible. *E. coli* use glutamic acid additionally to form many other amino acids like valine, phenylalanine, leucine or tyrosine. The transamination between these amino acids plays a central role in bacteria. In Sf9 this reaction is limited to amino acids involved in the TCA cycle and alanine.

Using ¹⁵NH₄CI and ¹⁵N-glutamic acid, glutamic acid, glutamine, aspartic acid, asparagine and alanine can be labeled simultaneously in IML406. Based on these findings a first simplified overview of the network of the amino acid metabolism in *E. coli* and insect cells focused on nitrogen may be presented. Figure 5.3 shows that the transamination is limited to a few reactions, whereas in *E. coli* the nitrogen is transferred between most of the amino acids. Especially the central role of glutamic acid for synthesis of amino acids is clearly visible.

Figure 5.3 also shows that the expression in Sf9 is better suited for selectively labeling of amino acids. The expression system offers the possibility to selectively label amino acids in high degrees and without cross-labeling including tyrosine, phenylalanine, glycine, serine, cysteine, arginine and valine. Even amino acids can be labeled, which are normally not used in *E. coli*

Figure 5.3: Simplified presentation of the amino acid metabolism in *E. coli* and Sf9 with respect to ¹⁵N: Pathways which are present in both organisms are shown in black; pathways which exist only in *E. coli* are depicted in red.

due to extensive cross-labeling. The expression in insect cells is in many cases a potential alternative to the in-vitro-expression. This is important for proteins, which are not available in high yields or in a functional form in bacteria. In principle the labeling in insect cells offers the opportunity for the NMR structure determination of proteins expressed in Sf9. In addition the possibility of selectively labeling using all essential amino acids accelerates the assignment of signals for proteins which are expressible in bacteria and insect cells in comparable yields.

Chapter 6

NMR Characterization of the cyclase-associated protein (CAP) from *Dictyostelium discoideum*

6.1 Biological context

The cyclase-associated protein (CAP) of *Dictyostelium discoideum* is an actin binding protein that is involved in the microfilament reorganization at anterior and posterior plasma membrane regions (Gottwald et al., 1996). CAP was first isolated from *Saccharomyces cerevisiae* as a component of the adenylyl cyclase (Cyr1p) complex (Field et al., 1990) and the protein is believed to act as one of the bridging proteins that link nutritional response signaling and changes in the actin cytoskeleton (for a review see Hubberstey & Mottillio (2002)). *Dictyostelium* CAP is a bifunctional protein as well. While the actin sequestering activity has been localized to the carboxy-terminal 210 amino acids, the N-terminus seems to mediate this activity in a PIP₂-regulated manner (Gottwald et al., 1996). The amino-terminal domain has also been shown to localize the whole protein to the membrane (Noegel et al., 1999).

6.2 The folded core of CAP-N

In general *Dictyostelium* CAP follows the domain organization of all CAP-homologues as given by Gerst et al. (1992): it consists of an amino-terminal domain encompassing residues 1-215 and a carboxy-terminal domain encompassing residues 255-464, separated by a proline-rich linker domain of 39 residues. Our NMR characterization of an amino-terminal construct (CAP-N) encompassing residues 1-226 revealed a different domain structure though (see also section 2.3).

Attempts to crystallize this construct failed which is frequently an indication for unstructured and highly flexible regions in the protein. After the sample was left at room temperature for one week, a one-dimensional proton NMR spectrum showed degraded peptide fragments (Figure 2.4 B). The linewidth of the protein signals did not improve as compared to the initial spectrum taken of the freshly prepared sample (Figure 2.4 A). It was assumed, that the sample contained now a mixture of several protein fragments of different length as well as cleaved off peptide fragments. Mass spectrometry confirmed the presence of protein fragments ranging in length from 226 to 173 amino acids. Edmann sequencing showed, that all fragments had been cleaved at their amino terminus.

Further clues to the exact length of the folded core of the protein were given by a number of selectively ¹⁵N-labeled samples. As an example Figure 6.1 shows two HSQC spectra from a selectively ¹⁵N-alanin labeled sample superimposed on the spectrum of the uniformly labeled short construct that was later used for our NMR investigation (see below). The assignment for all alanin residues visible in this part of the spectrum is given according to their position in the sequence of this short construct i.e. from 1 to 176 corresponding to residues 51-226 of the original construct. The freshly prepared ¹⁵N-alanin sample (residues 1-226) is shown in black. The sample was then left for seven days at room temperature and cleaved peptide fragments removed by dyalisis. Then another spectrum was recorded, here shown in green. Seven peaks have either completely disappeared or are now very weak (one of them not so clearly visible under the peak labeled A40). This is a clear indication, that the part of the sequence, which is cleaved off should include seven Alanin residues. Note, that the disappeared peaks all lie at a proton frequency of about 8.3 ppm (the random coil value, see also chapter 2) and thus represent an unfolded part of the protein.

Together with similar information from other selectively labeled samples it could be concluded, that about 50 amino acid residues are cleaved off the N-terminus of the protein. In this case it was very favorable that all together eight selectively labeled samples were available as the interpretation of the spectra is not necessarily straight forward. In the case shown here residue A175, which is very close to the C-terminus of the fragment, does not show up in the selectively labeled sample. Also the rather strong peak in the center of the spectrum (8.2/124.5 ppm) later in the assignment turned out to be lysin 75. The peak at 8.4/126 ppm represents an

Figure 6.1: Part of ¹H-¹⁵N-HSQC spectra of CAP-N from *Dictyostelium discoideum*. Superposition of spectra from an uniformly ¹⁵N-labeled sample of the short construct (red), the selectively labeled ¹⁵N-alanin sample of the long (black) and short (green) construct. The assignment for the alanin residues and for lysin 75 is indicated. For details see text.

1	SVKEFQN	EFQNLVD		QHITPFVALS		KKLAPEVGNQ		VEQLVKAIDA		EKALINTA	SQ
51	SKKPSQE	ETLL	ELIKPLNNFA		AEVGKIRDSN		N I	RSSKFFNNLS		AISESIGFL	S
101	WVVVEPTPGP		HVAE	EMRGSAE	FY	FYTNRILKEF		KGVNQDQVDW		VSNYVNFI	_KD
151	LEKYIKQ	YHT	TGLT	WNPKGG	DA	KSAT					
	A	(ALA)	13	G (GLY)	9	M (MET)	1	S (SER)	15		
	C	C(CYS)	0	H (HIS)	3	N (ASN)	13	T (THR)	9		
	D) (ASP)	7	I (ILE)	9	P (PRO)	8	V (VAL)	15		
	E	(GLU)	13	K (LYS)	17	Q (GLN)	9	Y (TYR)	4		
	F	(PHE)	9	L (LEU)	15	R (ARG)	4	W (TRP)	3		

Table 6.1: Sequence of the	final, 176 residue	construct of CAP-N
----------------------------	--------------------	--------------------

eighth alanin which is no longer present in the short construct (red peaks) as there are actually eight alanins among the first 50 residues.

A new fragment was subsequently cloned and expressed in *E. coli*, which encompasses the 176 residues from positions 51-226 of the original construct. This shorter construct was not degraded even after several month as was proved again by one-dimensional proton NMR. This sample was successfully crystallized (Ksiazek, 2002) and subjected to further NMR investigations.

In conclusion, NMR spectroscopy supplemented with mass-spectrometry and sequencing proved the structured amino-terminal domain of *Dictyostelium* CAP to exclude a serine-rich stretch at the N-terminus and to encompass the 176 residues from positions 51-226 (see Table 6.1).

6.3 Material and Methods

The cDNAs encoding the amino-terminal 226 residues of CAP plus a C-terminal His-tag (CAP-N'Px) or the 176 residues from position 51-226 (CAP-N) were cloned into the *Nde*I and *Bam*HI restriction sites of the pT7-7 expression vector (Tabor, 1990). *E. coli* BL21 harboring the plasmids were grown at 30° C (CAP-N'Px) resp. 37° C to an OD₆₀₀ of 0.6-0.8. For expression of the

protein IPTG was added to a final concentration of 0.5 mM and cells were further incubated over night. After lysis and centrifugation in both cases the $100.000 \times g$ supernatants were then purified on DE52 (Whatman) anion exchange, phosphocellulose (P11, Whatman) cation exchange, hydroxyapatite (Bio-Rad) and Ni-NTA (Qiagen) columns following standard procedures. The samples were finally concentrated in a Centriprep-10 concentrator (Amicon).

Uniformly ¹⁵N-¹³C and ¹⁵N isotopically enriched protein samples were prepared by growing the bacteria in minimal media containing ¹⁵NH₄Cl, either with or without ¹³C-glucose, respectively. For selectively enriched samples, defined media (Senn et al., 1987) were used that contained 100 to 800 mg/l of the isotopically enriched amino acids and all other amino acids.

The following samples were available in concentrations ranging from 0.8 to 1.2 mM at pH 7.3: Uniformly ¹⁵N labeled CAP, as well as selectively ¹⁵N-Ala, ¹⁵N-Phe, ¹⁵N-Gly, ¹⁵N-Ile, ¹⁵N-Lys, ¹⁵N-Leu, ¹⁵N-Val and ¹⁵N-Gly/¹⁵N-Ser labeled samples and a ¹⁵N-¹³C double labeled sample. All samples contained 10% D₂O. NMR spectra were recorded on Bruker DRX 600 and DMX 750 spectrometers equipped with triple resonance probeheads and pulsed-filed gradient units. The backbone resonances were assigned using a pair of HNCA and CBCA(CO)NH triple-resonance spectra with the help of ¹⁵N-HSQC spectra recorded from the selectively labeled samples. Furthermore a HNCO and two 3D ¹⁵N-NOESY-HSQC spectra with mixing times of $\tau_m = 120$ ms and $\tau_m = 40$ ms and a ¹³C-NOESY-HSQC with a mixing time of $\tau_m = 100$ ms were used. All spectra were recorded at a temperature of 300 K. For a complete list of the recorded spectra see Table 6.2. Assignment was accomplished using the software package *sparky* (Goddard & Kneller, 2001).

6.4 Sequence-specific (¹H, ¹⁵N, ¹³C) resonance assignment

Figure 6.4 shows the quality and degree of overlap in the ¹H-¹⁵N-HSQC spectrum. The signal dispersion in both the ¹⁵N and ¹H dimensions is quite good, still assignment was complicated by considerable overlap in the central part of the spectrum. Superposition of this spectrum with HSQC spectra from the selectively labeled samples (see Table 6.2) lead to the unambiguouse identification of 6 out of 13 alanins, 8 of 9 phenylalanins, 7 of 9 glycins, 5 of 9 isoleucines, 8 of 15 leucines, 7 of 15 serins and 10 of 15 valins. Great caution had to be taken as the selectively labeled samples were of the longer construct of CAP-N while the uniformly labeled sample was of the short construct (see section 6.2). Starting from these identified residues, the CBCA(CO)NH and HNCA spectra were used to establish the sequence specific assignment.

Experiment	spectral width [ppm]			C	scans		
NOESY ^a	¹ H:14.5	¹ H:14.5	-	¹ H:2048	¹ H:790	-	256
TOCSY ^b	¹ H:14.5	¹ H:14.5	-	¹ H:4096	¹ H:600	-	256
¹ H- ¹⁵ N-HSQC ^c	¹ H:11.6	¹⁵ N:29.6	-	¹ H:2048	¹ H:128	-	128
¹ H- ¹³ C-HSQC	¹ H:17.4	¹³ C:74.6	-	¹ H:2048	¹ H:251	-	256
¹⁵ N-NOESY-HSQC ^d	¹ H:16.0	¹⁵ N:35.1	¹ H:16.0	¹ H:2048	¹⁵ N:200	¹ H:68	16(8 ^e)
¹³ C-NOESY-HSQC ^f	¹ H:11.9	¹³ C:116.6	¹ H:11.9	¹ H:1024	¹³ C:160	¹ H:160	16
CBCA(CO)NH	¹ H:13.3	¹⁵ N:41.1	¹³ C:82.8	¹ H:2048	¹⁵ N:64	¹³ C:64	96
HNCA	¹ H:13.3	¹⁵ N:41.1	¹³ C:33.1	¹ H:2048	¹⁵ N:64	¹³ C:64	32
HNCO	¹ H:11.9	¹⁵ N:41.1	¹³ C:33.1	¹ H:2048	¹⁵ N:64	¹³ C:64	32
HNHA	¹ H:11.6	¹⁵ N:41.1	¹ H:11.6	¹ H:2048	¹⁵ N:128	¹ H:38	32

Table 6.2: Recorded experiments and acquisition parameters

^a2D-NOESY spectra were recorded with mixing times of $\tau_m = 40 \text{ms}$ and $\tau_m = 120 \text{ms}$ and on a sample in D₂O with $\tau_m = 20 \text{ms}$.

 ${}^{b}\tau_{m} = 30 \mathrm{ms}$

^{c1}H-¹⁵N-HSQC spectra were recorded of uniformly and selectively ¹⁵N-Ala, ¹⁵N-Phe, ¹⁵N-Gly, ¹⁵N-Ile, ¹⁵N-Lys, ¹⁵N-Leu, ¹⁵N-Val and ¹⁵N-Gly/¹⁵N-Ser labeled samples.

 d15 N-NOESY-HSQC spectra were recorded with mixing times of $\tau_m = 120$ ms and $\tau_m = 40$ ms

^ea ¹⁵N-NOESY-HSQC ($\tau_m = 100$ ms) of superior quality with half of the usual number of scans could be recorded on a 600Mhz spectrometer equipped with a cryoprobehead.

 ${}^{f}\tau_{m} = 100 \mathrm{ms}$

6.4. SEQUENCE-SPECIFIC (¹H, ¹⁵N, ¹³C) RESONANCE ASSIGNMENT

The software package *sparky* (Goddard & Kneller, 2001) was used throughout the assignment process. It has a very valuable tool enabling the search for peaks at matching frequencies within one spectrum. At the ¹⁵N and ¹H frequencies of a given amino acid, the CBCA(CO)NH and HNCA spectra show in the ¹³C dimension the resonances for C^{α}_{i-1} and C^{β}_{i-1} or C^{α}_{i} and C^{α}_{i-1} respectively. Usually the 'own' C^{α}_{i} in the HNCA has a stronger intensity than the 'preceding' C^{α}_{i-1} . An automatic search for matching peaks for a given C^{α}_{i} will typically yield up to 30 hits, some of them being noise, others due to overlap. One of the hits will be the neighbor in the sequence, though, the C^{α}_{i} of the starting residue being the C^{α}_{i-1} of this one.

First of all, glycins were investigated. Out of the found possible neighbors, the one will be the real neighbor that shows only one peak in the CBCA(CO)NH spectrum. Any residue following a glycin in the sequence will lack the C^{β}_{i-1} resonance in the CBCA(CO)NH, as there is no C^{β} in glycins.

In a similar way, but with more chance for ambiguities, all other identified amino acids were investigated to find their neighbors and eventually short sets of residues with correlated shifts. These sets could then be tracked in the sequence of the protein to to arrive finally at the complete sequence specific (¹H, ¹⁵N, ¹³C) resonance assignment.

Figure 6.2 shows some strips from the CBCA(CO)NH and HNCA spectra. The assignmentwalk through residues K75 to S79 is indicated by lines connecting the inter and intra C^{α} resonances. It can be seen, that the CBCA(CO)NH spectrum serves as a back up to verify the correct assignment of the C^{α}_{*i*-1} resonance and additionally provides the C^{β}_{*i*-1} frequencies for each amino acid.

Ambiguities which frequently arouse due to signal overlap could in some cases be resolved by looking at the strips from the ¹⁵N-NOESY-HSQC spectrum. This spectrum was of superior quality as it was recorded using a cryo-probehead. In this kind of a probehead, the preamplifier and radio frequency coils are cooled to liquid helium temperatures, which increases the signal to noise ratio by a factor of 3-4¹.

CAP-N exhibits a mostly α helical fold in which the through space distance of two neighboring backbone amide protons is about 2.8 Å (Wüthrich, 1986). Therefore, for a great number of residues, H^{N}_{i} - H^{N}_{i-1} cross peaks could be found in the amide region of the 3D-NOESY. Some representative strips from the ¹⁵N-NOESY-HSQC spectrum are shown in Figure 6.3. The discovered sequential cross-peaks aided not only the assignment, but represent valuable distance constraints used later in the structure calculations.

¹I would like to thank Dr. Helena Kovacs of Bruker BioSpin, Fällanden, CH for recording this spectrum on the CryoprobeTM system.

Figure 6.2: Strips from the CBCA(CO)NH (narrow strips, green) and HNCA (wide strips, turquoise) spectra. The sequential assignment is indicated.

Figure 6.3: Strips from the ¹⁵N-NOESY-HSQC spectrum. The connectivities between the backbone H^N diagonal- and cross-peaks of residues L44 through S49, which are part of the second α -helix, are indicated by black boxes. Diagonal peaks are labeled H^N in each strip.

After finishing the sequence specific assignment of the backbone amide groups and the C^{α} and C^{β} resonances, a HNCO spectrum was used to find the C' frequencies. As for the other ¹H-¹⁵N-HSQC based triple resonance spectra, no signals of residues preceding prolines will be detected. Thus it is not possible to assign the C^{α}_{P-1} , C^{β}_{P-1} or C'_{P-1} residues of proline preceding residues while the C^{α}_{P} , C^{β}_{P} or C'_{P} of prolines itself can be assigned. ¹⁵N-NOESY-HSQC and ¹³C-NOESY-HSQC spectra were then used to assign as many side chain resonances as possible. This would later be the basis for finding NOE distance constraints for the three dimensional structure calculations.

Extent of assignment and data deposition

Figure 6.4 shows the ¹H-¹⁵N-HSQC spectrum of CAP from *Dictyostelium discoideum*. Resonances of all backbone amide groups were assigned with the exception of the N-terminal residues S1 through K3, which could not be identified in the NMR spectra. Furthermore in the backbone 95% of H^{α} and 93% of C^{α} and C' were assigned as well as about half of the side chain atoms, including 95% of C^{β} and 81% of H^{β}. This assignment is sufficient to determine the structure of the protein and to analyze its dynamics. A table of the ¹H, ¹⁵N, ¹³C chemical shift assignment of CAP has been deposited in the BioMagResBank database (http://www.bmrb.wisc.edu) under the accession number 5393.

6.5 Three-dimensional structure determination

At the same time that the NMR structural determination got under way, the crystall structure was solved independently in our group (Ksiazek, 2002, see Figure 6.5). A substantial number of additional long range NOEs could be assigned in the NMR spectra on the basis of the interproton distances derived from the coordinates of this X-ray structure. The presence of these NOEs proofs, that the solution and crystall structures are very similar. Original calculations based on NMR data included roughly 500 mostly sequential and medium range NOEs and 38 ϕ -angles in the backbone derived from an HNHA experiment (see Table 6.2). These calculations revealed the totaly α helical secondary structure of the protein that was later confirmed by the X-ray structure. The tertiary fold could not be established with NMR data alone.

Figure 6.4: The ¹H-¹⁵N-HSQC spectrum of CAP-N from *Dictyostelium discoideum* at 300K and pH 7.3. The residue specific resonance assignment is indicated by the one letter amino acid code next to the corresponding signal; several are omitted for clarity.

Figure 6.5: Ribbon drawing of the three-dimensional structure of CAP-N as revealed by X-ray crystallography (Ksiazek, 2002).

6.6 ¹⁵N-Relaxation

Protein function is closely related not only to the three-dimensional structure but also to intramolecular motions. As NMR relaxation studies can provide detailed, residue per residue, information on internal dynamics of proteins, they are routinely applied to ¹⁵N-labeled samples (for a review on protein NMR relaxation see Fischer et al. (1998)).

Typically, three relaxation parameters are measured for backbone amide groups of proteins: the longitudinal relaxation time T_1 , the transverse relaxation time T_2 and the heteronuclear Overhauser enhancement {¹H}-¹⁵N-NOE.

The N-terminal domain of CAP under investigation here is a very rigid protein. Apart from the C-terminal 10 residues, the relaxation data showed no increased flexibility for any part of the protein. The C-terminus, which is not structured, is highly flexible as seen from the 1 H 15 N-NOE and T₂ data. This is especially true for residues S174 to T176, which also show no long range NOESY contacts. The T₁ and T₂ values determined here are odd for a protein with 176 residues and may suggest dimerization (see section 6.7 below).

T₁ Relaxation

¹⁵N T₁ measurements were recorded with T₁ relaxation delays of 12.4, 384.4, 756.4, 1118.4 and 1500.4 ms. Six spectra were recorded in an interleaved manner, the first and last one having the same delay of 12.4 ms. The peak intensities were fit to a decaying exponential using the python relax.py extension (rh) in sparky (Goddard & Kneller, 2001).

Figure 6.6 shows the T_1 values for CAP-N. Estimated errors result mainly from signal overlap. The determined T_1 times are rather uniform, showing no region of significantly reduced or enhanced relaxation times. The average T_1 time for the whole protein is 920.5 ms.

T₂ Relaxation

The ¹⁵NT₂ times were determined analog to the T₁ measurements. T₂ relaxation delays were set to 20.8, 41.6, 83.2, 125.0 and 166.0 ms. Figure 6.7 shows the T₂ values for CAP-N. The flexible C-terminus of the protein is clearly visible. Apart from it, no enhanced T₂ times were determined. The average T₂ time for the whole protein is 54.0 ms and 50.9 if the C-terminal 10 residues, which are not structured, are neglected.

Figure 6.6: ¹H T₁ relaxation times ploted for the assigned residues of CAP-N. Blanks correspond to prolines in the sequence. The positions of α -helices as revealed by the x-ray structure (Ksiazek, 2002) are indicated as black boxes.

Figure 6.7: ¹H T₂ relaxation times of CAP-N. Values for A175 and T176 (off scale) were 150.2 ± 15.3 and 334.4 ± 16.8 , respectively; α -helices are indicated.

Figure 6.8: Heteronuclear {¹H}-¹⁵N-NOE values of CAP-N; α -helices are indicated.

{¹H}-¹⁵N-NOE

The heteronuclear Overhauser enhancement values were determined using a pair of spectra with and without proton saturation during the recycle delay. Saturation was achieved by a train of 120° pulses separated by 10 ms for a time of 3 s. Additionally a 4.5 s relaxation delay was used between scans. The two spectra were recorded in an interleaved manner to avoid time-dependent artifacts. Other spectral parameters were identical to the HSQC experiments (Table 6.2).

The calculated NOE values are shown in Figure 6.8. The average value for the whole protein is 0.80 and slightly higher neglecting the C-terminal 10 residues (0.83). Some regions show reduced NOE values. These residues (K22-A24, I63 and L66, K131) are part of the loops that connect the helices. No NOE values are below 6.0 apart from the C-terminus, with A175 close to zero and T176 clearly negative. CAP-N thus is very rigid on timescales < 10 ns.

6.7 Is CAP a Dimer?

Much has been speculated on whether members of the CAP family dimerize. For CAP from *Saccharomyces cervisiae* Hubberstey & Mottillio (2002) propose a N-terminal region close to

the adenylyl cyclase binding site to be important for dimerization. Interestingly enough, this is exactly the region proved to be unstructured in *Dictyostelium* CAP and this fragment was removed for this investigations (see section 6.2). This could be the reason why *Dictyostelium* CAP, as CAPs from other higher eukaryotes, apparently does not bind adenylyl cyclase (Hubberstey & Mottillio, 2002). Attempts to crystallize CAP-N in our group lead to two different crystall structures, one being a monomer (see Figure 6.5) the other a dimer (see Figure 6.9). The residues involved in dimerization were identified to be K64, N67, A71, D78, R81, E94, M115, F121, Y122 and R125 (Ksiazek, 2002). The NMR relaxation data reported in section 6.6 also suggests, that CAP-N is a dimer in solution. The determined average T₁ and T₂ values (920.5 ms and 54.0ms) are far too long and too short, respectively, for CAP-N to be a monomer. The mass spectra mentioned in section 6.2 also show a clear peak at twice the calculated mass of CAP-N. Thus CAP-N is a mixture of monomers and dimers at concentrations around 1 mM, pH 7.3 and 300K in solution as used for NMR investigations.

6.7. IS CAP A DIMER?

Figure 6.9: Ribbon drawing of the three-dimensional structure of the CAP-N dimer as revealed by X-ray crystallography (Ksiazek, 2002). In the center of the dimerization site, a magnesium atom is present.
Chapter 7

NMR Characterization of the Green Fluorescent Protein

7.1 Biological context

Green fluorescent proteins (GFPs) provide powerful tools for monitoring gene expression, protein movement and protein interaction (Tsien, 1998). Due to its inherent fluorescence GFP is a widely used fusion tag for proteins in fluorescence microscopy studies. Up to now the family of GFP-like proteins comprises 27 cloned and spectroscopically characterized proteins (Labas et al., 2002) of which 18 high-resolution crystal structures are available (www.rcsb.org; Berman et al. (2000)). The overall structure of GFP consists of an 11-stranded β -barrel with a centrally located helix that carries the chromophore (Ormoe et al., 1996; Yang et al., 1996). The X-ray diffraction studies and a variety of physicochemical methods highlight an apparent exceptional stability of the GFP fold in which the chromophore lies rigidly inside the conformationally inflexible GFP molecule (Striker et al., 1999). The stability of GFP against temperature, denaturants and proteases is very high (Tsien, 1998; Ward, 1981). Recently ¹⁹F NMR studies of the cyan variant of GFP conducted in our laboratory indicated conformational flexibility in or near the chromophore moiety with residue His148 being most likely involved in this process (Seifert et al., 2002). NMR has been suggested as a tool for elucidating the dynamics of chromophore formation, water accessibility of the chromophore and conformational flexibility in GFP (Prendergast, 1999; Haupts et al., 1998). In contrast to many spectroscopic techniques, NMR spectroscopy provides a large frequency range for studying dynamical processes from picosecond to second timescales and even longer at atomic resolutions. For example, motional and thermodynamical information for backbone amides in proteins can be obtained from measurements of ¹⁵N relaxation rates in ¹⁵N labeled proteins (Spyracopoulos & Sykes, 2001; Kay, 1998). Hydrogendeuterium exchange experiments allow for a characterization of conformational fluctuations in secondary structure elements (Dempsey, 2001). The basis of these relaxation measurements which were subsequently performed in our laboratory (Seifert, 2002) is the sequence-specific resonance assignment of the protein spectra.

7.2 NMR Spectroscopy

Figure 7.1: 2D ¹H-¹⁵N TROSY spectrum of GFPuv at 310K. The labels indicate the sequence-specific resonance assignment.

Materials

¹⁵N and ¹⁵N/¹³C labeled samples of GFPuv (Q80R, F99S, M153T, V163A, also known as 'cycle 3' (Crameri et al., 1996)) were produced as described by Georgescu (2000). The samples were

dissolved in PBS (115 mM NaCl, 8 mM KH₂PO₄, 16 mM Na₂HPO₄) buffer at pH 7.3. The following samples were available in concentrations ranging from 0.8 to 1.2 mM: Uniformly ¹⁵N labeled GFPuv, as well as selectively labeled ¹⁵N-Ala, ¹⁵N-Phe, ¹⁵N-Gly, ¹⁵N-Ile, ¹⁵N-Lys, ¹⁵N-Leu, ¹⁵N-Val, ¹⁵N-Tyr and ¹⁵N-Met and reverse labeled ¹⁵N-Asn, ¹⁵N-Thr, ¹⁵N-His and ¹⁵N-Asp samples. Additionally a ¹⁵N-¹³C double labeled sample and ¹⁵N/99%²H and ¹⁵N/¹³C/70%²H deuterated samples were prepared. All samples contained 10% D₂O.

Backbone H^N , N, C^{α}, and C^{β} assignment of the GFPuv mutant

All heteronuclear ¹H-¹⁵N NMR experiments were performed on Bruker DMX 750, DRX 600 and DRX 500 spectrometers at a temperature of 310K. The spectrometers were equipped with 5 mm ¹H-¹³C-¹⁵N triple resonance TXI probeheads including triple-axis gradients (DMX 750, DRX600) or z-axis gradients (DRX500). The spectra were recorded with a sweepwidth of 17.5 ppm for ¹H and 42 ppm for ¹⁵N. The backbone resonances were assigned using HNCO, HN(CO)CA and a pair of HNCA and CBCA(CO)NH triple resonance spectra (Cavanagh et al., 1996). In addition ¹⁵N-HSQC spectra (Mori et al., 1995) of the selectively and uniformly ¹⁵N labeled samples, 2D-TROSY, 2D-NOESY ($\tau_m = 160$ ms), and 3D-NOESY-HSQC ($\tau_m = 160$ ms) spectra (Cavanagh et al., 1996; Salzmann et al., 1998) were recorded at various field strength. The assignment was accomplished using the program *Sparky* (Goddard & Kneller, 2001) and the in house software package *ccnmr* (Cieslar et al., 1988, 1990).

Extent of assignment and data deposition

In summary more than 80% (191 out of 229) of the backbone amide groups of GFPuv were assigned. Also assignment of the C^{α} , C^{β} and C' atoms of these residues was obtained. The assignment of the central α -helix and of β -sheets 7, 8, and 10 could not be completed. These β -sheets are assumed to form the interface in dimerization of the protein. It also turned out that the backbone assignment was complicated by the necessity of a high pH and the tendency of GFP to aggregate. The chemical shifts have been deposited in the BioMagResBank database under the accession number 5514 (http://www.bmrb.wisc.edu).

Chapter 8

Summary

This thesis is a collection of several NMR (nuclear magnetic resonance spectroscopy) projects conducted at the Department of Structural Research of the Max Planck Institute of Biochemistry in the recent years. Each chapter represents a project that yielded a paper as given on page *i*. Some of these still have to be published.

The wide range of applications of NMR in biochemical research is reflected in the diversity of the projects. One of these applications, the use of NMR as a screening tool in structural proteomics is reviewed. Using several examples from our group, it is shown that NMR can serve as a powerful tool to identify protein samples that are suitable for structure elucidation by both NMR spectroscopy and X-ray crystallography.

Two projects concentrated on the detection of ligands for proteins that play a major role in diseases including cancer. In the first case it could be shown that chalcone derivatives (compounds derived from 1,3- diphenyl-2-propen-1-one) are inhibitors of MDM2 (human murine double minute clone 2 protein). In some cancers overexpression of MDM2 inactivates an otherwise intact p53, disabling the genome integrity checkpoint and allowing cell cycle progression of defective cells. MDM2 binds to the transactivation domain of p53. The chalcones described here bind to a subsite of the p53 binding cleft of human MDM2 and thus disrupt the interaction of MDM2 with p53. Binding studies were performed by titrating MDM2 with increasing amounts of the chalcones and recording heteronuclear NMR spectra of each step. Changes of the chemical shift of the backbone amide groups indicate the binding site of the inhibitors as well as the binding strength.

In a methodologically similar project, inhibitors of the IGF-I (insulin-like growth factor-I) and IGF-binding protein-5 (IGFBP-5) interaction were targeted. In this case an *in silco* screen-

ing with the software FlexX had suggested a number of possible inhibitors which were subsequently investigated by NMR. One compound, an FMOC derivative (a derivative from 9-Fluorenylmethoxycarbonyl) was found to bind to IGFBP-5 weakly. This compound was then optimized to increase its affinity. The final designed ligand had a considerably lower K_D value but was still not able to disrupt the IGF/IGFBP-5 complex. Still it could be the starting point for the design of more potent inhibitors and therapeutic agents for diseases that are associated with abnormal IGF-I regulation like some cancers, but also stroke and other neurodegenerative diseases.

NMR-based structural studies and NMR-based ligand binding studies require selectively and/or uniformly ¹⁵N-labeled proteins. The baculovirus expression system based on insect cells has several advantages over commonly used bacterial systems. To achive labeling in the baculovirus expression system, two insect media for the production of selectively labeled protein in insect cells were developed in our group. Again heteronuclear experiments were used to validate the quality of the media and to investigate the metabolic pathways in Sf9 insect cells. As a result, now two valuable media are about to be published (previous compositions were kept confidential) and a preliminary model of the metabolism of Sf9 cells could be presented.

In two more structurally oriented projects, NMR characterizations of the globular proteins GFP (green fluorescent protein) and CAP (cyclase associated protein) were performed. While in the first case the focus was on dynamical properties, the ultimate goal of the investigations on CAP was the discovery of its three dimensional structure. A nearly complete resonance assignment of the protein was achieved and structure calculations were under way, when the structure was solved by X-ray crystallography. The secondary structure elements of the X-ray structure are in agreement with those predicted by NMR spectroscopy.

Chapter 9

Zusammenfassung

Diese Dissertation stellt eine Sammlung verschiedenster Projekte dar die in den letzten Jahren in der Abteilung für Strukturforschung am Max-Planck-Institut für Biochemie mittels der Kernresonanzspektroskopie durchgeführt wurden. Jedes Kapitel repräsentiert ein Projekt, das zu einem der auf Seite *i* angegebenen Artikel geführt hat. Einige sind allerdings noch nicht veröffentlicht.

Die große Bandbreite der Anwendungen der Kernresonanzspektroskopie (nuclear magnetic resonance spectroscopy, NMR) in der biochemischen Forschung spiegelt sich auch in den sehr unterschiedlichen Projekten wieder. Eine dieser Anwendungen wurde in einem Übersichtsartikel, der am Anfang dieser Arbeit wiedergegeben ist genauer betrachtet. An Hand einiger Beispiele aus unserer Arbeitsgruppe wurde gezeigt, wie die NMR-Spektroskopie dazu beitragen kann solche Proteine auszuwählen, die für eine dreidimensionale Strukturbestimmung mittels NMR-Spektroskopie oder Röntgenstrukturanalyse geeignet sind.

Zwei der Projekte befassten sich mit der Identifizierung von Bindungspartnern von Proteinen die in schweren Krankheiten, u.a. auch Krebs, eine Rolle spielen. In einem Fall konnte gezeigt werden, dass Chalcone-Derivate (Derivate der chemischen Verbindung 1,3-diphenyl-2-propen-1-one) MDM2 (human murine double minute clone 2 protein) inhibieren. In einigen Krebsarten inaktiviert MDM2 das Protein p53 und ermöglicht so eine Fortlaufen des Zellzykluses von kranken Zellen. MDM2 bindet dabei an die Transaktivierungsdomäne von p53. Die hier beschriebenen Chalcone binden an einen Teil der p53 Bindungstasche des humanen MDM2 und verhindern so eine Bindung zwischen MDM2 und p53. Für die Bindungsstudien wurde MDM2 mit wachsenden Mengen der Chalcone titriert und heteronukleare NMR Spektren von jedem Schritt aufgenommen. Veränderungen der chemischen Verschiebung der Amid-Gruppen im Protein Rückgrat weisen sowohl auf die Bindungsstelle als auch auf die Dissoziationskonstante hin.

In einem methodisch ähnlichen Projekt wurden Inhibitoren der Bindung zwischen IGF-I (insulin-like growth factor-I) und dem IGF-bindenden Protein IGFBP-5 (IGF-binding protein-5) gesucht. In diesem Fall hatte eine computergestützte Suche mit dem Programm FlexX eine Reihe vom möglichen Bindungspartnern für IGFBP-5 ergeben, die dann ebenfalls mit der Kernresonanzspektroskopie weiter untersucht wurden. Eines der Moleküle, ein FMOC-Derivat (Derivat der chemischen Verbindung 9-Fluorenylmethoxycarbonyl) zeigte eine schwache Bindung an IGFBP-5. Es wurde daraufhin verändert um seine Affinität zu steigern. Am Ende wurde so ein Ligand gefunden, der eine deutlich niedrigere Dissoziationskonstante aufwies, allerdings nicht in der Lage war den Komplex aus IGF und IGFBP-5 aufzubrechen. Dieses Molekül könnte aber als Ausgangspunkt für die Suche nach Inhibitoren dienen um Medikamente für einige Krebsarten die mit einer fehlerhaften IGF-I Regulation einhergehen, aber auch für Schlaganfälle und andere Hirnverletzungen, zu finden.

Viele strukturbezogene Untersuchungen mit Hilfe der Kernresonanzspektroskopie erfordern selektiv und/oder komplett mit ¹⁵N markierte Proteinproben. In vielen Fällen hat es sich als vorteilhaft erwiesen Proteine in einem Insekten-Zellkultursystem, dem sogenannten Baculovirus-System, zu exprimieren, da sowohl die Ausbeute als auch die Faltung der Proteine oft besser sind als im üblicherweise verwendeten *E.coli*-System. Um auch im Baculovirus Expressions-system markieren zu können, wurden in unserer Gruppe zwei Medien entwickelt, mit denen in Insektenzellen ¹⁵N Markierung möglich ist. Wiederum wurden heteronucleare NMR Experimente verwendet um die Qualität der Medien zu überprüfen und den Metabolismus von Sf9 Insektenzellen zu untersuchen. Diese zwei Medien sind nun der Öffentlichkeit zugänglich (bereits existierende Rezepte wurden bisher stets geheim gehalten) und ein vorläufiges Modell des Metabolismus von Sf9-Zellen konnte vorgestellt werden.

In zwei mehr strukturorientierten Projekten wurden die globulären Proteine GFP (green fluorescent protein) und CAP (cyclase associated protein) mit Hilfe der NMR Spektroskopie charakterisiert. Während bei ersterem die dynamischen Eigenschaften im Vordergrund der Untersuchungen standen, sollte bei CAP die dreidimensionale Struktur des Proteins bestimmt werden. Dabei wurde ein Großteil der Signale in den Spektren den einzelnen Atomen des Proteins zugewiesen und erste Strukturrechnungen begonnen. Mittlerweile wurde die Struktur allerdings mit Hilfe dere Röntgenstrukturanalyse aufgeklärt. Die Sekundärstrukturelemente der Röntgenstruktur decken sich weitgehend mit den mittels NMR-Spektroskopie getroffenen

Vorhersagen.

Appendix A

BioMagResBank entry for CAP-N

Sequence-specific (¹H,¹⁵N,¹³C) resonance assignment of the N-terminal domain of the cyclase-associated protein (CAP) from Dictyostelium discoideum as deposited at the BioMagResBank database (http://www.bmrb.wisc.edu) under the accession number 5393.

BMRB_accession_number	5393
_BMRB_flat_file_name	bmr5393.str
Entry_type	new
Submission_date	2002-06-12
Accession_date	2002-06-13
Entry_origination	author
NMR_STAR_version	2.1.1
Experimental_method	NMR

```
loop_
_Saveframe_category_type
```

```
_Saveframe_category_type_count
```

```
assigned_chemical_shifts 1
```

stop_

loop_ _Data_type _Data_type_count

> '1H chemical shifts' 714 '15N chemical shifts' 173 '13C chemical shifts' 542

stop_

_Release_immediately no _Release_on_publication yes

save_

save_contact_persons
_Saveframe_category contact_persons

loop_ _Family_name _Given_name _Middle_initials _Family_title _Department_and_Institution _Mailing_address _Phone_number _Email_address _FAX_number

Rehm

data 5393

save_entry_information _Saveframe_category

entry_information

```
_Entry_title
```

Sequence-specific (1H, 15N, 13C) resonance assignment of the N-terminal domain of the Cyclase-associated Protein (CAP) from Dictyostelium discoideum ;

```
loop_
_Author_ordinal
_Author_family_name
_Author_given_name
_Author_middle_initials
_Author_family_title
```

1RehmTill.2MavoungouChrystelle.3IsraelLars.4SchleicherMichael.5HolakTadA

stop_

Till _Author_family_title 1 Rehm Till 2 Mavoungou Chrystelle . . 3 Israel Lars Dept. of Structural Research 4 Schleicher Michael . . Max-Planck-Institute of Biochemistry 5 Holak Tad Α. stop am Klopferspitz 18A _Journal_abbreviation "J. Biomol. NMR" 82152 Martinsried _Journal_volume ? _Journal_issue Germany ? _Page_first ? "+49 89 8578 2672" _Page_last ? rehm@biochem.mpg.de _Year 2 "+49 89 8578 3777" loop_ Holak _Keyword Tad А "adenylyl cyclase associated protein" stop_ Dept. of Structural Research save_ Max-Planck-Institute of Biochemistry ***** # Molecular system description # ****** am Klopferspitz 18A 82152 Martinsried Germany save_system_CAP "+49 89 8578 2673" _Saveframe_category molecular system holak@biochem.mpg.de "+49 89 8578 3777" _Mol_system_name "N-terminal domain of the adenylyl cyclase associated Protein" _Abbreviation_common CAP Enzyme commission number stop save_ loop_ _Mol_system_component_name Mol label ******************************* # Citation for this entry # "CAP N-terminus" CAP **** stop_ save_entry_citation _System_physical_state native _Saveframe_category entry_citation _System_oligomer_state monomer _System_oligourc___ _System_paramagnetic no ______ 'not present' _Citation_title Letter to the Editor: Sequence-specific (1H, 15N, 13C) save_ resonance assignment of the N-terminal domain of the Cyclase-associated Protein (CAP) from Dictyostelium ********************* discoideum # Monomeric polymers # _Citation_status submitted ***** journal _Citation_type MEDLINE UI code save CAP loop_ _Saveframe_category monomeric_polymer _Author_ordinal _Author_family_name _Mol_type polymer _Mol_polymer_class _Author_given_name protein _Author_middle_initials _Name_common "Cyclase associated Protein"

76

;

;

;

;

;

;

;

_Name_variant _Abbreviation_common CAP _Mol_thiol_state 'not present' Details The N-terminal domain of CAP described here is shorter by 39 residues than previously reported. **************************** # Polymer residue sequence # ***** _Residue_count 176 _Mol_residue_sequence ; SVKEFONLVDOHITPFVALS KKLAPEVGNOVEOLVKAIDA EKALINTASQSKKPSQETLL ELIKPLNNFAAEVGKIRDSN RSSKEFNNLSATSESTOFLS WVVVEPTPGPHVAEMRGSAE FYTNRILKEFKGVNQDQVDW VSNYVNFLKDLEKYIKQYHT TGLTWNPKGGDAKSAT ; loop_ _Residue_seq_code Residue label 1 SER 2 VAL 3 LYS 4 GLU 5 PHE GLN 7 ASN 8 LEU 9 VAL 10 ASP 6 11 GLN 12 HIS 13 ILE 14 THR 15 PRO 16 PHE 17 VAL. 18 AT.A 19 LEU 20 SER 21 LYS 22 LYS 23 LEU 24 ALA 25 PRO 26 GLU 27 VAL 28 GLY 29 ASN 30 GLN 31 VAL 32 GLU 34 LEU 35 VAL 33 GLN 36 LYS 37 ALA 38 ILE 39 ASP 40 ALA 41 GLU 42 LYS 43 ALA 44 LEII 45 TLE 46 ASN 47 THR 48 ALA 49 SER 50 GLN 51 SER 52 LYS 53 LYS 54 PRO 55 SER 56 GLN 57 GLU 58 THR 59 LEU 60 LEU 61 GLU 62 LEU 63 TLE 64 LYS 65 PRO 66 LEU 67 ASN 68 ASN 69 PHE 70 ALA 71 ALA 72 GLU 73 VAL 74 GLY 75 LYS 76 77 ARG 78 ASP 79 ILE SER 80 ASN 81 ARG 82 SER 83 SER 84 LYS 85 PHE 86 PHE 87 ASN 88 ASN 89 LEU 90 SER 91 ALA 92 ILE 93 SER 94 GLU 95 SER 96 ILE 97 GLY 98 PHE 99 LEU 100 SER 101 TRP 102 VAL 103 VAL 104 VAL 105 GLU 106 PRO 107 THR 108 PRO 109 GLY 110 PRO 111 HIS 112 VAL 113 ALA 114 GLU 115 MET 116 117 119 ALA 120 ARG GLY 118 SER GLU 121 PHE 122 TYR 123 THR 124 ASN 125 ARG 126 ILE 127 LEU 128 LYS 129 GLU 130 PHE 131 LYS 132 GLY 133 VAL 134 ASN 135 GLN 136 ASP 137 GLN 138 VAL 139 ASP 140 TRP 141 VAL 142 SER 143 ASN 144 TYR 145 VAL 146 ASN 147 PHE 148 LEII 149 LYS 150 ASP 151 LEU 152 GLU 153 LYS 154 TYR 155 ILE 156 LYS 157 GLN 158 TYR 159 HIS 160 THR 161 THR 162 GLY 163 LEU 164 THR 165 TRP 166 ASN 167 PRO 168 LYS 169 GLY 170 GLY 171 ASP 172 ALA 173 LYS 174 SER 175 ALA

176 THR stop_ save ***** # Natural source # ***************** save natural source _Saveframe_category natural_source loop_ Mol label _Organism_name_common _NCBI_taxonomy_ID Superkingdom Kingdom Genus _Species \$CAP "Dictvostelium discoideum" 44689 Eukaryota Dictvostelium discoideum stop save_ ********************* # Experimental source # **** save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common Genus _Species _Strain Vector name ŚCAP 'recombinant technology'

stop_

Sparky _Name save_ save_ **** ***** # Sample contents and methodology # **** # Experimental detail # ***** ******************** ************************************ # Sample description # ***** # NMR Spectrometer definitions # ***** save sample 1 _Saveframe_category sample save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Sample_type solution Manufacturer Bruker loop_ _Model DRX _Mol_label _Field_strength 600 _Concentration_value Concentration value units save _Concentration_min_value _Concentration_max_value _Isotopic_labeling save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer \$CAP . mM 0.8 1.2 "[U-15N]" _Manufacturer Bruker stop_ _Model DMX _Field_strength 750 save save_ save_sample_2 ***** _Saveframe_category sample # NMR applied experiments # _Sample_type solution ***** qool _Mol_label save_NMR_applied_experiment _Concentration_value _Saveframe_category NMR_applied_experiment _Concentration_value_units _Isotopic_labeling _Experiment_name \$CAP 0.9 mM "[U-13C; U-15N]" 2D 1H-1H NOESY 2D 1H-13C HSQC 2D 1H-15N HSQC stop_ 3D 1H-1H-15N NOESY 3D 13C-1H-1H NOESY save_ 3D CBCA(CO)NH 3D HNCA **** 3D HNCO # Computer software used # ; ***** save_ save XWINNMR ***** _Saveframe_category software # Sample conditions # XWINNMR ***** _Name save save_Exp-cond _Saveframe_category sample_conditions save_Sparky _Saveframe_category software

loop_

_Variable_type _Variable_value _Variable_value_error _Variable_value_units

Hа 7.3 0.1 n/a temperature 300 0.1 K

stop

save_

**************** # NMR parameters # *****

***** # Assigned chemical shifts # *****

***** # Chemical shift referencing # *****

save chemical shift_reference _Saveframe_category chemical_shift_reference

_Mol_common_name _Atom_type _Atom_isotope_number Atom group Chem shift units _Chem_shift_value _Reference_method Reference type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio ppm 0.00 . direct . 1.0 TSP H 1 methyl

 TSP C
 13
 methyl
 ppm
 -0.2
 . direct
 1.0

 DSS N
 15
 'methyl protons'
 ppm
 0.0
 . indirect
 0.101329118

stop_

loop_

save

Assigned chemical shift lists # *****

Chemical Shift Ambiguity Index Value Definitions #

#			#
#	Index Value	Definition	#
#			#
#	1	Unique	#
#	2	Ambiguity of geminal atoms or geminal methyl	#
#		proton groups	#
#	3	Aromatic atoms on opposite sides of the ring	#
#		(e.g. Tyr HE1 and HE2 protons)	#

4 Intraresidue ambiguities (e.g. Lys HG and # HD protons) # Interresidue ambiguities (Lys 12 vs. Lys 27) # # 5 Ambiguous, specific ambiguity not defined # # 9

assigned_chemical_shifts

save shift set 1 _Saveframe_category

> loop_ _Sample_label

> > \$sample_1 \$sample_2

stop_

_Sample_conditions_label \$Exp-cond _Chem_shift_reference_set_label \$chemical_shift_reference _Mol_system_component_name "CAP N-terminus"

loop_ _Atom_shift_assign_ID _Residue_seq_code Residue label _Atom_name _Atom_type Chem shift value _Chem_shift_value_error

_Chem_shift_ambiguity_code

3 LYS C C 178.355 0.1 1 1 3 LYS CA C 59.337 2 0.1 1 3 3 LYS CB C 28.034 0.3 1 4 4 GLU H Н 8.034 0.02 4 GLU C C 176.826 0.1 1 5 4 GLU CA C 61.952 4 GLU N N 123.843 6 0.1 1 7 0 05 1 8 5 PHE H н 8.489 0.02 1 5 PHE C C 176.00 5 PHE CA C 58.111 9 0.1 1 10 0.1 1 5 PHE N N 119.60 11 0 05 1 12 6 GLN H н 8.167 0.02 1 6 GLN C C 178.320 13 0.1 1 6 GLN CA C 59.281 14 0.1 1 15 6 GLN CB C 32.00 031 16 6 GLN N N 118.525 0.05 1 17 7 ASN H н 8.169 0.02 1 C 177.530 18 7 ASN C 0.1 1 7 ASN CA C 56.234 7 ASN CB C 37.636 19 0.1 1 20 03 1 7 ASN N N 118.851 21 0.05 1 8 LEU H н 7.354 0.02 22 1 8 LEU N N 120.373 0.05 1 23 C 178.512 24 8 LEU C 0.1 1 25 8 LEU CA C 58.004 0.1 1 26 8 LEU CB C 42.148 0.3 1 27 9 VAL H н 7.397 0.02 1 9 VAL HA H 3.389 28 0 05 1 29 9 VAL HB H 2.293 0.05 1 30 9 VAL HG1 H 0.889 0.05 2 31 9 VAL HG2 H 0.723 0.05 2 9 VAL C C 178.009 9 VAL CA C 66.283 32 0.1 1

0.1 1

33

34	9	VAL	CB	С	31.320	0.3	1
35	9	VAL	N	Ν	122.06	0.05	1
36	10	ASP	н	н	8.749	0.02	1
37	10	AGD	нъ	н	4 348	0.05	1
20	10	AGD	1000		2.726	0.05	-
38	10	ASP	HBZ	н	2.736	0.05	2
39	10	ASP	HB3	Η	2.692	0.05	2
40	10	ASP	C	С	177.654	0.1	1
41	10	ASP	CA	С	57.309	0.1	1
42	10	ASP	CB	С	40.517	0.3	1
43	10	ASP	N	Ν	121.254	0.05	1
44	11	GLN	Н	Н	7,781	0.02	1
45	11	GUN	нъ	н	3 881	0.05	1
16	11	OLM	110.0		1 046	0.05	2
10	11	GIN	1102		1.040	0.05	~
4/	11	GLIN	нвз	н	1.408	0.05	2
48	11	GLN	C	С	176.592	0.1	Ţ
49	11	GLN	CA	С	58.530	0.1	1
50	11	GLN	CB	С	28.957	0.3	1
51	11	GLN	N	Ν	116.680	0.05	1
52	12	HIS	Н	Η	7.480	0.02	1
53	12	HIS	HA	Н	4.959	0.05	1
54	12	HIS	HB2	Н	3.359	0.05	2
55	12	HIS	HB3	н	2.995	0.05	2
56	12	нтс	C	c	176 668	0 1	1
50	10	IIIO	C7	0	EC 000	0.1	1
57	10	111.5	CR CR	c 2	30.900	0.1	1
50	12	HIS	CB	C	35.027	0.3	1
59	12	HIS	N	IN	112.44/	0.05	Ţ
60	13	ILE	Н	Η	8.172	0.02	1
61	13	ILE	HA	Η	4.095	0.05	1
62	13	ILE	HB	Η	2.694	0.05	1
63	13	ILE	HG12	Η	1.189	0.05	2
64	13	ILE	HG13	Η	0.579	0.05	2
65	13	ILE	HG2	Н	0.838	0.05	1
66	13	ILE	HD1	Η	-0.289	0.05	1
67	13	ILE	С	С	177.415	0.1	1
68	13	ILE	CA	С	59,928	0.1	1
69	13	TLE	CB	С	33.81	0.3	1
70	13	TLE	CG1	c	27 638	0 1	1
71	12	 TT P	002	c	17 946	0 1	1
72	12	TTP	CO2	0	E 716	0.1	1
72	10	TIDE	N	N	110 564	0.1	1
75	1.0	TLE	11	11	119.504	0.05	1
/4	14	THR	н	н	8.023	0.02	1
75	14	THR	HA	Н	4.091	0.02	Ţ
76	14	THR	HB	Η	4.516	0.02	1
77	14	THR	HG2	Η	1.281	0.05	1
78	14	THR	CA	С	69.387	0.1	1
79	14	THR	CB	С	66.214	0.1	1
80	14	THR	CG2	С	22.595	0.1	1
81	14	THR	N	Ν	119.258	0.05	1
82	15	PRO	HA	Η	4.509	0.02	1
83	15	PRO	HB2	Н	2.339	0.02	1
84	15	PRO	HB3	Н	1,938	0.02	1
85	15	PRO	C	C	178 322	0 1	1
86	15	DRO	CA	c	65 484	0 1	1
07	15	DDO	dD.	0	20 601	0.1	1
07	10	PRO			50.001	0.5	1
88	10	PHE	н	н	0.909	0.02	1
89	16	PHE	HA -	Н	4.411	0.05	Ţ
90	16	PHE	HB2	Н	3.487	0.05	2
91	16	PHE	HB3	Η	3.302	0.05	2
92	16	PHE	HD1	Η	6.858	0.05	3
93	16	PHE	HE1	Η	5.755	0.05	3
94	16	PHE	ΗZ	Η	5.949	0.05	1
95	16	PHE	C	С	178.815	0.1	1
96	16	PHE	CA	С	60.711	0.1	1
97	16	PHE	CB	С	40.022	0.3	1
98	16	PHE	N	N	121.835	0.05	1
99	17	VAT.	н	Н	8,895	0,02	1
100	17	VAT.	на	н	3,395	0.05	-
	÷ '	• 2110		**	5.555	0.05	-

101	17	VAL	HB	Η	2.221	0.05	1
102	17	VAL	HG1	Η	1.078	0.05	2
103	17	VAL	HG2	Н	0.975	0.05	2
104	17	VAL	С	С	176.905	0.1	1
105	17	VAL	CA	С	67.007	0.1	1
106	17	VAL	CB	С	31.664	0.3	1
107	17	VAL	N	Ν	126.060	0.05	1
108	18	ALA	Н	Н	6.876	0.02	1
109	18	ALA	HA	Н	4.088	0.05	1
110	18	AT.A	HB	н	1.517	0.05	1
111	18	AT.A	C	C	175 548	0 1	1
112	18	ALA	CA	c	55.363	0.1	1
113	18	ΔΤ.Δ	CB	c	17 691	0.3	1
114	10	лтл	N	N	122 452	0.05	1
115	10	TEIT	ц П	ц П	7 964	0.00	1
116	10	LEU	117	11	1.904	0.02	1
117	19	LEU	HA	н	4.045	0.05	1
117	19	LEU	HBZ	н	1.642	0.05	2
118	19	LEU	HB3	н	2.048	0.05	2
119	19	LEU	HG	н	1.540	0.05	T
120	19	LEU	HDI	н	1.083	0.05	2
121	19	LEU	HD2	Η	1.167	0.05	2
122	19	LEU	C	С	177.882	0.1	1
123	19	LEU	CA	С	57.692	0.1	1
124	19	LEU	CB	С	43.611	0.3	1
125	19	LEU	Ν	Ν	119.362	0.05	1
126	20	SER	Н	Η	8.084	0.02	1
127	20	SER	HA	Η	4.115	0.05	1
128	20	SER	HB2	Η	3.907	0.05	2
129	20	SER	HB3	Η	3.416	0.05	2
130	20	SER	С	С	174.415	0.1	1
131	20	SER	CA	С	63.514	0.1	1
132	20	SER	N	Ν	116.413	0.05	1
133	21	LYS	Н	Н	7.487	0.02	1
134	21	LYS	HA	Н	3.721	0.05	1
135	21	LYS	HB2	Н	1.840	0.05	2
136	21	LYS	HB3	Н	1.634	0.05	2
137	21	LYS	HG3	Н	1.377	0.05	2
138	21	LYS	с	С	177.538	0.1	1
139	21	LYS	CA	C	58.844	0.1	1
140	21	LYS	CB	c	32.309	0.3	1
141	21	LYS	N	N	117.655	0.05	1
142	22	LYS	н	н	7 210	0 02	1
143	22	LVS	на	н	3 975	0.05	1
144	22	LVS	нв2	н	1 904	0.05	2
145	22	LVS	HB3	н	1.725	0.05	2
146	22	TVC	1000	п п	1 279	0.05	2
147	22	TVC	UC2	п п	1 5 2 2	0.05	2
1/0	22	TVC	0	 C	177 654	0.05	1
140	22	TVC	03	0	57 047	0.1	1
149	22	110	CA	c	37.947	0.1	1
150	22	LIS	CB		32.807	0.3	1
151	22	LIS	IN	IN	118.722	0.05	1
152	23	LEU	н	н	7.364	0.02	1
153	23	LEU	HA	н	3.799	0.05	1
154	23	LEU	HB2	Н	1.588	0.05	2
155	23	LEU	HB3	Н	1.396	0.05	2
156	23	LEU	HG	Η	0.674	0.05	1
157	23	LEU	HD1	Η	0.492	0.05	2
158	23	LEU	HD2	Η	0.139	0.05	2
159	23	LEU	С	С	176.250	0.1	1
160	23	LEU	CA	С	57.366	0.1	1
161	23	LEU	CB	С	41.935	0.3	1
162	23	LEU	CG	С	25.97	0.1	1
163	23	LEU	CD1	С	22.799	0.1	2
164	23	LEU	CD2	С	25.302	0.1	2
165	23	LEU	Ν	Ν	120.072	0.05	1
166	24	ALA	Н	Η	6.766	0.02	1
167	24	ALA	HA	Н	4.331	0.05	1

160	24	7 T 7	TTD		0 570	0.05	1
160	24	ALA	(1) (1)		E0 7E4	0.05	1
109	24	ALA	CA	c	10.000	0.1	1
171	24	ALA	CB	C N	115 055	0.3	1
1/1	24	ALA	N	N	115.055	0.05	1
172	25	PRO	HD2	н	3.766	0.05	2
173	25	PRO	C	С	178.468	0.1	1
174	25	PRO	CA	С	65.067	0.1	1
175	25	PRO	CB	С	31.772	0.3	1
176	26	GLU	Н	Η	10.698	0.02	1
177	26	GLU	HA	Η	4.277	0.05	1
178	26	GLU	HB2	Η	1.789	0.05	2
179	26	GLU	HB3	Н	2.221	0.05	2
180	26	GLU	HG2	Н	2.899	0.05	2
181	26	GLU	С	С	177.504	0.1	1
182	26	GLU	CA	С	58.944	0.1	1
192	26	CUU	00	c	27 066	0.2	1
104	20	CLU	N	N	110 550	0.5	1
105	20	GLU	IN	11	110.000	0.05	1
105	27	VAL	н	H	0.4/0	0.02	1
186	27	VAL	HA	Н	3.668	0.05	1
187	27	VAL	HB	H	2.011	0.05	1
188	27	VAL	HG1	Η	0.649	0.05	2
189	27	VAL	HG2	Η	0.949	0.05	2
190	27	VAL	С	С	177.554	0.1	1
191	27	VAL	CA	С	65.354	0.1	1
192	27	VAL	CB	С	30.525	0.3	1
193	27	VAL	CG1	С	23.468	0.1	2
194	27	VAL	CG2	С	21.231	0.1	2
195	27	VAL	N	N	121.888	0.05	1
196	28	GLY	н	н	8 016	0 02	1
197	28	GLV	на 2	н	3 861	0.05	2
109	20	CIV	1112	и п	2 294	0.05	2
100	20	GLI	- IIA3		175 660	0.05	1
199	28	GLI	C	C	1/5.002	0.1	1
200	28	GLY	CA	С	47.808	0.1	1
201	28	GLY	Ν	Ν	108.085	0.05	1
202	29	ASN	Н	Η	8.710	0.02	1
203	29	ASN	HA	Η	4.501	0.05	1
204	29	ASN	HB2	Η	2.926	0.05	2
205	29	ASN	HB3	Η	2.843	0.05	2
206	29	ASN	HD21	Η	7.557	0.05	2
207	29	ASN	С	С	177.694	0.1	1
208	29	ASN	CA	С	55.678	0.1	1
209	29	ASN	CB	С	38.024	0.3	1
210	29	ASN	Ν	Ν	120.106	0.05	1
211	29	ASN	ND2	Ν	111.968	0.05	1
212	30	GLN	н	н	7,909	0.02	1
213	30	GLN	на	н	3 953	0 05	1
214	30	GLN	ив2	н	2 171	0.05	2
215	30	GLN	HB3	н	2 617	0.05	2
215	20	CIN	1100	11	2.017	0.05	2
210	30	GLN	HG2	н	2.450	0.05	2
217	30	GLIN	C	C -	178.382	0.1	1
218	30	GLN	CA	С	59.889	0.1	1
219	30	GLN	CB	С	29.376	0.3	1
220	30	GLN	Ν	Ν	121.957	0.05	1
221	31	VAL	Н	Η	8.614	0.02	1
222	31	VAL	HA	Η	3.784	0.05	1
223	31	VAL	HB	Η	2.180	0.05	1
224	31	VAL	HG1	Η	1.186	0.05	2
225	31	VAL	HG2	Н	0.972	0.05	2
226	31	VAL	С	С	178.242	0.1	1
227	31	VAL	CA	С	66.570	0.1	1
228	31	VAT,	CB	C	31,653	0.3	1
229	31	VAT.	CG1	c	24.727	0.1	2
230	31	VAT.	N	N	120 492	0 05	1
220	30	4 LU CI II	н	ц 1	8 355	0.05	1
222	34 20	0110	11	п	4 401	0.02	⊥ 1
434	32	GTO C-	HA	н	4.491	0.05	1
233	32	GLU	HB2	Η	2.151	0.05	2
234	32	GLU	HG2	Η	2.349	0.05	2

235	32	GLU	C	С	178.990	0.1	1
236	32	GLU	CA	С	60.274	0.1	1
237	32	GLU	CB	С	29.311	0.3	1
220	20	OT II	NT	NT	100 700	0.05	1
230	22	GT0		14	122.750	0.05	1
239	33	GLIN	н	н	/.154	0.02	1
240	33	GLN	HA	Н	4.024	0.05	1
241	33	GLN	HB2	Η	2.261	0.05	2
242	33	GLN	HG2	Η	2.715	0.05	2
243	33	GLN	HG3	Η	2.483	0.05	2
244	33	GLN	С	С	177.396	0.1	1
245	33	GLN	CA	c	57 560	0 1	1
215	22	CIN	00	c	27 39	0.2	1
240	22	GLIN	CB		27.30	0.5	1
247	33	GLN	N	IN	116./83	0.05	1
248	34	LEU	Н	Н	7.578	0.02	1
249	34	LEU	HA	Η	3.980	0.05	1
250	34	LEU	HB2	Η	1.728	0.05	2
251	34	LEU	HG	Н	1.441	0.05	1
252	34	LEU	С	С	177.615	0.1	1
253	34	LEII	CA	С	58 372	0 1	1
253	24	TEII	00	c	41 752	0.2	1
237	51	1150	СВ		41.752	0.5	-
255	34	ΓE0	N	Ν	121.641	0.05	Ţ
256	35	VAL	Н	Η	8.732	0.02	1
257	35	VAL	HA	Η	3.438	0.05	1
258	35	VAL	HB	Η	2.198	0.05	1
259	35	VAL	HG1	Н	0.989	0.05	2
260	35	VAL	HG2	Н	0.898	0.05	2
261	35	WAT.	c	C	177 677	0 1	1
201	25	V PLL	0	c 2	177.077	0.1	1
202	35	VAL	CA	C .	07.421	0.1	1
263	35	VAL	CB	С	31.009	0.3	Ţ
264	35	VAL	Ν	Ν	120.367	0.05	1
265	36	LYS	Н	Η	7.229	0.02	1
266	36	LYS	HA	Н	3.836	0.05	1
267	36	LYS	HB2	Н	0.554	0.05	2
268	36	LYS	HB3	н	1.144	0.05	2
260	26	TVC	uc2	ш. Ш	1 540	0.05	2
205	20	110	1102	11	1.000	0.05	2
270	36	LYS	HG3	н	1.282	0.05	2
271	36	LYS	HD2	Н	1.275	0.05	2
272	36	LYS	HE2	Η	2.659	0.05	2
273	36	LYS	C	С	179.008	0.1	1
274	36	LYS	CA	С	59.644	0.1	1
275	36	LYS	CB	С	30.729	0.3	1
276	36	LYS	N	Ν	120.521	0.05	1
277	27	אדא	U	U	7 740	0 02	1
277	27		11	11	1.11	0.02	1
278	37	ALA	HA	н	4.111	0.05	1
279	37	ALA	нв	н	1.722	0.05	Ţ
280	37	ALA	C	С	178.454	0.1	1
281	37	ALA	CA	С	55.237	0.1	1
282	37	ALA	CB	С	18.654	0.3	1
283	37	ALA	N	Ν	123.933	0.05	1
284	38	ILE	Н	Н	8.668	0.02	1
285	38	TLE	на	н	3 752	0 05	1
205	20	TIP	110		2 100	0.05	1
200	20	1112	пь	п	2.100	0.05	1
287	38	ILE	HG2	Н	1.190	0.05	Ţ
288	38	ILE	HD1	Η	0.845	0.05	1
289	38	ILE	С	С	177.720	0.1	1
290	38	ILE	CA	С	65.919	0.1	1
291	38	ILE	CB	С	37.519	0.3	1
292	38	ILE	N	Ν	121.456	0.05	1
293	39	ASP	н	н	8.529	0.02	1
204	20	101			1 641	0.05	1
474	20	NOP	nA wbc	п	4.041	0.05	±
295	39	ASP	нв2	H	2.689	υ.05	2
296	39	ASP	HB3	Η	2.835	0.05	2
297	39	ASP	С	С	179.029	0.1	1
298	39	ASP	CA	С	57.664	0.1	1
299	39	ASP	CB	С	40.388	0.3	1
300	39	ASP	N	N	122.977	0.05	1
301	40	ΔΤ.Δ	н	н	8 040	0 02	1
~~~	- ·	******			0.010	5.52	-

302	40	ALA	HA	Η	4.349	0.05	1
303	40	AT.A	HB	н	1.774	0.05	1
304	40	ΔΤ.Δ	c	c	179 719	0 1	1
205	40	71.7	C7	0	EA 702	0.1	1
305	40	ALA	CA	C	54.795	0.1	-
306	40	ALA	CB	C	17.032	0.3	1
307	40	ALA	Ν	Ν	125.092	0.05	1
308	41	GLU	H	Η	8.749	0.02	1
309	41	GLU	HA	Η	3.929	0.05	1
310	41	GLU	HB2	Η	2.079	0.05	2
311	41	GLU	HG2	Η	2.781	0.05	2
312	41	GLU	С	С	176.689	0.1	1
313	41	GLU	CA	С	60.547	0.1	1
314	41	GLU	CB	С	28.097	0.3	1
315	41	GLU	N	N	123.601	0.05	1
316	42	LYS	н	н	8.725	0.02	1
217	12	TVC	 uл	л. Ц	2 205	0.05	1
210	42	TVC	110.0		2 150	0.05	2
318	42	LIS	HB2	н	2.158	0.05	2
319	42	LYS	HB3	н	1.562	0.05	2
320	42	LYS	HG2	Н	1.568	0.05	2
321	42	LYS	HE 3	Η	2.384	0.05	2
322	42	LYS	C	С	177.557	0.1	1
323	42	LYS	CA	С	60.387	0.1	1
324	42	LYS	CB	С	31.729	0.3	1
325	42	LYS	Ν	Ν	122.564	0.05	1
326	43	ALA	Н	Η	7.720	0.02	1
327	43	ALA	HA	Н	4.196	0.05	1
328	43	ALA	HB	Н	1.629	0.05	1
329	43	AT.A	С	С	179.469	0.1	1
330	43	AT.A	CA	c	54 847	0 1	1
331	43	ΔΤ.Δ	CB	c	17 483	0.1	1
222	10	ALA	N	N	120 020	0.5	1
222	40	ALA	11	11	120.920	0.05	1
333	44	LEU	Н	Н	7.716	0.02	1
334	44	LEU	HA	Н	4.091	0.05	1
335	44	LEU	HB2	Η	1.626	0.05	2
336	44	LEU	HB3	Η	1.845	0.05	2
337	44	LEU	HG	Η	1.423	0.05	1
338	44	LEU	HD1	Η	0.721	0.05	2
339	44	LEU	HD2	Η	0.930	0.05	2
340	44	LEU	С	С	177.614	0.1	1
341	44	LEU	CA	С	57.926	0.1	1
342	44	LEU	CB	С	41.376	0.3	1
343	44	LEU	CD1	С	26.189	0.1	2
344	44	LEU	N	Ν	122.384	0.05	1
345	45	TLE	н	н	8 091	0 02	1
346	45	TLF	нъ	н	3 289	0.05	1
217	45	TIP	UD	ш. Ш	1 514	0.05	1
240	15	TIP	110		1 772	0.05	2
240	45	115	HG12	п	1.775	0.05	4
349	45	115	HG13	н	0.930	0.05	2
350	45	ILE	HG2	Н	0.539	0.05	1
351	45	ILE	HD1	Η	0.327	0.05	1
352	45	ILE	C	С	178.470	0.1	1
353	45	ILE	CA	С	66.045	0.1	1
354	45	ILE	CB	С	38.110	0.3	1
355	45	ILE	CG1	С	16.767	0.1	2
356	45	ILE	CD1	С	14.119	0.1	1
357	45	ILE	Ν	Ν	121.725	0.05	1
358	46	ASN	Н	Н	8.238	0.02	1
359	46	ASN	HA	Н	4.346	0.05	1
360	46	ASN	HB2	Н	2.733	0.05	2
361	46	ASM	HB3	н	3 179	0 05	2
362	46	7 GM	د <u>ست</u>	с 	178 265	0.05	1
262	10	NGN	C7	~	1/0.200	0.1	1
202	40	ASIN	CA CD	C C	20.024	0.1	1
304	40	ASN	CR	C.	39.034	0.3	1
305	46	ASN	N	IN	TTA'\PD	0.05	1
366	47	THR	н	H	8.989	0.02	1
367	47	THR	HA	Η	3.832	0.05	1
368	47	THR	HB	Η	4.400	0.05	1

369	47	THR	HG2	Н	1.374	0.05	1
370	47	THR	с	С	177.124	0.1	1
371	47	THR	CA	c	67 399	0 1	1
272	47		an	~	67.335	0.1	1
372	4/	IHR	CB	C	09.287	0.3	1
373	47	THR	N	Ν	122.728	0.05	1
374	48	ALA	Н	Η	8.646	0.02	1
375	48	ALA	HA	Η	3.998	0.05	1
376	48	ALA	HB	Н	0.007	0.05	1
377	48	ALA	С	С	177.406	0.1	1
378	4.8	ΔΤ.Δ	CA	C	55 438	0 1	1
270	10	717	CD CD	0	15 462	0.1	1
200	10	ALA	св 		100 647	0.5	1
380	48	ALA	N	N	128.64/	0.05	T
381	49	SER	H	Н	7.593	0.02	1
382	49	SER	HA	Η	4.312	0.05	1
383	49	SER	HB2	Η	4.138	0.05	2
384	49	SER	C	С	175.645	0.1	1
385	49	SER	CA	С	60.907	0.1	1
386	49	SER	CB	С	63.486	0.3	1
387	49	SED	N	N	111 216	0.05	1
200	50	OLN			7 500	0.00	1
300	50	GLN	н	н	7.502	0.02	T
389	50	GLN	HA	Н	4.831	0.05	1
390	50	GLN	HB2	Η	2.105	0.05	2
391	50	GLN	HG2	Η	2.473	0.05	2
392	50	GLN	С	С	176.312	0.1	1
393	50	GLN	CA	С	55.071	0.1	1
394	50	GLN	CB	С	32.148	0.3	1
205	50	CT N	N	N	119 007	0.05	1
200	50	GER	11	11	7 740	0.00	1
390	21	SER	н	н	1.149	0.02	1
397	51	SER	HA	Н	5.344	0.05	1
398	51	SER	HB2	Н	4.068	0.05	2
399	51	SER	HB3	Η	3.912	0.05	2
400	51	SER	C	С	172.390	0.1	1
401	51	SER	CA	С	58.328	0.1	1
402	51	SER	CB	С	66.612	0.3	1
403	51	SED	N	N	116 870	0.05	1
10.0	E 2	TVC	11	11	0 161	0.05	1
404	52	LIS	н	н	8.404	0.02	1
405	52	LYS	HA	Н	4.386	0.05	Ţ
406	52	LYS	HG2	Н	1.658	0.05	2
407	52	LYS	HG3	Η	1.352	0.05	2
408	52	LYS	С	С	176.781	0.1	1
409	52	LYS	CA	С	55.968	0.1	1
410	52	LYS	CB	С	33.190	0.3	1
411	52	LYS	N	N	124 416	0 05	1
41.2	52	TVC	U	и и	9 654	0.02	1
410	55	110	11		2.054	0.02	1
413	53	LYS	HA	н	3.050	0.05	1
414	53	LYS	HB2	Н	1.793	0.05	2
415	53	LYS	HB3	Η	2.427	0.05	2
416	53	LYS	HG2	Η	1.112	0.05	2
417	53	LYS	CA	С	54.745	0.1	1
418	53	LYS	CG	С	24.152	0.1	1
419	53	LYS	N	N	126.401	0.05	1
420	54	PRO	C	C	175 630	0 1	1
121	54	DRO	CD	c	61 669	0 1	1
121	51		CA	-	01.005	0.1	-
422	54	PRO	CB	С	32.244	0.3	1
423	55	SER	H	Н	8.259	0.02	1
424	55	SER	HA	Η	4.278	0.05	1
425	55	SER	HB2	Η	4.184	0.05	2
426	55	SER	HB3	Н	4.046	0.05	2
427	55	SER	С	С	174.948	0.1	1
428	55	SER	CA	С	57,501	0.1	1
429	55	SEP	CB	C	64 581	0 3	1
120	55	OPD	N	NT N	114 111	0.05	1
121	50	SEK GL-	11	11	0 000	0.05	1
431	56	GLN	Н	н	8.800	0.02	1
432	56	GLN	HA	Н	3.939	0.05	1
433	56	GLN	HB2	Η	2.174	0.05	2
434	56	GLN	HB3	Н	2.025	0.05	2
435	56	GLN	HG2	Н	2.454	0.05	2

436	56	GLN	С	С	177.519	0.1	1
437	56	GLN	CA	С	59.362	0.1	1
438	56	GLN	CB	С	28.076	0.3	1
439	56	GLN	N	Ν	122.598	0.05	1
440	57	GLU	Н	Н	8.749	0.02	1
441	57	GLU	HA	Н	3.974	0.05	1
442	57	GLU	HB2	н	2 061	0.05	2
443	57	GLU	C	C	178 536	0 1	1
115	57	OLU	C7	0	60 225	0.1	1
445	57	GLU	CA	c	00.325	0.1	1
445	5/	GLU	CB	C	28.699	0.3	1
446	57	GLU	N	N	118.276	0.05	1
447	58	THR	Н	Η	7.650	0.02	1
448	58	THR	HA	Η	4.025	0.05	1
449	58	THR	HB	Η	4.145	0.05	1
450	58	THR	HG2	Η	1.204	0.05	1
451	58	THR	C	С	176.230	0.1	1
452	58	THR	CA	С	66.162	0.1	1
453	58	THR	CB	С	67.912	0.3	1
454	58	THR	N	Ν	119.528	0.05	1
455	59	LEU	Н	Н	8.427	0.02	1
456	59	LEU	HA	н	3,867	0.05	1
457	59	LEU	HR2	н	2 192	0 05	2
459	50	1 511	102	 U	1 040	0.00	ລິ ວ
450	59	1	10	п ,-	1.000	0.05	1
459	59	LEU	нG	H	1.471	0.05	Ţ
460	59	LEU	HD2	H	0.953	0.05	2
461	59	LEU	C	С	177.613	0.1	1
462	59	LEU	CA	С	58.759	0.1	1
463	59	LEU	CB	С	41.440	0.3	1
464	59	LEU	N	Ν	125.158	0.05	1
465	60	LEU	Н	Н	7.876	0.02	1
466	60	LEU	HA	Н	3.995	0.05	1
467	60	LEU	HB2	н	1.904	0.05	2
468	60	1.EU	HB3	н	1.511	0 05	2
469	60	LEU	нр?	н	0 934	0 05	2
107	60	100	с с	л С	170 105	0.05	2 1
171	00	1 217		c	±17.140	0.1	1
4/1 4/70	60	LEU	CA	Ċ	5/.604	U.1	1
472	60	LEU	CB	С	41.097	0.3	1
473	60	LEU	CG	С	26.233	0.1	1
474	60	LEU	Ν	Ν	116.841	0.05	1
475	61	GLU	Н	Η	7.264	0.02	1
476	61	GLU	HA	Н	4.100	0.05	1
477	61	GLU	HB2	Н	2.221	0.05	2
478	61	GLU	HB3	Н	1.880	0.05	2
479	61	GLU	HG2	Н	2.246	0.05	2
480	61	GLII	HG3	н	2.334	0 05	2
491	61 61	010	C	~	170 2/7	0.00	1
401	01 61	GLU		C	±/7.34/	0.1	1
40Z	61 C	GLU GT	CA	Ċ	50.886	U.1	1
483	61	GLU	CB	С	29.419	0.3	Ŧ
484	61	GLU	Ν	Ν	118.939	0.05	1
485	62	LEU	Н	Η	8.209	0.02	1
486	62	LEU	HA	Η	4.161	0.05	1
487	62	LEU	HB2	Н	1.540	0.05	2
488	62	LEU	HB3	Н	2.171	0.05	2
489	62	LEU	HG	Н	2.007	0.05	1
490	62	LEU	HD2	Н	0.933	0.05	2
491	62	LEII	C	C	178.487	0 1	1
492	62	LEII	Ca	c	57 212	0.1	1
102	60	1 200	CR CR	c	J1.JLJ	0.1	1
404	02	1 211	00	c	41.902	0.3	1
494	62	LEU	CG	С	26.422	0.1	1
495	62	LEU	Ν	Ν	120.771	0.05	1
496	63	ILE	Н	Η	7.515	0.02	1
497	63	ILE	HA	Η	4.420	0.05	1
498	63	ILE	HB	Н	2.127	0.05	1
499	63	ILE	HG12	Н	1.584	0.05	2
500	63	ILE	HG13	Н	1.329	0.05	2
501	63	ILE	HG2	Н	0.931	0.05	1
502	63	ILE	HD1	Н	0.848	0.05	1
			-				

	63	ILE	CA	С	61.152	0.1	1
505	63	ILE	CB	С	38.271	0.3	1
506	63	TLE	CD1	С	17.473	0.1	1
507	63	 TT P	N	N	100 925	0.05	1
507	03	TTE	11	IN	109.025	0.05	1
508	64	LYS	Н	Н	7.321	0.02	1
509	64	LYS	HA	Η	4.126	0.05	1
510	64	LYS	HB2	Η	2.053	0.05	2
511	64	LYS	HB3	Н	1.903	0.05	2
512	64	LYS	HG2	н	1 435	0 05	2
E12	61	TVC	<i>C</i> 2	0	61 020	0 1	1
515	01	115	CA		01.050	0.1	-
514	64	LYS	Ν	Ν	124.685	0.05	1
515	65	PRO	HA	Η	4.116	0.05	1
516	65	PRO	HB2	Η	2.377	0.05	2
517	65	PRO	HB3	Н	1.861	0.05	2
518	65	PRO	С	С	178.141	0.1	1
510	65			c	66 221	0 1	1
515	05	FRO	CA	-	00.551	0.1	-
520	65	PRO	СВ	С	30.686	0.3	1
521	66	LEU	н	Η	7.312	0.02	1
522	66	LEU	HA	Η	4.063	0.05	1
523	66	LEU	нв3	Н	1.915	0.05	2
524	66	LEII	HG	н	1 749	0 05	1
521	c c	1 111	110		0.000	0.05	-
525	00	LEU	HDI	н	0.900	0.05	2
526	66	LEU	C	С	178.011	0.1	1
527	66	LEU	CA	С	59.121	0.1	1
528	66	LEU	CB	С	41.602	0.3	1
529	66	LEU	N	Ν	117.001	0.05	1
530	67	ASM	н	н	7 930	0 02	1
550	07	AGN			1.930	0.02	1
531	67	ASN	HA	Н	4.444	0.05	1
532	67	ASN	HB2	Η	2.805	0.05	2
533	67	ASN	HB3	Η	2.946	0.05	2
534	67	ASN	HD21	Н	7.502	0.05	2
535	67	ASN	HD22	н	6 417	0 05	2
E 2 6	67	ACM	0		177 005	0 1	1
550	07	ASIN	C	с -	177.005	0.1	1
537	67	ASN	CA	С	55.293	0.1	1
E 2 0	<b>CD</b>	3 (3) 7	an	~	27 176	0 2	1
538	6/	ASN	CB	C	57.470	0.3	-
538 539	67	ASN	N	N	118.238	0.05	1
538 539 540	67 67	ASN ASN ASN	N N ND2	N N	118.238 110.380	0.05	1
538 539 540 541	67 67 67 68	ASN ASN ASN ASN	N ND2 H	N N H	118.238 110.380 8.372	0.05	1 1 1 1
538 539 540 541 542	67 67 68 68	ASN ASN ASN ASN	ND2 H	N N H	118.238 110.380 8.372	0.05	1 1 1 1 1 1
538 539 540 541 542	67 67 68 68	ASN ASN ASN ASN ASN	N ND2 H HA	N N H H	118.238 110.380 8.372 4.481	0.05 0.05 0.02 0.05	1 1 1 1
538 539 540 541 542 543	67 67 68 68 68	ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2	N N H H	118.238 110.380 8.372 4.481 2.670	0.05 0.05 0.02 0.05 0.05	1 1 1 1 2
538 539 540 541 542 543 543 544	67 67 68 68 68 68 68	ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C	N N H H C	118.238 110.380 8.372 4.481 2.670 177.994	0.05 0.05 0.02 0.05 0.05 0.1	1 1 1 1 2 1
538 539 540 541 542 543 543 544 545	67 67 68 68 68 68 68 68	ASN ASN ASN ASN ASN ASN ASN	ND2 H HB2 C CA	N N H H C C	118.238 110.380 8.372 4.481 2.670 177.994 56.103	0.03 0.05 0.02 0.05 0.05 0.1 0.1	1 1 1 1 2 1 1
538 539 540 541 542 543 543 544 545 546	67 67 68 68 68 68 68 68 68 68	ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB	N N H H C C	37.470 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498	0.05 0.05 0.02 0.05 0.05 0.1 0.1 0.3	1 1 1 2 1 1 1
538 539 540 541 542 543 544 545 545 546 547	67 67 68 68 68 68 68 68 68 68 68	ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N	N N H H C C N	37.470 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745	0.05 0.05 0.02 0.05 0.05 0.1 0.1 0.1 0.3 0.05	1 1 1 1 2 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548	67 67 68 68 68 68 68 68 68 68 68	ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N	N N H C C N	37.476 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.998	0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.02	1 1 1 1 2 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 540	67 67 68 68 68 68 68 68 68 68 68 68 68	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE	N ND2 H HA HB2 C CA CB N H	N H H C C N H H	37.476 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655	0.3 0.05 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02	1 1 1 1 2 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549	67 67 68 68 68 68 68 68 68 68 68 68 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE	N ND2 H HA HB2 C CA CB N H HA	N H H C C N H H H	37.478 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655	0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05	1 1 1 1 2 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549 550	67 67 68 68 68 68 68 68 68 68 68 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE	N ND2 H HA HB2 C CA CB N H HA HB2	N H H C C N H H H H H H H	57.476 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05	1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
538 539 540 541 542 543 544 545 546 547 548 549 550 551	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE	N ND2 H HA HB2 C CA CB N H HA HB2 HB3	N N H H C C N H H H H H H H	57.476 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442	0.3 0.05 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
538 539 540 541 542 543 544 545 545 546 547 548 549 550 551 552	67 67 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE	N ND2 H HA HB2 C CA CB N H HA HB2 HB3 C	N N H H C C N H H H H H H H H C	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973	0.3 0.05 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1	1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 545 546 547 548 549 550 551 552 553	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE PHE	N ND2 H HA HB2 C CA CB N H HA HB2 HB3 C CA	N H H C C N H H H C C N H H C C	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358	0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0.1	1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 553	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N H HB2 HB3 C CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CCA C	с и и и и и и и и и и и и и и и и и и и	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.499 122.745 7.988 4.655 2.922 3.442 177.973 61.358 2.910	0.3 0.05 0.02 0.05 0.1 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.1	1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 554	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE	N ND2 H HA HB2 C CB N H HB2 HB3 C CA CB	с и и и и и и и и и и и и и и и и и и и	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 33.109	0.3 0.05 0.02 0.05 0.1 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.1 0.3	1 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE PHE PHE	N ND2 H HA HB2 C CA CB N H HB2 HB3 C CA CB N	С N H H H C C C N H H H C C C N	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.3 0.05	1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556	67 67 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB4 HB2 HB3 C CA CB N HB3 C CA CB N H H S C CA CB N H H H H H H H H H H H H H H H H H H	си и н н с с с и н н н с с с и н	118.238 118.238 110.38 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.558 39.109 120.956 8.346	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.3 0.05 0.02	1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538           539           540           541           542           543           544           545           546           547           550           551           552           553           554           555           556           557	67 67 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE PHE PHE PHE ALA ALA	N ND2 H HA HB2 C CA CB H HA HB2 HB3 C CA CB N H HA HB3 HB3 C CA CB N H HA	си и н н н с с с и н н н н н н н н н н н	118.238 110.380 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.1 0.1 0.3 0.3 0.05 0.05 0.05	1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
538           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           554           555           556           557           558	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB2 HB3 C CA CB N H HA HB HA HB	си инн сссинни нсссинни	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 548 550 551 552 555 555 555 555 555	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 70 70 70 70	ASM ASM ASM ASM ASM ASM ASM ASM ASM ASM	N ND2 H HA HB2 C CA CB N H HB2 HB3 C CA CB N HB3 C CA CB N H HA HB2 C CA CB N C CA CB CA CB C CA CB C CA CB C CA CA CA CA CA CA CA CA CA CA CA CA C	си инн ссси ннн нссси ннн с	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.946 1.526 1.526 1.526 1.72,971	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.02 0.05 0.05	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 546 547 554 550 551 552 555 555 555 555 555 555 555 555	<ul> <li>67</li> <li>67</li> <li>68</li> <li>68</li> <li>68</li> <li>68</li> <li>68</li> <li>68</li> <li>68</li> <li>68</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>69</li> <li>70</li> <li>70</li> <li>70</li> <li>70</li> <li>70</li> <li>70</li> <li>70</li> </ul>	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB2 CA CB N HB2 CA CB N HB2 CA CB N HB2 C CA CA CA CA CA CA CA CA CA CA CA CA C	си инн с с с и нн н с с с и н н н с с	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 (179.701 155.564	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.02 0.05 0.02 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
538 539 540 541 542 543 544 545 544 545 547 5548 554 555 555 555 555 555 555 556 557 558 559 560	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70 70 70 70 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB2 C CA CB N HB3 C CA CB N H HA HB2 C CA CB N H HA CC CA CB CA CB CA CB CA CB CA CB CA CA CB CA CA CA CA CA CA CA CA CA CA CA CA CA	си инн ссси ннн ссси ннн ссс	118.238 118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 1.22.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 1.526	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.2 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           556           557           558           559           560           561	67 67 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB HB2 CA CB HB3 C CA CB HA HB2 CA CB CA CB CA CB	си и н н с с с и н н н с с с и н н н с с с	118.238 110.380 8.372 4.481 2.670 177.994 55.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           554           555           556           557           558           559           560           561           562	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB3 C CA CB N HB3 C CA CB N HA HB2 C CA CB N N HA HB2 C CA CB N N C CA CB N N C CA CB N CA CA CB N CA CA CA CA CA CA CA CA CA CA CA CA CA	си и н н с с с и н н н с с с и и н н н с с с и	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 1.526 179.701 55.594 18.375 121.735	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           550           551           552           556           557           556           557           560           561           562           563	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 71	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB2 CA CB N HB3 C CA CB N HA HB3 C CA CB N H HA HB3 C CA CB N H HA HB3 C CA CB N H HA HA HA HA HA HA HA HA HA HA HA HA H	сиинноссиннноссинноссин	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 (179.701 55.594 18.375 121.735 8.121	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           550           551           552           553           554           555           556           560           561           562           564	67 67 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 71 71	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB HB2 C CA HB3 C CA CB HB3 C CA CB H HA HB C CA CB N H HA HB C CA N H HA HB3 C CA N HA HA HA HA HA HA HA HA HA HA HA HA HA	сиинноссиннноссиннноссинн	118.238 110.380 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375 8.121 3.553	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           556           557           558           559           560           561           562	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 71 171	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB HB2 C CA CB HB3 C CA CB HA HB C CA CB N HA HB HB HB	сиинноссиннноссиннноссиннн	118.238 110.380 110.380 8.372 4.481 2.670 177.994 55.103 37.498 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375 121.735 8.121 3.953 1.633	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.02 0.05 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.02 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           554           555           556           560           561           562           563           564           565           565           566	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 70 71 71	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB HB3 C CA CB HB3 C CA CB HB4 HB2 CA CB N HA HB2 CA CB N HA HB2 C CA CB N HA HB2 C CA CB N HA HA C CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CA CB CB CA CB CA CB CB CA CB CB CA CB CB CA CB CB CA CB CB CA CB CB CB CA CB CB CB CB CB CA CB CB CB CB CB CB CB CB CB CB CB CB CB	сииннносоинннносоиннносоинннс	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375 121.735 8.121 3.953 1.79.944	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           556           557           558           550           560           561           562           563           564           565           566           563           564           565           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566           566	67 67 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 70 70 71 171	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB N HB2 C CA CB N HB3 C CA CB N HAB2 HB3 C CA CB N H HA HB2 C CA CB N H HA C CA CB N H HA C CA CB N H HA C CA CA CB N H HA C CA CB N H HA C CA CB CA CB CA CCA CCA CCA CCA CCA CCA C	сиинннсссиннннсссинннсссинннс	118.238 110.380 8.372 4.481 2.670 177.994 56.103 37.498 122.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.525 8.346 1.79.701 155.594 18.375 121.735 8.121 3.953 1.633 179.985	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           550           551           552           553           556           557           558           559           560           561           562           564           565           566           567           568           569           561           562           563           564           565           566           567	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 71 71 71	ASN ASN ASN ASN ASN ASN ASN ASN ASN PHE PHE PHE PHE PHE PHE PHE PHE ALA ALA ALA ALA ALA ALA ALA ALA	N ND2 H HA HB2 C CA CB HB2 HB3 C CA HB3 C CA HB3 C CA HB C CA HA HB C CA HA HB C CA N H HA CCA CB N H HA CA CB CB CB CB CB CB CB CB CB CB CB CB CB	сиинннсссиннннсссинннсссинннсс	118.238 110.380 110.380 8.372 4.481 2.670 177.994 56.103 37.498 1.22.745 7.988 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375 8.121 3.553 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 179.984 54.817 1.558 1.633 1.558 1.633 1.558 1.633 1.5584 1.558 1.633 1.5594 1.5584 1.558 1.633 1.5594 1.633 1.59984 54.817 1.5584 1.5584 1.558 1.633 1.59984 54.817 1.5584 1.5584 1.5583 1.633 1.59984 54.817 1.5584 1.5584 1.5585 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.5385 1.53855 1.53855 1.538555 1.53855555 1.53855555555555555555555555555555555555	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.05 0.05 0.05 0.05 0.05 0.05	1 1 1 1 1 1 1 1 1 1 1 1 1 1
338           539           540           541           542           543           544           545           546           547           548           549           550           551           552           553           556           557           558           559           560           561           562           563           564           565           566           567           568	67 67 68 68 68 68 68 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 69 70 70 70 70 70 70 70 70 70 71 171 71	ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	N ND2 H HA HB2 C CA CB HB3 C CA CB HB3 C CA CB HA HB C CA CB N HA HB C CA CB N CA CB N CA CB CA CB CA CB CA CB CB CA CB CA CB CB CA CB CB CA CB CB CB CB CB CB CB CB CB CB CB CB CB	сиинноссиннннсссиннноссиннносс	118.238 110.380 8.372 4.481 2.670 177.994 55.103 37.498 4.655 2.922 3.442 177.973 61.358 39.109 120.956 8.346 3.948 1.526 179.701 55.594 18.375 121.735 8.121 3.953 1.633 179.984 54.817 17.687	0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.05 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.3 0.05 0.02 0.05 0.1 0.1 0.1 0.3 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1

503 63 ILE C C 175.706 0.1 1

570	72	GLU	Н	Η	7.793	0.02	1	
571	72	GLU	HA	Н	4.197	0.05	1	
572	72	GLU	HB2	Н	2.011	0.05	2	
573	72	GLU	HG2	Н	2.431	0.05	2	
574	72	GLU	HG3	Н	2.279	0.05	2	
575	72	GLU	C	C	178 481	0 1	1	
576	72	GLU	CA	c	58 905	0 1	1	
570	72	CLU	CP	c	20 011	0.1	1	
570	72	OLU	N	N	101 000	0.5	1	
5/8	72	GLU	IN	IN	121.288	0.05	1	
579	73	VAL	н	Н	8.006	0.02	1	
580	73	VAL	HA	Н	3.681	0.05	1	
581	73	VAL	HB	Η	2.690	0.05	1	
582	73	VAL	HG1	Η	0.961	0.05	2	
583	73	VAL	HG2	Η	1.190	0.05	2	
584	73	VAL	C	С	178.661	0.1	1	
585	73	VAL	CA	С	67.274	0.1	1	
586	73	VAL	CB	С	31.439	0.3	1	
587	73	VAL	CG1	С	22.595	0.1	2	
588	73	VAL	Ν	Ν	119.742	0.05	1	
589	74	GLY	Н	Η	7.693	0.02	1	
590	74	GLY	HA2	Н	3.936	0.05	2	
591	74	GLY	HA3	Н	4.135	0.05	2	
592	74	GLY	С	С	175.551	0.1	1	
593	74	GLY	CA	С	47.465	0.1	1	
594	74	GLV	N	N	108 236	0.05	1	
505	75	TVC	ц ц	ц ц	9 160	0.05	1	
595	75	TNO	11		4 1 6 2	0.02	1	
590	/5	LIS	HA	н	4.103	0.05	T	
597	/5	LYS	HBZ	н	2.019	0.05	2	
598	75	LYS	HG2	Н	1.493	0.05	2	
599	75	LYS	HD2	Н	1.689	0.05	2	
600	75	LYS	C	С	179.339	0.1	1	
601	75	LYS	CA	С	59.703	0.1	1	
602	75	LYS	CB	С	32.448	0.3	1	
603	75	LYS	Ν	Ν	124.579	0.05	1	
604	76	ILE	Н	Η	8.135	0.02	1	
605	76	ILE	HA	Η	3.754	0.05	1	
606	76	ILE	HB	Η	1.777	0.05	1	
607	76	ILE	HG12	Н	1.166	0.05	2	
608	76	ILE	HG13	Н	1.996	0.05	2	
609	76	ILE	HG2	Η	0.997	0.05	1	
610	76	ILE	HD1	Η	0.883	0.05	1	
611	76	ILE	С	С	178.001	0.1	1	
612	76	ILE	CA	С	65.319	0.1	1	
613	76	ILE	CB	С	39.088	0.3	1	
614	76	ILE	CG2	С	17.846	0.1	2	
615	76	TLE	N	N	120.580	0.05	1	
616	77	ARG	н	н	7 095	0 02	1	
617	77	ARG	на	н	4 020	0 05	1	
619	77	APC		 U	2 1 2 9	0.05	2	
610	77	ARG	1102	п	2.120	0.05	2	
619	//	ARG	нвз	н	2.288	0.05	2	
620	//	ARG	C	C	1//.698	0.1	1	
621	77	ARG	CA	С	60.897	0.1	1	
622	77	ARG	CB	С	29.698	0.3	1	
623	77	ARG	Ν	Ν	121.576	0.05	1	
624	78	ASP	Н	Η	8.454	0.02	1	
625	78	ASP	HA	Η	4.466	0.05	1	
626	78	ASP	HB2	Η	2.839	0.05	2	
627	78	ASP	С	С	177.707	0.1	1	
628	78	ASP	CA	С	57.554	0.1	1	
629	78	ASP	CB	С	40.678	0.3	1	
630	78	ASP	Ν	Ν	119.061	0.05	1	
631	79	SER	н	Н	7.941	0.02	1	
632	79	SER	HA	Н	4.601	0.05	1	
633	79	SER	HB2	Н	4.068	0.05	2	
634	79	SER	С	С	174.444	0.1	1	
635	79	SER	CA	С	59.356	0.1	1	
636	- 79	SER	CB	c	64.012	0.3	1	
	-		-	-				

637	79	SER	N	Ν	113.311	0.05	1
638	80	ASN	Н	Н	7.671	0.02	1
639	80	ASN	HA	Н	5.285	0.05	1
640	80	ASN	HB2	Н	2.630	0.05	2
641	80	ASN	HB3	Н	3.004	0.05	2
642	80	ASN	С	С	180.234	0.1	1
643	80	ASN	CA	С	53.534	0.1	1
644	80	ASN	CB	С	40.785	0.3	1
645	80	ASN	N	Ν	123.048	0.05	1
646	81	ARG	Н	Н	7.973	0.02	1
647	81	ARG	HA	Н	3.894	0.05	1
648	81	ARG	HG2	Н	1.692	0.05	2
649	81	ARG	C	С	176.915	0.1	1
650	81	ARG	CA	С	59.247	0.1	1
651	81	ARG	CB	С	29.579	0.3	1
652	81	ARG	Ν	Ν	119.533	0.05	1
653	82	SER	Н	Н	8.206	0.02	1
654	82	SER	HA	Н	4.478	0.05	1
655	82	SER	HB2	Н	4.140	0.05	2
656	82	SER	C	С	174.662	0.1	1
657	82	SER	CA	С	57.760	0.1	1
658	82	SER	CB	С	63.185	0.3	1
659	82	SER	Ν	Ν	111.962	0.05	1
660	83	SER	Н	Н	7.433	0.02	1
661	83	SER	HA	Н	4.379	0.05	1
662	83	SER	C	С	177.698	0.1	1
663	83	SER	CA	С	58.363	0.1	1
664	83	SER	CB	С	64.001	0.3	1
665	83	SER	Ν	Ν	116.689	0.05	1
666	84	LYS	Н	Н	9.428	0.02	1
667	84	LYS	HA	Н	4.281	0.05	1
668	84	LYS	HB2	Н	1.683	0.05	2
669	84	LYS	HG2	Н	1.420	0.05	2
670	84	LYS	HG3	Н	0.849	0.05	2
671	84	LYS	С	С	176.661	0.1	1
672	84	LYS	CA	С	58.177	0.1	1
673	84	LYS	CB	С	31.267	0.3	1
674	84	LYS	Ν	Ν	131.639	0.05	1
675	85	PHE	Н	Н	9.161	0.02	1
676	85	PHE	HA	Η	4.606	0.05	1
677	85	PHE	HB2	Н	3.161	0.05	2
678	85	PHE	HB3	Н	2.408	0.05	2
679	85	PHE	C	С	175.821	0.1	1
680	85	PHE	CA	С	56.983	0.1	1
681	85	PHE	CB	С	38.056	0.3	1
682	85	PHE	N	Ν	119.699	0.05	1
683	86	PHE	Н	н	7.691	0.02	1
684	86	PHE	HA	н	4.188	0.05	1
685	86	PHE	HB2	н	3.133	0.05	2
686	86	PHE	HB3	н	3.059	0.05	2
687	86	PHE	C	C	178.256	0.1	1
688	86	PHE	CA	C	63.UL/	0.1	1
689	80	PHE	CB	C	39.131	0.3	1
690	86	PHE	N	N	124.183	0.05	1
691	8/	ASN	н	н	9.777	0.02	1
693	07	NCM	חש המח	п U	4.093	0.05	⊥ 2
691	07	NCM	בםת 1001	п U	2.030	0.05	∠ 2
695	87	VON	HD00 T77	п	8 522 8 522	0.05	≏ 2
696	0 / 97	NCM	пµ22 С	п	0.000	0.05	∠ 1
697	0 / 87	NCM	C7	C	56 967	0.1	⊥ 1
698	87	V GM	CB	c	37 560	0.1	- 1
699	87	AGN	N	N	120 323	0.5	1
700	87	AGN	ND 2	M	115 252	0.05	1
701	88	ASM	H	н	7 489	0.00	1
702	88	ASM	на	н	4 149	0 05	1
703	88	ASN	HB2	н	1,936	0.05	2
					2.200		-

704	88	ASN	HB3	Η	2.759	0.05	2
705	88	ASN	С	С	175.929	0.1	1
706	88	ASN	CA	С	57.602	0.1	1
707	88	ASN	CB	С	38.336	0.3	1
708	88	ASN	N	Ν	119.005	0.05	1
709	89	LEU	Н	Н	7.870	0.02	1
710	89	LEU	HA	н	4.993	0.05	1
711	89	LEII	HB2	н	1 181	0 05	2
712	80	TETT	102	 ц	1 707	0.05	2
712	0.0	1 111	IIDJ		1.757	0.05	2
/13	89	LEU	HDI	н	0.072	0.05	2
/14	89	LEU	HDZ	н	1.025	0.05	2
715	89	TE0	CA	C	55.691	0.1	1
716	89	LEU	CB	С	42.599	0.1	1
717	89	LEU	CD1	С	23.468	0.1	2
718	89	LEU	CD2	С	27.979	0.1	2
719	89	LEU	Ν	Ν	116.308	0.05	1
720	90	SER	С	С	174.488	0.1	1
721	90	SER	CA	С	60.380	0.1	1
722	90	SER	CB	С	61.649	0.3	1
723	91	ALA	Н	Н	7.940	0.02	1
724	91	AT.A	НА	н	4.256	0.05	1
725	91	AT.A	HB	н	1 844	0 05	1
726	01	717	с.	 C	179 209	0 1	1
720	91	ALA		c	1/0.290	0.1	1
727	91	ALA	CA	c	55.870	0.1	1
728	91	ALA	CB	С	18.074	0.3	1
729	91	ALA	Ν	Ν	125.059	0.05	1
730	92	ILE	Н	Η	6.904	0.02	1
731	92	ILE	HA	Η	3.810	0.05	1
732	92	ILE	HB	Η	2.147	0.05	1
733	92	ILE	HG12	Η	1.517	0.05	2
734	92	ILE	HG13	Н	1.164	0.05	2
735	92	ILE	HG2	Н	0.879	0.05	1
736	92	ILE	HD1	Н	0.506	0.05	1
737	92	ILE	С	С	177.902	0.1	1
738	92	TLE	CA	С	62.669	0.1	1
739	92	TLE	CB	c	36 391	03	1
740	92	TLF	CG1	c	26 801	0.1	2
741	0.2	TTP	001	0	17 016	0.1	2
741	92	115	CG2	d	10 700	0.1	1
742	92	115	CDI		10.728	0.1	1
/43	92	TPR	N	IN	113.418	0.05	1
744	93	SER	Н	Н	8.652	0.02	Ţ
745	93	SER	HA	Н	3.838	0.05	1
746	93	SER	HB2	Η	4.107	0.05	2
747	93	SER	HB3	Η	3.553	0.05	2
748	93	SER	С	С	177.569	0.1	1
749	93	SER	CA	С	63.732	0.1	1
750	93	SER	CB	С	62.025	0.3	1
751	93	SER	N	Ν	116.879	0.05	1
752	94	GLU	Н	Н	8.818	0.02	1
753	94	GLU	HA	Н	4.422	0.05	2
754	94	GLU	HB2	Н	2.081	0.05	2
755	94	GLU	HB3	н	2.479	0.05	2
756	94	GLU	HG2	н	2 404	0 05	2
757	94	GLU	C	c	176 329	0 1	1
750	04	OLU OLU	<i>c</i>	2	FC 005	0.1	1
/58	94	GLU	CA	C .	50.995	0.1	1
/59	94	GLU	CB	C	28.097	0.3	1
760	94	GLU	Ν	Ν	118.807	0.05	Ţ
761	95	SER	Н	Η	7.594	0.02	1
762	95	SER	HA	Η	5.167	0.05	1
763	95	SER	HB2	Η	4.374	0.05	2
764	95	SER	HB3	Η	3.981	0.05	2
765	95	SER	С	С	176.192	0.1	1
766	95	SER	CA	С	57.358	0.1	1
767							1
	95	SER	CB	С	67.611	0.3	T
768	95 95	SER SER	CB N	C N	67.611 110.303	0.3 0.05	1
768 769	95 95 96	SER SER ILE	CB N H	C N H	67.611 110.303 7.422	0.3 0.05 0.02	1 1

001	0.0				0 252	0.05	1
771	96	ILE	нв	н	2.353	0.05	T
772	96	ILE	HG12	Η	1.471	0.05	2
773	96	ILE	HG13	Н	1.703	0.05	2
774	96	TLF	HG2	н	1 098	0 05	1
	00		1102		1.050	0.05	1
775	96	ILE	HDI	н	0.861	0.05	T
776	96	ILE	C	С	175.575	0.1	1
777	96	ILE	CA	С	60.151	0.1	1
778	96	TLE	CB	С	38.798	0.3	1
770	0.0		 	~	16 200	0 1	-
119	96	ILE	CG2	C	10.389	0.1	2
780	96	ILE	Ν	Ν	126.717	0.05	1
781	97	GLY	Н	Η	8.903	0.02	1
782	97	GLY	HA2	Н	4.333	0.05	2
702	07	CT V	117.2		4 200	0.05	2
105	91	GLI	паз	п	4.209	0.05	2
784	97	GLY	С	С	177.606	0.1	1
785	97	GLY	CA	С	46.630	0.1	1
786	97	GLY	N	Ν	112.164	0.05	1
797	0.9	סטס	u	U	0 500	0 02	1
707	50	FIID			5.555	0.02	-
788	98	PHE	HA	н	4.397	0.05	T
789	98	PHE	HB2	Η	3.328	0.05	2
790	98	PHE	HB3	Н	3.428	0.05	2
791	9.8	PHE	C	C	176 249	0 1	1
7.71	20			2	£1 €40	0.1	1
792	98	PHE	CA	С	61.648	0.1	T
793	98	PHE	CB	С	36.434	0.3	1
794	98	PHE	N	Ν	126.161	0.05	1
795	99	LEU	н	Н	7.071	0.02	1
706	0.0	TEU	117		4 071	0.05	1
/96	99	LEU	HA	н	4.0/1	0.05	Ŧ
797	99	LEU	HB2	Η	1.398	0.05	2
798	99	LEU	HB3	Η	1.699	0.05	2
799	99	LEU	HD2	Н	0.773	0.05	2
000	0.0	1.011		~	170 074	0.05	1
800	99	LEU	C	C	1/8.8/4	0.1	Ŧ
801	99	LEU	CA	С	56.413	0.1	1
802	99	LEU	CB	С	43.234	0.3	1
803	99	LEU	CD2	С	23.468	0.1	2
004	0.0	TEU	NT NT	NT.	101 440	0.05	1
004	"	120	IN	IN	121.449	0.05	1
805	100	SER	Н	Н	7.885	0.02	1
806	100	SER	HA	Η	4.130	0.05	1
807	100	SER	HB2	Н	4.022	0.05	2
000	100	CPD	1103	U	/ 120	0.05	2
000	100	JER.	1165		1.130	0.05	2
809	100	SER	C	С	174.439	0.1	T
810	100	SER	CA	С	59.486	0.1	1
811	100	SER	CB	С	62.347	0.3	1
812	100	SER	N	N	113 382	0 05	1
010	101	-			0 100	0.00	1
813	101	TRP	Н	н	8.173	0.02	T
814	101	TRP	HA	Η	4.042	0.05	1
815	101	TRP	HB2	Η	3.495	0.05	2
816	101	TRP	HB3	н	3.687	0.05	2
017	101		11121		0 052	0.05	1
01/	101	IRP	пы	п	0.905	0.05	1
818	101	TRP	С	С	176.430	0.1	1
819	101	TRP	CA	С	59.988	0.1	1
820	101	TRP	CB	С	27.775	0.3	1
9.21	101	מסידי	N	N	122 014	0.05	1
021	101	INF	14	14	122.914	0.05	-
822	101	TRP	NEL	N	127.740	0.05	T
823	102	VAL	Н	Η	5.549	0.02	1
824	102	VAL	HA	Н	3.072	0.05	1
825	102	VAT.	HR	н	1 862	0 05	1
025	102		110		1.002	0.05	-
ĕ∠b	102	VAL	HGI	Н	-0.636	0.05	2
827	102	VAL	HG2	Η	0.587	0.05	2
828	102	VAL	C	С	175.063	0.1	1
829	102	VAT.	CA	С	63.524	0.1	1
0.2.0	100			ç	20.000	0.2	1
030	TUZ	VAL	CR	Ċ	30.289	0.3	Ţ
831	102	VAL	CG1	С	19.619	0.1	2
832	102	VAL	CG2	С	16.476	0.1	2
833	102	VAL	N	Ν	110.547	0.05	1
831	102	WAT	н	ц	7 510	0 02	1
0.04	100	V ALL	**-	л 	/.314	0.02	±
835	103	VAL	HA	Н	4.712	0.05	1
836	103	VAL	HB	Η	2.574	0.05	1
837	103	VAL	HG2	Н	0.866	0.05	2

838	103	VAL	С	C	175.871	0.1	1
839	103	VAL	CA	С	60.527	0.1	1
840	103	VAT.	CB	C	31 922	03	1
9/1	102	WAT	002	c	19 970	0.1	2
040	100	VAL	0.62		111 020	0.1	1
842	103	VAL	N	N	111.830	0.05	Ţ
843	104	VAL	Н	H	7.467	0.02	1
844	104	VAL	HA	Η	4.057	0.05	1
845	104	VAL	HB	Н	1.957	0.05	1
846	104	VAL	HG1	Н	0.461	0.05	2
847	104	VAL	HG2	Н	0.758	0.05	2
848	104	VAT.	c	C	175 254	0 1	1
010	104	TAT	C7	0	62 250	0.1	1
019	101	VAL	CA CB	с а	00.200	0.1	1
850	104	VAL	CB	C	32.545	0.3	1
851	104	VAL	CG1	C	20.543	0.1	2
852	104	VAL	CG2	С	21.910	0.1	2
853	104	VAL	Ν	Ν	125.832	0.05	1
854	105	GLU	Н	Н	8.293	0.02	1
855	105	GLU	CA	С	53.206	0.1	1
856	105	GLU	N	N	126.035	0.05	1
857	106	DRO	нъ	н	4 588	0.05	1
057	100	550			0.104	0.05	÷
858	106	PRO	HBZ	н	2.104	0.05	2
859	106	PRO	HB3	Н	2.486	0.05	2
860	106	PRO	С	С	175.702	0.1	1
861	106	PRO	CA	C	64.175	0.1	1
862	106	PRO	CB	C	32.620	0.3	1
863	107	THR	Н	Н	7.267	0.02	1
864	107	THR	HA	Н	5.028	0.05	1
865	107	THR	нв	н	4 514	0.05	1
000	107	TIIIC	1100		1 162	0.05	1
000	107	THR	ng2	п	1.105	0.05	1
867	107	THR	CA	C	58.659	0.1	1
868	107	THR	CB	C	67.858	0.1	1
869	107	THR	CG2	С	21.344	0.1	1
870	107	THR	Ν	Ν	107.264	0.05	1
871	108	PRO	С	С	177.508	0.1	1
872	108	PRO	CA	С	65.925	0.1	1
873	108	PRO	CB	С	31.890	0.3	1
974	100	CLA	u u	U U	0 056	0.02	1
071	100	011			2.004	0.02	-
8/5	109	GLY	HAZ	н	3.884	0.05	2
876	109	GLY	HA3	Н	3.691	0.05	2
877	109	GLY	CA	C	48.547	0.1	1
878	109	GLY	Ν	Ν	109.064	0.05	1
879	110	PRO	С	С	174.425	0.1	1
880	110	PRO	CA	C	64.937	0.1	1
881	111	HIS	Н	Н	7.503	0.02	1
882	111	HIS	С	С	177.050	0.1	1
883	111	HTS	CA	c	60 755	0 1	1
99/	111	ите	CP	c	20 966	0.2	1
001	111	111.0	N	с N	117 007	0.5	1
885	111	HIS	IN	IN	11/.98/	0.05	1
886	112	VAL	Н	Н	7.726	0.02	1
887	112	VAL	HA	Н	3.389	0.05	1
888	112	VAL	HB	Н	2.267	0.05	1
889	112	VAL	HG1	Н	0.936	0.05	2
890	112	VAL	HG2	Н	1.351	0.05	2
891	112	VAL	С	С	177.1	0.1	1
892	112	VAT.	CA	C	68 371	0 1	1
902	112	WAT	CP	c	21 072	0.2	1
095	110	VAL	CB	с а	00 505	0.5	-
894	112	VAL	CGI	C	22.595	0.1	2
895	112	VAL	CG2	C	25.054	0.1	2
896	112	VAL	Ν	Ν	120.181	0.05	1
897	113	ALA	Н	Н	8.038	0.02	1
898	113	ALA	HA	Н	3.998	0.05	1
899	113	ALA	HB	Н	1.470	0.05	1
900	113	AT.A	с	С	180.1	0.1	1
901	112	ΔΤ.Δ	CA	c	55 671	0 1	-
201	110	мце 7 т 7	CR CR	2	17 010	0.1	1
502	113	мLA	сıя	C	1/.010	0.5	1
0.0 -							
903	113	ALA	Ν	Ν	123.629	0.05	1

905	114	GLU	HA	Н	4.081	0.05	1
906	114	GLU	HB2	Η	2.245	0.05	2
907	114	GLU	HB3	Η	2.398	0.05	2
908	114	GLU	С	С	179.421	0.1	1
909	114	GLU	CA	С	59.267	0.1	1
910	114	GLU	CB	С	29.011	0.3	1
911	114	GLU	N	N	122 183	0.05	1
012	115	MET	u u	ц П	7 911	0.00	1
912	115	MDD	п	п	1.011	0.02	1
913	115	MEI	HA	н	4.598	0.05	1
914	115	MET	HB3	Η	2.399	0.05	2
915	115	MET	С	С	178.461	0.1	1
916	115	MET	CA	С	56.863	0.1	1
917	115	MET	CB	С	32.889	0.3	1
918	115	MET	Ν	N	121.498	0.05	1
919	116	ARG	Н	Н	8.967	0.02	1
920	116	ARG	HA	Н	3.893	0.05	1
921	116	ARG	С	С	177.857	0.1	1
922	116	ARC	Cl	c	59 662	0 1	1
022	116	ADC	CD CD	0	20 752	0.1	1
925	110	ARG	UB N		20.755	0.5	1
924	116	ARG	Ν	Ν	122.638	0.05	Ţ
925	117	GLY	H	Η	8.043	0.02	1
926	117	GLY	HA2	Η	4.049	0.05	2
927	117	GLY	С	С	176.981	0.1	1
928	117	GLY	CA	С	47.410	0.1	1
929	117	GLY	N	Ν	108.279	0.05	1
930	118	SER	Н	Н	7.828	0.02	1
931	118	SER	НА	н	4.499	0.05	1
932	118	SEB	HB2	н	4 299	0.05	2
022	110	ODIC	1102	11	4 000	0.05	2
933	110	SER	пьз	п	4.090	0.05	2
934	118	SER	C	C	1/6.9/5	0.1	1
935	118	SER	CA	С	62.226	0.1	1
936	118	SER	CB	С	63.464	0.3	1
937	118	SER	N	Ν	119.707	0.05	1
938	119	ALA	Н	Η	8.059	0.02	1
939	119	ALA	HA	Н	4.677	0.05	2
940	119	ALA	HB	Н	1.847	0.05	1
941	119	ALA	С	С	180.071	0.1	1
942	119	ΔΤ.Δ	CA	C	55 562	0 1	1
0/2	110	71.7	00	c	19 214	0.2	1
044	110	ALA	N	N	102.214	0.5	1
944	119	ALA	IN	IN	123.232	0.05	1
945	120	GLU	н	н	8.740	0.02	1
946	120	GLU	HA	Η	5.453	0.05	1
947	120	GLU	HB2	Η	2.028	0.05	2
948	120	GLU	HG2	Η	2.582	0.05	2
949	120	GLU	HG3	Η	2.226	0.05	2
950	120	GLU	С	С	178.166	0.1	1
951	120	GLU	CA	С	57.530	0.1	1
952	120	GLU	CB	С	29.451	0.3	1
953	120	GLU	CG	C	38 020	0 1	1
954	120	GLU	N	N	119 193	0.05	1
055	101	DUD	11	11	7 400	0.05	1
955	121	PHE	н	н	7.498	0.02	1
956	121	PHE	HA	Н	4.126	0.05	1
957	121	PHE	HB2	Η	3.249	0.05	2
958	121	PHE	HB3	Η	2.936	0.05	2
959	121	PHE	HE1	Η	6.485	0.05	3
960	121	PHE	С	С	177.255	0.1	1
961	121	PHE	CA	С	61.791	0.1	1
962	121	PHE	CB	С	39.356	0.3	1
963	121	PHE	N	N	120,925	0.05	1
961	122	 ΨVD		ч.	7 412	0 0 0	1
067	100	711 TIN	117	11	/.TLD	0.02	⊥ 1
905	100	TIK	на	н	4.188	0.05	1
966	122	'I'YR	нв2	H	3.495	0.05	2
967	122	TYR	HB3	Η	2.948	0.05	2
968	122	TYR	C	С	178.898	0.1	1
969	122	TYR	CA	С	61.970	0.1	1
970	122	TYR	CB	С	39.915	0.3	1
971	122	TVP	N	N	114 936	0 05	1

973         123         THR         HA         H         4.210         0.05           974         123         THR         HB         H         4.732         0.05           975         123         THR         C         C         177.0         0.1           976         123         THR         CA         C         66.916         0.1           977         123         THR         CA         C         66.916         0.1           978         123         THR         N         N         115.420         0.05           981         124         ASN         HA         H         4.644         0.05           981         124         ASN         HB         H         2.955         0.05           983         124         ASN         C         C         178.456         0.1           986         124         ASN         CA         C         56.135         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         N         N         121.920         0.05           991         124	972	123	THR	н	Н	9.730	0.02	1
974         123         THR         HB         H         4.732         0.05           975         123         THR         CC         C         177.902         0.1           976         123         THR         CA         C         66.480         0.1           977         123         THR         CB         C         66.480         0.1           978         123         THR         CB         C         22.595         0.1           980         123         THR         N         N         115.420         0.05           981         124         ASN         HB         H         2.955         0.05           984         124         ASN         HB2         H         7.476         0.05           986         124         ASN         CC         C         178.456         0.1           988         124         ASN         NN         N         121.920         0.05           991         124         ASN         ND         N         121.920         0.05           991         124         ASN         ND         N         121.920         0.05           991	973	123	THR	HA	Η	4.210	0.05	1
975         123         THR         HC2         H         1.470         0.05           976         123         THR         CA         C         177.902         0.1           977         123         THR         CB         C         66.916         0.1           979         123         THR         CB         C         66.480         0.1           979         123         THR         N         N         115.420         0.05           980         124         ASN         HA         H         4.644         0.05           981         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HD21         H         7.476         0.05           986         124         ASN         ND2         N         12.1.801         0.05           987         124         ASN         ND2         N         12.1.801         0.05           991         124         ASN         ND2         N         12.1.801         0.05           992         125         ARG         HB2         H         1.961         0.05           991	974	123	THR	HB	Η	4.732	0.05	1
976         123         THR         C         C         177.902         0.1           977         123         THR         CB         C         66.480         0.1           978         123         THR         N         N         115.420         0.05           980         124         ASN         H         H         9.013         0.022           982         124         ASN         HB2         H         2.711         0.05           983         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HD2         H         7.476         0.05           986         124         ASN         C         C         178.456         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         HB2         H         1.961         0.05           994         1	975	123	THR	HG2	Н	1.470	0.05	1
12.         12.         THR         CA         C         66.916         0.1           977         123         THR         CG         22.595         0.1           980         123         THR         N         N         115.420         0.05           981         124         ASN         H         H         9.013         0.02           982         124         ASN         HB         H         4.644         0.05           984         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HB2         H         2.711         0.05           985         124         ASN         HB2         H         7.476         0.05           986         124         ASN         CB         C         37.401         0.3           989         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         HB2         H         1.161         0.05           995         125	976	123	THR	С	С	177.902	0.1	1
J.Y.         L.B.         THR         CA         C         0.0.1         0.1           978         1.23         THR         CB         C         66.480         0.1           980         1.23         THR         N         N         115.420         0.05           981         124         ASN         HA         H         4.644         0.05           981         124         ASN         HB3         H         2.955         0.05           985         124         ASN         HD21         H         7.161         0.05           986         124         ASN         HD21         H         7.476         0.05           986         124         ASN         C         C         178.456         0.1           988         124         ASN         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.02           991         124         ASN         ND2         N         12.80         0.05           992         125         ARG         HB3         H         2.149         0.05           991         125	977	123	THR	CD	c	66 916	0 1	1
J79       123       THR       CG2       C       22.595       0.1         979       123       THR       N       N       115.420       0.05         981       124       ASN       HA       H       4.644       0.05         981       124       ASN       HB3       H       2.955       0.05         983       124       ASN       HB2       H       2.711       0.05         986       124       ASN       HD21       H       7.476       0.05         986       124       ASN       CC       178.456       0.1         988       124       ASN       CC       178.456       0.1         989       124       ASN       ND2       N       113.801       0.05         991       124       ASN       ND2       N       113.801       0.05         992       125       ARG       HA       4       0.02       0.5         993       125       ARG       HB3       H       2.149       0.05         994       125       ARG       HC       1.537       0.05         997       125       ARG       CA       C<	079	122	ייייי	00	c	66 490	0.1	1
979         123         THR         N         N         115.420         0.05           981         124         ASN         HA         H         9.013         0.02           982         124         ASN         HA         H         4.051         0.05           983         124         ASN         HB3         H         2.955         0.05           984         124         ASN         HB2         H         7.476         0.05           986         124         ASN         HD21         H         7.476         0.05           987         124         ASN         CA         C         56.135         0.1           988         124         ASN         CB         C         37.401         0.3           990         124         ASN         ND2         N         113.801         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         HA         H         0.02         0.05           994         125         ARG         CA         C         59.574         0.1           1001 <td< td=""><td>070</td><td>102</td><td>TIIC</td><td>000</td><td>0</td><td>22 505</td><td>0.1</td><td>1</td></td<>	070	102	TIIC	000	0	22 505	0.1	1
980         123         THR         N         N         115, 420         0.05           981         124         ASN         HA         H         9.013         0.02           982         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HB2         H         2.711         0.05           985         124         ASN         HD21         H         7.476         0.05           986         124         ASN         CC         178.456         0.1           988         124         ASN         CR         C         56.135         0.1           988         124         ASN         CR         C         37.401         0.3           990         124         ASN         ND         N         113.801         0.05           991         124         ASN         ND         113.801         0.05           992         125         ARG         HB2         H         1.961         0.05           994         125         ARG         CC         178.409         0.1           991         125         ARG         CC	979	123	IHR	CG2	0	22.595	0.1	1
981         124         ASN         H         H         9.013         0.02           982         124         ASN         HA         H         4.644         0.05           983         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HD21         H         7.161         0.05           986         124         ASN         C         C         178.456         0.1           988         124         ASN         C         C         56.135         0.1           989         124         ASN         ND2         N         113.801         0.05           991         125         ARG         HA         H         4.020         0.05           992         125         ARG         HB2         H         1.961         0.05           993         125         ARG         HB2         H         1.961         0.05           994         125         ARG         HB2         H         1.753         0.05           994         125         ARG         CA         C         59.574         0.1           1000         12	980	123	THR	N	N	115.420	0.05	Ţ
982         124         ASN         HA         H         4.644         0.05           983         124         ASN         HB3         H         2.955         0.05           985         124         ASN         HD21         H         7.161         0.05           986         124         ASN         CC         C         178.456         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         HA         H         4.020         0.05           993         125         ARG         HB3         H         2.149         0.05           994         125         ARG         HB3         H         2.149         0.05           995         125         ARG         CA         C         59.574         0.1           1001         125         ARG         CA         C         59.574         0.1           1002 <t< td=""><td>981</td><td>124</td><td>ASN</td><td>Н</td><td>Η</td><td>9.013</td><td>0.02</td><td>1</td></t<>	981	124	ASN	Н	Η	9.013	0.02	1
983         124         ASN         HB2         H         2.711         0.05           984         124         ASN         HB3         H         2.955         0.05           986         124         ASN         HD21         H         7.161         0.05           986         124         ASN         CA         C         56.135         0.1           987         124         ASN         CB         C         37.401         0.3           989         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         HA         H         4.020         0.05           992         125         ARG         HB2         H         1.961         0.05           994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HC         1.753         0.05           996         125         ARG         CA         C         59.574         0.1           1001         126         <	982	124	ASN	HA	Η	4.644	0.05	1
984         124         ASN         HB3         H         2.955         0.05           985         124         ASN         HD21         H         7.161         0.05           986         124         ASN         C         C         178.456         0.1           988         124         ASN         C         C         178.456         0.1           988         124         ASN         C         C         37.401         0.3           989         124         ASN         N         N         121.920         0.05           991         124         ASN         ND         N         121.920         0.05           992         125         ARG         HA         H         4.020         0.05           992         125         ARG         HB2         H         1.961         0.05           995         125         ARG         C         C         178.409         0.1           996         125         ARG         C         C         178.409         0.1           1000         125         ARG         N         N         120.64         0.05           1001         12	983	124	ASN	HB2	Η	2.711	0.05	2
985         124         ASN         HD21         H         7.161         0.05           986         124         ASN         HD22         H         7.476         0.05           987         124         ASN         C         C         178.456         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         ND         N         121.920         0.05           991         124         ASN         ND         N         13.801         0.05           992         125         ARG         HA         H         4.020         0.05           993         125         ARG         HB3         H         1.1537         0.05           994         125         ARG         CC         178.409         0.1           996         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         126         ILE         HB         4.282         0.05           1002         126         ILE	984	124	ASN	HB3	Η	2.955	0.05	2
986         124         ASN         HD22         H         7.476         0.05           987         124         ASN         C         C         178.456         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         N         N         121.920         0.05           991         124         ASN         N         N         121.920         0.05           992         125         ARG         H         4         6.904         0.02           993         125         ARG         HB3         H         2.149         0.05           994         125         ARG         HB2         H         1.961         0.05           994         125         ARG         CA         C         59.574         0.1           1001         125         ARG         CB         C         3.03         0.03           1001         126         ILE         HA         H         4.282         0.05           1002         126         ILE         HB         H         2.244         0.05           1003         12	985	124	ASN	HD21	Н	7.161	0.05	2
987         124         ASN         C         C         178.456         0.1           988         124         ASN         CA         C         56.135         0.1           989         124         ASN         CB         C         37.401         0.3           990         124         ASN         N         N         121.920         0.055           991         124         ASN         ND2         N         113.801         0.055           992         125         ARG         HB         H         0.051         0.051           993         125         ARG         HB2         H         1.961         0.055           994         125         ARG         HB2         H         1.753         0.055           995         125         ARG         C         C         178.409         0.1           1001         125         ARG         C         C         178.409         0.1           1001         126         ARG         C         30.3         0.3         0.05           1002         126         ILE         HB         H         2.244         0.05           1003	986	124	ASN	HD22	Η	7.476	0.05	2
988         124         ASN         CA         C         56.135         0.1           989         124         ASN         CB         C         37.401         0.3           990         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           991         125         ARG         H         H         6.904         0.02           993         125         ARG         H2         H         1.961         0.05           995         125         ARG         HB2         H         1.537         0.05           996         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         4.282         0.05           1004         126         ILE         H         H         2.244         0.02           1004         126 </td <td>987</td> <td>124</td> <td>ASN</td> <td>С</td> <td>С</td> <td>178.456</td> <td>0.1</td> <td>1</td>	987	124	ASN	С	С	178.456	0.1	1
989         124         ASN         CB         C         37.401         0.3           990         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           991         125         ARG         H         H         6.904         0.02           993         125         ARG         HB2         H         1.961         0.05           994         125         ARG         HB3         H         2.149         0.05           996         125         ARG         HB3         H         2.149         0.05           997         125         ARG         CC         178.409         0.1           1000         125         ARG         CA         C         59.574         0.1           1000         125         ARG         N         N         120.64         0.05           1001         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HA         1.03         0.5         1005           1005         126	988	124	ASN	CA	С	56.135	0.1	1
305         121         AKN         N         N         121         920         124         ASN         N         N         121.920         0.05           991         124         ASN         ND2         N         113.801         0.05           992         125         ARG         H         H         6.904         0.02           993         125         ARG         HB2         H         1.961         0.05           994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HB3         H         2.149         0.05           997         125         ARG         CC         178.409         0.1           996         125         ARG         CA         C         59.574         0.1           1000         125         ARG         N         120.64         0.05         1002           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HB2	989	124	ASM	CB	c	37 401	0.3	1
991         124         ASN         ND2         N         113.901         0.05           992         125         ARG         H         H         6.904         0.02           993         125         ARG         HA         H         4.020         0.05           994         125         ARG         HB2         H         1.961         0.05           994         125         ARG         HB2         H         1.949         0.05           995         125         ARG         HB2         H         1.537         0.05           996         125         ARG         CC         1.1537         0.05           998         125         ARG         CC         1.1753         0.05           1001         125         ARG         CA         C         59.574         0.1           1001         126         ILE         H         H         7.644         0.02           1002         126         ILE         HA         H         4.282         0.05           1004         126         ILE         CC         178.20         0.1           1005         126         ILE         CC	000	124	ACM	N	N	121 020	0.05	1
991         124         ARN         ND2         N         113.801         0.03           992         125         ARG         HA         H         6.904         0.02           993         125         ARG         HBA         H         4.020         0.05           994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HB3         H         2.149         0.05           996         125         ARG         C         C         178.409         0.1           999         125         ARG         C         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         CB         C         30.3         0.3           1001         126         ILE         H         H         7.644         0.02           1003         126         ILE         HB         H         2.244         0.05           1004         126         ILE         CC         178.20         0.1           1008         126         IL	990	104	AON	MD 0	11	112 001	0.05	1
992         125         ARG         H         H         6.904         0.02           993         125         ARG         HA         H         4.020         0.05           994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HB2         H         1.537         0.05           996         125         ARG         HG2         H         1.537         0.05           997         125         ARG         C         2         178.409         0.1           999         125         ARG         C         59.574         0.1           1000         125         ARG         C         59.574         0.1           1001         126         ARG         N         N         120.64         0.05           1002         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HD         H         0.828         0.05           1004         126         ILE         C         178.20         0.1         1           1005         126         ILE         C	991	124	ASN	ND2	N	113.801	0.05	Ţ
993         125         ARG         HA         H         4.020         0.05           994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HB3         H         2.149         0.05           996         125         ARG         HG2         H         1.537         0.05           997         125         ARG         C         C         178.409         0.1           1000         125         ARG         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HA         H         4.282         0.05           1005         126         ILE         HD         H         0.828         0.05           1005         126         ILE         CA         C         65.083         0.1           1010         126         I	992	125	ARG	H	Η	6.904	0.02	1
994         125         ARG         HB2         H         1.961         0.05           995         125         ARG         HB3         H         2.149         0.05           996         125         ARG         HG2         H         1.537         0.05           997         125         ARG         CA         C         178.409         0.1           998         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HB         H         2.244         0.05           1005         126         ILE         RC         65.083         0.1         1           1006         126         ILE         CA         C         65.083         0.1           1001         126         ILE         CA         C         58.679         0.3           1011         1	993	125	ARG	HA	Η	4.020	0.05	1
995         125         ARG         HB3         H         2.149         0.05           996         125         ARG         HG2         H         1.537         0.05           997         125         ARG         GC         C         178.409         0.1           998         125         ARG         CC         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HB         H         2.244         0.05           1004         126         ILE         CC         178.20         0.1         1           1007         126         ILE         CC         178.20         0.1         1           1007         126         ILE         CG2         19.139         0.1         1           1010         126	994	125	ARG	HB2	Η	1.961	0.05	2
996         125         ARG         HG2         H         1.537         0.05           997         125         ARG         HG3         H         1.753         0.05           998         125         ARG         C         C         178.409         0.1           999         125         ARG         C         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         CB         C         30.3         0.3           1001         125         ARG         CB         C         30.3         0.3           1001         126         ILE         H         H         7.644         0.05           1002         126         ILE         HB         H         2.244         0.05           1005         126         ILE         CC         178.20         0.1         1           1006         126         ILE         CC         178.20         0.1         1           1010         126         ILE         CC         178.20         0.2         1           1011         126 <td>995</td> <td>125</td> <td>ARG</td> <td>HB3</td> <td>Η</td> <td>2.149</td> <td>0.05</td> <td>2</td>	995	125	ARG	HB3	Η	2.149	0.05	2
997         125         ARG         HG3         H         1.753         0.05           998         125         ARG         C         C         178.409         0.1           999         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.05           1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HD         H         0.828         0.05           1006         126         ILE         CC         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1010         126         ILE         CA         C         65.083         0.1           1011         126         ILE         N         12.3198         0.05           1012         127         LEU         <	996	125	ARG	HG2	Н	1.537	0.05	2
998         125         ARG         C         C         178.409         0.1           999         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HD         H         0.828         0.05           1006         126         ILE         C         178.20         0.1           1008         126         ILE         C         65.083         0.1           1008         126         ILE         CA         C         65.083         0.1           1011         126         ILE         CA         C         65.083         0.1           1011         126         ILE         CA         C         58.124         0.05           1012         127         LEU <td< td=""><td>997</td><td>125</td><td>ARG</td><td>HG3</td><td>Н</td><td>1.753</td><td>0.05</td><td>2</td></td<>	997	125	ARG	HG3	Н	1.753	0.05	2
999         125         ARG         CA         C         59.574         0.1           1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HB         H         2.244         0.05           1004         126         ILE         HG2         H         1.093         0.05           1006         126         ILE         CC         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1011         126         ILE         N         123.198         0.05           1012         127         LEU         HA         H         3.777         0.5           1013         127         LEU         HA         H         3.777         0.5           1014         127         LEU         <	998	125	ARG	С	С	178.409	0.1	1
1000         125         ARG         CB         C         30.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HD1         H         0.828         0.05           1007         126         ILE         C         178.20         0.1           1008         126         ILE         C         178.20         0.1           1009         126         ILE         C         178.20         0.1           1010         126         ILE         C         19.139         0.1           1011         126         ILE         N         123.198         0.05           1012         127         LEU         HA         H         3.777         0.05           1014         127         LEU         C         C         178.124	999	125	ARG	CA	C	59 574	0 1	1
1205         ARG         CB         C         35.3         0.3           1001         125         ARG         N         N         120.64         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HD1         H         0.828         0.05           1006         126         ILE         C         C         178.20         0.1           1008         126         ILE         C         C         178.20         0.1           1008         126         ILE         C         C         18.679         0.3           1010         126         ILE         C         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         HA         H         3.777         0.05           1014         127         LE	1000	125	ADC	00	c	20.2	0.2	1
1001         125         AKG         N         N         120.04         0.05           1002         126         ILE         H         H         7.644         0.02           1003         126         ILE         HA         H         4.282         0.05           1005         126         ILE         HB         H         2.244         0.05           1006         126         ILE         HD         H         0.828         0.05           1006         126         ILE         C         C         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1011         126         ILE         CB         C         38.679         0.3           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         8.490         0.02           1013         127         LEU         HA         4.2291         0.05           1014         127         LEU	1000	105	ADG	100		100.04	0.5	1
1002         126         1LE         H         H         7.644         0.02           1003         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HG2         H         1.093         0.05           1006         126         ILE         HC         C         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CC         19.139         0.1         1           1010         126         ILE         CG         19.139         0.1         1           1011         126         ILE         CG         19.139         0.05         1           1011         127         LEU         H         H         8.490         0.02           1013         127         LEU         H         2.291         0.05         1           1014         127         LEU         C         178.717         0.1         1           1014 <t< td=""><td>1001</td><td>125</td><td>ARG</td><td>IN </td><td>IN</td><td>120.04</td><td>0.05</td><td>1</td></t<>	1001	125	ARG	IN 	IN	120.04	0.05	1
1003         126         ILE         HA         H         4.282         0.05           1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HG2         H         1.093         0.05           1006         126         ILE         HD         H         0.828         0.05           1007         126         ILE         C         C         178.20         0.1           1008         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         IEU         H         H         3.777         0.05           1014         127         LEU         HA         H         3.777         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         <	1002	126	TTR	н	Н	7.644	0.02	Ţ
1004         126         ILE         HB         H         2.244         0.05           1005         126         ILE         HG2         H         1.093         0.05           1006         126         ILE         HD1         H         0.828         0.05           1007         126         ILE         CA         C         65.083         0.1           1008         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HB2         H         2.291         0.05           1014         127         LEU         CA         C         58.124         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CA         C         58.124         0.1           1019	1003	126	ILE	HA	Η	4.282	0.05	1
1005         126         ILE         HG2         H         1.093         0.05           1006         126         ILE         HD1         H         0.828         0.05           1007         126         ILE         C         C         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         CA         C         58.124         0.1           1016         127         LEU         N         N         119.405         0.05           1018         127         LEU         N         N         19.405         0.05           1020	1004	126	ILE	HB	Η	2.244	0.05	1
1006         126         ILE         HD1         H         0.828         0.05           1007         126         ILE         C         C         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CB         C         38.679         0.1           1011         126         ILE         CB         C         38.679         0.1           1011         126         ILE         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         CA         C         58.124         0.1           1016         127         LEU         CA         C         58.124         0.1           1019         128         LYS         HA         H         4.010         0.05           1020         128	1005	126	ILE	HG2	Η	1.093	0.05	1
1007         126         ILE         C         C         178.20         0.1           1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         C         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         19.405         0.05           1021         128         LYS         HA         H         4.010         0.05           1021         <	1006	126	ILE	HD1	Η	0.828	0.05	1
1008         126         ILE         CA         C         65.083         0.1           1009         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         CA         C         58.124         0.1           1016         127         LEU         CB         C         41.666         0.3           1017         127         LEU         CB         C         41.666         0.05           1018         127         LEU         N         N         19.405         0.05           1021         128         LYS         HA         H         4.010         0.05           1022	1007	126	ILE	С	С	178.20	0.1	1
1009         126         ILE         CB         C         38.679         0.3           1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         C         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HE2         H         3.013         0.05           1022	1008	126	ILE	CA	С	65.083	0.1	1
1010         126         ILE         CG2         C         19.139         0.1           1011         126         ILE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1014         127         LEU         C         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CA         C         58.124         0.1           1018         127         LEU         N         N         119.405         0.05           1020         128         LYS         HA         H         4.010         0.05           1022	1009	126	TLE	CB	С	38.679	0.3	1
126         116         011         126         116         011         0.05           1011         126         1LE         N         N         123.198         0.05           1012         127         LEU         H         H         8.490         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         C         C         178.717         0.1           1016         127         LEU         C         C         178.717         0.1           1017         127         LEU         C         C         18.124         0.1           1017         127         LEU         C         C         178.717         0.1           1018         127         LEU         C         C         41.666         0.3           1019         128         LYS         H         H         7.12         0.02           1020         128         LYS         HA         H         4.010         0.05           1021	1010	126	TLE	CG2	C	19 139	0 1	2
111         120         120         H         H         121,100         0.02           1012         127         LEU         H         H         8,490         0.02           1013         127         LEU         HA         H         3,777         0.05           1014         127         LEU         HB2         H         2,291         0.05           1015         127         LEU         C         C         178,717         0.1           1016         127         LEU         C         C         58,124         0.1           1017         127         LEU         CB         C         41,666         0.3           1018         127         LEU         N         N         119,405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HS         H         1.944         0.05           1021         128         LYS         RC         177,910         0.1         10.1           1025	1011	126	TLF	N	N	123 198	0.05	1
1112         127         LEU         HA         H         5.450         0.02           1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         CC         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HS         H         1.744         0.05           1022         128         LYS         RC         177.910         0.1         1           1025         128         LYS         CA         C         59.165         0.1           1026	1012	107	TPIT	11	11	0 400	0.00	1
1013         127         LEU         HA         H         3.777         0.05           1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HB2         H         1.944         0.05           1021         128         LYS         HB2         H         1.944         0.05           1021         128         LYS         HB2         H         3.013         0.05           1024         128         LYS         CA         C         19.165         0.1           1026	1012	107	1011	п 	п	0.490	0.02	1
1014         127         LEU         HB2         H         2.291         0.05           1015         127         LEU         C         C         178.717         0.1           1016         127         LEU         C         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         CA         C         59.165         0.1           1025         128         LYS         N         N         119.161         0.05           1027	1013	127	LEU	HA	н	3.///	0.05	1
1015         127         LEU         C         C         178.717         0.1           1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.02           1020         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HE2         H         3.013         0.05           1023         128         LYS         RC         C         177.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CA         C         59.165         0.1           1026         129         GLU         H         H         7.533         0.02           1028	1014	127	LEU	HB2	Н	2.291	0.05	2
1016         127         LEU         CA         C         58.124         0.1           1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HE2         H         3.013         0.05           1023         128         LYS         RC         5.165         0.1           1024         128         LYS         C         C         177.910         0.1           1026         128         LYS         C         C         3.02         0.05         10.3           1027         128         LYS         N         N         119.161         0.05         10.28	1015	127	LEU	С	С	178.717	0.1	1
1017         127         LEU         CB         C         41.666         0.3           1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.022           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HB2         H         1.539         0.05           1023         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         C         C         177.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CA         C         59.165         0.1           1028         LYS         N         N         119.161         0.055           1028         L29         GLU         H         7.533         0.02           1029         GLU         HA	1016	127	LEU	CA	С	58.124	0.1	1
1018         127         LEU         N         N         119.405         0.05           1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HB2         H         1.539         0.05           1023         128         LYS         CC         C         17.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031	1017	127	LEU	CB	С	41.666	0.3	1
1019         128         LYS         H         H         7.712         0.02           1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HE2         H         3.013         0.05           1023         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         C         C         177.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         N         N         119.161         0.05           1026         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         HB3         H         1.773         0.05           1033	1018	127	LEU	N	Ν	119.405	0.05	1
1020         128         LYS         HA         H         4.010         0.05           1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HG2         H         1.539         0.05           1023         128         LYS         HG2         H         1.539         0.05           1024         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         C         C         17.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CA         C         59.165         0.1           1026         128         LYS         N         N         119.161         0.05           1027         128         LYS         N         N         119.161         0.05           1030         129         GLU         HA         H         3.892         0.05           1031         129         GLU         HB3         H         1.773         0.05           1033	1019	128	LYS	Н	Н	7.712	0.02	1
1021         128         LYS         HB2         H         1.944         0.05           1022         128         LYS         HG2         H         1.539         0.05           1023         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         C         C         177.910         0.1           1025         128         LYS         C         C         59.165         0.1           1025         128         LYS         C         C         59.165         0.1           1026         128         LYS         C         C         3.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         L29         GLU         H         H         7.533         0.02           1029         I29         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         CA         C         58.673         0.1           1033         <	1020	128	LYS	HA	Н	4.010	0.05	1
1022         128         LYS         HG2         H         1.539         0.05           1023         128         LYS         HE2         H         3.013         0.05           1024         128         LYS         C         C         177.910         0.1           1025         128         LYS         C         C         59.165         0.1           1026         128         LYS         CB         C         32.223         0.3           1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.055           1028         L29         GLU         H         H         7.533         0.02           1029         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         C         C         177.864         0.1           1033         129         GLU         CB         C         30.32         0.3           1034         129	1021	128	LYS	HB2	н	1.944	0.05	2
1202         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         120         121         120         121         121         122         121         121         121         122         121         121         122         122         122         122         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121         121 <td>1022</td> <td>128</td> <td>LVS</td> <td>HG2</td> <td>н</td> <td>1 5 3 9</td> <td>0.05</td> <td>2</td>	1022	128	LVS	HG2	н	1 5 3 9	0.05	2
122         123         123         123         123         123         133         123         11         5.013         0.03           1024         128         LYS         C         C         177.910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         129         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         CA         C         58.673         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         N         N         118.213         0.05           1035         129         GLU         N         N         <	1022	120	TVC	1102	и п	2 012	0.05	2
1024         128         LYS         C         C         177,910         0.1           1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         129         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CA         C         58.673         0.3           1035         129         GLU         N         N         118.213         0.05           1035	1025	100	115	пь2 а	п	3.013	0.05	4
1025         128         LYS         CA         C         59.165         0.1           1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         129         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB3         H         1.773         0.05           1031         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1036	1024	128	LIS	C	C -	1//.910	0.1	1
1026         128         LYS         CB         C         32.223         0.3           1027         128         LYS         N         N         119.161         0.05           1028         LYS         N         N         119.161         0.05           1028         L29         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HA         H         3.892         0.05           1031         129         GLU         HB2         H         1.515         0.05           1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.322         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130	1025	128	LYS	CA	С	59.165	0.1	Ţ
1027         128         LYS         N         N         119.161         0.05           1028         129         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HA         H         3.892         0.05           1031         129         GLU         HB2         H         1.515         0.05           1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         CA         C         58.673         0.1           1033         129         GLU         CB         C         30.322         0.3           1034         129         GLU         CB         C         30.322         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05	1026	128	LYS	CB	С	32.223	0.3	1
1028         129         GLU         H         H         7.533         0.02           1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HA         H         3.892         0.05           1031         129         GLU         HB2         H         1.515         0.05           1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CA         C         30.32         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05	1027	128	LYS	Ν	Ν	119.161	0.05	1
1029         129         GLU         HA         H         3.892         0.05           1030         129         GLU         HB2         H         1.515         0.05           1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05	1028	129	GLU	Н	Η	7.533	0.02	1
1030         129         GLU         HB2         H         1.515         0.05           1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1035         129         GLU         N         N         18.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HB         2.847         0.05	1029	129	GLU	HA	Н	3.892	0.05	1
1031         129         GLU         HB3         H         1.773         0.05           1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.322         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HE2         H         2.847         0.05	1030	129	GLU	HB2	Н	1.515	0.05	2
1032         129         GLU         C         C         177.864         0.1           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HE2         H         2.847         0.05	1031	129	GLU	HB3	Н	1.773	0.05	2
12.5         GLU         CA         C         17.101         0.11           1033         129         GLU         CA         C         58.673         0.1           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HB2         H         2.847         0.05	1032	129	GLII	c	c	177.864	0 1	1
125         GLU         CH         C         55.57.5         0.11           1034         129         GLU         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HB2         H         2.847         0.05	1033	129	GLU	CA	c	58 673	0 1	1
103-1         129         GL0         CB         C         30.332         0.3           1035         129         GLU         N         N         118.213         0.05         1035           1036         130         PHE         H         H         8.368         0.02         1037           1038         130         PHE         HA         H         4.894         0.05         1038	1024	100	0110	CR CR	c	20.0/2	0.1	1
1035         129         GLU         N         N         118.213         0.05           1036         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HB2         H         2.847         0.05	1005	100	GTO GTO	CB	C.	JU. 332	0.3	1
LU36         130         PHE         H         H         8.368         0.02           1037         130         PHE         HA         H         4.894         0.05           1038         130         PHE         HB2         H         2.847         0.05	1035	129	GLU	IN	N	118.213	0.05	1
1037         130         PHE         HA         H         4.894         0.05         1038           1038         130         PHE         HB2         H         2.847         0.05         1000	1036	130	PHE	Н	Η	8.368	0.02	1
1038 130 PHE HB2 H 2.847 0.05	1037	130	PHE	HA	Η	4.894	0.05	1
	1038	130	PHE	HB2	Η	2.847	0.05	2

1040	130	PHE	C	С	176.985	0.1	1
1041	130	PHE	CA	С	59.674	0.1	1
1040	120	DUD	dD.	-	40 645	0.2	1
1042	130	PHE	CB	C	40.045	0.3	T
1043	130	PHE	Ν	Ν	112.505	0.05	1
1044	131	LYS	Н	Η	8.674	0.02	1
1045	131	LYS	HA	Н	4.111	0.05	1
1046	131	LYS	HB2	Н	1.548	0.05	2
1047	121	TVC	102	U	2 021	0.05	2
1047	1.51	110	1165		2.051	0.05	4
1048	131	LYS	C	С	177.421	0.1	Ţ
1049	131	LYS	CA	С	59.684	0.1	1
1050	131	LYS	CB	С	31.406	0.3	1
1051	131	LYS	N	Ν	126.084	0.05	1
1052	132	GLY	н	Н	8.939	0.02	1
1052	122	CIV	u 7 0	 U	1 279	0.05	2
1055	132	611	1142		1.275	0.05	4
1054	132	GLY	HA3	Н	3.837	0.05	2
1055	132	GLY	C	С	174.229	0.1	1
1056	132	GLY	CA	С	45.743	0.1	1
1057	132	GLY	N	Ν	116.744	0.05	1
1058	133	VAT.	н	Н	8.179	0.02	1
1050	1 2 2	177.1	117		4 277	0.05	1
1059	133	VAL	HA	н	4.3//	0.05	1
1060	133	VAL	HB	Н	2.122	0.05	1
1061	133	VAL	HG1	Η	1.000	0.05	2
1062	133	VAL	HG2	Η	1.189	0.05	2
1063	133	VAL	С	С	175.801	0.1	1
1064	133	VAT.	CA	С	63.638	0.1	1
1005	100	1731	dD.	9	25.000	0.2	1
1005	133	VAL	CB	C	35.220	0.3	1
1066	133	VAL	Ν	Ν	119.830	0.05	1
1067	134	ASN	Н	Η	8.543	0.02	1
1068	134	ASN	HA	Η	5.065	0.05	1
1069	134	ASN	HB3	Н	2.932	0.05	2
1070	134	ASM	C	C	174 745	0 1	1
1071	124	1.011	<i>a</i>	9	E2 457	0.1	1
10/1	134	ASN	CA	C	52.457	0.1	1
1072	134	ASN	CB	С	40.388	0.3	1
1073	134	ASN	N	Ν	118.614	0.05	1
1074	135	GLN	Н	Η	9.018	0.02	1
1075	135	GLN	HA	Н	3.930	0.05	1
1076	135	GLN	HB2	н	2 291	0 05	2
1077	125	CIN	110.2		2.271	0.05	2
1077	135	GLIN	пьз	п	2.747	0.05	2
10.18	135	GLN	C	С	176.762	0.1	Ţ
1079	135	GLN	CA	С	57.330	0.1	1
1080	135	GLN	CB	С	28.463	0.3	1
1081	135	GLN	N	Ν	127.879	0.05	1
1082	136	ASP	н	Н	7.984	0.02	1
1092	126	ACD	uл	U	1 292	0.05	1
1005	100	ADI			1.505	0.05	-
1084	130	ASP	HBZ	н	2.425	0.05	2
1085	136	ASP	HB3	Н	2.945	0.05	2
1086	136	ASP	C	С	178.318	0.1	1
1087	136	ASP	CA	С	57.848	0.1	1
1088	136	ASP	CB	С	39.593	0.3	1
1089	136	ASP	N	N	119 727	0 05	1
1000	127	CT N			7 201	0.00	1
1090	137	GLN	н	н	7.201	0.02	1
1091	137	GLN	HA	Н	4.367	0.05	1
1092	137	GLN	HB2	Η	1.844	0.05	2
1093	137	GLN	HB3	Η	1.674	0.05	2
1094	137	GLN	HE21	Н	6.073	0.05	2
1095	137	GLN	С	С	177.606	0.1	1
1096	127	CIN	C7	c	59 004	0 1	1
1000	107		CA CB	с с	JJ.UU4	0.1	1
T03.1	137	GLN	СВ	C	28.088	0.3	T
1098	137	GLN	Ν	Ν	117.279	0.05	1
1099	137	GLN	NE2	Ν	106.538	0.05	1
1100	138	VAL	Н	Н	6.907	0.02	1
1101	138	VAT.	HA	Н	3,565	0,05	1
1102	139	WAT	нв	ч	2 201	0.05	1
1102	1 2 0	v #11	110	11	2.JUI	0.05	± 2
TT03	138	VAL	HGI	Н	T.090	0.05	2
1104	138	VAL	HG2	Η	1.163	0.05	2

1039 130 PHE HB3 H 3.621 0.05 2

			~ -	-	e e e		
1106	138	VAL	CA	C	66.636	0.1	1
1107	138	VAL	CB	С	31.481	0.3	1
1108	138	VAL	Ν	Ν	119.102	0.05	1
1109	139	ASP	Н	Н	8.888	0.02	1
1110	139	ASP	HA	Н	4.490	0.05	1
1111	139	ASP	HB2	Н	2.755	0.05	2
1112	139	ASP	HB3	Н	2.916	0.05	2
1113	139	ASP	C	C	177 704	0 1	1
1114	120	ACD	CA	c	57 221	0.1	1
1117	100	NOF	CA CR	C	40.245	0.1	1
1115	139	ASP	CB	C	40.345	0.3	1
1116	139	ASP	N	N	122.560	0.05	T
1117	140	TRP	Н	Н	8.574	0.02	1
1118	140	TRP	HA	Н	4.093	0.05	1
1119	140	TRP	HB2	Н	3.906	0.05	2
1120	140	TRP	HB3	Н	3.417	0.05	2
1121	140	TRP	HE1	Η	9.107	0.05	1
1122	140	TRP	С	С	177.147	0.1	1
1123	140	TRP	CA	С	63.988	0.1	1
1124	140	TRP	CB	С	29.344	0.3	1
1125	140	TRP	Ν	Ν	125.972	0.05	1
1126	140	TRP	NE1	Ν	132.523	0.05	1
1127	141	VAT.	н	н	8.220	0.02	1
1128	141	VAT.	нъ	н	3 571	0.05	1
1129	141	VAL.	HR	н	2 673	0.05	1
1120	141	VAL	110		1 101	0.05	2
1121	141	VAL	ngi		1.191	0.05	2
1131	141	VAL	HG2	н	1.034	0.05	2
1132	141	VAL	С	C	177.209	0.1	1
1133	141	VAL	CA	С	67.780	0.1	1
1134	141	VAL	CB	C	32.072	0.3	1
1135	141	VAL	CG1	С	22.595	0.1	2
1136	141	VAL	CG2	C	24.293	0.1	2
1137	141	VAL	Ν	Ν	117.702	0.05	1
1138	142	SER	Н	Н	8.313	0.02	1
1139	142	SER	HA	Н	4.098	0.05	1
1140	142	SER	HB3	Н	4.001	0.05	2
1141	142	SER	С	С	177.554	0.1	1
1142	142	SER	CA	С	61.740	0.1	1
1143	142	SER	CB	С	63.421	0.3	1
1144	142	SER	N	N	113 762	0 05	1
1145	143	ASM	ц	н	8 157	0 02	1
1146	1/2	ACM	шл		4 629	0.05	1
1147	142	ACM	110.0		1.020	0.05	2
1140	140	AON	102		2.752	0.05	2
1148	143	ASN	нвз	н	3.145	0.05	2
1149	143	ASN	C	С	176.361	0.1	1
1150	143	ASN	CA	C	56.738	0.1	1
1151	143	ASN	CB	С	39.808	0.3	1
1152	143	ASN	Ν	Ν	118.388	0.05	1
1153	144	TYR	Н	Н	7.287	0.02	1
1154	144	TYR	HA	Н	3.413	0.05	1
1155	144	TYR	HB2	Н	2.202	0.05	2
1156	144	TYR	HB3	Н	2.101	0.05	2
1157	144	TYR	HE1	Н	6.132	0.05	3
1158	144	TYR	С	С	176.792	0.1	1
1159	144	TYR	CA	С	61.613	0.1	1
1160	144	TYR	CB	С	38.024	0.3	1
1161	144	TYR	N	N	119.866	0.05	1
1162	145	VAT.	н	н	8 417	0 02	1
1163	145	VAT.	на	н	3 0.84	0 05	-
1164	145	WAT	нр	 U	2 02/	0.05	1
1107	1 4 5	1777	1101	.1	2.034	0.05	± 0
1100	145	VAL	ng1	н	1.000	0.05	4
1100	145	VAL	нG2	H	1.092	0.05	4
1107	145	VAL	C a	C -	1/1.862	0.1	1
1168	145	VAL	CA	C	67.454	0.1	1
1169	145	VAL	СВ	C	31.234	0.3	1
1170	145	VAL	Ν	Ν	117.103	0.05	1
1171	146	ASN	Н	Н	8.357	0.02	1
	116	7 C'NT	Uλ	TT	1 161	0 0 5	1

1173	146	ASN	HB2	Η	2.850	0.05	2
1174	146	ASN	HB3	Н	2.251	0.05	2
1175	146	ASN	HD21	Н	7.692	0.05	2
1176	146	ASN	С	С	177.290	0.1	1
1177	146	ASN	CA	С	55.689	0.1	1
1178	146	ASN	CB	С	37.122	0.3	1
1179	146	ASN	N	N	118.276	0.05	1
1180	146	ASN	ND2	N	112.775	0.05	1
1181	147	PHE	Н	Н	7.429	0.02	1
1182	147	PHE	на	н	3 485	0.05	1
1183	147	PHE	HB2	н	2 779	0.05	2
1184	147	PHE	HB3	н	2 889	0.05	2
1185	147	PHE	С	С	175.795	0.1	1
1186	147	PHE	CA	c	61.557	0.1	1
1187	147	PHE	CB	C	37.423	0.3	1
1188	147	PHE	N	N	121.987	0.05	1
1189	148	LEU	Н	Н	7.235	0.02	1
1190	148	LEU	HA	Н	3.201	0.05	1
1191	148	LEU	HB2	Н	0.761	0.05	2
1192	148	LEU	HB3	Н	1.516	0.05	2
1193	148	LEU	HG	Н	0.931	0.05	1
1194	148	LEU	HD1	Н	-0.266	0.05	2
1195	148	LEU	HD2	Н	0.295	0.05	2
1196	148	LEU	С	С	177.3	0.1	1
1197	148	LEU	CA	С	57.542	0.1	1
1198	148	LEU	CB	С	41.784	0.3	1
1199	148	LEU	CD1	С	20.827	0.1	2
1200	148	LEU	CD2	С	25.054	0.1	2
1201	148	LEU	N	N	118.175	0.05	1
1202	149	LYS	Н	Н	8.308	0.02	1
1203	149	LYS	HA	Н	4.425	0.05	1
1204	149	LYS	С	С	178.880	0.1	1
1205	149	LYS	CA	С	60.441	0.1	1
1206	149	LYS	CB	С	32.438	0.3	1
1207	149	LYS	N	Ν	122.049	0.05	1
1208	150	ASP	Н	Н	8.286	0.02	1
1209	150	ASP	HA	Η	4.556	0.05	1
1210	150	ASP	HB2	Н	2.624	0.05	2
1211	150	ASP	HB3	Н	1.989	0.05	2
1212	150	ASP	C	С	178.835	0.1	1
1213	150	ASP	CA	С	56.584	0.1	1
1214	150	ASP	CB	С	39.249	0.3	1
1215	150	ASP	Ν	Ν	122.986	0.05	1
1216	151	LEU	Н	Η	8.852	0.02	1
1217	151	LEU	HA	Η	3.938	0.05	1
1218	151	LEU	HG	Η	1.523	0.05	1
1219	151	LEU	HD1	Η	0.623	0.05	2
1220	151	LEU	HD2	Η	0.977	0.05	2
1221	151	LEU	С	С	177.6	0.1	1
1222	151	LEU	CA	С	57.441	0.1	1
1223	151	LEU	CB	С	40.205	0.3	1
1224	151	LEU	CD1	С	25.753	0.1	2
1225	151	LEU	Ν	Ν	126.639	0.05	1
1226	152	GLU	Н	Η	7.51	0.02	1
1227	152	GLU	HA	Н	3.610	0.05	1
1228	152	GLU	HB2	Н	1.902	0.05	2
1229	152	GLU	HB3	H	2.105	0.05	2
1230	152	GLU	HG2	H	2.309	0.05	2
1000	152	GTO GT	C ar	C a	1/1.425	0.1	1
1232	152	GLU	CA	C	60.348	0.1	1
1004	152	GT 11	CB	U N	29.44U	0.3	1
1234 1225	152	ULU T V C	N U	IN LT	121.119	0.05	⊥ 1
1006	150	110	п 117	ri U	2 000	0.02	⊥ 1
1227	153	T.AG	HB)	n u	1 656	0.05	⊥ 2
1238	152	TAG TTO	HB3	н	1 988	0.05	2
1239	153	LYS	HG2	н	1.429	0 05	2
						5.05	-

1240	153	LYS	HD2	Η	1.669	0.05	2
1241	153	LYS	С	С	177.939	0.1	1
1242	153	LVS	CA	C	60 212	0 1	1
1040	150	1.10	dD.	2	20.470	0.2	1
1243	153	LIS	CB	C	32.470	0.3	T
1244	153	LYS	N	Ν	119.686	0.05	1
1245	154	TYR	Н	Η	8.322	0.02	1
1246	154	TYR	HA	Н	4.420	0.05	1
1247	154	TYR	HB3	Н	3.432	0.05	2
1248	154	TVP	C	C	176 936	0 1	1
1040	151			~	£1.071	0.1	1
1249	154	TYR	CA	C	61.2/1	0.1	T
1250	154	TYR	CB	С	38.357	0.3	1
1251	154	TYR	Ν	Ν	124.041	0.05	1
1252	155	ILE	Н	Η	8.475	0.02	1
1253	155	ILE	HA	Н	2.984	0.05	1
1254	155	ILE	HB	Н	1.561	0.05	1
1255	155	TLE	HG12	н	-0 804	0 05	2
1056	155	TTP	1012		1 252	0.05	2
1250	155	1112	HG13	п	1.200	0.05	4
1257	155	TTR	HG2	н	0.5//	0.05	T
1258	155	ILE	HD1	Η	-0.108	0.05	1
1259	155	ILE	С	С	177.556	0.1	1
1260	155	ILE	CA	С	65.533	0.1	1
1261	155	ILE	CB	С	38.615	0.3	1
1262	155	TLE	CG1	С	28,933	0.1	2
1262	155	TT P	002	c	17 946	0 1	2
1000	155	105	CG2	c 7	16 868	0.1	1
1264	155	TTR	CDI	C	16./6/	0.1	1
1265	155	ILE	Ν	Ν	123.426	0.05	1
1266	156	LYS	Н	Η	7.979	0.02	1
1267	156	LYS	HA	Η	3.843	0.05	1
1268	156	LYS	HB2	Н	1.920	0.05	2
1269	156	LYS	HG2	Н	1.471	0.05	2
1270	156	LYS	HD2	н	1.662	0.05	2
1071	156	TVC	0		177 064	0.05	1
12/1	150	615	C	C	1//.904	0.1	1
1272	156	LYS	CA	С	60.050	0.1	Ţ
1273	156	LYS	CB	С	31.782	0.3	1
1274	156	LYS	Ν	Ν	118.659	0.05	1
1275	157	GLN	Н	Η	7.666	0.02	1
1276	157	GLN	HA	Н	3.971	0.05	1
1277	157	GLN	С	С	176.987	0.1	1
1278	157	GLN	CA	C	58 162	0 1	1
1270	157	CIN	CP	c	28 9/6	0.2	1
1200	157	GLIN	NT NT	2	110 045	0.5	1
1280	157	GLIN	IN	IN	119.245	0.05	1
1281	158	TYR	Н	Н	7.940	0.02	1
1282	158	TYR	HA	Η	4.233	0.05	1
1283	158	TYR	HB2	Η	2.318	0.05	2
1284	158	TYR	HB3	Н	1.716	0.05	2
1285	158	TYR	С	С	175.640	0.1	1
1286	158	TYR	CA	С	60.130	0.1	1
1287	158	TYR	CB	C	39 990	03	1
1000	150		N		115 124	0.0	1
1200	150	TIR	11	11	0.524	0.05	1
1289	159	HIS	н	н	8.534	0.02	T
1290	159	HIS	HA	Н	4.985	0.05	1
1291	159	HIS	HB2	Η	3.507	0.05	2
1292	159	HIS	HB3	Η	2.570	0.05	2
1293	159	HIS	С	С	176.615	0.1	1
1294	159	HIS	CA	С	54.178	0.1	1
1295	159	HIS	CB	С	32.943	0.3	1
1206	150	ите	N	N	121 /59	0.05	1
1207	100	mm	11	11	7 204	0.05	1
1000	100	THK	н	н	1.284	0.02	1
T588	160	THR	HА	Η	3.694	0.05	1
1299	160	THR	HB	Η	4.036	0.05	1
1300	160	THR	HG2	Н	1.446	0.05	1
1301	160	THR	С	С	176.155	0.1	1
1302	160	THR	CA	С	68.492	0.1	1
1303	160	THR	CB	С	70.114	0.3	1
1304	160	 9НТ	N	N	113 903	0 05	1
1205	161			17	0 1/1	0.05	1
1305	101	THK	н	н	0.101	0.02	1
1306	161	THR	HA	Η	5.278	0.05	1

1005	1.61				4 060	0.05	1
1307	101	THR	нв	н	4.803	0.05	Ţ
1308	161	THR	HG2	Η	1.330	0.05	1
1309	161	THR	C	С	174.601	0.1	1
1310	161	THR	CA	С	60.122	0.1	1
1211	161	TTTT	dD.	0	60 504	0.2	1
1311	101	Ink	СБ	C	00.524	0.5	1
1312	161	THR	CG2	C	21.904	0.1	1
1313	161	THR	Ν	Ν	107.226	0.05	1
1314	162	GLY	Н	Н	7.674	0.02	1
1215	162	CT V	<b>U</b> 7 2	п	4 702	0.05	2
1313	102	GLI	ПАZ	п	4.705	0.05	2
1316	162	GLY	HA3	Н	3.945	0.05	2
1317	162	GLY	С	С	173.474	0.1	1
1318	162	GLY	CA	С	43.994	0.1	1
1210	162	CT V	N	N	111 600	0.05	1
1319	102	GLI	IN	IN	111.099	0.05	1
1320	163	LEU	Н	Н	8.894	0.02	1
1321	163	LEU	HA	Η	4.245	0.05	1
1322	163	LEU	HB2	Н	1.898	0.05	2
1222	162	TRIT	110.2		1 117	0.05	2
1323	105	LEU	пьз	п	1.11/	0.05	2
1324	163	LEU	HG	Н	0.671	0.05	1
1325	163	LEU	HD1	Η	0.347	0.05	2
1326	163	LEU	HD2	Н	0.322	0.05	2
1227	162	ד דידו ד	0	0	176 167	0 1	1
1327	105	LEU	C	C	1/0.40/	0.1	1
1328	163	LEU	CA	С	56.194	0.1	1
1329	163	LEU	CB	С	42.354	0.3	1
1330	163	LEU	CD1	С	24.520	0.3	1
1221	162	ा छा।	N	N	124 062	0.05	1
1331	105	LEU	IN	IN	124.002	0.05	1
1332	164	THR	Н	Н	10.375	0.02	1
1333	164	THR	HA	Н	4.164	0.05	1
1334	164	THR	HB	н	4.298	0.05	1
1005	1 6 4	mun			1 400	0.05	1
1335	104	IHR	HG2	н	1.400	0.05	T
1336	164	THR	C	С	174.340	0.1	1
1337	164	THR	CA	С	64.671	0.1	1
1338	164	THR	CB	С	69.212	0.3	1
1220	164	TTTT	N	NT N	100 200	0.05	1
1222	104	Ink	IN	IN	129.322	0.05	1
1340	165	TRP	Н	Н	8.158	0.02	1
1341	165	TRP	HA	Η	5.125	0.05	1
1342	165	TRP	HB2	Н	3.719	0.05	2
1343	165	ססיד	нв3	н	2 938	0 05	2
1345	105	INF	111111		2.550	0.05	2
1344	165	TRP	HE1	Н	10.360	0.05	1
1345	165	TRP	C	С	175.853	0.1	1
1346	165	TRP	CA	С	56.780	0.1	1
1347	165	ססיד	CB	C	29 677	03	1
1517	105		CD		20.077	0.5	-
1348	165	TRP	N	Ν	130.840	0.05	T
1349	165	TRP	NE1	Ν	130.786	0.05	1
1350	166	ASN	Н	Н	8.777	0.02	1
1351	166	ASN	нъ	н	5 245	0 05	1
1051	100	LON			0.074	0.05	÷
1352	100	ASN	HBZ	н	2.8/4	0.05	2
1353	166	ASN	HB3	Н	2.710	0.05	2
1354	166	ASN	CA	С	49.653	0.1	1
1355	166	ASN	CB	С	39.403	0.1	1
1000	165	A C'NT		NT	101 000	0.05	1
1320	100	NGA	TA	TN	121.033	0.05	-
1357	167	PRO	HA	Н	5.242	0.05	1
1358	167	PRO	HB2	Η	2.357	0.05	2
1359	167	PRO	HB3	Н	2.570	0.05	2
1360	167		uC3	п	2 109	0.05	2
1300	107	PRO	HG3	п	2.190	0.05	2
1361	167	PRO	C	C	177.480	0.1	1
1362	167	PRO	CA	C	64.399	0.1	1
1363	167	PRO	CB	С	32.298	0.3	1
1364	168	LVS	н	н	7,716	0 02	1
1001	100	110				0.02	1
1365	тоя	LIS	HА	н	4.555	0.05	T
1366	168	LYS	HB2	Η	2.149	0.05	2
1367	168	LYS	HB3	Н	1.753	0.05	2
1369	168	L'Ad	HG2	н	1 450	0 05	2
1000	100	110			176 000	0.00	1
1369	төя	цХS	C	C	1/0.938	0.1	T
1370	168	LYS	CA	С	55.176	0.1	1
1371	168	LYS	CB	С	31.847	0.3	1
1272	168	T.VQ	N	N	117 196	0 05	1
1012	T 0 0		T.4	±N.		0.00	+
1000	1.00				7	0 00	1

1374	169	GLY	HA2	H	3.573	0.05	2
1375	169	GLY	HA3	Н	4.253	0.05	2
1376	169	GLY	С	С	173.879	0.1	1
1377	169	GLY	CA	C	44.400	0.1	1
1378	169	GLY	Ν	Ν	109.825	0.05	1
1379	170	GLY	Н	Н	7.984	0.02	1
1380	170	GLY	HA2	н	3.887	0.05	2
1381	170	GLY	HA 3	н	4.514	0.05	2
1382	170	GLY	C	C	173 963	0 1	1
1292	170	CLA	CA	c	44 214	0.1	1
1204	170	GLI	N	N	106 006	0.1	1
1205	171	3 GD I	11	11	100.090	0.05	1
1385	171	ASP	н	н	8.343	0.02	1
1386	1/1	ASP	HA	н	4.806	0.05	1
1387	171	ASP	HB2	н	2.739	0.05	2
1388	171	ASP	HB3	Н	2.569	0.05	2
1389	171	ASP	C	C	177.287	0.1	1
1390	171	ASP	CA	C	54.040	0.1	1
1391	171	ASP	CB	С	41.902	0.3	1
1392	171	ASP	Ν	Ν	120.195	0.05	1
1393	172	ALA	Н	Η	9.461	0.02	1
1394	172	ALA	HA	Н	4.372	0.05	1
1395	172	ALA	HB	Н	1.468	0.05	1
1396	172	ALA	С	C	177.346	0.1	1
1397	172	ALA	CA	C	53.495	0.1	1
1398	172	ALA	CB	С	18.869	0.3	1
1399	172	AT.A	N	N	130.180	0.05	1
1400	173	LVS	н	н	8 273	0 02	1
1401	173	LVS	нл	н	4 324	0.02	1
1402	172	TVC	110.0		1.321	0.05	2
1402	172	TAC	1102	п.	1 000	0.05	2
1403	172	112	100	п.	1.922	0.05	2
1404	1/3	LIS	HG2	н	0.936	0.05	2
1405	1/3	LYS	HG 3	н	1.164	0.05	2
1406	173	LYS	C	C	180.379	0.1	1
1407	173	LYS	CA	С	56.451	0.1	1
1408	173	LYS	CB	C	33.157	0.3	1
1409	173	LYS	Ν	Ν	118.737	0.05	1
1410	174	SER	Н	Н	8.173	0.02	1
1411	174	SER	HA	Η	4.469	0.05	1
1412	174	SER	HB2	Η	4.328	0.05	2
1413	174	SER	HB3	Η	3.952	0.05	2
1414	174	SER	С	C	174.517	0.1	1
1415	174	SER	CA	С	58.338	0.1	1
1416	174	SER	CB	С	63.776	0.3	1
1417	174	SER	N	Ν	117.133	0.05	1
1418	175	ALA	н	Н	8.072	0.02	1
1419	175	ALA	HA	Н	4.451	0.05	1
1420	175	ALA	HB	н	1.485	0.05	1
1421	175	AT.A	С	С	176.862	0.1	1
1422	175	ΔΤ.Δ	CA	c	52 623	0 1	1
1423	175	AT.7	CB	c	19 385	0.1	1
1404	175	ALA AT A	UD N	L N	107 240	0.5	1
1405	170	ALA	11	IN	141.342	0.05	1
1400	170	THK	н	н	1.105	0.02	1
1420	1/6	THR	HA	н	4.196	0.05	1
1427	176	THR	HG2	H	1.212	0.05	1
1428	176	THR	CA	C	63.099	0.1	1
1429	176	THR	Ν	N	119.501	0.05	1

stop_

save_

# Bibliography

Abragam A.: Principles of nuclear mechanism, Oxford University Press, (1961)

- Anglister J., Grzesiek S., Ren H., Klee C. & Bax A.: Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS, *J. Biomol. NMR.* 3 (1993) 121–126
- Baumgartner R., Fernandez-Catalan C., Winoto A., Huber R., Engh R. & T.A. H.: Stucture of human cyclin-dependent kinase inhibitor P19^{*INK4d*} comparison to known ankyrin-repeat-containing structures and implication for the dysfunktion of tumor suppressor p16^{*INK4d*}, *Structure* **6** (1998) 1279–1290
- Baxter R.C.: Signalling pathways involved in antiproliferative effects of IGFBP-3: a review, *Mol. Pathol.* **54** (2001) 145–148
- Baxter R.C., Bayne M.L. & Cascieri M.A.: Structural determinants for binary and ternary complex formation between insulin-like growth factor-I (IGF-I) and IGF binding protein-3, *J. Biol. Chem.* **267** (1992) 60–65
- Bayne M.L., Applebaum J., Chicchi G.G., Miller R.E. & Cassieri M.A.: The roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth factor-I to the type 1 insuline-like growth factor receptor, *J. Biol. Chem.* 265 (1990) 15648–15652
- Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T., Weissig H., Shindyalov I. & Bourne P.: The Protein Data Bank, *Nucleic Acids Research* 28 (2000) 235–242
- Brocks B., Rode H., Klein M., Gerlach E., Dubel S., Little M., Pfizermaier K. & Moosmayer D.: A TNF receptor antagonistic scFv, which is not secreted in mammalian cells, is expressed as a soluble mono- and bivalent scFv derivative in insect cells, *Immunotechnology* **3** (1997) 173–184

- Brüggert M.: NMR-spektroskopische Untersuchungen zur Expression selektiv mit ¹⁵N-Aminosäuren markierter Proteine in Spodoptera frugiperda (Sf9) Insektenzellen, Doktorarbeit, Technische Universität München, Fakultät für Chemie, (2002)
- Canet D.: Nuclear Magnetic Resonance. Concepts and Methods, John Wiley & Sons, (1996)
- Canet D., Last A., Tito P., Sunde M., Spencer A., Archer D., Redfield C., Robinson C. & C.M.
  D.: Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme, *Nat. Struct. Biol.* 9 (2002) 308–315
- Cascio M.: Methods in Neuroscience, Academic Press, (1995)
- Cavanagh J., Fairbrother W., Palmer III A. & Skelton N.: *Protein NMR spectroscopy: Principles and Practice*, Academic Press, (1996)
- Chen J., Marechal V. & Levine A.J.: Mapping of the p53 and MDM2 interaction domains, *Mol. Cell. Biol.* **13** (1993) 4107–4114
- Chiou T.W., Hsieh Y.C. & Ho C.: High density culture of insect cells using rational medium design and feeding strategy, *Bioprocess Engeneering* **22** (2000) 483–491
- Christendat D., Yee A., Dharamsi A., Kluger Y., Gerstein M., Arrowsmith C. & Edwards A.:
   Structural proteomics: prospects for high throughput sample preparation, *Prog. Biophys. Mol. Biol.* **73** (2000) 339–345
- Cieslar C., Clore M. & Gronenborn J.: Computer-Aided Sequential Assignment of Protein ¹H NMR Spectra, *J. Magn. Reson.* **80** (1988) 119
- Cieslar C., Holak T. & Oschkinat H.: A Program for the Evaluation of 3d Spectra Applied to the Sequential Assignment of BPTI Utilizing 3D TOCSY-NOESY, *J. Magn. Reson.* **87** (1990) 400–407
- Clemmons D.R.: Use of mutagenesis to probe IGF-binding protein structure/function relationships, *Endocr. Rev.* 22 (2001) 800–817
- Crameri A., Whitehorn E., Tate E. & Stemmer W.: Improved green fluorescent protein by molecular evolution using DNA shuffling, *Nat. Biotechnol.* **14** (1996) 315–319

- Creemers A., Klaasen C., Bovee-Geurts P., Kelle R., Kragl U., Raap J., de Grip W. & de Groot
   H.: Solid State ¹⁵NNMR Evidence for a Complex Schiff Base Counterion in the Visual G Protein-Coupled Receptor Rhodopsin, *Biochemistry* 38 (1999) 7195–7199
- Croasmun W. & Carlson R.: Two dimensional NMR Spectroscopy. Applications for Chemists and Biochemists, VCH Publisher, (1994)
- Daskiewicz J.B., Comte G., Barron D., Di Petro A. & Thomasson F.: Organolithium mediated synthesis of prenylchalcones as potential inhibitors of chemoresistance, *Tetrahedron Lett.* **40** (1999) 7095–7098
- DeLange A., Klaasen C., Wallace-Williams S., Bovee-Geurts P., Liu X.M., de Grip W. & Rothschild K.: Tyrosine Structural Changes Detected during the Photoactivation of Rhodopsin, *J. Biol. Chem.* 273 (1998) 23735–23739
- Dempsey C.: Hydrogen exchange in peptides and proteins using NMR spectroscopy, *Progress* in Nuclear Magnetic Resonance Spectroscopy **39** (2001) 135–170
- Derome A.: Modern NMR Techniques for Chemistry Research, Pergamon Press, (1987)
- Devincenzo R., Scambia G., Panici P.B., Ranelletti F.O., Bonanno G., Ercoli A., Dellemonache F., Ferrari F., Piantelli M. & Mancuso S.: Effect of synthetic and naturally occuring chalcones on ovarian cancer cell growth structure-activity relationships, *Anti-Cancer Drug Des.* **10** (1995) 481–490
- Diercks T., Coles M. & Kessler H.: Applications of NMR in drug discovery, *Curr. Opin. Chem. Biol.* **5** (2001) 285–291
- Doverskog M., Han L. & Häggström L.: Cystine/cysteine metabolism in cultured Sf9 cells: influence of cell physiology on biosynthesis, amino acid uptake and growth, *Cytotechnology* **26** (1998) 91–102
- Doverskog M., Jacobsson U., Chapman B., Kuchel P. & Häggström L.: Determination of NADHdependent glutamate synthase (GOGAT) in Spodoptera frugiperda (Sf9) insect cells by a selective 1H/15N NMR in vitro assay, *J. Biotechnol.* **79** (2000) 87–97
- Drews M., T. P. & Vilu R.: The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture, *J. Biotechnol.* **40** (1995) 187–198

- Drews M., Doverskog M., Öhman L., Chapman B., Jacobsson U., Kuchel P. & Häggström L.: Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by ¹H/¹⁵N NMR, *J. Biotechnol.* **78** (2000) 23–37
- Edwards A., Arrowsmith C., Christendat D., Dharamsi A., Friesen J., Greenblatt J. & Vedadi
  M.: Protein production: feeding the crystallographers and NMR spectroscopists., *Nat. Struct. Biol.* struct. genomics suppl. (2000) 970–972
- Ernst R., Bodenhausen G. & Wokaun A.: *Principles of Magnetic Resonance in One and Two Dimensions*, Clarendon Press, (1997)
- Evans J.: Biomolecular NMR spectroscopy, Oxford Univ. Press, (1995)
- Ferrance J., Goel A. & Ataai M.: Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within primary pathways and medium development, *Biotechnol. Bioeng.* **42** (1993) 697–707
- Field J., Vojtek A., Ballester R., Bolger G., Colicelli J., Ferguson K., Gerst J., Kataoka T., Michaeli T., Powers S., Riggs M., Rodgers L., Wieland I., Wheland B. & Wigler M.: Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein, *Cell* **61** (1990) 319–327
- Fielding L.: Determination of the association constants (Ka) from solution NMR data, *Tetrahedon* **56** (2000) 6151–6170
- Fischer M., Majumdar A. & Zuiderweg E.: Protein NMR relaxation: Theory, applications and outlook, *Prog. Nucl. Magn. Res. Spec.* 33 (1998) 207–272
- Freeman R.: A Handbook of Nuclear Magnetic Resonance, Longman, (1988)
- Georgescu J.: NMR-Untersuchungen und Strukturbestimmungen von Biomolekülen: Linkerpolypeptid  $L_C^{7,8}$ , Interleukin-16, grün fluoreszierendes Protein (GFPuv), Doktorarbeit, Technische Universität München, Fakultät für Chemie, (2000)
- Gerst J., Rodgers L., Riggs M. & Wigler M.: SNC1, a yeast homolog of the synaptic vesicleassociated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes, *Proc. Natl. Acad. Sci.* **89** (1992)

Gluckman P., Klempt N., Guan J., Mallard C., Sirimanne E., Dragunow M., Singh K., Williams
C. & Nikolics K.: A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury, *Biochem. Biophys. Res. Commun.* **182** (1992) 593–599

Goddard T. & Kneller D.: SPARKY 3, University of California, San Francisco

- Gottwald U., Brokamp R., Karakesisoglou I., Schleicher M. & Noegel A.: Identification of a cyclase-associated protein (CAP) homologue in Dictyostelium dicoideum and characterization of Its Interaction with actin, *Mol. Biol. Cell* **7** (1996) 261–272
- Hankinson S.E., Willet W.C., Colditz G.A., Hunter D.J., Michaud D.S., Deroo B., Rosner B., Speizer F.E. & Pollak M.: Circulating concentrations of insulin-like growth factor I and risk of breast cancer, *Lancet* **351** (1998) 1393–1396
- Haupt Y., Maya R., Kazaz A. & Oren M.: MDM2 promotes the rapid degradation of p53, *Nature* **387** (1997) 296–299
- Haupts U., Maiti S., Schwille P. & Webb W.: Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy, *Proc. Nat. Acad. Sci.* USA 95 (1998) 13573–13578
- Holly J.: Insulin-like growth factor-I and new opportunities for cancer prevention, *Lancet* **351** (2000) 1373–1374
- Hubberstey A. & Mottillio E.: Cyclase-associated proteins: CAPacity for linking signal transduction and actin polymerization, *FASEB* **16** (2002) 487–499
- Hwa V. et al.: The IGF binding protein superfamily, in: *The IGF system. Molecular biology, physiology, and clinical applications* (Eds. Rosenfeld R.G. & Roberts C.T.), Humana Press: Totowa, 1999 S. 315–327

James T. & Oppenheimer N. (Eds.): Nuclear Magnetic Resonance, Academic Press, (1994)

- James T., Dötsch V. & Schmitz U. (Eds.): Nuclear Magnetic Resonance of Biological Macromolecules, Part A, Academic Press, (2001)
- Jones J.L. & Clemmons D.R.: Insulin-like growth factors and their binding proteins: biological actions, *Endocr. Rev.* **12** (1995) 10–21

Juven-Gershon T. & Oren M.: Mdm2: The ups and downs, Mol. Med. 5 (1999) 71-83

- Kalus W., Baumgartner R., Renner C., Noegel A., Chan F., Winoto A. & Holak T.: NMR structural characterization of the CDK inhibitor P19^{*INK4d*}, *FEBS* **401** (1997) 127–132
- Kalus W., Zweckstetter M., Renner C., Sanchez Y., Georgescu J., Grol M., Demuth D., Schumacher R., Dony C., Lang K. & Holak T.: Structure of the IGF-binding domain of the insulinlike growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions, *EMBO J.* **17** (1998) 6558–6572
- Kay L.: Protein dynamics from NMR, Nature Struct. Biol. NMR supplement (1998) 513-517
- Khandwala H.M., McCutcheon I.E., Flyvbjerg A. & Friend K.E.: The effects of insulin-like growth factors on tumorigenesis and neoplastic growth, *Endocr. Rev.* **21** (2000) 215–244
- Kim J., Kim E. & Park T.: Fed-batch culture of insect cells with exponential feeding of amino acid and yeastolate solution, *Bioprocess Engineering* **23** (2000) 367–370
- Ksiazek D.: Structural investigations on medically relevant proteins, Doktorarbeit, Technische Universität München, Fakultät für Chemie, (2002)
- Kubbutat M.H.G., Jones S.N. & Vousden K.H.: Regulation of p53 stability by MDM2, Nature 387 (1997) 299–303
- Kumar C., Diao R., Yin Y., Samatar A., Madison V. & Xiao L.: Expression, purification, characterization and homology modeling of active Akt/PKB, a key enzyme involved in cell survival signaling, *Biochim. Biophys. Acta-Gen. Subj.* **1526** (2001) 257–268
- Kussie P.H., Gorina S., Marechal V., Elenbaas B., Moreau J., Levine A.J. & Pavletich N.P.: Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, *Science* 274 (1996) 948–953.
- Labas Y., Gurskaya N., Yanushevich Y., Fradkov A., Lukyanov K., Lukyanov S. & Matz M.: Diversity and evolution of the green fluorescent protein family, *Proc. Nat. Acad. Sci. USA* 99 (2002) 4256–4261
- Lane D.P. & Hall P.A.: MDM2 arbiter of p53's destruction, *Trends Biochem. Sci.* 22 (1997) 372–374

- Lawrie A., King L. & Ogden J.: High level synthesis and secretion of human urokinase using a late gene promoter of the Autographa californica nuclear polyhedrosis virus, *J. Biotechnol.* **39** (1995) 1–8
- Liu X.J., Xie Q., Zhu Y.F., Chen C. & Ling N.: Identification of a nonpeptide ligand that releases bioactive insulin-like growth factor-I from its binding protein complex, *J. Biol. Chem.* 276 (2001) 32419–32422
- Loddick S.A., Liu X.J., Lu Z.X., Liu C.L., Behan D.P., Chalmers D.C., Foster A.C., Vale W.W., Ling
  N. & Desouza E.B.: Displacement of insulin-like growth factors from their binding proteins as a potential treatment for stroke, *Proc. Nat. Acad. Sci. USA* 95 (1998) 1894–1898
- Lozano G. & Montes de Oca Luna R.: MDM2 Function, *Biochim. Biophys. Acta* **1377** (1998) M55–M59
- Martin J. L.; Baxter R.C.: IGF binding proteins as modulators of IGF actions, in: *The IGF system. Molecular biology, physiology, and clinical applications* (Eds. Rosenfeld R.G. & Roberts C.T.),
   Humana Press: Totowa, 1999 S. 227–255
- McAlister M.S., Mott H.R., van der Merwe P.A., Campbell I.D., Davis S.J. & Driscoll P.C.: NMR analysis of interacting soluble forms of the cell-cell recognition molecules CD2 and CD48, *Biochemistry* **35** (1996) 5982–5991
- Mendonça R., Palomares L. & Ramirez O.: An insight into insect cell metabolism through selective nutrient manipulation, *J. Biotechnol.* **72** (1999) 61–75
- Midgley C.A. & Lane D.P.: p53 protein stability in tumor cells is not determined by mutation but is dependent on MDM2 binding, *Oncogene* **15** (1997) 1179–1189.
- Momand J., Zambetti G.P., Olson D.C., George D. & Levine A.J.: The mdm-2 Oncogene Product Forms a Complex with the p53 Protein and Inhibits p53-mediated Transactivation, *Cell* **69** (1992) 1237–1245
- Momand J., Jung D., Wilczynski S. & Niland J.: The MDM2 Gene Amplification Database, *Nucleic Acids Res.* **26** (1998) 3453–3459
- Montelione G., Zheng D., Huang Y., Gunsalus K. & Szyperski T.: Protein NMR spectroscopy in structural genomics, *Nat. Struc. Biol.* **7** (2000) 982–985

- Mori S., Abeygunawardana C., Johnson M. & van Zijl P.: Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation, *J Magn Reson B.* **108** (1995) 94–98
- Mühlhahn P., Zweckstetter M., Georgescu J., Ciosto C., Renner C., Lanzenhöfer M., Lang K.,
   Ambrosius D., Baier M., Kurth R. & Holak T.: Structure of interleukin 16 resembles a PDZ
   domain with an occluded peptide binding site, *Nat. Struc. Biol.* 5 (1998) 682–686
- Neuhaus D. & Williamson M.: The Nuclear Overhauser Effect in Structural and Conformational Analysis, Wiley-VCH, New York, 2. Aufl., (2000)
- Noegel A., Rivero F., Albrecht R., Janssen K., Köhler J., Parent C. & Schleicher M.: Assessing the role of the ASP56/CAP homologue of Dictyostelium discoideum and the requirements for subcellular localization, *J.Cell Sci.* **112** (1999) 3195–3203
- Ohman L., Ljunggren J. & Häggström L.: Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures, *Appl. microbiol. Biotechnol.* **43** (1995) 1006–1013
- Öhman L., Alacorn M., Ljunggren J., Ramqvist A. & Häggström L.: Glutamine is not an essential amino acid for Sf-9 insect cells, *Biotechnol. Lett.* **18** (1996) 765–770
- Oliner J.D., Kinzler K.W., Meltzer P.S., George D.L. & Vogelstein B.: Wild-type p53 activates transcription in vitro, *Nature* **358** (1992) 80–83
- Oliner J.D., Pietenpol J.A., Thiagalingam S., Gyuris J., Kinzler K.W. & Vogelstein B.: Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53, *Nature* **362** (1993) 857–860
- Ormoe M., Cubitt A., Kallio K., Gross L., Tsien R. & J. R.: Crystal structure of the *Aequorea* victoria green fluorescent protein, *Science* **273** (1996) 1392–1395
- Park E.J., Park H.R., Lee J.S. & Kim J.: Licochalcone A an inducer of cell differentiation and cytotoxic agent from pogostemon cablin, *Planta Med.* **64** (1998) 464–466
- Pellecchia M., Sem D. & K. W.: NMR in drug discovery, Nat. Rev. Dr. Disc. 11 (2002) 211–219
- Pellechia M., Sebbel P., Hermanns U., Wüthrich K. & Glockshuber R.: Pilus chaperone FimCadhesin FimH interactions mapped by TROSY-NMR, *Nat. Struct. Biol.* 6 (1999) 336–339

- Prendergast F.: Biophysics of the green fluorescent protein, *Methods in Cell Biology* **58** (1999) 1–18
- Prestegard J., Valafar H., Glushka J. & Tian F.: Nuclear Magnetic Resonance in the Era of Structural Genomics, *Biochemistry* **40** (2001) 8677–8685
- Rarey M., Kramer B., Lengauer T. & Klebe G.: A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol. 261 (1996a) 470–489
- Rarey M., Wefing S. & Lengauer T.: Placement of medium-sized molecular fragments into active sites of proteins, J. Comput. Aided Mol. Design 10 (1996b) 41–54
- Reid D. (Ed.): Protein NMR Techniques, Humana, (1997)
- Renner C. & Holak T.: NMR N-15 relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II, *Eur. J. Biochem.* **268** (2001) 1058–1065
- Sali A.: 100,000 protein structures for the biologist, Nat. Struct. Biol. 5 (1998) 1029-1032
- Salzmann M., Pervushin K., Wider G., Senn H. & Wüthrich K.: TROSY in triple-resonance experiments: New perspectives for sequential NMR assignment of large proteins, *Proc. Natl. Acad. Sci. USA* **95** (1998) 13585–13590
- Seifert M.: NMR-spektroskopische Studien zur strukturellen Dynamik des Grünfluoreszierendes Proteins und der cAMP-abhängigen Protein Kinase, Doktorarbeit, Technische Universität München, Fakultät für Chemie, (2002)
- Seifert M., Ksiazek D., Azim K., Smialowski P., Budisa N. & Holak T.: Slow Exchange in the Chromophore of a Green Fluorescent Protein Variant, J. Am. Chem. Soc. 124 (2002) 7932– 7942
- Senn H., Eugster A., Otting G., Suter F. & Wüthrich K.: ¹⁵N-labeled P22 c2 repressor for nuclear magnetic resonance studies of protein-DNA interactions, *Eur. Biophys. J.* **14** (1987) 301–306
- Shibata S.: Shibata Lab. Nat. Med. Mater., *Minophagen Pharm. Co., Tokyo, Japan, Stem Cells* (*Dayton*) **12** (1994) 44–52.

- Shuker S., Hajduk P., Meadows R. & Fesik S.: Discovering high-affinity ligands for proteins -SAR by NMR, *Science* **274** (1996) 1531–1534
- Spyracopoulos L. & Sykes B.: Thermodynamic insights into proteins from NMR spin relaxation studies, *Curr. Opin. Struct. Biol.* **11** (2001) 555–559
- Stoll R., Renner C., Mühlhahn P., Hansen S., Schumacher R., Hesse F., Kaluza B., Engh R., Voelter W. & Holak T.: Sequence-specific ¹H, ¹⁵N, and ¹³Cassignment of the N-terminal domain of the human oncoprotein MDM2 that binds to p53., *J. Biomol. NMR* **17** (2000) 91–92
- Striker G., Subramaniam V., Seidel C. & Volkmer A.J.: Photochromicity and fluorescence lifetimes of green fluorescent protein, *J. Phys. Chem. B* 103 (1999) 8612–8617
- Tabor S.: Expression using the T7 RNA polymerase/promotor system, in: Current Protocols in Molecular Biology (Eds. Ausubel F., Brent R., Kingsten R., Moore D., Seidman J., Smith J. & Struhl K.), Greene Publishing and Wiley Interscience, NY, 1990 S. 16.21–16.2.11
- Tsien R.: The green fluorescent protein, Annu. Rev. Biochem. 67 (1998) 509-544
- Ward W.: Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications, Academic Press, New York, 1981 S. 235–242
- Wasylyk C., Salvi R., Argentini M., Dureuil C., Delumeau. I., Abecassis J., Debusche L. & Wasylyk B.: p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53, *Oncogene* 18 (1999) 1921–1934
- Wattenberg L.: Chalcones, myo-inositol and other novel inhibitors of pulmonary cancerogenesis, *J. Cell. Biochem.* **Suppl. 22** (1995) 162–168
- Wetterau L.A., Moore M.G., Lee K.W. & Shim M. L.and Cohen P.: Novel aspects of the insulinlike growth factor binding proteins, *Mol. Genet. Metabol.* **68** (1999) 161–181
- Wijesinha-Bettoni R., Dobson C. & Redfield C.: Comparison of the Structural and Dynamical Properties of Holo and Apo Bovine α-Lactalbumin by NMR Spectroscopy, *J. Mol. Biol.* **307** (2001) 885–898
- Wishart D., Sykes B. & Richards F.: Relationship between nuclear magnetic shift and protein secondary structure, *J. Mol. Biol.* **222** (1991) 311–333
- Wolk A.: Can measurements of IGF-1 and IGFBP-3 improve the sensitivity of prostate-cancer screening, *Lancet* **356** (2000) 1902–1903
- Wüthrich K.: NMR of proteins and nucleix acids, John Wiley & Sons, New York, (1986)
- Yang F., Moss L. & Phillips Jr. G.: Molecular structure of green fluorescent protein, *Nature Biotech.* **14** (1996) 1246–1251
- Yee A. et al.: An NMR approach to structural proteomics, *Proc. Natl. Acad. Sci. USA* (2002) 1825–1830
- Zeslawski W., Beisel H.G., Kamionka M., Kalus W., Engh R.A., Huber R., Lang K. & Holak T.A.: The interaction of insulin-like growth factor-I with the N-terminal domain of IGFBP-5, *EMBO J.* **20** (2001) 3638–3644
- Zhang O. & Forman-Kay J.: Structural characterization of folded and unfolded states of an SH3 domain in equilibrium in aqueous buffer, *Biochemistry* **34** (1995) 6784–6794
- Zhu Z., Bulgakov O., S.S. S. & Dalton J.: Recombinant Expression and Purification of Human Androgen Receptor in a Baculovirus System, *Biochem. Biopys. Res. Comm.* **284** (2001) 828– 835
- Zurdo J., Guijarro J., Jimenez J., Saibil H. & C.M. D.: Dependence on Solution Conditions of Aggregation and Amyloid Formation by an SH3 Domain, *J. Mol. Biol.* **311** (2001) 325–340

## Acknowledgements

I would like to thank Prof. Dr. Kessler for being my Doktorvater and Prof. Dr. Huber for the opportunity to work in his department.

I am thankful to Tad Holak for sharing his wisdom with me.

Furthermore I would like to thank all those colleagues and friends who accompanied me through this work:

The old masters Roland Baumgartner, Peter Mühlhahn, Christian Renner, Raphael Stoll and Markus Zweckstetter for teaching me the power of NMR.

Michael Brüggert, Julia Georgescu, Lars Israel, Mariusz Kamionka, Dorota Książek and Chrystelle Mavoungou for the good collaboration in various projects.

Ruth Pfänder and Markus Seifert for our work at the magnet and struggle with computers.

Conny Ciosto, Agata and Paweł Śmiałowski, Igor Siwanowicz and all the others of the NMRgroup for a good working atmosphere.

Lazarus for Tuesday afternoons.

Johannes Wagner for continuous support.

Thomas Schlütsmeier for poetry and more.

Last but not least I'm indebted to my parents who supported me all along.