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Chapter 1

Introduction

Spectroscopic measurements are conventionally performed either in the time or in the
frequency domain. The two kinds of experiments can however be successfully combined,
thereby allowing us to follow the time evolution of spectra [1�3]. With nowadays
available fs pulses [4, 5], various time-resolved spectroscopic techniques enable us to
observe the evolution of spectra in �real time�, and thus to monitor microscopic nuclear
motion and the most elementary processes of chemical dynamics which take place on
ultrafast time scales [6�10]. In particular, various time-resolved techniques have been
applied to study directly the processes of ultrafast electron transfer, proton transfer,
solvation dynamics of diverse material systems, ranging from diatomics to biomolecules
[11].

The basic idea of time-resolved spectroscopy is to observe the evolution of the
spectrum (and, therefore, the system under study) on the ultrafast timescale. In time-
resolved spectroscopy, there exist a number of techniques (e.g., photon echo, pump-
probe, time-resolved �uorescence, various four-wave mixing techniques), which mainly
di�er in the number of laser pulses used, the speci�c properties of the laser �elds,
and the way of detection of the spectroscopic signals. For a comprehensive theoretical
overview of various techniques in ultrafast spectroscopy, see the book of Mukamel [1].
Some of these techniques provide an opportunity to study the evolution of �coher-
ences�. But in order to monitor the excited state dynamics, one should use the tech-
niques dealing with �populations�, namely, pump-probe spectroscopy and time-resolved
�uorescence.

In pump-probe spectroscopy, the time resolution is provided by the dependence of
the signal on the delay time between pump and probe pulses. Its common techni-
cal realization is the transient absorption technique [12�16]. This technique has been
successfully used for a long time. Why is one interested in other techniques? The
problem is in the interpretation of the results, because many processes contribute to
the pump-probe signal, namely, stimulated emission, resonance Raman, and, possibly,
excited-state absorption, and so-called bleaching. It is of importance that both stim-
ulated emission (re�ecting excited-state dynamics) and stimulated Raman (re�ecting
ground-state dynamics) processes contribute to the overall pump-probe signal, even
in the case of sequential, non-overlapping pump and probe pulses. As a consequence,
one cannot experimentally separate the ground and excited state contribution to the
pump-probe signal (without using special technical tricks).
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2 CHAPTER 1. INTRODUCTION

On the other hand, the femtosecond time-resolved �uorescence signal consists solely
of the �uorescence (excited state) component. So this technique has an important
advantage over diverse pump-probe techniques, since the signal is considerably easier
to interpret.

The present thesis is devoted to the development of the theory of time and fre-
quency gated (TFG) spontaneous emission (SE) spectroscopy (which is another name
for the time-resolved �uorescence spectroscopy). The �rst experimental observation of
coherent wave-packet (WP) dynamics via the TFG SE technique was reported in [17]
for the sodium dimer (see also refs. [18�20]). Later on, coherent e�ects in TFG SE
responses have been measured for diverse systems, ranging from diatomic molecules to
polyatomic donor-acceptor complexes [1�3, 7, 17�22]. By monitoring the SE, one gets
the opportunity to keep track of vibrational WP dynamics in the electronically excited
state as well as decay of the excited state. The TFG SE has become an e�ective tool
for the monitoring of the excited-state dynamics of various systems ranging from iso-
lated diatomic molecules to rather complex systems (carotenoids, chromophore-solvent
systems, porphyrins, or photoactive yellow protein) [7, 17,23�28].

The technical realization of TFG SE spectroscopy is the �uorescence up-conversion
technique [29�33], in which the SE and a short up-conversion (or time gate) pulse
are mixed in a nonlinear crystal, and the integrated intensity of the sum frequency
is monitored. The time resolution is achieved because the gate pulse creates a �time
window� for SE and the signal depends on the time delay between the excitation pulse
and a �time window�, and the frequency resolution is achieved by dispersing the up-
converted signal in a monochromator or �frequency �lter�.

The measured TFG SE signals depend, however, in a quite complicated manner
on the laser pulse and system parameters. When interpreting ultrafast TFG SE ex-
periments, a fundamental question therefore arises: how can one extract quantitative
information on the dynamics of the material system from the measured signals? There
is a certain gap between theoretical and experimental results. Theorists prefer to cal-
culate quantities like the time-dependent electronic population probability or various
correlation functions (CFs), while experimentalists measure certain time-dependent
transients. Indeed, it is generally assumed that the measured TFG SE signal maps the
excited-state population dynamics. But the question is, which population (diabatic
or adiabatic) and to which extent? Clearly, the experimental transients are indirectly
connected with the electronic population dynamics and are strongly in�uenced by the
detection process. Thus, for systems with complicated and ultrafast dynamics, it is
necessary to introduce explicitly the description of the TFG procedure into the theory
and to establish rigorously the connection of the experimentally measured signals with
the underlying microscopic dynamics. In the present thesis, we study this issue for
several simple models (Chapter 3) and mainly for the case of ultrafast electron-transfer
(ET) systems (Chapters 4 through 6).

We want to derive a theory of TFG SE which is not limited to a particular or simple
material-system dynamics. Therefore, the ultimate goal of the present work is the
development of a convenient, computationally oriented framework for the description
of TFG SE of nontrivial systems, e.g., multi-mode systems with strong electronic inter-
state couplings which interact with a thermal bath. The speci�c tasks are as follows:
(i) to develop a universal, eigenstate-free, description of the TFG SE, (ii) to clarify the
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in�uence of the spectral �ltering and temporal gating on the TFG SE spectra, and (iii)
to connect the measured TFG SE spectra with the time evolution of the corresponding
material systems.

In Chapter 2, the de�nitions of the TFG SE signals are introduced and the formal
TFG SE theory is developed. We establish several generic properties of the TFG SE
spectra and discuss the validity of two commonly employed assumptions (neglect of
retardation e�ects and slowly-varying envelope approximation). This analysis provides
insight into the information content of TFG SE spectra. The material-system dynamics
is shown to enter the description in terms of two-time CFs of polarization. We show two
approaches to calculate the polarization: perturbative (using time-dependent density
matrix (DM) perturbation theory) and nonperturbative (including the system-�eld
interaction into the system Hamiltonian). In the main text we concentrate on the
perturbative theory since it gives a clear physical picture and allows one (i) to perform
part of the calculations analytically and (ii) to uniformly classify various spectroscopic
signals. The nonperturbative approach is brie�y considered in Appendix B.

Employing the rotating-wave approximation [34], we derive an expression for the
TFG SE in terms of third-order nonlinear response functions (RFs) [1]. These functions
allow us to perturbatively calculate the nonlinear response of a material system to
external time-dependent �elds and, consequently, to calculate various spectroscopic
signals.

If the problem under study can be treated in terms of quantum-mechanical basis-set
methods, the computation of the RFs, in principle, presents no di�culties (see Chapter
2). For systems with a conical intersection, for example, time-dependent WP calcu-
lations have been reported which include up to seven nuclear degrees of freedom [2].
When the number of vibrational modes increases, a straightforward computational
treatment of the quantum dynamics is no longer possible. It is a conventional prac-
tice to adopt a reduced density-matrix (RDM) description in such cases, where a few
optically active vibrations are considered explicitly, while the rest of the inter- and
intramolecular modes is treated as a heat bath. This leads to the problem of the
evaluation of RFs in a dissipative environment, which complicates the computation
considerably. It is therefore not surprising that the RFs have analytically been evalu-
ated so far only for the harmonic oscillator bilinearly coupled to a heat bath [1] and for
few-level systems [35, 36]. Recently, the damped harmonic oscillator model has been
extended in several directions. For instance, the RFs have been calculated taking ac-
count of anharmonic e�ects [37�42], for nonequilibrium initial conditions [43], and for
energy-transfer systems consisting of pairs of chromophores [44�47]. Nonlinear RFs for
multidimensional systems (an I2 molecule in a xenon �uid with up to 36 vibrational
modes) have also been evaluated explicitly [48]. Instead of the standard RFs, one can
also describe nonlinear spectroscopic signals in terms of so-called e�ective RFs [49].

For multi-mode systems with electronic couplings, the conventional treatment of
dissipative e�ects is based on the Red�eld [2, 50�64], the Fokker-Planck [65�67], and
kinetic [68�74] equations, the implementation of which is very demanding numerically.
For this reason, the nonlinear (third- and higher order) RFs have not explicitly been
computed for such systems. The corresponding optical signals were evaluated either
through the propagation of the DM in the ground and excited states [50�52,54,63,64,68,
69,71�74], via calculation of the nonlinear polarization (which, in a sense, is equivalent
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to the determination of certain conventional or e�ective RFs) [2, 65, 66, 75�77], by
treating the problem in terms of the eigenvalues and eigenfunctions of the ground and
excited state Hamiltonians [20,78,79], by invoking the Monte Carlo methods [2,80,81],
and by nonperturbative methods [2, 82].

In Chapters 2-4, 6 we present methods for the calculation of RFs and illustrate them
by explicit calculations of TFG SE signals for di�erent model systems. To simplify the
presentation, we restrict ourselves to the system with a single optical transition between
two separated electronic states (ground and excited) which are coupled only by the ra-
diation �eld. Although this electronic two-level system (TLS) represents a restriction,
it should be stressed that the theory still applies to many of the experimentally in-
teresting systems [2]. In particular, He (the excited-state Hamiltonian) may represent
several nonadiabatically coupled electronic states, e.g., the case of an optically bright
excited state which is intramolecularly coupled to one or several optically dark states
(in Section 4, e.g., He describes the dynamics of two coupled electronic states).

As we have already emphasized, the calculation of RFs for nontrivial multidimen-
sional systems, in particular those exhibiting pronounced nonadiabatic couplings, is
a di�cult task: analytic solutions do not exist and a straightforward computational
treatment of the quantum dynamics (computation of these functions) is not feasible.
To solve this problem, we further develop in Chapter 2 the doorway-window (DW) pic-
ture of the TFG SE which will simplify the computation of RFs (and, consequently, the
calculation of the signals) and is applicable in the most general cases. This has partially
been done already in papers [3, 54] (for perfect spectral �lters) and in [63, 64, 83�85]
(for �bare� spectra, which are connected with �real� TFG SE spectra through the con-
volution with the joint time-frequency gate function). Our aim is to directly develop
the DW description for �real� TFG SE spectra. This formulation reduces the compu-
tational e�ort considerably, since some of the integrals can be performed analytically.
Concomitantly, this formulation allows us to obtain various forms of the explicit ana-
lytical expressions which can be useful in actual calculations.

To implement a developed formal DW-picture for nontrivial systems with electronic
and vibrational relaxation, we adopt a system-bath (SB) approach (which leads to a
RDM description), where a few optically active vibrations are considered explicitly,
while the rest of the inter- and intramolecular modes is treated as a heat bath. We
emphasize some important technical aspects in DW-formalism which arise due to the
partitioning of the total system in a relevant part and an environment.

If the Born-Oppenheimer approximation is adequate, one can model the ground and
excited state Hamiltonians via a collection of vibrational modes, which are usually as-
sumed to be harmonic. In Chapter 3, we consider several standard benchmark systems
for which RFs can be calculated analytically: free harmonic, Brownian (or damped har-
monic), and Drude oscillators. These systems consist of displaced harmonic oscillators
in the ground and excited states which are coupled to a bath in a di�erent manner: the
free harmonic oscillator is dissipation-free; the Brownian oscillator is coupled to a con-
ventional (Markovian) thermal bath, while the Drude oscillator is coupled to a thermal
bath with exponential memory kernel. We perform explicit calculations of TFG spectra
for di�erent values of the parameters of the models and for various qualities of the time
and frequency �lters. These systems with rather transparent dynamics will allow us to
investigate separately the in�uence of di�erent e�ects on TFG SE spectra: time and
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frequency resolution e�ects, dissipation e�ects, and memory (or non-Markovian bath)
e�ects. The conventional (Markovian) description is valid provided that the bath relax-
ation time is much shorter than all other relevant times of the problem. If one studies
ultrafast relaxation dynamics, the Markovian assumption should be implemented with
a certain caution, since it could be an unjusti�ed oversimpli�cation (see, e.g., recent
references [86�92]). There exist also experimental evidences that non-Markovian e�ects
could be important, e.g., for describing vibrational relaxation in hydrogen-bonded liq-
uids (see Ref. [93] and references therein).

In order to describe the TFG SE spectra for nontrivial multidimensional systems,
one has to employ the DW-representation. In Chapter 4, the DW-picture is applied
for the calculation of TFG SE spectra of ultrafast ET systems which, due to a strong
nonadiabatic coupling, exhibit ultrafast decay dynamics [2].

A number of papers have appeared in recent years, in which the problem of ultrafast
ET has been treated at di�erent levels of sophistication. Of particular relevance to the
present consideration are the papers [51,52,54,63,64,71,94�98]. The theory presented in
Chapter 4, in a sense, generalizes an earlier approach by Jean [52], extending the theory
beyond bare time- and frequency-resolved spectra. A novel feature of the present work
is the consideration of several carefully selected ET model systems exhibiting electronic
coherence and/or vibrational coherence and the systematic exploration of the e�ects
of the preparation and SE detection by pulses of �nite duration.

One of the most fundamental questions, which is addressed when discussing ultra-
fast ET reactions, is the manifestation of various coherences in the population dynamics
and measured responses. It has been shown theoretically that coherent e�ects in ul-
trafast ET can be either of vibrational or of electronic nature [51, 53, 56, 94, 99�105].
Therefore, it is necessary to distinguish between these two types of coherences when in-
terpreting particular experiments. Recent ultrafast spectroscopic measurements have
con�rmed the persistence of pronounced coherent e�ects on a picosecond time scale
in the ultrafast ET dynamics for various molecular systems, from diatomics to pro-
teins [6�8,28,106�109]. However, when trying to interpret particular experiments, it is
not entirely clear if the measured oscillatory patterns are to be attributed to vibrational
or electronic coherences. So, it is of considerable importance to clarify this issue.

In Chapter 4, the ET model is introduced and �system� and �bath� parts are speci-
�ed. We give the equations (Red�eld theory) used for the calculation of the RDM- the
primary quantity describing ET system dynamics. We present the results of calcula-
tions of TFG spectra for this ET model. To elucidate the e�ect of various coherences
on SE signals, we have performed simulations for ET models in which either electronic
or vibrational coherence e�ects are dominant. The e�ects of temporal resolution and
pump-pulse duration are studied. The manifestation of various coherences in the signal
is also discussed.

To show the performance of the developed approach, we demonstrate its application
to real systems. The theory is implemented to describe the time-resolved �uorescence
experiments on the electron donor-acceptor complex TCNE-HMB performed recently
by Yoshihara and coworkers [7, 21, 110]. The results of our simulations are presented
in Chapter 5. A theoretical model consisting of the ground and two nonadiabatically
coupled excited electronic states which are strongly coupled to a single reaction mode is
constructed. It is demonstrated that the developed model correctly reproduces general



6 CHAPTER 1. INTRODUCTION

behavior and trends in various experimentally measured responses. Possible general-
izations of the model are proposed.

If the system under consideration possesses nonadiabatic electronic couplings within
the excited-state vibronic manifold, the conventional displaced harmonic oscillator
model no longer works, and other approaches have to be developed. One can use
the DW-representation of the TFG SE spectra (Chapter 2). However, experimentalists
often need to estimate quickly the expected signal, and the calculation of the quantum
dissipative dynamics, i.e., RDM propagation, is expensive and not appropriate for this
goal. In Chapter 6 we develop a simple reference model which allows the explicit cal-
culation of RFs for electronically nonadiabatic systems coupled to a heat bath. The
model is based on a phenomenological dissipation ansatz which describes the major
bath-induced relaxation processes: excited-state population decay, optical dephasing,
and vibrational relaxation. The model is constructed in such a way that it allows us
to express the nonlinear RFs of a dissipative material system through those of the cor-
responding bath-free system. We derive explicit expressions for the TFG SE signal in
the framework of this model. We illustrate the performance and validity of the theory
by comparing the calculated TFG SE spectra with more accurate treatments for (i) the
standard damped harmonic oscillator (Chapter 3) and (ii) a model nonadiabatic ET
system (Chapter 4). This phenomenological model may prove useful as an e�cient tool
for the qualitative calculation of optical responses and, therefore, the interpretation of
observed time-resolved spectra.



Chapter 2

Time- and frequency-gated
spontaneous emission: general theory

2.1 Introduction
This chapter is devoted to the consideration of the theory of time- and frequency-gated
(TFG) spontaneous emission (SE). This is not the �rst theoretical description of the
TFG SE that has been proposed; however, our formalism and the derivation leading to
it are not fraught with problems that arise due to several commonly used assumptions.
Moreover, it generalizes previous theoretical considerations in several ways.

There exist two major approaches to the description of the TFG SE. In the �rst
approach, the TFG SE spectrum is de�ned as the rate of emission of photons of a
certain frequency within a de�nite time interval. The in�uence of the measuring device
is not taken into account in this formulation [1, 52, 67, 71, 74, 75, 102, 103, 114�116].
Starting from this de�nition, one obtains an ideal (bare) TFG SE spectrum, which
is not guaranteed to be positive, however. For instance, for certain parameters of the
Brownian oscillator model, the spectrum can attain negative values [1,3]. Moreover, the
time and frequency resolution of this ideal spectrum are not limited by the fundamental
time-frequency uncertainty principle. This underlines the necessity to develop a more
comprehensive theory, in which both a spectrometer and a time-gating device enter
the description from the outset.

This is the characteristic feature of the second group of approaches, in which the
TFG SE is taken to be proportional to the integrated intensity of the total emitted
�eld which has passed through a spectrometer and a temporal gating device [117,118].
Following the guidelines developed in [117], the TFG SE has been investigated by a
number of authors [2,18�20,78,79,119]. The explicit consideration of the TFG process
adds, however, additional complexity to the problem, and it is therefore not surprising
that the papers [18�20,78, 79, 119] deal with one-dimensional dissipation-free systems,
which allows the description of the material dynamics in terms of the eigenvalues and
eigenfunctions of the Hamiltonian. Cina and coworkers have formulated a theory which
is intermediate between the two approaches [3,54,95]. These authors have investigated
the in�uence of the time gate on the intensity [3,54] and anisotropy [95] of the SE, while
the frequency resolution was tacitly assumed to be perfect. Mukamel and coworkers
have developed a general description, which ensures a correct inclusion of the TFG

7



8 CHAPTER 2. GENERAL THEORY

process for any material system under study [83�85]. The passage to an ideal gate also
has been brie�y discussed by these authors.

The formulations developed in [83�85] provide deep insight into the problem of
the TFG SE. However, their implementation for the calculation of the TFG SE is dif-
�cult for complex material systems, due to the necessity to perform numerous time
integrations and Fourier transforms involving multi-time RFs. Moreover, several other
questions deserve further clari�cation and investigation. The articles [83�85], as well
as the pivotal paper [117], are based on the assumption that the emitted �eld is pro-
portional to the transition dipole moment. This is a good approximation for spectrally
narrow bands, but, in a more general context, it may be necessary to go beyond this ap-
proximation [78]. In addition, the excitation pulse is treated perturbatively in [83�85],
which may not be appropriate for typical experiments which employ a short, but not
necessarily, weak laser pulse.

Explicit calculations of the TFG SE for dissipative systems have so far been per-
formed only for the classical overdamped Brownian oscillator [83,84] and, very recently,
for molecular aggregates within the Red�eld theory [63,64]. Important questions con-
cerning the manifestation of di�erent regimes of the bath-induced vibrational relax-
ation in the TFG SE have not yet been addressed. An important issue is to clearly
separate the contributions due to the material system dynamics from those of the
measuring device in the TFG SE signal. The two groups of approaches to the TFG
SE, [1,52,71,74,75,102,103,114�116] and [2,18�20,63,64,78,79,83�85,119], have so far
been developed separately from each other, so that their interrelationship is not obvi-
ous. It is also of importance to establish more rigorously the interconnection between
the TFG SE signal and other spectroscopic signals, in particular transient absorption
pump-probe signals.

This state of a�airs indicates the necessity to cast the TFG spectrum in a form
which is computationally convenient, but not limited to a particular or simple material-
system dynamics. To achieve this goal, it seams promising to further develop the
doorway-window (DW) picture of the TFG SE. This has partially been done already
in papers [3, 54] (for perfect spectral �lters) and in [63, 64, 83�85] (for �bare� spectra,
which are connected with �real� TFG SE spectra through the convolution with the
joint time-frequency gate function). The aim of the present contribution is to directly
develop the DW description for �real� TFG SE spectra. This formulation reduces the
computational e�ort considerably, since some of the integrals can be performed ana-
lytically. Concomitantly, this formulation allows us to make the interrelations between
the approaches mentioned above more transparent and to obtain various forms of the
expressions which can be useful in actual calculations. It is hoped that the proposed
theory will simplify the computation of the TFG SE for nontrivial multidimensional
systems, in particular those exhibiting pronounced nonadiabatic couplings and there-
fore ultrafast decay dynamics.

For notational convenience, we use units in which h̄ = 1.
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2.2 De�nition of the time-resolved spectrum
The total intensity of the temporally gated and spectrally �ltered �eld at the position
−→r in the far-�eld region is given by the general expression [117]

Sst(t0, ω0) ∼
∫ ∞

−∞
dt

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′ Et(t

′; t0)E∗
t (t

′′; t0)× (2.1)

Fs(t− t′, ω0) F ∗
s (t− t′′, ω0) < E(−→r , t′)E(−→r , t′′)∗ > .

Here Et(t; t0) is the time-gate function which is strongly peaked near the gating time
t ∼ t0, the function F (t− t′, ω0) is responsible for the spectral �ltering near the central
frequency ω0, and < E(−→r , t′)E(−→r , t′′)∗ > is the CF of the emitted �eld. It is clear
from this de�nition that the TFG SE spectrum is always positive, in contrast to its
bare counterpart [1, 3].

For performing explicit calculations, we shall further use the standard approxima-
tions [18,19,78,79,83�85,117�119]

Et(t; t0) = exp(−[Γ(t− t0)]
2) (2.2)

or
Et(t; t0) = exp(−Γ|t− t0|) (2.3)

for the time gate function and

Fs(ω, ω0) =
γ2

γ2 + (ω0 − ω)2

leading to

Fs(t, ω0) = ϑ(t)
γ

2
exp {−(γ + iω0)t} , (2.4)

for the frequency �lter (which is a good approximation for the Fabry-Perot �lter [117]).
The constants Γ and γ determine the widths of the corresponding �lters (Γ = ∞ and
γ = 0 correspond to an ideal time and frequency resolution, respectively). ϑ(t) is the
Heaviside step function which ensures causality, and Fourier transforms are denoted as

f(ω) ≡
∫ ∞

−∞
dt f(t) eiωt ∀ f(t).

Following Ref. [117], we normalize the TFG spectrum according to the condition that
the total energy passed through the TFG �lter is equal to the emitted energy, namely

C
∫ ∞

−∞
dt0dω0

2π
Sst(t0, ω0) =

∫ ∞

−∞
dt < |E(−→r , t)|2 > . (2.5)

The normalization constant C is readily obtainable for the TFG functions (2.2)-(2.4).
One gets

C = 8ξΓ/γ, (2.6)
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with ξ =
√

2/π for Gaussian (2.2) and ξ = 1 for the exponential (2.3) time-gate.
It is straightforward to demonstrate that the light emitted by a collection of inde-

pendent dipoles in the far-�eld region is proportional to the second derivative of the
optically induced polarization [78,84,120]

−→
E (−→r , t) = − 2π

c2r

d2

dt2
−→
P (−→r , t− τr). (2.7)

Here c is the speed of light, and τr ≡ r/c is the retardation time. Integrating the CF
of the emitted light over a small solid angle on the sphere of radius r, one arrives at
the expression

< E(−→r , t′)E(−→r , t′′)∗ >∼ d2

dt′2
d2

dt′′2
< P (t′ − τr)P (t′′ − τr) > . (2.8)

In order to derive the TFG SE signal from this de�nition, it is standard practice in
the literature (a) to neglect by the retardation e�ects (τr ≡ 0) and (b) to invoke the
slowly-varying-envelope approximation, i.e. ∂2

t

−→
P (t) ≈ −ω2−→P (t), where ω is the carrier

frequency. That is tantamount to the assumption

< E(−→r , t′)E(−→r , t′′)∗ >∼< P (t′)P (t′′) > . (2.9)

Here we would like to analyze the above assumptions in some detail.
(a) Starting from the de�nition (2.1), it is elementary to demonstrate that one

obtains the signal Sst(t0− τr, ω0) from the retarded CF < P (t′− τr)P (t′′− τr) >, if the
unretarded CF < P (t′)P (t′′) > gives the signal Sst(t0, ω0). (In the derivation of this
result, it has been assumed that Et(t; t0) = Et(t0−t), which is a natural approximation
for a time gate). The retardation thus merely gives rise to a shifted time origin of the
TFG spectrum. Keeping this in mind, we put τr ≡ 0 in all subsequent calculations. It
should be pointed out, however, that for r = 1 cm, for example, one gets τr = 100 ps,
so that it is necessary to decide in a particular ultrafast experiment if the consideration
of retardation e�ects is important or not, and to de�ne correctly the time t = 0.

(b) By expressing the frequency-gate functions through their Fourier transforms
and inserting the corresponding formulas into (2.1), one gets

Sst(t0, ω0) =
∫ ∞

−∞
dω1|Fs(ω1, ω0)|2 St(t0, ω1), (2.10)

where
St(t0, ω1) ∼

∫ ∞

−∞
dt′

∫ ∞

−∞
dt′′ exp(−iω1(t

′ − t′′))× (2.11)

Et(t
′; t0)E∗

t (t
′′; t0)

d2

dt′2
d2

dt′′2
< P (t′)P (t′′) >

is the TFG spectrum obtained with ideal spectral resolution (|Fs(ω, ω0)|2 = δ(ω−ω0)).
The spectral �ltering is seen to be independent of the time gating and material system
dynamics, so that its e�ect on the TFG SE can always be removed by deconvolution
[83�85]. Proceeding in the spirit of papers [83�85], one can use Eq. (2.11) to develop
generalized Wigner spectrograms for the description of the TFG SE (see Appendix A).
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For the purposes of the further presentation, we prefer to stay in the time domain.
Integrating Eq. (2.11) by parts, one transfers the action of the time derivatives from
the polarization CF to the time gate functions, so that

St(t0, ω0) ∼
∫ ∞

−∞
dt

∫ ∞

−∞
dt′ Et(t; t0)E

∗
t (t

′; t0) exp(−iω0(t− t′)) < P (t)P (t′) >, (2.12)

where
Et(t; t0) = (

d2

dt2
− 2iω0

d

dt
− ω2

0)Et(t; t0). (2.13)

The explicit inclusion of the time derivatives in the de�nition of the TFG SE results
in a redetermination of the time gate functions. For instance, starting from Eq. (2.2),
one gets:

Et(t; t0) = [(Γ2(t− t0) + iω0)
2 − Γ2]Et(t; t0). (2.14)

Formally speaking, these generalized gate functions become complex and frequency
dependent. The inspection of the above equations allows one to estimate a criterion
for the validity of Eq. (2.9). In an experiment with ultrafast time resolution, one
normally has Γ À γ (a good �lter), Γ being the inverse of the gating-pulse duration.
If the material system under study possesses a narrow spectrum in the vicinity of the
relatively well de�ned frequency ωeg À Γ of an electronic transition, then Et(t; t0) ≈
−ω2

0Et(t; t0). When the system under study exhibits a broad or multi-peaked spectrum,
one should use the more general expressions (2.12) and (2.13). Keeping in mind the
above restrictions, we shall use formula (2.9) as the basic equation for the analysis of
the TFG SE.

Adopting the standard Fabry-Perot-like form (2.4) of the frequency �lter, one can
immediately perform the integration over t in Eq. (2.1) analytically. This yields:

Sst(t0, ω0) = C ′
∫ ∞

−∞
dt

∫ t

−∞
dt′ Et(t; t0)E

∗
t (t

′; t0)× (2.15)

(exp {−(γ + iω0)(t− t′)} < E(−→r , t)E(−→r , t′)∗ > +c.c.)

Here a new normalization constant, C ′ = Cγ/4, has been introduced. According to
Eq. (2.6), it is independent of the frequency �lter resolution γ. We shall further accept
the assumption (2.9), so that

Sst(t0, ω0) ∼ Re
∫ ∞

−∞
dt

∫ t

−∞
dt′ Et(t; t0)E

∗
t (t

′; t0)×

exp {−(γ + iω0)(t− t′)} < P (t)P (t′) > . (2.16)

2.3 Polarization
2.3.1 De�nition
The material-system dynamics is shown to enter the description in terms of two-time
CF of polarization. The optically-induced polarization P (t) is the key quantity of
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the theoretical consideration. It is the only material quantity that appears in the
equations. Consequently, a complete knowledge of the optical polarization is su�cient
for the interpretation of any time-resolved spectroscopic experiment. Electronic and
nuclear motions and relaxation processes will show up in optical measurements only
through their e�ect on the polarization. The calculation of the polarization is therefore
the primary goal of any theory of optical spectroscopy, and is a key for interpreting
spectroscopic measurements [1].

Polarization is, by a de�nition, a quantum-mechanical expectation value of the
transition dipole moment operator −̂→V :

−→
P (t) =<

−̂→
V >≡ Tr

{−̂→
V ρ(t)

}
. (2.17)

It describes the system response to the external �eld. We further adopt the semiclassi-
cal level of theoretical description, treating the material system quantum mechanically
and the external �eld classically.

To calculate the polarization, we assume that initially (at t = −∞, before �switch-
ing on� the external �eld) the system was in thermal equilibrium with respect to its
Hamiltonian H. Therefore, its density operator is given by

ρ(−∞) = Z−1e−H/kT , (2.18)
where Z is the partition function and T is the temperature.

As we have mentioned, the interaction with the external �eld is given by

HSF (t) = −→ε · −→µ E(t)e−iωt V̂ + H.c., (2.19)
where E(t) and ω are the envelope (slow function) and carrier frequency of the external
�eld, −→ε is the �eld polarization, and −→µ is the optical dipole moment (−̂→V = −→µ V̂ ). Since
we are not interested in orientational e�ects, we let −→ε · −→µ = 1.

The total Hamiltonian of the system is Htot = H + HSF (t) , and the Liouville
equation is

∂ρ(t)

∂t
= −i [H + HSF (t), ρ(t)]. (2.20)

In order to calculate the polarization of the material system according to Eq. (2.17),
we have to solve this Liouville equation for the DM.

There are two ways to proceed further: perturbatively (with respect to HSF ), us-
ing time-dependent DM perturbation theory [1, 121, 122], or nonperturbatively, incor-
porating the system-�eld interaction into the system Hamiltonian and performing a
numerical propagation of the density matrix of the driven system.

The perturbative treatment is well justi�ed in time-resolved spectroscopy, because
in virtually all experiments discussed here the laser �elds are much weaker than the
internal electric �elds. A nonperturbative treatment, on the other hand, naturally
allows the consideration of strong-�eld e�ects. This approach is straightforward for
the implementation and often is advantageous (however expensive computationally).

Throughout the text we will con�ne ourselves to the perturbative approach, since
it provides a clear physical picture and allows one to uniformly classify and to distin-
guish various physical processes contributing to a given spectroscopic experiment [1,2].
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This aspect is crucial for the interpretation of the spectroscopic signals in terms of the
system dynamics. Even if one adopts a nonperturbative approach, it still requires a
perturbative analysis of the calculated signals in order to distinguish various contribu-
tions to the signal [123,124]. Another reason for employing a perturbative treatment is
the possibility to perform part of the calculations analytically, which reduces the sub-
sequent computational e�ort considerably. The implementation of the nonperturbative
approach for the calculation of TFG SE signals is outlined in Appendix B.

2.3.2 Calculation of the polarization: perturbative approach
Using time-dependent DM perturbation theory, we can expand the density operator in
powers of the external �eld:

ρ(t) = ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + ... . (2.21)

Here ρ(n)(t) denotes the nth order contribution in the electric �eld and ρ(0)(t) = ρ(−∞).
Substituting this expression into Eq. (2.17), we obtain the corresponding expansion
for the polarization:

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + ..., (2.22)

where P (n)(t) denotes the polarization to the nth order in the electric �eld (we assume
that polarization vanishes at thermal equilibrium, P (0) = 0).

As we have mentioned, the perturbative approach is an elegant theory which allows
one to classify various signals and to distinguish di�erent contributions. Each order in
this expansion corresponds to a certain class of optical measurements. The �rst-order
polarization P (1) is responsible, e.g., for linear absorption. P (2) (and all higher order
even contributions to the polarization) vanish for isotropic systems, in particular, for
the electronic two-level system (TLS) which contains no permanent dipoles. Therefore,
the third-order polarization P (3) is the �rst non-vanishing nonlinear contribution. It
enters into all nonlinear spectroscopic techniques of the third order, e.g., pump-probe
spectroscopy, time-resolved �uorescence, and four-wave mixing.

Expanding the polarization to the �rst order in the �eld, we obtain [1]

P (1)(t) = i
∫ ∞

0
dt1 E(t− t1) {J(t1)− J∗(t1)} , (2.23)

where J(t) =< V (t)V (0)ρ(−∞) > is a linear (2-time) dipole CF (V (t) is the Heisenberg
operator).

For the third-order polarization, on gets the formula

P (3)(t) = i3
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1 E(t− t3)E(t− t3 − t2)× (2.24)

E(t− t3 − t2 − t1)
4∑

i=1

{Ri(t3, t2, t1)−R∗
i (t3, t2, t1)},

where Ri(t3, t2, t1) are the third-order nonlinear RFs [1]:

R1(t3, t2, t1) =< V (t1)V (t1 + t2)V (t1 + t2 + t3)V (0)ρ(−∞) >, (2.25)
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R2(t3, t2, t1) =< V (0)V (t1 + t2)V (t1 + t2 + t3)V (t1)ρ(−∞) >, (2.26)

R3(t3, t2, t1) =< V (0)V (t1)V (t1 + t2 + t3)V (t1 + t2)ρ(−∞) >, (2.27)

R4(t3, t2, t1) =< V (t1 + t2 + t3)V (t1 + t2)V (t1)V (0)ρ(−∞) > . (2.28)
Time variables ti represent the time intervals between successive interactions with a
�eld.

The RFs (2.25)-(2.28) provide us with the standard and universal description of
various nonlinear (third-order) spectroscopic techniques [1]. Eqs. (2.25)-(2.28) are
very general. They are not limited to any speci�c model for the system dynamics. For
the purposes of further consideration, we restrict ourselves to the system consisting
of two electronic states (ground and excited) treated in the adiabatic approximation
(electronic TLS). Furthermore, we assume that the two separated electronic states are
coupled only by the radiation �eld. Therefore, we write the Hamiltonian as

H =

(
Hg 0
0 He

)
. (2.29)

Here Hα are the vibrational Hamiltonians in the ground state (α = g) and the excited
electronic state (α = e). While this form of the Hamiltonian excludes intramolecular
nonadiabatic coupling of the excited electronic state with the ground state, it should be
stressed that He may represent several nonadiabatically coupled electronic states. The
ensuing formulation includes, in particular, the case of an optically bright excited state
which is intramolecularly coupled to one or several optically dark states. Even more
generally, it allows for an arbitrary oscillator strength for all of the nonadiabatically
coupled states. Although the form (2.29) of the molecular Hamiltonian represents a
restriction, the theory still applies to many of the experimentally interesting systems
[2] (in Section 4, e.g., He describes the dynamics of two coupled electronic states
representing ET model).

Substituting V (t) = eiHtV e−iHt with the Hamiltonian (2.29) into Eqs. (2.25)-(2.28),
one can rewrite the RFs in the explicit form:

R1(t3, t2, t1) =
〈
exp

{
i

h̄
Hgt1

}
Vge exp

{
i

h̄
Het2

}
Veg exp

{
i

h̄
Hgt3

}
Vge × (2.30)

exp
{−i

h̄
He(t1 + t2 + t3)

}
Vegρg

〉
,

R2(t3, t2, t1) =
〈
Vge exp

{
i

h̄
He(t1 + t2)

}
Veg exp

{
i

h̄
Hgt3

}
Vge × (2.31)

exp
{−i

h̄
He(t2 + t3)

}
Veg exp

{−i

h̄
Hgt1

}
ρg

〉
,
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R3(t3, t2, t1) =
〈
Vge exp

{
i

h̄
Het1

}
Veg exp

{
i

h̄
Hg(t2 + t3)

}
Vge × (2.32)

exp
{−i

h̄
Het3

}
Veg exp

{−i

h̄
Hg(t1 + t2)

}
ρg

〉
,

R4(t3, t2, t1) =
〈
exp

{
i

h̄
Hg(t1 + t2 + t3)

}
Vge exp

{−i

h̄
Het3

}
Veg × (2.33)

exp
{−i

h̄
Hgt2

}
Vge exp

{−i

h̄
Het1

}
Vegρg

〉
,

where Vge , Veg are the (coordinate-dependent) electronic matrix elements of the tran-
sition dipole operator coupling these states (V̂ = Veg(q) |e〉 〈g|+ Vge(q) |g〉 〈e|).

To get a clear physical interpretation, one can switch from the ordinary Hilbert
space to an equivalent expression in the Liouville space (see a book of Mukamel [1]).
For example, the RFs R1 and R2 (only these functions will appear in the expressions
for TFG SE) can be written as (Eq. (7.11) in [1]):

R1 =
〈〈

Veg|Geg(t3)Ṽeg, eeGee(t2)Ṽee, egGeg(t1)Ṽeg, gg|ρg

〉〉
, (2.34)

R2 =
〈〈

Veg|Geg(t3)Ṽeg, eeGee(t2)Ṽee, geGge(t1)Ṽge, gg|ρg

〉〉
, (2.35)

where G(t) is the Liouville space Green function and Ṽ is the dipole operator in Li-
ouville space, which are de�ned by its action on an ordinary nuclear operator A :
Gnm(t)A = e−iHntAeiHmt; Ṽ A = [V, A].

The nonlinear RFs have the following physical interpretation in Liouville space:
the system is initially at equilibrium in the ground electronic state and its nuclear
density operator is ρg. The �rst interaction with the external �eld (pump pulse)
[which takes place at time t− t1 − t2 − t3] sets up an optical coherence in the system;
Geg(t1) [or Gge(t1)] represents the evolution and dephasing of this coherence. The
second interaction (at time t − t2 − t3) converts the coherence into the population of
the excited electronic state (|e〉). During the time t2 between the second and third
interactions, the system's evolution is given by Gee(t2). This represents a propagation
in the excited electronic state. Subsequently, the third interaction (at time t − t3)
creates again an electronic coherence that evolves during t3 [Geg(t3)]. Finally, at time
t the polarization is calculated by acting with V from left and performing the trace.

2.3.3 Time- and frequency-resolved signal in terms of response
functions

Now we are in a position to develop further the theory of TFG SE. We restrict our-
selves to the simplest (but important) case when the excitation and emission processes
are well separated temporally (non-overlapping pulses assumption). Under these condi-
tions, the SE consists primarily of the �uorescence component; the Raman contribution
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can be neglected due to fast optical dephasing [1�3]. We proceed further in a standard
way. Employing the rotating-wave approximation (RWA) [34] (only completely reso-
nant interactions are considered), retaining only sequential contributions (excitation
precedes gating) and performing some standard manipulations (see, e.g., [1, 83�85]),
one can recast Eq. (16) in the following form:

Sst(t0, ω0) ∼ Re
∫ ∞

−∞
dt

∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1× (2.36)

Et(t− t0)Et(t− t3 − t0)EL(t− t3 − t2)EL(t− t3 − t2 − t1)×

e−(γ−iω0)t3
{
R1(t3, t2, t1)e

iωLt1 + R2(t3, t2, t1)e
−iωLt1

}
,

Here ωL and EL(t) are the frequency and the envelope of the excitation pulse; and
Et(t) is the envelope of the gate pulse which was introduced in Eqs. (2.2), (2.3).

Before proceeding further, let us analyze this equation. Clearly, if there is no time
gating (Γ = 0, Et = 1), then the TFG spectrum reduces to the frequency-domain
�uorescence spectrum (see Eq. (9.10b) in [1]). On the other hand, by comparing Eq.
(2.36) with Eq. (11.8) in [1], one immediately realizes that the TFG SE is nothing
else than the excited-state (stimulated-emission) contribution to the integrated pump-
probe spectrum for non-overlapping pulses. The �lter thus de�nes an e�ective carrier
frequency ω0 of the probe, and the temporal gate function represents the probe envelope
centered at t0. The only di�erence stems from the imperfection of the frequency �lter
γ, which controls the spectral resolution of the TFG SE. For an ideal �lter (γ = 0) the
analogy is complete, and one recovers the equations derived in [3, 54].

A close similarity between the TFG SE and pump-probe spectra has repeatedly
been emphasized in the literature [1�3, 67, 75, 114]. It should be noted, however, that
the equivalence between the TFG SE signal and stimulated-emission contribution to
the sequential integral pump-probe signal holds only in the leading (second) order in the
pump and probe pulses. In this case also the �bare� TFG SE spectrum coincides with
the stimulated-emission contribution to the dispersed pump-probe spectrum [75, 114].
It is of importance that both stimulated emission (from the electronically excited state)
and stimulated Raman (from the ground state) processes contribute to the overall
pump-probe signal, even in the case of sequential, nonoverlapping pump and probe
pulses. On the other hand, if the excitation and gate pulses do not overlap, the SE
consists solely of the �uorescence (excited state) component. As a consequence, one
cannot experimentally separate the ground and excited state contribution to the pump-
probe signal. The SE signal from the excited state is, however, background free. So,
in general, the TFG SE is not simply related to the pump-probe signal.

2.3.4 Calculation of response functions
The system dynamics enters into TFG SE signal via nonlinear RFs, which become the
key quantities of our consideration. However, the calculation of these nonlinear RFs
for most of the systems is a di�cult task. In Chapters 2-4 and 6 we present di�er-
ent methods for the calculation of RFs and illustrate them by explicit calculations of
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TFG SE signals for di�erent model systems. In Chapter 3 we consider the situation
when explicit expressions for RFs are available (simple model systems). For electron-
ically nonadiabatic systems, an alternative simple model for the calculation of RFs is
developed in Chapter 6. This model produces qualitatively correct RFs.

The main goal of this thesis is the development of the tool for the interpretation of
the TFG SE spectra of nontrivial, i.e., multidimensional, dissipative and/or nonadia-
batic systems. For such systems, analytic solutions do not exist and a straightforward
computational treatment of the quantum dynamics (computation of RFs) is not fea-
sible. To solve this problem, we further develop in this chapter the doorway-window
(DW) picture of the TFG SE which will simplify the computation of RFs (and, con-
sequently, the calculation of the signals). This formulation reduces the computational
e�ort considerably, since some of the integrals can be performed analytically. Con-
comitantly, this formulation allows us to obtain various forms of the explicit analytical
expressions (if the problem is treated in terms of the eigenvalues and eigenfunctions of
the ground and excited state Hamiltonians) which can be useful in actual calculations.

2.4 Doorway-window representation of time-resolved
spectra

To achieve our goals, it is convenient to develop the DW representation of the TFG
spectrum. This has already been done partially in papers [3, 54] (for perfect spectral
�lters) and in [63,64,83�85] (for �bare� spectra, which are connected with �real� TFG SE
spectra through the convolution with the joint time-frequency gate function). The aim
of the present consideration is to directly develop the DW description for �real� TFG
SE spectra. The idea of this representation is to separate the four-time integral in the
expression for the TFG SE spectrum (2.36) into two independent two-time integrals,
which have clear physical interpretations.

2.4.1 Doorway-window picture: operator form
Keeping in mind the above-mentioned analogy between TFG SE and stimulated emis-
sion, the desired DW representation can directly be taken over from the corresponding
representation for the pump-probe spectrum (see, e.g., [1, 3, 84]). The result reads:

Sst(t0, ω0) ∼ Tr[W (ω0)G(t0)D(ωL)]. (2.37)

Here
D(ωL) =

∫ ∞

−∞
dt′

∫ ∞

0
dt1 EL(t′)EL(t′ − t1)e

iωLt1× (2.38)

eiHet′ e−iHet1 Vegρg eiHgt1 Vge e−iHet′ + H.C.

is the doorway operator,

W (ω0) =
∫ ∞

−∞
dt

∫ ∞

0
dt3 Et(t + t3)Et(t)e

(iω0−γ)t3× (2.39)
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eiHet Veg eiHgt3 Vge e−iHet3e−iHet + H.C.

is the window operator,
G(t)X = e−iHetXeiHet ∀ X (2.40)

is the excited-state propagator, Veg and Vge are the transition dipole moments (these
are constants in the Condon approximation),

ρα ≡ Z−1
α e−Hα/kT (2.41)

are the equilibrium vibrational distributions in the ground (α = g) and excited (α = e)
states, and Zα are the corresponding partition functions.

The DW representation is seen to provide a very simple and intuitive picture of the
TFG SE measurement. We can think of the �uorescence emission as a stepwise process,
which proceeds via optical creation of population in the excited state by the pump pulse
(which is de�ned by the D operator), its subsequent evolution (which is described
by the excited-state propagator e−iLt0), and �uorescence emission (the W operator
describes the TFG detection). Evidently, the entire information about the TFG process
is contained in the window operator (2.39). When γ = 0, one recovers the standard
window operator for pump-probe spectroscopy (see, e.g., Eq. (13.4a) in [1]). In the
opposite limit, γ →∞, the frequency resolution disappears entirely, W0(ω0) ≈ 1/γ, so
that the TFG SE re�ects the time-dependent excited-state population:

Sst(t0, ω0) ∼ Tr[G(t0)D(ωL)] =< ρe(t0) > .

Starting from the DW representation, we can immediately establish several general
properties of TFG spectra. If t0 = 0, the TFG spectrum is just the trace of the product
of the doorway and window WPs. Since the doorway function represents the initial
population of the electronically excited state, the corresponding TFG spectrum can
be interpreted as SE from this nonequilibrium excited state. In the opposite extreme
case, t0 →∞, there are two possibilities. First, if our system is coupled to a dissipative
bath, then eventually

G(t0 →∞)D(ωL) → ρe.

If, in addition, the time-gate function is short enough at the time scale of nuclear
motion, but long enough compared with the optical coherence dephasing time, one
arrives at the so-called snapshot limit for the window function [1], in which

W0(ω0) =
∫ ∞

0
dt3 e(iω0−γ)t3 Veg eiHgt3 Vge e−iHet3 + H.C., (2.42)

so that

Sst(t0 →∞, ω0) → Tr[W0(ω0)ρe].

This is nothing else than the relaxed �uorescence spectrum, in which γ plays the role of
the inverse �uorescence lifetime. To put it di�erently, the TFG SE spectrum tends to
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a certain asymptotic spectrum, which re�ects emission from the equilibrated excited-
state distribution ρe.

If one considers non-dissipative system dynamics, then the limit G(t0 →∞)D(ωL)
does not exist, and the TFG spectrum mirrors the oscillatory WP motion in the ex-
cited state. Generally, if the dissipation is not very strong, the processes of �uores-
cence and intramolecular dissipation are in competition, resulting in a time-dependent
�uorescence shift and an oscillatory approach to the asymptotic relaxed �uorescence
spectrum (see Chapter 3).

Note also that the doorway function (2.38) is nothing else than the asymptotic (at
times much greater than the excitation-pulse duration) value of the DM, evaluated to
the leading (second-order) contribution in the perturbation expansion. Alternatively
(and more accurately), it can be computed nonperturbatively in the pump �eld, by
including the �eld-matter interaction during the excitation into the system Hamiltonian
[67,82] (see Appendix B for the further details).

2.4.2 Doorway-window picture: computational aspects
To evaluate the D and W functions (2.38), (2.39), we introduce the eigenstates:

Hg|n >= En|n >, He|α >= Eα|α > (2.43)

(hereafter, the eigenvalues and eigenfunctions of Hg and He are denoted by Latin and
Greek letters, respectively). The corresponding frequencies read:

ωαn = Eα − En, ωαβ = Eα − Eβ. (2.44)

The D and W functions can then be expressed in terms of the eigenvalues and eigen-
functions of the system Hamiltonians. It should be remarked that for electronically
nonadiabatic systems the use of the eigenstate representation is computationally feasi-
ble for system Hamiltonians containing several vibrational modes (up to 7 in favorable
cases [2, 55�57]), so that the use of Eqs. (2.43) is not very restrictive.

One can additionally assume that the time-gate functions and the excitation pulses
are exponential and described by equations like (2.3). It may seam somewhat unre-
alistic to model the envelopes of laser pulses by exponentials, but, at the qualitative
level at least, it is justi�ed. It has been shown that the substitution of �actual� Gaus-
sian pulse envelopes by their exponential counterparts does not give rise to substantial
quantitative di�erences in the pump-probe signals [78,79]. This approximation makes
it possible to analytically perform all the time integrations in (2.38) and (2.39), with
the result:

Sst(t0, ω0) ∼
∑

α,β,α1,β1

Wαβ(ω0)G
αβ
α1β1

(t0)Dα1β1(ωL) (2.45)

where

Dαβ(ωL) =
∑
n

VαnVnβρg(n)

{
1

ΓL − i(ωL − ωαn)

1

ΓL − i(ωL − ωβn)
(2.46)

+
1

2ΓL − iωαβ

1

ΓL − i(ωL − ωβn)
+

1

2ΓL + iωαβ

1

ΓL − i(ωL − ωαn)

}
+ C.C.
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Wαβ(ω0) =
∑
n

VαnVnβ

{
1

Γ− i(ω0 − ωαn)

1

Γ + γ − i(ω0 − ωβn)
(2.47)

+
1

2Γ + γ − iωαβ

1

Γ + γ − i(ω0 − ωβn)
+

1

2Γ + γ + iωαβ

1

Γ− i(ω0 − ωαn)

}
+ C.C.

Here Vαn , Vnβ are the matrix elements of the transition dipole moments between
the eigenstates |α > and |β > (belonging to the excited electronic state) and |n >
(belonging to the ground electronic state). These are the �nal expressions for the TFG
SE spectrum which are used in most of the subsequent calculations.

If one wishes to develop the DW description beyond the slowly varying envelope
approximation, it is possible to start from the de�nition (2.39) for the window function,
but with the gate function Et(t; t0) substituted by its generalized counterpart Et(t; t0)
(2.13). One can then analytically obtain the analogue of Eq. (2.47), but we avoid
doing this here in order not to overburden the presentation with technical details.

2.4.3 Connection between the two theoretical approaches
If one considers a bath-free material system, then

Gαβ
α1β1

(t0) = e−iωαβt0δαα1δββ1 (2.48)

so that
Sst(t0, ω0) ∼

∑

α,β

Wαβ(ω0)e
−iωαβt0Dαβ(ωL). (2.49)

This is nothing else than a compact form of the formula obtained by Kowalczyk et
al. (Ref. [79], Eq. (17)) and subsequently rederived by Santoro et al. (Ref. [78],
Eq. (11)). The formula in Ref. [78] additionally contains contributions due to the time
derivatives of the dipole moments (cf. the discussion in Sec. 2.2). If the frequency �lter
is good enough (Γ À γ) and if 1/Γ is much shorter than the characteristic vibrational
relaxation time and much longer than the optical coherence dephasing time, one arrives
at an ideal (snapshot) TFG spectrum [85]. In that case

Wαβ(ω0) ≈ 1

2Γ

∑
n

VαnVnβ

{
1

Γ− i(ω0 − ωβn)
+

1

Γ− i(ω0 − ωαn)

}
+ C.C. (2.50)

As has been explained above (see Eq. (2.12)-(2.14)), the ideal spectrum S0(t0, ω0) ∼ ω4
0.

Therefore, to �nd the number of photons passed through the detector, one must divide
S0(t0, ω0) by ω0, which gives rise to a ω3

0 dependence of the signal. Keeping this
in mind, one immediately notes that Eq. (2.45) with the window function (2.50)
recovers the result by Jean [52] and Lin et al. [102, 103] obtained for an ideal time
and frequency resolved SE spectrum. The present analysis therefore bridges the gap
between the di�erent formulations of the TFG SE signal [1,52,71,75,102,103,115,116],
[2,18,19,78,79,83�85,119], and [3,54], and also provides the criterion of the validity of
passing from �real� to �bare� SE spectra.
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2.4.4 Transient e�ects
Up to now, the theory relied signi�cantly upon the assumption that the excitation
pulse and the temporal gating were well separated, so that all transient e�ects can
be neglected. These e�ects manifest themselves through exponentially small contribu-
tions to the TFG SE spectra, which are proportional to the terms like exp(−Γt0) and
disappear for t0 À 1/Γ. There exists, however, an important particular case, which
allows one to explicitly incorporate the transient terms into the DW picture. Namely,
let us consider the so-called impulsive excitation, when the pump pulse can be regarded
as truly instantaneous on the time scale of both nuclear dynamics and electronic de-
phasing. By inserting the expression EL(t) = δ(t) into Eq. (2.36) and making no
further approximations, one also arrives at the DW formula (2.37), but with modi�ed
doorway Dimp(ωL) and window W imp(ω0) operators. Evidently, Eq. (2.38) simpli�es
to Dimp(ωL) = ρg. On the other hand, W imp(ω0) is also given by Eq. (2.39) in which,
however, the lower limit of integration over t changes from −∞ to −t0. Clearly, for
t0 À 1/Γ (that is tantamount to saying that the pump and gating processes are well
separated) W imp(ω0) → W (ω0). Moreover, following the argumentation outlined above
for the standard DW operators, it is natural to invoke the eigenvalue representation
(2.43), (2.44) for obtaining the explicit form of W imp(ω0). The result reads:

W imp
αβ (ω0) = Wαβ(ω0)−W tr

αβ(ω0), (2.51)

where Wαβ(ω0) is given by Eq. (2.47) and

W tr
αβ(ω0) =

∑
n

VαnVnβ

{
exp{−(2Γ + γ + iωαβ)t0}

2Γ + γ + iωαβ

1

Γ + γ + i(ω0 − ωβn)
+ (2.52)

exp{−(Γ− i(ω0 − ωαn))t0}
Γ− i(ω0 − ωαn)

[
1

Γ + γ − i(ω0 − ωβn)
+

1

Γ + γ + i(ω0 − ωβn)

]}
+ c.c.

As is expected, the transient terms in�uence the TFG SE at times t0 ∼ 1/Γ (see also
Chapter 3) but vanish for t0 À 1/Γ. The above results show that, if one intends
to extract information about the system dynamics from the TFG SE spectra, there
is no intrinsic limitation to the duration of the pump pulse, since its variation just
modi�es the doorway function, i.e. the initial vibrational distribution in the excited
state. In that sense, the δ-excitation pulse creates the most natural distribution, by
merely transferring ρg into the excited state without distortions. On the other hand,
if one wishes to monitor the SE with time and frequency resolution, the gating time
should not be too small. Otherwise (Γ À 1), the spectral resolution is completely lost.

2.5 Doorway-window picture for dissipative systems
Up to this moment, the precise meaning of the Hamiltonians Hg and He in Eqs. (2.37)-
(2.40) has not been speci�ed yet. The explicit expressions for the TFG SE signal within
DW-picture have been obtained in terms of the system eigenstates. As we have already
emphasized, an eigenvalue representation is computationally feasible for Hamiltonians
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containing several vibrational modes with electronic inter-state couplings [2, 55�57].
However, the objects of interest for experimentalists (and for us) are nontrivial systems,
i.e., polyatomic molecules with the excited-state dynamics characterized by ultrafast
electronic and vibrational relaxation processes. When the number of vibrational modes
increases, a straightforward computational treatment of the quantum dynamics is no
longer possible. For this reason, it is conventional practice to adopt a system-bath
(SB) approach, which leads to a reduced density matrix (RDM) description. In this
section, we extend the DW formalism to TFG SE of dissipative systems.

In the system-bath approach only a few optically active vibrational modes, which
are directly coupled to the electronic transition, constitute the relevant system, while
the bath represents the manifold of inactive vibrational modes of the molecule and/or
the degrees of freedom of the solvent. For example, this naturally allows one to study
the relaxation behavior of molecules letting a system (the chromophore) to be coupled
to an environment. Thus, the total Hamiltonian is expressed as a sum of system (S),
bath (B) and a system-bath interaction (SB) contributions:

Hg = HS
g + HB

g + HSB
g , He = HS

e + HB
e + HSB

e . (2.53)
In order to propagate D(ωL) for a time t0 in Eq. (2.45), we can then switch from the
entire (system plus bath) phase space to that of the system only. This is a standard
procedure in problems of this kind [1]. It is believed that, in doing so, we do not
introduce signi�cant errors into the description. By integrating out the bath degrees of
freedom (see Chapter 4), one arrives at the dissipative kinetic equation for the RDM
in the excited electronic state

∂σ(t)

∂t
= −iLσ(t), (2.54)

where, in a general form, L is the excited-state Liouvillian. The RDM σ(t) is the
primary quantity describing the system dynamics.

One thus can regard D(ωL) as the initial value of the reduced (system) DM in the
excited state, which subsequently evolves according to the appropriate kinetic equation
of motion. For multimode systems with electronic couplings, one can invoke di�erent
methods for the treatment of dissipative e�ects: (i) certain phenomenological dissipa-
tive equations (see, e.g., [2, 3, 75, 122] and a more general model in Chapter 6), (ii)
Red�eld formalism in various approximations [2,50�64] (see Chapter 4), (iii) semiclas-
sical and quantum Fokker-Planck equations [65�67], or (iv) kinetic equations [68�74].

We have to emphasize some important technical aspects in DW-formalism which
arise due to the partitioning of the total system. We invoke a standard assumption
that the excitation and the gate pulses are short enough at the time scale of the
system-bath relaxation [1, 3]. In this case, no bath-induced excited-state population
relaxation occurs during the pump and probe processes, and one can substitute the
corresponding total Hamiltonians by their system parts in the doorway (2.38) and
window (2.39) operators , i.e.

Hg → HS
g , He → HS

e . (2.55)

This justi�es the evaluation of the DW functions in terms of the eigenvalues and eigen-
functions of these system Hamiltonians: for |α > and |n > in Eqs. (2.45)-(2.47) one
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should take the system eigenstates. Therefore, for the calculation of the TFG SE spec-
tra for dissipative systems one can use the general DW equations in an operator form
(2.37)-(2.39), or explicit expressions in the eigenstate representation (2.45)-(2.47) hav-
ing �rst substituted the Hamiltonians and eigenstates of the total (S plus B) system by
the corresponding operators and values of the relevant system only.

Summarizing, a general scheme for the calculation of TFG SE within DW repre-
sentation is the following: The �rst step is to evaluate the eigenstates of the system
Hamiltonians HS

g and HS
e (Eq. (2.43)). One then calculates the D function (2.46)

which describes the optically prepared initial state of the system (the initial value of
the RDM in the excited state):

σαβ(0) = Dαβ(ωL). (2.56)
After that one performs a propagation over a time interval t0 according to the appropri-
ate kinetic equations of motion describing system dynamics with the initial condition
(2.56), yielding the RDM σαβ(t0). For nontrivial systems, this is the computationally
most expensive part. The �nal step is the contraction of the RDM σαβ(t0) with the W
function (2.47) which describes the detection process. This yields the desired TFG SE
spectrum:

Sst(t0, ω0) =
∑

α,β

Wαβ(ω0)σαβ(t0). (2.57)

Note that this method requires the D and W operators to be calculated only once.

2.6 Summary
The ultimate goal of the present work is the development of a computationally oriented
framework for the description of TFG SE of nontrivial systems, that is, multi-mode
systems with strong electronic inter-state couplings which interact with a thermal bath.
The speci�c tasks are as follows: (i) to develop a universal description of the TFG SE,
(ii) to clarify the in�uence of the spectral �ltering and temporal gating on the TFG SE
spectra, and (iii) to connect the measured TFG SE spectra with the time evolution of
the corresponding material systems.

The material-system dynamics has been shown to enter the description in terms of
the two-time CF of the second derivatives of the transition dipole moment (Eqs. (2.1)
and (2.8)). In the evaluation of the CF, retardation e�ects due to the �niteness of the
speed of light should be taken into account. The CF, convoluted appropriately with
the corresponding time-gate and �lter functions, yields the experimentally measured
TFG SE spectra. The convolution requires three consecutive time integrations to be
performed. It has been demonstrated that, by taking the standard Fabry-Perot-like
frequency-�lter function (2.4), one of these integrations can be performed analytically
(Eq. (2.15)), irrespective of a particular form of the CF (2.8) and the time-gate func-
tion. The validity of the commonly employed approximation (2.9) has been discussed
and generalized expressions have been derived for the TFG SE in terms of Wigner
spectrograms beyond this approximation. The retardation e�ects are demonstrated to
give rise to a rede�nition (back shift) of the time origin of the TFG SE spectrum.
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We have further developed the DW picture of the TFG SE, under the assumption
that the excitation and gating processes are well temporally separated. This casts the
description of the TFG SE into an intuitively appealing form in terms of WP dynamics
in the excited state. This method requires the doorway and window operators to be
calculated only once, so that subsequent propagation of the doorway operator over
a time interval t0 and its averaging together with the window operator according to
Eq. (2.37) yield the TFG SE spectrum Sst(t0, ω0). It has been shown that the TFG
SE is equivalent to the stimulated-emission contribution to the integral pump-probe
spectrum. In this case the time-gate function plays the role of the envelope of the
probe pulse, and the spectral �lter function determines its carrier frequency. The only
subtle di�erence stems from the imperfection of the spectral �lter (γ 6= 0), but this is
negligibly small for good �lters.

It should be noted, however, that the equivalence between the TFG SE signal and
stimulated-emission contribution to the sequential integral pump-probe signal holds
only in the leading (second) order in the pump and probe pulses. In this case also the
"bare" TFG SE spectrum coincides with the stimulated-emission contribution to the
dispersed pump-probe spectrum [75,77]. It is of importance that both stimulated emis-
sion (from the electronically excited state) and stimulated Raman (from the ground
state) processes contribute to the overall pump-probe signal, even in the case of sequen-
tial, nonoverlapping pump and probe pulses. On the other hand, if the excitation and
gate pulses do not overlap, the SE consists solely of the �uorescence (excited state)
component. As a consequence, one cannot experimentally separate the ground and
excited state contribution to the pump-probe signal. The SE signal from the excited
state is, however, background free. So, in general, the TFG SE is not simply related
to the pump-probe signal.

If the DW operators are expanded over the complete set of eigenfunctions of the
bath-free Hamiltonian and if one assumes the exponential time-gate function (2.3), the
DW functions can be evaluated analytically beyond the snapshot limit. The theory
developed in the present work (i) allows one to establish some model-independent prop-
erties of TFG spectra, (ii) bridges the gap between the di�erent kinds of descriptions
introduced previously, (iii) helps in determining their limitations, and (iv) clari�es
interconnections between �real� and �bare� spectra.



Chapter 3

Time-resolved �uorescence of simple
model systems

3.1 Introduction
As we have already emphasized, all third-order nonlinear spectroscopic signals can be
expressed in terms of response functions Ri(t3, t2, t1) [1]. In this chapter, we consider
systems for which the third-order nonlinear RFs can be calculated analytically, i.e.,
explicit expressions for RFs are available. We perform explicit calculations of TFG
spectra for several standard benchmark systems (namely, free, Brownian, and Drude
oscillators). These systems are modeled by displaced harmonic oscillators in the ground
and excited electronic states which are coupled to a bath in a di�erent manner: the
free harmonic oscillator is dissipation-free, the Brownian oscillator is coupled to a con-
ventional (Markovian) thermal bath, while the Drude oscillator is coupled to a thermal
bath with the exponential memory kernel. These systems with rather transparent dy-
namics allow us to illustrate the material of the preceding chapter and to investigate
separately di�erent e�ects on the TFG SE spectra:

• By considering the TFG SE of harmonic oscillators (Sec. 3.2), we will (i) study
the in�uence of the quality of the spectral and temporal �ltering on the measured
spectra and (ii) show to what extent the measurable signals re�ect the intrinsic
WP motion.

• The Brownian oscillator model (Sec. 3.3) is adopted to illustrate the manifes-
tation of di�erent regimes of the bath-induced relaxation in the time-frequency
evolution of the SE spectra. The analysis focuses on the strength of the system-
bath coupling.

• The e�ect of the �nite bath correlation time (non-Markovian bath) on the TFG
spectra is addressed within a Drude oscillator model (Sec. 3.4).

Nonlinear RFs are uniquely determined by the lineshape function [1]

g(t) =
∫ t

0
dt′

∫ t′

0
dt′′ C(t′′), (3.1)

25
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where

C(t) =< eiHgtU e−iHgtUρg > (3.2)
is the energy-gap CF, U ≡ He−Hg−h̄ωeg is a collective energy gap coordinate with ωeg

being a parameter (usually, it is chosen to be equal to the thermally averaged electronic
energy gap: ωeg ≡ 〈He −Hg〉).

Nonlinear RFs R1,2(t3, t2, t1) can be written explicitly in terms of g(t) [1]:

R1(t3, t2, t1) = exp(−iωegt1 − iωegt3)× exp{−g∗(t3)− g(t1)− f(t3, t2, t1)}, (3.3)

R2(t3, t2, t1) = exp(iωegt1 − iωegt3)× exp{−g∗(t3)− g∗(t1) + f ∗(t3, t2, t1)}, (3.4)

with
f(t3, t2, t1) = g(t2)− g(t2 + t3)− g(t1 + t2) + g(t1 + t2 + t3). (3.5)

For a speci�c model system, one de�nes the energy gap coordinate U, then calculates
g(t) according to Eq. (3.1), and �nally obtains R1,2(t3, t2, t1) from Eqs. (3.3), (3.4).

To render the presentation more transparent and to visualize the dynamic and
transient e�ects, we invoke the Condon approximation (Veg is independent of nuclear
coordinates) and restrict ourselves to the case of impulsive excitation (cf. the discussion
in Section 2.4.4). After separating g(t) into real and imaginary parts [ g(t) = g′(t) +
ig′′(t) ] and inserting EL(t) = δ(t) into Eq. (2.36), this equation reduces to

Sst(t0, ω0) ∼ Re
∫ ∞

0
dt

∫ ∞

0
dt3 Et(t− t0)Et(t− t3 − t0)× (3.6)

{
e−g∗(t3)−2i[g′′(t)−g′′(t−t3)] e[−γ+i(ω0−ωeg)]t3

}
.

The formula (3.6) allows us to calculate TFG spectra for di�erent values of the param-
eters of the models and for various qualities of the time and frequency �lters (see Figs.
3.1-3.4).

3.2 Harmonic oscillator
The simplest system for which the RFs can be calculated analytically is a free harmonic
oscillator. It represents an electronic TLS coupled to a number of independent har-
monic modes (representing, e.g., intramolecular vibrations, local intermolecular modes,
and collective solvent modes) whose equilibrium position is displaced between the two
electronic states. In this model, the vibrational Hamiltonians assume the form (we
consider a case of a single vibrational mode):

Hg =
Ω

2
(p2 + q2), (3.7)
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He = ω0
eg +

Ω

2
(p2 + (q + d)2), (3.8)

where Ω is the oscillator frequency, and p, q and d are the (dimensionless) momentum,
coordinate and the horizontal displacement (between the minima of the two electronic
states), representing this mode.

3.2.1 Analytic response functions
Nonlinear RFs for harmonic oscillators can be obtained in several ways:

1) via thermally averaged linear RF (using the Feynman disentangling technique)
which provides an interpretation and evaluation in terms of vibrational WPs ( [125]);

2) using time-dependent DM perturbation theory and decomposing the nonlinear
RF in a product of two CFs ( [122,126]);

3) using the cumulant expansion which provides an exact solution for systems with
Gaussian statistics, e.g., when the electronic system is coupled to a harmonic bath
( [1]).

We will adopt the notation introduced by Mukamel, since this is the generally
accepted one in the �eld of nonlinear spectroscopy.

The electronic energy gap in the harmonic oscillator model is

ωeg = ω0
eg + Ωd2/2 = ω0

eg + λ. (3.9)

Here ω0
eg is the frequency of the 0-0 transition, and λ = Ωd2/2 is Stokes shift. For the

energy gap coordinate we obtain:

U = Ωdq. (3.10)
Substituting this into Eq. (3.2), and using creation [ a+ = 1√

2Ω
(Ωq − ip) ] and anni-

hilation [ a = 1√
2Ω

(Ωq + ip) ] operators, one arrives at the following expression for the
CF:

C(t) = Ω2S{(〈n〉+ 1)e−iΩt + 〈n〉 e+iΩt}, (3.11)
where S = d2/2 is the Huang-Rhys factor (which is a dimensionless parameter rep-
resenting the coupling strength of the vibrational mode to the electronic coupling),
〈n〉 = 1/(e2ε− 1) is the thermally averaged occupation number of the harmonic mode,
and ε = h̄Ω/2kT is the ratio of zero-point energy and thermal energy of the oscillator.

As a result, the model leads to the following expression for the line shape function
[1]:

g(t) = S{coth(ε)[1− cos(Ωt)] + i[sin(Ωt)− Ωt]}. (3.12)
We see that the parameters which determine the system dynamics are the oscillator
frequency Ω, the horizontal shift d (or, equivalently, Stokes shift λ) and �temperature�
ε.

Note that in this chapter we use dimensionless variables, in which time is measured
in units of Ω−1 and frequencies in units of Ω, and the frequency origin is chosen as ωeg.
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3.2.2 Time and frequency resolution e�ects
The consideration of the TFG SE of harmonic oscillators allow us to investigate in detail
the in�uence of the quality of temporal and spectral �ltering (to get a feeling how the
TFG procedure works). We consider the case of a large Stokes shift (λ = 5) and low
temperature (ε = 10). Fig. 3.1a corresponds to the case of good spectral resolution
(γ = 0.3) but poor temporal resolution (Γ = 0.2). The TFG spectrum changes only
slightly with time. It looks almost static, since the fundamental vibrational period τΩ

(which equals 2π in our dimensionless units) is of the order of the characteristic gating
time 1/Γ. The spectrum exhibits a double ridge structure, which re�ects the locations
of the WP on the excited-state potential surface in the vicinity of the classical turning
points. That is why the local maxima of the right (left) ridge occur at t0 = 0, 2π, 4π, ...
(t0 = π, 3π, ...). Since quantum e�ects are pronounced (ε = 10) and the frequency
resolution is high, the spectrum possesses vibrational structure.

If one improves the temporal resolution (Γ = 1), the following qualitatively new
properties emerge (Fig. 3.1b). First, the formerly static spectrum acquires pronounced
dynamic features and exhibits an oscillatory behavior, which mirrors the motion of the
WP in the excited state. Evidently, the frequency of these oscillations coincides with
the free oscillator frequency Ω = 1. Second, the vibrational structure completely
disappears, despite the fact that the frequency resolution is kept unchanged. The
maxima of the TFG SE signal correspond to the classical turning points of the WP
in the excited state as discussed above. So, in the vicinity of these points (t0 =
π, 2π, 3π, ...), the WP rephases and becomes narrow. On the contrary, it develops the
maximal speed near the potential minimum (t0 = π/2, 3π/2, 5π/2, ...) and, therefore,
broadens. The signal thus monitors not only the position of the WP, but also the speed
of the WP motion. By comparing Fig. 3.1b with those from, e.g., the reviews [2,125],
one sees that the overall behavior of the TFG SE signal and the stimulated-emission
contribution to the integral pump-probe signal is essentially the same. In general,
Sst(t0, ω0) can be regarded as a progression of instantaneous (at a particular t0) spectra,
which exhibit a time-dependent shift. Since there is no dissipation, Sst(t0, ω0) is τΩ-
periodic, but the widths and heights of the maxima of these instantaneous spectra are
t0-dependent.

This kind of behavior should be contrasted with that depicted in Fig. 3.1c, in which
Sst(t0, ω0) is shown for the case of high temporal resolution (Γ = 5, 1/Γ ¿ τΩ), the
other parameters being unchanged. This situation corresponds, in fact, to the ideal
(snapshot) TFG SE spectrum. As in the previous �gure, Sst(t0, ω0) is τΩ-periodic,
but the widths and heights of the maxima of the instantaneous spectra are almost t0-
independent. The explanation of these qualitative changes is provided by Eqs. (2.47)-
(2.50). To calculate the ideal TFG spectrum for a dissipation-free system, one may use
Eqs. (2.49) and (2.50). The inspection of these formulas reveals that S0(t0, ω0) consists
of a sum of Lorentzians which are multiplied by time-dependent factors e−iωαβt0 . Note
that these factors are determined by the transition frequencies in the excited state. For
a particular t0, these factors just single out the maximal contributions to S0(t0, ω0),
corresponding to ωαβ t0 = 2πn (n = 0, 1, 2, ...). On the other hand, the widths and
heights of the Lorentzians are time-independent and speci�ed by the e → g transition
frequencies ωαn. If one considers the TFG SE beyond the snapshot limit, one should
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Figure 3.1: In�uence of temporal and spectral resolution on the SE spectrum of a
bath-free (Λ = 0) displaced (λ = 5) harmonic oscillator in the low-temperature limit
(ε = 10) with (a) γ = 0.3 (good spectral resolution) and Γ = 0.2 (poor time resolution);
(b) γ = 0.3 and Γ = 1 (satisfactory time resolution); (c) γ = 0.3 and Γ = 5 (high time
resolution); (d) γ = 5 (poor frequency resolution) and Γ = 1. The TFG SE intensity is
given in arbitrary units. All the other parameters are dimensionless, the free oscillator
frequency Ω is taken as the frequency unit and its inverse 1/Ω as the time unit.
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employ the more general Eq. (2.47) for the window function. It also can approximately
be regarded as a sum of certain �spectral functions�, multiplied by the same time-
dependent factors e−iωαβt0 . In contrast to the snapshot case, the �spectral functions�
are the products of two Lorentzians, which are both ωαn and ωαβ dependent. So, in
general, the excited-state frequencies ωαβ a�ect the widths and maxima of Sst(t0, ω0)
and, therefore, make these t0-dependent. When Γ is further increased, the spectral
features of Sst(t0, ω0) are smeared out. In principle, any frequency resolution disappears
in the limit Γ À 1, in which one merely measures the time-dependent population in the
excited state, since Sst(t0, ω0) → Tr[G(t0)D(ωL)]. Similarly, if the spectral resolution
decreases (γ = 5), the TFG SE broadens and tends to become more featureless (Fig.
3.1d). In this sense, poor spectral resolution (γ À 1) is equivalent to high temporal
resolution (Γ À 1).

By inspecting Figs. 3.1a-d, as well as the subsequent Figs. 3.2 and 3.3, one clearly
observes the signature of the transient e�ects. These manifest themselves through
the increase of the area under the instantaneous spectra Sst(t0, ω0) at short times. In
other words, the TFG SE spectra ��are up� on a time scale of 1/Γ. The origin of this
phenomenon has been discussed at the end of Sec. 2.4 (see Eqs. (2.51) and (2.52)).
Here we present the corresponding quantitative estimates. Integrating Eq. (3.6) over
ω0 one �nds that, irrespective of the particular form of g(t),

∫ ∞

−∞
dω0 Sst(t0, ω0) ∼

∫ ∞

−t0
dtE2

t (t) =
1

2Γ

[ √
π
2
(1 + Φ(t0)) for Eq.(2)

2− e−2Γt0 for Eq.(3)
(3.13)

where Φ is the error function. This result shows that the initial (t0 = 0) area under the
TFG SE spectrum is smaller by a factor of two than the asymptotic (t0 → ∞) area.
Evidently, the better the temporal resolution, the less visible are the transient e�ects.

3.3 Brownian oscillator
The free harmonic oscillator model considered above misses an important aspect of real
systems, namely, dissipation. This model is incapable of describing the phenomenon
of excited-state vibrational relaxation. The Brownian oscillator (or damped harmonic
oscillator) model [1, 115, 127�130] introduces dissipation into the harmonic oscillator
by coupling the primary oscillator to a harmonic bath. Thus the model explicitly
introduces vibrational damping and solvent friction into the spectral line shapes.

3.3.1 Analytic response functions
The Brownian oscillator model leads to the following expressions for the lineshape
functions [127,128]

g(t) = g′(t) + ig′′(t), C(t) = C ′(t) + iC ′′(t), (3.14)

C ′(t) = λ

{
1

z− − z+

[
e−z+t cot(εz+/Ω)− e−z−t cot(εz−/Ω)

]
− Γ(t)

}
, (3.15)

C ′′(t) =
λ

z− − z+

[
e−z+t − e−z−t

]
. (3.16)
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Here
Γ(t) =

2Λ

ε

∞∑

n=1

νne
−νnt

(1 + ν2
n)2 − Λ2ν2

n

, νn = πn/ε, (3.17)

z± = (−Λ± i
√

4− Λ2)/2, (3.18)
Comparing with the harmonic oscillator model, the new parameter Λ appears here
which describes the coupling to a bath. When Λ = 0, one recovers the case of the free
oscillator, Λ À 1 corresponds to the overdamped oscillator limit.

3.3.2 Dissipation e�ects
To investigate the in�uence of a dissipative environment on the TFG SE, we consider
di�erent kinds of dissipation mechanisms within a Brownian oscillator model. (Here
we assume the standard Markovian bath, so the analysis focuses on the strength of the
system-bath coupling.) Fig. 3.2a-c show the TFG SE spectra obtained for increasing
strength of the system-bath coupling. A large Stokes shift (λ = 5) and high tempera-
ture (ε = 0.1) are assumed, as well as good time and frequency resolution (γ = Γ = 1).
The evolution of the TFG SE spectra re�ects the strength of system-bath coupling, as
expected. The initial spectrum, Sst(0, ω0), eventually develops into the asymptotic one,
Sst(∞, ω0), which exhibits the Stokes shift of 2λ. When the damping e�ects are not
strong, the system dynamics is underdamped and the signal exhibits weakly damped
oscillations (Fig. 3.2a). When the dissipation strength is further increased, the WP
oscillations are rapidly damped (Fig. 3.2b). In the overdamped limit, Sst(0, ω0) tends
to Sst(∞, ω0) monotonously (Fig. 3.2c).

To get a better understanding of the TFG SE of the overdamped oscillator, it is use-
ful to calculate the spectrum analytically. Moreover, one can surmount the restriction
of impulsive excitation and assume that the pump and gate pulses have a Gaussian
shape (Eq. (2.2)). The spectral �lter is assumed to be �ideal� (γ = 0). To arrive
at the desired result, one can start either from the general Eq. (2.36), or from the
DW description (2.37)-(2.39). Let us assume, in addition, that the oscillator motion
is much slower than the optical dephasing time. This allows us to neglect the system
dynamics during t3 and t1, when the system is in the coherence state. We can thus
retain only the leading contributions to the g-functions, up to quadratic terms in t3 and
t1. The corresponding expression has been derived and discussed in [1, 129, 131, 132]
for the sequential pump-probe spectrum, but we can further generalize it by invoking
the modi�ed gate function (2.14). The result reads

St(t0, ω0) =
2π(3A2 + 6AB2 + B4)√

(∆2 + Γ2
L)α2(t0)

exp

{
− ωL

2

2(∆2 + Γ2
L)

}
exp

{
−(ω0 − ω(t0))

2

2α2(t0)

}

(3.19)
Here

ωL = ωL − ωeg, ω0 = ω0 − ωeg, ω̃ = ωL
∆2

∆2 + Γ2
L

, ∆2 ≡ 2λkT/h̄, (3.20)

ω(t) = −2λ + e−Λt(ω̃ + 2λ), (3.21)
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Figure 3.2: Manifestation of the dissipation strength in the TFG SE spectrum in the
case of satisfactory time and frequency resolution (γ = Γ = 1) for a classical (ε = 0.1)
displaced (λ = 5) harmonic oscillator coupled to a Markovian bath. (a) Λ = 0.3
(underdamped oscillator); (b) Λ = 1 (moderately damped oscillator); (c) Λ = 5
(overdamped oscillator).
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α2(t) = ∆2[1− ∆2

∆2 + Γ2
L

e−2Λt] + Γ2; (3.22)

A =
Γ2∆2(1− e−2Λt)

Γ2 + ∆2(1− e−2Λt)
, B =

(ω(t) + ωeg)Γ
2 + ω0∆

2(1− e−2Λt)

Γ2 + ∆2(1− e−2Λt)
, (3.23)

Eq. (3.21) allows us to visualize the origin of the time-dependent Stokes shift, which is
seen to re�ect the relaxation of the system towards its equilibrium in the excited state.
One should also note the factor 3A2 + 6AB2 + B4, which ensures a correct description
beyond the slowly-varying-envelope approximation (see the pertinent discussion in Sec.
2.2). Evidently, when ωeg exceeds substantially all relevant frequencies of the problem,
then ω0 ∼ ωeg, so that 3A2 + 6AB2 + B4 ≈ B4, where

B ≈ ωegΓ
2 + ω0∆

2(1− e−2Λt)

Γ2 + ∆2(1− e−2Λt)
.

Therefore, B ≈ ω0, and the standard approximation (2.9) is justi�ed. When the tem-
poral resolution is high compared to the time scale of the inhomogeneous broadening
(Γ À ∆), the additional term also reduces to a constant factor. If this is not the case,
the additional contribution depends in a complicated manner on t0, ω0 and also on the
parameters determining the excitation, the system dynamics and temporal gating. It
is important that Eq. (3.19) allows one to determine the in�uence of the duration of
the excitation pulse on the TFG SE signal (see also [1,3,129,131,132]). When the pulse
is short (ΓL À 1), the spectral width α2(t) ≈ ∆2 + Γ2 is time-independent, so that the
TFG SE spectrum experiences no time-dependent broadening. In the opposite case
(ΓL ¿ 1), α2(0) < α2(∞), so that the spectrum broadens. To put it di�erently, the
�niteness of the pump duration results in a time-dependent broadening of St(t0, ω0),
which is governed by the parameter α2(t). When the gate pulse is truly instantaneous
(Γ À 1), then α2(t) →∞ and the TFG spectrum looses any frequency resolution. This
is an additional con�rmation of the fact that an ideal time gate should be a δ-function
on the time scale of the system relaxation, but a constant on the time scale of the
optical coherence dephasing.

3.4 Drude oscillator
Now we turn to the study of the impact of memory (or non-Markovian bath) e�ects on
the TFG spectra. To evaluate the importance of these e�ects, we perform explicit calcu-
lations of TFG spectra by invoking the so-called Drude model for C(t) [1,115,127�130],
i.e., we consider again a system, consisting of displaced harmonic oscillators in the
ground and excited states, which are bilinearly coupled to a thermal bath with exponen-
tial memory kernel. Inter alia, this allows us to explore the in�uence of non-Markovian
e�ects on the vibrational relaxation. The conventional (Markovian) description is valid
provided that the bath relaxation time is much shorter than all other relevant times of
the problem. If one studies ultrafast relaxation dynamics, the Markovian assumption
should be implemented with caution, since it could be an unjusti�ed oversimpli�ca-
tion (see, e.g., recent references [86�92]). There exist also experimental evidences that
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non-Markovian e�ects could be important, e.g., for describing vibrational relaxation in
hydrogen-bonded liquids (see Ref. [93] and references therein). These e�ects manifest
themselves through the multi-exponentiality of the energy-gap CF. The Drude model
is not limited to weak system-bath coupling. This allows one to continuously follow
the transformation of the TFG spectra from the bath-free to the overdamped limit.

3.4.1 Analytic response functions
The Drude model leads to the following expressions for the lineshape functions [127,128]

g(t) = g′(t) + ig′′(t), C(t) = C ′(t) + iC ′′(t), (3.24)

C ′(t) = λ(C ′
1e
−z1t + C ′

2e
−z2t + C ′

3e
−z3t − Γ(t)), (3.25)

C ′′(t) = λ(C ′′
1 e−z1t + C ′′

2 e−z2t + C ′′
3 e−z3t). (3.26)

Here
z1 = α + iη, z2 = α− iη, z3 = δ (3.27)

are the roots of the cubic equation

z3 − ωDz2 + (1 + ΛωD)z − ωD = 0, (3.28)

and the other parameters are given by the expressions

C ′′
1 = − i

2η

α− iη + δ

α + iη − δ
, C ′′

2 =
i

2η

α + iη + δ

α− iη − δ
, (3.29)

C ′′
3 =

2α

(α− iη − δ)(α + iη − δ)
, C ′

i = C ′′
i cot(εzi), (3.30)

Γ(t) =
2Λω2

D

ε

∞∑

n=1

νne
−νnt

(z2
1 − ν2

n)(z2
2 − ν2

n)(z2
3 − ν2

n)
, νn = πn/ε. (3.31)

A new parameter ωD is responsible for the memory e�ects: 1/ωD can be regarded as the
bath relaxation time, so that ωD exp(−ωDt) is the memory kernel in the corresponding
semiclassical generalized Langevin equation for the energy-gap coordinate (see [1,115,
127�130]). When ωD →∞, one recovers the standard Markovian description.

3.4.2 Memory e�ects
To evaluate the impact of memory e�ects on the TFG spectra, let us compare Fig. 3.2b
and Fig. 3.3, in which Sst(t0, ω0) is presented for the Markovian (ωD → ∞) and the
Brownian (or non-Markovian, ωD = 1) oscillator, respectively, in the case of moderate
coupling with the bath (Λ = 1). In both situations, Sst(t0, ω0) eventually arrives at
the relaxed spectrum. However, the manner in which this asymptotic spectrum is
approached is very di�erent in the Markovian and non-Markovian cases, respectively.
Indeed, after the elapse of a characteristic time of the order of 1/Λ (this time scale is
determined by the strength of the system-bath coupling), the �centers of gravity� of
both Markovian and non-Markovian TFG spectra exhibit the same Stokes shift. In
the Markovian case, the subsequent relaxation of the spectrum occurs more or less
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Figure 3.3: TFG SE spectrum in the case of satisfactory time and frequency resolution
(γ = Γ = 1) for a classical (ε = 0.1) displaced (λ = 5) harmonic oscillator moderately
(Λ = 1) coupled to a highly non-Markovian bath (ωD = 1).

monotonically (Fig. 3.2b). When memory e�ects come into play, the TFG SE signal
tends to the relaxed spectrum non-monotonically, its �center of gravity� exhibiting
pronounced oscillatory behavior (Fig. 3.3). The TFG SE spectrum of the underdamped
Markovian oscillator (Fig. 3.2a) looks qualitatively similar to the spectrum of the
moderately damped non-Markovian oscillator (Fig. 3.3). The question therefore arises:
is it possible to distinguish between these two situations?

It is Eq. (3.28) which allows one to answer this question. Evidently, the two
roots z1 and z2 of this equation can be either real and positive (if η in Eq. (3.27) is
imaginary), or complex conjugate to each other, with a positive real part (if η is real).
The third root z3 is always real and positive. Clearly, if all roots are positive, the system
relaxes to its equilibrium distribution monotonically. This is so, e.g., in the overdamped
Markovian case (Fig. 3.2c). If Eq. (3.28) possesses two complex conjugated roots, it
is the magnitude of η which determines the fundamental oscillation frequency of the
problem. It is possible to derive an analytical expression for η, but it turns out to be
cumbersome and di�cult to analyze. For our purposes it is su�cient to realize that,
in the Markovian limit (ωD → ∞), the cubic equation (3.28) reduces to a quadratic
equation, yielding η =

√
1− Λ2/4 (recall that the unperturbed oscillator frequency is

Ω = 1). On the other hand, one gets a simple solution of Eq. (3.28) in the overdamped
(Λ À 1), but strongly non-Markovian (ωD ∼ 1) case: η ≈ √

ΛωD. So, one arrives at the
remarkable conclusion that in the Markovian limit the oscillation frequency η cannot
exceed the free oscillator frequency Ω = 1, while in the non-Markovian case it can. To
put it di�erently, the period of the WP oscillations in the Markovian limit can be 2π
(free oscillator) or larger (underdamped oscillator), while in the non-Markovian case
that period can be less than 2π. This observation allows one to distinguish between
the damped non-Markovian and underdamped Markovian oscillators, if one knows the
unperturbed oscillator frequency Ω.

These qualitative considerations are illustrated by Fig. 3.4 which shows the compa-
rable top view of the TFG SE spectra of the systems just discussed above: Markovian
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Figure 3.4: Top view of TFG SE spectrum in the case of satisfactory time and frequency
resolution (γ = Γ = 1) for a classical displaced harmonic oscillator (ε = 0.1, λ =
5) moderately (Λ = 1) coupled to (a) Markovian (ωD → ∞) and (b) highly non-
Markovian (ωD = 1) bath.

(Fig. 3.2b) vs. non-Markovian (Fig. 3.3) oscillators. One can observe the positions of
the SE spectra maxima as a function of the gating time t0. It is seen that the TFG
spectra exhibit 7.1 (damped Markovian oscillator) and 4.8 (damped non-Markovian
oscillator) periodic oscillations. These are larger and smaller, respectively, than the
oscillation period of the corresponding free oscillator (6.3). The message is that the
TFG SE signal of a system coupled to a non-Markovian bath can exhibit pronounced
oscillations with a period which is less than that of the bath-free system. This quali-
tative e�ect can be helpful for the estimation of the importance of memory e�ects in
dissipative systems.

3.5 Summary
Nonlinear response functions have been calculated analytically for the standard bench-
mark systems: free harmonic, Brownian, and Drude oscillators. These model systems
have been adopted to illustrate the time-frequency evolution of the SE spectra for
di�erent regimes of dissipation. The TFG SE spectra have been found to be quite
sensitive not only to the overall strength of the system-bath coupling, but also to �ner
features, like memory e�ects. The in�uence of the quality of the spectral and temporal
�ltering on the measured TFG SE spectra also has been studied in some detail.

We have established that the speci�c features of the WP dynamics in the excited
state survive the TFG mapping procedure, and manifest themselves in the SE spectra.
Recent TFG SE measurements [7,21,22] have con�rmed the persistence of pronounced
vibrational coherence e�ects in the spectra. This underlines that the TFG SE clearly
re�ects the WP dynamics in the excited state, provided a good compromise is found be-
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tween temporal and spectral resolution. The information about the material dynamics
can be extracted from the TFG SE spectra by an appropriate theoretical analysis.

Additionally, the interpretation of the TFG SE spectra can provide us with a certain
knowledge not only on the strength of the system-bath coupling, but also on the bath
correlation functions.





Chapter 4

Time-resolved �uorescence of ultrafast
electron transfer systems

4.1 Introduction
The doorway-window picture developed in Chapter 2 introduces explicitly the descrip-
tion of the time- and frequency-gating procedure into the theory. Our goal is to estab-
lish rigorously the connection of the experimentally measured signals with the under-
lying microscopic dynamics. In this chapter we study this issue for the case of ultrafast
electron transfer systems which, due to a strong nonadiabatic coupling, exhibit ultra-
fast decay dynamics [2]. The DW-picture is employed here for direct calculations of
TFG SE spectra of ultrafast ET systems.

One of the most fundamental questions, which arises when discussing ultrafast ET
reactions, is the manifestation of various coherences in the population dynamics and
measured responses. It has been shown theoretically that coherent e�ects in ultrafast
ET can be either of vibrational or of electronic nature [51,53,56,94,99�105]. Therefore,
it is necessary to distinguish between these two types of coherences when interpreting
particular experiments. Excitation of vibrational modes by a short pump pulse with
a broad bandwidth results in a coherent superposition of vibrational levels, i.e. in the
creation of a vibrational WP in the excited electronic state. Vibrational coherence
(VC) e�ects in ultrafast ET have been studied theoretically with time-dependent WP
and RDM techniques (see, e.g., [51,53,56,94,99�101]). These calculations have shown
that the WP motion in the excited state manifests itself in the time-dependent popu-
lation dynamics through characteristic step-like structures. Another conclusion of the
theoretical analysis [56, 102�105] is that, under certain circumstances, another type of
coherence, i.e., electronic coherence (EC), also plays an important role in ultrafast ET.
Su�ciently large values of the electronic coupling may result in a coherent electronic
motion (�coherent ET�) between donor and acceptor states. The e�ect of EC, if it
is present in the system, can be observed as large-amplitude quantum beatings in the
population dynamics [56,102�105], which are analogous to the well-known Rabi oscilla-
tions in optical physics [133]. Naturally, both EC and VC contribute to the population
evolution in the excited state for systems with su�ciently strong electronic coupling
and nonstationary preparation. This leads to a complex dynamics with peculiar fea-
tures, ranging from step-like structures (due to VC) to electronic quantum beats (due

39
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to EC). Recent ultrafast spectroscopic measurements have con�rmed the persistence
of pronounced coherent e�ects on a picosecond time scale in the ultrafast ET dynam-
ics for various molecular systems, from diatomics to proteins [6�8,106�109]. However,
when trying to interpret particular experiments, it is not entirely clear if the measured
oscillatory patterns are to be attributed to vibrational or electronic coherences. So, it
is of considerable importance to clarify (i) which types of coherences are responsible for
the excited state dynamics and can, therefore, be observed through TFG SE responses
for real systems, and (ii) how to separate the two types of coherences.

A number of papers has appeared in recent years, in which the problem of ultrafast
ET has been treated at di�erent levels of sophistication. Of particular relevance to
the present consideration are the papers [51,52,54,63,64,71,94�98]. The present work
is, in a sense, a generalization of an earlier paper by Jean [52], extending the theory
beyond bare time- and frequency-resolved spectra. A limitation of the formulation
of the TFG SE signal by Jean is the fact that the in�uence of the measuring device
was not taken into account, which results in �idealized� time- and frequency-resolved
spectra. The ideal (or bare) signal is not guaranteed to be positive, however [1, 3].
Moreover, the time and frequency resolution of this ideal spectrum are not limited
by the fundamental time-frequency uncertainty principle, as they should be. Our
theory shares the general methodology with recent papers by Matro and Cina [95] and
Mukamel and collaborators [63, 64] (preparation by a pump pulse of �nite duration,
explicit consideration of the TFG procedure, RDM description of the nonadiabatic
excited-state dynamics within the Red�eld theory, the doorway-window formalism). A
novel feature of the present work is the consideration of several carefully-selected ET
model systems exhibiting electronic coherence and/or vibrational coherence and the
systematic exploration of the e�ects of the preparation and SE detection by pulses of
�nite duration. In particular, we want to answer the following fundamental question:
to which extent is the intrinsic system dynamics re�ected by TFG SE spectra?

4.2 Electron transfer model
4.2.1 Hamiltonians
The standard model of an ET system consists of a ground state and two electronically
coupled excited donor and acceptor states [134]. The excited states are linearly coupled
to a reaction mode (Fig. 4.1), which in turn is weakly coupled to a harmonic bath. In
the present context, the general formula (2.53) is specialized as follows: the electronic
states and vibrational modes, which are directly involved in the reaction, constitute the
relevant system and are described by HS. The bath degrees of freedom (described by
HB) are only indirectly involved via the system-bath coupling HSB, which is assumed
to be weaker than the primary interactions contained in the system Hamiltonian.

We shall restrict ourselves to the consideration of a single-vibrational-mode system
Hamiltonian:

HS
g = |g > H0 < g|, (4.1)

H0 = Ω
{
b†b + 1/2

}
, (4.2)
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(a) (b)

Figure 4.1: Diabatic (solid) and adiabatic (dashed) potential-energy surfaces for the
normal (a) and inverted (b) regime.

HS
e =

∑

i=1,2

|φi > (Hi + εi) < φi|+ {|φ1 > V12 < φ2|+ H.c.}, (4.3)

Hi = Ω

{
b†b + 1/2 +

∆i√
2
(b† + b)

}
. (4.4)

Here |φ2 > and |φ1 > label the diabatic donor and acceptor excited electronic states, εi

are the vertical electronic excitation energies, and V12 is the electronic coupling matrix
element. The vibrational Hamiltonians, which are written in the second quantization
representation, are taken to be harmonic. Ω is the vibrational frequency of this reaction
mode (it is assumed to be the same for both electronic states) and ∆i are the horizontal
displacements of the excited-state potentials from the energy minimum of the electronic
ground state. It is assumed that the ET takes place between the two excited electronic
states, one of which (the donor state |φ2 >) is optically bright, while the second (the
acceptor state |φ1 >) is optically dark, so that the transition-dipole operator is V̂ =
Veg |g >< φ2|+ H.c.

A standard assumption is to model the bath by a collection of harmonic oscillators:

HB =
∑
q

ωq(a
†
qaq + 1/2). (4.5)

We further introduce the simplest approximation for the system-bath interaction, a
bilinear system-bath coupling in the RWA [130,135]:

HSB =
∑
q

gq(b
†aq + ba†q). (4.6)
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The system-bath coupling is assumed to be the same for both electronic states. It is
entirely described by the so-called bath spectral function J(ω). The latter has been
taken in the Ohmic form with exponential cuto� [136], viz.,

J(ω) = ηωexp{−ω/ωc}. (4.7)

Here η is a dimensionless system-bath coupling strength and ωc is a cuto� frequency.

4.2.2 Equations of motion (Red�eld theory)
As has been mentioned earlier, the key quantity describing the relevant system dynam-
ics is the RDM (2.54), which is de�ned as the trace over all bath variables of the full
DM. In this chapter, the RDM σ(t0) is calculated in the framework of Red�eld theory,
as has been described in detail elsewhere [62]. Assuming su�ciently weak system-bath
coupling, the bath degrees of freedom are traced out in the Born and Markov approxi-
mations, yielding the Red�eld equation of motion for the RDM in the system eigenstate
representation [137,138], so that Eq. (2.54) is written explicitly as follows

∂σµν(t)

∂t
= −iωµνσµν(t) +

∑

κλ

Rµνκλσκλ(t). (4.8)

Here Rκλµν is the relaxation or Red�eld tensor. The �rst term on the right-hand side
describes the isolated system evolution, while the second one represents its interaction
with the dissipative environment. The Red�eld tensor which is responsible for the
system relaxation can be expressed as

Rµνκλ = Γ+
λνµκ + Γ−λνµκ − δνλ

∑
α

Γ+
µαακ − δµκ

∑
α

Γ−λααν (4.9)

where

Γ+
λνµκ =

∫ ∞

0
dt

〈
〈λ|HSB(t) |ν〉 〈µ|HSB |κ〉

〉
B

e−iωµκt, (4.10)

Γ−λνµκ =
∫ ∞

0
dt

〈
〈λ|HSB |ν〉 〈µ|HSB(t) |κ〉

〉
B

e−iωλνt, (4.11)

HSB(t) = eiHBtHSBe−iHBt, (4.12)

and 〈...〉B denotes the thermal average over the bath. For the Hamiltonians de�ned
above, the Red�eld tensor components can be expressed in closed form [56,62].

Eqs. (4.8)-(4.12) [Red�eld equations of motion] together with Eqs. (2.45)-(2.47)
[TFG SE spectrum] are utilized to calculate TFG SE signals for the ET system accord-
ing to a general scheme given in Section 2.5. We remark that in the present chapter,
a fourth-order Runge-Kutta scheme [139] has been employed for the numerical time
propagation over a time interval t0 according to the Red�eld equations (4.8)-(4.12).
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4.3 Speci�c examples and discussion
4.3.1 Integral signal
To reveal the connection between the electronic population dynamics and spectroscopic
measurements, we consider the frequency-integrated signal

I(t0) =
∫ ∞

−∞
dω0 Sst(t0, ω0) = Tr{W̃σ(t0)}, (4.13)

where
W̃ =

∫ ∞

−∞
dω0 W (ω0) (4.14)

is the frequency-integrated W operator. Evidently, the integral signal is equivalent to
the TFG SE signal in the limit of poor frequency resolution (γ → ∞) [111]. In terms
of the system eigenstates [78]:

W̃αβ ∼< α|φ2 >< φ2|β >
4Γ2

4Γ2 + ω2
αβ

=
∑
n

VαnVnβ
4Γ2

4Γ2 + ω2
αβ

. (4.15)

It is further useful to consider separately the limiting cases of good (Γ → ∞) and
poor (Γ → 0) temporal resolution. If the gate pulses are short enough (Γ →∞), then
W̃ = |φ2〉 〈φ2| and

I(t0) =
∑

α,β

σαβ(t0) < α|φ2 >< φ2|β >= Tr[|φ2 >< φ2|σ(t0)] = P2(t0). (4.16)

The integral signal is thus nothing else than the time-dependent population P2(t0) of
the diabatic donor state |φ2 >. The fact that in the ideal limit of ultrashort pulses
the integral �uorescence signal is equivalent to the diabatic population of the optically
bright electronic state has been established earlier by Meyer and Koeppel [140] and for
the integral pump-probe signal by Domcke and Stock [114,141].

If the gate pulses are longer than any relevant timescale of the system dynamics
(Γ → 0), then

4Γ2

4Γ2 + ω2
αβ

= δαβ, (4.17)

so that

I(t0) =
∑
α

σαα(t0) < α|φ2 >2 . (4.18)

In the system-eigenstate representation, the di�erence between these two limits be-
comes transparent. For poor temporal resolution (Γ = 0), the signal is simply the
weighted sum of populations σαα (see Eq. (4.18)), while the perfectly time-resolved
signal contains the contributions from both coherences σαβ (α 6= β) and populations
σαα (see Eq. (4.16)). Thus, the comparison of the signals for good and poor temporal
resolution allows one to reveal the importance of coherences in the RDM.

When there is no coupling between the excited electronic states (and thus no ET),
the integral signal is simply proportional to the constant (time-independent) population
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of the bright state, irrespective of the time resolution [141]. The nonadiabatic coupling
is therefore responsible for the time dependence of the population and the evolution of
the integral optical signal. Alternatively, non-Condon e�ects in adiabatic systems also
result in a time dependence of the integral �uorescence signal [7, 141,142].

To learn about the interrelation between the integral signal and the population
dynamics, we present below the results of explicit calculations. The system-bath in-
teraction is described by the spectral function (4.7) with ωc = Ω. The bath is assumed
to be in equilibrium at zero temperature to emphasize quantum tunneling e�ects. We
begin with the consideration of the e�ect of temporal resolution. To render the presen-
tation more transparent, we separate the in�uence of the gate-pulse duration from that
of the pump pulse, restricting ourselves initially to the case of impulsive excitation. In
other words, the system is instantaneously excited from the ground electronic state to
the donor (|φ2 >) electronic state. The preparation is referred to as stationary, if there
is no shift between the equilibrium con�gurations of the ground and excited electronic
states, and as nonstationary otherwise.

4.3.2 Electronic coherence in electron transfer
We start from the consideration of an ET system in the so-called normal regime (Fig.
4.1a). The system parameters have been taken from [56]: Ω = 0.05 eV, ∆1 = 3.5,
∆2 = 0 (stationary preparation), ε0 = 0 eV, ε1 = 1.455 eV, ε2 = 1.5 eV (the minimum
of the potential surface for the donor state is higher than that for the acceptor state)
and V12 = Ω (strong electronic coupling). The coupling to the bath is assumed to be
rather weak (η = 0.1).

The donor-state population dynamics for this system is given by curve 1 in Fig.
4.2a. This particular system (stationary preparation and strong electronic coupling) is
a good example for the observation of EC in the ET reaction. Since no horizontal shift
is assumed between the minima of the |g > and |φ2 > energy surfaces, the vibrational
e�ects (in particular, VC) are of minor importance. The large-amplitude quantum
beatings in the population dynamics re�ect the presence of EC. Indeed, su�ciently
large values of electronic coupling can result in coherent electronic motion (�coherent
ET�) between the donor and acceptor electronic states. These beatings are analogous
to the well-known Rabi oscillations in optical physics.

The fast oscillations in curve 1 of Fig. 4.2a arise from the peculiarities of the
initial preparation. Indeed, the WP is put at t0 = 0 into the unperturbed (V12 = 0)
ground vibrational state of |φ2 >. However, because of the strong electronic coupling,
this initial vibrational state deviates signi�cantly from the eigenstates of the distorted
adiabatic potential.

Fig. 4.2a shows the integral signals calculated for this system, assuming four dif-
ferent time resolutions, varying from good (Γ = 2Ω) to poor (Γ = Ω/100). The
calculations show that for good temporal resolution (up to Γ = 2Ω ) the integral signal
follows the diabatic population of the donor state. In Fig. 4.2a, the corresponding
kinetics are undistinguishable from that given by curve 1: they reproduce all the fea-
tures of the population dynamics, even the fast oscillations of vibrational origin. The
equivalence of integral signal and population dynamics is a direct consequence of the
theoretical analysis discussed above.
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Figure 4.2: (a) In�uence of the temporal resolution on the integral SE signal of a
model ET system (normal regime, stationary preparation, strong electronic coupling)
exhibiting EC: 1 : Γ > 2Ω (population dynamics); 2 : Γ = Ω/5 ; 3 : Γ = Ω/10 ; 4 :
Γ = Ω/100. (b) Same as in Fig. 4.2a, but for the �rst 500 fs. The additional dotted
line corresponds to Γ = Ω.
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With decreasing Γ, the integral signal becomes smoother, but, as expected, the
electronic beatings are seen in curves 2 and 3 in Fig. 4.2a (Γ = Ω/5 and Γ = Ω/10 ,
respectively). Finally, when we take really poor time resolution (curve 4, Γ = Ω/100 ),
which corresponds to a gate pulse which is much longer than the timescale of EC, we
loose the electronic beatings in the signal. For such long gate pulses, the time resolution
becomes inadequate to resolve the quantum beats in the population dynamics. It is
noteworthy that the smoothing of integral signal with decreasing temporal resolution
looks like a time-averaging process: all the curves in Fig. 2a pass through the same
intersection points. For poor resolution (1/Γ larger than the timescale of EC) the fast
system dynamics can not be resolved and one measures only the time-averaged signal,
describing the rate process of the population decay from the donor to acceptor state.

Clearly, the temporal resolution Γ = Ω (when the gate pulse is of the order of the
vibrational period) is critical for the observation of the fast-oscillating vibrational struc-
ture, originating from the peculiarities of the initial preparation. The corresponding
signal is given by the dotted line in Fig. 4.2b, which shows in detail the early-time part
(�rst 500 fs) of the the population dynamics and �uorescence signals presented in Fig.
4.2a. When Γ = Ω, the vibrational oscillations in the integral signal disappear, but
the signal still exhibits the same electronic oscillations as in the case of high temporal
resolution. Although the value of the electronic coupling is equal to the vibrational
frequency in this example, the period of these electronic beatings is much longer than
1/Ω. The explanation of this seemingly puzzling fact is simple: V12 = Ω does not mean
that the characteristic timescale of the EC is of the order of 1/Ω. The frequency of
the electronic quantum beats is rather determined by the electronic coupling matrix
element, renormalized by the Frank-Condon overlap integral of the relevant vibrational
wave functions of the diabatic potentials. One can estimate this timescale from Fig.
4.2 as ∼ 400 fs. Taking into account that the vibrational period corresponding to
Ω = 0.05 eV is Tvib = 83 fs, one can expect that electronic oscillations in the integral
signal can be seen up to values Γ ∼ Ω/5. This conclusion is con�rmed by the results
of our calculations (see Fig. 4.2a).

This example gives a clear con�rmation of our qualitative considerations on the
integral signal (see discussion above). In Fig. 4.2a, the signal corresponding to good
resolution (curve 1) shows contributions from both populations and coherences, while
in the case of poor time resolution, the coherences are no longer present in the signal
which simply re�ects monotonous population decay. All curves have the same long-time
decay, giving the ET rate which is independent of temporal resolution. As expected,
the di�erence between the highly and poorly time-resolved signals is important on short
timescales (when coherences are not yet destroyed). For instance, with decreasing time-
resolution the absolute value of the integral signal at t = 0 is signi�cantly less than
1.

The discussed model system is a good example for the observation of EC in ET.
We conclude that the very existence of electronic beatings for the present ET system
can be observed with gate pulses as long as 1/Γ = 10/Ω ≈ 830 fs. Therefore it seems
that the temporal resolution is not a critical parameter for the observation of EC; the
necessary temporal resolution can be easily achieved with pulses available nowadays.
Nevertheless, to the knowledge of the authors, electronic population oscillations of the
type shown in Fig. 4.2a have not yet been observed in real systems. The quantum beats
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observed so far in femtosecond time-resolved pump-probe and �uorescence signals for
numerous ET systems appear to be of vibrational origin [6,108]. An experiment which
was especially designed to detect EC in ET has failed [106]. In real systems, extremely
short (of the order of several femtoseconds) dephasing times are the most important
obstacle for the observation of the EC. In the ET model system discussed here, the
dephasing time was long enough to allow the observation of EC at a timescale of the
order of 1 ps.

There might be another possible reason for the failure of the above-mentioned
attempt to detect EC in ET. The amplitude of the EC e�ect is extremely sensitive to
the choice of system parameters, especially the initial preparation and the electronic
coupling strength. It is therefore not unlikely that for a particular molecule and for a
particular con�guration of experiment, EC e�ects are not present at all.

4.3.3 Vibrational coherence in electron transfer
Next we consider again an ET system in the normal regime (Fig. 4.1a), but two impor-
tant system parameters are taken di�erent from the previous case: V12 = Ω/5 (weak
electronic coupling) and ∆1 = 5.5 , ∆2 = 2 [56]. This choice corresponds to nonsta-
tionary preparation, that is, there is a shift between the equilibrium con�gurations
of the ground and donor electronic states. Due to the weak electronic coupling, the
EC is strongly suppressed, but a new e�ect, VC, shows up as a consequence of the
nonstationary preparation. The instantaneous excitation results in the preparation of
a WP in the excited electronic state which subsequently performs coherent vibrational
motion. As can be seen from Fig. 4.1a, the mean energy of the initial WP lies above
the energy of the crossing point of the diabatic potentials, that is, the crossing point
is accessible for the moving WP.

The population dynamics for this system calculated via Red�eld theory is given by
curve 1 in Fig. 4.3a. It exhibits a peculiar and easily interpretable behavior, re�ecting
the combined e�ect of vibrational WP dynamics in the donor state and ET, namely
a step-like decay of donor-state diabatic population P2(t0). Obviously, due to the
presence of electronic coupling, a fraction of the WP is transferred to the acceptor
state each time the moving WP hits the crossing region (at t0 = 2πn/Ω, n = 1, 2, ...).
The characteristic stepwise structure thus re�ects this ultrafast ET process driven by
coherent WP motion, which is quenched after ∼ 500 fs due to vibrational damping.
After the WP motion is relaxed, the donor-state population exhibits a monotonous
decay, analogous to the long-time decay in the case of stationary preparation in Fig. 4.2.
Similar step-like population behaviors at short times and bimodal decay curves have
been obtained by several authors [100, 143�145] and also observed experimentally [7,
109]. These features appear to be generic for ultrafast ET dynamics with nonstationary
preparation for systems with a single or few system vibrational modes.

Now we proceed to the discussion of the integral signals calculated for this system
with di�erent time resolutions, ranging from good (Γ = 2Ω) to poor (Γ = Ω/50 ). Fig.
4.3a shows the overall behavior, while Fig. 4.3b gives a detailed picture of the short-
time dynamics. The main point is the criterion for the observation of the characteristic
steps in the integral signal. Qualitatively, the in�uence of the time resolution is very
similar to that established in the previous case (Fig. 4.2). For good temporal resolution
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Figure 4.3: (a) In�uence of temporal resolution on the integral SE signal of a model ET
system (normal regime, nonstationary preparation, weak electronic coupling) exhibiting
VC. 1 : Γ > 2Ω (population dynamics); 2 : Γ = Ω/10; 3 : Γ = Ω/20; 4 : Γ = Ω/50.
(b) Same as in Fig. 4.3a, but for the �rst 130 fs; solid line : Γ > 2Ω; dotted line :
Γ = Ω; dashed line : Γ = Ω/2 .
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Figure 4.4: TFG SE spectrum of the ET system exhibiting EC in the case of good time
and frequency resolution.

(up to Γ = 2Ω), the integral signal coincides with the population dynamics (curve 1
in Fig. 4.3a and solid line in Fig. 4.3b); the time resolution Γ = Ω (dotted line in
Fig. 4.3b) is at the border line for the observation of steps; for slightly worse temporal
resolution (dashed line in Fig. 4.3b, corresponding to Γ = Ω/2 ) the steps are washed
out in the integral signal. If one further decreases the temporal resolution (curves
2-4 in Fig. 4.3a, corresponding to the temporal resolution Γ = Ω/10 , Γ = Ω/20 ,
and Γ = Ω/50 , respectively) the gate pulse averages out all characteristic features of
the system dynamics, resulting in a smooth decay curve. The rate of the long-time
exponential decay is independent of the temporal resolution. On the contrary, the short
time (up to 500 fs) behavior of the signals depends signi�cantly on the time resolution,
because the coherences are not yet destroyed. In contrast to the EC, the timescale of
the VC is determined by the system vibrational period, Tvib = 83 fs. Thus the timescale
of the VC is much shorter than that of the EC (∼ 400 fs) in our system. Therefore the
characteristic features of VC disappear faster with decreasing time resolution than in
the previous case. For example, a time resolution Γ = Ω/10 is still enough to observe
the EC (Fig. 4.2), while for the VC (Fig. 4.3) this is already beyond the limit of
resolution.

4.3.4 Time- and frequency-gated spontaneous emission spectra
Experimentally, a TFG SE spectrum can be constructed from the data for a range
of times between the excitation pulse and the gate pulse, and a range of frequency
windows determined by the spectral �lter. In this section we present 3D TFG spectra
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Figure 4.5: (a) TFG SE spectrum of the ET system exhibiting VC in the case of
good time and frequency resolution. (b) Same as in Fig. 4.5a, but for the �rst two
vibrational periods (∼ 200 fs).
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calculated using Eq. (2.57) for the systems considered in detail in a previous section. To
primarily concentrate on the dynamic e�ects, a perfect time (Γ = 10Ω) and frequency
(γ = Ω/20) resolution has been chosen for all calculations.

The TFG SE spectrum for the ET system with EC (system considered in Sec. 4.3.2)
is presented in Fig. 4.4. The spectrum, as a function of time, qualitatively re�ects
the electronic population dynamics: one can clearly see the large-amplitude electronic
beatings mirroring coherent ET as well as the fast oscillations due to peculiarities of
the initial preparation. Cuts of the spectrum at �xed frequencies, i.e. the transients
which are usually measured experimentally, in general, have very di�erent behavior.
For example, the cut at the frequency close to 0-0 transition reproduces the population
dynamics almost quantitatively, while the cuts at the wings of the spectrum give a
qualitatively di�erent behavior (compare with [114, 141]). Therefore, the problem of
a theoretical reproduction of experimental 3D TFG SE spectra is quite demanding,
because one must achieve a coincidence for all particular frequency cuts. In turn, this
imposes restrictions on the choice of system parameters. Ideally, this would help one
to �t the system parameters in a unique way.

As a function of frequency, on the other hand, the TFG spectrum at t0 = 0 rep-
resents the SE of the initially prepared nonequilibrium excited state. Later on, at
every time moment t0 , it represents the time evolution of the �uorescence spectrum.
The area under the instantaneous spectra S(ω0, t0) decreases with time, re�ecting the
decay of the population in the donor electronic state. In the limit t0 → ∞, the TFG
SE spectrum is nothing else than the relaxed �uorescence spectrum [111]. For the ET
system under consideration, the donor state population tends towards zero for t0 →∞;
therefore, there is no relaxed �uorescence.

The TFG SE spectrum for the ET model with VC (system considered in Sec.
4.3.3) is depicted in Fig. 4.5a. Again, the time evolution of the signal monitors the ET
dynamics: we can see the steps occurring in the donor-state population. In addition,
the signal, as a function of frequency, maps directly the periodic vibrational WP motion
in the excited state. To show this explicitly, the TFG SE signal is displayed in Fig.
4.5b during the �rst two periods. The time evolution of the spectrum within each
step reminds us of that of the Brownian oscillator (see Sec. 3.3) [1, 111]. The WP
exhibits quasiperiodic behavior, moving between classical turning points, where the
local maxima of the peak-shift occur. If the temporal and spectral resolutions are good
enough, the intensity and the shape of the spectrum do not change within each step
(compare with Fig. 3.1c, where the TFG spectrum is given for a Brownian oscillator).
Every time the WP comes to the crossing point of the two diabatic potentials, part
of it leaks to the acceptor state, producing a step in the electronic population. Thus,
the crossing point can indeed be regarded as a �sink�, as it is assumed in Zusman-type
models of ET [146]. This picture does not apply, on the other hand, to the description
of the dynamics of the ET system with EC (Figures 4.2, 4.4), because the population
dynamics in that case is not monotonous, but quasiperiodic, and cannot be described
by an e�ective �sink�.

Summarizing, both electronic and vibrational coherences contribute to the popu-
lation dynamics for ultrafast ET systems. If short enough pulses are employed, both
types of coherences manifest themselves in the measured TFG SE spectra. More-
over, TFG SE spectra provide us with more information on the system dynamics than



52 CHAPTER 4. ULTRAFAST ELECTRON TRANSFER SYSTEMS

0 200 400 600 800 1000
t [fs]

0

0.2

0.4

0.6

0.8

1

I(
t)

2
1

3

4

Figure 4.6: In�uence of pump-pulse duration on the integral SE signal of a ET system
in the inverted regime. 1 : ΓL = 10Ω ; 2 : ΓL = 3Ω ; 3 : ΓL = Ω ; 4 (dotted line):
ΓL = Ω/10.

frequency-averaged time-resolved signals or the conventional stationary �uorescence
spectrum. In fact, the TFG SE signal S(ω0, t0) gives the actual spectral shape (e.g.,
Gaussian, Lorentzian, or more complicated) and shows directly the evolution of the
�uorescence spectrum with time. It is thus very useful for a detailed understanding of
the system dynamics.

4.3.5 Finite pump duration
Finally, we study brie�y another aspect of ultrafast time-resolved spectroscopy: the
e�ect of the system preparation by a pump pulse of �nite duration. Evidently, the
amount of vibrational energy and coherence initially deposited into the system is de-
termined by the temporal and spectral properties of the excitation pulse. To separate
the e�ect of the pump-pulse duration from that of the time-gate duration considered
in Sec. 4.3.2-3, a good temporal resolution of the gate pulse (Γ = 2Ω) is assumed in
the following.

In order to analyze di�erent scenarios of ultrafast ET within the present model, we
consider a system in the so-called inverted regime. The potential-energy surfaces are
given in Fig. 4.1b, and the system parameters are taken as follows [56]: Ω = 0.064 eV ,
∆1 = −0.8281, ∆2 = −2, V12 = 0.1 eV , and ε0 = 0 eV, ε1 = 2.8741 eV, ε2 = 3 eV,
η = 0.4219.

The integral signals calculated for this ET system prepared by pump pulses of
di�erent duration are plotted in Fig. 4.6. The pump pulse is described by Eq. (2.3),
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so that the time-integrated intensity is kept �xed when the pulse duration is varied.
The signals, on the other hand, are normalized to unity at t0 = 0 , i.e., I(0) = 1. The
problem of normalization deserves further clari�cation. If one considers unnormalized
signals calculated according to Eq. (4.13), one �nds that the shorter the pump pulse,
the larger is the absolute value of the signal. (This fact was well established earlier for
the pump-probe spectroscopy [2].) Indeed, short pump pulses have a broad bandwidth
and can excite coherently many vibrational levels, so that ET occurs from a number
of initially excited levels. A long pump pulse, on the other hand, excites only a few
vibrational levels, which results in a signi�cant decrease of the absolute value of the
integral signal. This must be contrasted to the time-resolution e�ect of the gate (Fig.
4.2). In that case, the smaller initial values of I(t0) are the result of the detection
procedure: long gate pulses average over the population dynamics.

Keeping this in mind, we are in a position to analyze the dependence of the integral
signal on the duration of the pump pulse (see Fig. 4.6). The e�ect of pump-pulse
duration qualitatively looks very similar to the e�ect of time resolution of the gate:
the step-like structure re�ecting WP motion can be well detected with short pump
pulses (curves 1 and 2, which correspond to ΓL = 10Ω , ΓL = 3Ω respectively). The
pump-pulse duration of the order of the vibrational period (curve 3, ΓL = Ω) is the
critical one: the characteristic e�ects of coherent vibrational motion are nearly wiped
out in the integral signal. For longer pump pulses (curve 4, ΓL = Ω/10), the system
is prepared in such a way that no features of vibrational coherence can be detected,
although the time resolution of the gate is su�cient to detect them.

To monitor the microscopic features of the ET dynamics in a TFG SE experiment,
one must thus employ su�ciently short pump pulses to excite coherently a signi�cant
part of the vibrational levels. What is less intuitive, the structures of the integral signal
are as sensitive to the pump-pulse duration as to the gate-pulse duration. To detect
the mode-speci�c step-like structure in ultrafast spectroscopic signals of ET process,
the pump-pulse duration as well as the gate-pulse duration must be shorter than the
vibrational period.

4.4 Summary
We have presented the application of the theory of TFG SE signals to nontrivial exam-
ples: ultrafast ET processes. The TFG as well as frequency-integrated SE signals have
been calculated for various durations of the pump and gate pulse. Our main �ndings
can be summarized as follows.

The integral signal obtained with su�ciently short gate pulses (i.e. good temporal
resolution) re�ects most directly the donor-state diabatic population. If the temporal
resolution decreases, system-speci�c features are wiped out, and the signal simply
re�ects monotonous decay of the population of the donor state. In the system eigenstate
representation, the di�erence between these two limits becomes transparent. For poor
time resolution, the signal is simply the weighted sum of populations σαα (Eq. (4.18)),
while the perfectly-resolved signal contains the contributions from both coherences
σαβ (α 6= β) and populations σαα (Eq. (4.16)). Thus the comparison of the signals
obtained with good and poor temporal resolution allows one to estimate the importance
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of coherence e�ects in the system dynamics. The di�erence between the two limits is
pronounced on short timescales (when coherences are not yet destroyed). The rate of
the long-time decay (ET rate) is independent of the temporal resolution.

The e�ect of optical preparation by pump pulses of �nite duration is qualitatively
similar to that of temporal resolution of the gate pulse. To monitor the mode-speci�c
features of the ET dynamics in a TFG SE experiment, one must employ su�ciently
short pump pulses to excite coherently a signi�cant part of vibrational levels. To detect
the characteristic step-like structure in ultrafast spectroscopic signals, the pump-pulse
duration as well as the gate-pulse duration must be shorter than the vibrational period.

To elucidate the e�ect of various coherences on SE signals, we have performed
simulations for ET models in which either EC or VC e�ects are dominant. For the
observation of electronic quantum beats, the time resolution of the gate must be of
the order of or shorter than the electronic beating period. Provided the time-gate
duration is of the order of a vibrational period or shorter, VCs were shown to manifest
themselves through the characteristic step-like structures in the electronic population.
It should be noted that the prediction of such peculiar step-like structures is not limited
to the case of weak system-bath coupling, which is described by Red�eld theory. They
manifest themselves in the population dynamics also in calculations carried out beyond
this limit [145,147,148].

Both types of coherences can show up in measured TFG SE spectra. The TFG SE
spectrum S(ω0, t0) as a function of time qualitatively re�ects the electronic population
dynamics: either electronic beatings re�ecting EC or the steps occurring in the donor-
state population due to VC. In addition, the frequency-dependent TFG spectrum at
t0 = 0 represents the SE of the initially prepared nonequilibrium excited state. Later
on, at every time moment t0 it gives the development of this �uorescence spectrum.
Most importantly, the time- and frequency-resolved signal maps directly the periodic
vibrational WP motion in the excited state. TFG SE spectra provide us therefore
with more information on the system dynamics than frequency-averaged time-resolved
signals or the conventional stationary �uorescence spectrum.

To summarize, the in�uence of the measuring devices (the pump pulse for prepara-
tion and the gate pulse for detection) is signi�cant and must be accurately taken into
account. The presented results illustrate the relation between the �pure� (intrinsic)
dynamics of ET systems (e.g., the time-dependent electronic population dynamics)
and �real� experimental observables. This aspect is new in comparison with the in-
vestigations of Jean [52]. We hope that the methods developed in this chapter may
prove useful for the interpretation of TFG SE experiments on ultrafast ET systems
exhibiting coherent responses.



Chapter 5

Application: time-resolved
�uorescence of the TCNE-HMB
complex

5.1 Introduction
There are several systems for which coherent oscillatory behavior has been observed in
SE signals. These include oxazine dye molecules [30], the sodium dimer [17�20], the
light-harvesting antenna of purple bacteria mutants [149], the reaction center of purple
bacteria [25], and the photoactive yellow protein [28]. Here we consider vibrational
coherences in a system with medium complexity: the electron donor-acceptor (EDA)
complex tetracyanoethylene-hexamethylbenzene (TCNE-HMB).

This system is a member of a group of complexes, the theoretical description of
which is owed to the pioneering work on ET by Mulliken and others [150]. A main
feature of EDA complexes is the appearance of a new absorption band (the charge
transfer (CT) band) when two molecules form a complex; the optical transition to
this band causes a charge separation. It is well established that the ground state of
such a complex is weakly bound and only slightly polar, whereas the electronically
excited state that absorbs in the visible region involves the transfer of an electron
from the donor to the acceptor. Upon photoexcitation to the CT band of a "weak"
EDA complex, an electron is transferred from the HOMO orbital located mainly on
the donor to the LUMO orbital located mainly on the acceptor molecule [150,151]. So
the absorption of a photon is accompanied by the electron transfer from a donor to an
acceptor.

TCNE-HMB system is well suited for a theoretical analysis of the CT process:
on the one hand, it exhibits coherent responses in ultrafast time-resolved �uorescence
signals [7, 21, 110]; on the other hand, this ET system is one of the most intensively
theoretically studied EDA complexes [71, 150�154].

5.1.1 Experiments
Early studies of resonance Raman pro�les and the near-infrared �uorescence spectrum
[155,156] of TCNE-HMB have identi�ed spectroscopically active vibrational modes and
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have provided their initial assignment [152,153].
Recently, the dynamics of ultrafast ET in this EDA complex has been studied by

di�erent time-resolved methods [7, 21, 110, 157, 158]. Although TCNE-HMB is formed
by relatively large organic molecules with many inter- and intramolecular vibrational
modes, a VC in a single vibrational mode manifests itself in this complex: underdamped
oscillatory responses with only one dominant frequency have been clearly observed at
an ultrafast time scale via pump-probe and time-resolved �uorescence spectroscopy. In
the transient absorption experiment by Hochstrasser's group [157, 158] an oscillation
with the frequency of 162 cm−1 excited by impulsive stimulated Raman scattering was
observed in a bleach recovery signal; the oscillation was assigned to a vibration in the
ground state. The time-resolved spectra measured by Rubtsov and Yoshihara [7,21,110]
showed quantum beats of 159 cm−1 with an ultrafast decay component. As spontaneous
�uorescence re�ects only the excited-state properties, the oscillation in this case results
from a coherent vibration in the excited electronic state of the complex.

Oscillatory signals with very similar oscillation frequencies have been observed in
three types of experiments (resonance Raman, transient absorption, and time-resolved
�uorescence) and for complexes with di�erent donors and a common acceptor [21].
This has lead to the conclusion that an intramolecular acceptor mode is responsible
for the observed oscillations. In particular, it has been assigned to the out-of-plane
bending mode of acceptor [21].

5.1.2 Previous simulations and theoretical interpretations
There have been several theoretical e�orts to understand and explain the origin of the
observed oscillations [152,153,155,157]. Despite of a certain progress, there still remain
some discrepancies in previous studies regarding the spectral modeling and dynamics
of this complex:

• di�erent groups (Myers and co-workers [155,156], and Hochstrasser's group [157,
158]) reported back electron-transfer rates which di�er by a factor of 3-8.

• Myers' group [155,156] derived a solvent reorganization energy which is about 2
orders of magnitude larger than that predicted by classical continuum theory.

• Hochstrasser and collaborators [157,158] had to assume a large displacement for
the electronically excited potential surface along the coordinate of the 165 cm−1

mode (increasing the displacements of Myers' by 23%) and had to change the
0-0 energy gap from 11 600 cm−1, which was obtained by Myers' group as 13 860
cm−1, in order to �t the observed absorption spectrum.

To resolve these discrepancies, Hayashi and Lin investigated this complex theoretically
[71, 154]. First, they performed ab initio molecular orbital (MO) calculations and
identi�ed all vibrational modes of the electronic ground state [154]. Based on the
results of MO calculations, they have proposed a new theoretical model consisting of
the ground state and two excited CT states (CT1 and CT2) having a small energy
gap. Absorption occurs from the ground state to both CT states. CT2 non-radiatively
relaxes to CT1 which undergoes a transition to the ground state via both back electron
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transfer and emission of �uorescence light. Using this model and the results of previous
experiments, they have been able to reproduce the experimental stationary absorption
and �uorescence spectra of the TCNE-HMB complex in CCl4 [154].

In subsequent work, these authors tried to simulate the time-resolved experiments,
in particular, to describe both spectral features and ultrafast dynamics of the TCNE-
HMB complex [71]. For this purpose, they have adopted a simple model consisting of
the three above mentioned electronic states and a single vibrational mode (which is
equivalent to our ET model system in the normal regime, Fig. 4.1a). The pump pulse
excites the system into CT state. The ultrafast dynamics takes place between CT1 and
CT2 manifolds. For the system dynamics calculation they used the RDM formalism
including explicitly vibrational relaxation and dephasing of optical coherences. They
analyzed the femtosecond time-resolved pump-probe and �uorescence signals on the
basis of this single-mode model. They roughly estimated the vibrational relaxation
and dephasing rate constant for the CT1 and CT2 states. But there are still several
problems which deserve further investigation:

• the quality of their �ts is only �semi-qualitative� [71].

• they did not take into account the �nite duration of the gate pulse, i.e. there is
no analog of the window function in their formalism.

• they have considered only one time-dependent transient from several available
experimental ones; they did not discuss the integrated signal and the TFG signal.

• There are some inconsistencies in their theory and interpretation of the experi-
ment. They identify two processes: (i) fast exponential decay due to vibrational
relaxation (if photon has an excess energy, that is its frequency is larger than 0-0
energy, then the fast relaxation starts) and (ii) oscillations due to the following
two mechanisms: modulation of transition frequency or modulation of transition
dipole moment (non-Condon e�ect). This is a very important point: the nature
of ultrafast initial dynamics is attributed to vibrational relaxation, but not to
nonadiabatic electronic coupling. We propose a �more economic� model which
does not require some of these additional assumptions.

5.1.3 Our goals
With the theory developed in this thesis, we are in the position to develop an improved
analysis of the experimental time-resolved �uorescence signals measured in [7,21,110].
Our particular goals are:

• to calculate (i) the time- and frequency-resolved (3D) �uorescence signal; (ii)
the cuts (or slices) of the general TFG SE spectrum at di�erent wavelengths
presented in experimental papers [7, 21, 110]; (iii) the frequency-integrated �uo-
rescence signal.

• to give a consistent interpretation of the experiments in the framework of a
model involving one relevant system mode. Nonadiabatic coupling (without non-
Condon e�ects) is su�cient to reproduce (at least qualitatively) all the observed
features.
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• to consider explicitly the e�ect of the time resolution (gate pulse duration) intro-
ducing the window function into theory.

• to systematically study the e�ect of di�erent system parameters (in particular,
the role of nonadiabatic coupling) on the signal.

5.2 Computational details
The plan outlined in Sec. 2.5 is realized here to describe the above mentioned experi-
ments. We have developed a model involving three (ground and two nonadiabatically
coupled excited) electronic states and a single reaction mode (see Fig. 4.1a). As the
starting point, we take the results of ab initio MO calculations [154] (for the system
parameters) and the data from [21,110] (for the experimental parameters). The model
parameters producing the best �t are obtained from the simulation. We have studied
the e�ect of the following parameters on the signal:

1) System parameters
Part of the system parameters, namely, the oscillator frequency Ω, the vertical energy
shifts (ε1, ε2), and the horizontal displacements (∆1, ∆2) have been kept �xed since
these are the results of ab initio calculations. We have checked, furthermore, that small
changes of these parameters had a little e�ect on the signals. This allowed us to reduce
the number of variable parameters.

Hayashi and Lin [71, 154] give the value of 1/3 for the ratio of electronic dipole
moments of the CT1 and CT2 states from the �t of absorption spectrum. We have
shown that the introduction of the second partially bright state (µ10 = µ20/3) into the
doorway and window functions only slightly changes the signal. The point is that a
horizontal shift of CT1 is smaller, than that of CT2, the corresponding Franck-Condon
factors are also smaller, and they are additionally divided by 3. So further we assume
that the CT1 state is dark. In that case, moreover, the integral signal is directly related
to the diabatic population (if the second state is partially bright, it is not so).

The remaining system parameter, the nonadiabatic electronic coupling V12, is shown
to in�uence drastically the signal behavior. In our theory, it is the most important
parameter which is responsible for the ultrafast dynamics.

2) Relaxation parameters
We have introduced dissipation e�ects within the Red�eld formalism (see Section 4.2.2)
and studied the in�uence of the system-bath coupling on the signals.

In order to achieve an agreement between the experimental transients and calculated
signals, we have introduced an additional optical dephasing Γdeph into the doorway and
window functions (Eqs. (2.46), (2.47)). That parameter controls the �lifetime� of the
optical coherence. In the window function this results in a rede�ned frequency �lter
(Eq. (2.4)) with γ̃ = γ+Γdeph. In general, the introduction of optical dephasing leads to
the qualitatively expected e�ect: when increasing Γdeph , the amplitude of oscillations
becomes smaller; more precisely, the oscillations minima shift up and maxima remain
in their positions.
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3) Experimental parameters
We have found very little e�ect of the time resolution (Γ) on the signals: our model
represents a single vibrational mode with a period which is well resolved with the pulses
used in the experiments. Indeed, 40÷55 fs corresponds to Γ = 4÷ 5 Ω. This is within
the good resolution limit, as has already been discussed in detail in Chapter 4. So the
experimental TFG spectrum is close to an ideal (snapshot) one.

The temperature e�ect is also not big but observable when changing from �nite
(�xed to 300 K in the experiments) to zero temperature. For higher temperatures,
more vibrational states are populated which results in more smoothed signals.

Best-�t parameters of the model
We obtained the best �t of the experimental results with the following set of parameters:

• oscillator frequency Ω = 160 cm−1, vertical excitation energies ε1 = 13910 cm−1,
ε2 = 14310 cm−1, horizontal displacements ∆1 = −1.28, ∆2 = 1.57,

• nonadiabatic coupling V12 = 49 cm−1 = 0.3Ω,

• electronic transition dipole moment of CT1 state µ10 = 0,

• temperature T = 300 K,

• pump pulse central frequency ωL = 15748 cm−1, pulse durations: ΓL = 5Ω for
the pump and Γ = 5Ω for the gate pulse,

• cuto� frequency ωc = Ω, system-bath coupling strength η = 0.45,

• optical dephasing rate Γdeph = Ω.

5.3 Results and interpretations
The time-resolved �uorescence signals are calculated for the model developed above.
To perform the explicit comparison with the experimental signals, we start with a
detailed analysis of particular cuts.

5.3.1 Cut at λ = 774 nm
Figure 5.1 demonstrates the calculated time-resolved signal at λ = 774 nm (which
corresponds to ω0 = 13405 cm−1), as well as the experimental signal reported by
Rubtsov and Yoshihara [21]. It is seen that we can qualitatively reproduce the main
e�ects contained in the experimental signal (and semiquantitatively the signal itself):
the oscillatory behavior and the overall decay. Moreover, since the experimental time
resolution is quite good (pulses are short), we can achieve rather good agreement
even at short times (overlapping-pulse e�ects are not contained in the calculations).
The theoretical and experimental cuts di�er in the vicinity of t0 = 200 fs where the
calculated signal exaggerates oscillatory features. A more detailed discussion of this
discrepancy is given below. Here we just note that, according to our assumptions, some
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Figure 5.1: Cut at λ = 774 nm. 1 - calculated, 2 - experimental (taken from [21]).

dephasing e�ects, which are the consequence of the multimode nature of the system
under study, are not taken into account in the present model. To arrive at a more
quantitative agreement, one may add to the single optically active mode (which is
treated within the Red�eld formalism) one (or several) other system modes.

The system under study provides us with a typical example of an electron-transfer
system with vibrational coherence. The model parameters determined above [moderate
nonadiabatic electronic coupling, a signi�cant shift between the minima of the ground
and excited electronic states, and an excess energy of ∼ 9Ω provided by the short
pump pulse] allow the creation of a vibrational wave packet in the excited state. The
oscillations in the signal (Fig. 5.1) cannot be interpreted as a signature of EC: these
oscillations appear in the time cut at a �xed frequency, but not in the integral signal.
As will be shown below, the integral signal has a characteristic step-like behavior,
re�ecting a WP motion in the excited electronic state. The oscillations in the cut
(Fig. 5.1) re�ect the same e�ect but in a di�erent way: the maxima correspond to the
steps in the integral signal. Obviously, due to the presence of an electronic coupling, a
fraction of the WP is transferred to the acceptor state each time the moving WP hits
the crossing region (at t0 = 2πn/Ω, n = 1, 2, ...), i.e., when the system tunnels to a
(dark) acceptor state, producing an abrupt loss of the amplitude in the cut at a given
frequency.

5.3.2 Peak-shift
As another check of our simulations, we have calculated the peak shift of the �uo-
rescence signal. The time-behavior of the peak position of the SE spectrum νmax(t)
is shown in Fig. 5.2b (to highlight the shift, the y-axis origin is chosen as νmax(0)).
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(a)

Maximum of �uorescence spectrum ν(t) time behavior. The normalized spectral shift correlation function
C(t) = [ν(t) − ν(∞)]/[ν(0) − ν(∞)] is shown as additional Y axis. The oscillating component determined as a di�er-
ence between experimental data and �t with eq 1 where the oscillating component was set to zero is shown at the bottom.
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Figure 5.2: Peak shift. (a) - experimental (taken from [21]), (b) - calculated.
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Figure 5.3: Comparison of several cuts (normalized). 1 - cut at 774 nm, 2 - cut at 907
nm, 3 (dashed line) - cut at 660 nm. All the curves are normalized to their maxima.

For comparison, the experimental results (�gure 2 from [21]) are given in Fig. 5.2a.
The experimental peak-shift consists of an oscillatory (which is given separately in the
lower panel of Fig. 5.2a) and an exponential part. The model reproduces very well
the weakly damped oscillatory part of the peak shift: the spectral position of the �u-
orescence is oscillating due to WP motion in the excited state of the complex. But
the model does not describe the large Stokes shift of 1400 cm−1. This re�ects the
fact that our single-mode model does not take into account other system modes and,
what is more important, solvent modes, which contribute to the overall shift of the
SE spectrum. The model may be improved by including an additional overdamped or
solvation coordinate.

5.3.3 Comparison of several cuts
With the present model, we can predict cuts of the �uorescence signal at any detec-
tion frequency. The phase of the oscillations is better observed when all the cuts are
normalized to their maxima, see Fig. 5.3 , showing cuts at 774, 907 and 660 nm. Un-
fortunately, all experimental cuts have been measured to the red side from the vertical
transition. In this case, the di�erent transients show no observable phase shift. To
demonstrate the existence of this e�ect, an additional time-transient for the detection
wavelength 660 nm, which is to the blue side from the vertical transition, is shown in
Fig. 5.3 (dashed line). The transients taken at di�erent sides of the vertical excitation
energy clearly show a phase shift of π which can be understood from WP motion: these
cuts have their maxima when the WP reaches the corresponding turning points.

When the cuts are not normalized to their maximum values, other e�ects can be
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(a)

Fluorescence decays of the TCNE-HMB complex in CCl4 at 774 and 907 nm. The best �t of convolution of f(t) function
with instrument response function is shown. Instrument response function of 85 fs (fwhm) used for the convolution is
also shown. The oscillatory component for the signal at 774 nm is emphasized separately at the bottom.
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Figure 5.4: Comparison of several cuts (unnormalized). (a) - experimental (taken
from [21]); (b) - calculated.
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Figure 5.5: Frequency-integrated �uorescence signal. 1 - calculated, 2 - experimental
(taken from [21]).

extracted. In Fig. 5.4b two di�erent cuts are shown: at 774 nm (which we have �tted
above) and at 907 nm (which is near the red tail of the spectrum); the corresponding
experimental signals (�gure 3 from [21]) are given in Fig. 5.4a. It is seen that for
detection wavelengths which are closer to the vertical transition the signal amplitude
is larger. Our simulation nearly reproduces the ratio of the amplitudes of these two
experimental cuts (e.g., 1/3 for the ratio of the �rst maxima). On the other hand, our
model does not reproduce another e�ect observable in the experimental transients: at
the red tail of the spectrum, the long-time limit of the experimental signal is higher,
which indicates that the overall decay is very slow. In our model the decay is ap-
proximately the same for all frequencies (compare the normalized cuts 1 and 2 in Fig.
5.3).

5.3.4 Integral signal
The developed model correctly reproduces general behaviors and trends in the exper-
imental cuts measured at di�erent detection wavelengths. We proceed next to the
discussion of the frequency-integrated �uorescence signal. The signal, calculated with
the set of model parameters determined above, is given in Fig. 5.5, along with the
experimental one. Both of them show the characteristic step-like behavior which is
typical for ET systems with VC (compare, e.g., with Fig. 4.3). There are several fac-
tors which determine the dynamics of the ET process, among which the most important
are the nonadiabatic electronic coupling and the dissipation strength. Our explanation
and those of others [21, 154] agree in that the steps (oscillations) in the signal are due
to WP motion and that their period is determined by the oscillator frequency Ω. How-
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Figure 5.6: TFG SE spectrum of the TCNE-HMB complex.

ever, the explanations di�er in an important point: the nature of the ultrafast initial
dynamics. Rubtsov and Yoshihara [7, 21, 110] give an explanation in terms of vibra-
tional relaxation, while in our model the short-time dynamics is mostly determined by
the nonadiabatic electronic coupling. Moreover, we do not need to invoke non-Condon
e�ects (as Rubtsov and Yoshihara did) to explain the coherent oscillations. (Actually,
a WP moving between the dark and bright states is, in a sense, a non-Condon e�ect.)

Fig. 5.5 shows signi�cant deviations of the calculated integral signal (curve 1) from
the experimental one (curve 2). Two sets of the experimental data, i.e. the cuts and the
frequency-integrated signal, can not simultaneously be �tted (even semi-qualitatively)
within our model. Roughly speaking, the experimental cuts decay to 0.2 in 1000 fs and
I(t) decays to 0.6 during the same time. In contrast, the two types of signals calculated
within our model exhibit nearly the same long-time decay: when making a reasonable �t
of the cuts (see above), the integral signal also decays to 0.2 in 1000 fs, which is much
below the corresponding experimental signal. Di�erent decay rates for the integral
signal and cuts could be, in principle, due to the e�ect of nonadiabatic coupling or due
to brightness of the second state. For example, for the limiting situations V12 = 0 or
µ10 = µ20, one gets I(t) ≡ 1, irrespective of the system-bath coupling. But a variation
of V12 and µ10 (within the limits which give a reasonable �t of the cuts) is shown to
result in no substantial improvements of the quality of the �t of the integral signal.
This may indicate that our model need be extended (see several suggestions in the
next section). However, we must mention another possible reason for the di�erent
decay rates for the cuts and I(t). The experimental frequency-integrated signal is
not very reliable, since it has been constructed on the basis of only 5-6 points in the
spectrum, while the cuts at �xed wavelengths are very accurate [159]. Therefore in the
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experimental determination of the integral signal, part of the spectrum may have been
missed. This could lead to an underestimated decay rate of the experimental I(t).

5.3.5 Time-resolved �uorescence spectrum
The TFG SE spectrum as a function of both detection frequency and delay time,
calculated for the TCNE-HMB complex, is shown in Fig. 5.6. We see that it is very
similar to Fig. 4.5 (system with VC) and, therefore, its interpretation is pretty much
the same. The time evolution of the signal monitors the ET dynamics: qualitatively
it re�ects the combined e�ect of ET and damped vibrational WP dynamics in the
donor state, which give rise to a characteristic step structure. Due to the presence of
electronic coupling, a fraction of the WP is transferred to the (dark) acceptor state
each time the moving WP hits the crossing region, producing a sudden loss (jump) of
the amplitude in the cut at a given frequency. In addition, the signal maps directly
the periodic coherent WP motion in the excited state between classical turning points,
where the local maxima of the peak-shift occur (see Chapter 4 for details). As we have
already emphasized, it is far more demanding to construct experimentally the time- and
frequency-gated spectrum since this requires measurements for detection frequencies
over the whole �uorescence spectrum.

5.3.6 Comparison with the single-excited-state model
One may ask whether the oscillatory cuts and the overall behavior of the TFG SE spec-
tra re�ecting WP motion may be reproduced by a harmonic oscillator model involving
a single excited-state surface. So one may try to model ET system by a single excited
(damped harmonic oscillator) state superimposed with an additional phenomenolog-
ical population decay e−t/T1 , where T1 is the excited-state lifetime. Here we would
like to demonstrate that the more sophisticated model developed in the present the-
sis has a considerable advantage over phenomenological harmonic oscillator models in
describing the time-resolved signals. The comparison can be performed on the basis
of Fig. 5.7 where we present the best �t of the cut at 774 nm (curve 1 from Fig. 4)
calculated within our model and the corresponding results for a single excited-state
model (V12 = 0). Curve 3 has been obtained for the same set of parameters as curve
2, except V12 = 0. The signal has an asymptotic value (which corresponds to a relaxed
�uorescence spectrum) of ∼ 0.6 and cannot be made lower by varying damping η and
dephasing time Γdeph. These two parameters will only change the manner of approach-
ing this asymptotic value. We can change the asymptotic value by varying signi�cantly
some system parameters. For example, curve 4 has been obtained by changing the hor-
izontal shift between the ground and excited state along the system mode from 1.57 to
2.57. The new asymptotic value is indeed lower (∼ 0.4), but the behavior is still very
di�erent from the results of calculations involving two electronically coupled excited
states and/or the experimental signal: there is a very strong �rst recurrence and the
oscillatory behavior is exaggerated. This has a clear explanation: in a single-excited-
state model there is no loss of the amplitude via decay to the dark state. This can be
achieved only by introducing the above mentioned phenomenological decay e−t/T1 . So,
in fact, a single cut probably can be �tted even within this simple model, but only for
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Figure 5.7: Present model vs. single-excited-state model. Cut at 774 nm: 1 - exper-
imental (taken from [21]), and calculated within the: 2 - present model, 3 - single-
excited-state model (V12 = 0), other parameters are the same, 4 - single-excited-state
model (V12 = 0), d2 = 2.57, other parameters are the same.

a single cut, not for the integral signal. In the single-excited-state model, I(t) = e−t/T1 ,
i.e., this model predicts structureless, simple exponential decay and cannot reproduce
the step-like structures in the integral signal.

5.4 Possible improvements of the model
As it is evident from the above results, our single-mode model appears to be too simple
to describe quantitatively all features in the experimental signals. There are several
possible improvements which should be considered in the future.

1) Overlapping pulses
Our theory does not yet describe overlapping excitation and gate pulses. It is rather
di�cult to describe overlapping-pulse e�ects within the perturbative treatment. At the
moment we are working on the nonperturbative approach (see Appendix B) in which
this problem can be straightforwardly solved.

2) Dissipation mechanism
The dissipation mechanism used in the present model (one relevant mode coupled to
a bath consisting of other system modes and environment) is probably too simple
to describe the actual situation of a complex formed by large molecules in solution.
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The Red�eld formalism creates an additional limitation on the system-bath coupling
strength.

As discussed above, the present model cannot account for the large Stokes shift
of the �uorescence. This problem can be solved by including an additional e�ective
overdamped (or solvation) coordinate.

The assumption that the system is dissipation-free during the interaction with the
external �elds may also be called in question. The corresponding generalization of the
theory requires the numerical evaluation of the doorway and window functions with
account of dissipation, which will be computationally expensive.

3) Multimode e�ects
The issue of multimode e�ects is closely related to the problem of dissipation. The idea
to use a single 160 cm−1 mode for the description of the experiments [71] is not entirely
consistent: although a number of intramolecular vibrational modes is observed in the
resonance Raman spectra, it has been assumed [71,154] that only the 137 cm−1 mode
(which is actually an e�ective mode resulting from the averaging of 14 TCNE and/or
HMB modes ranging from 80 to 210 cm−1) is associated with the 160 cm−1 mode
reported in [21,110,155�158], and plays a dominant role in time-resolved experimental
signals. In a more comprehensive model, more intramolecular vibrational modes should
explicitly be taken into account.

5.5 Summary
The developed theory for the description of time- and frequency-gated spontaneous
emission spectra has been applied to the interpretation of recent time-resolved �uores-
cence experiments of Yoshihara and coworkers on the ultrafast electron transfer reaction
in the donor-acceptor complex TCNE-HMB. A theoretical model has been constructed
which describes the ground state and two nonadiabatically coupled excited electronic
states which are strongly coupled to a single reaction mode. The system parameters
have been obtained from ab initio calculations [154] and by a �tting of the experimen-
tal signals. It is demonstrated that the developed model correctly reproduces general
trends in various experimentally measured responses, which include cuts of time- and
frequency-gated spectra at particular frequencies, oscillatory peak-shifts of the �uo-
rescence spectra, and frequency-integrated signals. Moreover, the relative shapes and
intensities of the spectral cuts at di�erent frequencies are correctly reproduced. A clear
distinction between the predictions of a single-surface harmonic oscillator model and
the nonadiabatic model of electron transfer is established. It has been shown that the
essential features of the signal can be rationalized in a nonadiabatic ET model without
introducing non-Condon e�ects.



Chapter 6

Phenomenological relaxation model

6.1 Introduction
The aim of the present chapter is to develop a simple reference model which allows the
explicit calculation of RFs for electronically nonadiabatic systems coupled to a heat
bath. The model is based on a phenomenological dissipation ansatz which describes
the major bath-induced relaxation processes: excited-state population decay, optical
dephasing, and vibrational relaxation. The model is constructed in such a way that it
allows us to express the nonlinear RFs of a dissipative material system through those
of the corresponding bath-free system.

The idea to express the RFs of a dissipative system through the corresponding
bath-free ones is not new, of course. For instance, the strong collision model (which
is similar in spirit to the present model) allows one to express various translational
and rotational CFs through their bath-free counterparts [160]. The phenomenological
dissipation model certainly oversimpli�es the relaxation processes. It therefore cannot
be invoked for gaining detailed, state-selected information. It is hoped, however, that
the model still captures the essential features of the relaxation process, so that its
use for the calculation of averaged quantities, like the RFs, is justi�ed. The main
impetus for developing the model is to supply a simple tool which can be useful for the
interpretation of ultrafast spectroscopic measurements.

6.2 The model
Adopting the electronic two-level system Hamiltonian (2.29) introduced in Section 2.3,
we postulate the following kinetic equation for the DM:

ρ(t) ≡
(

ρg(t) ρge(t)
ρeg(t) ρe(t)

)
, (6.1)

∂tρ(t) = − i

h̄
[H, ρ(t)]− (Γel + Γvib)ρ(t). (6.2)

The �rst term in Eq. (6.2) just describes the DM evolution under dissipation-free
conditions. The damping operators are de�ned as follows:

69
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Γelρ(t) = ξe|e > ρe(t) < e|+ (ξeg|e > ρeg(t) < g|+ H.c.), (6.3)
Γvibρ(t) =

∑
a=e,g

νa(1− ρB
a Tr) |a > ρa(t) < a|. (6.4)

Here a bra-ket notation for the electronic states is used, Tr means the trace over
vibrational (not electronic) coordinates,

ρB ≡
(

ρB
g 0
0 ρB

e

)
, ρB

a ≡ Z−1
a e−Ha/kT (6.5)

is the equilibrium Boltzmann vibrational distribution, and Za are the corresponding
partition functions.

The proposed damping operator consists of the two contributions, Γel and Γvib,
which are responsible for the electronic and vibrational relaxation, respectively. The
�rst term in the operator (6.3) re�ects the excited-state population decay, so that
T1 ≡ 1/ξe is simply the excited state lifetime. The second term in (6.3) is responsible
for the relaxation of coherences, and T2 ≡ 1/ξeg is the corresponding optical dephasing
time. Explicitly, 1/T2 ≡ 1/(2T1) + 1/T , where T is the pure dephasing time. Γvib has
been introduced to ensure vibrational relaxation of the DM in each electronic state to
its equilibrium form, so that τa ≡ 1/νa can be regarded as vibrational relaxation times
(a = e, g). The damping term Γel corresponds to the the optical dephasing model
proposed by Domcke and Stock [2, 122, 126]. In these papers, one can also �nd an
explanation and justi�cation for the proposed form of the electronic damping operator.
Γvib describes (in a simple phenomenological way) vibrational relaxation in the ground
and excited electronic states. In the literature, the ansatz of the kind (6.4) is referred
to as a �relaxation time approximation� [161], or a �strong collision model� [160, 162],
or the �Bhatnagar-Gross-Krook (BGK)� model [163]. It is frequently used for the
treatment of translational [161,163], rotational [160], and vibrational [162] relaxation.

The solution of Eq. (6.2) with an arbitrary initial condition ρ(t) = ρ(0) reads

ρa(t) = exp {−ξat}
[
ρa(t)

fr exp {−νat}+ ρB
a (1− exp {−νat})

]
(6.6)

(a = e, g; naturally, ξg = 0),

ρeg(t) ≡ ρ∗ge(t) = ρeg(t)
fr exp {−ξegt} . (6.7)

Hereafter, the label �fr� (�free�) designates the object, evaluated according to Eq. (6.2)
with the dissipation term omitted, i.e.

ρa(t)
fr = exp

{
− i

h̄
Hat

}
ρa(0) exp

{
i

h̄
Hat

}
, (6.8)

ρeg(t)
fr = exp

{
− i

h̄
Het

}
ρeg(0) exp

{
i

h̄
Hgt

}
. (6.9)

Eqs. (6.6), (6.7) clarify the meaning of the model. One sees that the time evolution
of coherences (6.7) is governed by a simple exponential decay, while the populations
(6.6) undergoes relaxation from an arbitrary initial distribution to equilibrium. The
timescale for this relaxation is determined by the parameter τa. The damping ansatz
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(6.3), (6.4) thus ensures that any DM relaxes to its equilibrium Boltzmann form (6.5).
If one takes into account the phenomenological excited state decay time T1 ≡ 1/ξe, the
long-time asymptote for the DM is

ρ(∞) ≡
(

ρB
g 0
0 0

)
. (6.10)

As is seen from Eqs. (6.4)-(6.7), the DM populations ρe(t) and ρg(t) experience
vibrational relaxation, but no vibrational relaxation occurs for coherences ρeg(t) and
ρge(t) . This evident limitation of the present model can be justi�ed by the following
observations. First, if the coherence dephasing time T2 is shorter than a character-
istic vibrational relaxation time, one does not need to take into account vibrational
relaxation during this time interval. Second, the present theory is intended for the
description of ultrafast spectroscopies in terms of RFs. While calculating such spectro-
scopic signals, the contributions of the electronic coherences to the RFs are limited by
the corresponding pulse durations. Therefore, if the pulses are short enough, one can
neglect relaxation of vibrational coherences.

To better understand the physical content of the damping ansatz (6.3), (6.4), it is
insightful to introduce the complete set of the eigenfunctions and eigenvalues for the
ground and excited state Hamiltonians:

Hg|n >= En|n >, He|α >= Eα|α >, (6.11)

ρB
g (n) = Z−1

g exp {−En/kT} , ρB
e (α) = Z−1

e exp {−Eα/kT} . (6.12)
Expanding Eq. (6.6) over the complete set of the eigenfunctions for, e.g., the excited
state, one arrives at the result

ραβ
e (t) = exp {−(iωαβ + νe)t} ραβ

e (0) + ρB
e (α)δαβ (1− exp {−νet}) (6.13)

(here δαβ is the Kronecker symbol and we put ξe = 0). Eq. (6.13) helps one to visualize
how vibrational relaxation proceeds according to our model within a particular vibra-
tional manifold. Both the populations and coherences decay with the same relaxation
time τe ≡ 1/νe: ραβ

e (t) ∼ exp{−t/τe} (note, that we speak here of vibrational, not
electronic, coherences). This behavior should be contrasted to that for the Red�eld
equation for a damped harmonic oscillator. Let us denote by ρij the DM elements in
the harmonic oscillator basis. Then, after a certain transient time of the order of a
vibrational period, one also obtains a quasi-exponential state-independent population
decay ρii(t) ∼ exp{−t/τ(t)}. The coherence damping is, however, state-dependent:
ρij(t) ∼ exp{−|i− j|t /(2τ(t))}, (i 6= j) [164]. The quantity 1/τ(t), after the averaging
over a vibrational period, gives just the constant friction in the Red�eld equation. It
is surprising that the two drastically distinct models give rise, roughly, to the same
law of the population decay and di�er only in the coherence decay. One hardly may
expect the damping ansatz (6.3), (6.4) to accurately describe the state-dependent vi-
brational relaxation rates. Of course, it is not very realistic to assume a constant,
level-independent decay rate for all the populations and coherences of a vibrational
manifold. We stress, however, that our model is certainly correct in the two limiting
cases: t = 0 (no relaxation has occurred yet) and t → ∞ (the system has already



72 CHAPTER 6. PHENOMENOLOGICAL RELAXATION MODEL

relaxed to its equilibrium distribution). The ansatz (6.4), in fact, interpolates linearly
between the two extremes via a single parameter, which is the vibrational relaxation
time τa. It is hoped that, although our model is unable to describe state-dependent
rates for particular vibrational levels, it still gives a reasonably good description for
various averaged quantities, like the total (diabatic or adiabatic) populations and RFs.

It is of importance that Eq. (6.2) with the damping operator (6.3), (6.4) is of Lind-
blad form [165], so that the positiveness of the DM is guaranteed for an arbitrary time
interval and for any values of the parameters of the model. Therefore, our approach
is not limited to the case of weak system-bath coupling. In addition, the vibrational
relaxation operator (6.4) is formulated in a representation-free form. This ensures re-
laxation to an �actual� equilibrium excited-state distribution (6.5) determined by a
(nonadiabatic) Hamiltonian He. So, in the present formulations one avoids the prob-
lems inherent, e.g., in the diabatic damping approximation in the Red�eld theory [2].

To summarize, the damping ansatz (6.3), (6.4) is uniquely determined by four
parameters. These are the population decay rate ξe , the optical dephasing rate ξeg,
and the two vibrational damping rates νe and νg .

6.3 Analytic expressions for nonlinear response func-
tions

So far, we have discussed the kinetic equation (6.2) without explicit consideration of
the time-dependent �eld-system interactions. To apply the model for the calculation of
nonlinear RFs, one has to start from the total system+�eld Hamiltonian in the dipole
approximation,

H(t) = H + HSF (t), HSF (t) = −E(t)

(
0 Vge

Veg 0

)
. (6.14)

Here E(t) is the electric �eld and Veg is the transition dipole moment, which is still
an operator in the nuclear space. Substituting H for H(t) in Eq. (6.2), and solving
the resulting equation perturbatively with respect to HSF (t), one can analytically ex-
press the third-order nonlinear RFs of the dissipative system in terms of those of the
corresponding dissipation-free system. The result reads:

R1(t3, t2, t1) = exp {−ξeg(t1 + t3)− ξet2}× (6.15)

[
R1(t3, t2, t1)

fr exp {−νet2}+ Jg(t1)Je(t3) (1− exp {−νet2})
]
;

R2(t3, t2, t1) = exp {−ξeg(t1 + t3)− ξet2}× (6.16)

[
R2(t3, t2, t1)

fr exp {−νet2}+ J∗g (t1)Je(t3) (1− exp {−νet2})
]
;

R3(t3, t2, t1) = exp {−ξeg(t1 + t3)}× (6.17)
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[
R3(t3, t2, t1)

fr exp {−νgt2}+ J∗g (t1)Jg(t3) (1− exp {−νgt2})
]
;

R4(t3, t2, t1) = exp {−ξeg(t1 + t3)}× (6.18)

[
R4(t3, t2, t1)

fr exp {−νgt2}+ Jg(t1)Jg(t3) (1− exp {−νgt2})
]
.

Here the standard bath-free third-order nonlinear RFs are given by the Eqs. (2.30)-
(2.33). The quantities

Jg(t) = Tr
[
exp

{
i

h̄
Hgt

}
Vge exp

{−i

h̄
Het

}
Vegρ

B
g

]
, (6.19)

Je(t) = Tr
[
exp

{
i

h̄
Het

}
Veg exp

{−i

h̄
Hgt

}
Vgeρ

B
e

]
(6.20)

are the �rst order RFs, whose Fourier-spectra represent the absorption (6.19) and
relaxed �uorescence (6.20) [1]. The set of equations (6.15)-(6.18) embodies the major
result of this section. To put it in a di�erent way, the proposed approach supplies
us with a kind of regression theorem, which allows us to calculate various RFs for a
dissipative system from those for the corresponding non-dissipative system. Having
reduced the problem of the evaluation of dissipative RFs to that for bath-free RFs,
one can apply various approximate approaches available for bath-free RFs (see, e.g.,
[49, 166]) to calculate and analyze the corresponding dissipative RFs.

If a direct diagonalisation of the excited and ground state Hamiltonians is feasible,
evaluation of the nonlinear RFs (6.15)-(6.18) presents no di�culties (see below). It is
a frequently occurring situation, however, that the eigenfunctions (6.11) are available
analytically for the ground state Hamiltonian only. This may be the case for many
nontrivial problems if, e.g., Hg is represented through a collection of harmonic and/or
one-dimensional rotational (isomerization) modes [2,61] or, for instance, Morse oscilla-
tors [42,60,66]. We may thus adopt the eigenvalue representation for the ground state,
while the treatment of the excited-state dynamics will be representation free. This is
precisely the strategy pursued in [2,122,126]. In doing so, one is able to express all the
nonlinear RFs in terms of matrix elements of the excited-state propagator

Φnm(t) =< n|Vge exp{−i

h̄
Het}Veg|m > . (6.21)

Indeed,

R1(t3, t2, t1)
fr =

∑
n,m

ρB
g (n) exp

{
i

h̄
(Eg

nt1 + Eg
mt3)

}
Φ∗

nm(t2)Φmn(t1 + t2 + t3), (6.22)

R2(t3, t2, t1)
fr =

∑
n,m

ρB
g (n) exp

{−i

h̄
(Eg

nt1 − Eg
mt3)

}
Φ∗

nm(t1 + t2)Φmn(t2 + t3), (6.23)
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R3(t3, t2, t1)
fr =

∑
n,m

ρB
g (n) exp

{−i

h̄
[Eg

n(t1 + t2)− Eg
m(t2 + t3)]

}
Φ∗

mn(t1)Φnm(t3),

(6.24)

R4(t3, t2, t1)
fr =

∑
n,m

ρB
g (n) exp

{
i

h̄
[Eg

n(t1 + t2 + t3)− Eg
mt2]

}
Φmn(t3)Φnm(t1); (6.25)

Jg(t) =
∑
n

ρB
g (n) exp

{
i

h̄
Eg

nt
}

Φnn(t), (6.26)

Je(t) = Z−1
e

∑
n

exp
{

i

h̄
Eg

nt
}

Φnn(−t− ih̄

kT
). (6.27)

When one considers the zero temperature case, ρB
g (n) → δn0, summation over n in Eqs.

(6.22)-(6.26) disappears and one arrives at much simpler expressions, since everything
is expressed through the zero-temperature propagator Φ0m(t). Of course, in the case
of no vibrational relaxation (νa = 0), one then recovers the results of Domcke and
Stock [2, 122, 126]. Provided a direct diagonalisation of the excited state Hamiltonian
is also feasible, one gets

Φnm(t) =
∑
α

Vnα exp{−i

h̄
Eαt}Vαm, Vαn ≡< α|Veg|n > . (6.28)

After the insertion of this expression into Eqs. (6.22)-(6.25) one recovers the standard
eigenvalue representation for the bath-free nonlinear RFs [1] and further, through Eqs.
(6.15)-(6.18), (6.26), (6.27), one obtains the corresponding expressions for the nonlinear
RFs of the dissipative system.

6.4 Time- and frequency-gated spontaneous emission
in the framework of the phenomenological relax-
ation model

To illustrate the application of the expressions of the preceding section, we apply
the present theory for the calculation of TFG SE spectra. All other spectroscopic
signals can be expressed through the nonlinear RFs in much the same manner (see as
an example the explicit expression for the pump-probe signal in Appendix C). The
formalism developed in this chapter allows one to calculate the TFG SE signals for
overlapping pump and gate pulses, because these are straightforwardly determined
by the nonlinear RFs [1, 85, 111]. The main intention of this section is, however, to
demonstrate the computational aspects of our method. Therefore, we restrict ourselves
to the case when the pulses are well temporally separated. This allows us to adopt the
DW representation for the signal (see Chapter 2) and, subsequently, to demonstrate
several simplifying features. In this section we emphasize how the DW representation
is speci�ed in the framework of the present model.
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The TFG SE spectrum is expressed through the nonlinear RFs according to Eq.
(2.36). If one additionally neglects the transient e�ects occurring on the time scale of
the order of duration of the pump and gate pulses, one may further invoke the DW
representation. For the present dissipative model, the desirable DW representation
can immediately be retrieved from the corresponding bath-free formulas (see Chapter
2) [1, 111]. Indeed, each of the third-order nonlinear RFs (6.15)-(6.18) consists of
two contributions which can loosely be labeled as �free� and �relaxed� one. The DW
formulas also split into the corresponding parts:

Sst(t0, ω0) ∼ Tr[W fr(ω0)G
fr(t0)D

fr(ωL)] + W rel(ω0)G
rel(t0)D

rel(ωL). (6.29)

Here the D and W operators are determined via the expressions

Dj(ωL) =
∫ ∞

−∞
dt′

∫ ∞

0
dt1 EL(t′)EL(t′ − t1)e

(iωL−ξeg)t1 Dj(t′, t1) + H.c. , (6.30)

W j(ω0) =
∫ ∞

−∞
dt

∫ ∞

0
dt3 Et(t + t3)Et(t)e

(iω0−γ−ξeg)t3 W j(t, t3) + H.c. (6.31)

in which
Dfr(t′, t1) = eiHet′ e−iHet1 Vegρ

eq
g eiHgt1 Vge e−iHet′ , (6.32)

W fr(t, t3) = eiHet Veg eiHgt3 Vge e−iHet3e−iHet; (6.33)

Drel(t′, t1) = Jg(t1), W rel(t, t3) = Je(t3). (6.34)
The excited state propagators are determined as follows:

Gfr(t0)X = e−iHet0XeiHet0 e−(νe+ξe)t0 ∀X, (6.35)

Grel(t0)X = e−ξet0(1− e−νet0)X ∀X. (6.36)
In the derivation of Eqs. (6.34) we have assumed again that the pump and gate pulses
are short enough, so that no bath-induced excited-state population relaxation occurs
during the pump and probe processes. The introduced DW-representation for the TFG
SE makes the contributions of various relaxation processes to the signal transparent.
Since the �free� term is basically determined by the standard bath-free formulas, we
shall not consider it here in detail, because a very similar analysis has been given
elsewhere [2,122,126]. By adopting the eigenvalue representation for the ground state,
one may express the �free� contribution to the TFG SE signal (6.29) through the excited
state propagator (6.21). As to the �relaxed� contribution, one can further simplify
the problem by assuming that the time-gate functions and the excitation pulses are
exponential (2.3). Using these formulas, one can analytically perform one of the time
integrations in Eqs. (6.30) and (6.31) for the �relaxed� terms (6.34):

Drel(ωL) =
∫ ∞

0
dt (t + Γ−1

L ) e−(ΓL−iωL)t Jg(t) + c.c., (6.37)
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W rel(ω0) =
∫ ∞

0
dt (t + Γ−1) e−(Γ−iω0)t Je(t) + c.c., (6.38)

ΓL ≡ ΓL + ξeg, Γ ≡ Γ + γ + ξeg. (6.39)
If, additionally, the problem can be handled in the eigenvalue representation for the
excited state Hamiltonian (for electronically nonadiabatic systems, this strategy is
feasible for Hamiltonians containing several vibrational modes [2, 55�57]) one arrives,
in fact, at analytical formulas:

Sst(t0, ω0) ∼
∑

α,β

{
W fr

αβ(ω0)e
−(iωαβ+νe+ξe)t0Dfr

βα(ωL)
}

(6.40)

+(1− e−νet0)W rel(ω0)e
−ξet0Drel(ωL).

Explicitly
Dfr

αβ(ωL) =
∑
n

VαnVnβρB
g (n)

{
1

ΓL − iωL
αn

1

ΓL − iωL
βn

(6.41)

+
1

2ΓL − iωαβ

1

ΓL − iωL
βn

+
1

2ΓL + iωαβ

1

ΓL − iωL
αn

}
+ c.c.,

W fr
αβ(ω0) =

∑
n

VαnVnβ

{
1

Γ− iω0
αn

1

Γ− iω0
βn

(6.42)

+
1

2Γ− iωαβ

1

Γ− iω0
βn

+
1

2Γ + iωαβ

1

Γ− iω0
αn

}
+ c.c.,

Drel(ωL) =
∑
n,α

V 2
αnρ

B
g (n)

ΓL − iωL
αn

{
1

ΓL − iωL
αn

+
1

ΓL

}
+ c.c., (6.43)

W rel(ω0) =
∑
n,α

V 2
αnρ

B
e (α)

Γ− iω0
αn

{
1

Γ− iω0
αn

+
1

Γ

}
+ c.c. (6.44)

Here
ωL

αn ≡ ωL − ωαn, ω0
αn ≡ ω0 − ωαn. (6.45)

Eqs. (6.40)-(6.44) provide an explicit recipe for the calculation of the TFG SE signal
for any material system, which can be handled in terms of the eigenvalues and eigen-
functions. The equations also generalize the treatments of Kowalczyk et al. [79] and
Santoro et al. [78] to dissipative systems.

6.5 Applications of the model
We are now in a position to compare the results of the present alternative model with
those obtained by various more accurate methods.
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(a) (b)

Figure 6.1: Time evolution of the TFG SE spectrum in the case of satisfactory time
and frequency resolution (γ = 0.3; Γ = 1) for an underdamped displaced (λ = 5)
classical (ε = 0.1) harmonic oscillator. (a) Λ = 0.3 (standard model); (b) νe = 0.3
(present model). The TFG SE intensity is given in arbitrary units. All the parameters
are dimensionless, the inverse of the free oscillator frequency Ω is taken as the time
unit. The frequency origin is chosen as ωeg .

6.5.1 Comparison with a Brownian oscillator model
We start with the Brownian oscillator model considered in Section 3.2. For the Brow-
nian oscillator model the nonlinear RFs are determined by a line shape function g(t)
(3.14). On the other hand, within the present model, the nonlinear RFs are expressed
through the pertinent bath-free (Λ = 0) function gfr(t). That allows us to compare the
results of the approaches with each other. To make this comparison more transparent,
here we also restrict ourselves to the case of impulsive excitation which gives an explicit
expression for the TFG SE spectrum (see Eq. (3.6)). For our purposes, however, we
rewrite that equation as

Sst(t0, ω0) ∼ Re
∫ ∞

0
dt

∫ ∞

0
dt3 Et(t− t0)Et(t− t3 − t0)e

[−γ+i(ω0−ωeg)]t3Ψ(t, t3). (6.46)

In Eq. (6.46), the standard damped harmonic oscillator model corresponds to

Ψ(t, t3) = e−g∗(t3)−2i[g′′(t)−g′′(t−t3)], (6.47)

while the phenomenological dissipation model results in the expression

Ψ(t, t3) = e−g∗fr(t3)
{
e−2i[g′′fr(t)−g′′fr(t−t3)]e−νe(t−t3) + e−2iλ(t−t3)(1− e−νe(t−t3))

}
. (6.48)

We have put ξeg = ξe = 0, since these parameters are irrelevant for the present com-
parison.

The formulas (6.46)-(6.48) allow us to calculate the TFG SE spectra within both
approaches for di�erent values of the dynamic parameters and for various qualities
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of the time and frequency �lters. Since we are primarily interested in how the phe-
nomenological approach describes the material system dynamics, we shall not study
the in�uence of the quality of temporal and spectral �ltering on the TFG SE signals.
Instead, we have chosen a representative time and frequency resolution and have calcu-
lated the TFG SE spectra within the standard damped harmonic oscillator model (Fig.
6.1a) and the present approach (Fig. 6.1b) for weak dissipation. Both approaches are
seen to give rise to qualitatively similar results, since the ansatz (6.3), (6.4) does de-
scribe vibrational relaxation in the excited state and, therefore, the TFG SE spectrum
evolves into the relaxed �uorescence spectrum, which experiences the Stokes shift of
2λ. Without the �relaxed� contribution to the nonlinear RFs, one simply gets the free
oscillator TFG SE spectrum (with no Stokes shift) multiplied by an exponential decay
factor, which just decreases the SE intensity.

Evidently, the two approaches coincide in the case of bath-free oscillators (νe =
Λ = 0), and also in the case of very rapid vibrational relaxation in the excited state
(νe, Λ →∞). However, the parameters νe and Λ, which govern the dissipation strength,
need not have the same physical origin. Thus, the models do not necessarily coincide
for intermediate values of these parameters. It comes as a surprise that the TFG SE
spectra in Figs. 6.1a and 6.1b coincide semiquantitatively for νe = Λ. This provides
additional support for our model description. In general, the calculations have revealed
that our approach reproduces the TFG SE spectra for a damped harmonic oscillator
rather well in the entire domain of the parameters of the model and for an arbitrary
dissipation strength.

6.5.2 Comparison with Red�eld theory for electron transfer
model systems

Now we proceed to a more crucial test and consider the TFG SE for ultrafast ET
system presented in Chapter 4. As in the previous consideration of damped harmonic
oscillators, we restrict ourselves to the case of impulsive excitation. Therefore, the
initial ground-state vibrational distribution is instantaneously transferred to the origin
of the vibrational coordinate of the donor potential well. To provide a comparison of
our theory with more elaborate approaches, the subsequent evolution of the WP in
the electronically excited state is treated within the Red�eld formalism, as has been
described in detail in Chapter 4:

Sst(t0, ω0) ∼ Tr[W fr(ω0)G
R(t0)D

fr(ωL)]. (6.49)

Here GR(t0) is the excited-state propagator of the Red�eld theory, and the D and W
functions are given by Eqs. (6.41) and (6.42), respectively. For the further analysis
it is important to realize that the Red�eld propagator GR(t0) is uniquely determined
by the system Hamiltonian parameters (4.3), (4.7) and by the bath spectral function
J(ω) which is taken in the Ohmic form with exponential cuto� (4.7).

The TFG SE spectra within the present approach were computed according to
Eqs. (6.40)-(6.45). Roughly speaking, η determines the strength of the bath-induced
relaxation in the Red�eld theory and νe does in our approach, but, of course, there is
no one-to-one correspondence between the two parameters.
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(a) (d)

(b) (e)

(c) (f)

Figure 6.2: Time-evolution of the TFG SE spectrum towards the relaxed �uorescence
spectrum for a model ET system in the symmetric regime. DW-Red�eld theory: (a)
η = 0.005 (weak damping), (b) η = 0.05 (intermediate damping), (c) η = 0.1 (stronger
damping). Present model: (d) νe = 0.004Ω (weak damping), (e) νe = 0.03Ω (interme-
diate damping), (f) νe = 0.06Ω (stronger damping). The TFG SE intensity is given in
arbitrary units, time is measured in fs and frequency in eV.
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To primarily concentrate on the dynamic e�ects, a perfect time (Γ = 10Ω) and
frequency (γ = Ω/20) resolution has been chosen for all calculations.

We start from the consideration of the TFG SE spectra for ET in the symmetric
case, when the minima of the potential surfaces for both donor and acceptor states
are at the same level [Fig. 4.1a with ε2 = ε1]. The system parameters have been
taken as those from Ref. [56]: h̄Ω = 0.05 eV, ∆1 = 5.5 , ∆2 = 2 , and V12 = 0.2Ω
(relatively weak electronic coupling). We have chosen the symmetric system, since
it, even in the case of zero temperature, possesses high equilibrium diabatic state
population (P1 = P2 = 0.5), which is responsible for the relaxed �uorescence. To
illustrate the development of the TFG SE spectra with increasing strength of the
system-bath coupling, we have calculated them via DW-Red�eld theory for η = 0.005
(weak damping, Fig. 6.2a), η = 0.05 (intermediate damping, Fig. 6.2b), and η = 0.1
(stronger damping, Fig. 6.2c). The TFG SE spectra computed within the present
model are presented in Fig. 6.2d for νe = 0.004Ω (weak damping), in Fig. 6.2e
for νe = 0.03Ω (intermediate damping), and in Fig. 6.2f for νe = 0.06Ω (stronger
damping). In general, both approaches give rise to similar scenarios of the TFG SE
behavior. Namely, the short time portion of the spectrum re�ects the vibrational
WP dynamics in the donor state. At t = 2πn/Ω, n = 1, 2, ... , the WP leaks rapidly
to the dark acceptor state due to the presence of electronic coupling. This ultrafast
process manifests itself through the characteristic stepwise structure of the TFG SE
spectrum (compare with [56]). These periodic excursions of the WP to the acceptor
state are superimposed on vibrational relaxation, and the TFG SE spectrum gradually
transforms into the relaxed �uorescence spectrum with increasing delay time. The
latter just coincides with the �relaxed� window function W rel(ω0).

As expected, both approaches predict very similar TFG SE spectra for weak system-
bath couplings (Figs. 6.2a and 6.2d). The spectra re�ect, obviously, underdamped WP
dynamics in the donor state. The dip at t = 300 fs and the second hump at 600 fs
are the spectral manifestations of the electronic beatings in the system. When the
system-bath coupling further increases, these bath-free features gradually disappear,
resulting in a more monotonous dependence of the spectra on the pulse delay time.
Although Figs. 6.2b and 6.2e look very similar, a closer inspection reveals that the
present approach exaggerates slightly the contributions due to free motion of the WP:
the aforementioned dip and hump are more pronounced in Fig. 6.2e than in Fig. 6.2b.
Fig. 6.2c corresponds to quite a substantial bath-induced damping, in the sense that the
TFG SE spectrum exhibits a monotonous dependence on the delay time and exhibits
little similarity with the corresponding bath-free spectrum. As is shown elsewhere [148],
the Red�eld theory is still correct for such values of the system-bath coupling. If
one further increases the dissipation strength in the Red�eld approach (its validity
may become questionable for higher dampings), the relaxation rate of the TFG SE
spectra decreases, and they tend very slowly to the relaxed �uorescence spectrum.
The present model, on the contrary, predicts more rapid vibrational relaxation if νe

increases, and the TFG SE spectra evolve to the relaxed �uorescence spectrum on
the time scale of τe (Fig. 6.2f), in a manner which is similar to the evolution of
the TFG SE spectrum for the overdamped harmonic oscillator [111]. Therefore, the
slow relaxation regime predicted by the Red�eld approach at relatively high dampings
can not be reproduced within this model. As has been explained earlier, the case of
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Figure 6.3: TFG SE spectrum for a model ET system in the normal regime calculated
within the present theory (νe = 0.2Ω) at (a) low (T = 0 K) and (b) room (T = 300
K) temperature. The TFG SE intensity is given in arbitrary units, time is measured
in fs and frequency in eV.

intermediate dissipation strengths is the most unfavorable for testing the validity of
our model: it is certainly valid for small and high dampings, while for intermediate
system-bath couplings it can be only qualitatively correct. On the other hand, one
cannot reproduce a rapid (overdamped) vibrational relaxation by merely increasing
friction in the Red�eld theory, even in the simplest case of one-dimensional harmonic
oscillator [167]. Within the present approach, however, this regime is readily amenable
to the description (see below).

Let us next study the ET in the normal regime [Fig. 4.1a]. The system parameters
are chosen exactly as those for the previous symmetric case, but the donor state is now
vertically displaced relative to the acceptor state: ε2−ε1− h̄Ω(∆2

1−∆2
2)/2 = 0.045 eV .

From the point of view of the present consideration, this con�guration is peculiar in
the sense that the equilibrium diabatic state population is considerable (P2 = 0.17)
at room temperature (T = 300 K), while it goes to zero with decreasing temperature.
The TFG SE spectra calculated within the present approach for a rather large value
of the vibrational relaxation rate (νe = 0.2Ω) are shown in Fig. 6.3a (T = 300 K) and
in Fig. 6.3b (T = 0). The �gures illustrate the applicability of the phenomenological
dissipation model for the description of rapid vibrational relaxation (note the shorter
time scale for these �gures), when the nuclear mode under study can be regarded
overdamped. The initial �hot� �uorescence spectrum is seen to rapidly transform to
its relaxed counterpart (Fig. 6.3a) while at T = 0 the signal merely vanishes at the
same time scale (Fig. 6.3b). This regime of fast vibrational relaxation cannot be
described via Red�eld theory, because the latter is applicable only in the case of weak
system-bath coupling.

As a �nal example we consider ET in the inverted regime [Fig. 4.1b]. The system
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(a) (b)

Figure 6.4: TFG SE spectrum for a model ET system in the inverted regime at room
(T = 300 ) temperature. (a) DW-Red�eld theory, η = 0.1; (b) present model, νe =
0.03Ω. The TFG SE intensity is given in arbitrary units, time is measured in fs and
frequency in eV.

parameters are taken as follows [56]: h̄Ω = 0.064 eV , ∆1 = −0.8281, ∆2 = −2, V12 =
0.1 eV , and ε2− ε1− h̄Ω(∆2

1−∆2
2)/2 = 0.1259 eV . The corresponding TFG SE spectra

have been calculated via the DW-Red�eld theory (Fig. 6.4a, η = 0.1) and the present
approach (Fig. 6.4b, νe = 0.03Ω) at T = 300 K. For that system, the equilibrium
population of the donor state is negligibly small even at a room temperature. It is
quite surprising therefore that both the DW-Red�eld and the present theory coincide
semiquantitatively in a case for which vibrational damping is quite important. Indeed,
the TFG SE spectra vanish on a time scale of ∼ 1ps (Fig. 6.4). The shape of the
spectra di�ers markedly from that for the bath-free system, since the bath-free donor-
state population at t ∼ 1ps is still substantial [56], and vibrational relaxation in the
excited state is not �nished yet. Of course, for higher dampings, the predictions of the
DW-Red�eld theory and the present approach start to deviate, in the manner described
for the TFG SE spectra in the normal regime, that is, the present model exaggerates
the contribution of free WP motion. Moreover, since the �relaxed� contribution to the
TFG SE turns out to be negligibly small for this system, the RFs become just the
�free� ones multiplied by an exponential decay factor (6.15-6.18), so that one recovers
the optical dephasing model [2,122,126]. On the other hand, the validity of the Red�eld
theory itself is questionable for higher dampings.

To conclude, the phenomenological dissipation model describes the evolution of the
TFG SE spectrum towards the relaxed �uorescence spectrum. For electronically adi-
abatic systems, one gets a semiquantitative agreement between the TFG SE spectra
calculated within the present approach and the standard damped harmonic oscilla-
tor [1]. If the system under study possesses pronounced nonadiabatic couplings and
undergoes, therefore, a rapid interconversion between diabatic electronic states, the
equilibrium diabatic donor state population may be very small. In such a situation
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the di�erence between the predictions of the phenomenological model and Red�eld
theory become apparent, since the relaxed contribution to the RFs disappears. Even
in this case, the two approaches give rise to quite similar results for weak dissipation
(see Fig. 6.4a and 6.4b). In general, for nonadiabatic systems, the predictions of the
phenomenological model may deviate quantitatively from those of Red�eld theory for
intermediate-strength dampings and small temperatures. The present approach exag-
gerates contributions due to free WP dynamics as compared with the DW-Red�eld
theory, which predicts a more monotonous transformation of the TFG SE spectra. In
any case, the short-time (at times of the order of several vibrational periods) and long-
time (at times greater than a characteristic vibrational relaxation time) behaviors for
the TFG SE spectra are correctly reproduced by our model. In addition, it allows one
to easily treat rapid vibrational relaxation, when the nuclear mode(s) under study are
overdamped.

6.6 Summary
In order to treat the time-dependent optical response of a (nonadiabatic) system cou-
pled to a heat bath, a simple phenomenological model has been proposed, which de-
scribes the major bath-induced relaxation processes. These are the excited-state elec-
tronic population decay, electronic coherence dephasing, and vibrational relaxation.
The model allows one to express the nonlinear RFs for a dissipative material system
through those of the corresponding bath-free system. We have restricted ourselves to
the consideration of the nonlinear RFs, although higher order RFs can be evaluated in
much the same manner. To facilitate the calculation of nonlinear RFs in the frame-
work of the present theory, we have considered two important situations, for which
evaluation of the nonlinear RFs simpli�es considerably. These are the eigenstate rep-
resentation for (i) both ground and excited state Hamiltonians and for (ii) the ground
state Hamiltonian only, while the excited state is treated in a representation-free man-
ner. For these particular cases, simple and readily numerically tractable formulas have
been derived for the nonlinear RFs.

To illustrate the computation of optical responses via our theory and various stan-
dard methods, we have compared the TFG SE spectra calculated within the present
approach with those obtained for a damped harmonic oscillator (Chapter 3) and the
DW-Red�eld theory of the nonadiabatic ET (Chapter 4). The phenomenological model
has been shown to semiquantitatively reproduce the TFG SE spectra for electronically
adiabatic systems. For nonadiabatic systems, the phenomenological approach corre-
lates well with Red�eld theory in the case of underdamped nuclear relaxation, when
TFG SE signal re�ects essential signatures of the free motion. With increasing the
strength of the bath-induced dissipation, the phenomenological model may deviate
from Red�eld theory. On the other hand, the model allows one to correctly describe
the case of rapid vibrational relaxation, when the vibrational mode(s) of the system
can be regarded as overdamped. In this limit of strong system-bath coupling, Red�eld
theory is not applicable.

The model is very e�cient numerically since the computational cost is determined
by the propagation of dissipation-free Hamiltonians, as distinct from, e.g., Red�eld
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theory.
It is hoped that the alternative model developed in this chapter may prove useful

as an e�cient tool for the qualitative calculation of optical responses and, therefore,
the interpretation of observed time-resolved spectra. In particular, it can be applied
for the complex systems with many degrees of freedom, part of which are treated in a
quantum-mechanical description and the rest of the modes in a classical approximation.
Furthermore, the model allows the consideration of the overdamped motion in contrast
to models which are limited to weak dissipation.



Chapter 7

Conclusions

The theory of time- and frequency-gated spontaneous emission spectra has been elab-
orated. The present formulation generalizes previous derivations, clari�es the inter-
relations between di�erent existing expressions, and establishes the validity of certain
commonly assumed approximations. Various explicit expressions for the time- and
frequency-gated spontaneous emission signals have been derived, which are suitable for
performing actual calculations for nontrivial systems.

A number of generic (that is, model independent) properties of time-resolved spectra
has been established. The time- and frequency-gated spontaneous emission is shown to
be equivalent to the stimulated-emission contribution to the integral pump-probe spec-
trum in the case of non-overlapping pulses. In this case, the time-gate function plays
the role of the envelope of the probe pulse, and the spectral �lter function determines
its carrier frequency. The validity of the commonly employed slowly varying envelope
approximation is discussed and generalized expressions are derived for the time- and
frequency-gated spontaneous emission in terms of Wigner spectrograms beyond this
approximation.

The doorway-window picture of temporally and spectrally resolved spectra has been
further developed. This casts the description of the time-resolved �uorescence into an
intuitively appealing form in terms of wave-packet dynamics in the excited state. Com-
putationally, this method requires the doorway and window operators to be calculated
only once, so that propagation of the doorway operator over a certain time interval
according to the chosen (dissipative) model and its subsequent averaging together with
the window operator yields the time- and frequency-gated spontaneous emission spec-
trum. If the doorway and window operators are expanded over the complete set of
eigenfunctions of the bath-free Hamiltonian and if one assumes an exponential time-
gate function, the doorway and window functions can be evaluated analytically beyond
the snapshot limit.

The theory has been illustrated for the example of an electronic two-level system
with a single Condon-active harmonic vibrational mode which is coupled to a thermal
bath. The e�ect of imperfect time and frequency resolution is studied. The speci�c
features of the wave-packet dynamics in the excited state are shown to survive the time-
and frequency-gated mapping procedure, and manifest themselves in the �uorescence
spectra. This underlines that the time-resolved �uorescence clearly re�ects the wave-
packet dynamics in the excited state, provided a good compromise is found between
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temporal and spectral resolution. In this case, the information about the material dy-
namics can be extracted from the time-resolved �uorescence signals by an appropriate
theoretical analysis. In particular, the time- and frequency-gated spontaneous emission
spectrum carries information not only on the strength of the system-bath coupling, but
also on the relative magnitude of the bath correlation time.

Time-resolved �uorescence signals have been calculated for representative models of
electron-transfer systems. The electron-transfer dynamics is modeled in terms of two
diabatic electronic states which are electronically coupled as well as strongly coupled
to a reaction mode, which in turn is weakly coupled to a dissipative environment. The
bath degrees of freedom are integrated out in the framework of Red�eld theory. The
reduced density matrix is obtained by the numerical solution of the Red�eld equations
of motion. For suitably chosen parameters, the model describes interesting features
of ultrafast electron-transfer dynamics such as electronic beatings (due to electronic
coherence) and step-like electronic population decay (due to vibrational coherence).

To elucidate the e�ect of various coherences on the �uorescence signal, a number of
simulations has been performed for electron-transfer models in which either electronic
coherence or vibrational coherence e�ects are dominant. It is demonstrated that the
time resolution of the gate must be of the order of or shorter than the electronic beating
period in order to detect electronic quantum beats. It is shown that step structures in
the electronic population probability due to vibrationally coherent electron transfer can
be experimentally detected, provided the duration of the pump and gate pulses is of
the order of a vibrational period or shorter. This prediction is not limited to the case of
weak system-bath coupling. When the duration of the pulses signi�cantly exceeds the
vibrational period, the mode-speci�c features are shown to be averaged out, resulting
in exponential electronic population decay corresponding to the electron-transfer rate.

It has been demonstrated that the e�ect of optical preparation by pump pulses of
�nite duration is qualitatively similar to that of the temporal resolution of the gate
pulse. To monitor the mode-speci�c features of the electron transfer dynamics in a
time-resolved �uorescence experiment, one must employ su�ciently short pump pulses
to excite coherently a signi�cant part of vibrational levels. To detect the characteristic
step-like structure in ultrafast spectroscopic signals, the pump-pulse duration as well
as the gate-pulse duration must be shorter than the vibrational period.

Time- and frequency-gated spontaneous emission spectra have been calculated for
various durations of the pump and gate pulses. For suitably chosen parameters of the
pump and gate pulses, these spectra are demonstrated to map the vibrational wave-
packet dynamics of the electron transfer systems, so that both types of coherences can
show up in measured time-resolved �uorescence signals. It is argued that the time- and
frequency-gated spontaneous emission spectrum, as a function of time, qualitatively
re�ects the electronic population dynamics. At small times, the spectrum represents the
spontaneous emission of the initially prepared nonequilibrium excited state. Later on,
it gives the development of this �uorescence spectrum towards equilibrium one. Since
the time-resolved �uorescence signal maps directly the periodic vibrational wave-packet
motion in the excited state, time- and frequency-gated spectra provide us with more
information on the system dynamics than frequency-averaged time-resolved signals or
the conventional stationary �uorescence spectrum.

It is concluded that the in�uence of the measuring devices (the pump pulse for
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preparation and the gate pulse for detection) is signi�cant and must be accurately
taken into account. The present formulation clari�es the relation between the intrinsic
system dynamics (e.g., the time-dependent electronic population dynamics) and �real�
experimental observables.

The developed approach to the description of time- and frequency-gated sponta-
neous emission spectra has been applied to the interpretation of recent time-resolved
�uorescence experiments of Yoshihara and coworkers, performed to study the ultra-
fast electron transfer in the donor-acceptor complex TCNE-HMB. A theoretical model
consisting of the electronic ground state and two nonadiabatically coupled excited
electronic states, which are strongly coupled to a single reaction mode, has been con-
structed. The system parameters are obtained from a �tting procedure and ab initio
calculations [154]. It is demonstrated that the developed model correctly reproduces
the general trends in various experimentally measured responses, which include cuts
of time- and frequency-gated spectra at particular frequencies, peak-shifts of the �uo-
rescence spectra, and frequency-integrated signals. Moreover, the relative shapes and
intensities of the spectral cuts at di�erent frequencies are correctly reproduced. A
clear distinction between predictions of the standard harmonic oscillator models and
nonadiabatic models of the ultrafast electron transfer is established. It is argued that
the observed features in the signal behavior can be rationalized without introducing
non-Condon e�ects. The methods developed in the present work have been shown to
be useful for the interpretation of time-resolved �uorescence experiments on ultrafast
electron-transfer systems exhibiting coherent responses.

An alternative model has been developed for the calculation of optical response func-
tions for electronically nonadiabatic systems coupled to a heat bath. A phenomenolog-
ical dissipation ansatz is suggested which describes the major bath-induced relaxation
processes, namely excited-state population decay, optical dephasing, and vibrational
relaxation. The model is constructed in such a way that it allows one to express the
nonlinear response functions for a dissipative system in terms of those for the corre-
sponding bath-free system. The explicit formulas for the third-order response functions
are given.

To illustrate the performance and validity of the phenomenological model, time-
and frequency-gated spontaneous emission spectra have been calculated. The time-
dependent spectra derived from the model are compared with those calculated for the
standard damped harmonic oscillator model and for a model nonadiabatic electron-
transfer system with Red�eld theory. It is concluded that the model provides quali-
tatively correct response functions and, therefore, may be useful for the interpretation
of observed time-resolved spectra. In particular, it can be applied to large systems
with nonadiabatic couplings and many degrees of freedom. The model is very e�-
cient numerically, since the computational cost is determined by the propagation of
dissipation-free Hamiltonians, in contrast to, e.g., Red�eld theory.





Appendix A

Time- and frequency-gated
spontaneous emission spectra in terms
of Wigner spectrograms

Following Mukamel and coworkers [63, 64, 83�85], we adopt Wigner spectrograms for
the description of the TFG SE. Let us introduce the new variables

t = (t′ + t′′)/2, s = t′ − t′′ (A.1)

and the bare TFG spectral function

S0(t, ω) =
∫ ∞

−∞
ds eisω < P (t + s/2)P (t− s/2) > . (A.2)

After the insertion of Eq. (A.2) into Eq. (2.12) one arrives at Eq. (2.10) in which

St(t0, ω1) =
∫ ∞

−∞
dt dω W (t, ω1 − ω, t0) S0(t, ω), (A.3)

with
W (t, ω, t0) ≡ (

1

4
∂2

t + ω2)W (t, ω, t0), (A.4)

W (t, ω, t0) =
∫ ∞

−∞
ds eisωEt(t + s/2; t0)E

∗
t (t− s/2; t0). (A.5)

One sees that the explicit inclusion of the time derivatives of the transition dipole
moments results in an additional contribution to the transformation function W , which
is given by the term in parentheses in Eq. (A.4). By using, e.g., the Gaussian gating
function (2.2), one can evaluate W analytically:

W (t, ω, t0) =

√
2π

Γ
exp(− ω2

2Γ2
− 2Γ2(t− t0)

2), (A.6)

W (t, ω, t0) ≡
{[

Γ2(4Γ2(t− t0)
2 − 1) + ω2

]2 − 2Γ4(8Γ2(t− t0)
2 − 1)

}
W (t, ω, t0).

(A.7)
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If the material system under study possesses a narrow spectrum in the vicinity of the
frequency ωeg of the electron transition, and if Γ À γ (a good �lter), then W ≈ ω4

0W .
Otherwise, one should use the more general expression (A.4).

It is important that for the standard TFG functions (2.2)-(2.4) the transformation
function W simpli�es to W (t − t0, ω). So, the bare TFG spectrum S(t0, ω0) and the
ideal frequency �lter spectrum St(t0, ω1) can be extracted from Eqs. (2.10) and (A.3)
by performing the appropriate inverse Fourier transforms. This opens the way for
getting direct information about the material system from measured TFG spectra (see
also papers [18�20,119]). The procedure requires, of course, the TFG SE spectra to be
available with considerable accuracy, both with respect to time and frequency.



Appendix B

Nonperturbative treatment of the
excitation process

In this Appendix, the basic idea of the nonperturbative calculation of the optical polar-
ization is introduced and the steps leading to its practical implementation are outlined.

Formulation of the problem
As has been demonstrated in Chapters 2-6, the conventional perturbative approach to
the nonlinear spectroscopy of dissipative systems is convenient and e�cient, providing
the system dynamics and/or DW functions can be evaluated analytically or in terms
of the system Hamiltonian eigenfunctions. Otherwise, the implementation of the non-
perturbative approach is more promising, as has been demonstrated in [123, 124] for
the case of pump-probe spectroscopy. Here we would like to outline how the approach
can be implemented for the calculation of the TFG SE signal (work in this direction is
in progress). This will allow us

• to consider overlapping pulses

• to take into account the system-bath interaction during the excitation and gate
pulses

• to study nonlinear (with respect to the excitation pulse) e�ects, i.e., saturation
e�ects

• to explore (if necessary) chirped excitation pulses.

Starting expressions
As has been demonstrated in Chapter 2 (see Eq. (2.16)), the general TFG SE spectrum
is de�ned as follows:

Sst(t0, ω0) ∼ Re
∫ ∞

−∞
dt

∫ t

−∞
dt′ Et(t− t0)Et(t

′ − t0) exp {−(γ + iω0)(t− t′)}C(t, t′).

(B.1)
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Here
C(t, t′) ≡< P (t)P (t′) > (B.2)

is the CF of the polarization operators,

P (t) ≡ U+(t,−∞)V U(t,−∞). (B.3)
U(t, t′) is the Hamiltonian propagator for the equation

∂tρ(t) = −i[(H + HI(t), ρ(t)].

H is the total (system+bath) Hamiltonian of a (nonadiabatic) system, and

HI(t) ≡ −λV EL(t) (exp{−i(ϕL + ωLt)}+ cc)

describes the interaction of the system with the excitation pulse. The latter is charac-
terized by the frequency ωL, phase ϕL ≡ −→

k −→r , and the envelope EL(t). λ ≡ µE/h̄ is
the dimensionless parameter determining the strength of the system-�eld interaction.
Hereafter, h̄ = 1. The dipole moment operator is determined as follows:

V = χe1(|Ψg >< Ψe1|+ |Ψe1 >< Ψg|) + χe2(|Ψg >< Ψe2|+ |Ψe2 >< Ψg|)
and χ2

ei are the corresponding oscillator strengths.
If one is interested in the integral signal,

St(t0) =
∫ ∞

−∞
dω0 Sst(t0, ω0), (B.4)

the resulting equation is much simpler:

St(t0) ∼ Re
∫ ∞

−∞
dtE2

t (t− t0)C(t, t) = Re
∫ ∞

−∞
dtE2

t (t− t0) < P 2(t) > (B.5)

Our goal is to evaluate the CF (B.2) nonperturbatively.

Calculation scheme
Phase dependence of P (t)

When one calculates P (t) nonperturbatively, one should take care of its dependence on
the phase angle ϕL. Since we have not yet adapted the RDM description, we can use
the results obtained in [124]. Therefore, by invoking the rotating wave approximation
(RWA), one can state that

P (t) ∼ p(t)e−iϕL + p(t)∗eiϕL + p0(t)

to any order in the perturbation expansion. Since an actual signal is a result of many
uncorrelated laser shots, one has to average C(t, t′) over ϕL. This can easily be achieved
by calculating C(t, t′) at ϕL = 0, π, and π/2, so that

< C(t, t′) >ϕL
=

1

2
{(C(t, t′; ϕL = 0) + C(t, t′; ϕL = π/2) + C(t, t′; ϕL = π)}.
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RDM description
According to, e.g., [168], one can evaluate Eq. (B.2) as follows:

< P (t + τ)P (t) >=< V G(τ, t)V G(t,−∞)ρeq >, (B.6)

< P 2(t) >=< V 2G(t,−∞)ρeq > . (B.7)

On the right hand side of these equations, the averaging is assumed over the system
space only, and G(τ, t) is the Liouville-space propagator for the RDM equation

∂tρ(t) = −i[(HS + HI(t), ρ(t)] + R̂ρ(t). (B.8)

R̂ is the Red�eld operator. One should start from a time moment, for which EL(t) is
still nearly zero.

RWA and the Red�eld equation
We write the system Hamiltonian as

HS =

(
HS

g 0
0 E00 + HS

e

)
. (B.9)

Here HS
α are the system vibrational Hamiltonians in the ground state (α = g) and

the excited nonadiabatic electronic state (α = e), and E00 is the energy of the 0-0
transition. For the sake of mathematical convenience, we prefer to evaluate Eq. (B.8)
in the complete g ⊕ e space. To this goal, we introduce the eigenvalue representation
for the Hamiltonian

H̃S =

(
HS

g 0
0 HS

e

)
, (B.10)

so that
H̃S|α >= Eα|α > . (B.11)

Evidently,

HS|α >= (Eα + δαeE00)|α > . (B.12)

Here the Kronecker δ is introduced, which symbolically means, that the excited state
eigenvalues (α belongs to e) for H̃S di�er from those for HS by E00. In terms of the
eigenvalues (B.12) the RDM Eq. (B.8) reads:

∂tραβ(t) = −i(ωαβ + (δαe − δβe)E00)ραβ(t) + R̂αβabρab(t) (B.13)

+λ[Vαbρbβ(t)− ραb(t)Vbβ(t)]EL(t) (exp{−i(ϕL + ωLt)}+ cc) .

Hereafter, the repeated dummy Latin indexes are to be summed over, and

ωαβ = Eα − Eβ. (B.14)
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If one explicitly expresses the eigenvalues |α > in terms of the direct product of the
suitable harmonic oscillator basis |ha > and the electronic state basis |Ψi > (i =
g, e1, e2)

|α >= ξα
ai|ha > |Ψi >,

then
Vαβ = χe1(ξ

α
agξ

β
ae1 + ξα

ae1ξ
β
ag) + χe2(ξ

α
agξ

β
ae2 + ξα

ae2ξ
β
ag).

By introducing
ραβ(t) = exp{−i(ωαβ + (δαe − δβe)E00)t}σαβ(t) (B.15)

and adopting RWA, one transforms Eq. (B.13) as follows:

∂tσαβ(t) = exp{i(ωαβ − ωab)t}R̂αβabσab(t) (B.16)
−λEL(t)Vαbσbβ(t)[δαeδbg exp{−i(ϕL + ωLt)}+ δαgδbe exp{i(ϕL + ωLt)}]
+λEL(t)σαb(t)Vbβ[δβeδbg exp{i(ϕL + ωLt)}+ δβgδbe exp{−i(ϕL + ωLt)}].

Here

ωL ≡ ωL − ω00.

While deriving Eq. (B.16), we have assumed that the Red�eld-induced relaxation
proceeds independently in the e and g states, i.e., the Red�eld tensor does not couple
these states. Therefore, the Eq. (B.16) contains no rapidly oscillating terms.

Calculation of spectra
In general, the evaluation of C(t, t′) is very time consuming, since one has to perform
N full-time propagations, where N is the number of grid points on a discretized time
scale. Indeed, let τ0 be the timescale of interest for the evolution of the TFG SE
spectrum. Then the total propagation timescale τpr must be ' 3/ΓL + τ0 + 3/Γ. Since
the Red�eld equation is ill-de�ned for t < 0, it is logical to surmise that the pump
pulse is peaked, e.g., at t ≈ 3/ΓL and start the propagation from t = 0. So, one has to
make the propagation G(t, 0) �rst and then perform G(τpr, t), for any 0 ≥ t ≥ τpr (N
propagations). If, however, one is interested in the integral �uorescence signal (B.5),
one has to perform only one propagation G(τpr, 0) which presents no di�culties.



Appendix C

Pump-probe signal in the framework
of the phenomenological relaxation
model

In Chapter 5, we have introduced the phenomenological relaxation model for the cal-
culation of TFG SE spectra. We emphasized that all other spectroscopic signals can be
expressed through the nonlinear RFs in much the same manner. Taking into account
the mentioned similarity between TFG SE and pump-probe (PP) signal, it is natural,
therefore, to extend the description to time and frequency resolved pump-probe PP
signals [1, 169]. The details will be given elsewhere [170]. Here we give explicit ana-
lytical expressions for the integral PP signals. It is hoped that these simple formulas
may be useful for a (at least) qualitative interpretation of observed PP spectra. The
present contribution may be considered as an extension of the formulation of paper [169]
towards nonadiabatic systems.

For our aims, we write the system Hamiltonian H as a sum of the Hamiltonians in
the ground (|g >) and excited (|e >) electronic states, H = |g > hg < g|+ |e > he < e|.
Furthermore, we assume that |e > consists of several coupled electronic substates |ψq >,
i.e. |e >= |ψ1 >

⊗ |ψ2 > ...
⊗ |ψN >, he =

∑
p,q |ψp > hpq

e < ψq|. The system-�eld
interaction is then given by

Hint(t) = −E(t)
∑
q

ξq|g >< ψq|+ H.c. (C.1)

Here E(t) is a sum of the pump and probe pulses, and ξ2
q is the oscillator strength for

the transition between the ground (|g >) and excited (|ψq >) electronic states.
We have further made the following three explicit assumptions, which are discussed

in detail in Chapters 2 and 5: (i) the pump and probe laser pulses are well separated
in time, so that the DW formalism is applicable; (ii) the pump and probe pulses of
the frequency Ω1 and Ω2 are adequately described by exponential envelopes Ei(t) =
exp(−Γi|t|) (i = 1, 2); (iii) the eigenvalue representation for the ground and excited
state Hamiltonians is feasible.

These assumptions are su�cient to derive analytical formulas for the PP signals.
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Let us introduce the functions (i = D, W )

X i
αβ(Ω, Γ, Γ) =

∑
n;p

V α
npV

β
npQ

i
n

{
1

Γ− iωαn

1

Γ− iωβn

(C.2)

+
1

2Γ− iωαβ

1

Γ− iωβn

+
1

2Γ + iωαβ

1

Γ− iωαn

}
+ c.c.,

X i;pq
nm (Ω, Γ, Γ) =

∑
α

V α
npV

α
mqQ

i
m

{
1

Γ− iωαm

1

Γ− iωαn

(C.3)

+
1

2Γ− iωnm

1

Γ− iωαn

+
1

2Γ + iωnm

1

Γ− iωαm

}
+ c.c.,

Xg(Ω, Γ, Γ) =
∑
n,p;α

(V α
np)

2ρB
g (n)

Γ− iωαn

{
1

Γ− iωαn

+
1

Γ

}
+ c.c., (C.4)

Xe(Ω, Γ, Γ) =
∑
n,p;α

(V α
np)

2ρB
g (α)

Γ− iωαn

{
1

Γ− iωαn

+
1

Γ

}
+ c.c. (C.5)

Here V α
nq ≡ Cα

nqξq, where Cα
nq are the expansion coe�cients of the excited state eigenvec-

tors in terms of the ground state vibrational eigenvectors (|α >≡ ∑
n,q Cα

nq|n > |ψq >)
and

Qi
n =

[
ρB

g (n), i = D
1, i = W

, ωαn ≡ Ω− ωαn, Γk ≡ Γk + ξeg (k = 1, 2). (C.6)

Then the integral PP signal [1], which consists of a sum of the ground and excited state
contributions S(t, Ω1, Ω2) = Sg(t, Ω1, Ω2) + Se(t, Ω1, Ω2), is described by the following
expressions

Se(t, Ω1, Ω2) =
∑

α,β

{
XW

αβ(Ω2, Γ2, Γ2)e
−(iωαβ+νe+ξe)tXD

βα(Ω1, Γ1, Γ1)
}

+ (C.7)

(1− e−νet)e−ξetXe(Ω2, Γ2, Γ2)Xg(Ω1, Γ1, Γ1)

Sg(t, Ω1, Ω2) =
∑

n,m;p,q

{
XW ;pq

nm (Ω2, Γ2, Γ2)e
−(iωnm+νg)tXD;qp

mn (Ω1, Γ1, Γ1)
}

+ (C.8)

(1− e−νgt)Xg(Ω2, Γ2, Γ2)Xg(Ω1, Γ1, Γ1)

When there is a single bright excited electronic state |ψp >, the summation over p and
q disappears.

The expressions for the dispersed PP signal are obtained similarly.
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