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Abstract

Optimization has become nowadays an important discipline in the global design

process of structures because it represents a systematic method to improve

designs with respect to certain criteria. In design of shell structures, shape

optimization is especially important because of the close and sensitive relation

between shape and structural behaviour. However, this is a complex task due to

the difficulties inherent to structural analysis of shells and geometrical definition

of arbitrary surfaces.

In the present work, decisive aspects of design and analysis of shells in shape

optimization are studied.

In the optimization loop, the optimization algorithm takes decisions about im-

proving the actual design based on information provided by structural and sen-

sitivity analysis. Therefore, the reliability of these analysis is crucial for the

optimization result. In the structural analysis of thin structures, standard dis-

placement elements suffer from locking phenomena, which yield inaccurate re-

sults. In an optimization process, these effects spread from structural analysis to

sensitivity analysis and, as a consequence, to the optimization loop. Numerical

experiments performed with standard displacement elements and with elements

based on the DSG concept, avoiding locking, show the effects of locking in the

optimization result both qualitatively and quantitatively. Final results obtained

with standard displacement elements may have a wrong principal type of design

or even may be unfeasible. The reliability of the sensitivity coefficients depends

also strongly on the applied technique of sensitivity analysis. The need of more

accurate results legitimates the use of analytical approaches, which require a

higher mathematical effort but yield more accurate sensitivity coefficients than

those computed with other approaches.

The importance of the design module in the optimization process lies in the

fact, that it determines to a large extent the optimization result, insofar as it

determines the set of admissible designs. A comparison between CAD- and

FE-based parametrizations is done, with emphasis on the flexibility regarding

shape description. The FE-based design parametrization allows more freedom

in the design than the CAD-based parametrization, which makes it suitable for

free formed shells or for a predesign phase. However, designs obtained with this

parametrization may be wiggly shapes, which may affect the finite element for-

mulation due to the high mesh distortion. A shape control technique aimed to

achieve shape regularization using intrinsic surface curvature measures is pro-
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posed. This approach facilitates obtaining smooth designs and avoiding wiggly

shapes in optimization results obtained when using FE-based parametrization.

A method to compute intrinsic curvature measures of a surface approximated

by a polygonal mesh is shown. The method shows good performance, while

sensitivities of these curvatures can be computed analytically. Moreover, it is

applicable not only for smooth control of shells, but also for membranes or

surface boundaries of 3D bodies.
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Zusammenfassung

Optimierungsmethoden gehören heute zu den entscheidenden Disziplinen beim

Entwurf technischer Strukturen, weil man mit ihnen Designs systematisch und

gezielt bezüglich bestimmter Kriterien verbessern kann. Aufgrund der aus-

geprägten und empfindlichen Wechselwirkungen von Form und Strukturver-

halten spielen Formoptimierungsmethoden beim Entwurf von Schalentragw-

erken eine besonders wichtige Rolle. Allerdings ist diese Aufgabe auch beson-

ders anspruchsvoll, wobei die Strukturanalyse und die geometrische Definition

von beliebigen Flächen aufgrund ihrer Komplexität die größten Schwierigkeiten

bereiten.

In der vorliegenden Arbeit werden relevante Aspekte des Entwurfs und der

Analyse im Rahmen der Formoptimierung von Schalentragwerken untersucht.

Innerhalb des Optimierungsalgorithmus werden Entscheidungen zur Verbes-

serung des Entwurfs auf der Basis von Informationen aus der Struktur- und

Sensitivitätsanalyse getroffen. Deshalb ist die Zuverlässigkeit dieser Analysen

entscheidend für das Optimierungsergebnis. Bei der Berechnung von dünn-

wandigen Strukturen mit verschiebungsbasierten finiten Elementen können Lock-

ing-Phänomene auftreten, die zu ungenauen Ergebnissen führen. In einem Op-

timierungsprozess überträgt sich diese Wirkung von der Strukturanalyse auf

die Sensitivitätsanalyse, mithin auf die gesamte Optimierungsschleife und de-

shalb schließlich auf das Optimierungsergebnis. Numerische Experimente mit

Standard-Verschiebungselementen und mit Elementen, die auf der Basis des

DSG-Konzepts formuliert sind und Locking vermeiden, zeigen sowohl die qual-

itativen als auch die quantitativen Auswirkungen von Locking auf das Opti-

mierungsergebnis. Die Entwürfe, die mit verschiebungsbasierten finiten El-

ementen erhalten werden, können eine prinzipiell falsche Form haben oder

sogar außerhalb des zulässigen Bereiches liegen. Die Zuverlässigkeit der Sensi-

tivitätskoeffizienten hängt auch von der Art der Sensitivitätsanalyse ab. Das

Bedürfnis nach präziseren Ergebnissen berechtigt die Anwendung von analytis-

chen Verfahren, die zwar mathematisch aufwendiger sind, dafür aber genauere

Sensitivitätskoeffizienten als anderen Methoden liefern.

Die Bedeutung des Entwurfsmoduls im Optimierungsablauf ist darin begründet,

dass es durch die Ermittlung des Bereichs der zulässigen Entwürfe einen wesent-

lichen Einfluss auf das Optimierungsergebnis hat. In Bezug auf das Entwurf-

swerkzeug wird ein Vergleich zwischen CAD- und FE-basiertem Design, mit

speziellem Augenmerk auf der Flexibilität bei der Formbeschreibung, angestellt.

iii



Die FE-basierte Parametrisierung erlaubt mehr Freiheit als die CAD-basierte,

was sie insbesondere für den Entwurf von Freiformschalen und für die Voren-

twurfsphase eignet. Allerdings können bei der Anwendung der FE-basierten

Parametrisierung unerwünschte wellige Formen auftreten, die aufgrund der Net-

zverzerrung auch die Finite-Elemente-Approximation beeinträchtigen können.

Es wird eine Formregelungsmethode vorgeschlagen, die die Fläche durch vorge-

gebene Krümmungsmaße regularisiert. Das Verfahren ermöglicht den Entwurf

glatter Flächen und vermeidet wellige Ergebnisse bei der Verwendung einer

FE-basierten Parametrisierung. In diesem Zusammenhang wird ein Verfahren

zur Berechnung intrinsischer Krümmungsmaße einer mit finiten Elementen dis-

kretisierten Fläche entwickelt. Die Methode liefert gute Ergebnisse und die

Sensitivitäten dieser Krümmungen können analytisch berechnet werden. Die

vorgeschlagenen Methoden sind nicht nur für die Kontrolle der Glattheit von

Schalen, sondern auch bei Membranen oder Oberflächen von dreidimensionalen

Körpern anwendbar.
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Chapter 1

Motivation and Objectives

1.1 Motivation and state of the art

Design is an activity inherent to the human being and closely related to his

desire to excel. Its main objectives are to serve a functional purpose and to

provide esthetical pleasure. From the beginning, the human being has designed

for these two purposes: the functional one, to create tools in the most general

sense of the word, and the esthetical one, to create art. Moreover, in many

cases limits between both objectives are diffused and both of them are coupled

into a single design process.

Design is a discipline which requires intuition, creativity, experience and knowl-

edge. In addition to these factors, the available design tools are fundamental in

the design process. The design activity implies the search for a certain design

which serves the final purpose and simultaneously best satisfies certain criteria.

The concept of ‘best design’ brings optimization onto the stage of design activ-

ity. It should be remarked that a design can only be considered as optimal in

the global context of the formulation of the design problem and with respect to

another initial design.

Several factors are involved in the formulation of the design problem. The

designer has the control of the whole formulation and, therefore, the result is

always subjected to the subjectivity of his decisions. He chooses the criteria

to be considered and takes previous decisions about the final design, that is,

prescribes its fundamental characteristics. A very important point of the op-

timization process is to translate these criteria into mathematical expressions

to measure wheter a certain design is satisfactory or not. Typical examples of
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quantifiable criteria are weight, cost or strength. However, not every criteria

chosen by the designer can be quantifiable. Esthetics is a very determinant

factor in many design processes, but there is no way to quantify it. Decisions

with respect to this subjective criteria have to be taken directly by the designer,

as they cannot be made by a mathematical expression.

The historical development of structural optimization is closely related to the

evolution of experience and knowledge in engineering and the development of

analysis tools. Navarrina (1987) gives a detailed review of the such historical

development.

It is impossible to determine the first attempt of structural optimization. Prob-

ably this concept has always been incorporated in the structural design pro-

cess, although until recently it has not been part of concious decision-making.

Chronologically, the first stage of evolution of structural optimization is based

mainly on experience and experiments. The historical progress in the use of dif-

ferent materials and structural typologies can be considered as one structural

optimization process at a global scale.

The key idea in an intuitive and experimental structural optimization is to

identify the relation between shape of the structure and flow of the forces. The

interaction between shape and forces is especially important in the case of shells.

These structures are a particular case of a three-dimensional solid, where one

dimension (thickness) is very small compared with the other two. The shape

and particularly the curvature of a shell are decisive in its mechanical behaviour.

The optimal load-carrying behaviour of a shell is by membrane forces in absence

of bending. By this, optimal utilization of material is achieved.

The Romans, excellent engineers, stand out because of their profuse use of

circular arcs and cupolas made of masonry. The numerous arcs and cupolas of

that and following periods, some of them impressive still today, were designed

based on intuition, experience and basic rules of geometry and physics. These

designs were guided mainly by esthetic and religious considerations.

In the Renaissance, there was a return to the nature as model of beauty and

perfection and, thus, shapes suggested by natural laws are recognized as op-

timal. An important progress was made in 1675 by Robert Hooke with the

identification of the relation between hanging models and optimal shape of arcs

and shells. Through an anagram, he stated ‘Ut pendet continuum flexile, sic

stabit contiguum rigidum inversum’, that is, ‘As the flexible cable hangs, so

the inverted arch stands’. The relation between natural shapes and structural

design was also later studied by Antonio Gaud́ı, Frei Otto, Heinz Isler and Félix
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Candela, among others. They successfully applied the method of hanging mod-

els to the design of construction projects with the final aim to attain beautiful

structures through harmony in statics (see Ramm and Schunk (1986) and Otto

and Rasch (1995), for instance).

Regarding structural analysis of thin structures, Kirchhoff (1850) formulated the

present thin plate theory, based on the previous works of Bernoulli and Navier,

among others. The key assumption of the theory, known as the Kirchhoff con-

straint, is that a straight line, normal to the mid surface, remains straight and

normal to the deformed surface throughout deformation. The corresponding

shell theory was formulated about fourty years later by Love (1888).

A thick plate theory was proposed by Reissner (1945) and Mindlin (1951) con-

sidering a relaxation of the Kirchhoff assumption. In this case, it was assumed

that a straight line, normal to the mid surface, remains straight throughout

deformation, but not necessarily normal to the deformed surface. As a conse-

quence, transverse shear deformations can be taken into consideration. Naghdi

(1972) was the first who applied Reissner-Mindlin kinematics to shells. Consid-

eration of transverse shear deformations is an important feature for thick plates

and shells. The advantage of this theory in the frame of finite element analysis

relies on the low continuity requirements for the trial solutions.

Although these are the most important plate and shell theories in the context of

the finite element analysis, they are not the only ones. A more detailed historical

relation of the development of shell theories is given by Benbenuto (1991) and

Bischoff (1999). It should be noted that, until the Finite Element Method was

first used, the objective of most theories was the closed form analysis of the

structure. The Finite Element Method was first applied to the study of plates

and shells in the early 1960’s. Shell elements can be based on a shell formulation

derivated from the continuum theory, from the direct approach, or can be based

on the degeneration concept. A detailed overview of modeling and discretization

aspects in finite element analysis of thin-walled structures is given by Bischoff

et al. (2004).

In the meantime, the first analytical works of structural optimization appeared

gradually. These works are closely related to the evolution of structural analysis

methods. Important contributions to structural optimization were done by

Galilei (1638), Bernoulli (1687) and Lagrange (1770), who treated the optimal

sections of beams and colums for some particular cases. The merit of these works

was that they were the first to address the problem of structural optimization

from an analytical point of view, although these attempts lack systematic and

generality.
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This generalization, at least for a certain structural typology, was first achieved

by Michell (1904), based on the previous work of Maxwell (1890). He presented

a methodology to obtain optimal two-dimensional truss-like structures with

minimal weight and with the consideration of restrictions on the admissible

stresses. The approach was based on the trajectories followed by the carried

loads.

The modern concept of structural optimization is a result of the integration of

modern numerical techniques into the optimization process. This achievement is

mainly due to Klein, Pearson and Schmit. Klein (1955) formulated the general

optimization problem as it is known today introducing inequality constraints.

Later, Pearson (1958) complemented these ideas integrating structural analy-

sis and optimization in a coherent process and presented a method to convert

an inequality constrained problem into an equivalent unconstrained one. With

this background, Schmit (1960) proposed the concept of structural synthesis.

Schmit (1981) describes with enthusiasm the gestation of this idea and the ex-

periences that influenced it. The idea of structural synthesis is to couple finite

element structural analysis and nonlinear mathematical programming to create

an automated optimum design process applicable to a broad class of structural

systems. With these contributions a new philosophy of structural design was

born. Later, structural optimization took shape as a synthesis of several dis-

ciplines which interact with each other in the resolution of an optimization

problem. In addition to the structural analysis and mathematical programming

modules, a design module and sensitivity analysis were considered. A control

system organizes interactions and information transfers between modules.

The first optimization problems considered within this new structural design

concept were concerned with size optimization of discrete structures. In size

optimization, the shape and topology of the structure are already known, but

certain parameters of the structural components have to be determined. In

the case of discrete structures, a design variable is directly associated with a

structural component and, therefore, the design parametrization is determined

by the formulation of the structural problem. The most representative example

of sizing in discrete structures is the optimization of cross sections of members

in a truss structure.

In shape optimization, the geometry of the structure in a more general sense

has to be determined, while connectivity and type of the structure are given.

Strictly speaking, distinguishing between sizing and shape optimization is often

unclear and it is related with how design variables affect the analysis rather than

with the physical optimization problem itself. In shape optimization, design
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variables are concerned with the nodal positions of the analysis mesh, while in

sizing, they are related to properties of the mesh elements. Therefore, in shape

optimization design variables affect structural analysis in a more complex man-

ner. The first examples of shape optimization were also performed in discrete

structural systems. The shape of truss structures was optimized considering

nodal positions as design variables.

Continuous enhancement of numerical and analysis techniques together with

improvement of computer capabilities permits the solution of more complex and

general optimization problems. As a consequence, optimization of the structural

shape of continuous structures is addressed. The performance of the structural

analysis by the Finite Element Method is decisive to this point. Zienkiewicz

and Campbell (1973) were the first to set a shape optimization problem in a

general form, considering positions of finite element nodes as design variables. A

fundamental difference between shape optimization of discrete and continuous

structures is that in the second case design parametrization is not automatically

given by the structural model. On the contrary, it has to be explicity defined

by the designer in relation to the structural analysis model or to an underlying

geometrical model. Design parametrization of continuum structures is a very

important aspect in shape optimization, as it influences the optimization process

and its result. These implications will be studied in the present work in the

frame of shape optimization of shells.

Topology optimization is the most general type of structural optimization be-

cause the structural type is not prescribed. In the case of discrete structures,

topology optimization is set as a combinatoric problem. Topology optimization

of continuum structures is a material distribution problem and it is often used

as a preprocessor of shape optimization. That is, first the topology of the struc-

ture is sought, and then, the final form of boundaries is searched with shape

optimization (Bendsoe, 1989). Typical applications are for determining the op-

timal connectivity in a truss structure or the number and positions of holes in

2D or 3D structures. Nowadays, topology optimization is widely used in indus-

try and academia. It was successfully applied to a wide range of problems in

disciplines such as structural mechanics, electronics and acoustics.

In general, it can be stated that topology optimization is more complex than

shape optimization. Nevertheless, complexity of shape optimization is closely

related to that of the underlying finite element formulation and to the defini-

tion of the design model and its interactions with the mesh. These two aspects

are in turn connected to the complexity of the geometrical model of the struc-

ture. For these reasons, the complexity of shape optimization of shells increases
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significantly as compared to that of other structural types.

The most interesting applications of shape optimization of shells can be found

in automotive and aeronautical industries, in the design of bodies of cars or

fuselage and wings of planes. Other applications can be found in civil engi-

neering in the design of roof structures. These applications are very important

but unfortunately still not so numerous, due to the mentioned structural and

geometrical complexities of shell structures, which affect the whole optimiza-

tion process and especially the design module. However, nowadays there is a

desire of increasing the use of shape optimization techniques in the design of

shell structures.

A special discipline closely related to shape optimization of shells is form finding.

Form finding methods have been developed in order to obtain the membrane ge-

ometry that satisfies the state of equilibrium of any prescribed membrane stress

state. As a membrane stress state is statically determinate, there is a unique

membrane geometry which matches with it, providing that boundaries are well

defined (Bletzinger et al., 2002). From the mathematical point of view, it is an

inverse problem. The final shape found in form finding is the deformed shape

corresponding to the prescribed membrane stresses (see Bletzinger (1998)). It

is important to note the essential difference between form finding and shape

optimization. Figure 1.1 shows a scheme of the comparison between form find-

ing and shape optimization methods. Form finding is a kind of particular case

of shape optimization where the objective is the satisfaction of the equilibrium

equation and the final form obtained is the deflected shape.

Optimal structural behavior of a shell is achieved when prerequisites and as-

sumptions of the membrane theory are satisfied. The most relevant of these

prerequisites are: C2-continuity of the middle-surface of the shell, absence of

thickness jumps and supports meeting the requirements of tangential forces

(Bletzinger and Ramm, 1993). This allows the shell to resist the loads only by

membrane forces, avoiding bending phenomena. But in real situations, mem-

brane prerequisites are difficult to fulfill. It may also happen that the main

objective of the structural problem is not to achieve a membrane stress state,

but to minimize weight, displacements or stresses of the structure. In such

cases, it is talk about shape optimization in a more general sense. The aim of

shape optimization of shells is to play with the interaction between shape and

structural response in order to achieve an optimal undeflected design satisfying

certain objectives and fulfilling certain constraints.
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Figure 1.1: Comparison between form finding and shape optimization

1.2 Objectives of the present work

In a general sense, there are two basic difficulties in shape optimization. First,

it requires a deep control of the finite element analysis and an understanding

of the mechanics behind the problem. In addition, selection of design variables

and the relation between changes in the design and the updates of the mesh

have to be determined. These difficulties become more pronounced when the

structure to be optimized is a shell, because os the added complexities inherent

to a shell finite element formulation and to its shape description.

This work studies certain aspects of shape optimization of shells related to the

shell as structural type and as design model. Attention is paid to the modules

of design and analysis (both structural and sensitivity) of the optimization loop.

This is due to the fact that in these modules the nature of the shell is present

either from the structural or geometrical point of view. In the mathematical

programming module, the optimization problem is dealt with in its most ab-

stract form, that is, more independently of the structural typology. Therefore,

no interaction of the shell formulation or design is analyzed in this module.

However, the solution strategies adopted in the mathematical programming

module are also related with the modeling of the problem in a general sense.
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This aspect is treated by Papalambros and Wilde (2000).

As design and analysis are components of the system of the optimization process,

any factor affecting any of these components may have influence on the optimal

result. In the present work, two key points are mainly studied: the influence of

the reliability of the finite element formulation on the optimization result and

the effects related to the techniques of shape description and control.

In an optimization process, the optimization algorithm makes decisions about

the design based on information provided by structural and sensitivity analysis.

Therefore, the quality of this information may affect the quality of the optimal

design obtained. In particular, the influence of locking effects in the optimiza-

tion result is studied. Under certain circumstances, displacement elements suffer

from locking phenomena and, as a consequence, they yield inaccurate results.

In the case of shear deformable thin elements based on the standard displace-

ment formulation, locking effects appear when slenderness tends to zero. These

effects have been studied in the frame of structural analysis and alternative

formulations to avoid these problems have been proposed (see Bathe (1996)

and Zienkiewicz and Taylor (2000a,b), for instance). In general, the influence

of locking in structural optimization has been underestimated. Nevertheless,

it should be noted that these phenomena may affect not only the structural

analysis, but also the sensitivity analysis.

The sensitivity analysis technique used is also determinant in the quality of the

information obtained from this analysis. For this reason, a review of the different

sensitivity analysis techniques will be done and the sensitivity analysis for the

shell element considered with the most suitable technique will be presented.

In relation to the design module, key aspects of shape description and control

of surfaces are studied.

The technique of shape design parametrization is crucial insofar as it determines

the set of admissible designs of the problem. That is, it determines the space

in which the optimal solution is to be found. To this point, it is important to

remark that the result of an optimization problem is optimal within the scope

of the mathematical model describing it and subject to the subjective judgment

of the designer.

In the recent history of structural optimization, it can be observed that there

has been an evolution from simple techniques that allow to solve simple specific

problems to approaches valid for a more general class of problems. There is,

therefore, a trend toward generality and freedom of decision within the optimiza-

tion problem. With this background, the most used parametrization techniques
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in shape optimization of surfaces will be compared and advantages and disad-

vantages will be analyzed. Attention will be focused on how the selection of the

parametrization technique conditions the optimization result.

A further way to influence the optimal result from the design module is through

shape control techniques. In shape optimization not only the design that sat-

isfies some structural requirements is desired, but often the designer wants it

to satisfy some geometrical requirements. These are imposed through shape

control techniques. The most troubled point related to shape control in shape

optimization of shells is the smoothness control. A further objective of the

present work is to develop a technique that allows the designer to control this

smoothness, while attaining low modeling cost.

The premise of the present work is to study certain factors relative to design and

analysis in shape optimization of shells, which have not received much attention

until now, but are very important in the determination of the optimal result.

In Chapter 2, some fundamentals about shape optimization, Continuum Me-

chanics and the Finite Element Method are given. This does not pretend to

be a detailed introduction, but more a brief review oriented to locate the work

in the global context of structural optimization and to introduce the notation

used in the following chapters.

Chapter 3 describes in detail the formulation of the shell element used. The

shell element considered has Reissner-Mindlin kinematics, that is, it is shear

deformable, and the director vectors at nodes are computed as the average of the

normals to the adjacent elements. The different coordinate systems considered

in the formulation are explained in detail. Two formulations of this shell element

are considered. First, the standard displacement formulation, which suffers

from the well-known locking phenomena is presented. Second, an alternative

formulation based on the DSG concept, avoiding locking effects, is considered.

In Chapter 4, a review of the different sensitivity analysis techniques is pre-

sented. Attention is paid to the comparison between them and in their ad-

vantages and disadvantages for different problems. The sensitivity analysis by

the discrete analytical approach for the considered shell element is presented

in Chapter 5. Derivation of the element stiffness matrix both for the standard

displacement and DSG formulation is explained in detail.

The influence of shear locking in shape optimization is studied in Chapter 6

by means of some numerical experiments. This influence will be analyzed both

from the qualitative and quantitative point of view.
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The most used shape description techniques for shape optimization of shells

are briefly outlined in Chapter 7. A comparison is made between CAD- and

FE-based design parametrizations. Attention is focused on the influence of

parametrization techniques in the optimization result. A shape control tech-

nique to control surface smoothness is presented, based on the control of curva-

tures by regularization techniques emerging now in shape optimization for flu-

ids. Moreover, a method to compute curvature measures on a surface described

by a C0 continuous mesh is proposed. The computation of the sensitivities

of these curvature measures is also presented. Numerical experiments related

to this control technique and to the comparison between CAD- and FE-based

parametrizations are presented.

In Chapter 8, conclusions to this work are drawn and further lines of research

are outlined.

The present shell element, its sensitivity analysis and the shape control tech-

nique proposed were implemented as a module in CARAT (Computer Aided

Research Analysis Tool), a program first conceived by Bletzinger (1990), Kim-

mich (1990) and Reitinger (1994) (see also Bletzinger et al. (1993)) at the De-

partment of Structural Analysis of the Universität Stuttgart in the nineties.
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Chapter 2

Fundamentals

2.1 Structural optimization

In the present chapter, an introduction to the fundamentals of structural opti-

mization is given. The aim of this chapter is to introduce some basic concepts,

give an overview of the overall optimization process and show how the modules

on which this work is focused fit in this global process. Each discipline taking

part in structural optimization constitutes a line of research.

In a structural optimization process, the objective of designers may be to find

the best design in terms of cost, weight, reliability, mechanical properties or

esthetics, for example. A key point of the design process is to translate these

objectives into criteria expressed mathematically to measure if a certain design

is satisfactory or not.

The objective function, also called cost function, is the function to be minimized

(or maximized) during the optimization process and constitutes the criteria by

which a certain design is chosen among a group of alternatives. Typical objective

functions are weight, cost or strain energy of the structure. These properties can

be expressed by a mathematical function and, therefore, they are quantifiable.

The objective function is a function of the design variables. According to

Tikhonov and Arsenin (1977), two types of minimization problems can be dis-

tinguished. First, there are problems where the minimum (or maximum) of a

functional f(s) has to be found and it is not important which variables s pro-

vide the minimum (or maximum). Second, there are minimization problems

where the aim is to find which variables s minimize the functional f(s). These
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problems are called minimization with respect to the argument. Structural opti-

mization problems belong to this second category, since the final aim is to find

the structural design that minimizes the considered objective function. There-

fore, structural configuration is a function of the chosen design variables and

these are actually the unknowns of the optimization problem.

In addition to the objective function, in a general optimization problem con-

straints can be considered. These are restrictions to the problem to be satis-

fied in order for the design to be acceptable. That is, these constraints define

the feasible domain. Equality constraints are those restrictions where a cer-

tain expression has to be equally satisfied. In inequality constraints, a certain

expression has to be lower or higher than a certain prescribed value. In struc-

tural optimization inequality constraints are of major importance. Until 1960,

equality constraints were used indiscriminately to obtain fully stressed designs.

However, Schmit (1960) proved, with a simple but enlightening example, that

those designs were not always optimal from the structural point of view and

underlined the significance of inequality constraints.

Constraints can be an explicit or an implicit function of the design variables. In

the first case, they are called side constraints and they limit the values of the

design variables. They are a certain form of shape control. When constraints are

a implicit function of the design variables, they are called behavior constraints.

Typical examples are displacement or stress constraints.

In general, a structural optimization problem can be stated as

minimize f (s,u (s)) ; s ∈ R
ns

such that gj (s,u (s)) ≤ 0; j = 1, ...p

hj (s,u (s)) = 0; j = 1, ...q

(2.1)

where s is the vector of design variables or optimization variables, which has a

dimension of ns, and u are the state variables, i.e. the displacements. According

to the definitions given above, f is the objective function, gj are the inequality

constraints and hj are the equality constraints.

The formulation of the optimization problem can be divided into two tasks. On

the one hand, the design model has to be set and the optimization variables

have to be selected. On the other hand, objectives and constraints have to be

formulated according to the general expression (2.1). Both tasks are crucial,

insofar as they determine the scope in which the final design can be designed as

optimal. However, they are determined to a large extent by the subjectivity of

the designer’s criteria. Therefore, it is very important that the designer realizes
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the implications of the decisions taken in setting the problem and is aware of

the available tools. Regarding the definition of objective functions, Maute and

Raulli (2004) proposed an interactive method to assist the designer in selection

of design criteria and formulation of optimization problems.

In the design model, the designer defines the initial design and the design vari-

ables which will be considered in the optimization process. The selection of the

design variables determines strongly the structural optimization problem. First,

it determines the kind of optimization problem, that is, whether it is a sizing,

shape optimization or topology optimization problem. Second, the selection of

the design variables for a certain problem determines the optimum, insofar as

it determines the set of admissible designs, that is the set where the optimal

design is searched during the optimization process.

In addition to this description of the shape, certain measures of shape control

can be set. The aim is to control the geometry of the design as desired by the

designer. Moreover, through shape parametrization and control, the designer

can implicitly consider those criteria of the optimization problem which can

not be directly translated into a mathematical expression. One can consider

esthetics, for instance. This is a very subjective factor, which is impossible

to translate into a mathematical expression, but it is often a decisive point

in designing. The designer directly controls esthetics in the modeling phase,

particularly in the selection of the design variables, and in the shape control

during the optimization process. Decisions with this respect are taken based on

the subjective criteria of the designer.

Some common techniques of shape control are variable linking, side constraints

or regularization techniques. In Chapter 7, the two most used techniques of

design parametrization in shape optimization of shells are compared. Moreover,

a shape control technique which permits obtaining smooth surfaces is studied.

The design model defines, together with the selected criteria and restrictions

expressed in (2.1), the formulation of the optimization problem. The structural

optimization process, by which this problem is solved, is systematized as a

group of modules or disciplines interacting between them. A scheme of the

flow chart in a general structural optimization system is given in Figure 2.1.

Further element involved is a system to control interactions between the different

modules.

In structural optimization, the structural behavior of the design is considered in

the search for a better design. This can be done by considering the strain energy

as objective function, or by constraining the value of stresses or displacements.
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Figure 2.1: Scheme of a structural optimization system

For this reason, a structural analysis of the actual design is performed. In the

case of continuum structures, this analysis is usually performed with the Finite

Element Method. With the obtained structural response, the related objective

function or constraint can be evaluated. However, in structural optimization

other aspects which do not depend on the structural response (e.g. weight) can

be considered as criteria or constraints. This is the case of weight, for instance,

which can be computed based on the geometrical discretization considered in

the analysis model used for structural analysis.

In Section 2.2, brief notes about continuum mechanics and the Finite Element

Method are given in order to introduce the notation used in the following chap-

ters.

In general, it is not only interesting to evaluate the objective function and

constraints for the actual design, but also to predict their values for a potential

modified design. Sensitivity analysis provides the derivatives of these functions

with respect to the design variables. Based on this information, the optimization

algorithm takes decisions about modifying the design. A review of the sensitivity

analysis methods used in structural optimization is given in Chapter 4.

Mathematical programming is the discipline which deals with the techniques to

solve problem (2.1). It comprises the optimization algorithm used to solve the

problem. This is the most abstract part of the structural optimization loop.

However, the selection of the mathematical programming technique depends on

the formulation of the optimization problem (Papalambros and Wilde, 2000).

Optimization algorithms can be classified as those for constrained or uncon-

strained problems, although many strategies for constrained problems generate
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unconstrained subproblems. Algorithms used in the present work are gradient

based, that is, they take decisions based on the values of objective function

and constraints and on the values of their first order derivatives. This gradient

information is provided by sensitivity analysis. In the present work, sequential

quadratic programming (SQP) algorithms are used for constrained problems

and conjugate gradient methods for unconstrained problems. A detailed expo-

sition of the different optimization algorithms is given by Haftka and Gürdal

(1999) and Kirsch (1998).

2.2 Structural analysis

For the comprehension of the present work, fundamental knowledge of Contin-

uum Mechanics and of the Finite Element Method is required. Many references

can be found on these matters. An introduction to Continuum Mechanics is

given by Malvern (1969) and Marsden and Hughes (1983). An introduction to

the Finite Element Method is given by Hughes (2000) for linear elastics and

dynamics, Zienkiewicz and Taylor (2000a), Becker et al. (1981) and Carey and

Oden (1983). The present section does not pretend to be a detailed introduction

to Continuum Mechanics and the Finite Element Method, whose fundamental

concepts are assumed to be known, but rather an introduction to the notation

used in the following work.

There are three fundamental types of equations in Continuum Mechanics, which

constitute the analytical model of structural mechanics. These equations can

be expressed in tensor form and, thus, in an invariant form in all coordinate

systems.

First, the kinematic equations determine the relations between strains and dis-

placements in the domain and the prescribed displacement values at boundaries.

Through these equations different models of calculus can be considered, for in-

stance small displacements and small strains, or large displacements and small

strains. The general form of the linear kinematic equation is given by

ε = L(u) (2.2)

where ε are the strains, u are the displacements and L is a linear differential

operator.

The constitutive equation defines the material behavior and relates kinematic

variables and stresses. In the present work, only linear elastic materials are
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considered. For these cases, the constitutive equation reads

σ = D · (ε − ε
0) + σ

0 (2.3)

where σ are the stresses, D is the material tensor and ε
0 and σ

0 are the initial

strains and stresses, respectively.

The operator · implies the contraction of inner indices, i.e. A ·B = Aijbjk. For

vectors, it corresponds to the scalar product or dot product, that is a ·b = aibi.

The equilibrium equations constitute an undetermined system of differential

equations which relates internal and external forces of the structure. The

boundary conditions are given by the support conditions of the structure. The

equilibrium equations can be written in terms of the Principle of Virtual Work

as ∫

Ω

σ · δεdΩ =

∫

Ω

f · δudΩ (2.4)

where δε and δu are the virtual strains and displacements, respectively, f is the

external force vector and Ω the domain of the structure. This expression is a

weak form of the equilibrium equations and is independent of constitutive and

kinematic equations.

Expression (2.4) can be also obtained by writing equilibrium equations as inte-

gral equations in a weighted residual form. The variational index, which is the

highest derivative order of the displacements, can be reduced by applying the

divergence theorem or partial integration, obtaining expression (2.4). This ex-

pression is called weak form of the problem in contrast to the strong or classical

form. The reduction of the variational index has the advantage of relaxing the

continuity requirements of the solutions to the system of equations.

In certain structural typologies, in addition to these equations, other assump-

tions related to the deformed and tensional state are considered. In the case of

thin structures, such as plates and shells, they permit the analysis of these three-

dimensional structures as two-dimensional ones. These assumptions determine

the different plate or shell theories.

In the Finite Element Method, the domain Ω is discretized by a mesh of sub-

domains called elements. Geometry and state variables are approximated by

an interpolation of related values at the nodes of the mesh. The functions used

for the interpolation are called shape functions. If nodes and shape functions

used for the interpolation of geometry and state variables are the same, the

interpolation is said to be isoparametric. The approximation of geometry and

displacements is given by

x = N · r (2.5)
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u = N · d (2.6)

where x is the nodal position vector, r is the vector of nodal geometrical pa-

rameters, u is the nodal displacement vector,d is the vector of nodal degrees of

freedom and N is the global matrix of shape functions.

Substituting (2.2), (2.3) and (2.6) in (2.4), we get to the following discrete

system of equations

K · d = F (2.7)

where K is the global stiffness matrix and F is the global vector of consistent

nodal forces. The global stiffness matrix is obtained through assembling of the

different contributions of elemental stiffness matrices, which are given in the

general form as

ke =

∫

Ωe

BT · D · B dΩe (2.8)

In this expression B is the strain-displacement operator, which relates the ap-

proximated strains to the nodal degrees of freedom of the element. That is,

B = L ·Ne (2.9)

Ne being the matrix containing the shape functions related to element e. A

detailed explanation of the assembling process can be found in Hughes (2000).
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Chapter 3

A Shell Element with

Reissner-Mindlin Kinematics

3.1 Introduction

Plate and shell elements are characterized by the slenderness λ, a parameter

defined as the minimum value of the two ratios: the relation of a typical element

length h and the element thickness t, and the relation of h and the radius of

curvature R of the element. Hence,

λ = min

(
h

t
,
h

R

)
(3.1)

In the thin shell theory, the Kirchhoff condition leads to the appearance of

second order derivatives of the unknown function in the strain definition. Con-

sequently, in order to avoid kinks at the element boundaries in the deformed

shell, C1-continuity is required in the shape functions. The shape functions

needed to satisfy this requirement are significantly more difficult than those

used for C0-continuity.

In the thick shell theory, as a consequence of the relaxation of the Kirchhoff

assumptions, the strain definition contains only the unknown functions and their

first derivatives. Therefore, the shape functions are only required to satisfy C0-

continuity. As a consequence, the formulation of a finite element with Reissner-

Mindlin kinematics is much easier.
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This chapter studies in depth a shell element with Reissner-Mindlin kinematics.

The main points of the formulation are taken from Zienkiewicz and Taylor

(2000b).

The element considered is a displacement element with five degrees of freedom:

three global displacements and two rotations. Displacement degrees of freedom

will affect the position of nodes, while rotation degrees of freedom will have

influence on the direction in which the thickness of the shell element will be

measured.

The parametrization of rotational degrees of freedom is closely related to the

geometric definition of the element. To describe the spatial rotation of an ar-

bitrary vector only two vectors, not coplanar with the first one, are needed.

However, to describe the rotation of two or more vectors whose relative angle

must remain unchanged, three vectors are required. These facts are the charac-

teristics of two different main groups of definitions of shell element kinematics.

First, it is considered an element defined by the position of its nodes and the

normal vectors to the element at its nodes, which are called director vectors.

These vectors indicate the direction in which the element thickness is considered.

As a consequence, the number of the defined director vectors at a node is equal to

that of the non-coplanar elements sharing that node (see Figure 3.1). According

to aforementioned affirmations, three rotation degrees of freedom are required

to describe any arbitrary rotation of the cluster of director vectors of a node, if

their relative positions are to be preserved.

Figure 3.1: Multiple director vector definition at a node.

A drawback of this approach is the presence of gaps and overlappings of material

at the inter-element boundaries (see Figure 3.2). The error introduced by this

fact is usually neglected and, anyway, it will be considerably reduced with mesh

refinement.
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Figure 3.2: Gaps and overlappings of material at inter-element boundaries in a

shell element definition with multiple director vectors.

The most important disadvantage of this shell element definition can be illus-

trated in an example. Consider the analysis of a plate using shell elements

with six degrees of freedom: three displacements {u, v, w} and three rotations

{r1, r2, r3} as shown in Figure 3.3.

Figure 3.3: Plate element with six degrees of freedom at each node.

In this case, rotations r1 and r2 are associated with bending stiffness of the plate

in x and y directions respectively. But, on the contrary, the drilling rotation r3

has no physical meaning and cannot be related to any stiffness of the plate. As

a consequence, the elemental stiffness matrix will be singular. Similar problems

may appear in the case of a shell structure where the elements are coplanar or

almost coplanar. Here, the system stiffness matrix may not be singular, but ill-

conditioned. There are several methods to avoid this problem: A small stiffness

may be added for drilling rotation, a penalty approach may be used or, in the
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case of a plate, drilling rotation degree of freedom can be fixed and not taken

into account in the assembling of the global stiffness matrix (Büchter, 1992).

To overcome the drawbacks of these shell elements, a new definition of a shell

element considering only one director vector per node was proposed. As it was

mentioned before, only two rotation degrees of freedom are needed to describe

an arbitrary rotation of director vector. The only two requirements are that

axes of rotation must not be coplanar with the director vector, and that they

must be unique for each node. The direction of the director vector can be,

in principle, arbitrary, with the restriction that it can not be contained in the

mid-plane of the shell. Under these considerations, different shell elements were

developed with respect to different definitions of the director vector.

Figure 3.4: Spherical shell discretized with 8-node Lagrangian elements with

global director vectors

One possibility is to choose the global Cartesian z-axis as the direction of the

director vector at each node. However, this choice will lead to singularity prob-

lems if at any node the director vector is tangent to the shell element mid-plane.

This is the case of the spherical sector shell discretized with 8-node Lagrangian

elements shown in Figure 3.4. Here, director vectors of nodes located on the

xy-coordinate plane are tangent to the shell element mid-plane at those points.

Another alternative is to calculate the director vector direction as the average

of normal vectors to the elements at each node. This shell theory analyzes

arbitrary shell geometries without difficulties related to singularities or bad-

conditioning and without considering a third rotation degree of freedom.
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Other alternative procedures to define the director vector are presented by

Bischoff (1999).

The Reissner-Mindlin shell element studied in the present chapter, is considered

within the framework of this averaged director shell theory and therefore, only

two rotation degrees of freedom are required.

First, several aspects related to the geometrical definition of the element are

discussed. Attention is paid to its derivation from the degeneration concept

and to the definition of the director coordinate systems. Probably, the most

difficult task related to shell finite elements is to deal with the numerous co-

ordinate systems that are to be considered in each formulation. In order to

clarify this point, the different coordinate systems used in the present formula-

tion are presented and the relations between them are established. Calculation

of strains and stresses is shown and the general expression for the elemental

stiffness matrix is indicated.

Since the early days of the Finite Element Method, it has been observed that

finite elements based on the Principle of Virtual Work suffer from so-called

locking phenomena. These phenomena are characterized by the appearance of

inaccuracies in relation with a certain parameter. Many alternative formula-

tions to the standard displacement formulation have been proposed to avoid

the locking effects. One of these, the DSG method, is formulated for the shell

element presented in this chapter. Due to its efficiency and simplicity, the DSG

shell element is very suitable for structural optimization.

3.2 Derivation of a shell element from the

degeneration concept

The shell element studied is derived from the degeneration concept introduced

by Ahmad (1969). The core of this concept is the discretization of a three-

dimensional mathematical model with three-dimensional elements and their

subsequent reduction into two-dimensional elements. The shell element is the

most general level of the family of two-dimensional finite elements.

Figure 3.5 shows a typical three-dimensional element. Both top and bottom

layers of the element have curved edges, while the edges in the thickness di-

rection are straight lines. The nodes are located at the top and bottom of the

element faces.

23



Figure 3.5: Degeneration of a three-dimensional shell element into a two-

dimensional one.

A curvilinear coordinate system {ξ, η, ζ} with origin in the mid-plane of the

shell element is defined. ξ and η are curvilinear coordinates contained in the

mid-plane, which range from −1 to 1. ζ is a linear coordinate in the thick-

ness direction, also ranging from −1 to 1. The global Cartesian coordinates of

an arbitrary point of the shell element can be expressed as a function of the

curvilinear coordinates in the form




x

y

z



 =

∑

a

Na(ξ, η)


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+
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


bottom


 (3.2)

where {xa, ya, za}Ttop and {xa, ya, za}Tbottom are the position vectors of node a at

top and bottom element faces respectively and Na(ξ, η) are the standard two-

dimensional shape functions.

The degeneration of this three-dimensional shell element is done by melting the

nodes with the same ξ, η coordinates into a single node located at the mid-plane

of the element, as shown in Figure 3.5.

The mathematical reduction of the three-dimensional geometrical definition of

the shell element is done in two steps. First, the coordinates of the nodes located

on the mid-plane of the element are calculated as




xa
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za




mid

=
1

2


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


top

+




xa
ya
za




bottom


 (3.3)
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Second, the information of the direction in which the thickness is considered is

saved in a vector Â3a that connects the upper and lower points of the element

(see Figure 3.6). This vector is obtained as

Â3a =




xa
ya
za




top

−




xa
ya
za




bottom

(3.4)

Figure 3.6: Vector Â3a containing the thickness information after the degener-

ation of the element.

Now, (3.2) may be rewritten as



x

y

z



 ==

nen∑

a=1

Na(ξ, η)






xa
ya
za




mid

+
1

2
ζÂ3a


 (3.5)

nen being the number of nodes at the element.

The length of the vector Â3a is the thickness of the shell element at the node

a. If we normalize it, we obtain the unit vector A3a, called director vector, and

the geometrical description of the two-dimensional degenerated shell element

becomes 


x

y

z



 =

∑

a

Na(ξ, η)






xa
ya
za




mid

+
1

2
ζtaA3a


 (3.6)

Hence, the discretized three-dimensional elements have been degenerated into

two-dimensional shell elements.

It should be noted that this degeneration process is not explicitly done in the

analysis of a structure. In fact, the director vectors are not really obtained

from the melting process of an upper and lower previous nodes. The calculation

process of the director vectors is explained in Section 3.4.
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3.3 Geometric definition of an element

As it was explained in section 3.2, the geometry of the two-dimensional Reissner-

Mindlin shell element studied is described by the position vector xa and the

director vector A3a of each node a (see Figure 3.7). The global Cartesian

coordinates of an arbitrary point of the shell element are given by

x =

nen∑

a=1

Na(ξ, η)

(
xa +

1

2
ζtaA3a

)
(3.7)

nen being the number of nodes of the element.

Figure 3.7: Geometric definition of the Reissner-Mindlin shell element studied.

Two contributions can be clearly distinguished. The first term indicates the

position of the projection of the point into the shell mid-plane according to

the thickness direction. Na(ξ, η) are the standard Lagrangian two-dimensional

shape functions, and ξ and η are the curvilinear coordinates in the mid-surface

of the shell which which range from −1 to 1. Curved boundaries of the shell

element can be considered by using higher order shape functions. Standard La-

grangian two-dimensional shape functions for different element types are given

in Appendix A.1.

The second term describes the distance from the considered point to the mid-

plane measured in the thickness direction. Here, ζ is a linear coordinate in the
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thickness direction, that is, in the direction of the director vector, also ranging

from −1 to 1, and ta is the thickness of the shell at the node a. Figure 3.8

illustrates both contributions.

Figure 3.8: Location of an arbitrary point P in the shell element.

3.4 Calculation of the director coordinate

systems

The director coordinate systems are local Cartesian systems defined at each

node P and constituted by the director vector at that node and two other

vectors that complete a Cartesian basis. It should be noted that P refers to the

global node number and a to the local node number.

As it was shown in Section 3.3, the director vector A3P takes part in the

geometric definition of the shell element, indicating the direction in which the

thickness is to be considered. The other two vectors, called A1P and A2P , are

the axes of rotation of the rotation degrees of freedom.

The definition of the director vector A3P depends on the shell theory chosen.

As explained in Section 3.1, for the present Reissner-Mindlin shell element the
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director vector direction is considered to be the average of the normal vectors

to the elements at each node.

In this section, the calculation procedure for the director coordinate system is

explained in detail. As it will be shown in Chapter 5, this procedure is of major

importance for the calculation of the derivatives of the state variables in the

sensitivity analysis.

We define the normal vector at node a of element ek as

A3ek

P =
x,ξ × x,η
|x,ξ × x,η|

∣∣∣∣ξ=ξa
η=ηa

ζ=0

(3.8)

where ξa, ηa and ζ = 0 are the local curvilinear coordinates of node P in element

ek, and the vectors x,ξ and x,η are given by

x,ξ

∣∣∣∣
ζ=0

=

nen∑

b=1

Nb,ξ xb (3.9)

x,η

∣∣∣∣
ζ=0

=
nen∑

b=1

Nb,η xb (3.10)

(Note that Nb,ξ = ∂Nb

∂ξ
).

However, in general the node P will not only belong to element ek, but also to

other adjacent elements. Thus, we may apply the same procedure to calculate

the normal vector at node P considering the other adjacent elements. As Figure

3.9 shows, if not every element sharing node P is on the same plane, different

normal vectors and, therefore, different director coordinate systems, will be

obtained.

To overcome this inconsistency, a unique director vector must be defined per

node. There may be different ways to achieve this. One method is to calculate

the averaged unit director vector at node P as

A3P =

nae∑
k=1

A3ek

P

|
nae∑
k=1

A3ek

P |
(3.11)

nae being the number of adjacent elements at the node.
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Figure 3.9: Normal vectors to the adjacent elements of a node.

It must be remarked that, in general, this director vector will be no longer

normal to any adjacent element, but only an approximation of the normal di-

rection of the shell. The thickness of the shell will be considered in the direction

indicated by the director vector.

In order to complete the director coordinate system at each node, two other

base vectors must be defined. The director coordinate system is a Cartesian

system and, therefore, the three vectors must be orthogonal to each other. As

the director vector has approximately the shell thickness direction, the other

two vectors must be contained in the orthogonal plane, that is, the tangential

plane to the shell surface at the considered node. There is obviously an infinite

number of pairs of orthogonal vectors contained in that plane. There are several

alternative procedures to choose a certain pair of these vectors in order to ensure

a unique definition of the tangential plane. In this work, the scheme proposed

by Ahmad (1969) and Zienkiewicz et al. (1971) is adopted.

Once the smallest component of the vector A3P is found, the vector A1P is

calculated as the normalized vector product of the unit vector in this direction

and the vector A3P . Let us consider that the director vector A3P is expressed

in vector representation as

A3P = xi + yj + zk (3.12)

where i, j and k are the coordinate base vectors of the global Cartesian system.

Thus,

A1P =
l × A3P
|l × A3P |

(3.13)
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where

l =





i if A31
P = min

{
A31

P , A32
P , A33

P

}

j if A32
P = min

{
A31

P , A32
P , A33

P

}

k if A33
P = min

{
A31

P , A32
P , A33

P

} (3.14)

If, for example, the smallest component of A3P is the x component, the vector

A1P will be given by

A1P =
i × A3P
|i × A3P |

(3.15)

As the vector A2P is required to be perpendicular to the vectors A1P and A3P ,

it will be calculated as the normalized vector product of these two vectors, that

is,

A2P =
A3P × A1P
|A3P × A1P |

(3.16)

Figure 3.10: Director coordinate system at a node of a patch of bilinear shell

elements.

It should be emphasized that all three vectors A1P , A2P and A3P , are unit

vectors. Figure 3.10 illustrates the director coordinate system at a node P of a

patch of bilinear shell elements.

3.5 Displacement field

The approximate displacement of an arbitrary point of the shell element in the

global Cartesian axis is given by



u

v

w



 =

nen∑

a=1

Na(ξ, η)






ua
va
wa



+

1

2
ζta
[
A1a −A2a

]
·
{
αa
βa

}
 (3.17)
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As it can be noted, there are five degrees of freedom at each node: three global

Cartesian displacements ua, va and wa and two rotation degrees of freedom

αa and βa, which represent the rotation of the director at node a around the

vectors A2a and A1a respectively. As it was explained in Section 3.1, only

one director vector per node is used in the geometrical definition of this shell

element and, therefore, only two rotational degrees of freedom are required.

Figure 3.11 illustrates the displacements of a point Q located in the thickness

direction at node a, due to the rotation degrees of freedom.

Figure 3.11: Displacements of a point P due to the rotation degrees of freedom.

The usual form of (3.17) is

u =
nen∑

a=1

Na(ξ, η, ζ) · da (3.18)

where, in this case,

Na(ξ, η, ζ) =



Na 0 0 1

2
ζtaNaA11

a −1
2
ζtaNaA21

a

0 Na 0 1
2
ζtaNaA12

a −1
2
ζtaNaA22

a

0 0 Na
1
2
ζtaNaA13

a −1
2
ζtaNaA23

a


 (3.19)

and da is the vector of nodal displacements and rotations, that is,

da =





ua
va
wa
αa
βa





(3.20)
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3.6 Relation between the different coordinate

systems

A look back into the previous sections reveals that different coordinate systems

are used simultaneously to define an element. In addition, in Section 3.7 ad-

ditional coordinate systems will be used to obtain the strain tensor. In order

to clarify this task, a brief review and further remarks are presented and the

relations between the different coordinate systems are specified. Figure 3.12

illustrates the different coordinate systems and their location with respect to

an element.

Figure 3.12: Different coordinate systems used in the present shell element

formulation.

As a global reference, the global Cartesian coordinate system of the structure

is used. It will be denoted by {x, y, z} and the other coordinate systems will be

related to it.

At each node a, the director Cartesian coordinate system {A1a,A2a,A3a} is

defined as explained in Section 3.4. The director vector A3a is a parameter in

the geometric definition of the element and points in thickness direction of the

shell. As it was mentioned before, the director vector A3a is not necessarily

perpendicular to any element adjacent to node a, since it is an average of the

normals to the adjacent elements at node a. The vectors A1a and A2a are

approximately tangential to the mid-plane of the shell and are related to the

rotational degrees of freedom of the node.
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The local curvilinear coordinate system is defined locally for each element and

has its origin at the element center. Two different bases are defined: the

contravariant and the covariant basis. The covariant basis {g1, g2, g3} is as-

sociated with the contravariant coordinates {x̂1, x̂2, x̂3}, here also denoted as

{ξ, η, ζ}, which are commonly used in the geometrical definition of finite ele-

ments. The coordinates ξ and η are tangential to the element mid-plane. The

coordinates vary between −1 and 1 on the respective faces of the element. The

two-dimensional Lagrange shape functions are expressed in this system and the

Gauss integration will be performed on it. For this reason, transformations and

changes of variables into this system will be required in order to express the

integrand as a function of ξ, η and ζ.

The relation between the global Cartesian and the local curvilinear contravari-

ant coordinates is given by (3.7). The Jacobian of the transformation is

J =



x,ξ y,ξ z,ξ
x,η y,η z,η
x,ζ y,ζ z,ζ


 =




x,Tξ
x,Tη
x,Tζ


 (3.21)

The expression (3.7) gives the global Cartesian coordinates of an arbitrary point

of the shell as a function of the curvilinear coordinates. Therefore, the different

terms of the Jacobian matrix can be easily obtained by simply deriving this

expression with respect to the suitable curvilinear coordinate

x,ξ =
∑

a

∂Na(ξ, η)

∂ξ

(
xa +

1

2
ζtaA3a

)
(3.22)

x,η =
∑

a

∂Na(ξ, η)

∂η

(
xa +

1

2
ζtaA3a

)
(3.23)

x,ζ =
∑

a

Na(ξ, η)
1

2
taA3a (3.24)

And thus, we obtain

J =
∑

a



Na,ξ

(
xa + 1

2
ζtaA3 1

a

)
Na,ξ

(
ya + 1

2
ζtaA3 2

a

)
Na,ξ

(
za + 1

2
ζtaA3 3

a

)

Na,η
(
xa + 1

2
ζtaA3 1

a

)
Na,η

(
ya + 1

2
ζtaA3 2

a

)
Na,η

(
za + 1

2
ζtaA3 3

a

)
1
2
NataA3 1

a
1
2
NataA3 2

a
1
2
NataA3 3

a




(3.25)

where A3 i
a is the ith-component of vector A3a
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The covariant curvilinear basis vectors can be obtained from the components

of the Jacobian matrix as,

gi = x,i (3.26)

where, following the usual convention for Latin indices, i = 1, 2, 3.

Note that,

J =



x,ξ y,ξ z,ξ
x,η y,η z,η
x,ζ y,ζ z,ζ


 =





gT1
gT2
gT3



 (3.27)

The contravariant basis {g1, g2, g3} is associated with covariant coordinates

{x̂1, x̂2, x̂3}. As it will be shown in Section 3.7, the strain tensor is computed first

on this basis. The transformation from covariant components into contravariant

components is done through the covariant metric coefficient matrix G = {gij}.
That is,

{x̂j} = {gij}−T{x̂i} (3.28)

where {x̂j} and {x̂i} are column vectors containing the covariant and contravari-

ant coordinates, respectively.

The contravariant metric coefficient matrix G−1 = {gij} = {gij}−1 is the con-

travariant metric coefficient matrix. The covariant metric coefficient matrix is

given by

G = {gij} = {gi · gj} =




g1 · g1 g1 · g2 g1 · g3

g2 · g1 g2 · g2 g2 · g3

g3 · g1 g3 · g2 g3 · g3


 (3.29)

For rectangular elements, the contravariant and covariant basis coincide and G

is the identity matrix.

For the definition of the strain and stress vector in an arbitrary point of the shell,

a local Cartesian coordinate system at that point is introduced. This coordinate

system will be denoted by {x̄, ȳ, z̄} and the unit base vectors of the system by

{ē1, ē2, ē3}. The main important advantage of the choice of this system, is

that the components of the strain vector will have a clear physical meaning, so

no transformation will be necessary in the postprocessing. Moreover, further

advantages of this local Cartesian coordinate system will be acknowledged in

the sensitivity analysis of the element.

Another alternative would be to express the strain vector in the local curvilinear

coordinate system. However, the physical meaning of the strain components

would be lost and, moreover, additional difficulties would be introduced in the
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sensitivity analysis of the element. This point will be explained in detail in

Chapter 5.

In the integration of the stiffness matrix with a Gauss quadrature, the strain

vector will be evaluated at the Gauss points. Thus, local Cartesian coordinate

systems will be defined at these points.

For the determination of this coordinate system, the director vectors of the

element nodes are taken into account. The base vector ē3 associated with the z̄

axis will be calculated as the normalized interpolation of the director coordinate

systems of the element nodes. Hence,

ē3 =

∑
aNa(ξ, η)A3a∣∣∣

∑
aNa(ξ, η)A3a

∣∣∣
(3.30)

As it was explained in Section 3.4, the director vector at an element node is not

necessarily perpendicular to the element mid-plane, because it is calculated as

an average of the perpendicular vectors to mid-planes of all adjacent elements

at that node (see (3.11)). Therefore, it must be noted that, in general, ē3 will

also not be perpendicular to the element mid-plane but its direction will be

considered as the thickness direction.

The procedure chosen to compute the other two base vectors ē1 and ē2 is anal-

ogous to the calculation of the vectors A1a and A2a explained in Section 3.4.

Therefore, the vector ē1 will be calculated as the normalized cross-product of

the global base vector associated with the smallest component of ē3 and this

vector ē3. Thus,

ē1 =
l × ē3

|l × ē3|
(3.31)

where

l =





i if ē1
3 = min {ē1

3, e
2
3, ē

3
3}

j if ē2
3 = min {ē1

3, e
2
3, ē

3
3}

k if ē3
3 = min {ē1

3, e
2
3, ē

3
3}

(3.32)

and ēj3 is the j-component of the vector ē3.

The base vector ē2 completes the local Cartesian coordinate system and is calcu-

lated as a unitary perpendicular vector to the other two base vectors obtained.

That is,

ē2 =
ē3 × ē1

|ē3 × ē1|
(3.33)

It must be noted that ē1, ē2 and ē3 are unitary vectors.
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Taking into account the calculation process of the base vectors {ē1, ē2, ē3},
we obtain the transformation matrix between this and the global Cartesian

coordinate system

Θ = {θ j
i } =



x,x̄ x,ȳ x,z̄
y,x̄ y,ȳ y,z̄
z,x̄ z,ȳ z,z̄


 =



ē11 ē12 ē13
ē21 ē22 ē23
ē31 ē32 ē33


 =

{
ē1 ē2 ē3

}
(3.34)

where ēji is the j-component of the vector ēi.

Since this matrix links two Cartesian coordinate systems, it is orthogonal, that

is:

ΘT = Θ−1 (3.35)

Therefore, the transformation of the coordinates of a vector from the global

coordinate system into the local coordinate system reads

{x̄j} = {θ j
i }T{xi} (3.36)

The transformation matrices J, G and Θ will have an important role in estab-

lishing the relations between the different coordinate systems in the integration

of the element stiffness matrices.

At this point it becomes clear that the inherent difficulty of shell finite ele-

ment formulations are the multiple coordinate systems that are involved and

transformations between them. For this reason it is very important to keep the

overview of all coordinate systems used. Figure 3.13 summarizes the different

coordinate systems and the relations between them. This scheme will be very

helpful to follow the transformations applied to the strain tensor in Section 3.7.

In the Figure, for each coordinate system a sketch of each system in the element

is given, except for the global Cartesian system, which, as its name indicates,

is valid for all systems. Both top and side view of the element are presented. It

can be noted that in general x̂3, x̂
3 and z̄ are not perpendicular to the element

mid-plane, since they are determined by the averaged director vectors at the

nodes. Moreover, x̂1, x̂2, x̂
1 and x̂2 are contained in the element mid-plane.

However, x̄ and ȳ are in general not contained in the element mid-plane, as

they are part of a Cartesian system and they have to be normal to z̄.

3.7 Definition of strains

As it was mentioned in Section 3.6, the strain and stress vector at a certain point

of the element are expressed in the local Cartesian system {x̄, ȳ, z̄}, which is
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LOCAL CURVILINEAR SYSTEM. CONTRAVARIANT BASIS

LOCAL CURVILINEAR SYSTEM. COVARIANT BASIS

GLOBAL CARTESIAN SYSTEM

LOCAL CARTESIAN SYSTEM

Figure 3.13: Relation between the different coordinate systems used in the present

shell formulation
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defined at that point.

According to the shell assumptions, the strain components in the direction

perpendicular to the mid-plane of the shell are negligible. As the strain vector

is expressed in a local Cartesian coordinate system whose z̄ direction coincides

with the thickness direction, the contribution of εz̄ to the potential strain energy

of the system is neglected. It should be noted that, in fact, the z̄ axis is not

exactly perpendicular to the mid-plane of the shell, but it is assumed it is a

good approximation.

Consequently, the strain vector of theory of first order in the local Cartesian

system {x̄, ȳ, z̄} is given by

ε̄ =





εx̄
εȳ
γx̄ȳ
γȳz̄
γz̄x̄





=





ū,x̄
v̄,ȳ

ū,ȳ + v̄,x̄
v̄,z̄ + w̄,ȳ
w̄,x̄ + ū,z̄





(3.37)

where γx̄ȳ = 2εx̄ȳ and so on. After discretization, the strain vector ε̄ can be

expressed as a function of the nodal degrees of freedom. Thus,

ε̄ = B̄ (ξ, η, ζ) · de (3.38)

where de is a vector containing the vectors da.

There are two possible ways to calculate the strain vector ε̄ at a point. Following

is the presentation of both.

3.7.1 Strains in local Cartesian system

In the first option, derivatives of the local Cartesian displacements with respect

to the local Cartesian coordinates are obtained. For simplicity, these derivatives

will be arranged in a matrix H̄

H̄ =



ū,x̄ v̄,x̄ w̄,x̄
ū,ȳ v̄,ȳ w̄,ȳ
ū,z̄ v̄,z̄ w̄,z̄


 =




∂
∂x̄
∂
∂ȳ
∂
∂z̄


(ū v̄ w̄

)
= ∇x̄ū

T (3.39)

where ∇x̄ is the differential operator containing the derivatives with respect to

the coordinate system designed by its index.
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To obtain these derivatives, three sets of transformations are needed.

First, the local Cartesian displacements should be transformed into the global

displacements, which are the ones we are using in the interpolation of the dis-

placement field (see (3.17)). As it was shown in (3.36), the transformation of

a vector in the local Cartesian system into a vector in the global system is

done through the matrix Θ, defined in (3.34). Applying this transformation to

equation (3.39) we obtain

H̄ = ∇x̄ uT ·Θ (3.40)

In this expression the functional interpolation (3.17) can be substituted to ob-

tain the strains as a function of the displacements and rotation degrees of free-

dom at the nodes of the element. Since in (3.17) the global displacements are

a function of the curvilinear coordinates of an element, further transformations

have to be done in the derivatives in order to express them in terms of the

curvilinear variables. It should be noted that the local Cartesian coordinate

system at a point is not directly related with the curvilinear coordinate sys-

tem of the element. Therefore, two more sets of transformations are needed:

from the local Cartesian to the global Cartesian system and, then, from the

global Cartesian to the curvilinear system. The transformation into the global

Cartesian derivatives involves the transpose of the matrix Θ and leads to

H̄ = ΘT · ∇xu
T · Θ (3.41)

Last, the derivatives with respect to the global Cartesian variables are trans-

formed into derivatives with respect to the curvilinear variables through the

inverse of the Jacobian matrix J defined in (3.21). Thus, we obtain

H̄ = ΘT · J−1 · ∇ξ uT · Θ (3.42)

which in explicit form is

H̄ =



x,x̄ y,x̄ z,x̄
x,ȳ y,ȳ z,ȳ
x,z̄ y,z̄ z,z̄


 ·



x,ξ y,ξ z,ξ
x,η y,η z,η
x,ζ y,ζ z,ζ




−1

·




∂
∂ξ
∂
∂η
∂
∂ζ



(
u v w

)
·



x,x̄ x,ȳ x,z̄
y,x̄ y,ȳ y,z̄
z,x̄ z,ȳ z,z̄




(3.43)

If we define the matrix containing the derivatives of the global Cartesian coor-

dinates with respect to the curvilinear coordinates as

H (ξ, η, ζ) =



u,ξ v,ξ w,ξ
u,η v,η w,η
u,ζ v,ζ w,ζ


 (3.44)
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and substitute it into (3.42), we obtain:

H̄ = ΘT · J−1 · H (ξ, η, ζ) ·Θ (3.45)

which gives the relation between the derivatives contained in the definition of

the strain vector (3.37) and the derivatives of the global displacements with

respect to the curvilinear coordinates. If we insert the approximation of the

displacements given by (3.17) in (3.45), we obtain the approximation of H̄

H̄ = ΘT · J−1 · ∇ξ

∑

a

dTa · Na(ξ, η, ζ)
T · Θ (3.46)

The expression (3.46) allows us to obtain the approximation of the strain com-

ponents as a function of the displacements and rotational degrees of freedom,

as in (3.38).

3.7.2 Strains in curvilinear coordinate system

In the second option, the strain tensor is first computed in the contravariant

basis of the local curvilinear system, and then a set of transformations are

performed in order to obtain it in the local Cartesian basis. The strain tensor

expressed in the contravariant basis of the local curvilinear system is

ε = ε̂ijg
i ⊗ gj (3.47)

The covariant components ε̂ij of the strain tensor are given by

ε̂ij =
1

2

(
u,i ·gj + u,j ·gi

)
(3.48)

where gj is a covariant base vector of the curvilinear basis and u,i is the deriva-

tive of the displacement vector with respect to the contravariant component

x̂i.

The displacement vector expressed in the global Cartesian coordinate system is

given by

u = ukek (3.49)

Substituting (3.49) in (3.48), gives

ε̂ij =
1

2

(
(ukek),i ·gj + (ukek),j ·gi

)
(3.50)
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As the displacements u are expressed in the global Cartesian basis, the deriva-

tive of the base vector ek with respect to the curvilinear coordinates vanishes.

Thus,

ε̂ij =
1

2

(
uk,i ek · gj + uk,j ek · gi

)
=

1

2

(
uk,i

∂xk

∂x̂j
+ uk,j

∂xk

∂x̂i

)
(3.51)

If in this expression, (3.18) and (3.26) are substituted, the components of the

strain tensor are obtained as a function of the nodal degrees of freedom.

However, as already explained, for the computation of the stiffness matrix,

the strain and stress vector at a certain point of the element are expressed in

the local Cartesian system {x̄, ȳ, z̄}. For that reason, the transformation of the

strain components from the local curvilinear contravariant system into the local

Cartesian system is required. That is,

ε = ε̂ijg
i ⊗ gj = ε̄mnēm ⊗ ēn (3.52)

where ε̄mn are the components of the modified strain tensor expressed in the

local Cartesian frame. As in the previous section, the upper hat indicates the

curvilinear system and the upper bar the local Cartesian system.

The objective now is to compute the new components ε̄mn. In order to achieve

the required change of basis and according to the known relations between the

different coordinate systems explained in Section 3.6 and summarized in Figure

3.13, three sets of transformations are to be performed.

In the first transformation, the contravariant coefficients of the strain tensor are

obtained from the covariant coefficients. That is,

ε = ε̂ijg
i ⊗ gj = ε̂ij

(
gikgk

)
⊗
(
gjlgl

)

= ε̂ijg
ikgjlgk ⊗ gl = ε̂klgk ⊗ gl

(3.53)

where the coefficients gik are the components of the contravariant metric coef-

ficient matrix G−1, which is calculated as the inverse of the covariant metric

coefficient matrix G, as explained in Section 3.6.

The second transformation changes the components of the strain tensor from

the covariant curvilinear basis into the global Cartesian basis. Thus, it can be

written

ε = ε̂ijg
ikgjlgk ⊗ gl = ε̂ijg

ikgjl (j m
k em) ⊗ (j n

l en)

= ε̂ijg
ikgjlj m

k j n
l em ⊗ en = εmnem ⊗ en

(3.54)
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where j m
k are the components of the Jacobian matrix J defined in (3.21).

Lastly, what remains to be done is the transformation from the global Cartesian

basis into the local Cartesian basis. Thus, we obtain

ε = ε̂ijg
ikgjlj m

k j n
l em ⊗ en = ε̂ijg

ikgjlj m
k j n

l (θ p
m ēp) ⊗ (θ q

n ēq)

= ε̂ijg
ikgjlj m

k j n
l θ

p
mθ

q
n ēp ⊗ ēq = ε̄pqēp ⊗ ēq

(3.55)

where θ p
m are the components of the transformation matrix Θ defined in (3.34).

Now, the transformation of the components of the strain tensor from the con-

travariant curvilinear system into the local Cartesian system can be expressed

in matrix form as

{ε̄mn} = {θ p
m}T{j m

k }T{gik}T{ε̂ij}{gjl}{j n
l }{θ q

n }
= ΘT · JT ·G−T · {ε̂ij} · G−1 · J ·Θ

(3.56)

Taking into account that

{ε̄mn} =



εx̄ εx̄ȳ εx̄z̄
εȳx̄ εȳ εȳz̄
εz̄x̄ εz̄ȳ εz̄


 (3.57)

the components of the strain tensor can be reordered into the strain vector

(3.37), and thus the B̄ operator defined in (3.38) can be obtained.

3.8 Calculation of stresses and stress resultants

Once the strain vector (3.37) at a point is obtained, the stress vector can also be

computed. In the linear elastic case, the stresses corresponding to these strains,

are

σ̄ =





σx̄
σȳ
τx̄ȳ
τȳz̄
τz̄x̄





= D̄ · (ε̄ − ε̄0) + σ̄0 (3.58)

where ε̄0 and σ0 are the initial strains and stresses. Note that these stresses are

also given in the local Cartesian system. For an isotropic material, the material
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matrix is

D̄ =
E

1 − ν2




1 ν 0 0 0

ν 1 0 0 0

0 0 (1−ν)
2

0 0

0 0 0 κ(1−ν)
2

0

0 0 0 0 κ(1−ν)
2




(3.59)

where E is the Young’s modulus and ν the Poisson’s ratio.

In (3.37) it can be seen that the shear strain distribution γȳz̄ and γz̄x̄ will

be constant in the thickness. However, in reality the distribution for elastic

behavior is approximately quadratic, due to the presence of warping. In order

to better approximate the shear stress resultants, the shear correction factor

κ = 5
6

is included in the related components of the material matrix.

The stress resultants are computed in the local Cartesian axes and they are

given by

mx̄ =

∫ h
2

−

h
2

z̄ σx̄ dz̄ (3.60)

mȳ =

∫ h
2

−

h
2

z̄ σȳ dz̄ (3.61)

mx̄ȳ =

∫ h
2

−

h
2

z̄ τx̄ȳ dz̄ (3.62)

qx̄ =

∫ h
2

−

h
2

τz̄x̄ dz̄ (3.63)

qȳ =

∫ h
2

−

h
2

τȳz̄ dz̄ (3.64)

nx̄ =

∫ h
2

−

h
2

σx̄ dz̄ (3.65)

nȳ =

∫ h
2

−

h
2

σȳ dz̄ (3.66)
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nx̄ȳ =

∫ h
2

−

h
2

τx̄ȳ dz̄ (3.67)

3.9 Element stiffness matrix

In Section 3.6, the suitability of expressing the strain and stress vector in the

local Cartesian system was explained. Now, the element stiffness matrix can be

computed with the B-operator and the material matrix can also be expressed

in this system. Therefore,

ke =

∫∫∫

Ve

B̄T · D̄ · B̄dV (3.68)

It should be observed that, even though the present shell finite element formula-

tion is based on the degeneration concept, no previous integration in thickness

direction is performed. For this reason, integration over the element volume

is required to compute the stiffness matrix. Since curvilinear coordinates are

preferred for the numerical integration, we may express the infinitesimal volume

as

dV = dx̄dȳdz̄ = dxdydz = Jdξdηdζ (3.69)

where J is the determinant of the Jacobian matrix J. Thus, the element stiffness

matrix is given by

ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1

B̄T (ξ, η, ζ) · D̄ · B̄(ξ, η, ζ)Jdξdηdζ (3.70)

The number of Gauss points needed for numerical integration in ξ and η di-

rections depends on the polynomial order of the shape functions. For instance,

for bilinear shape functions, two Gauss points in each direction are required,

and for parabolic or cubic shape functions, three or four respectively. Since

the variation of strain components through the shell thickness is at most linear

with respect to ζ, and does not depend on the shape functions used, two Gauss

points will be sufficient for exact integration through the thickness.

3.10 External loads

The nodal force vector at node a is given by
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fa =




Fax
Fay
Faz
maα

maβ




(3.71)

Analogously to the nodal displacement vector (3.17), in the nodal force vector

the nodal forces are expressed in the global Cartesian system and the nodal

moments maα and maβ are related to the axis A2a and A1a of the director

vector Cartesian system. The force components are depicted in Figure 3.14.

The definition of the director vector Cartesian system is explained in detail in

Section 3.4.

Figure 3.14: Nodal forces

Let us now consider the particular load case of volume forces. The most common

volume force is self-weight. However, a general volume force bT = {bx, by, bz}
expressed in the global Cartesian system is considered.

The elemental force vector containing the consistent nodal forces is given by

f e =

∫∫∫

Ve

nen∑

a=1

NT
a · b dV (3.72)

where nen is the number of nodes per element and Na is given by (3.19).

It should be noted that, as no thickness integration is performed in advance in

the present element formulation, integration of the volume forces b has also to

be done over the thickness direction. Substituting (3.19) and (3.69) into (3.72),

we obtain
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f
e =

∫∫∫

Ve

∑

a

N
T
a (ξ, η, ζ) · b dV

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

∑

a




Na 0 0

0 Na 0

0 0 Na
1
2ζtaNaA11

a
1
2ζtaNaA12

a
1
2ζtaNaA13

a

−1
2ζtaNaA21

a −1
2ζtaNaA22

a −1
2ζtaNaA23

a




·





bx
by
bz



 J dξdηdζ

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

∑

a





Nabx
Naby
Nabz

1
2ζtaNa

(
bxA11

a + byA12
a + bzA13

a

)

−1
2ζtaNa

(
bxA21

a + byA22
a + bzA23

a

)





J dξdηdζ

(3.73)

where A1ia and A2ia are the ith-components of A1a and A2a, respectively.

Generally, in the present shell finite element formulation, applied forces will not

only produce nodal forces, but also nodal moments. This effect is illustrated in

Figure 3.15 for the case of self weight. Here, the volume of the element above

the mid-plane is different from the volume under it. This is a consequence of

the averaged director vector formulation. As a result, the general equivalent

system consists of nodal forces and nodal moments. This effect can also be

observed in (3.73).

Figure 3.15: Self-weight load case. Equivalence between volume force and con-

sistent nodal forces and moments
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3.11 Locking phenomena

As early as in the sixties, it was realized that under certain circumstances

displacement elements yield inaccurate results. Hughes et al. (1977) named

this effect locking, because its main characteristic is that the element locks itself

and displacements obtained are underestimated.

From the mechanical point of view, the locking effect is characterized by the

presence of parasitic stresses, that is, stresses that are not present in the exact

solution of the problem. These parasitic stresses produce a parasitic internal en-

ergy and, consequently, structural stiffness is overestimated. As a consequence,

a reduced rate of convergence is observed. This additional artificial stiffness

depends on a geometrical or material parameter, in such a way that when this

parameter tends to a certain value, the locking effect becomes more pronounced.

A heuristic method to determine if an element suffers from locking is explained

by (Hughes, 2000). The method consists of determining the so-called constraint

ratio of the element and comparing it with an optimal value, which is the

constraint ratio of the continuous problem. The constraint ratio r for a certain

element is defined as the relation between the number of degrees of freedom

and the number of constraints of the global system. If the constraint ratio of an

element is lower than the optimal value, the element will lock. If they coincide,

it will, in principle, not lock. This approach, although lacking mathematical

precision, provides a useful hint about the element behaviour.

In the case of shear deformable thin structures, the constraints are the Kirchoff

conditions and the locking becomes more pronounced when the slenderness of

the element tends to zero. Under these circumstances, parasitic transverse shear

stresses appear in pure bending states.

Locking effects can be classified depending on the parasitic stresses appearing.

Principally, one can be distinguish between transverse shear locking, membrane

locking, in-plane shear locking and volumetric locking. A review of the different

locking phenomena can be found in Bischoff (1999).

Transverse shear locking appears in beam, plate and shell elements subjected to

bending. In pure bending, parasitic transverse shear stresses can be observed.

Shear locking may appear in beam and shell elements and even 2D and 3D solid

elements used to model thin structures. Membrane locking occurs in curved

beam and shell elements. The parasitic stresses are membrane stresses in the

case of pure bending.
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Contrary to other kinds of locking effects, volumetric locking is not related to

the slenderness of an element, but to a material parameter, the bulk modulus.

This kind of locking appears in nearly incompressible problems, and the related

constraint is the incompressibility condition.

Another kind of locking is curvature thickness locking, also called trapezoidal

locking. It was first observed by Ramm et al. (1994) (see also Ramm et al.

(1995)) and only appears in certain cases of shell formulations considering thick-

ness changes.

Unfortunatelly, shell elements with Reissner Mindlin kinematics are in principle

candidates for be affected by all kinds of locking effects. The use of 3D elements

to model a shell structure does not circumvent the locking problem.

Since the late seventies, numerous studies have been done about the influence

of locking phenomena in structural analysis and many alternatives to the dis-

placement element formulation have been proposed in order to avoid locking.

A review can be found in Bathe (1996), Zienkiewicz and Taylor (2000a) and

Zienkiewicz and Taylor (2000b).

However, the consequences of locking in the overall shape optimization process

have been underestimated. In Chapter 6, the influence of locking in shape

optimization of shells is studied with the help of some numerical experiments.

The aim of this work is not to study the causes of the locking phenomena,

but to present the scope of its effects in shape optimization. To perform these

numerical examples, a formulation which avoids locking is needed. To this

purpose, the DSG method, a simple but efficient approach, is chosen. In the

following section, the application of this method to the shell element studied in

the present chapter is outlined.

3.12 A DSG shell element

The DSG method (Discrete Shear Gap), proposed by Bletzinger et al. (2000),

is one of the numerous techniques used to avoid locking. The method was

originally developed to avoid transverse shear locking in beams, plates and

shells (Bletzinger et al., 2000; Bischoff, 1999). The basic idea is to compute a

modified transverse shear distribution free of parasitic parts by interpolation of

the discrete shear gaps across the element domain. Discrete shear gaps at node

a are defined as the integration of the discrete shear strain of the displacement

element. Bischoff and Bletzinger (2001) proposed a stabilized version of the
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DSG method, which helps to reduce oscillations of transverse shear forces and

to reduce sensitivity to mesh distortions.

Later, Koschnick et al. (2002, 2004) extended the basic idea of the method

to avoid membrane and shear locking. This generality of the method led to

renaming DSG as Discrete Strain Gap.

Some main characteristics of the DSG method motivated its application to

optimization problems. These are:

1. The method is particularly attractive because it can be applied to both

triangles and quads and its formulation is independent of the polynomial

order of the element. This is not the case of many other locking free

formulations.

2. No additional degrees of freedom are introduced, making the method par-

ticularly efficient.

3. The method is based on one unique, simple rule by which modified strains

free of parasitic parts are computed. The only modification with re-

spect to a standard displacement element is the calculation of the strain-

displacement operator. Therefore, the implementation of the method into

an existing code is easy.

4. A further advantage, as it will be shown in Chapter 5 is the simplicity

of the implementation of sensitivity analysis. Moreover, once the imple-

mentation of sensitivity analysis has been done, sensitivity analysis of the

DSG shell element differs only on the B operator and on its derivatives

with respect to design variables.

5. The numerical integration order required for computation of elemental

stiffness matrix is not increased with respect to the standard displacement

formulation. Therefore, computational cost is not significantly increased.

Moreover, in the case of linear elements only one Gauss point is needed

in contrast to the three Gauss points needed for the same case in the

standard displacement formulation.

Due to these characteristics, the DSG method turns out to be very efficient and

suitable for structural optimization.

Linear and bilinear elements are used in the numerical experiments given in

Chapter 6 to study the influence of locking in shape optimization of thin shells.
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In these cases, elements suffer from transverse shear locking, the rest of locking

effects being subsidiary. For this reason, the DSG concept is applied here to

avoid transverse shear locking.

The DSG concept for transverse shear strains is explained for the case of a

Timoschenko beam in Bletzinger et al. (2000). The Timoschenko beam offers the

possibility of explaining this concept attaining the simplicity of a 1D element.

Explaining directly the essence of this concept for a shell element may be more

complex. However, to this point one should be familiarized enough with the

shell element formulation used herein.

First, the biunit square element depicted in Figure 3.16.a is considered. Director

vectors are not normal to element mid-plane and, as a consequence the ζ axis

(see Section 3.4) is not either.

Figure 3.16: (a) Biunit square element with director vectors not normal to its

mid-plane. (b) Scheme of discrete shear gaps.

The deflection of the element due to rotations α and β is sketched in Figure

3.16.b, respectively. The total displacement in ζ direction of a certain point of

the element is the sum of the contributions of deflection due to pure bending

and shear. The deflection of a certain point due to shear is called shear gap and

it is the difference between the total deflection at the point and the deflection

due to bending. It can be computed by integration of the corresponding shear

strain along the coordinate line associated to it. In a shell element two shear

50



strains are considered (εξζ and εηζ) and therefore, two discrete shear gaps for

each node a can be defined. That is,

∆ŵaξζ =

∫ ξa

ξ=−1

ε̂ξζdξ

∣∣∣∣η=ηa

ζ=0

(3.74)

∆ŵaηζ =

∫ ηa

η=−1

ε̂ηζdη

∣∣∣∣ξ=ξa
ζ=0

(3.75)

A hat in the shear gaps denotes that the deflection is considered in the curvilin-

ear ζ direction. It is important to note that strains εξζ and εηζ are not related to

a deflection normal to the element mid-plane, but to a deflection in ζ direction.

To emphasize this fact, an upper hat, related to curvilinear coordinate system

(see Section 3.6), is included in the notation of the strain gaps.

Coordinate lines ξ = −1 and η = −1 are taken as reference edges for each

shear gap respectively. That is, at these edges the deflection due to the related

shear is arbitrarily supossed to be null. Consequently, nodes located at these

reference edges for a certain integration direction have null discrete shear gaps.

This assumption does not imply loss of generality of the method. It should be

noted that in the computation of the discrete shear gaps it does not matter that

the element is not rectangular, since integration is performed in the curvilinear

axis. Evaluation of discrete shear gaps is done at ζ = 0, because all nodes of

the present shell formulation lay at the mid-plane.

The discretized strains ε̂ij, that enter in the computation of the discrete shear

gaps, are the covariant components of the strain tensor expresed in the curvi-

linear basis. As explained in Section 3.7.2, they can be computed according to

formula (3.50). That is

ε̂ij =
1

2

(
u,i ·gj + u,j ·gi

)
(3.76)

It is important to remark that integration of shear gaps can be performed an-

alytically, so the computational cost of DSG elements is not increased with

respect to standard displacement elements.

Once discrete shear gaps are obtained, they are interpolated in order to obtain

the related shear gap distributions over the element. That is,
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∆ŵξζ =
∑

a

Na(ξ, η)∆ŵ
a
ξζ (3.77)

∆ŵηζ =
∑

a

Na(ξ, η)∆ŵ
a
ηζ (3.78)

From these strain gaps distributions, new modified strains can be recovered by

differentiation. The main characteristic of these modified strains is that they

are free of parasitic parts. These modified strains are given by

εDSG
ξζ =

∂∆̂wξζ
∂ξ

=
∑

a

Na,ξ ∆ŵaξζ (3.79)

εDSG
ηζ =

∂∆ŵηζ
∂η

=
∑

a

Na,η ∆ŵaηζ (3.80)

The superscript DSG indicates that these are modified strains with respect to

those computed for the standard displacement formulation given by (3.50).

It should be remarked that the modified strain components computed above

according to the DSG method rule, are covariant components, that is, they are

expressed in the contravariant base. This was also the case for the original

strain components (3.50) used in the displacement formulation.

Therefore, the same coordinate transformations explained in Section 3.7.2 for

the displacement shell element have to be performed for the DSG shell element,

in order to get the strain tensor components in the local Cartesian basis.

The only modification that the DSG method introduces with respect to the

standard displacement formulation is in the strain-displacement operator. The

rest of the formulation remains the same. As a consequence, implementation of

this method into an existing code is very simple.
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Chapter 4

Sensitivity Analysis

4.1 Introduction

In general, the concept of sensitivity analysis means the study of the dependence

of a function from a certain parameter. That is, how this function changes

when a parameter is changed. In an optimization process, this information is

required by gradient based optimization algorithms to predict how a certain

modification of the actual design is going to affect the objective function or

constraints. Based on these predictions, the optimization algorithm takes a

decision about modifying the actual design. Therefore, the main contribution of

the sensitivity analysis to the optimization process is the possibility of studying

the influence of design changes in a certain function without requiring trial and

error experiments, which may be expensive and time consuming.

Apart from the optimization field, sensitivity analysis is widespread in science,

engineering, and economy because of its applications in model analysis. In nu-

merical modeling, sensitivity analysis is used to study and improve performance

of the model itself. The study of the relationship between input information

and provided output is used to calibrate the model, to study its quality and

to reduce it to a simpler one by identifying the model parameters that are not

relevant, a technique known as variable screening (Saltelli et al., 2000).

In statistics, sensitivity analysis is used to perform a robust design. The aim

is to achieve insensitivity of the system with respect to small deviations from

the input assumptions. In structural analysis, sensitivities may also be used to

predict the structural response in probabilistic terms by the Probabilistic Finite

Element Method (see Liu et al. (1986)).
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In structural optimization, the two major areas of sensitivity analysis are sensi-

tivity of static and transient response and sensitivity of vibration and buckling

eigenproblems. A clear distinction between these to areas os required, because

the solution methods are significantly different.

Sensitivity analysis of transient response is more complex than in the static case,

because the additional variable of time has to be considered in the derivations.

In the static case, sensitivity analysis is significantly more complex for nonlinear

structural problems than for linear problems. For this reason, most of the

studies in this field are focused on linear problems. However, some important

contributions were presented by Cardoso and Arora (1988) for path-independent

nonlinear problems and by Tsay and Arora (1990), Tsay et al. (1990) and

Kemmler (2004) for path-dependent nonlinear problems. In the present work,

attention is focused on sensitivity analysis of linear static response.

In Chapter 2, a brief description of the three basic types of structural optimiza-

tion problems was given. Sensitivity analysis for shape optimization problems

is significantly more difficult than for sizing problems. In sizing, the design vari-

able is typically the cross section of a bar or the thickness of a shell, and usually

they enter in the governing equation of the system multiplying or dividing. In

this case, it is not very difficult to obtain the derivatives even, in some cases,

analytically.

In shape optimization, design variables are geometrical properties of the struc-

ture in a most general sense. In this case, derivation of the governing equations

is more complex, since design variables affect not only these equations but also

the domain. If the Finite Element Method is used for structural analysis, a

change in the design variables implies a change in the finite element model. As

a consequence, shape design variables may affect the domain of integration of

element stiffness matrices, the B-operator and even the material matrix.

For these reasons, in shape optimization the computation of sensitivities was

historically always done by the global finite difference method. This is the

easiest way to compute sensitivities and it does not require much knowledge of

the code or the finite element formulation used. However, as it will be explained

in section 4.2, sensitivities obtained by this method are not very accurate.

An efficient and accurate computation of design sensitivities is of main impor-

tance in the overall structural optimization process. Accuracy of sensitivities

may be decisive in the success of the optimization problem and in the number

of iterations needed to obtain the optimal design. Moreover, sensitivity analysis

represents a large part of the computational effort required to solve an optimiza-
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tion problem (Haftka and Gürdal, 1999). For these reasons a lot of research was

done related to sensitivity analysis in the search for more efficient and accurate

methods. Especially in the eighties, sensitivity analysis was a very important

area of engineering research. As a result, a wide variety of sensitivity analysis

techniques were developed.

In structural optimization, sensitivity analysis implies the derivation of the state

equation of the considered structural model. Two general approaches can be

distinguished. Both are based on the principle of virtual work, but the main

difference is the moment in which differentiation is done: before or after dis-

cretization. These two methods are:

1. discrete approach or implicit differentiation, where the state equation is

first discretized and then differentiated

2. variational approach, where the continuum equations are first differenti-

ated and then discretized.

In addition, there are two general ways of performing sensitivity analysis: the

direct method and the adjoint method. In the direct method, sensitivities of

state variables are computed and, with these, sensitivity of response functional ψ

is obtained. In the adjoint method, sensitivity of response functional is obtained

directly, with no intermediate computation of derivatives of the state variables.

However, to achieve this the solution of an adjoint problem is necessary. Along

the present Chapter, the different types of sensitivity analysis are presented.

Almost for each type, a distinction between direct and adjoint method will be

made.

The present chapter is focused on first order sensitivity analysis. Computation

of second and higher order derivatives is significantly more difficult and results

obtained have less accuracy.

The objective of the sensitivity analysis is to calculate the total dependence

of a certain functional with respect to the design variables. In structural op-

timization a certain objective function has to be minimized for certain design

variables simultaneously fulfilling some constraints. In the most general case,

this objective function or constraints depend on the design variables and on the

state variables, i.e. the displacements. In a general structural problem, state

variables are function of the geometry of the structure, its mechanical proper-

ties and the loads. In a general case of structural shape optimization, geometry,

mechanical properties, and loads are function of the design variables. Therefore,
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the dependence of the objective function, or constraints, with respect to the de-

sign variables is set in two ways: directly or indirectly through the dependence

on the displacements.

In the following, it will be considered a general response functional needing

design sensitivity analysis given by

ψ = ψ(s,u) (4.1)

where s = {si}, i = 1, ...ns is the vector of design variables and u is the

vector of state variables, i.e. displacements. The functional ψ may represent

the objective function of the optimization problem or constraints on stresses,

strains, displacements, reaction forces, etc.

Once a design is set, the state variables can be computed by a structural anal-

ysis. These state variables are highly non-linear with respect to the design

variables. This fact is the key to the difficulties related to shape optimization.

In the present chapter, a review of the different sensitivity analysis techniques is

presented. Main characteristics, advantages and disadvantages of the methods

are outlined. First, the global finite difference method is briefly studied, since

it is the most intuitive sensitivity analysis technique. Then, special attention

is paid to other discrete sensitivity approaches: the semi-analytical and the

analytical method. Lastly, an overview of the variational sensitivity analysis is

given and principal differences to the discrete approach are outlined. As already

mentioned, only sensitivity analysis of static linear elastic systems is considered

in the present chapter.

4.2 Discrete sensitivity analysis by global finite

differences

The global finite difference is the simplest sensitivity analysis technique. The

main advantage of this approach is its easy implementation in a general purpose

finite element program, since no much knowledge of the code of the structural

analysis program is required.

In this method, sensitivities of a function are approximated by finite differences.

The simplest approximation uses the first order forward (or backward) finite

differences scheme. Using the forward finite differences scheme, the derivative

of a function ψ (4.1) with respect to design variable si can be expressed as
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∂ψ(s)

∂si
=
ψ(s1, ..., si + ∆si, ...sns) − ψ(s1, ..., si, ...sns)

∆si
+O(∆si) (4.2)

where O(∆si) is the truncation error given by

O(∆si) = −∆si
2

∂2ψ

∂s2
i

∣∣∣∣
(s1,...,si+ε∆si,...sns)

(4.3)

with 0 ≤ ε ≤ 1.

Therefore, the sensitivity of ψ can be approximated by

∂ψ(s)

∂si
≈ ∆ψ(s1, ...sns)

∆si
=
ψ(s1, ..., si + ∆si, ...sns) − ψ(s1, ..., si, ...sns)

∆si
(4.4)

As it can be deduced from (4.4), in order to compute sensitivity ∂ψ(s)
∂si

, it is

necessary to evaluate ψ for an additional perturbed design with si + ∆si. If

sensitivities of ψ are to be computed with respect to ns design variables, the

global finite difference method requires ns additional analysis of perturbed de-

signs. Therefore, from the computational point of view, this method is very

expensive.

Accuracy of this method strongly depends on the incremental step (perturba-

tion step) of the design variables. In first order finite differences schemes, the

truncation error (4.3) depends linearly on the step size. Therefore, small step

sizes minimize this source of error. However, too small step sizes may yield large

condition errors, i.e. algorithmic and computational round-off errors. The diffi-

culty on choosing a suitable size step is the so-called step-size dilemma (Haftka

and Adelman, 1989). An extended discussion about this issue is given by Haftka

and Gürdal (1999).

Finite difference approximations of higher order significantly reduce the trun-

cation error. However, these schemes require the computation of additional

perturbed designs with the consequent increase of the computational cost.

Although it lacks accuracy and implies a high computational effort, this ap-

proach has been widely used because of its simplicity, specially in shape opti-

mization. Nowadays, the importance of sensitivity accuracy in the optimization

process has been recognized. As a consequence, more accurate approaches are

preferred. However, the global finite difference approach remains as a good

reference method.
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4.3 Discrete sensitivity analysis of state

variable constraints

The lack of accuracy of the global finite difference technique motivated to search

for more accurate alternative approaches to the computation of sensitivities.

In the discrete sensitivity approach, also known as implicit sensitivity approach,

the governing equations are first discretized and then differentiated with respect

to the design variables. As already explained in Chapter 2, in the discretization

process geometry and displacements are approximated by a linear combination

of global shape functions (Hughes, 2000). Displacements u are approximated

by

u =
∑

a

Na · da (4.5)

where Na is the matrix containing the shape functions and da are the nodal

degrees of freedom of node a. Both Na and da depend on the kind of ele-

ment considered. In the case of the shell element studied in Chapter 3, their

expressions are given by (3.19) and (3.20), respectively.

Therefore, after discretization, the functional ψ given by (4.1) is approximated

by

ψ = ψ(s,
∑

a

Na · da) (4.6)

In sizing and shape optimization problems, geometrical variables are taken as

design variables. Thus, the global stiffness matrix and the load vector are

functions of these design variables. Therefore, the governing system of equations

turns out to be

K(s) · d = F(s) (4.7)

where s is the vector of design variables. Thus, the vector of displacements ob-

tained as solution to the structural analysis also depends on the design variables,

that is d = d(s).

Considering this, the sensitivity of the functional ψ (4.6) with respect to the

vector of design variables s is given by
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dψ

ds
=
∂ψ

∂s
+
∂ψ

∂d
· ∂d
∂s

(4.8)

It should be noted that the shape functions do not depend on the design vari-

ables. Derivatives ∂ψ
∂s

and ∂ψ
∂d

are determined explicitly from expression (4.6).

The computation of derivatives of the state variables, that is ∂d
∂s

, is the main

task of discrete sensitivity analysis.

There are different methods to compute these sensitivities. Depending on the

way to organize the operations, it can be distinguished between direct and

adjoint sensitivity analysis. In both cases, the computation of the so-called

pseudo load vector, which will be introduced next, is required. Depending

on the way the pseudo load vector is computed, semi-analytical and analytical

sensitivities can be distinguished. As a result of the combination of these factors,

discrete sensitivity analysis of state variables can be performed in four different

ways.

In the present section, both the adjoint and direct method, as well as the semi-

analytical and analytical approaches are explained and their computational ad-

vantages are outlined.

4.3.1 Discrete direct sensitivity analysis

In order to obtain the derivatives of the nodal degrees of freedom, the system

equilibrium equation 4.7 must be derived with respect to the design variable si.

That is,

K · dd
dsi

+
dK

dsi
· d =

dF

dsi
(4.9)

Derivatives of the degrees of freedom with respect to the design variables can

be obtained by solving the system of equations

K · dd
dsi

= F∗

i (4.10)

where dd
dsi

is the vector of unknowns and F∗

i is the pseudo load vector for design

variable i, which is given by

F∗

i =
dF

dsi
− dK

dsi
· d (4.11)
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It must be noted that both systems (4.7) and (4.10) have the same system ma-

trix. From the computational point of view, this may be a great advantage, if in

the finite element analysis the system of equations was solved by a factorization

method (Cholesky or Crout). In this case, for the solution of (4.10), the factor-

ization of K is already available, and only forward and backward substitution

are needed to solve the intermediate triangular systems of equations. Conse-

quently, computational time is saved. At this point, it can be easily understood

that F∗

i is called the pseudo load vector, since it can be interpreted as a new

load case in the structural analysis.

The system of equations (4.10) has to be solved for each design variable si and

for each load case. Therefore, ns being the number of design variables and

nl the number of load cases, the system (4.10) has to be solved nl ∗ ns times

(although always with the same system matrix). Once the derivatives of nodal

displacements are obtained, the sensitivity of functional ψ can be obtained by

(4.8).

As aforementioned, semi-analytical and analytical sensitivities are distinguished

on the basis of how the pseudo load vector is computed. In the semi-analytical

approach, the pseudo load vector is approximated by finite differences. In the

analytical method, this vector is computed deriving analytically the stiffness

matrix and load vector of the system.

4.3.2 Discrete adjoint sensitivity analysis

The adjoint sensitivity analysis can be explained as just another way to organize

the operations different to the direct approach. As it will be shown, the reason

for choosing one approach or the other is mainly computational.

From (4.8) and (4.10), it can be obtained that the derivative of functional ψ

with respect to design variable si is given by

dψ

dsi
=
∂ψ

∂si
+
(∂ψ
∂d

)T
· K−1(s) · F∗

i (4.12)

where F∗ is the pseudo load vector defined in (4.11).

The vector of adjoint variables is defined as

λ := K−1(s) · ∂ψ
∂d

(4.13)
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From (4.13) can be deduced, that the adjoint operator λ can be computed from

the system of equations

K(s) · λ =
∂ψ

∂d
(4.14)

Now, considering the symmentry of K, the total derivative of functional ψ is

given by

dψ

dsi
=
∂ψ

∂si
+ λ

T · F∗

i (4.15)

To study the computational cost of this approach and compare it with the direct

method, attention should be focused on system of equations (4.14) (Haug et al.,

1986). As in the case of the direct method, the factorization of the system

matrix may already be available from the structural analysis. The system has

to be solved for each functional ψ. If nc is the number of constraints in the

optimization problem, it can be considered that system (4.14) has to be solved

nc times.

To determine which approach (direct or adjoint) is more suitable to be used in a

certain optimization problem, the number of systems of equations needed to be

solved in each case has to be analyzed. If ns∗nl < nc, then direct differentiation

method is preferred. These are cases with high number of constraints and low

number of design variables and load cases.

However, in structural optimization it is usual that the number of active con-

straints must be smaller than the number of design variables and thus ns∗nl >
nc. Therefore, in most cases the direct adjoint sensitivity analysis will be more

efficient from the computational point of view. Highly recommendable is the

use of adjoint sensitivity analysis in optimization problems where a large num-

ber of design variables is applicable. Chapter 7 explains that the number of

design variables is directly related to the kind of design parametrization cho-

sen. In general, in design parametrizations based on the finite element mesh,

a large number of design variables is considered. In these cases, especially for

large problems, the use of adjoint techniques of sensitivity analysis is of crucial

importance, in order to attain a reasonable computational cost.
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4.3.3 Semi-analytical design sensitivities

As it has been already explained, in both discrete adjoint and discrete direct sen-

sitivity approaches, the computation of the pseudo load vector (4.11) is required.

The computation of the pseudo load vector can be done either numerically or

analytically.

In the semi-analytical method the sensitivity analysis is formulated analyti-

cally, but the derivative of the pseudo load vector is computed numerically. For

this reason, the semi-analytical sensitivity analysis can be seen as an interme-

diate technique between the global finite difference scheme and the analytical

approach.

Many finite differences schemes have been used for numerical evaluation of the

pseudo load vector. In the case of forward finite differences, the pseudo load

vector is given by

F∗

i =
dF

dsi
− dK

dsi
· d

≈ 1

∆si

[
F(s1, ..., si + ∆si, ...snd) − F(s)+

(
K(s1, ..., si + ∆si, ...snd) − K(s)

)
· d
]

(4.16)

where ∆si is a small but finite increment in design variable si.

It should be noted that the global pseudo load vector is computed by assem-

bling the individual contributions of the elemental pseudo load vectors f ∗ei . The

contribution of element e to the pseudo load vector is given by

f∗ei ≈ 1

∆si

[
f e(s1, ..., si+∆si, ...snd)−f e(s)+

(
ke(s1, ..., si+∆si, ...snd)−ke(s)

)
de
]

(4.17)

Here, as well as in the global finite difference sensitivity analysis, a perturbed

design has to be considered. Nevertheless, in the case of the semi-analytical ap-

proach it is not necessary to perform the whole structural analysis for the per-

turbed design, since just the elemental stiffness matrices ke(s1, ..., si+∆si, ...snd)

and the elemental load vectors f e(s1, ..., si + ∆si, ...snd) are required.

It should be noted that in some cases the considered load cases are independent

of the design. In those cases, the term dF
dsi

vanishes.
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The advantages of this method are basically two (Haftka and Adelman, 1989).

First, the computational efficiency of the method is better than in the finite

difference method (Haftka and Adelman, 1989; Olhoff et al., 1993). Second,

the implementation on an existing code is only slightly more difficult than for

the finite difference method, but significantly easier than the implementation

of the analytical method. As it can be noticed, the semi-analytical approach

does not depend on the finite element formulation used. On the contrary, as

it will be shown in Section 4.3.4, the analytical approach does depend on the

finite element formulation used and, therefore, it has to be implemented for

each finite element of the code.

In the late 80’s, Barthelemy et al. (1988) and Barthelemy and Haftka (1988)

proved that severe accuracy problems may appear in sensitivities obtained by

the semi-analytical method and they may even increase with mesh refinement.

Soon, further studies about these accuracy problems were published (Cheng

et al., 1989; Pedersen et al., 1989; Fenyes and Lust, 1991; Olhoff and Rassmun-

sen, 1991). Three important conclusions of these studies can be outlined.

First, it was concluded that the computation of the pseudo load vector was the

key of these accuracy problems. Particularly, these errors are due to the nu-

merical differentiation of the elemental stiffness matrices (by finite differences),

which only occurs in the semi-analytical method.

Second, it was found that the slenderness of the structure and the mesh density

influence strongly the accuracy of semi-analytical sensitivities.

Third, Barthelemy et al. (1988) studied local error indicators and concluded

that the accuracy problems of the pseudo load vector were strongly related

to rigid body motions of elements. Cheng and Olhoff (1993) formulated an

accuracy indicator for the semi-analytical sensitivities.

Numerous attempts have been made to improve performance of semi-analytical

sensitivities. These attempts can be classified in two groups depending on the

way in which the performance of the method is improved.

1. In the first group, efforts on improving the accuracy of numerical differ-

entiation of stiffness matrix are considered.

It is well known that the forward finite differences scheme used in 4.16

has first order accuracy. More accurate schemes (eg. central differences)

were used to approximate the pseudo load vector (Barthelemy and Haftka

(1988), Cheng et al. (1989) and Olhoff and Rassmunsen (1991)). However,
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an important disadvantage in these cases is that more design perturbations

are needed, which implies a significant increment of computational effort.

An alternative approach to improve accuracy of semi-analytical sensitiv-

ities was proposed by Olhoff et al. (1993). The so-called exact semi-

analytical method compensates errors of the finite difference scheme by

introducing some correction factors, which can be precomputed in an ini-

tial step of sensitivity analysis. This approach can be viewed as a hybrid

of semi-analytical and analytical methods.

2. In the second group, efforts to improve accuracy of semi-analytical sen-

sitivities by improving the differentiation of rigid body modes are con-

sidered. As it was mentioned above, Barthelemy et al. (1988) stated the

influence of the elemental rigid body motions on the quality of the pseudo

load vector. In this second group of approaches, the element nodal dis-

placement vector is decomposed into rigid body part and a part leading

to deformations. Both parts are functions of the design variables.

Inspired by the work of Cheng and Olhoff (1991), Mlejnek (1992) used

an alternative finite differences scheme for the differentiation of the rigid

body part and attained an improvement with respect to the traditional

semi-analytical method.

Later, the refined semi-analytical (RSA) method was proposed by van

Keulen and de Boer (1998b). This approach is inspired by the work of

Cheng and Olhoff (1993) and Mlejnek (1992). Here, the rigid body modes

are exactly differentiated at element level. Improvements can be obtained

when relatively large rigid body rotations can be identified for individual

elements.

This method, initially formulated for linear structures, was extended to

linear buckling by van Keulen and de Boer (1998a) and to geometrically

non-linear structures by de Boer and van Keulen (2000) and Parente and

Vaz (2001).

Later, RSA was extended by de Boer et al. (2002) to the computation of

second order design sensitivities.

It should be remarked that the rigid body modes and their derivatives

do not depend on the finite formulation used, but just on the degrees of

freedom. Thus, RSA, as well as the simple semi-analytical method, are of

general applicability no matter what finite element formulation is used.
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4.3.4 Analytical design sensitivities

As explained in Section 4.3.3, the core of the semi-analytical method is the

numerical computation of the pseudo load F ∗

i (4.11) by finite differences. Con-

trary to the semi-analytical sensitivities, computation of pseudo load vector in

the present case is performed analytically. This implies that stiffness matrix

and load vector are derived analytically.

The main advantages of this method are its computational efficiency and re-

liability. Reliability and accuracy of sensitivities are very important in the

optimization process. As it was already mentioned, sensitivity coefficients are

used by the optimization algorithms as a prediction of the structural response

of the modified system design. Therefore, accurate sensitivities are a determi-

nant factor to ensure convergence of optimization algorithm and to increase the

convergence rate.

As in the semi-analytical approach, the global pseudo load vector is computed

by assembling the individual contributions of elemental pseudo load vectors.

The elemental pseudo load vector is given by

f∗e =
dfe

ds
− dke

ds
· de (4.18)

In general, the stiffness matrix of an structural finite element is given by (Hughes,

2000)

ke =

∫

Ωe

BT · D · BdΩe (4.19)

where Ωe is the element domain, B is the strain-displacement matrix and D is

the material matrix.

The analytical calculation of the derivative of the element stiffness matrix is

obtained by applying the chain rule to the integral expression (4.19). Thus,

ke, si =

∫

Ωe

BT ,si
·D · BdΩe +

∫

Ωe

BT · D,si
·BdΩe+

∫

Ωe

BT · D ·B,si
dΩe +

∫

Ωe

BT · D · B(dΩe),si

(4.20)

It should be noted that, in general, the domain of integration of the stiffness

matrix in shape optimization, also depends on the design variables. This intro-

duces additional difficulties compared to sizing.
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The computation of the derivative of the elemental load vector is done in an

analogous manner to (4.20). Depending on the kind of load, it is either design

dependent or not design dependent. Its design dependency may be due to the

fact that its magnitude, domain in which it is applied, or direction in which it

acts, is design dependent.

A drawback of this approach is that formulation and implementation are more

difficult than for the semi-analytical method, and depend on the particular type

of finite element used. The analytical differentiation of the stiffness matrix is

more complex for more complex finite elements. However, once this differenti-

ation is done and implemented in the code, the efficiency and reliability of the

computed sensitivities are a clear advantage with respect to those computed by

the semi-analytical method or global finite difference method.

Due to the complex formulation of this approach, the use of analytical sensitivi-

ties was historically restricted to size optimization problems. However, the need

of more accurate sensitivity coefficients in order to enhance convergence of op-

timization methods legitimates the use of this approach for shape optimization

problems (Schmit, 1986).

In Chapter 5, the analytical design sensitivity for the shell element studied in

Chapter 3 is presented.

4.4 Variational sensitivity approach

The origin of variational sensitivity approach can be found in different contri-

butions of Haug, Zolesio, Céa and Rousselet among other authors, presented in

Haug and Céa (1981). The principal difference with respect to discrete sensi-

tivity analysis is that in the variational approach, governing equations of the

system are derived in its continuum form. This technique allows to compute

derivatives of the structural response analytically. After this, and depending on

the solution technique used, discretization may be done.

During the eighties and at the beginning of the nineties, a great effort was

done in developing the variational sensitivity analysis both for sizing and shape

optimization problems.

Dems and Mróz (1983) studied the variational sensitivity approach with the

adjoint technique applied to structural optimization, using material parameters

as design variables. They also extended this study to shape optimization in

Dems and Mróz (1984).
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Haug et al. (1986) presented a study of the different sensitivity analysis ap-

proaches using variational calculus and analyzed their mathematical basis. Later,

Phelan and Haber (1989) introduced the concept of domain parametrization in

variational sensitivity analysis of shape optimization problems. Application of

variational sensitivity analysis to some prototype problems of shape optimal de-

sign was presented by Haug et al. (1984) and Barthelemy et al. (1989), among

others.

The main motivation behind the variational sensitivity analysis is its easy im-

plementation. As it will be explained, a deep knowledge of the code of the

structural analysis program is not required. In Section 4.2, it was shown that

also the global finite differences approach has this advantage. In that case, ac-

curacy of this method strongly depends on the increment step chosen. However,

the variational sensitivity analysis is best suited because no step size is required.

In the present section, sensitivity analysis for sizing problems and shape opti-

mization problems is briefly described. As in the discrete sensitivity approach,

the case of sizing is significantly easier than the case of shape optimization.

The reason is that in shape optimization the domain of integration is design

dependent and this fact has to be taken into account in differentiation. Finally,

a comparison between discrete and variational sensitivity analysis is presented.

4.4.1 Variational sensitivity analysis for sizing

As in the case of discrete sensitivity analysis, direct and adjoint procedures

can be distinguished in variational sensitivity analysis. In the direct approach,

the sensitivity of structural response is computed by means of displacement

sensitivities. In adjoint approach, sensitivity is computed through an adjoint

problem.

4.4.1.1 Direct Method

For the computation of the sensitivity coefficients by the direct method, equa-

tions governing the structural response have to be differentiated with respect to

the design variables. This method is analogous to the discrete direct sensitivity

method described in Section 4.3.1, but in the present case the equations are

differentiated before discretization.

In Chapter 2, the basic governing equations for linear mechanical analysis were

presented. The equilibrium equation written in terms of the Principle of Virtual
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Work reads ∫

Ω

σ · δεdΩ =

∫

Ω

f · δudΩ (4.21)

the constitutive equation,

σ = D · (ε − ε
0) (4.22)

and the kinematic equation,

ε = L(u) (4.23)

where L is a linear differential operator.

Derivatives of (4.21), (4.22) and (4.23) with respect to design variable si are

∫

Ω

σ,si
·δεdΩ =

∫

Ω

f ,si
·δudΩ (4.24)

σ,si
= D · ε,si

+D,si
·(ε − ε

0) (4.25)

ε,si
= L(u,si) (4.26)

Comparing equations (4.21), (4.22) and (4.23) with (4.24), (4.25) and (4.26),

it can be observed that sensitivities u,si
, ε and σ can be interpreted as the

displacement field, strain field and stress field appearing in the original struc-

ture under a pseudo load f ∗. This pseudo load is determined by the pseudo

initial strain ε
∗ and the derivative of the original load field with respect to the

design variables, that is f ,si
. The expression for the pseudo initial strain can be

obtained rearranging terms in equation (4.25), that is,

σ,si
= D · ε,si

+D,si
·(ε − ε

0)

= D ·
(
ε,si

+D−1 ·D,si
·(ε − ε

0)
)

= D · (ε,si
−ε

∗)
(4.27)

where

ε
∗ = −D−1 ·D,si

(ε − ε
0) (4.28)

This analogy allows an easy computation of the sensitivities. The actual loading

of the system is replaced by the pseudo load case and the structural analysis is

again performed. As a result, the response sensitivity instead of the response

of the system is obtained.
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4.4.1.2 Adjoint method

In the variational sensitivity analysis, the adjoint method results more conve-

nient than the direct method when sensitivity of a function is not required over

the entire domain but only at certain points (Haftka and Gürdal, 1999). This

situation is frequent in structural optimization, since often displacement and

stress constraints have to be satisfied at a certain critical point.

In this approach, a functional in integral form of the measure whose sensitivities

are required is considered. The most common cases in structural optimization

are displacement functionals and stress functionals. Sensitivities are obtained

through differentiation of this functional with respect to design variables. In

the differentiation of the functional, derivatives of displacement field or stress

field appear. The computation of these derivatives is circumvented by the defi-

nition of an adjoint problem. This adjoint problem or adjoint structure can be

interpreted as the original structure under an artificial load, which depends on

the original system and the considered functional.

An excellent exposition of this method is given by Haug et al. (1986). They also

present a discussion about differentiability requirements on design derivatives.

(Haftka and Gürdal, 1999) study the approach for the cases of displacement

functional and stress functional.

It can be observed that both in the direct and adjoint method, a pseudo load

case is considered. However, in general the implementation of direct method is

easier than for the adjoint method. In the adjoint approach, the computation

of sensitivities of a stress field becomes especially complex.

4.4.2 Variational shape sensitivity

As in the case of discrete sensitivity analysis, variational sensitivity analysis for

shape optimization is significantly more difficult than for sizing. The reason of

this increasing complexity is that in shape optimization the integration domain

is design dependent and this has to be taken into account in the derivatives.

Two general approaches of variational shape sensitivity can be distinguished:

the material derivative approach and the domain parametrization approach.

Following, a brief introduction to both approaches is given. A detailed presen-

tation of the formulations can be found in the corresponding references.
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4.4.2.1 Material derivative approach

This approach was first presented by Zolesio (1981) and Choi and Haug (1983).

In the eighties, further development was made and numerous applications have

been reported (Haug et al., 1986; Arora et al., 1992).

In this approach, the variation of the field variables is obtained using the mate-

rial derivative concept of continuum mechanics. The use of the concept of ma-

terial derivative is based on the identification of the iterative process of search

for the optimum shape as a time dependent deformation of a system and the

consequent identification of the design variable with a time variable. For sim-

plicity, only one design variable s is considered. In Figure 4.1, the movement

of a material point in the optimization process is sketched. Initially, that is at

s = 0, the position of the point is x and when the design variable takes a value

of s the new position is xs. The linearized relation between xs and x is given

by

xs = x + sv (4.29)

where

v = xs,s

∣∣∣
s=0

(4.30)

is the design velocity field which represents the change of the shape variation

field with respect to a shape design variable.

Let us consider a function f(x, s), where x is a position vector and si is a

certain design variable. The material derivative of f(x, s) with respect to design

variable s is given by

Df = f,s +∇xf · xs,s (4.31)

where f,s is the partial derivative of f with respect to s.

This material derivative concept applied to design changes can be extended to

vector fields (e.g. displacements), tensors (e.g. strain tensor or stress tensor),

volume integrals and surface integrals (Arora et al., 1992). Through these,

the sensitivity of any response functional ψ can be computed. As in the case

of variational sensitivity for sizing, a distinction between direct and adjoint

methods is made. The procedure for variational shape sensitivity coincides

with that of sizing, except that now the material derivative concept is used,

instead of the local derivative. As in the case of sizing, the computation of a
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pseudo load vector is also required. Detailed explanation of the method is given

by Haug et al. (1986) and Arora (1993).

The material derivative approach can be presented in different forms, depending

on the expression used for evaluation of the pseudo load. This expression can

be in form of volume integrals or boundary integrals (Haug et al., 1986). The

formulation of the pseudo load vector, using boundary integrals, implies a lower

computational cost but yields less accurate results (Adelman and Haftka, 1986).

A unification of these forms is presented by Arora (1993).

Figure 4.1: Sketch of mappings established in material derivative approach and

domain parametrization approach

4.4.2.2 Domain parametrization approach

The domain parametrization approach (also called control volume approach)

was introduced by Phelan and Haber (1989), in order to overcome the diffi-

culties related to domain variation. Here, the domain is parametrized, and

all integrals are transformed to a fixed reference domain before differentiation.

Then, variation of these integrals is performed without the need to account

domain variation.

In Figure 4.1, the main differences between material approach and domain

parametrization approach can be observed. In the material approach, mapping

was established between actual configuration (s = 0) and a next configuration

(s 6= 0), which is obtained as a result of a ‘movement’ of the actual configura-

tion. In the domain parametrization approach, mapping is established between

actual configuration and a reference domain. As design changes, this mapping
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between actual domain and reference domain changes but the reference domain

itself remains constant.

The idea behind this approach is analogous to the isoparametric finite elements

concept (Arora et al., 1992). In the isoparametric method of finite element

analysis, all elements of the same type are mapped into a fixed regular refer-

ence domain, where numerical integration is performed. In fact, when using

isoparametric finite elements combined with this approach, the parent element

is taken as reference domain.

Arora et al. (1992) showed the theoretical equivalence between material deriva-

tive and the domain parametrization approaches. Moreover, they showed that

discretized forms of both approaches can also be implemented in the same way.

A detailed exposition of both approaches is given by Haftka and Gürdal (1999).

4.4.3 Comparison between discrete and variational

sensitivity analysis

Yang and Botkin (1986) presented a comparison between discrete and varia-

tional sensitivity analysis. In this context, the main advantage of the variational

technique is its general application to any solution technique, i.e. finite element

method or boundary method, for instance. In the particular case of the finite el-

ement method, the variational sensitivity analysis has the advantage of its easy

implementation in a general purpose finite element program. It may seem that

the variational approach is more accurate than the discrete approach because it

does not directly depend on the finite element method and, as a consequence, it

does not, in principle, involve numerical errors. However, as Yang and Botkin

(1986) show, the accuracy of the variational sensitivities is also affected by the

finite element solution. The reason is that the analytical expression obtained

for the sensitivities depends on the boundary solution quantities obtained from

the structural analysis. The main disadvantage is that the accurate evaluation

of these quantities, for example stresses, on the boundaries is often difficult.

A disadvantage of the variational sensitivity analysis is the complexity of the

mathematical proof associated with it. Differentiability of the structural re-

sponse with respect to design variables should be studied in each case (Haug

et al., 1986).

Arora et al. (1992) reached a conclusion that the discretized form of variational

sensitivity analysis and expressions given by the discrete sensitivity approach
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are similar. For simple examples, and when discretization for the structural and

sensitivity analysis are consistent, results obtained by the variational method

coincide with those obtained by the discrete approach.
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Chapter 5

Analytical Sensitivity of a Shell

Finite Element

5.1 Introduction

In Chapter 4, a review of the different sensitivity analysis methods was pre-

sented. The need for more accurate and reliable sensitivity coefficients legiti-

mates the use of the analytical approach. This approach involves higher math-

ematical complexity but is more efficient and has lower computational costs. In

addition, for optimization problems where a large number of design variables

are considered the suitability of adjoint sensitivity techniques is shown.

As explained in Section 4.3, analytical sensitivity analysis depends on the finite

element formulation at hand. The elemental pseudo load vector is given by

f∗e =
df e

ds
− dke

ds
· de (5.1)

Therefore, analytical differentiation of the elemental stiffness matrix and ele-

mental load vector are required.

Historically, this approach was mostly used in sizing problems. In these opti-

mization problems, differentiation of elemental stiffness matrix is relatively easy.

This is, for instance, the case of optimizing the sectional area of truss elements.

In this case, design variables are factors in the elemental stiffness matrices.

However, applications of analytical sensitivity analysis to shape optimization

can also be found in the literature. Wang et al. (1985) applied the discrete
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analytical differentiation technique of sensitivity analysis to isoparametric brick

elements. Brockman (1987) computed through this technique sensitivities of

static displacements and stresses and sensitivities of natural vibration frequen-

cies for two- and three-dimensional isoparametric finite elements.

Later, Brockman and Lung (1988) adapted these techniques to the sensitivity

analysis for plate and flat shell finite elements. Design parameters of interest

included material properties, thickness and geometrical variables which govern

size and shape of the structure. Again, both displacement and stress sensitivities

were considered for the static case and frequency and mode sensitivities for

the dynamic case. Brockman and Lung (1988) showed that accuracy of the

computed sensitivities is comparable in quality to that of the basic solution of

the static analysis.

Kimmich (1990) presented a detailed formulation of sensitivity analysis for an

isoparametric degenerated shell element. He calculated the derivative of ele-

mental stiffness matrix and of different load vectors and used them to compute

sensitivities of objective functions and stress constraints. Several numerical

examples were presented.

Kimmich (1990) and Yamazaki and Vanderplaats (1993) extended the analytical

differentiation technique to isoparametric curved shell elements. The improve-

ment with respect to the work of Brockman and Lung (1988) is that now they

considered the normal vector to the curved shell surface in the definition of

the shell geometry. This introduced additional difficulties in differentiation of

strain-displacement matrix. In particular, Yamazaki and Vanderplaats (1993)

considered an eight-node isoparametric shell element based on Mindlin plate

theory and derived analytically the element stiffness, geometric stiffness and

mass matrices. Shell thickness and nodal coordinates were considered as design

variables. Examples were given for a plate and a cylindrical shell for sensitivities

of displacement, stress, buckling and natural frequency.

In this chapter, the analytical sensitivity technique is applied to the shell fi-

nite element studied in Chapter 3. First, analytical differentiation of elemental

stiffness matrix of the displacement element is shown in detail. Attention is

focused on differentiation of the different coordinate systems considered in the

formulation. In Section 5.3, differentiation of the stiffness matrix for the DSG

shell element is presented. It will be shown that the only difference with respect

to the displacement element is the computation of the derivatives of the mod-

ified strain components. Differentiation of load vector is performed in Section

5.4. Some remarks about simplifications in the computation of derivatives in
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sizing with respect to shape optimization are given in Section 5.5. Last, adjoint

sensitivity analysis for the particular case of strain energy minimization is con-

sidered. It will be shown that in this case a simplified expression to compute

derivatives of the objective function can be obtained.

In order to avoid clutter, only one design variable s is considered.

5.2 Analytical sensitivity analysis for a shell

displacement element

In Chapter 3, a shell element with Reissner-Mindlin kinematics was studied in

detail. In order to use this element for shape optimization of shells, its analytical

sensitivities are computed. Here, the analytical procedure to obtain derivatives

of this displacement shell element is explained. Throughout the section, a con-

tinuous reference to matrices and vectors involved in the computation of the

element stiffness matrix is made.

Calculation of the element stiffness matrix derivative is obtained by applying

the chain rule to integral expression (3.70). Thus,

ke,s =

∫ 1

−1

∫ 1

−1

∫ 1

−1

B̄T
,s(ξ, η, ζ) · D̄ · B̄(ξ, η, ζ)Jdξdηdζ+

∫ 1

−1

∫ 1

−1

∫ 1

−1

B̄T (ξ, η, ζ) · D̄,s · B̄(ξ, η, ζ)Jdξdηdζ+

∫ 1

−1

∫ 1

−1

∫ 1

−1

B̄T (ξ, η, ζ) · D̄ · B̄,s(ξ, η, ζ)Jdξdηdζ+

∫ 1

−1

∫ 1

−1

∫ 1

−1

B̄T (ξ, η, ζ) · D̄ · B̄(ξ, η, ζ)J,sdξdηdζ

(5.2)

Since strains and stresses at a point are expressed in a local Cartesian coordinate

system, the material matrix D̄ is constant (see Section 3.8) and, therefore, its

derivative is the zero matrix, assuming s is not a material parameter.

As it can be observed in (5.2), the derivatives of the strain-displacement matrix

B̄ and of the Jacobian determinant with respect to the design variables are

needed. The calculation of these derivatives is explained next.
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5.2.1 Differentiation of the strain-displacement matrix

The strain-displacement matrix B̄ relates the strain components in the local

Cartesian system with the nodal degrees of freedom. That is,

ε̄ = B̄ (ξ, η, ζ) · de (5.3)

In Section 3.7, two different ways to compute the strain-displacement matrix are

presented. The difference between them lies in the coordinate system in which

strain components are first computed. In the first method, strain components

are directly computed in the local Cartesian system. In the second one, covari-

ant strain components in the curvilinear system are first computed and then

transformed into the local Cartesian basis. Obviously, the result obtained is the

same in both cases. However, for practical reasons when considering modified

strains in the DSG method, the second procedure is preferred.

In the following, the differentiation of the strain-displacement operator for both

approaches is explained.

5.2.1.1 Strains in local Cartesian system

As it was explained in Section 3.7.1, the strain-displacement operator B̄, can be

obtained byrearranging the components of H̄ defined in (3.39), which contains

the local Cartesian derivatives of the local Cartesian displacements. Analo-

gously, B̄,s can be obtained rearranging the components of H̄,s. In order to

calculate this last matrix, the product rule must be applied to (3.45). Hence,

H̄,s =Θ,Ts ·J−1 · H · Θ + ΘT · (J−1),s ·H · Θ
+ ΘT · J−1 ·H,s ·Θ + ΘT · J−1 · H ·Θ,s

(5.4)

The matrix H contains the derivatives of global displacements with respect to

curvilinear coordinates and it is approximated by

H =




∂
∂ξ
∂
∂η
∂
∂ζ



∑

a

dTa · Na(ξ, η, ζ)
T (5.5)

Therefore, the derivative of H with respect to the design variables, is given by

H,s =




∂
∂ξ
∂
∂η
∂
∂ζ



∑

a

dTa · NT
a ,s (5.6)
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Differentiation of Θ and J−1 with respect to design variables is explained in

Sections 5.2.2 and 5.2.3.

5.2.1.2 Strains in curvilinear coordinate system

In this case, the strain tensor is first computed in the contravariant basis of

the local curvilinear system and then a set of transformations is performed in

order to obtain it in the local Cartesian basis. Once components of the strain

tensor in the local Cartesian basis are obtained, they can be reordered into the

strain vector (3.37), and thus B̄ can be obtained. In Section 3.7.2, both the

computation of the covariant strain components in the curvilinear basis and a

detailed explanation of the set of transformations required, are provided.

In an analogous way, B̄ is obtained by rearranging derivatives of strain compo-

nents in the local Cartesian basis. These derivatives are obtained differentiating

expression (3.56) with respect to design variable s. Thus, applying the product

rule, we get

{ε̄mn},s = ΘT ,s ·JT · G−T · {ε̂ij} · G−1 · J · Θ
+ ΘT · JT ,s ·G−T · {ε̂ij} · G−1 · J · Θ
+ ΘT · JT · G−T ,s ·{ε̂ij} · G−1 · J · Θ
+ ΘT · JT · G−T · {ε̂ij},s ·G−1 · J · Θ
+ ΘT · JT · G−T · {ε̂ij} · G−1,s ·J · Θ
+ ΘT · JT · G−T · {ε̂ij} · G−1 · J,s ·Θ
+ ΘT · JT · G−T · {ε̂ij} · G−1 · J · Θ,s

(5.7)

It can be observed that in this expression derivatives of Θ, J, G−1 and {ε̂ij}
appear. Derivatives of the covariant components of the strain tensor in the

curvilinear basis are obtained by differentiation of expression (3.51). Thus,

ε̂ij,s =
1

2

(
(uk,i ),s ek · gj + uk,i ek · gj,s +(uk,j ),s ek · gi + uk,j ek · gi,s

)
(5.8)

In the above expression, derivatives of the covariant curvilinear base vectors and

of the displacements with respect to design variables are involved. Considering

that the i-th row of the Jacobian matrix is the vector gi (see equation (3.27)),

gi,s will be the i-th row of the derivative of the Jacobian matrix. Computation
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of J,s is explained in Section 5.2.3. Derivatives of displacement vector (3.18)

with respect to design variable s are given by

u,s =
∑

a

Na,s ·da (5.9)

where

Na,s =




0 0 0 1
2
ζNa(ta,sA11

a + taA11
a,s ) −1

2
ζNa(ta,sA21

a + taA21
a,s )

0 0 0 1
2
ζNa(ta,sA12

a + taA12
a,s ) −1

2
ζNa(ta,sA22

a + taA22
a,s )

0 0 0 1
2
ζNa(ta,sA13

a + taA13
a,s ) −1

2
ζNa(ta,sA23

a + taA23
a,s )




(5.10)

As the considered design variables may be nodal coordinates or the thickness

of the shell, these derivatives can be computed analytically. Computation of

derivatives of the director base vectors is explained in Section 5.2.6.

In the following sections, the computation of derivatives of matrices Θ, J and

G−1, as well as the differentiation of the determinant of the Jacobian matrix

are explained.

5.2.2 Differentiation of Θ

The procedure to obtain the matrix Θ, which is the transformation matrix

between the global and local Cartesian coordinate systems, was explained in

detail in Section 3.6. Considering the expression (3.34), the derivative of the

matrix Θ with respect to the design variable s is given by

Θ,s =



x,x̄s x,ȳs x,z̄s
y,x̄s y,ȳs y,z̄s
z,x̄s z,ȳs z,z̄s


 =



ē11,s ē12,s ē13,s
ē21,s ē22,s ē23,s
ē31,s ē32,s ē33,s


 =

{
ē1,s ē2,s ē3,s

}
(5.11)

where ēji ,s is the derivative with respect to s of the j-component of the vector ēi.

The components of Θ,s are calculated differentiating expressions (3.30), (3.31),

and (3.33). In expression (3.30), it can be observed that ē3 is a normalized

vector. Differentiation of a normalized vector is explained in Appendix A.2.

According to this formula, we obtain

ē3,s =
1∣∣∣

∑
aNa(ξ, η)A3a

∣∣∣
2

[(∑

a

Na(ξ, η)A3a,s

)(∣∣∣
∑

a

Na(ξ, η)A3a

∣∣∣
)

−
(∑

a

Na(ξ, η)A3a

)(∣∣∣
∑

a

Na(ξ, η)A3a

∣∣∣
)
,s

] (5.12)
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The expression for differentiation of the magnitude of a vector is given in Ap-

pendix A.3. The calculation procedure to obtain the derivative of director vector

A3a is explained in detail in Section 5.2.6. Note that Na(ξ, η) do not depend

on s, since they are the usual two-dimensional shape functions (see Appendix

A.1). They should not be confused with Na(ξ, η), which is the shape function

matrix defined in (3.19).

In a similar manner, derivatives of ē1 and ē2 are given by

ē1,s =
(l × ē3),s

∣∣l × ē3

∣∣− (l × ē3)
∣∣l × ē3

∣∣
,s∣∣l × ē3

∣∣2 (5.13)

ē2,s =
(ē3 × ē1) ,s

∣∣ē3 × ē1

∣∣− (ē3 × ē1)
∣∣ē3 × ē1

∣∣
,s∣∣ē3 × ē1

∣∣2 (5.14)

Differentiation of a vector resulting from a cross product is indicated in Ap-

pendix A.4.

5.2.3 Differentiation of J and J−1

In case strains are obtained directly in the local Cartesian system, J−1,s is

required for computation of B̄,s (see (5.4)). In case strain components are

computed first in the curvilinear system and then transformed into the local

Cartesian basis, J,s is required instead (see (5.7)). Here, computation of J,s
and (J−1),s are presented.

Considering the definition of the Jacobian matrix given in (3.21), its derivative

with respect to design variable s reads

J,s =



x,ξs y,ξs z,ξs
x,ηs y,ηs z,ηs
x,ζs y,ζs z,ζs


 =




x,Tξs
x,Tηs
x,Tζs


 (5.15)

The components of this matrix are obtained differentiating the expressions

(3.22), (3.23) and (3.24) with respect to s. Thus,

x,ξs =
∑

a

Na,ξ

(
xa,s +

1

2
ζta,sA3a +

1

2
ζtaA3a,s

)
(5.16)
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x,ηs =
∑

a

Na,η

(
xa,s +

1

2
ζta,sA3a +

1

2
ζtaA3a,s

)
(5.17)

x,ζs =
∑

a

Na,ζ
1

2
(ta,s A3a + taA3a,s ) (5.18)

In these expressions, derivatives of the nodal position vector with respect to

design variable s are involved. These derivatives will be different from zero

when the position of node a varies in the modified design. As in the case

of calculation of Θ,s, here, derivatives of the director coordinate base vectors

are also required. The procedure to calculate these derivatives is presented in

Section 5.2.6.

The derivative of the inverse Jacobian matrix is given by (Wang et al., 1985)

J−1,s = −J−1 · J,s ·J−1 (5.19)

This expression can be obtained by differentiating

JJ−1 = I (5.20)

with respect to design variable s. By doing this, it can be obtained

J,s J
−1 + JJ,−1

s = 0 (5.21)

which is equivalent to (5.19).

5.2.4 Derivative of G−1

Computation of derivatives of contravariant coefficient matrix G−1 is done anal-

ogously as the derivative of the inverse Jacobian matrix (5.19). Therefore,

G−1
,s = −G−1 · G,s · G−1 (5.22)

Derivatives of covariant coefficient matrix are computed differentiating expres-

sion (3.29). That is,

G,s = {gik},s = {gi,s ·gj + gi · gj,s } (5.23)
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Once the derivative of the Jacobian matrix is computed according to (5.15), the

derivatives of the covariant base vectors required for the computation of (5.23)

are known, since

J,s =



x,ξs y,ξs z,ξs
x,ηs y,ηs z,ηs
x,ζs y,ζs z,ζs


 =





gT1 ,s
gT2 ,s
gT3 ,s



 (5.24)

Therefore, G,s can be easily obtained.

5.2.5 Derivative of the determinant of the Jacobian ma-

trix

As it can be observed in (5.2), in order to calculate the derivative of the elemen-

tal stiffness matrix, the derivative of the determinant of the Jacobian matrix is

required. This is given by (Wang et al., 1985; Navarrina, 1987)

|J|,s = |J|tr
(
J−1 · J,s

)
(5.25)

Note that J,s is already available, since it is required for the computation of

B,s.

5.2.6 Derivative of director coordinate systems

In Section 3.4, the procedure to obtain the director coordinate system was

explained in detail. Differentiation of A1P , A2P and A3P is obtained applying

recursively the product rule to the corresponding formulae.

It is important to remember that director vector A3P is obtained as the average

of the unit normal vectors to elements sharing node P . Therefore, the deriva-

tive of the director vector must take into account derivatives of these single

contributions. Thus,

A3P,s =

(
nae∑
k=1

A3ek

P ,s

) ∣∣∣∣
nae∑
k=1

A3ek

P

∣∣∣∣−
(
nae∑
k=1

A3ek

P

) ∣∣∣∣
nae∑
k=1

A3ek

P

∣∣∣∣
,s∣∣∣∣

nae∑
k=1

A3ek

P

∣∣∣∣
2 (5.26)
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where
∣∣∣∣∣
nae∑

k=1

A3ek

P

∣∣∣∣∣
,s

=

nae∑
k=1

A3ek

P A3ek

P ,s
∣∣∣∣
nel∑
k=1

A3ek

P

∣∣∣∣
(5.27)

It should be remembered that nae is the number of adjacent elements to node

P , and A3ek

P is the normal vector to element ek at node P .

The proof of the expression which gives the derivative of the norm of a vector,

can be found in Appendix A.3. The derivative of the unit normal vector to an

element ek at node P of natural coordinates ξ = ξa, η = ηa and ζ = 0 is given

by

A3ek

P,s =
(x,ξ × x,η),s |x,ξ × x,η| − (x,ξ × x,η) |x,ξ × x,η|,s

|x,ξ × x,η|2
∣∣∣∣ξ=ξa
η=ηa

ζ=0

(5.28)

where, for each element ek with nen nodes,

x,ξs

∣∣∣∣
ζ=0

=

nen∑

b=1

Nb,ξ xb,s (5.29)

x,ηs

∣∣∣∣
ζ=0

=

nen∑

b=1

Nb,η xb,s (5.30)

The derivative of a cross product and the derivative of the length of a vector

are given in Appendices A.4 and A.3, respectively.

The fact that all contributions of adjacent elements have to be taken into ac-

count in the computation of the derivative of the director vector at a node, will

have important consequences in sensitivity analysis. A structural optimization

problem on a patch of bilinear shell elements, as shown in Figure 5.1.a, whit

the z-coordinate of the central node considered as design variable, is analyzed.

A positive increment of the design variable is considered, as illustrated in Figure

5.1.b, where not only the position of central node P changes out of the plane of

the adjacent elements, but also the direction of the director vector at that node

may vary. The element normals at P in the modified design have been denoted

by A3ek∗

P and the director vector at this node by A3∗

P .

As a direct consequence, the geometry of the elements sharing this central node

P will change. Apparently, this has no influence on the rest of elements of
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the patch which do not share this central node. However, the change in the

position of the central node makes the normal vectors at the other nodes of

the adjacent elements change. Since these normal vectors are a contribution

in the calculation of the averaged director vector at those nodes, the director

vector of all nodes of the elements sharing the central node P (in the Figure

ek, k = 1, ...4) may vary. As it was explained in Section 3.3, the director vectors,

together with the nodal coordinates and nodal thicknesses, define the geometry

of the element. Therefore, geometry of elements sharing these nodes will also

be modified in the optimization process, even though they are not sharing the

central node.

If at certain node P the director vector changes, then the other two vectors

completing the director vector coordinate system may also vary. The derivative

of vector A1P is given by

A1P,s =
(l × A3P ),s

∣∣∣l × A3P

∣∣∣− (l × A3P )
∣∣∣l × A3P

∣∣∣
,s∣∣∣l × A3P

∣∣∣
2 (5.31)

Lastly, the derivative of A2P is

A2P,s =
(A3P × A1P ),s

∣∣∣A3P × A1P

∣∣∣− (A3P × A1P )
∣∣∣A3P × A1P

∣∣∣
,s∣∣∣A3P × A1P

∣∣∣
2

(5.32)

It should be remarked that, although the vectors A1P , A2P and A3P are

normalized, the magnitude of their derivatives will in general be different from

one.

5.3 Analytical sensitivity analysis for the DSG

shell element

In Section 3.12, the DSG concept was applied to a Reissner Mindlin shell el-

ement. The main idea of the method is the computation of modified strain

components free of parasitic parts. These distributions are obtained by inter-

polation of the correspondent strain gaps.
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Figure 5.1: Patch of bilinear shell elements in a shape optimization problem:

(a) initial configuration; (b) and (c) modified configuration (denoted with ∗)
considering an increment ∆s in the z-coordinate of the central node P .

86



It was shown that the only modification with respect to standard displacement

formulation lies on the strain-displacement operator. As a consequence, sensi-

tivity analysis for the DSG shell element is done in a similar manner as for the

displacement element. The only difference consists of the differentiation of the

modified strains computed by the DSG method.

The DSG modified strains are given in equations (3.79) and (3.80). Differenti-

ation of these strains with respect to design variable s is given by

εDSG
ξζ ,s =

(∂∆wξζ
∂ξ

)
,s

=
∑

a

Na,ξ
(
∆waξζ

)
,s (5.33)

εDSG
ηζ ,s =

(∂∆wηζ
∂η

)
,s

=
∑

a

Na,η
(
∆waηζ

)
,s (5.34)

Note that shape functions do not depend on design variables. Derivatives of

discrete strain gaps with respect to design variable s are obtained differentiating

the corresponding expressions given in Section 3.12. That is,

∆ŵaξζ,s =

∫ ξi

ξ=−1

εξζ,s dξ

∣∣∣∣η=ηa

ζ=0

(5.35)

∆ŵaηζ ,s =

∫ ηa

η=−1

εηζ ,s dη

∣∣∣∣ξ=ξa
ζ=0

(5.36)

In Section 3.12, it was shown that the discrete shear gap of a node lying on the

reference edge associated to that gap was zero. The reason was that the upper

and lower limits of the integral domain coincide and thus its result vanishes.

In the optimization process, nodes may change their global position, but their

curvilinear coordinates in the parent domain remain constant. Consequently,

derivatives of a discrete shear gap of a node lying on the related reference edge

vanishes too.

The procedure to obtain derivatives of the strain components ε̂ij with respect

to design variables is already explained in Section 5.2.1.2 (see equation (5.8)),

because their computation is also required for sensitivity analysis of standard

displacement shell elements. These derivatives can be computed analytically.

Moreover, integration in (5.35) and (5.36) can be also performed analytically.

Consequently, the computation of analytical sensitivities for the DSG finite ele-

ment formulation does not increase computational cost with respect to standard

displacement formulation. This is a decisive aspect for the efficiency of DSG

method and for its suitability for optimization problems.
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5.4 Analytical differentiation of elemental load

vector

In equation (5.1) it can be seen that derivatives of the load vector with respect

to design variables are also required in sensitivity analysis. These derivatives

will vanish, when a modification of the structural design does not affect the

value of the external load or its distribution on the structure, as in the case of

a single load at a fixed point in any direction of the global coordinate system.

Load vectors are the same for the displacement formulation and for the DSG

method. The reason for this is that the difference between both approaches lays

in the definition of the element strains, but in both cases the geometrical inter-

polation remains the same. Derivatives of elemental load vector with respect to

design variables are also the same for both formulations.

The load self-weight explained in Section 3.10 is a design-dependent load. The

load magnitude may be changed because the volume of the structure may vary.

In order to compute the sensitivity of the load vector, (3.72) has to be differ-

entiated with respect to the design variable si. The elemental force vector of

consistent nodal forces is given by

f e =

∫∫∫

Ve

∑

a

NT
a (ξ, η, ζ) · b dV (5.37)

where Na is given by (3.19) and bT = {bx, by, bz} is the vector of volume forces

expressed in the global Cartesian system. Thus, its derivative with respect to

design variable s is given by

f e =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∑

a

(
NT
a ,s ·b J + NT

a · b,s J + NT
a · b J,s

)
dξdηdζ (5.38)

where Na,s is computed according to (5.10) and the derivative of the deter-

minant of the Jacobian matrix with respect to the design variable is given by

(5.25).

5.5 Some remarks about sizing

At this point some remarks about sizing and shape optimization should be made.

In this chapter nodal coordinates, director vectors and nodal thickness have been
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considered to be a function of s. This would be the most general case of shape

optimization. However, in the case of sizing optimization nodal thickness is

the typical design variable, while nodal positions and director vectors remain

unchanged throughout the optimization process. Therefore, in the particular

case of sizing optimization

xP ,s = 0 and A3P ,s = 0 (5.39)

A brief review of the different derivatives explained until here, shows the impor-

tant consequences derived from this fact. The computation of the derivatives

of both element stiffness matrix and load vector are significantly simplified.

The first immediate consequence of (5.39) is that derivatives of director vector

system will also vanish. Therefore, the derivative of the shape function matrix

Na and of the Jacobian matrix, given in (5.10) and (5.15) respectively, will

become simpler. At first, it may appear strange that the derivative of the Jaco-

bian matrix is not vanishing for sizing problems. Generally, a shell element is

two-dimensional and by changing its thickness, we are changing a property, but

not its geometry. However, one may remember that in this case a 3D formula-

tion of a shell element is considered. Therefore, thickness is not just a property,

but defines actually the element shape. For this reason, the derivative of the

Jacobian matrix will, in general, not vanish, if thickness at any element node

is varying, but it will be much simpler than for the case of shape optimization.

As a consequence, the computation of J−1,s, G,s and J,s (see (5.19), (5.22) and

(5.25)) is also simplyfied.

In the case of Θ, the transformation matrix between global and local Cartesian

systems, its derivative will vanish. The reason is that, as derivatives of director

vector coordinate systems at nodes vanish, so do derivatives of local Cartesian

systems. Therefore, the relation between global and local Cartesian system

remains the same, because none of them changes in the optimization process.

Derivatives of external loads depend on the type of load considered. In sizing,

the most intuitive case may seem differentiation of self weight load vector. Ele-

ment weight depends on element volume, and this depends on element thickness.

So, it seems clear that the magnitude of the self weight load vector will change

with thickness variations. However, it should be noted that even in the case of

sizing, not only the magnitude of the consistent nodal forces may change, but

also the consistent nodal moments.

Even though if the magnitude of the load per unit of surface remains constant,

derivatives of surface loads may not vanish in the case of sizing. The reason

89



is that surface loads are applied on the top or bottom face of the shell and

a change in the thickness implies in general that these areas are becoming

smaller or larger. Therefore, derivatives of consistent forces and moments will,

in general, not vanish.

Even though, in general, derivatives of external volume and surface forces will

not vanish for the case of sizing optimization, its computation will be much

easier than for the case of shape optimization.

At this point, it becomes clear that analytical sensitivity analysis in shape

optimization is much more complex than in sizing.

5.6 A particular case of adjoint sensitivity

analysis

To consider a large number of design variables in a shape optimization problem

means to enlarge the set of admissible designs, where the optimum is searched.

This topic and related ones are treated in Chapter 7. An important aspect

to consider in optimization problems with many design variables is the use of

adjoint techniques in sensitivity analysis. As explained in Section 4.3.2, in these

cases the computational cost of sensitivity coefficients is significantly lower than

in the direct approach.

In optimization problems where strain energy is to be minimized and no con-

straints are considered, adjoint sensitivity analysis can be performed in a par-

ticular way, which is presented in this section.

An objective function ψ(s,d) is considered, where, as before, s is the vector of

design variables and d is the vector of degrees of freedom. The variation of the

objective function is given by

δψ =
∂ψ

∂s
· δs +

∂ψ

∂d
· δd (5.40)

Normally, if we take into account that displacements depend on design vari-

ables, i.e. d(s), equilibrium is automatically implicit. However, if d and s are

considered as independent variables, in order to ensure equilibrium, the equilib-

rium equation has to be imposed as an additional constraint. The equilibrium

equation is of the form

g(s,d) = 0 (5.41)
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And its variation is given by

∂g

∂s
· δs +

∂g

∂d
· δd = 0 (5.42)

If the equilibrium equation is considered as a constraint, its variation can be

added to the variation of objective function, as an additional term multiplied

by the adjoint parameter λ. That is,

δf =
∂ψ

∂s
· δs +

∂ψ

∂d
· δd + λ

(∂g
∂s

· δs +
∂g

∂d
· δd

)
(5.43)

Rearranging terms, it can be obtained

δψ =
(∂ψ
∂s

+ λ
∂g

∂s

)
·δs+

(∂ψ
∂d

+ λ
∂g

∂d

)
·δd (5.44)

Because of (5.42), expression (5.44) is valid for all λ. Now, λ is chosen such

that
∂ψ

∂d
+ λ

∂g

∂d
= 0 (5.45)

and thus

λ = −∂ψ
∂d

·
( ∂g
∂d

)
−1

(5.46)

Substituting (5.46) in expression (5.44), the variation of the objective function

ψ is given by

δψ =
[∂ψ
∂s

− ∂ψ

∂d
·
( ∂g
∂d

)
−1

·∂g
∂s

]
δs (5.47)

As it can be seen, under these circumstances the variation (5.44) of the objective

function depends only on the variation of the design variables.

It should be now considered that the objective function to be minimized is the

strain energy. In the discrete case, strain energy is given by

ψ =
1

2
(d)T · K · d (5.48)

and the equilibrium equation is given by

g = K · d − F (5.49)
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Note that as d and s are independent variables, no chain rule is applied.

Derivatives of objective function (5.48) with respect to design variables and the

displacements are
∂ψ

∂s
=

1

2
dT · ∂K

∂s
· d (5.50)

∂ψ

∂d
= K · d (5.51)

Analogously, derivatives of the equilibrium equation (5.49) with respect to de-

sign variables and displacements are given by

∂g

∂s
=
∂K

∂s
· d − ∂F

∂s
(5.52)

∂g

∂d
= K (5.53)

Substituting (5.50), (5.51), (5.52) and (5.53) in (5.47), and taking into account

the symmetry of K, we obtain

ψ

s
=

1

2
dT · ∂K

∂s
·d− (K ·d)T ·K−1 · ∂K

∂s
·d− ∂F

∂s
= −1

2
dT · ∂K

∂s
·d− ∂F

∂s
(5.54)

Variation δψ can be computed by adding the different contributions of this

expression at element level. That is,

∂ψ

∂s
=
∑

e

∂ψe

∂s
(5.55)

where
∂ψe

∂s
= −1

2
deT · ∂k

e

∂s
· de − ∂f e

∂s
(5.56)

Thus, in this particular case, adjoint sensitivity analysis is very simple to im-

plement and requires low computational time.
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Chapter 6

Influence of Locking in

Structural Optimization.

6.1 Introduction

In structural shape optimization, the optimization algorithm takes decisions

about improving the actual design based on information provided by finite ele-

ment analysis and sensitivity analysis. Finite element analysis is used to evalu-

ate objective function and constraints. Sensitivity analysis computes derivatives

of the objective function and constraints required by gradient-based optimiza-

tion algorithms. Therefore, the quality of the underlying structural and sensi-

tivity analysis is of crucial importance. Two main factors determine the quality

of these analyses.

The first factor is the technique of sensitivity analysis. Discussion about the

different sensitivity analysis techniques for structural optimization is given in

Chapter 4. The analytical technique appears as the more suitable for obtaining

highly reliable and accurate sensitivity coefficients.

The second factor which determines the quality of the structural and sensi-

tivity analyses is the underlying finite element formulation. In the particular

case of shells, it is well-known that standard displacement finite elements with

Reissner-Mindlin kinematics suffer from so-called locking phenomena, leading

to a severe overestimation of bending stiffness, i.e. an underestimation of dis-

placements, and thus a wrong modeling of the load carrying behavior of thin

shells (see e.g. Bathe (1996) and Zienkiewicz and Taylor (2000b)). As a con-

sequence, information about the objective function and constraints forwarded
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to the optimization algorithm is altered. Consequently, the optimization algo-

rithm will solve a different optimization problem than the intended one, and the

optimized design will, in general, be different than the real optimum. Moreover,

it may occur that the optimum obtained is not even in the real feasible domain.

That is, the solution obtained from the optimization procedure is not even in

the group of admissible solutions.

It should be remarked that this effect is independent of the technique used for

sensitivity analysis. If the underlying finite element formulation suffers from

locking phenomena, sensitivity coefficients are no longer reliable.

In the present chapter, the significance of a reliable finite element formulation

in the optimization process is discussed. Particularly, the effects of locking on

shape optimization of shells are studied through numerical experiments. Op-

timization results of a standard displacement shell formulation are compared

with those obtained with DSG shell elements (Bletzinger et al., 2000), avoid-

ing transverse shear locking. The shell element formulations used herein are

explained in detail in Chapter 3. The sensitivity analysis by the analytical

approach is explained in Chapter 5 for both formulations. It is shown that

locking phenomena may affect the optimum not only quantitatively, but also

qualitatively.

6.2 Shell of revolution with parabolic

generatrix

The following example illustrates the differences between standard displacement

method and DSG formulation in an optimization process, where displacements

are to be minimized. The structure considered is a thin shell of revolution with

parabolic generatrix and a hole at the top, as shown in Fig. 6.1. It is clamped

at the lower boundary, subjected to a crown load and it is discretized by 187

bilinear elements. The objective is to minimize the vertical displacement at the

crown. The height of the structure is taken as the only design variable, while

top and bottom radii remain constant.

For the case of displacement elements, the optimal design has a height of

133.8 cm and the crown displacement is −5.55 × 10−5 cm. However, for the

case of DSG elements, the height of the optimal design is 167.9 cm and the

displacement is −6.47 × 10−5 cm. In Figure 6.2, the optimal designs obtained

with both formulations are depicted. Figure 6.1 shows the vertical displacement
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Figure 6.1: Paraboloidal shell, problem data. Vertical displacement w and

sensitivity coefficient w,H versus design variable H

and its sensitivity coefficients at the crown for different heights of the structure,

computed with both standard displacement elements and with DSG elements.

Due to locking, sensitivity coefficients obtained with the standard displacement

formulation provide false information for the optimization algorithm. It is re-

markable that in the domain between the two optimal solutions, the sensitivities

have different signs.

For a relatively shallow cupola, structural behavior is dominated by bending,

while for a relatively high cupola, it is dominated by membrane action. Due to

transverse shear locking, standard displacement elements significantly overesti-

mate bending action. As a result, the optimization process interpretes bending

to be favorable. It is therefore no surprise that the ’optimal’ design obtained

in this case involves more bending action than the result when applying DSG

elements, alleviating locking effects. We may conclude that standard displace-

ment formulation misinterpretes the structural behaviour and, therefore, the

optimization process yields wrong optima.

It can be anticipated that for more complex problems this simple and obvious
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Figure 6.2: Optimal results obtained with both formulations.

mechanism will lead to unidentifiable mistakes in results.

6.3 Roof shell with two parabolic generatrices

This example is used to demonstrate the influence of finite element technology

on the evaluation of objective functions and stress constraints, and its conse-

quences for the final design. The considered structure is a roof with rectangular

plan and uniform constant thickness t = 0.1 m. With its slenderness of approx.

100, it can be considered that the shell is relatively thin. Its geometry is taken

from Ramm et al. (1993) and it is reproduced in Fig. 6.3. The shell has double

symmetry with respect to xz- and yz-coordinate planes. Edges at y = 3 m and

y = −3 m are free, while edges at x = 6 m and x = −6 m are supported by

diaphragms. These diaphragms prevent movements in their plane, but offer no

resistance to movements normal to this plane (x-direction) or to rotations.

Material properties are E = 30000 MPa, ν = 0.2 and γ = 24 kN/m3.

Figure 6.3: Roof shell, problem data.
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Two design variables are considered: the height at the center of the edges

x = 6 m and x = −6 m (S1) and the height at the center point of the structure

(S2). Thickness remains constant. It should be remarked that double sym-

metry is preserved in the optimization process. The fact that only two design

variables are considered allows us to represent the objective function graphically

as a response surface. This is very instructive, since a comparison between the

objective functions obtained with both formulations can be easily made and op-

timal designs obtained can be better understood (see Myers and Montgomery

(2001)). A lower bound is imposed for both design variables, which have to be

greater than zero. No upper bound is considered.

The structure is subjected to self-weight. This is a design dependent load be-

cause variations on design in the optimization process yield variations on the

volume of the structure, and thus on the load. Therefore, derivatives of the

load with respect to the design variables must be taken into account in the

pseudo-load vector of sensitivity analysis. It should be remarked that this load

case is different than the one considered by Ramm et al. (1993).

The structure is discretized with a mesh of 576 linear triangular (T1) elements

and 325 nodes. When linear triangular elements are used, standard displace-

ment formulation does not suffer from membrane locking but from transverse

shear locking. Full integration has been used for standard displacement ele-

ments. It should be noted that reduced integration for T1 displacement el-

ements, although frequently used, does not remove transverse shear locking

completely.

6.3.1 Minimization of strain energy

First, strain energy is chosen as objective function. No stress constraints are

considered, assuming that the structure is sufficiently reinforced. Fig. 6.4 repre-

sents a contour plot of the approximate response surface as a function of design

variables S1 and S2, for the standard displacement formulation and for the

DSG formulation. Each point of the contour plot represents the strain energy

for a certain geometry of the structure. As the analytical expression of the

strain energy is not avaliable as a function of the design variables, this response

surface is approximated by computing the value of the strain energy for many

different designs and by interpolating a surface with these values. Though being

just an approximation, this response surface gives a fairly good picture of the

structural stiffness for different designs.

97



Figure 6.4: Contour plots of the strain energy (kNm) as a function of the design

variables S1 and S2, computed with standard displacement elements and DSG

elements.

As mentioned before, the standard displacement formulation suffers from trans-

verse shear locking and this results in an overestimation of the bending stiffness

of the structure. Thus, the computed strain energy is significantly underesti-

mated, particularly for those designs involving more bending action. As a result,

the standard displacement formulation yields an objective function significantly

different from the one of a locking free formulation. Thus, the optimization

problem is been altered because the finite element analysis and the sensitivity

analysis are providing wrong information to the optimization algorithm.

Fig. 6.5 represents the longitudinal cross section of the corresponding optimal

designs. Both are anticlastic surfaces and the values of design variables for

each case are given in Table 6.1. Regardless of significant differences between

objective functions produced by both formulations, it can be observed that the

principal types of design of the optima are similar. The reason why both formu-

lations yield similar results is that these optimal designs are working principally

in a membrane state. Due to the non-existence of a vertical tangent at the free

edges, there is always going to be some bending action at the boundaries. But

for these optimal designs, membrane forces are significantly more important.

As a consequence, the shear locking phenomenon does not significantly alter

stiffness of the structure.

However, it should be remarked that the consideration of additional constraints,

like limitations in volume or stresses, may accentuate differences between both

optimal designs.
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Figure 6.5: Optimal designs with respect to minimization of strain energy,

computed with standard displacement elements (DISP) and DSG elements.

Table 6.1: Convergence of optimal designs
Number of STANDARD DISP DSG

elements S1 S2 Strain energy S1 S2 Strain energy

(m) (m) (kNm) (m) (m) (kNm)

576 11.86 7.52 0.0159 9.43 5.35 0.0228

1600 11.41 6.87 0.0182 8.98 5.19 0.0238

6400 10.21 6.04 0.0209 8.80 5.14 0.0245

14400 9.97 5.70 0.0221 8.79 5.14 0.0246

In Table 6.1, convergence of optimal designs computed with both formulations

and different meshes are shown. By refining the mesh, slenderness of the el-

ements is reduced and, therefore, shear locking decreases. As a consequence,

the optimal design obtained with displacement elements will tend to the one

obtained with the DSG formulation. Reduction of the shear locking effect for

finer meshes can also be noticed in the computed strain energy. Overestima-

tion of bending stiffness by the standard displacement formulation is no longer

so dramatic. As a consequence, deformations converge to those obtained by a

locking free formulation, and so does the computed strain energy.

It should be remarked that convergence is very slow and mesh refinement is not

a solution to the locking problem.

Even though this may seem as a simple example, there are a few interesting

factors, which play an important role in determination of the optimal design and

help understanding the strain energy plot of the DSG formulation, alleviating
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transverse shear locking.

First, in a barrel vault under a vertical load and with the above considered

boundary conditions some bending action is going to appear at the free edges

(see Flügge (1973)). The optimal load-carrying behaviour of a shell structure

is membrane action, since material is optimally utilized in this case. Thus,

presence of bending reduces the stiffness of the structure.

It is known that, if the intersection of the shell surface with a plana parallel

to yz-coordinate plane has a vertical tangent at these free edges, the bending

action at these edges is reduced. The cross section of the considered structure

is a parabola, whose height depends on the design variables. The higher the

structure is, the more the tangent at the free edges tends to be vertical and,

therefore, the smaller these bending moments are going to be. For that reason,

higher values of design variables lead to a structural behaviour at free edges

more suitable to membrane theory.

Second, the fact that the structure is subjected to self-weight will make design

variables decrease. Obviously, smaller values of the design variables yield de-

signs with less volume and, therefore, less weight. Thus, the load acting on the

structure will be smaller.

Third factor of major importance is structural stiffness. This is related to

dimensions and amount of material. It is important to remark that this factor

essentially differs from the aforementioned first factor. Here we are not refering

to the relation between membrane stresses and bending action, but to those

geometrical properties that have an influence on structural stiffness.

Figure 6.6: Principal types of designs depending on the values of the design

variables

However, not only the amount of material determines structural stiffness. The

principal type of design is decisive. Fig. 6.6 qualitatively represents different
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types of shapes obtained for different values of the design variables. When both

design variables are equal, simply curved structures are obtained. When they

are not equal, doubly curved structures are obtained. These can be anticlastic

designs, in the case that S1 > S2, or synclastic designs, if S1 < S2.

The type of curvature of the surface has a direct influence on load carrying

behaviour of the structure. In order to explain the differences between the load

carrying behaviour of the different principal types, we consider three different

principal types of structures. These three different structures are chosen such a

way, that their weight is the same. Thus, they are carrying the same load, but

in a different way.

Fig. 6.7 presents the initial configuration of the structures and the deformed

configuration. In order to avoid the effect of shear locking, the analysis has

been performed with DSG elements.

The synclastic and the simply curved structure are significantly more flexible

than the anticlastic design. In both cases, the lower edges, which are free, show

high tensile stresses and large deformations.

In the synclastic design, most part of the volume and, therefore, of the acting

load, is located at the center of the structure, far away from the supports at

the curved edges. In addition, these edges are smaller than for the other two

designs, so the supporting area is also smaller. As a consequence, corner areas

suffer also from high bending moments. This can be noticed in the figure, where

the edges are significantly deformed.

In addition to high tensile stresses at the lower edges, the simply curved design

suffers from high bending moments at this area and also at the top of the

structure. In this case, deformations at the lower edges are slightly smaller

than in the synclastic shape.

In the anticlastic design membrane tensile stresses at the lower edges are signifi-

cantly reduced as compared to synclastic and simply curved designs. Moreover,

bending moments are also smaller. It can be noticed that displacements of the

structure are one order of magnitude smaller than in the preceding cases. Thus,

the anticlastic shape is the stiffest design for the given boundary conditions and

load case. Different factors contribute to this fact. A good part of the volume

of the structure is located close to the diaphragms, and the supporting edges

are longer than in the other two cases. Furthermore, the opposite curvatures

optimize traction and compression trajectories, minimizing bending action.

It can be recognized, that the underlying mechanics behind the problem are

crucial for understanding the optimal design.
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Figure 6.7: Initial configuration and deformed configuration of different princi-

pal designs of identical weight, computed with DSG elements.

6.3.2 Minimization of weight

In this case, minimization of structural weight is studied. Fig. 6.8 represents

the contour plot of weight as a function of the design variables S1 and S2.

Weight of the structure does not depend on the finite element formulation used,

because stiffness does not play any role. If no stress constraint were imposed,

the optimal design would be trivially for S1 = 0 and S2 = 0, that is, a plate.

However, as in engineering applications stresses are usually limited by material
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Figure 6.8: Contour plots of weight (kN) as a function of design variables S1

and S2, and stress constraints computed with standard displacement elements

(DISP) and DSG elements.

properties, it is interesting to study the effect of the finite element formulation

on the evaluation of stress constraints. In this example, the stress constraint

considered limits tensile stresses, since concrete has a low tensile resistance. A

typical value for tensile resistance of concrete has been used. Thus,

σ1 ≤ 3000 kN/m2 (6.1)

at upper and lower layers of the shell, where σ1 is the primary principal stress.

Stresses at upper and lower layers have been computed considering membrane

stresses and stresses due to bending at these points. No shear stresses have

been considered, since according to the shell theory they vanish at upper and

lower layers.

In Fig. 6.8, the constraints for the standard displacement formulation and for

the DSG formulation are represented as dashed and solid lines respectively. Ar-

rows point towards the feasible domain, that is, the domain where the maximum

tensile stress at any point of the structure is smaller than the prescribed value.

Again, we do not have the analytical expression of the constraint curves, but we

approximate them by analyzing many structures, studying the maximal value

of the traction stress, and determining whether it would be a feasible design or

not.

It is easy to notice that feasible domains for both formulations are significantly
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different. Analogously to the case of strain energy response surface, when the

mesh is refined, the feasible domain obtained from the computation with the

standard displacement formulation, tends to the one computed with the DSG

formulation.

Fig. 6.9 represents the longitudinal sections of optimal designs obtained for both

formulations. The difference between these designs is not only quantitative

but also qualitative. Moreover, the principal type of design in the case of

the standard displacement formulation is wrong. For the DSG formulation,

the optimal design is an anticlastic shape, while for the standard displacement

formulation it is a synclastic surface, almost a cylinder.

Figure 6.9: Optimal designs with respect to minimization of weight with stress

constraints, computed with standard displacement elements (DISP) and DSG

elements.

Some important remarks should be made with respect to the optimal designs

obtained.

It should be noted that the optimal design obtained with the standard dis-

placement formulation is not even contained in the feasible domain provided

by DSG elements, removing the influence of transverse shear locking. As a

consequence, in some area of this design the stresses will violate the given con-

straints. This area is located at lower fibers of the free edges, which exhibit high

tensile stresses due to bending. The reason is that the displacement formula-

tion, due to the locking, behaves too stiffly and the computed displacements are

underestimated. As a consequence, bending moments are also underestimated

and principal stresses are also lower than for a locking-free formulation. Thus,

the standard displacement formulation identifies it as a feasible design, while

actually it is not.

In this case, the dramatic consequences of locking phenomena on stress con-

straints can be recognized. It is known that the standard displacement for-

mulation underestimates displacements and leads to errors in stresses, but, in

general, no a priori statement can be made about the stresses being lower or

higher than those of a locking-free formulation. Particularly, shear stresses suf-
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fer from strong oscillations. This fact leads to unidentifiable errors in optimal

designs.

It is important to remark that, if quadratic elements are chosen, reliable results

for stresses are not guaranteed, even though satisfactory results may be obtained

for displacements.
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Chapter 7

Shape Description and Control

7.1 Introduction

Structural optimization is a part of a more global design process. Apart from

the mechanical requirements inherent to structural optimization, in this global

process the designer wants the structure to also fulfill certain shape requirements

due to esthetic, utilization or any other reasons. Therefore, when submitting

an initial design to an optimization process, the best solution for a designer

may not be the design which minimizes the objective function satisfying the

constraints, but that which, in addition, satisfies some shape requirements.

At this point, we may perceive a duality in the treatment of designs during

a shape optimization process: they are improved based on their mechanical

behavior and on the deliberate control of their shape.

In the preceeding chapters, a shell finite element and its sensitivity analysis were

studied. This is a tool used to study the mechanical behavior of shell structures

and to predict its changes, when the design is modified. In the present chapter

the shell structure ‘looses’ its mechanical properties and is studied from the

geometrical point of view, that is, as a surface.

From this geometrical point of view, there are two main factors, which determine

the shape of the design: its parametrization and the control of its shape during

the optimization process.

In the context of shape optimization, design parametrization means the defini-

tion of a design as a function of a set of design variables, which may change

during the optimization process yielding modified designs. Design parametriza-

tion determines the shape of the optimal design, insofar as it determines the set
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of admissible designs. This statement can be illustrated with a simple example.

A cylinder with circular cross section is considered, and its radius is defined

as the only design variable. As a result of an optimization process one may

obtain a cylinder with a different radius, but still with circular cross section.

One will not get a cylinder with an elliptic cross section, because the chosen

parametrization does not allow it. At this point it may seem intuitive that

parametrizations with few design variables may strongly restrict the set of ad-

misible designs, while considering more design variables increases it. However,

an advantage of using few design variables is that computational cost of the op-

timization process is not so high. In the end, the chosen design parametrization

is a designer’s decision. But still, the designer should be aware that choosing a

certain design parametrization, he is already conditioning the optimal design.

The two most common techniques of design parametrization are CAD-based

design parametrization and FE-based design parametrization. In the first one,

design variables are chosen among the parameters of an underlying CAD model.

In the second one, design variables are related to the finite element mesh of the

initial design.

Apart from the design parametrization used, there are other means for the

designer to control the shape during the optimization process. The most com-

mon is the use of constraints related to geometry. Through these constraints

restrictions on certain dimensions of the structure are imposed.

Variable linking is also another way to control design shape. The idea is to link

two or more design variables, so that they are no longer independent from each

other, but so that their value is related through certain linking coefficients. Typ-

ical reasons for the use of linking variables are to attain symmetry or antimetry,

to enforce geometrical relations between them, or to restrict the movement of

a node to a certain direction. It shoulb be noted that in the present chapter,

when speaking about the movement of a node, no reference is made to the

displacement due to the action of some loads, but to its movement in sequent

iterations of the optimization process that leads to modified designs.

In the last five years, a new type of shape control method has been emerging in

shape optimization. This method appears in the context of shape optimization

with fluids using FE-based parametrization. The key of the approach is to con-

trol the smoothness of the design by controlling its curvature. Two important

aspects are to be considered: the computation of a certain curvature measure

and the way it is used to control the shape. The first point is not obvious,

insofar as real geometries are usually discretized by meshes with C0 continuity

across element boundaries. As curvatures are related to second order deriva-
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tives, their computation for a discretized geometry is not as easy as it would

have been, when its analytical expression were available. Once these curvatures

are available there are several ways to control the design shape through them.

One method is the addition of a penalization term to the objective function, so

that designs with a curvature function very different from the desired one are

penalized. This approach is known as regularization, since it allows to get reg-

ular solutions to the optimization problem. Other shape control techniques by

means of curvatures are: design parametrization choosing curvatures as design

variables and the introduction of constraints in curvatures.

In the frame of the present work, shape description and control is focused in

shape optimization of shells. In the present chapter, a brief review of the differ-

ent design parametrization techniques used in shape optimization is presented.

Special attention is paid to the comparison between CAD-based parametriza-

tion and FE-based parametrization.

A review of the shape control techniques is also presented focusing on regulariza-

tion techniques used for FE-based parametrization. Shape control by curvature

measures is extended to surfaces by a penalization or regularization term added

to the original objective function. This regularization term is a function of a

curvature measure of the surface. A new approach to compute different curva-

ture measures of a surface discretized by a C0 continuous finite element mesh is

presented in detail. Analytical computation of sensitivities of these curvature

measures is also explained. This shape control technique is not only applicable

to shape optimization of shells, but also to other two-dimensional domains, like

boundaries of a 3D solid structure or form finding of membranes.

Several numerical examples illustrate the most important aspects treated in

the chapter. Good performance of the proposed method to compute curvature

measures of a C0 approximated surface is shown, and the effect of the regulariz-

ing term on surfaces is presented. Important differences between CAD and FE

design parametrization are illustrated by further examples. Last, simple appli-

cations of shape control by regularization with mean curvatures are shown.

7.2 Parametrization of design surfaces for shape

optimization

In shape optimization, design parametrization deals with selection of design

variables and determination of their relation to the current design during the
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optimization process. As aforementioned, parametrization of a certain design

has significant consequences for the optimization process and result, since it

determines the set of admissible designs and influences the cost of the whole

optimization process.

There are two main design parametrization methods to be used in a gen-

eral shape optimization problem: CAD-based parametrization and FE-based

parametrization. There are also other parametrization techniques that can be

used for solving certain concrete problems.

In the present section, after a brief review of these parametrization techniques,

a study of their advantages and disadvantages is presented. This analysis will

permit the designer to acknowledge of the implications that the selection of each

parametrization approach has.

There are two important aspects to be discussed for each parametrization tech-

nique: its flexibility and its cost. Under the concept flexibility of a design

parametrization technique, both the size of the allowed set of admissible designs

and the possibilities of controlling the shape according to designer’s desires, are

understood. Cost of a design parametrization technique we refer to both mod-

eling cost, which is to be ”paid” by the designer and to the implications that

this technique has in the computational cost of the whole optimization process.

7.2.1 CAD based design

In the CAD-based parametrization, design variables are chosen among param-

eters that determine the underlying CAD model (Bletzinger, 1990; Bletzinger

et al., 1991).

The design element concept was introduced in shape optimization by Imam

(1982), who applied it to shape optimization of three dimensional structures.

Integration of the CAD method in shape optimization for two dimensional prob-

lems is done by Braibant and Fleury (1986).

In Computer Aided Geometric Design, a mathematical model of an engineering

design or a real object is created through a set of computer applications. This

mathematical model is created following a hierarchy of design elements, that is,

of geometrical entities. The hierarchy levels, from the simplest one to the most

complex one, are

• 0D - design nodes
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• 1D - design edges

• 2D - design patches or surfaces

• 3D - design bricks

Design elements of a certain level are created based on those from lower levels.

For instance, a design edge is created from two or more design nodes. The

shape of each of the design elements can be described in terms of a mathe-

matical function. Typical examples of 1D design elements are 1D Lagrange

elements, Bézier-splines and B-splines. Splines are more sophisticated than La-

grange elements because they consider additional nodes to control tangents at

beginning and end of the curve. Due to this possibility of controlling tangents

locally, splines are especially interesting for shape optimization.

Another type of splines are the non-uniform rational B-splines, so called NURBS.

Their advantage with respect to other types of splines is that they are able to

represent both standard analytical shapes (e.g. conics) and free form shapes.

In 2D, the simplest element is the 2D Lagrange element, whose mathematical

representation is, to this point, well known from the Finite Element method.

More sophisticated elements are the Bézier element, which is an extension of

the Bézier spline to 2D, and the Coons patch, which is defined univocally by

arbitrary edges. One or more patches can be used to describe an initial de-

sign of a surface. Geometrical continuity between patches can be enforced by

controlling tangents at edges. An introduction to computational geometry for

curves and surfaces is given by Davies and Samuels (1996).

Because of the hierarchy of the CAD mathematical model, in CAD-based design

optimization, design variables will be finally related to the position of design

nodes. It should be noted that these design nodes may determine the position

of a certain point of an edge, patch or brick or, in the case of control points in

splines, they may determine a tangent.

Once the optimization algorithm provides new values of design variables for the

next iteration step, update of the finite element mesh has to be performed. This

problem was already reported by Imam (1982). A design element is actually

a macroelement which is in turn discretized in finite elements. Associated to

the design element is a local system and some shape functions. Coordinates

of the finite element nodes can be expressed both in the global coordinate sys-

tem and in the local coordinate system of the design element to which they

belong. An update of design element’s shape implies an update of the relation
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between its local system and the global one. As this relation has changed and

local coordinates of the finite element nodes remain constant, their updated

global coordinates can be computed. Therefore, relation between design ele-

ment and finite element mesh has to be considered as an intermediate step of

the optimization loop. This is actually a special type of variable linking.

Nevertheless, it may occur that the current configuration of the design element

differs so much from the initial one, that after update the mesh is very distorted.

In these cases, remeshing or mesh smoothing is required.

7.2.2 FE-based design

In the FE based design, also called CAD-free parametrization, coordinates of

finite element nodes are taken as design variables. Although usually the ini-

tial design is still defined by a CAD model, in the following iteration steps of

the optimization process the relation to this model is lost and the design is

determined only by the finite element mesh.

This method is very intuitive when using the Finite Element Method for struc-

tural analysis in an optimization process because the same parametrization is

used for simulation and optimization. Optimal designs may be mesh-dependent,

but this dependency can be controlled with shape control techniques.

In optimization of plane structures or 3D bodies, the position vectors of bound-

ary nodes are generally chosen as design variables. In addition, mesh movement

algorithms are used to attain mesh quality (see Bängtsson et al. (2003), for in-

stance). In the case of shell structures, the position vectors of the FE nodes

are defined as design variables. Nodal movements can be restricted to a certain

direction. In this kind of parametrization, it is very common to restrict these

movements to directions normal to boundary edges or surfaces of actual, or

initial, design.

In the FE-based technique, the mesh does not need to be updated in each it-

eration step. However, as in the case of CAD-based optimization, to retain

mesh quality in the optimization process is a very important task. One of the

proposed approaches is the method of mesh adaptation by metric control (Mo-

hammadi and Pironneau, 1999), which allows the use of meshes with variable

connectivities.

The main characteristic of this method is the high number of design variables

that are usually considered. This implies both advantages and disadvantages in
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the optimization process, which are analyzed in Section 7.2.3. Advices to avoid

the disadvantages are also given.

7.2.3 Comparison between CAD- and FE-based design

parametrization

Nowadays, CAD-based shape optimization is probably the most commonly used

design parametrization technique in shape optimization. This parametrization

technique allows to describe a design shape as a function of few design variables.

The set of admissible designs determined by this parametrization is relatively

reduced. Modeling of complex structures can be a problem because of this

lack of flexibility. Although multiple design elements can be used, continuity

requirements and smooth transitions between adjacent patches can be very

difficult or even impossible to achieve. Moreover, the user should know in

advance how the final form will approximately look like, in order to use a design

patch that has a suitable approximation order. An important advantage in

application of the CAD- based optimization is its suitability to produce shapes

adequate for manufacturing.

Contrary to the CAD-based, the FE-based parametrization determines a wider

set of admissible designs because more design variables are considered. This

provides the possibility of finding a ‘better’ optimum, since the space, where it

is looked for, is larger. This is the main advantage of this approach.

The parametrization technique has a direct influence on computational cost,

since, in principle, the less design variables are considered to solve a certain

optimization problem, the lower is its computational cost. For this reason, the

use of a FE based parametrization implies a higher computational cost than the

CAD one. Paradoxically, the main advantage of this approach is simultaneously

its drawback. This is the reason why very quickly CAD based parametrization

captured almost all attention in practical applications of shape optimization.

Nevertheless, nowadays the increment of computational power and the use of

parallelization techniques have reduced significantly computational time. In

addition, the use of adjoint sensitivity analysis is highly recommended to also

reduce computational time. As explained in Section 4.3.2, adjoint sensitivity

analysis is more efficient than discrete one when the number of active constrains

is smaller than the number of design variables. In general this is the case of FE

based design.

However, as it was already mentioned, the cost of the parametrization technique
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should not be restricted to study its influence on the computational cost of the

optimization process. Another important cost that has to be considered is the

modeling cost, paid by the designer. This cost is not to be underestimated,

especially in designs with complex shapes.

For a simple problem, where the rough shape of the optimal design searched is

known, CAD based optimization may be the right choice. However, for more

complicated problems, where no previous fixed idea of the aimed optimal design

exists, important difficulties arise with defining the underlying CAD model. As

aforementioned, in CAD parametrization, the CAD model strongly determines

the set of admissible designs and consequently, the optimum. Therefore, se-

lection of a certain underlying CAD model implies very important restrictions

for the optimum design, the scope of which is actually unknown. As a conse-

quence, it may occur that more than one CAD model has to be tried to achieve

the desired optimum shape. The different CAD models considered may vary

in the number of design patches considered, the type of these patches or conti-

nuity conditions imposed among patches. Considering a new underlying CAD

model implies not only further computational time, since optimization has to

be performed again, but, most importantly, modeling time. The designer has to

start over the process of designing a new model, taking decisions about design

patches and variable linking. This may involve a significant modeling effort.

These difficulties related to modeling can be circumvented using the FE based

design parametrization technique. The selection of this parametrization does

not imply the inexistence of an underlying CAD model of the initial design

considered, since this is the usual model technique used by optimization and

structural analysis programs. However, only the initial design is related to

the CAD model. After meshing is performed, design variables are related to

the finite element mesh. Consequently, designs of subsequent iteration steps of

optimization process and, optimum design are dissociated from the underlying

CAD model of initial design.

Thus, if FE parametrization is used, the designer needs to create only CAD

model for the initial design. Moreover, this CAD model does not need to be

as complicated as in the case when CAD parametrization is used. There is no

need to use complex patch configurations or to adjust their continuity, as long

as their nodes can freely move in the optimization process. To this point, it

can be concluded that in general FE design parametrization requires a higher

computational cost but a lower modeling cost. This lower modeling cost makes

the approach specially suitable for obtaining preliminary designs.

Shape freedom is the main advantage of FE design parametrization because it

114



allows to search for the optimum in a wider set of designs and it is free from

the implicit shape constraints of the underlying CAD model. However, this

advantage is associated to an effect that may be not desirable: the presence of

local optima.

It is known that an optimum obtained from an optimization process may be

a local or a global optimum. Unfortunately, there is no immediate way to de-

termine the type of optimum, except by finding a better design. However, the

optimization algorithm may get fixed at this local optimum and deliver it as

optimal result. This is not a question of the design parametrization technique

used, but of the difficulties inherent to mathematical programming in distin-

guishing local and global optima.

Nevertheless, the selection of a design parametrization technique may have con-

sequences in the presence of more or less local optima. In principle, the more

design variables are considered, the more local optima can be expected. The

reason for this is that a higher number of design variables may increase the non-

convexity of the objective function and constraints. As FE design parametriza-

tion involves more design variables than CAD design parametrization, a higher

number of local optimal is to be expected.

The main problem of the FE-based design is that some of these local optima

can be wiggly shapes. Moreover, these waves may be mesh-dependent and it is

not desirable that the optimum design depends on the coarseness of the mesh

used.

This is the main reason why FE-based design parametrization is actually not as

widely used. Usually these wiggly shapes are not desired as optimum designs,

even though they may have a lower objective function than other smoother

shapes, and may satisfy the considered constraints. They are not desired be-

cause they are not regular, that is, they are not ‘smooth enough’ according to

designer’s preconception. It is legitimated to discard those wiggly designs due

to manufacturability, utilization or purely esthetical reasons. But there is an

additional problem related to these wiggly shapes, which should not to be un-

derestimated: the mesh distortion. It is well known that mesh distortion may

significantly harm the quality of structural and sensitivity analysis. To mini-

mize these consequences, a reliable finite element formulation should be used.

This topic is studied in Chapter 6. The issue of retaining mesh quality during

the optimization process is very important in both parametrization approaches.

The control of the mesh distortion is crucial for obtaining reliable results.

Methods to control regularity of optimum solutions in shape optimization have
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been developed, especially in the recent years. Although these methods are

intended to get smooth shapes in FE-based design optimization, they can also

be applied to control the shape in CAD-based optimization.

In conclusion, the main disadvantages of FE-based parametrization are its high

computational cost and the wiggly shapes obtained. In recent years, computa-

tional power has significantly increased and shape control methods have been

successfully developed. Further, the wide set of admissible designs that this

parametrization offers is highly appreciated. Consequently, there has been a

return to this kind of parametrization, started by Mohammadi (1997). As most

recent research in shape optimization has been done for systems of fluid me-

chanics, it is also here where this parametrization became more prominent.

Successful applications both in 2D and 3D are given by Jameson et al. (1998),

Gunzburger et al. (2000), Mohammadi and Pironneau (2001) and Bängtsson

et al. (2003).

Figure 7.1: Scheme of the comparison between CAD based parametrizationand

FE based parametrization techniques in shape structural optimization.

A scheme of the aspects treated in this comparison of CAD- and FE-based

parametrization techniques is provided in Figure 7.1. It can be concluded that

none of these parametrization techniques are ideal. Both have advantages and

disadvantages and selection of one or the other should be made by the designer

considering the circumstances of the optimization process at hand.
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7.2.4 Other parametrization techniques

A survey of different shape parametrization techniques for multidisciplinary

optimization is given by Samareh (1999). In addition, a comparison of the

suitability of the different techniques for optimization of complex geometries is

offered.

Some of these techniques are the domain element approach, the basis vector

approach and the free deformation approach.

Among the alternative parametrizations to CAD and FE based designs, it is

important to emphasize the partial differential equation parametrization (PDE)

method. The reason is that this method has an inherent control of smoothness.

This parametrization was introduced in the field of computer-aided geometric

design for blend generation (Bloor and Wilson, 1989, 1990; Vida et al., 1994).

Ugail and Wilson (2003) applied it for the definition and parametrization of

surfaces in shape optimization by introducing it into the loop of an automatic

design optimization process.

In the PDE method, admissible surface designs are chosen satisfying a partial

differential equation and certain boundary conditions. During the optimization

process, the shape of these PDE surfaces is controlled by the chosen boundary

conditions, so that changes on boundary conditions will produce changes on the

resulting surface.

An important characteristic of this approach is the fact that the surfaces ob-

tained are smooth in a global sense, even though the mesh may only be C0

continuous. The reason for this is that the PDE operator represents a smooth-

ing process. In addition, more than one surface patch can be considered and

the control of the smoothness of the transition between patches is relatively

easy. The control of smoothness is a clear advantage of the PDE approach

with respect to the CAD based method. Nevertheless, in this approach the

group of admissible designs is significantly reduced with respect to the FE based

parametrization. Moreover, this technique is time consuming.

7.3 Shape control

Shape control was introduced in shape optimization in order to obtain a design

satisfactory not only from the mechanical, but also from the geometrical point
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of view. A satisfactory shape is determined by the designer, using shape control

techniques as tools.

There are several techniques of shape control. The most common ones are

the use of geometry constraints and variable linking. However, in recent years

and in the frame of FE-based design optimization, a new type of shape control

techniques, aimed to control design smoothness of surfaces and curves, have

emerged.

As explained in Section 7.2.3, FE-based parametrization may yield wiggly shapes.

There are two main reason why these wiggly shapes are to be avoided. First,

these oscillations in the design geometry cause a significant mesh distortion.

As a consequence the element quality is affected and the results of structural

and sensitivity analysis may no longer be reliable. Furthermore, high mesh

distortions may even cause the failure of the optimization process. A second

reason to avoid these wiggly shapes is that, in general, smooth, regular, mesh

independent shapes are preferred.

The need to smooth designs obtained with FE-based parametrization was al-

ready noted by Mohammadi (1997), who proposed a smoothing operator over

the shape. Other smoothing techniques have been proposed based on the con-

trol of curvatures. In these techniques, a distinction between two aspects should

be made: the approach used to compute the selected curvature measure and

how design shape is controlled by means of this curvature. A common curvature

control method in shape optimization of fluids is regularization. This approach

consists on penalizing the objective function with a certain term, which is the

integral of the square of a certain curvature measure over the shape domain.

This way, wiggly designs are penalized and smooth designs favored.

In the present section, after a brief review of the variable linking concept, at-

tention is focused on shape control by regularization methods. After a brief

overview of the application fields of regularization methods, this concept is ex-

tended to smoothing designs in shape optimization of shells. A regularization

term, which is function of a curvature measure of the shell, is proposed and its

sensitivity analysis is performed.

7.3.1 Variable linking

Variable linking is a very common way to control design shape during the op-

timization process. It is a way to introduce geometrical constraints: it can
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introduce geometrical relations of variables or it can force continuity require-

ments of curves (Ramm et al., 1993).

Strictly speaking, Bletzinger (1990) distinguishes between three levels of vari-

ables in the optimization problem: optimization variables, design variables and

structural variables. The optimization variables are the independent variables

which take part in the optimization process. The design variables are the in-

dependent optimization variables and the dependent variables linked to those.

Structural variables are those related to the structural analysis of the structure,

for instance the FE nodal coordinates. The most common linking strategy es-

tablishes a linear relation between optimization variables and design variables,

and a second linear relation between design variables and structural variables

(Bletzinger, 1990). In the particular case of FE based designs, the design vari-

ables are the same as the structural variables. Nonlinear links can also be

considered but they are not commonly used due to their complexity.

There are several reasons for linking variables. Some of them are: the need

to impose certain symmetry or antimetry conditions, the need to prescribe

interactions between variables (describing the movement of a certain variable

as a linear combination of other variables), and the need to prescribe a certain

direction in which a node is allowed to move.

In the mathematical and numerical formulation of the optimization problem,

variable linking is imposed through linking matrices. It should be remarked

that in linear linking these matrices remain constant during the optimization

process, and therefore they do not have to be derived in sensitivity analysis.

7.3.2 Regularization

In some engineering problems, it may occur that the solution to a problem

is difficult to handle because of its discontinuities or singularities. Tikhonov

and Arsenin (1977) studied ill-posed mathematical problems and regularization

methods to overcome this ill-posedness. They propose the so called Tikhonov

regularization. Nowadays, regularization is applied to engineering and mathe-

matical problems in order to obtaining smooth and regularized solutions without

undesirable noise (Belytschko et al., 2000).

Some examples of applications of regularization to engineering problems are von

Neumann’s regularization in fluids, regularization through the penalty method

in contact-impact problems, the Curnier-Mroz friction model and regularization

of material instabilities (Belytschko et al., 2000).
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Von Neumann regularization is applied to the Euler fluid equation to smooth

oscillations in the solution produced by shocks. In this case, regularization is

achieved through the addition of an artificial viscosity.

In contact-impact problems, the penalty method is also a regularization method.

At the contact interface, velocities are discontinuous at the time of impact. The

velocity field is smoothed through the addition of a penalty term.

An important issue in regularization is the selection of the regularizing param-

eter. Often, in engineering problems, regularization has a mathematical basis

but lacks physical interpretation. This fact makes it difficult to determine the

value of the parameter. Many studies have been performed to obtain the values

of regularization parameters for different problems.

Regularization methods solve, instead of the original problem, a sequence of

regularized problems obtained by adding to the original functional a penaliza-

tion term. In optimization problems, regularization consists of penalizing the

objective function with an adequate term which favors smooth designs.

In the recent years, some interesting applications of regularization techniques

in shape optimization for fluids have been presented. Jameson et al. (1998), for

instance, considered smoothing of gradients in optimization for aerodynamic

shape design.

Gunzburger et al. (2000), Mohammadi and Pironneau (2001) and Bängtsson

et al. (2003) used FE design parametrization for shape optimization for fluids.

They realized the necessity of using a smoothing technique to avoid noise in

shape designs. Therefore, the addition of a regularization term to the objective

function is considered. This term is the integral of the square of a certain cur-

vature measure of the design over a certain reference domain. This curvature

measure is the second derivative of a function which defines the modified de-

signs, taking into account that only normal movements to the initial design are

allowed. Relation between the curvature measure and this function is estab-

lished by means of the Poisson equation. Therefore, this curvature is a relative

measure with respect to the initial, or reference, design.

Bängtsson et al. (2003) considered also an additional smoothing approach in

shape optimization of a curve describing the section of an acoustic horn. This

control approach is inherent to the computation of the curvature. Such com-

putation is done by discretizing the Poisson problem and using a C0 approxi-

mation for both geometry function and curvature function. If the curvatures at

the nodes are considered as unknowns, and the geometry is given, curvatures

can be computed from the geometry by solving the Poisson problem. In the
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formulation of the optimization problem, a change of variables is done, and

curvatures at FE nodes are considered now as design variables. After that an

iteration on the optimization process is performed, the optimization algorithm

yield new values of the curvatures. In order to obtain the modified geometry

which corresponds to these curvatures, the inverse process is carried out: In the

solution of the Poisson problem, the nodal positions of the FE mesh are now

considered as unknowns, and the curvatures as given data.

7.3.3 Regularization (Smoothing) in shape optimization

of shells

Regularization will be applied to structural shape optimization of shells, in a

similar manner as it is done in shape optimization for fluids. The aim is to avoid

wiggly shapes obtained with FE based parametrization. This regularization of

designs is achieved by adding a regularizing or penalizing term to the objective

function.

In order to penalize excessive oscillations, this term is chosen to be of the form

β

2

∫

Ω

(κ− κ̄)2dΩ (7.1)

where β is a certain control or regularization parameter, κ is a certain measure

of the curvature of the design and κ̄ is a certain prescribed function of this

curvature measure.

If this penalizing term is considered, the modified objective function is now

given by

Fβ = F +
β

2

∫

Ω

(κ− κ̄)2dΩ (7.2)

where F is the original objective function, that is, strain energy or weight, for

instance.

The effect of this regularization term over a design is very intuitive. For designs

with a curvature function κ equal to the prescribed κ̄, this term vanishes. In this

case, the modified objective function is equal to the original objective function.

For designs with a curvature function different from the prescribed one, the

regularization term does not vanish and its contribution has to be added to the

original function. The more the actual curvature function approximates to the

prescribed curvature function, the smaller is the contribution of regularization
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term to the modified objective function. Therefore, the consideration of this

regularization term favors obtaining designs with a curvature function close to

the prescribed one. It should be noted that the regularization term will not, in

general, vanish for the optimal design, since the contribution of the original ob-

jective function is also considered. The sum of both original objective function

and regularization term, is to be minimized in the optimization problem, not

the individual contributions.

The regularization parameter β tunes the influence of the penalization term

in the modified problem. It is a tool to control design shape: Using higher

values, optimum designs will have a curvature approximated to the prescribed

one, and using lower values optimum designs may have a curvature which differs

from the prescribed one, but they may have a lower original objective function.

Numerical examples of tuning of this parameter are shown in Section 7.7.4.

At his point, a new vision of the optimization problem is introduced. Until

now, the problem was only loocked at from a mechanical point of view, since

all considerations were based on the structural behavior of the shell. However,

now the penalizing term is exclusively based on the design geometry and not on

its mechanics. Therefore a pure geometrical vision of the structure is needed.

The design is actually observed from two different points of view:

1. The mechanical vision, considering the design as a shell, which is necessary

because optimization is done based on the structural behavior.

2. The geometrical vision, considering the design as a surface (with no thick-

ness), which is treated in the present chapter and is necessary to control

the design shape during the optimization process.

It is important to achieve harmony between the two visions. For the structural

analysis, a geometrical description of the structure is also needed, so now shape

control should be performed on the basis of this description. This implies that

the computation of the selected curvature measure should be based on the data

related to the finite element mesh (i.e. connectivities, nodal positions, director

vectors).

Another important point is the selection of the curvature measure introduced

to the penalization term. For curves, there exists only one definition of curva-

ture, that is the magnitude of the second derivative of the curve function with

respect to the parameter considered. However, in a surface, different curva-

ture measures can be defined and, therefore, different penalization terms can
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be considered. In Section 7.4, a brief review of differential geometry of surfaces

is given and different curvature measures and their interpretation are outlined.

In Section 7.5, a procedure to compute these curvature measures for a surface

approximated by a C0 mesh (as usually in finite element analysis) is proposed.

These curvature measures will be computed at each node of the mesh and

interpolated with the shape functions associated to the finite elements at hand.

Thus, curvature κ at a certain element is approximated by

κ =
nen∑

a=1

Naκa (7.3)

where Na are the shape functions related to this element (the same as for the

finite element formulation at hand), κa are the nodal curvature values ans nen
is the number of element nodes.

The prescribed curvature function is also given as

κ̄ =
nen∑

a=1

Naκ̄a (7.4)

where κ̄a are prescribed nodal curvature values.

Once nodal curvatures are obtained, regularization term (7.1) can be computed

for the discrete problem as the sum of the elemental contributions. Hence,

β

2

∫

Ω

(κ− κ̄)2dΩ = β
∑

e

∫

Ωe

(∑

a

Naκa −
∑

b

Nbκ̄b

)2

dΩe (7.5)

Surface integrals have to be performed over the element area. It is desirable to

express the differential of area dΩe in the natural coordinate system, because

it facilitates integration. In the present case, integration is considered in the

surface, which is the mid-plane of the shell element, that is, when ζ = 0.

Therefore, the element of area can be written as (Belytschko et al., 2000; Hughes,

2000)

dΩe = Js

∣∣∣
ζ=0

dξdη (7.6)

where Js is the surface Jacobian given by

Js = ‖x,ξ ×x,η ‖ (7.7)

Here, x,ξ and x,η are partial derivatives of the position vector with respect to

natural coordinates at the point where the Jacobian is to be evaluated (see

equations (3.22) and (3.23)).
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Considering (7.6), the elemental contribution to regularization term can be

computed as

β

2

∫

Ωe

(κ− κ̄)2dΩe =
β

2

∫ 1

−1

∫ 1

−1

(∑

a

Naκa −
∑

b

Nbκ̄b

)2

Jsdξdη (7.8)

The considered modified objective function is the sum of the original one and

the regularization term (see (7.2)). Therefore, its sensitivity with respect to a

design variable s is given by

Fβ,s = F,s +
β

2

(∫

Ω

(κ− κ̄)2dΩ

)
,s (7.9)

The sensitivity of regularization term can be computed as

β

∫

Ωe

(κ− κ̄)κ,s dΩe =β

∫ 1

−1

∫ 1

−1

(∑

a

Naκa −
∑

b

Nbκ̄b

)(∑

a

Naκa,s

)
Jsdξdη

+
β

2

∫ 1

−1

∫ 1

−1

(∑

a

Naκa −
∑

b

Nbκ̄b

)2

Js,s dξdη

(7.10)

Computation of derivatives of different nodal curvature measures with respect

to design variable s is explained in Section (7.6).

7.4 Differential geometry of surfaces

In the present section, a review of some concepts of differential geometry of

surfaces is presented. This is not intended to be a detailed introduction, but

just a review of some concepts necessary to understand the procedure used

to compute the curvature of a surface approximated by a C0 mesh, which is

explained in Section 7.5. A deep introduction to differential geometry of curves

and surfaces is given by do Carmo (1976) or Dubrovin et al. (1992).

First, some basic concepts of differential geometry of surfaces are reviewed. The

surfaces considered are supposed to be regular surfaces defined in an Euclidean

space. A rough definition of a regular surface is a surface that is smooth enough,

with no sharp points or edges, so that a tangent plane can be defined at every

point of it. A detailed study of regularity of surfaces is given by do Carmo
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(1976). In an Euclidean space, two quadratic fundamental forms of the surface

can be defined. These fundamental forms will permit to deduce some invariants

and metric properties of the surface. Attention is focused on principal curva-

tures, Gaussian curvature and mean curvature. It is said that these properties

are invariants because they are independent of the coordinate system used and,

therefore, they are intrinsic properties of the surface.

7.4.1 Basic concepts

A surface in a three dimensional Cartesian space can be represented mathemat-

ically in three ways:

• explicit representation: z = f(x, y)

• implicit representation: F (x, y, z) = 0

• and parametric representation: x = x(θ1, θ2)

Before the concept of curvature of a surface is introduced, it is convenient to

review some basic concepts related to differential geometry of spatial curves.

Let x(r) be a spatial curve parametrized by the arc length r. The tangent

vector to this curve is given by

t(r) =
dx(r)

dr
= ẋ(r) (7.11)

where ˙(•) = d(•)/dr.

The normal to a curve is given by

n(r) =
ẍ(r)

|ẍ(r)| (7.12)

where ¨(•) = d2(•)/dr2. Note that n(r) is an unitary vector and n(r) ⊥ t(r).

The curvature of a curve is defined as

κ(r) = |ẍ(r)| (7.13)

so that

ẍ(r) = κ(r)n(r) (7.14)
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Consider now a surface given in parametric representation x = x(θ1, θ2). The

vectors x,θ1 and x,θ2 are tangent to the surface and to parameter lines θ1 and

θ2, respectively. At a point P of the surface, these two vectors define a plane

tangent to the surface.

In addition, at any point P of a regular surface, a unit normal vector can be

defined as

NP =
x,θ1 ×x,θ2

|x,θ1 ×x,θ2 |

∣∣∣∣
P

(7.15)

This vector is normal to the tangent plane at P . It is said that a surface is

orientable if it admits a differentiable field of unit normal vectors defined on

the whole surface. The choice of this vector field determines the orientation of

the surface. It should be remarked that not every regular surface is orientable.

A typical example of non-orientable regular surface is the Möbius strip (see

do Carmo (1976), for instance).

Figure 7.2: Definition of normal curvature

Consider now a curve C lying in a surface S, as depicted in Figure 7.2. At a

point P of the curve, n is the normal vector to the curve and κ the curvature.

At this same point, NP is the normal vector to the surface. Let us denote β

the angle between vectors n and NP . The length of the projection of the vector

κn on the normal to the surface NP is called normal curvature of curve C at

surface S, and it is usually denoted as κn. Hence,

κn = κ cosα (7.16)

A proposition due to Meusnier states that all curves lying on this surface S and

having at point P the same tangent line, have also the same normal curvature.

As a consequence, this curvature is usually referred to as directional curvature,
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since it is associated with a certain direction. This directional curvature does

not depend on the orientation of curve C, but on the orientation of surface S.

The curvature at a point P gives an idea of how the surface pulls away from

the tangent plane at P . This is equivalent to saying that curvature at P gives

an idea of how the normal vector at P changes in its proximity.

7.4.2 First fundamental form

Let us suppose that the length of a curve x(r) = (x(r), y(r), z(r)) = x (θ1(r), θ2(r))

laying on a certain surface is to be measured. If the differential or element arch

length of the curve is denoted ds, then

ds2 = E
(
dθ1
)2

+ 2F
(
dθ1 dθ2

)
+G

(
dθ2
)2

(7.17)

where

E = x,θ1 x,θ1 +y,θ1 y,θ1 +z,θ1 z,θ1

F = x,θ1 x,θ2 +y,θ1 y,θ2 +z,θ1 z,θ2

G = x,θ2 x,θ2 +y,θ2 y,θ2 +z,θ2 z,θ2

(7.18)

Now, the arch length of the curve can be written as

(ds
dr

)2

=

√
E
(
θ̇1
)2

+ 2F
(
θ̇1 θ̇2

)
+G

(
θ̇2
)2

(7.19)

The quadratic form,

IP = E
(
dθ1
)2

+ 2F
(
dθ1 dθ2

)
+G

(
dθ2
)2

(7.20)

is called the first fundamental form of the surface. The matrix
(
E F

F G

)
(7.21)

is called matrix of the first fundamental form.

If the surface is given in its explicit form, the metric of the first fundamental

form is given by

(
E F

F G

)
=

(
1 + f,2x f,x f,y
f,x f,y 1 + f,2y

)
(7.22)
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From this fundamental form, the area of a region Ω of the surface can be com-

puted as:

A =

∫∫

Ω

√
det

(
E F

F G

)
dθ1dθ2 (7.23)

7.4.3 Second fundamental form

Considering again a surface x(θ1, θ2) and a curve on this surface given as x(r) =

(x(r), y(r), z(r)) = x (θ1(r), θ2(r)), it can be written

ẋ = x,θ1 θ̇1 + x,θ2 θ̇2 (7.24)

ẍ =

(
x,θ1θ1

(
θ̇1
)2

+ 2x,θ1θ2 θ̇1θ̇2 + x,θ2θ2
(
θ̇2
)2
)

+
(
x,θ1 θ̈1 + x,θ2 θ̈2

)
(7.25)

Taking into account that N ⊥ x,θ1 and N ⊥ x,θ2 , we have

N · ẍ = N · x,θ1θ1
(
θ̇2
)2

+ 2N · x,θ1θ2 θ̇1θ̇2 + N · x,θ2θ2
(
θ̇2
)2

= L
(
θ̇1
)2

+ 2M
(
θ̇1 θ̇2

)
+N

(
θ̇2
)2

(7.26)

The quadratic form

IIP = L
(
dθ1
)2

+ 2M
(
dθ1 dθ2

)
+N

(
dθ2
)2

(7.27)

is called second fundamental form of the surface. It should be noted that co-

efficients L, M and N are independent of the curve x = x (θ1(r), θ2(r)) and

depend only on the surface itself. The matrix

(
L M

M N

)
(7.28)

is called matrix of the second fundamental form.
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7.4.4 Invariants of the fundamental forms of a surface:

principal curvatures, Gaussian curvature and mean

curvature

In the preceding sections, we have seen that to each point of a regular surface

in an Euclidean three dimensional space, a pair of fundamental forms are as-

sociated. From these two quadratic forms, a set of invariants of the surface

can be defined. Since these properties are invariants, they do not depend on

the coordinate system used and, therefore, they are intrinsic properties of the

surface.

Let us consider the equation

det

((
L M

M N

)
− λ

(
E F

F G

))
= 0 (7.29)

The roots λ1 and λ2 of this equation are the eigenvalues of the pair of quadratic

forms. These are also called principal curvatures of the surface and they are

usually denoted by κ1 and κ2. These are the maximum and minimum curvatures

of the surface at the point considered. Associated to these eigenvalues are two

eigenvectors, which are called principal directions. If eigenvalues λ1 and λ2 are

different, then principal directions are orthogonal.

The Gaussian curvature is defined as the product of principal curvatures, that

is

K = κ1κ2 (7.30)

And mean curvature is defined as the arithmetic mean of principal curvatures,

that is

H =
κ1 + κ2

2
(7.31)

Gaussian curvature can be also written as the ratio of the determinants of second

and first fundamental forms. That is,

K =

det

(
L M

M N

)

det

(
E F

F G

) =
LN −M2

EF −G2
(7.32)

The sign of Gaussian curvature has a geometrical meaning. If K > 0 at a point

P on surface S, then in a certain proximity of this point the surface lies on
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one side of the tangent plane at P . An example of a surface with K > 0 at

all points is a sphere. If K < 0 at a point P on surface S, then the tangent

plane intersects the surface close to point P . A typical example of this case

is a hyperbolic paraboloid. A surface with K = 0 is said to be developable.

It can be a plane or a surface generated by a straight line moving along two

generators.

A surface given in explicit form as z = f(x, y) will be now considered, with a

point P (xP , yP , zP ) on it, and f,x = 0 and f,y = 0, that is the z-coordinate axis

is normal to the tangent plane of the surface at P . In this particular case, the

matrices of first and second fundamental forms at P are given respectively by

(
E F

F G

)
=

(
1 0

0 1

)
(7.33)

(
L M

M N

)
=

(
f,xx f,xy
f,xy f,yy

)
(7.34)

The last matrix is also called Hessian of f . In this particular case, its compo-

nents are the components of the curvature tensor at P expressed in the basis

{ex, ey} of the Cartesian system. Now, Gaussian curvature of the surface at P

is given by the determinant of this Hessian, that is

K = f,xx f,yy −(f,xy )2 (7.35)

and the mean curvature by the half of its trace, that is

H =
f,xx +f,yy

2
(7.36)

It is easy to see here that both Gaussian curvature and mean curvature are

invariants. Therefore, it does not matter which orientation x and y coordinate

axes have (as long as they are contained in the tangent plane at P , for this

particular case). In a case where the x and y coordinate lines at P coincide

with principal directions, the components of the curvature tensor are
(
κ1 0

0 κ2

)
(7.37)

The case in which the z-coordinate is perpendicular to the tangent plane at

P may seem a rather particular case. However, it will be very useful for com-

putation of curvatures of surfaces approximated by a C0 mesh by the method
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explained in Section 7.5. The reason is that at each node of the mesh a lo-

cal Cartesian coordinate system is defined. The two first base vectors of this

system are contained in the tangent plane to the approximated surface at the

node, and the third base vector is normal to the surface at this node. Therefore,

at each node the components of curvature tensor in this local Cartesian system

can be computed and from these, Gaussian, mean, and principal curvatures can

be calculated.

7.5 Computation of the curvature of a surface

approximated by a C0 continuous mesh

Both Finite Element analysis and Computer Aided Visualization require ap-

proximation of geometries. Surfaces are approximated by a mesh of facets, or

elements, usually with C0 continuity across its boundaries. As a consequence,

smoothness of the original surface is lost and computation of its curvature is

not obvious. However, often curvature of the original surface is required and

for this reason, different approaches have been proposed to compute it.

Within the past ten years a lot of research has been done aimed to compute

intrinsic surface properties. This research has been pursued mainly in the field of

Computer Aided Visualization. However, the increase of the number of degrees

of freedom considered in shape optimization problems and the need to control

smoothness of resulting shapes has caused interest in these issues in the field of

shape optimization to grow.

Numerous approaches have been proposed to estimate curvature measures of a

surface approximated by a mesh. These curvature measures can be mean cur-

vature, Gaussian curvature, principal curvatures, Weingarten curvature matrix

or other quantities related to second order derivatives of the surface function.

Gatzke and Grimm (2003) presented a systematic review to several approaches

to estimate different curvature measures of a surface represented by a trian-

gular mesh. Moreover, a comparison of accuracy and efficiency of different

approaches is done. Taubin (1995) proposed a method to estimate principal

curvatures and principal directions at a point of a faceted surface. The main

advantage of this method is its simplicity. An approach to compute a curvature

measure based on the discrete Laplacian, by means of the umbrella operator,

was presented by Kobbelt et al. (1998). They apply this measure to smooth

surfaces in Computer Aided Visualization. Estimation of principal directions
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and of Weingarten curvature matrix is studied in Goldfeather (2001). A study

of the relation between errors in surface approximation and errors in principal

directions approximations is also presented.

In Gunzburger et al. (2000), Mohammadi and Pironneau (2001) and Bängtsson

et al. (2003), a measure of the curvature of a curve with respect to a fixed

reference is computed by means of the Poisson equation. The computed curva-

tures are used in shape optimization problems related to fluids, to penalize the

objective function and obtain smoother shapes.

In the present section, a method to estimate the curvature tensor, mean curva-

ture and Gaussian curvature at the nodes of a surface approximated by facets

or elements is explained. The proposed method for computation of the curva-

ture tensor of a piecewise defined surface is organized in two steps. First, an

approximation of the directional curvature at a node of the surface is computed

based on the approach proposed by Taubin (1995). Second, with the known di-

rectional curvatures in three different directions, a system of equations is built,

and the components of the curvature tensor, in an arbitrary system contained in

the tangent plane, are computed. Once these components are available, mean

curvature, principal curvatures and Gaussian curvatures can be computed. Nu-

merical examples presented in Section 7.7.2 confirm the good performance of

the method.

7.5.1 Approximation of the directional curvature

Considering a smooth space curve S parametrized by an arch length r, the

function x(r) denotes the position vectors of the points belonging to the curve.

The expansion in Taylor series of the function x(r) about the point r = 0 up

to second order yields

x(r) = x(0) + r
dx

dr

∣∣
r=0

+
r2

2!

d2x

dr2

∣∣
r=0

+O(r3) (7.38)

It is known that dx
dr
|r=0 is the tangent vector at point x(0) and that

d2x

dr2

∣∣
r=0

= κn (7.39)

where n is the normal vector at point x(0) and κ is the curvature at the same

point. All vectors are defined as column vectors.
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Neglecting higher order errors in (7.38), the curvature can be computed as

κ ≈
2n ·

(
x(r) − x(0) − r dx

dr

∣∣
r=0

)

r2
(7.40)

Figure 7.3: Vectors related to the computation of the curvature of a spatial

curve at point P .

The geometrical interpretation of this equation is shown in Figure 7.3. At point

P , r = 0, so that x(0) = xP and Q is a generic point with parameter r, so that

x(r) = xQ.

This idea can be extended to compute the directional curvature of a faceted

surface at a point. Let us consider that a real smooth surface is approximated

by a mesh of elements with continuity C0 across element boundaries. Typical

examples, where this kind of discretization is used, are Finite Element analysis

and Computer Aided Visualization. The mesh information at hand is the nodal

positions and the approximated normal to the surface at the nodes. The position

vector of node P is denoted xP , and the unit vector normal to the surface at this

node is denoted A3P . The vector A3P is computed as the normalized average

of the normals to the adjacent elements to P , as explained in Section 3.4.

Let us now consider the patch of bilinear elements shown in Figure 7.4. It is

desired to compute the curvature at point P in the direction PQ1. The position

vector of points P and Q1, as well as the unit normal vector A3P , are known.

Let us denote

r1 = xQ1
− xP (7.41)
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Figure 7.4: Patch of elements where the vectors required for computation of the

directional curvature at the center node are shown. (a) Perspective, (b) section

and (c) top view.

and t1 the unit vector resulting from the projection of vector r1 in the tangent

plane at P . The tangent plane to the approximated surface at point P can be

defined as the plane perpendicular to A3P and containing point P . The unit

tangent vector can be computed as

t1 =
r1 − A3P (A3P · r1)

|r1 − A3P (A3P · r1)|
=

(I− A3PA3TP ) · r1

|(I− A3PA3TP ) · r1|
(7.42)

As only a C0 approximation to the original surface is known, a curve laying on

the original surface and which contains P and Q and with tangent t1 at P is

unknown. Therefore, the arch length r is also unknown and an approximation

to it has to be considered in (7.40). Depending on how the arch length r is

approximated, the directional curvature computed will be different, since the

curve related to it will be also different. If r is taken to be the length of the

secant r1, then the directional curvature κ computed is the curvature of a circle.

If r is the length of the projection of the secant r1 in the direction of t1, then

κ is the curvature of a parabola. Both the aforementioned circle and parabola,
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contain P and Q and their tangent at P is t1. A sketch of both options is given

in Figure 7.5. In the present work, r is taken to be the length of the secant r1.

Figure 7.5: Different approximations of the arch length r and curves related to

them.

Taking into account (7.41), (7.42) and (7.40), the curvature at P in direction

PQ1 can be computed as

κQ1
=

2A3P · (r1 − |r1|t1)

|r1|2
(7.43)

Considering that the vectors A3P and t1 are perpendicular, it is possible to

simplify (7.43). Thus,

κQ1
=

2A3P · r1

|r1|2
(7.44)

7.5.2 Relation between curvature tensor and directional

curvature

In Section 7.5.1, the directional curvature at a point of a surface discretizated by

a faceted mesh has been approximated with help of the Taylor series expansion.

In the present section, the relation between the directional curvature and the

curvature tensor of the surface at a point will be established.

{A1P ,A2P ,A3P} is a local Cartesian system at node P , where A3P is a unit

vector approximately normal to the surface at node P and A1P and A2P are

unit vectors that lay on the tangent plane to the surface at P , as depicted in
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Figure 7.6. Notice that this local Cartesian system is the same one required

for the formulation of the shell finite element explained in Chapter 3. Now,

the tangent vector t1 defined in equation (7.42), can be expressed in this local

Cartesian system as

t1 = a1A1P + b1A2P + 0A3P (7.45)

It should be noted that the component in A3P direction vanishes, because t1

is by definition perpendicular to A3P .

Figure 7.6: View of the patch of elements perpendicular to the tangent plane

showing tangent vectors and local Cartesian system.

The directional curvature at point P in direction PQ1 can now be expressed as

κQ1
=
(
a1 b1

)(κ11 κ12

κ21 κ22

){
a1

b1

}
(7.46)

where

{καβ} =

(
κ11 κ12

κ21 κ22

)
(7.47)

is the matrix containing the components of the curvature tensor at point P

in the local Cartesian basis {A1P ,A2P} that defines the tangent plane at P .

Component κ11 is the curvature in direction A1P , κ22 is the curvature in direc-

tion A2P , and κ12 = κ21. Note that Greek indices α and β run from 1 to 2.

From equation (7.46), we obtain

κQ1
= a2

1κ11 + 2a1b1κ12 + b21κ22 (7.48)
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In this equation, it can be observed that there are three unknowns, which are the

components of the curvature tensor in the local Cartesian basis. Therefore, two

more equations are needed. These are obtained establishing the same relation

between directional curvature and curvature tensor components at node P for

directions PQ2 and PQ3. Note that P , Q1, Q2 and Q3 are all nodes of the same

element e. Thus, the system of equations obtained is



a2

1 2a1b1 b21
a2

2 2a2b2 b22
a2

3 2a3b3 b23






κe11
κe12
κe22



 =




κQ1

κQ2

κQ3



 (7.49)

Solving this system, the components κe11, κ
e
12 and κe22 are obtained, which are an

approximation to the components of the curvature tensor obtained considering

element e. Now, the components of the curvature tensor at each node in the

local Cartesian system {A1P ,A2P} can be obtained at each node as the average

of the elemental contributions weighted by the relative element area. That is,

{καβ} =

nae∑
e=1

{κeαβ}Ae

nae∑
e=1

Ae
(7.50)

where nae is the number of adjacent elements and Ae is the area of element e. As

the local Cartesian system is unique for each node, the different contributions of

the components of the curvature tensor involved in this formula are all expressed

in the same basis.

7.5.3 Approximation of mean curvature, Gaussian

curvature and principal curvatures

Once the components of curvature tensor are obtained at each node, different

curvature measures explained in Section 7.4 can be computed.

Mean and Gaussian curvature at a node P can be approximated by

H =
trace{καβ}

2
(7.51)

and

K = det{καβ} (7.52)
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respectively, where {καβ} are the components of the curvature tensor at this

node expressed in the local Cartesian basis.

Principal curvatures can also be computed. They are the eigenvalues of matrix

{καβ}. Therefore, they can be computed from equation

det ({καβ} − λ{δαβ}) = 0 (7.53)

Hence,

λ =
(κ11 + κ22) ±

√
(κ11 + κ22)2 − 4(κ11κ22 − κ2

12)

2
= H ±

√
H2 −K (7.54)

7.5.4 Further remarks

It should be remarked that curvatures computed by this method are not cur-

vatures of the elements, but of the surface approximated by the finite element

mesh or facets. So, even though elements used to approximate the surface are

plane (e.g. linear or bilinear), the curvature computed at a node may not be

zero. At this point, it is clear that nodal director vectors provide the crucial in-

formation. It should be recalled that director vectors are approximately normal

to the surface but not necessarily normal to the adjacent elements (see Section

3.4).

Nodes located at a boundary constitute a particular case. At these nodes the

director vectors do not have information on how the surface goes on beyond the

boundary, because actually it does not go beyond this boundary. Therefore,

the presented method yields null curvatures at a node located at a boundary,

in direction perpendicular to this boundary (outwards or inwards), because the

director vector at a boundary node is perpendicular to this direction. As a

consequence the approximations obtained for curvature measured at boundary

nodes will not, in general, be accurate.

An important advantage of this method is that the information required (i.e.

element topology, nodal positions, normal vectors at the nodes, etc.) is also

required in finite element analysis of shells and membranes. Moreover, the local

Cartesian system defined at each node is also involved in the formulation of the

shell element explained in Chapter 3. Therefore, only little extra effort has to

be made to compute curvatures.

The third base vector of the local Cartesian system at a point P , A3P , is

determined by the surface approximated, since it is normal to it. However,
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the two other base vectors that complete the system, A1P and A2P , can be

arbitrary as long as they complete a Cartesian coordinate system. Therefore,

they are to be chosen among the perpendicular pairs of unit vectors contained

in the tangent plane. An important key of the approach is the invariance of

the curvature measures computed. That is, it does not matter which pair of

vectors {A1P ,A2P} are chosen. However, once the base {A1P ,A2P ,A3P} is

chosen, this choice will be kept, since it is decisive for computing the average of

the components of the curvature tensor at a node (see (7.50)).

Although the procedure to compute the components of the curvature tensor

was explained for the case of a mesh of bilinear elements, the method can be

easily extended to any other element type. In the case of a linear element, only

two directions per element are, in principle, available to compute directional

curvatures. However, in order to solve system (7.49) at element level, three

directional curvatures are needed. In this case, a third directional curvature

can be computed by selecting a direction between the considered node and an

arbitrary point on the element. As the triangular linear element is plane, it

does not matter which point it is, as long as it lies on the element plane.

Here, the curvature tensor is evaluated at element level and then the average

of adjacent elements is computed. An alternative way, especially suitable for

triangular linear elements, is to evaluate the curvature tensor at patch level,

that is, to consider three directions pointing to nodes of the patch, which do

not share the same element. The average of this curvature tensor may also

be needed at patch level. A similar approach is used by Kobbelt et al. (1998)

in surface smoothing applied to computer graphics and geometric modelling.

A discrete Laplacian smoothing at a vertex of the mesh is computed by the

so-called umbrella operator. This operator gets this name because it takes

into account the first neighborhood of the considered vertex. This relation can

be visualized as an umbrella, being the considered vertex its top point, and

the vertices of its first neighborhood the points located at the low edge of the

umbrella.

7.6 Sensitivity of the curvature of a surface

approximated piecewise

As it has been shown in Section 7.3.3, in order to compute the sensitivity of

the regularization term, derivatives of the curvature measure considered with

139



respect to design variables are required. In the present section, the procedure to

obtain these derivatives is shown for the directional curvature, mean curvature,

Gaussian curvature and principal curvatures computed by the method explained

in Section 7.5.

Sensitivities of the mechanical problem are computed analytically (see Chapter

5). To attain coherence, sensitivities of these curvatures will also be computed

with this technique. In the following section, only one design variable s is

considered.

As it will be shown, an important part of the information required to com-

pute sensitivities of the curvature measures explained in Section 7.5, is also

required for the sensitivity analysis of the shell element explained in Chapter 5.

Particularly, derivatives of nodal position vectors and of nodal director vectors

are required in both cases. This confirms once more the harmony between the

mechanical vision and the geometrical vision of the problem.

7.6.1 Derivative of the approximation of the directional

curvature

As explained in Section 7.6, the curvature at a node P in direction PQ1 depends

on the position vector and director vector of this node P and on the position

vector of node Q1. Therefore, changes on these vectors may affect directional

curvature of point P . However, it should be noted that only a change on the

director vector of node Q1 does not produce a change on directional curvature

at node P .

In order to obtain the derivative with respect to s of the curvature at node P ,

in direction PQ1, the product rule has to be applied to equation (7.44). Hence,

κQ1
,s = 2

(
A3P · r1

|r1|2

)

,s

= 2

(
A3P ,s ·r1 + A3P · r1,s

|r1|2
− (A3P · r1) |r1|,s

|r1|3

)

(7.55)

The geometrical interpretation of vectors appearing in this formula is shown

in Figure 7.7. Superscript ‘new’ denotes entities related to the new modified

design.

Computation of the derivative of the nodal director vectors was also required

for the sensitivity analysis of the shell element and is explained in Chapter 5.

Moreover,

r1,s = xQ1
,s−xP ,s (7.56)
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Figure 7.7: Vectors related to the computation of the derivative of directional

curvature of a faceted surface at point P .

where xQ1
and xP are the position vectors of nodes Q1 and P respectively. Their

derivatives are also available from the sensitivity analysis of the shell element.

It should be remarked that r1,s will not vanish only if any of these position

vectors are linked with design variable s.

7.6.2 Derivative of the approximation of the curvature

tensor

In Section 7.5.2, the relation between directional curvatures and components

of the curvature tensor was explained. Based on this relation and considering

three directional curvatures, these components can be computed in a certain

local Cartesian system by solving the 3× 3 system of equations given in (7.49).

Now, derivatives of the components of the curvature tensor can be obtained in

the same manner, as derivatives of nodal degrees of freedom are obtained in the

discrete sensitivity analysis (see (4.10) and (4.11)). Let us denote,

A =



a2

1 2a1b1 b21
a2

2 2a2b2 b22
a2

3 2a3b3 b23


 (7.57)
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Deriving expression (7.49), we obtain




κe11,s
κe12,s
κe22,s



 = A−1 ·

(

κQ1

,s
κQ2

,s
κQ3

,s



− A,s ·




κe11
κe12
κe22





)
(7.58)

where

A,s =




2a1a1,s 2(a1,s b1 + a1b1,s ) 2b1b1,s
2a2a2,s 2(a2,s b2 + a2b2,s ) 2b2b2,s
2a3a3,s 2(a3,s b3 + a3b3,s ) 2b3b3,s


 (7.59)

It is important to remember that {a1, b1, 0} are the components of the tangent

vector t,1 at node P in the local Cartesian basis {A1P ,A2P ,A3P}. Vectors

A1P and A2P define the tangent plane at P and A3P is normal to it. Thus,

{a1,s , b1,s , 0} are the derivatives of the components of t,1 in this local Cartesian

basis. Note that the derivative of the third component vanishes. The reason for

that is that, when a design is modified, the tangent plane at P tilts to continue

being tangential to the modified design during the shape optimization process.

That is, A1P and A2P change to continue being tangential to the modified

surface at P and A3P changes to continue being normal. To conclude, if we

denote c1 as the third component of vector t,1 in the local Cartesian basis, we

have

c1 = t1 · A3P = 0 (7.60)

and

c1,s = t1,s ·A3P + t1 · A3P ,s = 0 (7.61)

The derivative of the tangent vector t1 expressed in the global Cartesian system

can be computed applying the product rule to equation (7.42). Let us denote,

t∗1 = (I − A3PA3TP ) · r1 (7.62)

Then,

t1 =
t∗1
|t∗1|

(7.63)

According to Appendix A.2, where the formula to compute the derivative of

a normalized vector is given, the derivative of the tangent vector t1 can be

computed as

t1,s =
t∗1,s |t∗1| − t∗1|t∗1|,s

|t∗1|2
(7.64)
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where,

t∗1,s = (I − A3PA3TP ) · r1,s−2(A3P ,s A3TP )r1 (7.65)

Note that all vectors needed to compute t∗1,s are known to this point. The

components of t1,s in the local Cartesian system can be computed from those

in the global Cartesian system with a change of basis.

Therefore, from expression (7.58) derivatives of the components of the curvature

tensor in the local Cartesian basis, considering contributions of element e, can

be obtained. Rearranging these derivatives in a matrix, it can be written,

{καβ},es =

(
κe11,s κe12,s
κe21,s κe22,s

)
(7.66)

7.6.3 Derivative of approximation of mean curvature,

Gaussian curvature and principal curvatures

Once derivatives of the components of the curvature tensor are available, deriva-

tives of the different curvature measures considered in Section 7.5 can be com-

puted. Sensitivities of mean curvature and Gaussian curvature, respectively,

are given by

H,s =
(trace{καβ}),s

2
(7.67)

K,s = (det καβ) = κ11,s κ22 + κ11κ22,s−2κ12κ12,s (7.68)

Derivatives of principal curvatures can be computed from (7.54). Two different

cases should be distinguished, depending on whether both principal curvatures

are equal or not. That is,

λ,s = H,s±
2HH,s−K,s
2
√
H2 −K

; if H2 −K > 0

λ,s = H,s ; if H2 −K = 0

(7.69)

7.7 Numerical experiments

In the present section, different aspects treated in this chapter are further an-

alyzed with the help of some numerical experiments. Emphasis is made on the

same example, on which different tests are performed. This way several factors

can be studied in the same structure and their effects can be better understood.
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This is important since it allows a better comprehension of the influence of

shape description and control techniques in results obtained.

It should be noted that even though stress and displacement constraints are

very common and neccesary in structural optimization, in numerical experi-

ments presented here they are not considered. This is due to the fact that the

consideration of additional constraints may conceal the real effects under study.

First, a simple numerical experiment shows the differences between the two

parametrization techniques compared in Section 7.2: CAD-based and FE-based

parametrization. Comparison is made on the basis of analysis of optimum

results obtained for both techniques, with different initial designs in a problem

where strain energy is minimized.

Curvatures of a certain surface are computed both analytically and numerically

with the approach proposed in Section 7.5. Good performance of this numerical

approach is shown. These curvatures are also used to control design shape

in structural optimization problems by introducing a regularization term as

explained in Section 7.3.3. To show how this regularization term influences

designs, experiments of design optimization minimizing the regularization term

alone are presented. Here, it will be observed how design shape can be controlled

by means of curvatures. Finally, examples where regularization term is applied

to a structural optimization problem of minimizing strain energy are given.

7.7.1 Comparison of CAD-based and FE-based

parametrization

A shell structure is to be optimized with respect to strain energy using both a

CAD and a FE based design parametrization.

The initial design, depicted in Figure 7.8, consists of a parabolic cupola, whose

projection on the xy-coordinate plane is a square. The cupola is modeled by a

9-node Lagrange design element, where the z-coordinate of the central node is s1

and the z-coordinate of the central nodes at the edges is s2. Therefore, different

initial designs can be considered giving different values to s1 and s2. Any vertical

section containing the main axis of the structure will be a parabola. However, in

general the design is not a paraboloid of revolution, since two of these arbitrary

sections may produce parabolas of different characteristics. Material properties

are also given in Figure 7.8. The load case considered is self-weight.

The structure is discretized by a mesh of 7 × 7 bilinear elements. The DSG
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Figure 7.8: Parabolic cupola. Initial design and material properties

method, explained in Section 3.12, is considered in order to prevent shear lock-

ing, because the structure is a thin shell. No modification is used to prevent

membrane locking, since as elements are bilinear and the mesh is not highly

distorted, no significant membrane locking is expected. The importance of a

reliable finite element formulation and, in particular, the influence of locking in

the optimization process, has been stated in Chapter 6.

The structure is pin-supported at its four corners. These supports are mod-

elled preventing displacements of the four corner nodes. It is known that this

technique is a source of singularities, that is, stresses at these nodes will not

converge when the mesh is refined. However, as the mesh used is too coarse

(7× 7 elements), there is no need to consider preventing displacements of adja-

cent nodes. That is, the real dimension of supports is very small in relation to

the element side. Nevertheless, it should be remarked that in case the mesh is

refined, displacements of the adjacent nodes have also to be prevented, up to a

certain refinement level.

Shape optimization which minimizes strain energy of this initial design, is per-

formed in two different ways. First, CAD design parametrization is used. The

same variables used to produce different initial designs, s1 and s2, are now con-

sidered as design variables. Second, FE based design parametrization is used.

Here, all FE nodes except those located at the corners are allowed to move in z-
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direction to produce modified designs. Therefore, a total of 60 design variables

are considered.

Figure 7.9 shows optimal designs obtained with both parametrizations, for dif-

ferent initial designs. All considered initial designs have the same value for s1

but different values for s2. Values of strain energy for initial and optimal designs

are also given.

The obtained results show the significance of the influence of the initial design

on the final optimal designs. In a shape optimization process, optimal designs

obtained by the optimization algotithm may be local or global optima. Ob-

taining one or the other is difficult to predict and control because the objective

function is usually highly nonconvex and its trend is difficult to forecast. The

more design variables are considered, the more probable is the presence of local

optima.

In Figure 7.9, it can be observed that even for CAD parametrization, where

only two design variables are considered, two different optima are obtained.

For initial designs with s2 = 3.0 m and s2 = 5.0 m (examples (c) and (d)),

a local optimum design is obtained which is a significantly higher structure.

However, initial designs with s2 = 0.0 m and s2 = 1.5 m (examples (a) and (b))

yield a different optimal design, more shallow than the previous one and with

a strain energy almost 50% lower. All of them are optimal designs in the sense

that their strain energy represent a minimum. However, final design of (a) and

(b) are a ‘better’ optimum.

In FE-based parametrization, as more design variables are considered, the pres-

ence of more local optima is expected. For this reason, different results are

obtained for each initial design. It can be seen that FE parametrization is more

flexible than CAD-based parametrization because it allows a wider set of admis-

sible designs. None of the final designs obtained with FE parametrization could

be obtained with the CAD parametrization chosen. It is important to note that

these designs are more optimal than those obtained for CAD parametrization

because their strain energy is lower in all cases. Of course, it may be argued

that in this example the underlying CAD model is very simple. A more com-

plex one with multiple spline based patches could have been chosen. However,

as explained in Section 7.2.3, this would imply a higher modelling effort to be

made by the designer.

A significant characteristic of FE parametrization is that it can yield to nons-

mooth solutions. These can be seen especially in optimal designs obtained for

the initial design with s2 = 0.0 m and s2 = 5.0 m. These designs are actually
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Figure 7.9: Optimal designs obtained by minimization of strain energy for dif-

ferent initial designs and parametrization techniques.

147



solutions to the optimization problem, but usually smooth shapes are prefered.

Moreover, because of the waves, resulting meshes may be too distorted and

yield unreliable results in the structural and sensitivity analyses. They may

even cause the abort of the optimization process, due to high distortion of in-

dividual elements. This is the case of examples (a) and (d) in Figure 7.9. They

are not converged designs and the optimization process was aborted due to the

high level of mesh distortion. As shown in Chapter 6, the quality of structural

and sensitivity analyses is crucial in the optimization process.

For these reasons, regularization and smoothing techniques are required to con-

trol design smoothness.

7.7.2 Computation of mean and Gaussian curvature of a

discretized surface

This section presents some examples, where mean and Gaussian curvatures of

surfaces approximated by a C0 continuous mesh are computed by the approach

proposed in Section 7.5. These examples will show the good approximation

obtained by this method.

L=12R=3

R=10

Figure 7.10: Examples of computation of the mean curvature numerically

The first example is a cylinder depicted in Figure 7.10.a. It is known that the
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principal curvatures at any point of the cylinder are κ1 = 1
3
, since R = 3 is

the cylinder radius and κ2 = 0, because a cylinder is a developable surface.

Therefore, the mean curvature at any point of the cylinder is

H =
κ1 + κ2

2
=

1

6
(7.70)

The surface is discretized with a very coarse mesh and its mean curvature is

computed numerically. The numerical curvature computed at the interior nodes

coincides with the exact value. For nodes located at the boundary meridians,

the computed curvature differs from the exact value, due to limitations of this

approach explained in Section 7.5.4.

In the second example, depicted in Figure 7.10.b, the mean curvature of a

semisphere with a hole at the top is computed. The radius of the sphere is

R = 10, and therefore, the principal curvatures are κ1 = κ2 = 1
10

. The analytical

mean curvature is H = 0.1. The surface has been also discretized with a coarse

mesh. The numerical mean curvature, obtained with this mesh for the interior

nodes, is H = 0.09998, which is again a very good approximation.

A paraboloid of revolution is now considered. The general explicit equation of

a paraboloid of revolution, whose axis of revolution is coincident with the z

coordinate axis, is given by

z(x, y) = a(x2 + y2) + h (7.71)

a and h being two parameters. The paraboloid of revolution has parabolic cross

sections in planes parallel to the axis of revolution and circular cross sections in

planes normal to the axis of revolution. The analytical expresion which gives

the mean curvature of this paraboloid at any point P (x, y, z) of its surface,

reads

H(x, y) =
2(a+ 2a3(x2 + y2))

(1 + 4a2(x2 + y2))(3/2)
(7.72)

And the expression for the Gaussian curvature is

K(x, y) =
4a2

(1 + 4a2(x2 + y2))2
(7.73)

In Figure 7.11, mean curvature function and Gaussian curvature function for a

paraboloid of revolution are shown. Analytically, they are computed according

to formulae 7.72 and 7.73. Numerically, they are computed at nodes using a
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Figure 7.11: Paraboloid of revolution and its mean curvature function and

Gaussian curvature function, computed both analytically and numerically
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mesh of 7 × 7 bilinear elements. In order to obtain the curvature functions,

nodal curvatures have been interpolated using shape functions. It should be

noted that in the plots of the numerical curvatures two approximation factors

are mixed: the numerical computation of curvature at nodes and the numerical

interpolation of these values.

It can be concluded that the present method approximates very well the curva-

ture of surfaces discretized by a C0-continuous mesh of elements, even for rough

discretizations.

7.7.3 Interpretation of the regularization term

Before applying the proposed regularization term to strain minimization prob-

lems, it is very interesting to see its effects, when used alone as objective function

in a shape optimization process. For this reason, the shape optimization of a

surface has been considered, minimizing an objective function of the form

∫

Ω

(H(x, y) − H̄)2dΩ (7.74)

This expression is obtained considering the mean curvature in regularization

term (7.1).

The initial geometrical data considered is the same as in Figure 7.8 with s1 = 3.0

m and s2 = 0.0 m. Of course, in this case no material properties or load need

to be considered, because here design optimization is based only on geometrical

properties and not on the structural behaviour. FE-based design parametriza-

tion is used. As in Section 7.7.1, all FE nodes except those located at the corners

are allowed to move in z-direction to produce modified designs. It should be

noted that, in this case, objective function (7.74) converges to zero during the

optimization process.

In Figure 7.12, optimal designs obtained for three different constant values of H̄

over all domain are presented. In these experiments, only contributions of inner

elements to objective function (7.74) are considered. Contributions of elements

at boundaries are not considered, due to limitations of the approach used to

compute curvatures at boundary nodes (see Section 7.5.4).

In Figure 7.12.a, the prescribed curvature is H̄ = 0.0 m−1. Intuitively, it can be

interpreted that, in this particular case, minimizing (7.74) implies that a search

for a surface, whose mean curvature approximately vanishes, is undertaken. The
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Figure 7.12: Minimization of the regularization term for different values of

prescribed mean curvature: optimal designs obtained and its mean curvature

function.
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optimal design obtained, a plane, and its mean curvature function confirms this

fact.

In Figure 7.12.b, the optimal design obtained for a prescribed mean curvature

H̄ = −0.1 m−1 is depicted. The negative sign is due to the surface orientation

and definition of the normal vectors to the surface at the FE nodes, which,

in the present case, point outwards. This prescribed curvature is actually the

mean curvature of a sphere of diameter 20 m. Notice that the length of the side

of the plan of the designs in the xy-coordinate plane is 10 m. Therefore, as a

result we can expect ‘a kind of’ a part of a sphere of diameter 20 m. It will

be only ‘a kind of’ because the plan is a square, and not a circle. An arc of a

circle of diameter 20 m has been ploted in dashed line. It can be seen how this

arc matches with the section of the optimal design obtained. The plot of the

mean curvature function of the optimal design also shows a good approximation

to the prescribed function. It is important to note that as contributions of

boundary elements to the regularization term are not considered, no value has

been prescribed for curvatures of boundary nodes.

Figure 7.12.c shows results obtained for the case of H̄ = −0.2 m−1. This is the

mean curvature of a sphere with a diameter of 10 m. Analogous to the previous

case, an arc of a circle 10 m in diameter has been ploted. It can also be seen that

it matches with the section of the optimal design. Mean curvatures at interior

nodes are also very well approximated to the prescribed one. Consequently, the

optimal design obtained is a kind of hemisphere.

In these numerical experiments, it has been shown how the regularization term

alone controls design shape. Design is modified to obtain a curvature func-

tion approximated to the prescribed one at the nodes where regularization is

considered. Here, a constant prescribed mean curvature function has been con-

sidered and contributions of all inner elements have been taken into account.

More sophisticated applications of the regularization term can also be consid-

ered. Instead of a constant function for the prescribed curvature, another kind

of function can be chosen. Moreover, contributions of only certain selected el-

ements can be considered, permiting arbitrary curvatures at nodes, which are

not sharing these elements.

7.7.4 Regularization of FE-based optimization

In Section 7.7.3,the effects of minimizing only the regularization term over sur-

face designs have been shown. This regularization term is used to smooth de-
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signs in a structural shape optimization problem, which minimizes strain energy

and uses FE-based parametrization.

In Section 7.7.1 a parabolic cupola was optimized with respect to strain energy,

using both CAD- and FE-based parametrization. Designs obtained for FE

design parametrization were wiggly shapes. The same optimization problem is

considered in this section but, in addition to the original objective function,

a regularization term based on mean curvatures is considered. Therefore, the

modified objective function reads,

Fβ = F +Rβ (7.75)

where

F =
1

2

∫

V

σ̄ε̄dV (7.76)

Rβ =
β

2

∫

Ω

(H − H̄)2dΩ (7.77)

It is important to note that, as

1

2

∫

Ω

(H − H̄)2dΩ =
Rβ

β
(7.78)

is dimensionless, the regularization parameter β has the units of strain energy

to perform summation in equation (7.75).

The initial geometry considered is again the same as in Figure 7.8 with s1 = 5.0

m and s2 = 0.0 m. Material properties are also the same and the load considered

is again self weight as in Section 7.7.1. Pin supports are again considered at the

four corners. Also a mesh of 7 × 7 is used and the DSG method is considered

to prevent shear locking. FE based design parametrization is used and design

variables are z-coordinates of all nodes except those located at the corners.

As in Figure 7.12.c, a prescribed mean curvature H̄ = −0.2 m−1 is considered

and only contributions of inner elements are taken into account.

Different values of the regularization parameter have been considered. The

regularization parameter tunes the significance of the regularization term in the

optimization process. Consequently, it can be used as a control tool of the shape

design. This effect can be observed in the final designs obtained and their mean

curvature functions shown in Figure 7.13, as well as by analyzing Tables 7.1

and 7.2.

Analysis of Table 7.1 shows values of the objective function for the initial de-

sign considering different regularization parameters. As in all cases, the initial
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design is the same, the strain energy and
Rβ

β
is also the same. However, as the

regularization parameter is different for each case, Rβ and, consequently, Fβ
are also different. Therefore, for identical optimization problems, the larger the

regularization parameter is, the larger is the contribution of the regularization

term in the initial modified objective function Fβ.

Table 7.1: Initial values for strain minimization with regularization.

β Fβ Strain energy Rβ
Rβ

β

(kN m) (kN m) (kN m) (kN m)

0.001 0.050583 0.050481 0.000103 0.103

0.005 0.050994 0.050481 0.000513 0.103

0.01 0.051507 0.050481 0.001026 0.103

0.05 0.055611 0.050481 0.005130 0.103

Table 7.2: Final values for strain minimization with regularization.

β Fβ Strain energy Rβ
Rβ

β

(kN m) (kN m) (kN m) (kN m)

0.001 0.007159 0.006460 0.000699 0.699000

0.005 0.006738 0.005912 0.000826 0.165200

0.01 0.007289 0.006264 0.001025 0.102500

0.05 0.009732 0.009531 0.000201 0.001930

The use of a larger regularization parameter implies a stronger control of the

shape design through the regularization term. Therefore, it can be expected

that the design moves tending to the prescribed curvature function during the

optimization process, even to the point of sacrificing in part the strain energy

criteria. Lower values of the regularization parameter, on the contrary, imply a

not so severe control of the design shape. In these cases, design will be influenced

mostly by the strain energy minimization criteria.

In Figure 7.13 it can be observed that tests done with a larger regularization

parameter yield smoother designs and their mean curvature function is closer

to the prescribed value H̄ = −0.2 m−1. On the other hand, the lower this

parameter is chosen, the less significance the regularization term has and the

less smooth is the final design obtained. Its mean curvature function differs also

each time more from the prescribed constant value and it is very noisy, because

of the wiggles present in the optimal design.
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Figure 7.13: Final designs and their mean curvature function considering strain

minimization and a regularization term for different regularization parameters.
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The optima obtained are most probably not the only possible results to the

optimization problem. That is, we can not affirm that they are global optima.

The penalization of the original objective function with a regularization term

does not ensure the elimination of alternative local optima. It is important to

note that the set of admissible designs is not modified by the consideration of

this regularization term but it only favours obtaining designs with a curvature

close to the prescribed one.

In Table 7.2 the final values for the modified objective function and the sin-

gle contribution of strain energy and regularization term are given. A larger

regularization parameter implies that the adaptation of the design to the pre-

scribed curvature function has more influence on the search for an optimal

design. Therefore, it can be expected that, for larger regularization parameters,

the term
Rβ

β
for the final design is lower. This can be confirmed in Table 7.2

and is interpreted as a better approximation of the curvature’s design to the

prescribed curvature function.

On the other hand, a lower regularization parameter implies that shape control

through regularization is relaxed and the strain energy criteria gains more rel-

evance in the optimization process. In principle, the more relaxed this shape

control is, the lower the values for the strain energy can be expected. This

is the general trend that can be observed in Table 7.2. However, due to the

presence of multiple local optima, nothing assures this and final designs may

have a larger strain energy even though they are less smooth (see the case of

β = 0.001 kN m).

Let us now consider the same shape optimization problem (Figure 7.8) but

using a different prescribed curvature function in the regularization term. The

structure is discretized now with a mesh of 18x18 elements, that is, a finer mesh

as before. The z-coordinates of all finite element nodes, except those located at

the corners, are taken as design variables.

Figure 7.14: Final design obtained with minimization of strain energy when no

regularization is considered.

Figure 7.14 shows the final result obtained if no regularization is used. As in
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the case of the coarser mesh, a wiggly shape is obtained. The waves appearing

are mesh depending, since FE-parametrization is used.

Figure 7.15: Prescribed curvature function and design related to it.

In Figure 7.15.a the contour plot of the prescribed curvature function considered

now is depicted. It is important to note that in this case the prescribed curvature

function is not constant over the domain. The curvature function depicted in

Figure 7.15.a is that of the design shown in Figure 7.15.b. As in the previous

case, regularization is only applied in the inner elements. The regularization

parameter is chosen to be β = 0.05kNm.

Figure 7.16: Final design obtained considering regularization and evolution of

the terms of the objective function in the optimization process.

Figure 7.16 shows the final design obtained considering minimization of the

strain energy and the aforementioned regularization. As it can be observed, the
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final design obtained is a compromise between the one obtained without con-

sidering regularization and the one related to the curvature function prescribed.

The graphic given shows the evolution of the strain energy, regularization term

and the sum of both (modified objective function) during the optimization pro-

cess.

An important point not to be overlooked is that now minimization is performed

on the sum of strain energy and regularization terms, and not on these terms

separately. For this reason special attention should be paid to the value of the

original function for the initial and final design. If the prescribed curvature

function describes a totally inappropiate design shape in relation to the original

objective function considered (here, the strain energy) and/or the regularization

parameter is too high, it may occur that the value for the original objective

function obtained is even larger than that for the initial design. The designer

has to assess these cases based on his engineering experience.

Moreover, in minimization of the modified objective function, nothing assures

that the value of the original energy function is lower than that of an opti-

mization problem without regularization term. Designs with a lower original

objective function may be sacrificed in favoring other designs with a higher

original objective function but a curvature closer to the desired one.

Here, we come again to the question of what is an optimal design. In shape

optimization not only structural criteria are considered, but also geometrical

criteria. This is inherent to shape optimization and can not be circumvented,

because the key is to modify the geometry of an initial design. The designer has

to balance the significance of both structural and geometrical criteria in each

particular case.

FE-based parametrization combined with regularization by means of curvatures

is a good alternative to CAD parametrization especially for preliminary design.

The flexibility of this approach is the key of its suitability. This flexibility is

based on two important aspects:

• FE parametrization allows a wider set of admissible designs

• Performing experiments with different prescribed curvatures, different reg-

ularization parameters or different regularization areas does not require

much effort from the designer. Only some parameters in the input data

have to be changed.

In the case of CAD parametrization, in order to obtain such a flexibility, the

underlying CAD model must be changed followed by subsequent modelling cost
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for the designer. Consequently, FE parametrization with regularization is more

interactive and user friendly when design flexibility is needed.
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Chapter 8

Conclusions and Further Lines

of Research

Optimum structural design is systematized as a group of several disciplines

organized in modules, which interact in the optimization loop. A factor that

may affect any of the modules in the optimization loop may spread throughout

it and influence the final optimization result. Therefore, it is necessary to ensure

that all modules provide reliable results and that the designer is aware of the

consequences of his decisions regarding the formulation of the problem.

In shape optimization, the influence of the structure typology is extended in

the optimization loop to the design module, structural analysis and sensitivity

analysis. This is not that influential in the mathematical programming module,

since there the optimization problem is considered in its most abstract form.

In the present work, special aspects of shape optimization of shells regarding

the structural and geometrical vision of these structures have been studied.

In finite element analysis and sensitivity analysis, the structural behavior of the

shell is studied for the actual design and predicted for potential design modifi-

cations. The information yielded by these analyses is used in the mathematical

programming module by gradient based optimization algorithms, as basis for

taking decisions about improving the actual design. Therefore, the quality of

this information is most important for the optimization result.

The effects of shear locking phenomena on shape optimization of shells have

been demonstrated both from the point of view of structural analysis and sensi-

tivity analysis. Accuracy errors related to standard displacement finite elements

will not only affect structural analysis but also sensitivity analysis.
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The DSG method, a simple but efficient formulation to avoid locking, is con-

sidered as an alternative. The simplicity of the method, its good performance,

its efficiency, and its uniform formulation for both triangular and quadrilateral

elements make it particularly attractive. Analytic computation of sensitivity

coefficients with DSG elements turns out to be as simple as for standard dis-

placement elements, coming along with no additional computational cost. Con-

sequently, the use of DSG elements in shape optimization appears to be very

advantageous.

Numerical experiments confirm that a reliable analysis method is crucial not

only for the accuracy of the optimum, but also for the principal type of de-

sign. In the optimization process, locking phenomena lead to a systematic

error, which is difficult to detect and may have severe consequences. These

consequences can be especially dramatic in the case of stress and displacement

constraints. It has been demonstrated that in these cases, it may occur that the

optimal design obtained is not even in the ‘real’ feasible domain, that is, the con-

sidered displacement or stress will violate the given constraint. Consequently,

the solution obtained from the optimization procedure is not even in the group

of admissible solutions. It should be remarked that the use of quadratic, instead

of linear, standard displacement elements does not guarantee reliable results for

stresses, even though displacements may converge rapidly.

Another important point regarding the quality of the information transferred to

the optimization algorithm is the sensitivity analysis technique used. The need

for more accurate results legitimates the use of the analytical approach, which

involves higher mathematical complexity and requires profound knowledge of

the finite element formulation at hand. The kind of sensitivity analysis is also

decisive in the overall computational cost of the optimization process. If a

high number of design variables are involved, adjoint techniques are highly

recommended to attain a reasonable computational cost.

However, in an optimization process not only the computational cost has to be

taken into account. The modeling cost is also a crucial factor, especially if it

is considered that it is paid by the designer. This modeling cost is the effort,

the designer invests in the formulation of the optimization problem, that is,

the formulation of objective function and constraints and the definition of the

design model.

Regarding the design model, two tasks are to be carried out: shape description

and shape control of the design. These two tasks determine to a large extent

the optimization result.
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The parametrization of the design shape determines the set of admissible de-

signs. The CAD-based parametrization constrains the admissible designs to a

CAD model. This may be interesting, if the designer has a preconceived idea

about the rough final shape, because of manufacture reasons, esthetics or pre-

vious optimization experiments. Shape control is attained by the underlying

CAD model.

However, on occasions, the designer may have no previous idea about the final

shape or the CAD definition may turn very complex because of the multitude

of design patches and continuity requirements across them. For these cases, FE

based design parametrization seems more suitable. This technique considers

a larger number of design variables and, therefore, provides more freedom to

the potential designs. This fact makes it very suitable for free formed shells.

However, the larger the number of design variables, the more increases the

probability of existence of local optima. The initial design considered may have

special influence in obtaining the one or the other local optima. This is especially

relevant when numerous local optima are present in the feasible domain.

A significant characteristic of the FE based parametrization is that wiggly

shapes may appear. For instance, in the case of strain energy minimization,

there is a tendency for these wiggly forms to appear, since they are prone to

have a low strain energy. The problem of wiggly shapes is that the finite element

reliability can be affected due to the high mesh distortion. Also, usually wiggly

optimal designs are not desired because smooth shapes are preferred. For these

reasons, shape control by regularization techniques is used.

Shape control by regularization techniques with consideration of intrinsic cur-

vature properties has proved to be a very efficient method for obtaining smooth

surfaces in shape optimization of shells. This approach is defined by the addition

of a regularization term to the objective function. This term has the form of the

integral of the square of the difference between an intrinsic curvature measure

of the surface and a prescribed function. The consideration of this regulariza-

tion term favors designs whose curvature function approximates the prescribed

one. As the considered curvatures are intrinsic surface properties, this smooth-

ing technique does not depend on underlying reference surfaces, as do other

regularization approaches, used in shape optimization for fluids. The designer

can control the smoothness of the final design through the reference curvature

and the regularization parameter defined in the input data. The modeling cost

of an optimization problem, using FE-based parametrization together with the

smoothing techniques studied, is significantly low. On the contrary, achieving a

similar versatility with a CAD-based parametrization technique would require a
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change of the underlying CAD model, which may be very expensive, especially

if multiple patches are considered, and continuity conditions across them are

required.

An important point of the considered regularization techniques is the compu-

tation of curvature measures of a surface approximated by a polygonal mesh.

The key aspect of the proposed approach lies on the information contained by

the averaged director vectors defined at the nodes of the mesh. These vectors

are computed as the average of the normals to the adjacent elements at the

considered point. As a consequence, they are an approximation to the normals

of the original surface at the nodes. The tensor of curvatures at each node is

computed and from this, other curvatures such as mean, Gaussian and principal

curvatures can be computed. Numerical examples showed the good performance

of this method. An important advantage of the approach is its coherence with

the geometrical definition of the finite element mesh, which means that all geo-

metrical and topological data is already available. Moreover, sensitivities of the

different curvature measures can be computed analytically, which is important

for the derivation of the regularization term.

The consideration of this kind of regularization modifies the objective function

and, as a consequence, the original mathematical formulation of the optimiza-

tion problem. The designer has to assess the influence of this shape control

by analyzing the objective function values and adjusting the regularization pa-

rameter as well as prescribed curvatures, in order to find the optimal design.

Probably, the most difficult task in optimization is to determine what is an opti-

mum. When a certain design is said to be optimal, it is meant that it is optimal

with respect to certain criteria. From the criteria that the designer may want

to consider, only those which are possible to be translated into a mathemati-

cal expression, can be considered in the formal definition of the optimization

problem. Other more subjective criteria, like esthetics, are considered in the

design module and shape control. Therefore, shape control is also a module of

decision, not based on the value of a certain function, but on the subjective

criteria of the designer. Also, he can control the weighting of this subjective

factor by tuning the parameters of shape control.

In the present work, this smooth control approach is explained in the frame

of shape optimization of shells. However, these control techniques can also be

applied to smooth control of membranes or boundaries of 3D bodies. Moreover,

they can be used in combination with CAD-based parametrization, although

here, its effectivity is constrained by the underlying CAD model.

In shape optimization with FE-based design parametrization, questions regard-
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ing shape control require solving, especially in case of surfaces. An important

aspect is the determination of the most advantageous way to define the nodal

movements in the optimization process. In the case of surfaces and curves, it

should be noted that if the position of a node changes, such as its new position

is also contained in the previous design, the finite element mesh is modified,

but not the design shape. This fact has important consequences because it may

cause high mesh distortion, which affects the results of the structural analy-

sis and, hence, the final result of the optimization process. For this reason, it

is neccesary to study different alternatives to avoid this phenomenon, such as

allowing movements only in the normal direction to the surface or curve.

Further lines of research in the design module should be directed to provide

flexibility to the optimization process. The aim is to develop more tools, which

can be used by the designer to control the design geometry, while still attaining

a low modeling cost. Some of these tools may be used to control design shape

wavelength or to filter high frequency shape waves on surfaces and curvatures.

Providing the designer with a high versatile set of design and control tools allows

him to tackle a larger variety of shape optimization problems, especially of free

formed surfaces. The search of this generality points the way towards a new

concept of shape optimization and fits in the evolution tendency of structural

optimization.
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Appendix A

A.1 Two dimensional shape functions

The shape functions for the linear and bilinear elements are given by

A.2 Derivative of a normalized vector

Consider a vector

v = v∗/|v∗| (A.1)
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Its partial derivative with respect to a variable s is given by

v,s =
v∗,s |v∗| − v∗|v∗|,s

|v∗|2 (A.2)

where

|v∗|,s =
v∗ · v∗,s
|v∗| (A.3)

A.3 Derivative of the magnitude of a vector

Consider a vector v∗. The magnitude of v∗ is given by

|v∗| =
√

v∗ · v∗ (A.4)

and the derivative of this magnitude with respect to s is given by

|v∗|,s =
v∗ · v∗,s
|v∗| (A.5)

A.4 Derivative of a cross product

If we consider two vectors a(s) and b(s) in R3, the cross product a×b is given

by

a × b =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 (A.6)

where ai and bi are the ith component of the vectors a and b respectively.

The derivative of the cross product with respect to the variable s is obtained as

(a × b) ,s =




(a2),s b3 − (a3),s b2 + a2(b3),s−a3(b2),s
(a3),s b1 − (a1),s b3 + a3(b1),s−a1(b3),s
(a1),s b2 − (a2),s b1 + a1(b2),s−a2(b1),s




=




(a2),s b3 − (a3),s b2
(a3),s b1 − (a1),s b3
(a1),s b2 − (a2),s b1


 +



a2(b3),s−a3(b2),s
a3(b1),s−a1(b3),s
a1(b2),s−a2(b1),s




= (a,s×b) + (a × b,s )

(A.7)

In (A.7) it can be seen that the product rule applies for the cross product.
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2, 377-398, (1993).

Ramm, E., Braun, M., and Bischoff, M. (1995). Higher order nonlinear shell

formulations: Theroy and application. Bulletin of the IASS, 36:145–152.

Ramm, E. and Schunk, E. (1986). Heinz Isler Schalen. Karl Krämer Verlag,
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