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Abstract—This paper revisits the problem of time synchro-
nization and localization in wireless networks with approximate
message passing. A simple yet efficient, approximate Gaussian
Belief Propagation (GBP) algorithm for cooperative localization is
proposed. Compared to prior art, the algorithm exploits only one-
way measurements, as well as simplified equations, not offered
before in the literature. The joint time offset and location estima-
tion problem is then studied, and a non-cooperative approximate
GBP algorithm is proposed, where agents communicate only with
anchors, again with one-way (and not round-trip) measurements.
Both proposed algorithms perform close to state-of-the-art meth-
ods while offering minimal total communication overhead, which
for localization, is smaller by a factor of 100 compared to the
prior art.

Index Terms—Network Synchronization, Localization, Mes-
sage Passing, Gaussian Belief Propagation (GBP)

I. INTRODUCTION

In many wireless network applications, position informa-
tion is vital. Thus, cooperative localization algorithms have
been proposed [1]–[4] that utilize range measurements and
information exchange between neighboring nodes in a peer-to-
peer fashion. Ranging measurements are usually based on the
pairwise calculation of the signal propagating time-of-flight,
and thus, clock (time) synchronization among the network
nodes is essential [5], [6].

Synchronization and localization in wireless networks have
been studied both in a sequential manner - by first synchro-
nizing the nodes to the reference time and then locating them,
and jointly - by performing simultaneous clock and location
estimation [7], [8]. Regarding the latter approach, particle-
based implementation presented increased complexity and
communication overhead. Work in [9] aimed to overcome such
problems, performing cooperative synchronization and local-
ization simultaneously by utilizing a Taylor approximation that
linearized the observation function. It then applied Gaussian
Belief Propagation (GBP) on the factor graph, mapped through
the original network, obtaining time offset and location esti-
mates. The joint cooperative estimation problem towards lower
complexity and reduced communication overhead has also
been addressed in [10], [11], [12].

In this paper, we first approach the problem sequentially
and time-synchronize the nodes using the work in [5]. We
then propose a quite simple yet efficient, approximate GBP-
based algorithm for cooperative localization (namely CLBP),

exploiting a simplified factor graph, as well as a simplified
Taylor expansion compared to [9]. We then study the joint
synchronization and localization problem and propose an ap-
proximate GBP for joint non-cooperative estimation (namely
JNCE), where agents communicate only with anchors. In sharp
contrast to prior art, this work:

1) Offers simple, easy to calculate, algebraic equations for
each message, not offered before in the literature, to the
best of our knowledge.

2) Utilizes only one-way measurements (instead of round-
trip) and, correspondingly, simplified factor graphs in
both CLBP and JNCE.

3) Minimizes total communication overhead by a factor of
100, as the exchanged messages consist of a pair of real
numbers (instead of probability density functions).

II. SYSTEM MODEL

This work assumes a wireless network with M =
{1, . . . ,M} set of agent nodes to be located and time-
synchronized and A = {1, . . . , A} set of anchor nodes
with known coordinates and time-synchronized at the same
reference time. The local clock of each node i follows:

ci(t) = ϕi t+ θi, (1)

where t is the accurate reference time, θi, ϕi is the time and
frequency offset of node i, respectively. If i ∈ A, then θi =
0 and ϕi = 1. If node i and node j are within a reliable
communication range, these nodes are considered neighbors.
The set of all available communication links is denoted as Ξ
and the set of neighbors of node i as N(i); N(i)/j denotes
the elements of the set, excluding j.

At time t1, node i transmits its current timing information
to node j (Fig. 1). After delay ∆ij , node j receives the timing
information from node i at time t2. Node j sends back a signal
at t3, and node i captures the backward signal after delay
∆ji, at t4. Based on the location of each node i ∈ M ∪ A,
xi = [xi yi]

T , the delay ∆ij is the signal propagating time
dij

c , with dij = ||xj − xi|| the Euclidean distance and c the
speed of light; thus, ∆ij = ∆ji. The measured timestamp at
the receiver j is modeled as follows:

cj(t2) = ϕj

(
ci(t1)− θi

ϕi
+

dij
c

+ uij

)
+ θj , (2)
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Fig. 1: Two-way synchronization messages between node i
and node j.

where uij is assumed to be Gaussian distributed noise.
If the frequency skew is 0 and thus, ϕi = 1 ∀i, the observed

signal propagation time can be obtained from timestamps c(t)
as follows:

tij = cj(t2)− ci(t1) =
||xj − xi||

c
+ (θj − θi) + uij , (3)

where uij ∼ N (0, σ2
t ). Multiplying both sides of Eq. (3) by

c offers:

zij = ||xj − xi||+ c(θj − θi) + ζij , (4)

where ζij = c · uij is also Gaussian distributed, i.e., ζij ∼
N (0, σ2

d), with σ2
d

△
= c2σ2

t . It is noted that ζij is assumed
independent of ζi′j′ for any i′ ̸= i or j′ ̸= j.

III. COOPERATIVE LOCALIZATION WITH APPROXIMATE
GAUSSIAN BELIEF PROPAGATION (GBP)

Assuming that the time offset θ is estimated, cooperative
localization is first addressed (time offset will be studied
at Section IV). The range measurements are simplified as
follows:

zij = ||xj − xi||+ ζij . (5)

If X = {xi | i ∈ M} and Z = {zij | (i, j) ∈ Ξ}, then the joint
posterior distribution follows from the Bayesian Theorem:

p(X|Z) ∝ p(Z|X) p(X)

∝
( ∏

(i,j)∈Ξ

p(zij |xi,xj)

) ∏
i∈M

p(xi),
(6)

where the likelihood function p(zij |xi,xj) is given by:

p(zij |xi,xj) =
1√
2πσ2

d

exp

{
− (zij − ||xj − xi||)2

2σ2
d

}
∝ exp

{
−

z2ij − 2zij
√
(xj − xi)2 + (yj − yi)2

2σ2
d

− (xj − xi)
2 + (yj − yi)

2

2σ2
d

}
, (7)

and the priors p(xi) are assumed Gaussian. If i ∈ A, meaning
that there are no location uncertainties, the prior distribution

is the Dirac delta function (which can also be considered as
Gaussian with variance close to zero). The marginal posterior
distribution regarding node i follows:

p(ξi|Z) ∝
∫

p(X|Z) ∼ {dξi}, (8)

with ξi ∈ {xi, yi} and ∼ {dξi} denoting the integration
over all variables collected in X, except for the variable ξi.
Then, the minimum mean squared error estimator (MMSE) is
utilized:

ξ̂i =

∫
ξi p(ξi|Z) dξi. (9)

Direct marginalization in Eq. (8) is hard to calculate. Assum-
ing that the x-axis and y-axis coordinates are independent, the
posterior distribution is re-written as follows:

p (xi|zij ,∀j ∈ N (i))

∝ p(xi) p(yi)
∏

j∈N (i)

p(zij |xi, xj , yi, yj). (10)

The joint distribution is factorized and, thus, can be repre-
sented by a (bipartite) factor graph, depicted in Fig. 2; the
latter shows (for brevity) a single adjacency between nodes i
and j.

Sum-Product (or equivalently) Belief Propagation is the
message-passing algorithm that will be run on the aforemen-
tioned factor graph to obtain the beliefs b(ξi); the latter will
approximate the marginals p(ξi |Z), ξi ∈ {xi, yi}, i ∈ M
(with the specific approximations adopted, explained subse-
quently). Two kinds of messages are exchanged in the factor
graph: messages from a factor node to a variable node and
messages from a variable node to a factor node. At the l-th
iteration, the messages from factor to variable node follow:

µ
(l)
fij→xi

(xi) =

∫ ∫ ∫
fij µ

(l−1)
xj→fij

(xj)µ
(l−1)
yi→fij

(yi)

× µ
(l−1)
yj→fij

(yj) dxj dyi dyj ,

(11)

µ
(l)
fij→yi

(yi) =

∫ ∫ ∫
fij µ

(l−1)
yj→fij

(yj)µ
(l−1)
xi→fij

(xi)

× µ
(l−1)
xj→fij

(xj) dyj dxi dxj ,

(12)

µfi→ξi(ξi) = p(ξi), (13)

with ξi ∈ {xi, yi}, p(ξi) the prior distribution of variable
ξi and fij

△
= fij(xi, yi, xj , yj ; zij) ≡ p(zij |xi,xj). Notice

that the message µfi→ξi(ξi) is constant throughout algorithm’s
execution.

The belief of variable ξi is given by:

b(l)(ξi) ∝ µfi→ξi(ξi)
∏

j∈N (i)

µ
(l−1)
fij→ξi

(ξi), (14)

and finally, the message from variable to factor node is
defined as µ

(l)
ξi→fij

(ξi) = µfi→ξi(ξi)
∏

j′∈N (i)/j µ
(l−1)
fij′→ξi

(ξi),
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Fig. 2: Factor graph for localization, between node i and
node j, with fij = p(zij |xi,xj) and fi(ξi) the prior of each
variable.

∀i ∈ M, where notation N (i)/j means that the set does not
include j. Thus, the message can be simplified as follows:

µ
(l)
ξi→fij

(ξi) =
b(l)(ξi)

µ
(l)
fij→ξi

. (15)

The computation of the messages in Eqs. (11), (12) in closed-
form is intractable due to the square root term in the likelihood
function fij . Work in [9, Eq. (24)], proposed the following
linear approximation, based on Taylor expansion around node
i’s and node j’s location estimations (x̂

(l−1)
i , ŷ

(l−1)
i ) and

(x̂
(l−1)
j , ŷ

(l−1)
j ), in the context of cooperative, joint time offset

and location estimation:√
(xj − xi)2 + (yj − yi)2 ≃ d̂

(l−1)
ij + λ

(l−1)
ij (xi − x̂

(l−1)
i )

+ γ
(l−1)
ij (yi − ŷ

(l−1)
i ) + λ

(l−1)
ij (x̂

(l−1)
j − xj)

+ γ
(l−1)
ij (ŷ

(l−1)
j − yj), (16)

with d̂
(l−1)
ij =

√
(x̂

(l−1)
j − x̂

(l−1)
i )2 + (ŷ

(l−1)
j − ŷ

(l−1)
i )2 the

range estimate and

λ
(l−1)
ij =

x̂
(l−1)
i − x̂

(l−1)
j

d̂
(l−1)
ij

, γ
(l−1)
ij =

ŷ
(l−1)
i − ŷ

(l−1)
j

d̂
(l−1)
ij

, (17)

the directional derivatives on x-axis and y-axis, respectively.
In the proposed cooperative localization algorithm of this
section, the time offset is assumed to be estimated using a
separate algorithm. It is observed that the RHS of Eq. (16)
can be further simplified. Specifically, this work uses the
following Taylor-based approximation, which can be shown
to be equivalent to the RHS of Eq. (16):√

(xj − xi)2 + (yj − yi)2 ≃

λ
(l−1)
ij (xi − xj) + γ

(l−1)
ij (yi − yj). (18)

Theorem 1. For the FG based on Fig. 2 and Eq. (18),
under the assumptions of this work, as well as the assump-
tion of Gaussian messages µ

(l−1)
ξi→fij

(ξi), i.e., µ
(l−1)
ξi→fij

(ξi) ∼
N

(
m

(l−1)
ξj→fij

, (σ
(l−1)
ξj→fij

)2
)

, the MMSE location estimate of the
proposed approximate message passing method, coined as
Cooperative Localization with Belief Propagation (CLBP), is
given by the mean m

(l)
ξi

of the following belief:

b(l)(ξi) = N
(
m

(l)
ξi
, (σ

(l)
ξi
)2
)
, (19)
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Fig. 3: Factor graph for joint localization and synchroniza-
tion, between agent node i and anchor node j, with fij =
p(zij |xi,xj , θi, θj) and fj(ξj) = δ(ξj −mξj ).

m
(l)
ξi

=
(
σ
(l)
ξi

)2

mfi→ξi

σ2
fi→ξi

+
∑

j∈N (i)

m
(l)
fij→ξi(

σ
(l)
fij→ξi

)2

 , (20)

(
σ
(l)
ξi

)2

=

 1

σ2
fi→ξi

+
∑

j∈N (i)

1(
σ
(l)
fij→ξi

)2


−1

. (21)

The rest of the parameters needed in the above equations
follow:

m
(l)
fij→xi

= m
(l−1)
xj→fij

+ zij λ
(l−1)
ij , (22)(

σ
(l)
fij→xi

)2

=
(
σ
(l−1)
xj→fij

)2

+ σ2
d, (23)

m
(l)
fij→yi

= m
(l−1)
yj→fij

+ zij γ
(l−1)
ij , (24)(

σ
(l)
fij→yi

)2

=
(
σ
(l−1)
yj→fij

)2

+ σ2
d, (25)

m
(l)
ξi→fij

=
m

(l)
ξi

(
σ
(l)
fij→ξi

)2

−m
(l)
fij→ξi

(
σ
(l)
ξi

)2

(
σ
(l)
fij→ξi

)2

−
(
σ
(l)
ξi

)2 , (26)

(
σ
(l)
ξi→fij

)2

=

(
σ
(l)
fij→ξi

)2(
σ
(l)
ξi

)2

(
σ
(l)
fij→ξi

)2

−
(
σ
(l)
ξi

)2 . (27)

The proof is omitted due to space constraints and can be
found in [13]. To the best of our knowledge, these equations,
despite their simplicity, have not appeared in the literature.

1) Differences with prior art: Cooperative Localization
with Gaussian Belief Propagation using the Taylor expansion
of Eq. (16) has been proposed in [3]; that work exploited a
more complex factor graph, utilizing both measurements zi→j

and zj→i in the form of Eq. (5); thus, the corresponding factor
graph required factor fji as well, and not only fij . This implies
that two-way measurements were needed, in contrast to this
work, where only one-way measurements are utilized due to
the distance symmetry between two nodes. Furthermore, work
in [9] can be modified, so that only localization is performed,
while time offset is neglected, i.e., assumed zero; setting in
[9, Eqs. (26)-(28) and (31)-(34)] m(l−1)

θi→fij
= 0, m(l−1)

θj→fij
= 0,(

σ
(l−1)
θi→fij

)2

= 0,
(
σ
(l−1)
θj→fij

)2

= 0 offers a set of modified
equations that coincide with Eqs. (22)-(25) of this work.



IV. NON-COOPERATIVE SPATIO-TEMPORAL ESTIMATION
& LOCALIZATION WITH APPROXIMATE GBP

In this section, the measurement model of Eq. (4) is
employed for joint estimation of the clock offset and the
location of each agent node, using Belief Propagation through
approximate message passing in a non-cooperative environ-
ment: the agents receive messages only from anchor nodes.
The proposed method is coined as Joint Non-Cooperative
Estimation (JNCE). The likelihood function fij for the joint
case follows:

fij = p(zij |xi,xj , θi, θj) ∝

exp

{
− (zij − ||xj − xi|| − c (θj − θi))

2

2σ2
d

}
, (28)

and the joint posterior distribution is given by:

p(xi, θi|zij ,∀j ∈ N (i)) ∝

p(xi) p(yi) p(θi)
∏

j∈N (i)

p(zij |xi, xj , yi, yj , θi, θj). (29)

The factor graph of the message passing now becomes as
in Fig. 3 and the corresponding messages from the factor fij
to ξi with ξi ∈ {xi, yi, θi} are calculated as follows:

µ
(l)
fij→ξi

(ξi) =

∫
· · ·

∫
fij

∏
ϑ∈Fi,j/ξi

µ
(l−1)
ϑ→fij

(ϑ) dϑ, (30)

where Fi,j denotes the set of the variables connected to the
factor fij , i.e., Fi,j = {xi, yi, θi, xj , yj , θj}. Since the agents
receive messages only from anchors, the messages µ(l−1)

ξj→fij
are

equal to a delta distribution δ(ξj−mξj ), with ξj ∈ {xj , yj , θj}
and mξj the true value of variable ξj , for each anchor node j.

TABLE I: Values for messages µ
(l)
fij→ki

(ki), ki ∈ {xi, yi}

Message n1 n2 n3 n4 n5 n6

µ
(l)
fij→xi

(xi) λ
(l−1)
ij σ

(l−1)
yi→fij

mxj m
(l−1)
yi→fij

myj γ
(l−1)
ij

µ
(l)
fij→yi

(yi) γ
(l−1)
ij σ

(l−1)
xi→fij

myj m
(l−1)
xi→fij

mxj λ
(l−1)
ij

The same methodology and approximation of Eq. (18)
are employed, as in the cooperative environment, to get
the mathematical expressions of the µ

(l)
fij→ξi

messages, with
ξi ∈ {xi, yi, θi}. The detailed derivation is omitted due to
space constraints and can be found in [13]. The resulting
messages will be given in the information form:

exp

{
− 1

2
J
(l)
fij→ξi

ξ2i + h
(l)
fij→ξi

ξi

}
, (31)

with mean value and variance given by:

m
(l)
fij→ξi

=
h
(l)
fij→ξi

J
(l)
fij→ξi

,
(
σ
(l)
fij→ξi

)2

=
1

J
(l)
fij→ξi

. (32)

The final equations (in the information form) of the mes-
sages µ

(l)
fij→xi

and µ
(l)
fij→yi

are proven to be symmetrical and
they can be acquired from Eq. (33) according to Table I.
The message µ

(l)
fij→θi

is given in Eq. (34). Afterwards, the
beliefs and the messages from the variable to the factor node
can be calculated with Eqs. (20)-(21) and Eqs. (26)-(27),
respectively. To the best of our knowledge, these equations
have not appeared in the literature before.

µ
(l)
fij→ki

(ki) ∝ exp(f(n1, n2, n3, n4, n5, n6, ki)), f(n1, n2, n3, n4, n5, n6, ki) =−
1

2

 1

σ2
d

+ n2
1

 1

σ2
d + c2

(
σ
(l−1)
θi→fij

)2 −
1

σ2
d

−
(
λ
(l−1)
ij

)2 (
γ
(l−1)
ij

)2 1

σ2
d + c2

(
σ
(l−1)
θi→fij

)2 −
1

σ2
d


2(

σ2
d n2

2

σ2
d + n2

2

) k2i

+

 1

σ2
d

(n3 + n1 zij) + n1

 1

σ2
d + c2

(
σ
(l−1)
θi→fij

)2 −
1

σ2
d

(zij +mxjλ
(l−1)
ij +myjγ

(l−1)
ij

)
+

c n1 m
(l−1)
θi→fij

σ2
d + c2

(
σ
(l−1)
θi→fij

)2
−λ

(l−1)
ij γ

(l−1)
ij

 1

σ2
d + c2

(
σ
(l−1)
θi→fij

)2 −
1

σ2
d

( σ2
d n2

2

σ2
d + n2

2

)(
n4

n2
2

+
1

σ2
d

(n5 + n6 zij)

) ki

 , (33)

µ
(l)
fij→θi

(θi) ∝ exp(C), C =−
1

2

 c2
(
σ2
d +

(
γ
(l−1)
ij σ

(l−1)
xi→fij

)2
+
(
λ
(l−1)
ij σ

(l−1)
yi→fij

)2)
(
σ2
d +

(
σ
(l−1)
xi→fij

)2)(
σ2
d +

(
σ
(l−1)
yi→fij

)2)
 θ2i +

 cλ
(l−1)
ij m

(l−1)
xi→fij

σ2
d +

(
σ
(l−1)
xi→fij

)2 +
cγ

(l−1)
ij m

(l−1)
yi→fij

σ2
d +

(
σ
(l−1)
yi→fij

)2 +
cλ

(l−1)
ij

(
σ
(l−1)
xi→fij

)2
σ2
d

(
σ2
d +

(
σ
(l−1)
xi→fij

)2)

×
(
mxj + λ

(l−1)
ij zij

)
+

cγ
(l−1)
ij

(
σ
(l−1)
yi→fij

)2
σ2
d

(
σ2
d +

(
σ
(l−1)
yi→fij

)2) (myj + γ
(l−1)
ij zij

)
−

c

σ2
d

(
zij +mxjλ

(l−1)
ij +myjγ

(l−1)
ij

) θi

 . (34)
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V. NUMERICAL RESULTS

A 50×50m2 plane is considered with |M| = 50 uniformly
distributed agent nodes and |A| = 9 anchor nodes, placed
symmetrically at [0 0], [25 0], [50 0], [0 25], [25 25], [50
25], [0 50], [25 50] and [50 50]. The clock offset values
are uniformly distributed in [−8.3 × 10−8, 8.3 × 10−8] sec.
The prior distributions of the agents’ positions are considered
Gaussian with mean values mxi

= myi
= 0 m and variances

σ2
xi

= σ2
yi

= 100 m2, while the priors of the clock offsets
are also Gaussian with mθi = 0 sec, σ2

θi
= 10−15 sec2,

i ∈ M. The maximum communication range is set at 20 m
and 35 m for the cooperative and non-cooperative estimation,
respectively, unless noted otherwise. It is noted that in the non-
cooperative estimation, each agent must communicate with at
least four anchor nodes to estimate its clock offset and loca-
tion unambiguously; that is because the localization problem
includes three degrees of freedom: translation, rotation, and
reflection, so a connection to an anchor node is needed for
each degree of freedom. Since the clock offset θ should also be
estimated, a connection to one more anchor node is required.
The range measurement noise is assumed to be zero mean
Gaussian with variance σ2

d = 1 m2 unless noted otherwise.
The maximum number of iterations is set to Niter = 200,
and all simulation results are averaged from 100 independent
Monte Carlo runs. For SPAWN, 4000 particles were used.

The two proposed algorithms, namely CLBP and JNCE,
are compared to work in [5] (Coop Sync) for synchronization
and in [2] (SPAWN) for localization. For CLBP, the mean
values and variances of the messages µ

(0)
ξi→fij

are initialized
to the prior mean values and variances of each variable ξi,
with ξi ∈ {xi, yi}, i ∈ M ∪ A. For JNCE, the mean values
and variances of the same messages are initialized to zeros,
with ξi ∈ {xi, yi, θi}, i ∈ M∪A.

Fig. 4 offers evaluation results for the synchronization
problem; it is shown that Coop Sync converges within 4-6
iterations, whereas JNCE needs 100. Moreover, Coop Sync
always performs better than JNCE regarding estimation ac-
curacy, as expected, since it estimates only one variable, i.e.,
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Fig. 5: RMSE of location estimate vs. iterations for different
noise power.

TABLE II: Communication Overhead Comparison

Algorithm Floating point (fp)
numbers/link/iteration

Average
iterations

Total load
(fp)/link

SPAWN [2] 4000 (particles) 5 20000

CLBP, JNCE 2 (mean & variance) 100 200

the clock offsets of the agents. Namely, Coop Sync achieves
a root mean square error (RMSE) of 6 × 10−10 sec under
1 m2 noise variance and 2 × 10−9 sec under 10m2. On the
other hand, JNCE performs joint estimation, which means
that the synchronization is degraded by the error induced
by the location estimates. This difference in the performance
of Coop Sync and JNCE is more intense with higher noise
variance values. JNCE demonstrates a 1.5× 10−9 sec RMSE
for σ2

d = 1 m2, and for σ2
d = 10 m2, its RMSE error is

equal to ∼ 10−8 sec. However, the messages exchanged in
the non-cooperative environment are significantly less due to
the lower number of neighbors of each agent; an agent node
has 4− 7 neighboring anchors, while in the cooperative case,
the number of neighbors is raised to 8 − 25 for each agent.
Thus, JNCE offers lower communication requirements.

Fig. 5 offers localization results and shows that JNCE
and CLBP perform very close to SPAWN after convergence.
In particular, SPAWN [2] achieves a RMSE of ∼ 0.6 m,
CLBP approximately 0.8 m and JNCE around 1 m, under
a noise variance of 1 m2. Note that SPAWN converges after 5
iterations, while CLBP and JNCE require ∼ 100 iterations.
This is due to the Taylor approximation of Eq. (18) that
both proposed algorithms exploit to linearize their likelihood
function. Regarding higher values of noise, the performance
of CLBP and JNCE is expectedly getting worse, but remains
similar between the two algorithms. The joint problem, though,
is more affected by the synchronization error, and even though
CLBP and JNCE behave very close to each other, CLBP
outperforms JNCE. The performance of SPAWN is closely
related to the particle number; more particles lead to better
performance but also higher communication overhead. The
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nication ranges.

transmitted messages among neighboring nodes are probability
density functions and, thus, need a significant number of par-
ticles to be represented. On the contrary, CLBP and JNCE are
GBP-based algorithms, so the exchanged messages need only
two numbers, i.e., the mean and the variance of each message.
According to Table II, SPAWN requires 4000 particles for
each transmitted message per iteration and converges after
5 iterations; assuming that each message is represented by
floating point (fp) numbers, the total load per communication
link amounts to 20000 fp numbers. Although CLBP and
JNCE need a larger number of iterations to converge, only
2 fp numbers are exchanged for each message per iteration,
leading to a total load of 200 fp numbers per communication
link. Therefore, the total communication load per neighboring
agent until convergence is 100 times smaller in CLBP and
JNCE than in SPAWN. Since SPAWN and CLBP perform
cooperative localization, the number of transmitted messages
per agent is equal for both algorithms. In non-cooperative
localization, JNCE has fewer neighboring nodes per agent,
so the communication overhead is more reduced than CLBP.

Fig. 6 demonstrates the performance of the proposed al-
gorithms under fixed noise variance and different values of
communication ranges. Under a noise variance of 1m2, results
for CLBP are expectedly better with 30m range, compared to
20m range, even though the difference is small (in the order
of 20 cm). This difference increases if the communication
range gets reduced by 5 m. The RMSE then becomes 1.8m,
compared to the RMSE of 0.8m under the 20m commu-
nication range. Especially for the 10m range, the estimate
error is large. The interesting part here is the performance of
JNCE when the communication range is increased to 70m.
In this case, JNCE performs slightly better compared to 35m
communication range (with an RMSE drop-off of 20 cm), but
much faster; it now needs less than 20 iterations. A range of
70m in a 50×50 plane means that all agents communicate with
all 9 anchors, still resulting in a much lower communication
load of JNCE compared to the cooperative environment.

CLBP has been studied further for the extended clock model

of Eq. (2), including both time and frequency offset. The latter
has been modeled and estimated according to work in [14].
It was found that CLBP performs efficiently, despite the error
induced by the frequency and time offset estimation (results
were omitted due to space constraints).

VI. CONCLUSIONS

This paper proposed two different algorithms: a cooperative
approximate GBP for network localization (CLBP) and a joint
non-cooperative GBP to simultaneously synchronize and local-
ize the agent nodes of the wireless network (JNCE). Both al-
gorithms are defined by simple algebraic equations, and results
showed that for localization, they offer performance close to
state-of-the-art but with significantly reduced communication
overhead by a factor of 100. Regarding synchronization, state-
of-the-art slightly outperforms JNCE for the default setup of
the network; however, JNCE has much lower communication
overhead due to the requirement for agent communication with
anchors only; such number of neighbors per agent is much
smaller and can increase the convergence speed of JNCE.
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