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Introduction and Summary 

Due to the symmetrical shape of the head and ears, the Head-

Related Transfer Functions (HRTFs) exhibit common 

attributes across spatial directions. The Head Related Impulse 

Response (HRIR) signals experience temporal shifts and 

filtering effects based on the direction of sound arrival at the 

eardrums. On the other hand, the individual's specific 

anthropometric measures significantly influence the spatial 

filtering properties of HRTFs. One effect is the time it takes 

for the sound to reach the ear canal, and the difference 

between the time-of-arrivals at each ear is known as Interaural 

Time Differences (ITDs), which play a fundamental role by 

providing temporal cues for localization. Methods have been 

proposed to encode the HRTF dataset into lower dimensional 

space [1], [2], [3]. However, the encoding methods are prone 

to losing encoding efficiency and distorted signal 

reconstruction when treating the HRIR signals containing the 

time shifts and misaligning signal features such as peaks, 

notches, and rising edges. Preprocessing methods have also 

been proposed [3], [4] to streamline the efficient encoding of 

the HRTF signals. Besides, for effective representation 

learning by machine learning approaches, target alignment 

has been suggested to enhance the training of the algorithms 

by providing faster convergence [5] and higher correlated 

signal reconstruction [6]. Here, we are interested in finding 

the signal alignment methods that can perform efficiently on 

HRIR signals. 

In this study, we evaluate different time-alignment 

preprocessing methods based on Interaural Time Difference 

calculation (ITD) techniques. It involves aligning all HRIRs 

of a measurement set by eliminating their relative time delays. 

The time delays between HRIRs are calculated based on time 

delay estimation methods previously reported to be efficient 

on HRIRs [7] and [8]. We then evaluate the effectiveness of 

the preprocessing methods by monitoring the encoding 

efficiency of spatial Principal Component Analysis (sPCA). 

Previously, PCA (Principal Component Analysis) was used to 

encode the HRTF data in the time or frequency domain. 

Kistler et al. in [1] Log-magnitude domain HRTFs were 

decomposed into Directional Transfer Functions (DTFs), and 

the contribution of the first 5 Principal Components (PCs) was 

evaluated across different directions. Chen et al. in [9] showed 

that 12 eigen functions could reconstruct 99% of the variance 

for KEMAR artificial head log-magnitude HRTFs. Xie et al. 

[10], [11] also showed that 35 PCs could represent 98 percent 

of the variance for HRTFs of multiple subjects. In [12] and 

[2], the KEMAR artificial head HRTFs were encoded in time 

and complex frequency domain representations, and the 

results reveal that the 20 spatial PCs can span 99 percent of 

the variance in both cases. We also propose using sPCA, a 

linear decomposition method, as it is computationally 

efficient and stable. Results indicate that threshold-based 

onset detection yields the most efficient preprocessing by 

requiring the smallest number of spatial PCs to explain a 

certain level of variance in the dataset.  

Materials and Methods 

Dataset 

The dataset used in this study is the HUTUBS database [13]. 

It contains HRTFs sets of 92 unique subjects, each with 440 

directional HRTF measurements with azimuth resolution of 

𝜃 ≈ 10°, elevation resolution of 𝜑 =  10°, and 256 time 

samples at a sampling rate of 44.1 kHz.  

Time-alignment preprocessing 

The position-dependent temporal shifts in the HRIRs are 

responsible for misaligned peaks and notches in the HRIR that 

cause their encoding to require more eigenfunctions. To 

overcome these misalignments, the HRIRs in each 

measurement set for each subject are, by convention, aligned 

to the ipsilateral HRIR of the left ear at 𝜃 = 90° azimuth and 

𝜑 =  0° elevation in the same coordinate system as in [13]. 

The intuition behind this convention is that the signal on the 

ipsilateral ear has the least onset delay. The time-delay 

calculation methods we chose were based on [7] and [8]. The 

delay calculation methods are onset detection based on the 

threshold level of -10 dB relative to the maximum peak in the 

signal, maximum cross-correlation of the raw signal, cross-

correlation of the minimum-phase components of the signals, 

centroid of the squared envelope of the signals, centroid of the 

interaural cross-correlation of the raw signal, and its squared 

values, and group-delay calculated from the full-pass raw 

signals. The threshold value of -10 dB was chosen based on 

its performance compared to other threshold values of -3 dB, 

-7 dB, and -20 dB. The HRIR signals were first ten times 

upsampled, the relative delay calculated, the delay subtracted 

from the signal, band-pass filtered (100 Hz-20 kHz) to 

remove the possible frequency components above the Nyquist 

frequency of the original sampling rate, and finally, the signal 

downsampled to the original sampling rate. 

The sPCA method and HRTF decomposition 

Principal Component Analysis (PCA) is a widely used 

technique for dimensionality reduction and data analysis. At 

its core, PCA aims to transform a dataset into a new 

coordinate system where the variables are uncorrelated and 

ordered by their variance. Spatial PCA is a variant of PCA 

specifically tailored for analyzing spatial data, such as Head-

Related Impulse Responses (HRIRs) in auditory research 

[10]. In this approach, the HRIR measurement set is encoded 

in the spatial dimension of the data rather than the other signal 

dimension which is in the time or frequency domain. We 

followed the sPCA decomposition approach of [10] and [11] 

in the discrete time domain. The indices for the ear are 

removed for simplicity. In equation (1), 𝑤𝑞(𝜃, 𝜑) is the basis 

function that only depends on the direction, it can be identical 

or different for each ear as well. Besides, 𝑔𝑞(𝑡, 𝑠) is the time 

domain and individual dependent weights. 



 

ℎ(𝜃, 𝜑, 𝑡, 𝑠) = ∑ 𝑔𝑞(𝑡, 𝑠)𝑤𝑞(𝜃, 𝜑)

𝑞

. (1) 

 

The matrix calculations to decompose HRIRs into matrices g 

and w, and recovery of the HRIRs from a subset of spatial 

PCs, are explained in detail in [10]. 

Evaluations 

As sPCA reduces the spatial dimensionality of the HRTF data 

by projecting it onto orthogonal axes defined by the 

eigenvectors of the covariance matrix, the eigenvalues 

associated with these components represent the variance 

explained by each. By summing these eigenvalues 

cumulatively, the cumulative energy curve unveils the 

principal components increases. This representation 

delineates the trade-off between dimensionality reduction and 

information preservation, aiding in the selection of an optimal 

number of components. The cumulative energy is calculated 

as: 

 

  𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 =
∑ λ𝑞

𝑀
𝑞=1

∑ λ𝑞
𝑄
𝑞=1

× 100% (2) 

 

Where λ𝑞: denotes the eigenvalue corresponding to each 

principal component sorted in descending order, 𝑄 is the total 

number of directional PCs, and 𝑀 is the selected subset of 

PCs.  

Results and Discussion 

To evaluate the reconstruction efficiency of HRIRs from a 

different subset of spatial principal components, the 

cumulatuive energy is calculated for each of the time-

alignment preprocessing methods using Formula (1) and the 

results are plotted in Figure 1. Two hard threshold values of 

90 and 99 percent of the total energy are considered to 

compare the encoding efficiency. Recent work by Gavish and 

Donoho [14] also provides a theory-based approach to 

determining the optimal threshold for the singular value 

truncation. In the Gavish-Donoho criterium calculation and 

on our PCA results, the noise profile in the method was 

estimated from the least significant principal component 

values, and the truncation threshold values were then 

calculated. To compare the efficiency of the preprocessing 

methods across 92 subjects, the encoding efficiency for the 

aforementioned criteria is depicted in Figure 2 for seven 

candidate preprocessing methods. The results show that at 90 

percent of the HRIR energy can be reconstructed with a mean 

of 8.05 (std: 1.18) spatial PCs using -10 dB relative threshold 

preprocessing while the original HRIRs need 19.30 PCs (std: 

2.36). To reconstruct 99 percent of the HRIR energy, using 

the -10 dB threshold method 32.08 (std: 3.76) spatial PCs are 

required, while for the original, unprocessed data 49.73 (std: 

3.77) PCs are needed. To satisfy the Gavish-Donoho 

criterium, 20.09 (std: 3.67) PCs are required using the -10 dB 

threshold method; but 31.11 PCs for the unprocessed data 

(std: 6.42). The reason for the efficiency of the -10 dB 

threshold over other methods can be explained by being less 

sensitive to early peaks and multipath propagation effects in 

the HRIR signals.  

 

Figure 1: The plot represents the cumulative energy at specific 

numbers of principal components calculated from the PCA results of 

the original and preprocessed HRIRs using -10 dB relative threshold, 

group-delay, centroid of the squared envelope, maximum of the 

cross-correlation, centroid of the cross-correlation and its squared, 

and also cross-correlation of the minimum phase components of the 

signals. The cumulative energy is plotted for 60 principal 

components (out of 440) for ease of demonstration. 

 

Figure 2: The distribution of the minimum number of PCs calculated 

for the three threshold criteria of 90 and 99 percent of cumulative 

energy and Gavish-Donoho across 92 subjects. Results are given for 

the seven delay calculation methods.   

Conclusion 

In this study, sPCA was employed to assess various time-

alignment preprocessing methods for HRIRs. The impact of 

different delay calculation methods on encoding efficiencies 

was evaluated by comparing the number of PCs required to 

achieve the same cumulative energy level after preprocessing. 

The findings indicated that aligning HRIRs to -10 dB relative 

threshold level consistently yielded the lowest average 



number of PCs necessary for reconstructing HRIRs to achieve 

equivalent energy levels across all three truncation criteria. 

Thus, the -10 dB relative threshold time alignment emerges as 

the preferred choice for optimized encoding of HRIR signals.   
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