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Abstract—Navigation and trajectorial estimation of maritime
vessels are contingent upon the context of positional accuracy.
Even the smallest deviations in the estimation of a given vessel
may result in detrimental consequences in terms of economic and
ecologic quotients. To ensure an agile and precise environment for
maritime vessel positional estimation, preexisting marine radar
technologies can be utilized in a way that ensures a higher level of
precision compared to GNSS-based identification and positioning.
In this paper, we present a positional optimization for radar-
based vessel navigation systems that utilize the installment of
vessel detection sensors. The main objective of this research is
to employ as fewer sensors as possible while preserving the
attainable error threshold for positioning that is defined by
International Maritime Organization (IMO). Our approach leads
most of the time to a positioning error of up to 5 m along
shorelines and rivers and up to 50 m along open coastal regions.

Index Terms—Maritime navigation, vessel identification,
GNSS, optimal vessel positioning.

I. INTRODUCTION

The importance and necessity of the maritime vessels are
paramount in the context of global logistics and nautical
transportation. According to the United Nations Conference
on Trade and Development (UNCTAD), more than 80% of
the international freights and shipments are transported using
ships [1]. Currently, worldwide maritime traffic predominantly
relies on Global Navigation Satellite Systems (GNSS). The po-
sitioning of the vessels is conducted in terms of the extraction
and tracking of positional data in addition to the utilization of
nautical charts and communication in a timely fashion [2].

GNSS systems that are employed by nautical vessels com-
prise of a transponder that is capable of transmitting the
tracking and positioning information which allows practical fa-
cilitation by the responsible maritime authorities [3]. However,
GNSS- and other wireless-based communication systems are
immensely prone to numerous interference and malfunction
scenarios. Main examples include spoofing and jamming at-
tacks that may be conducted unintentionally or by third parties
with malicious intent. Jamming is defined as the presence of a
competing signal that prevents the decoding operation of a real
satellite signal for the original GNSS receiver [4]. Spoofing is
the attempt to modify GNSS measurements with the intention
of misinterpreting the signal as authentic by the original GNSS
receiver [5]. To that end, the vulnerability of GNSS-based
technologies—the most prominent being the Global Position-
ing System (GPS)—is referred to in numerous studies [4],

[6], [7] in terms of the proliferation and suppression of GPS
jamming attacks from the maritime perspective.

To that end, the implementation of a back-up system is
crucial for enhancing the nautical safety in the event of the
existing systems not being operational or compromised for an
uncertain amount of time. A radar-based navigation system,
however, does not pertain to the issues mentioned above. In
particular, a radar-based positioning system aims to estimate
the range of a vessel [8]. The system consists of a radar
antenna (an antenna for each given vessel) and sensors along
a given region, typically a fjord or a shoreline. A directional
radar antenna transmits the signal to the desired location [9].
Once the radar beam reaches a sensor, the timestamp value of
when a sensor is hit with a radar beam is logged, which is
then utilized in various positioning techniques.

The radar-based vessel identification, tracking, and guiding
system presented in this paper employs multilateration in order
to locate the vessels in a given region. Multilateration is a
technique used to determine the location of an object by
measuring the time it takes for signals to travel from the
object to multiple known locations [10]. Only the sensor
positions and timestamp values of the radar beams hitting
those sensors are known to our system. An infrastructure
capable of successfully locating maritime vessels as a backup
solution is shown and used relying on our approach.

II. BACKGROUND AND RELATED WORK

Aftanas et al. [11] propose a method for analyzing target
positioning accuracy for M -sequence UWB radar systems
under ideal conditions. It has been shown that the target
position estimation error is caused by quantization effects at
time-of-arrival (TOA) measurement by using M -sequences.
Findings suggest that the largest target position estimation
errors are located along the straight lines between TX and
all RX antennas, but only behind antennas excluding the area
between them. The best system accuracy is obtained when the
distance between antennas is equal to 5 m. Results suggest the
potential use of this approach under more realistic scenarios.

In their work, Bishop et al. [12] aim to identify relative
sensor-target geometries which result in minimizing the un-
certainty ellipse. Optimal sensor-target geometries for range-
only, time-of-arrival-based and bearing-only localization are
identified and studied, and a direct and rigorous characteri-
zation of the relative sensor-target geometry were given. The



characterizations are given in terms of the potential localiza-
tion performance of unbiased and efficient estimators. The
contributions provide an explicit and measurable connection
between the sensor-target geometry and the chosen measure
of localization performance, i.e., the area of the uncertainty
ellipse. A number of necessary and sufficient conditions on
the sensor-target angular positions were given, which then
minimizes the unbiased and efficient target uncertainty ellipse
area that provides the aggregate of the points which lie within
the defined ellipses bounds. It is also shown that an optimal
sensor-target configuration is not unique in a general sense.

Finally, according to Naus et al. [13], a premise for adopt-
ing autonomous methods in terms of navigation systems is
paramount for providing alternatives to Global Navigation
Satellite System (GNSS). The accuracy analysis carried out
with respect to the simulated radar positioning in relation,
marks the validity of the research. The positional accuracy
on fairways was better than 6.5 m. Then, the association of
extracted characteristic radar echoes with navigation marks
found in an ENC was made. The methods most commonly
used for this purpose are those that individually use bearing
and distance measured to the navigation marks with known
coordinates visible on the radar image.

III. METHODOLOGY

A. Circumambient Circle Generation
The system utilizes the locations of maritime radar detectors

and timestamp values that are obtained when the receivers are
hit by an incoming radar beam. Calculations also include a
radar period value that defines the full rotation of a radar
antenna in the given time unit. Let α be the angle at the
initial measurement of vessel location to the sensors si and
sj . For two sensors that are hit at different times, and the
radar period value P , the angle to the both sensors from the
initial measurement of the vessel position can be calculated.

The system is capable of labeling the sensors on account of
when the first timestamp log occurs. In addition, for the rest
of this paper, the timestamp difference of ti and tj for given
sensors si and sj will be depicted by the variable τij . The
formula then reduces to

α(τij , P ) =
2πτij
P

. (1)

Let si = (xi, yi) and sj = (xj , yj) be the positions of the
two sensors. Accordingly, dij is the distance between these
coordinates.

The radius of the circumambient circle to the sensors with
the angle α can then be calculated as

r(α, dij) =
dij√

2(1− cos 2α)
. (2)

Subsequently, the center point of the circle circumambient to
the sensor positions and the given radius function can then be
obtained from

Pcij =

(
xi

yi

)
+

(
r

dij
·

(
sinα − cosα
cosα sinα

))(
xj − xi

yj − yi

)
.

(3)

Now, the problem statement is nondeterministic as every
point on the circumference of the circle is included in the
solution set. Let us introduce another sensor to the system.
Symmetrically, the sensor that is defined will now be sj =
(xj , yj) whereas the sensor from previous calculations under
the label sj will now shift to si = (xi, yi), to delineate the
receiver setup. The system generates two additional spanning
circles whose circumference pass through a joint intersection
that is used as an initial estimation of the vessel origin.

In each time step, the circle generation scheme from (3)
is carried out where the corresponding radius, distance, and
angle entries are measured. In order to conduct an uncertainty
propagation of radius, timestamp values gathered from the
sensors are cross-referenced with respective ground truth val-
ues. With τij depicting the measured time difference between
two sensors, let t′i and t′j denote the respective ground truth
timestamp entries for sensors si and sj . Denoting the time
difference as ∆tij , the time difference between the measured
and ground truth timestamp values then becomes

∆τij = ∆∆tij = (tj − ti)− (t′j − t′i). (4)

The term ∆τij describes the measurement error in terms
of timestamps. Subsequently, a refinement pertaining to the
radius estimation of the system is carried out. By substituting
the computed angle α within the radius calculation (5) with
associated parameters τij and P , the radius estimation is then

r(τij , dij , P ) =
dij√

2− 2 cos (
8τijπ
P )

. (5)

The radius error pertaining to each circumambient circle
can be computed as a derivation of the radius with respect to
timestamp difference τ and a combination of this derivation
with timestamp measurement error ∆τij . Let ∆r represent the
difference in radius that will be extracted upon the association
of ground truth values:

∆r = r(τij +∆τij)− r(τij). (6)

In order to compute the incorporation of this difference
to each radius estimation, an approximation of ∆r must be
carried out in terms of the real time difference τij ,

r(τij +∆τij)− r(τij) ≈ || dr
dτij

||∆τij . (7)

To estimate this difference, the computation of the first
derivative of the radius function with respect to τ is performed.
In particular, by substituting (7) with the extended radius
formula (5), the deviation in circle radius is then written as

∆r ≈ −dij
P

·

(
2π sin

(
4πτij
P

))
√(

2− 2 cos
(

4πτij
P

))3 ·∆τij , (8)

yielding the deviation from the true calculation of the spanning
circle. A diminutive confidence region is formed towards
the measurement of the vessel positional solution set. The
incorporation of the delta value to the existing circumambi-
ent circle setup reveals the approximate confidence region.



Fig. 1. (left) Upper- and lower-bounding circumambient circles, (middle) uncertainty area generation pertaining to distinct circumambient circle, (right) Final
confidence region covering approximately 95% of all potential vessel positions.

Fig. 1(left) illustrates the delta value corresponding to the
radius estimation applied to the anterior circumambient circle
illustration.

B. Confidence Ellipse Approximation

The main goal of the circumambient circles is to transpose
the positioning estimation from a multiangulation setup to a
multilateration. As the system calculates the corresponding
confidence regions of sensors in tuples, the final region repre-
sents the confidence ellipse which encapsulates approximately
95% of all potential vessel points within a given area. In order
to estimate the grand area for every sensor tuple, the system
calculates the semi-minor, semi-major, and orientation of the
ellipse to be formed. Let aij denote the semi-minor axis of the
ellipse formed out of sensors labeled i and j. Let bij denote
the semi-major and ϕij denote the orientation of the ellipse.
The center of the ellipse is the initial intersection, and the
values of semi-minor and semi-major axes are given by

aij = ∆rij , bij = rij , (9)

where ∆rij is the measured deviation from ground truth
values, and rij is the radius of the circumambient circle cor-
responding to sensors i and j. Let (xbij , ybij ) and (x′

bij
, y′bij )

be two points through which the semi-major axis bij pass.
One of the points, denoted as (xbij , ybij ), is the intersection
point of the generated circumambient circles. The other point,
represented by (x′

bij
, y′bij ), is the center of the corresponding

circle cij to the ellipse that will be generated. The system
utilizes the point-slope form of a line to calculate the slope
and further incorporate into the ellipse orientation as

ϕij = arctan(
ybij − y′bij
xbij − x′

bij

), (10)

which effectively yields the initial confidence regions pertain-
ing to distinct circular vessel frames. Fig. 1(middle) exhibits
an exemplary scenario with a 3-sensor setup. The ellipses that
are formed describe the dispersion of data points around the
mean. The outlined area provides the quantification of how
much individual data points have deviated from the mean. The
covariance matrix corresponding to each ellipse, represented as
Υij for sensors si and sj provides a summary of variances for
each estimated confidence region. The diagonal elements of a
given covariance matrix represent the variance of individual

variables. The off-diagonal elements represent the variances
between pairs of variables. For a circle cij with center point
Pcij , the spread of data points around the mean for x and y
axes becomes

σxixj
= b2ij · cos(ϕij)

2+a2ij · sin(ϕij)
2, (11)

σyiyj
= b2ij · sin(ϕij)

2+a2ij · cos(ϕij)
2
, (12)

σxiyj
= σxjyi

=
(
b2ij − a2ij

)
· sin(ϕij) · cos(ϕij). (13)

Following that, from the primary corollary regarding the quan-
tification of the relationships between multivariate variables,
the open form of the appurtenant covariance matrix Υij is

Υij =

(
σxixj

σxiyj

σyixj
σyiyj

)
. (14)

The system incorporates the impeding covariance values
to the final confidence region by means of combining the
means of distributions within the configuration in order to
represent the non-normalized intersection of the estimated
vessel positions. Let Υ′ depict the covariance matrix of the
final confidence ellipse. The derivation of the matrix entries
of Υ′ is done on the basis of distinct covariance matrix values
gathered from the initial ellipse formations. For a system
comprising three sensors, let Υij and Υjk correspond to
covariance matrices. For configurations encompassing three
sensors or more, the incorporation of all covariance matrices
is performed as

Υ
′
= Υij −

(
Υij · (Υij +Υjk)

−1
)
·Υij , (15)

where the final matrix describes the confidence ellipse. At each
time step, the most recent covariance matrix is combined with
the estimated combined covariance matrices, and the inverse
of the product is then multiplied by the most recent covariance
matrix again to extract the multivariate distribution regarding
the transformations amongst distinct sensors. Fig. 1(right)
shows the completed confidence region generation scheme.
The final region represents an encapsulation of the solution
set that contains approximately 95% of the estimated vessel
positions. The outcome is the trajectorial examination of
vessels for each time step. A given position is further improved
once other sensors receive a radar beam commensurate to the
same vessel identification.



C. Model Verification

The verification of the mathematical model was conducted
in two phases. The initial phase provides the generation
of a test environment where sensor positions, timestamps
with corresponding ground truth values, and vessel grid were
defined manually. For a given list of sensor positions, our
approach calculates the bounding circles for each combination
of sensor tuples. Then, upper and lower bounding circles
are generated with their following confidence ellipses. The
final confidence region is then derived with reference to the
provided methodology. The full deployment of the system
internally concentrates on the final confidence ellipse in order
to elucidate the change in positioning error over time.

The second phase consists of a bottom-up approach to the
methodology for the substantiation of the positioning algo-
rithm. A reverse approach in terms of validating mathematical
precision throughout a given environment was carried out. The
goal is to feed to the algorithm each grid point as the vessel po-
sition with the aim of acquiring a heat map that represents the
prediction accuracy regarding positioning of each grid entry.
This allows a thorough analysis of a given region, in addition
to validating the stability of the provided methodology behind
the vessel positioning. The system estimates the positioning
error by reverse calculating the angle of the vessel to every
sensor tuple. For the verification, the vessel position is known
internally. Let v denote the vessel position for a given time
step instance. By utilizing the cosine law using (1) we can
calculate the inverse angle value as

α = arccos

(
||si − sj ||2 − ||si − v||2 − ||v − sj ||2

−2 · ||si − v|| · ||v − sj ||

)
, (16)

Once the system establishes a value for the angle using (16),
the boundary circle and the confidence ellipse generation
schemes are carried out. The cross-evaluation of the system
enables the posterior analysis of the test grid with real-
world statistics. For a given region, our system is further
enhanced with a focus on adapting vessel and sea map scales
to conventional UTM and distance units.

IV. OPTIMIZATION SETUP

A. Topological Analysis

The major predicament in the context of regional topology
is to scrutinize the inverse cosine of a given position to
sensors. In cases when the vessel aligned with sensors, the
corresponding circle radius value (5) tends to infinity. Accord-
ingly, the confidence ellipse computations yield predictions of
unmeasurable positional error values.

For an augmented examination of positioning adeptness,
Fig. 2 illustrates the contour plot representation of a sample
setup consisting of two sensors. Contour plots represent the
radius error in terms of distance between the vessel and
sensors. Contours that correspond to very low positioning
error values are delineated with solid lines, and contours with
high positioning errors are depicted in dashed lines. The areas
surrounded by the contour plots represent the radius error ratio

Fig. 2. The error in the radius based on two receivers and the distance to
the ship. The two MRD receivers are marked as red dots. Solid contour lines
depict the best case scenario to corresponding radius error propagation; dashed
lines depict the worst case.

Fig. 3. Three sensors placed with equidistant horizontal alignment. Sections
between the sensors elongate on the same horizontal axis yield higher accuracy
error compared to sections with elevated angle to the sensors.

internal to that area. The goal is to achieve sensor localization
scenarios that enable enhanced coverage for contour regions
with smaller radius error propagation. The uncertainty propa-
gation given by (5) and (6) are further observable in addition
to contour plot representation of separate regions. In particular,
the vessels that are on, or very close to the uniform alignment
of two sensors, yield a difference in the radius (∆r in (8)). As
defined in (9), appertaining values in uncertainty ellipses with
very high coverage lead to high positional error measurements.
An example implemented in the test environment is shown
in Fig. 3. The positional error yields values above the range
[0, 1000] in the areas located between the sensors. As (8)
diverges to ∞ as the cosine term in the denominator ap-
proaches 1, certain localization schemes should be avoided in
order to minimize areas with unmeasurable positioning errors.
Fig. 3 represents the blatant example when all sensors are
aligned to the same horizontal axis, where regions in-between
sensors have exponentially increasing positioning error values.
The placement and alignment geometries should satisfy the
prospective vessel positioning irrespective of diagonality.

B. Optimization Setup

The estimation cost of an infrastructure is examined under
installation and operation of the given sensor network. Further



TABLE I
ENERGY CONSUMPTION FOR ONE MARITIME RADAR DETECTOR

(COURTESY OF Covadonga GmbH)
Energy Consumption Daily Weekly Monthly

Watt-hour 216 Wh 1512 Wh 6480 Wh
Kilowatt-hour 0.216 kWh 1.512 kWh 6.48 kWh

Joules 32400 J 226800 J 972000 J

information regarding the exact estimation of expenditure
optimization and analysis can be found at the tech report [14].
The expenditure model presented in this section does not
incorporate potential system malfunctions or maintenance
costs over time because these values are highly susceptible
to alterations depending on the region of origin.

For a given region, once the overall number of sensors
that will sustain optimal coverage is determined, the total
installation cost is then Itotal = N · L, where N denotes the
number of sensors and L denotes the installation cost per
sensor. In terms of the operational cost, conservation of a
sensor-based vessel identification infrastructure involves two
operational perspectives, energy and data. Let ei(t) define
the energy cost per sensor over time, whereas ω1 represents
the corresponding energy unit conversion. Let tri(t) define
the transmission data cost per sensor over time, In order to
incorporate the status of an MRD device for a given time
instance, let opi(t) be the binary decision variable depicting
whether the subject sensor was operational during the time
frame t. We have

Ototal(t) =

N∑
n=1

[opn(t) · (en(t) · ω1 + trn(t) · ω2)], (17)

where Ototal denotes the operation cost. Both models are
then combined, generating the final expenditure of a given
infrastructure. Since the calculations are carried out for a given
time frame t, the final analytical model corresponding to total
expense must also contain the overall time horizon, typically
calculated per week or per month. In order to define the system
over the time horizon, expenses that have been provided so far
are defined over an integral. This can be approximated by∫ T

0

Ototal dt ≈
T∑

t=0

Ototal(t).

Finally, by replacing the integral term with the discretized
form and adding the fixed installation cost for the system, the
final model pertaining to the expenditure evaluation becomes

Exptotal =

[
T∑

t=0

Ototal(t)

]
+ Itotal. (18)

Exptotal denotes the total expenditure of the infrastructure.
While time frame calculations are made for varying target-
sensor transmissions and instances, the main goal regarding
the cost model is to minimize the overall expenditure with
respect to operation and installation costs. Correspondingly to
the confidence ellipse equations presented in Section III, the
mathematical setup of the optimization scheme is deducted.
For a final covariance matrix Υ representing the multivariate
distribution of vessel locations for a given timestep is

Υ =

(
σxx σxy

σyx σyy

)
. (19)

The positioning error in floating point values is computed
using the diagonal entries. Let errs1...N define the positioning
error value with respect to sensors 1, ..., N . The positioning
error in each time step is then

errs1...N =
√

σ2
xx + σ2

yy.

Subsequently, the goal is to minimize the overall expendi-
ture (18) while keeping the errs1...N under the threshold Ω:

min Exptotal

s.t. errs1...N ≤ Ω.
(20)

The optimization of sensor clusters is carried out in con-
nection with cross referencing the measured positioning error
throughout the installed sensor within a given region. The main
idea is to first ascertain that the positioning error is under
the desired threshold value and then we utilize the sensor
combination that is capable of achieving a valid positional
error, ultimately employing fewer sensors. The resulting values
are dedicated to consolidate tidal regions with respective
sensor functionality schemes.

V. PERFORMANCE EVALUATION

A. Rhine Measurement Campaign

The first measurement campaign took place eastern of Ger-
mersheim, Germany. The covered region spans approximately
500 m in width and 1.5 km in height. Within the grid, six
distinct MRD sensors were placed, conducting peak detection
and ranging for three vessels. Each positional entry is labeled
depending on the order of that entry in time to prevent
clustering. A positional margin value of 250 grid cells was
added to maintain a perimeter around the sensor. Subsequently,
the defined grid was partitioned into 800 even cells. For this
scenario, the width of one grid cell is approximately 0.9476 m
and the height is 1.6901 m, leading to the grid cell area of
1.6095m2.

Varying heatmap representations of the region are provided
in Fig. 4. The pattern of the given region yield enhanced
accuracy not only due to the close proximity of the geography
but also due to localization geometry that was utilized amongst
MRD receivers. The color legend was modified in order to
depict clusters that yield an error of 5 m and 1 m. Circular
clusters that are formed around MRD positions substantiate the
derived cosine terms from (6). The dispersion of heat values
illustrate that for a vessel positioning instance the error value
escalates up to the corresponding interval. In order to optimize
the expenditure, the system should further detect vessel posi-
tions where enhanced accuracy can be obtained without using
the entire sensor infrastructure. Three vessels were utilized
during the measurement campaign with distinct time series
presentation of each nautical course. Fig. 5 shows the different
uniform sensor combinations regarding three distinct nautical



Rhine River - Heatmaps Forggensee Lake - Heatmaps

Fig. 4. UTM heatmap depictions of the Rhine and Forggensee campaign. MRD locations are marked with red dots. The pattern of granularity is illustrated
with respect to positioning error below 1 m and 5 m for Rhine, 25 m. and 50 m for Forggensee respectively.

vessels for each timestep (measured on October 3, 2023).
Vessel movements are labeled from P1 to P20.

The analysis shows that while there are entries with exor-
bitant deviation from the mean, the positioning error is below
0.7 m. For such a scenario, the optimization is more imminent
since operationality of all sensors throughout makes negligible
difference to the desired threshold. Most significant deviations
from the baseline measurements occurred in positional entries
P5, P15, P16, and P20. The values of all combinations are
not depicted in the figure. For six sensors, there exist C(6, 3)
distinct sensor combinations with 3 sensors. This amounts to
20 different sensor functionality scenarios. At each time step,
the sensor combination that yields the minimum positioning
error is taken. Subsequently, the sensor trio that yields the
second best accuracy is then detected. In certain cases, the
angle of a given position is highly optimal that receivers
located at the perimeter of the sensor region incorporate
negligibly. The values corresponding to P5, P15, P16, and P20

present the highest changes in fractional terms. Compared to
the baseline measurements, the highest deviation related to
the voyage of Royal Emerald was measured to be 0.4329 for
P16. Subsequently, two other nautical ship trajectories were
measured during the campaign.

Compared to Royal Emerald, both Iris and Contargo 1 ex-
hibit an increase in the overall positioning error measurements.
In particular, average values are under 1 m of positioning
accuracy, similar to Royal Emerald. However, outliers of Iris
are above 1.4 m, and outliers of Contargo 1 are almost at
2 m. The consistency of baseline measurements are kept. For
suboptimal sensor combination solutions, the deviation has
increased in comparison with the initial measurements of
Royal Emerald. Contrary to Royal Emerald, both Iris and
Contargo 1 display much higher disparity between minimum
attainable and baseline values. For Iris, this value is observed
in entry P2, where the depicted combination has a disparity
of 1.1869 m between optimal and baseline measurements. For
Contargo 1, the maximum disparity is observed in entry P19,
yielding a value of 1.8722 m. The current campaign consists
of close proximity sensor emplacements, thus not impeding
the overall performance. Conclusively, the system is more

than capable of performing vessel positioning and optimization
schemes along bodies of water with low shoreline proximity.

B. Forggensee Measurement Campaign
The second testing scenario was conducted in the lake

reservoir of Forggensee, north of Füssen, Germany. In contrast
to the initial testings carried out at the Rhine river, this scenario
presents a lake reservoir where vessels travel in a round-trip
fashion. The region covered by the sensors span approximately
2.4 km in width and 5.5 km in height. Contrary to the initial
test region, this serves as an expanded measurement and
localization precinct. The assessment of positioning accuracy
is evaluated by means of utilizing two passenger ferries that
operate between June and October. MS Allgäu conducts a
small round trip to the south of the lake, between the towns of
Füssen and Osterreinen. MS Füssen completes a longer route,
starting from Füssen all the way up to Roßhaupten.

Referring to MS Füssen, 35 distinct measurement instances
satisfy the positioning error threshold requirement of 5 m.
Negligible differences to the baseline measurements are further
depicted in numerous entries. Specifically, for entries P21,
P22, and P58, the difference between baselines and chosen
combinations are on the order of 10−4. Vessel positioning can
be quite good while the incorporation of the farthermost sensor
being virtually absent. Apart from scenarios with negligible
measurement differences, the actual optimization scenarios can
be observed from numerous entries, such as P13, P14, and P15.
In the context of MS Allgäu, distinct measurement patterns
are similar to MS Füssen but include less outliers pertaining
to the baseline measurements. The highest baseline error in
accuracy was measured to be 58.3698 m for the entry P6. For
MS Füssen, it is 121.5958 m for the entry P46. Results suggest
that regions with greater magnitude require more sensors
that are active. In contrast with the Rhine river, the region
of Forggensee lake has greater distances, which necessitate
meticulous configurations of sensor localization geometries
with more MRD emplacements.

VI. CONCLUSION

In this paper, we developed and evaluated a maritime vessel
positioning system and optimized the expenditure related to its
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Fig. 5. Positioning error measurements for the vessels CONTARGO 1 (NL), ROYAL EMERALD (CH) and IRIS (BE) across distinct sensor combinations.
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Fig. 6. Positioning error estimations of MS Allgäu and MS Füssen with 60 entries from the measurement campaign.

operation for distinct tidal regions. The system is aimed as an
alternative to GNSS-based positioning systems that are highly
vulnerable to jamming and spoofing in the context of nautical
navigation and traffic. We looked at the overall performance
along riverbanks and lakes. Practical scenarios illustrated the
proper measurement approach for the maritime vessel radar
signals and further utilization within positioning. Optimization
schemes pertaining to overall system expenditure were carried
out. The contribution of each sensor was evaluated for vari-
ous vessel-target routes and along the areas with applicable
adjacency, and functionality was adjusted accordingly. For
other scenarios consisting of larger scales, improvements are
required with reference to the number of MRD devices and
localization geometries, which is part of our future work.
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