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ABSTRACT

Models of coupled oscillator networks play an important role in describing collective synchronization dynamics in biological and technolog-
ical systems. The Kuramoto model describes oscillator’s phase evolution and explains the transition from incoherent to coherent oscillations
under simplifying assumptions, including all-to-all coupling with uniform strength. Real world networks, however, often display heteroge-
neous connectivity and coupling weights that influence the critical threshold for this transition. We formulate a general mean-field theory
(Vlasov–Focker Planck equation) for stochastic Kuramoto-type phase oscillator models, valid for coupling graphs/networks with hetero-
geneous connectivity and coupling strengths, using graphop theory in the mean-field limit. Considering symmetric odd-valued coupling
functions, we mathematically prove an exact formula for the critical threshold for the incoherence–coherence transition. We numerically test
the predicted threshold using large finite-size representations of the network model. For a large class of graph models, we find that the numer-
ical tests agree very well with the predicted threshold obtained from mean-field theory. However, the prediction is more difficult in practice
for graph structures that are sufficiently sparse. Our findings open future research avenues toward a deeper understanding of mean-field
theories for heterogeneous systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094009

Networks of coupled oscillators appear in an impressive range
of systems in nature and technology where they display collec-
tive dynamics, such as synchronization.1–3 The Kuramoto model
describes the phase evolution of oscillators4,5 and explains the
transition from incoherent to coherent synchronized oscillations
for a critical threshold of the coupling strength under simplifying
assumptions, such as all-to-all coupling with uniform strength;6,7

however, real world networks often display strong heterogene-
ity in connectivity and coupling strength, which affect the crit-
ical threshold.8 We derive a mean-field theory for stochastic
Kuramoto-type models and extend it to a large class of hetero-
geneous graph/network structures via graphop descriptions valid
for the mean-field limit. We prove a mathematically exact for-
mula for the critical threshold, which we test numerically for large
finite-size representations of the network model.

I. INTRODUCTION

The discovery of synchronization dates back to 1665 with
Christiaan Huygens’ observations of two synchronizing pendulum
clocks,9 and its mathematical modeling likely began with Norbert
Wiener who was inspired by neuronal oscillations in the brain.10

Wiener’s formulation of the problem, however, was too general
to allow for any analytical progress; simplifying assumptions were
necessary to render the problem mathematically tractable,11 culmi-
nating in Yoshiki Kuramoto’s paradigmatic model.4,5 Kuramoto’s
original model describes the time evolution of the oscillator phases
θk = θk(t),

d

dt
θk =: θ̇k = ωk + C

N

N
∑

j=1

sin(θj − θk),
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where k ∈ {1, . . . , N} =: [N], the coupling interaction between oscil-
lators is first order, the coupling is all-to-all with uniform strength
C, and the intrinsic frequencies ωk are drawn unimodally from
a distribution g centered in the origin. The level of synchroniza-
tion in this transition is aptly captured using the order parameter

r(t) = 1
N

∣
∣
∣

∑N
j=1 exp (iθj(t))

∣
∣
∣, which tends to 0 when oscillator

phases are incoherent (disordered) for weak coupling or to 1
when oscillators lock their frequencies and phases clump together
(we say that the phases are coherent/the oscillators synchro-
nize). When frequencies are identical, ωk = ωj for all k, j ∈
[N], the so-called synchronization manifold defined by θk(t) =
θj(t) for all k, j ∈ [N] exists and is attractive for C > 0; vice
versa, when frequencies are non-identical (or symmetry is bro-
ken due to some other mechanism, see below), the loss or gain
of coherence plays out in a competition between the strength
of the heterogeneity and coupling strength C. Thus, for a
set distribution width of the intrinsic frequencies, Kuramoto’s
model exhibits a transition from incoherent to coherent oscil-
lations as the coupling strength C surpasses a certain threshold
value C\.

Kuramoto’s initial heuristic analysis was based on a self-
consistency equation for the order parameter,12 allowing one to
predict the critical coupling strength associated with the incoher-
ence–coherence transition. A more formal mathematical treatment
facilitating deeper insights would, however, require a mean-field
theory valid in the limit, N → ∞. Such a theory13 describes the
dynamics in terms of a density function in the oscillator phases,
ρ = ρ(φ, t), which evolves according to a transport equation
[formally, a Vlasov–Fokker–Planck equation; see Eq. (8)]. Such a
description was used by Strogatz and Mirollo14 to investigate the
stability of the incoherent branch for C < C\ where ρ = 1/(2π) by
studying the associated eigenvalue spectrum and to (re-)derive the
critical coupling C\ = 2/(πg(0)), where g(0) denotes the maximum
value of a unimodal frequency distribution g; this approach was fur-
ther developed and applied to variants of the Kuramoto model.15

Other studies focused on the stability analysis for the partially syn-
chronized branch (C > C\).16 An exact low dimensional description
in terms of the macroscopic dynamics (order parameter) allowing to
express the evolution of the order parameter in terms of an ordinary
differential equation became available later.17–19

While Kuramoto’s simplifying assumptions allowed for mak-
ing significant progress in the mathematical understanding of the
synchronization phenomenon, to understand real world oscilla-
tor dynamics, it is desirable to break these assumptions toward
increasing complexity. There are a number of ways of doing this;
here, we are concerned with how the incoherence–coherence tran-
sition is affected by the presence of (thermal) noise and, in par-
ticular, network heterogeneities, which play a major role in real
systems.20–27 Indeed, the ability of coupled oscillators to synchronize
has been investigated under the influence of noise,12,28 heteroge-
neous connectivity,29,30 or heterogeneous coupling, such as non-
local,31,32 k-nearest-neighbor,33 or random coupling strengths34,35

and also on experiments36–39 where oscillators are subject to real
world influences.

Mean-field descriptions for N → ∞ are well established
for various theoretical frameworks, including coupled oscillator

networks.13 Our focus thus lies on mean-field limits valid for com-
plex networks,8 i.e., to generalize the Vlasov–Fokker–Planck (VFPE)
equation [see Eq. (8)] so that it is capable of accurately describ-
ing the dynamics in complex networks characterized by hetero-
geneities in the connectivity or coupling strength. In particular,
this includes cases where the adjacency matrix defining interac-
tions between finitely many vertices is neither a full graph (i.e.,
complete graph with uniform coupling strength) nor a highly sym-
metric structure, such as a lattice. In order to incorporate such
structures, it is necessary to extend the description of (weighted)
graph structures to the mean-field limit. This is possible via so-
called graphons, which rely on concepts of the theory of limits
of graph sequences40,41 or even more generally utilizing the the-
ory of graphops.42 Intuitively, graph limit theory provides a way to
arrange limits of discrete graphs as continuous objects. Graphons
achieve this, mostly within the context of dense graphs, using a cou-
pling kernel function that describes the connectivity in the limit.
Graphops generalize graphons, also incorporating many interme-
diate and sparse density graph limits in addition. Graphops can be
represented as operators or via an associated measure-theoretic rep-
resentation; i.e., they are generalizing purely kernel-based operators
to more general operators. Recent studies have used graph limit the-
ories to pursue the goal of heterogeneous mean-field limits. Several
mathematical approaches have been successful in providing rigor-
ous proofs for VFPEs, where nonlocal integral terms appear to take
into account the heterogeneous coupling structure.43,44 Recently,
a general theoretical framework based on graphops has been put
forward (by some of the authors of this paper) that allows us to
generalize mean-field limit VFPEs easily from particular cases (non-
local coupling or standard all-to-all) to describe modern complex
network structures.45–48

In the present paper, we extend previous work45–47 to the
stochastic case and formally derive a mean-field description based
on graphop theory for the Kuramoto model with identical oscil-
lators interacting via an odd-valued (general) coupling function
D and non-uniform coupling strengths under the influence of
(thermal) noise. We then derive rigorous results for the critical
threshold for the incoherence–coherence transition (C\) by deriv-
ing a stability formula for the incoherent solution branch. A dif-
ficulty arises as it is unclear what demarcates the boundary of
validity of mean-field PDEs for complex heterogeneous graphs;
i.e., at some level of graph heterogeneity, it may be too difficult
to accurately capture details of very sparse graph structures. As
we cannot be sure under what circumstances our results corre-
spond to the dynamics obtained for finite graphs (rigorous con-
vergence results are still needed), we carry out detailed numeri-
cal simulations to test our results for various finite graph struc-
tures.

This article is structured as follows. In Sec. II, we introduce
a formal derivation of the mean-field equations for N → ∞. In
Sec. III, we derive the critical coupling strength C\ for the con-
tinuum limit, based on the graphop mean-field limit equation. In
Sec. IV, we carry out numerical simulations to investigate how the
incoherence–coherence transition point predicted by the mean-field
theory carries over to finite graphs for a range of graph structures,
including dense and sparse topologies. Finally, we discuss our results
in Sec. V.
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II. FORMAL DERIVATION OF THE MEAN-FIELD
EQUATIONS

As discussed above, we are interested in mean-field models for
stochastic Kuramoto(-type) models on networks.49 The individual
dynamics for the coupled identical oscillators is given by

dθN
k

dt
=: θ̇N

k = C

N

N
∑

j=1

AN
kjD(θ

N
j − θN

k )+
√

2β−1Ẇk, (1)

where k ∈ [N] := {1, . . . , N} and θk = θk(t) ∈ T := R/(2πZ)

denotes the phase of the kth oscillator, (AN
k,j)k,j∈[N]

denotes a weighted

and non-negative adjacency matrix of the network (i.e., a graph
G with adjacency matrix AN

kj), D : T → R is a sufficiently regular

coupling function (e.g., D = sin), C > 0 is the coupling strength,
β > 0 is a diffusion constant controlling the noise level, and
W(t) = (W1(t), . . . , WN(t))

> is a vector of N independent Brown-
ian motions so that Ẇk = Ẇk(t) is just a white noise forcing for each
oscillator. The following derivation extends45 to the stochastic case.
To understand the formal derivation, let us consider the Kuramoto
model with uniform all-to-all coupling (full graph), i.e., for AN

k,j = 1

for all k, j ∈ [N] and D = sin. In other words, (1) now reads as

θ̇N
k = C

N

N
∑

j=1

sin
(

θN
j − θN

k

)

+
√

2β−1Ẇk, k ∈ [N]. (2)

Let us introduce the complex order parameter

reiψ := 1

N

N
∑

j=1

eiθj . (3)

Multiplying this equation by e−iθk and equating imaginary parts, we
have

r sin(ψ − θk) = 1

N

N
∑

j=1

sin
(

θN
j − θN

k

)

, (4)

which implies that

θ̇N
k = Cr sin(ψ − θk)+

√

2β−1Ẇk, k ∈ [N]. (5)

From (5), the mean-field character of the problem is visible as the
kth oscillator just feels the averaged input from all other oscillators
so one can think of a single typical oscillator and aim to analyze
its dynamics. Let ρ(t, θ) dθ denote the fraction of oscillators with
phase between θ and θ + dθ at time t; i.e., ρ is a probability den-
sity. Assuming a law of large numbers in the limit N → ∞, we
formally get

reiψ = 1

N

N
∑

j=1

eiθj →
∫ 2π

0

eiφρ(t,φ) dφ. (6)

Now, using the same trick as above (i.e., multiplying both sides of the
last equation by e−iu and taking imaginary parts), Eq. (5) becomes in

the limit N → ∞,

u̇ = C

∫ 2π

0

sin(φ − u)ρ(t,φ) dφ +
√

2β−1Ẇ. (7)

Finally, the continuity equation, also called the Vlasov–Fokker–
Planck equation (VFPE), for the probability density ρ, respectively,
for the law of the limiting process u, reads as

∂tρ = −∂θ
(

ρV(ρ)
)

+ 1

β
∂2
θρ,

V(ρ) := C

∫ 2π

0

sin(φ − θ)ρ(t,φ) dφ.

(8)

In summary, (8) is a partial differential equation with a first-order
transport/advection-type term with a nonlocal convolution term
involving the sine-nonlinearity mediating the coupling and with a
second-order spatial diffusion term arising directly from the white
noise forcing.

Now, let us come back to Eq. (1). In this case, the next natural
generalization step is to assume that the network (i.e., a graph G with
adjacency matrix AN

kj) is sufficiently connected and does not have

components, which are more connected than others; see also Ref. 49.
Moreover, we assume that there exists a local order parameter rke

iψk ,
which is locally proportional to a single global order parameter reiψ

weighted by the degree κk for each node; i.e., we have

κkre
iψ = rke

iψk :=
N
∑

j=1

AN
kje

iθj . (9)

By multiplying the local order parameter by e−iθk and equating the
imaginary parts in the last equation, we obtain

θ̇N
k = C r κk sin(ψ − θk)+

√

2β−1Ẇk, k ∈ [N]. (10)

Now, let ρ(t, θ , κ) dθ denote the probability for the fraction of oscil-
lators having a phase between θ and θ + dθ and a degree κ at time
t. Note carefully that we have added an additional variable κ to the
density, which captures the (degree) heterogeneity of the network.
If we assume that the network is uncorrelated and has degree distri-
bution d(κ), one is tempted to assume that in the limit N → ∞, we
have

reiψ = 1

κk

N
∑

j=1

AN
kj eiθj →

∫ 2π

0

∫ ∞

0

eiφ κ d(κ)

〈κ〉 ρ(t,φ, κ) dκ dφ, (11)

where 〈κ〉 is the average degree of a vertex in the graph and
κd(κ)
〈κ〉 ρ(t,φ, κ) is the probability density for an edge having its end

at a vertex of phase φ and degree κ at time t. Now, using the same
trick as before, Eq. (10) becomes in the limit N → ∞,

u̇ = C

〈κ〉

∫ 2π

0

∫ ∞

0

sin(φ − u) l d(l) ρ(t,φ, l) dφ dl +
√

2β−1Ẇ.

(12)

The continuity equation for the probability density ρ, respectively,
the law of the limiting process u, reads as

∂tρ = −∂θ
(

ρV[G](ρ)
)

+ 1

β
∂2
θρ, (13a)
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V[G](ρ) := C

〈κ〉

∫ 2π

0

∫ ∞

0

sin(φ − θ) l d(l) ρ(t,φ, l) dφ dl. (13b)

Thus, in comparison with the VFPE valid for all-to-all coupling with
uniform strength (8), we had to replace

ρ(t,φ) by

∫ ∞

0

ld(l)

〈l〉 ρ(t,φ, l) dl. (14)

We can view this step as incorporating the structure of
graph/network G appearing in the Vlasov equation via an operator,
which acts on the density ρ. In fact, one can even hope to com-
pletely remove averaging over the variable κ that we used to capture
the heterogeneity and just keep κ as a new variable in the density,
which then yields a whole hierarchy of mean-field VFPEs, one for
each degree. This set of ideas can then be thought even further and
one can directly replace the adjacency matrix by a coupling kernel,
and there are numerous papers in this direction.43,44,46,47 Yet, it seems
best to think of generalizing VFPEs more abstractly45 by viewing the
underlying network influence as given by some linear operator A
acting on the density so that a more abstract form of VFPEs would
be given by

∂tρ = −∂θ
(

ρV[A](ρ)
)

+ 1

β
∂2
θρ, (15a)

V[A](ρ) = C

∫ 2π

0

D(φ − θ)(Aρ)(t,φ, x) dφ, (15b)

where x is a suitable variable that tracks the heterogeneity of the
network so that one effectively obtains a family of VFPEs, and we
have also replaced the sine-coupling again by a more general cou-
pling function D. A typical choice of x found in the literature would
be to take it as a variable in the unit interval x ∈ [0, 1] = �, where
points in the interval represent node labels in the infinite network
limit.43,44,46,47 Probably the most elegant abstract way to think of
A is as a graph operator, or graphop, as introduced in Ref. 42. A
graphop is a bounded, self-adjoint, and positivity-preserving opera-
tor A : L∞(�; m) → L1(�; m), where m is the reference measure on
�; e.g., one can pick the Lebesgue measure. To a given graphop A
always corresponds a family of finite measures (νx)x∈�, called fiber
measures, via the formula

(Af)(x) =
∫

�

f(y) dνx(y) x ∈ � for f ∈ L∞(�; m).

Intuitively, we may view a graphop A just as a generalized adjacency
matrix for a symmetric graph, and for a given node x ∈ �, the fiber
measure νx is just the edge distribution for this node. Indeed, for the
finite-dimensional case, we can just pick� = [N] and m as the uni-
form measure on� so that functions f ∈ L∞(�; m) can be identified
with vectors in R

N and Af is just the usual matrix-vector multiplica-

tion. Yet, we stress that in the limit N → ∞, we need a space, such
as� = [0, 1], with the Lebesgue measure.

One may wonder, how far such an abstract construction for
VFPEs involving graphops can work? It is clear that it works in
simple cases, e.g., when the graph is all-to-all coupled as one can
just drop the dependence on x. Also, if the graph is very dense and
very regular with just two types of typical nodes, then one could
take x as a binary variable and so on. Furthermore, it is understood
that it works for dense graphs, where A can be represented by an
integral operator with a sufficiently regular kernel, i.e., in the frame-
work of so-called graphons. However, one does expect that there are
growing networks as N → ∞ that are so sparse and/or so hetero-
geneous that eventually, mean-field calculations may fail. Proving a
precise boundary location on the space of networks to determine,
when VFPEs are helpful and when they fail, seems out of reach at
this point. Here, we take a pragmatic approach and start from the
formal VFPE (15a), carry out stability analysis of the main bifur-
cation/phase transition to synchronization in the Kuramoto model,
and then numerically simulate the dynamics for different discretized
(i.e., finite-dimensional, large N) classes of graphops A to check
when the mean-field stability calculation is accurate. This is going
to provide an indirect cross-check, whether a mean-field limit can
work.

III. BIFURCATION/PHASE TRANSITION

In the following, we consider (15a), and we assume for
simplicity that

(H0) The coupling is non-trivial; i.e., C > 0.
(H1) D is an odd 2π-periodic function.
(H2) A is a graphop with a bounded 2 → 2 norm; i.e., the following

quantity exists and is finite:

‖A ‖2→2 := sup
v∈L2(�)

‖ Av ‖2

‖ v ‖2

< ∞.

This implies that A can be uniquely extended to the Hilbert space
L2(�, m) (see Remark 2.12 in Ref. 42, for instance). For simplic-
ity, we use the same notation for this extension; i.e., we write A :
L2(�, m) → L2(�, m). For the solution ρ(t, θ , x) of (15a), we define
the jth Fourier coefficient as

zj = 1

2π

∫ 2π

0

e−ijθρ(t, θ , x) dθ , j ∈ Z, (16)

where i :=
√

−1. Note that we have effectively defined a family of
Fourier coefficients that depends upon x, i.e., {(zj)x}x∈�, but we shall
always write just zj in the calculation below and later discuss the
x-dependence. Applying the Fourier transform to (15a), exchang-
ing integrals, and using integration-by-parts (in the second line), we
have

∂tzj = 1

2π

∫

T

e−ijθ

(

−∂θ {ρ(t, θ , x)V[A](ρ)(t, θ , x)} + 1

β
∂2
θρ(t, θ , x)

)

dθ
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= 1

2π








ijC

∫

T

e−ijθρ(t, θ , x)

∫

T

(Aρ)(t,φ, x)D(φ − θ) dφ dθ − j2

β

∫

T

e−ijφρ(t,φ, x) dφ

︸ ︷︷ ︸

=zj








= 1

2π

(

ijC
∑

l∈Z

D̂(l)

∫

T

ei(−j−l)θρ(t, θ , x)

∫

T

(Aρ)(t,φ, x)eilφ dφ dθ − j2

β
zj

)

= 1

2π



ijC
∑

l∈Z\{0}
D̂(l)z−j−lAz−l −

j2

β
zj



 , (17)

where D̂ denotes the Fourier transform of D, and in the last line, we
used that D̂(0) = 0, which follows from the fact that D is an odd,
periodic function. Moreover, z−j = zj holds, which follows from the
fact that ρ is real-valued. We can assume without loss of generality
that j ∈ N to get the following system (i.e., the amplitude equation):

∂tzj = 1

2π







(

iCD̂(−j)A − j2

β

)

zj + ijC
∑

l∈Z,l 6=0,−j

D̂(l)z−j−lAz−l






,

(18)

j = 1, 2, . . . .

The completely incoherent state ρ∞ ≡ 1/(2π) of the oscillators cor-
responds to a uniform probability density over the circle, which
translates into z0 = 1/(2π) and zj = 0 for all j 6= 0, and the state
is also assumed to be independent of x; i.e., we assume that all
different types of nodes are uniformly distributed across the circle
for ρ∞. Linearizing (18) around this incoherent state yields via a
straightforward calculation the system

∂tZj = 1

2π

{(

iCD̂(−j)A − j2

β

)

Zj

}

, j = 1, 2, . . . , (19)

where we use Zj to denote the Fourier coefficients of the lin-
earized dynamical system, and we observe that the linearized system
nicely decouples. The question then is how does the stability of the
jth Fourier mode depend on the eigenvalues of graphop A? On
the Hilbert space H := L2(�, m), for any j ∈ N, let us define the

linearized operator T
j
C : H → H,

T
j
Cw := 1

2π

(

iCD̂(−j)A − j2

β

)

w.

Recall that the resolvent set ρ(A) of the operator A : H → H is
defined to be the set

ρ(A) := {λ ∈ C : Rλ(A) := (A − λI)−1 :

H → H exists and is bounded},

where Rλ(A) is called the resolvent operator of A and the spectrum of
A is the complement σ(A) := C \ ρ(A). Observe that for any λ ∈ C,

setting λ̃ := 1
2π

(

iCD̂(−j)λ− j2

β

)

, we have

Rλ̃(T
j
C) = 1

2π
iCD̂(−j)Rλ(A).

From this, we see that for all j for which D̂(−j) 6= 0, the condition
that Rλ(A) exists and is bounded is equivalent to the condition that

Rλ̃(T
j
C) exists and is bounded. From this, we conclude that for all

j ∈ Z for which D̂(−j) 6= 0, we have

σ(T
j
C) = 1

2π

(

iCD̂(−j)σ (A)− j2

β

)

.

For all other j ∈ Z [that is, for all j for which D̂(−j) = 0], we

see immediately that σ(T
j
C) = − j2

β2π
. Since A is bounded and

self-adjoint, we have that σ(A) ⊂ R is a bounded set. Further

note that since D is an odd function, we must have D̂(j) = i
∫ 2π

0

D(u) sin(ju)du ∈ iR. Finally, define

C\ := inf

{

j2

βiD̂(j)λ
: λ ∈ σ(A), j ∈ Z

∗, iD̂(j)λ ≥ 0

}

, (20)

where Z
∗ := Z

+ ∪ {0}. The next theorem shows that C\ is a uniform
parameter bound on the coupling strength independent of x, which
means that smaller coupling leads to stability of incoherence, while
above C\, at least some classes of nodes synchronize at least partially.
More precisely, we have

Theorem 3.1: (Incoherence–coherence transition) Consider
an odd, 2π-periodic, continuous function D : [0, 2π] → R and a
graphop A : L2(�, m) → L2(�, m). Then, the incoherent state ρ∞ is
locally asymptotically stable for 0 < C < C\ and unstable for C > C\.

Proof. Observe that for any λ ∈ σ(A) and j ∈ Z
∗, such that

iD̂(−j)λ < 0, the corresponding element in the spectrum of T
j
C,

λ̃(C, j) = 1
2π
(iCD̂(−j)λ− j2

β
) ∈ σ(Tj

C), is strictly negative for any

C > 0; thus, it never crosses the imaginary axis. Thus, a crossing,
for growing C, can occur only among those λ ∈ σ(A) and j ∈ Z

∗

for which iD̂(−j)λ > 0. Among all such λ and j, the crossing occurs
always at

Cj,λ := j2

βiD̂(−j)λ
. (21)
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Observing that C\ is the minimum of all these transition points, it
follows immediately that C\ is the smallest C > 0 for which there

exists j ∈ N such that an element in the spectrum of T
j
C crosses the

imaginary axis, namely, the element λ̃(C\, j) ∈ σ(Tj

C\
). �

As a first step, we want to carry out some specializations to
examples and analytically consider some cases.

Example 3.2: (Kuramoto model with first order interac-
tion) We wish to specialize the general formula for the critical
threshold in Eq. (20) [valid for Eq. (15), i.e., the continuum limit
version of Eq. (1)], to the continuum limit version of the classical
Kuramoto model, i.e., where oscillators interact via a first-order har-
monic coupling function, i.e., D : [0, 2π] → R with D(u) = sin u.
Hence,

D̂(1) = 1

2π

∫ 2π

0

sin(u)eiudu = i

2
,

D̂(−1) = − i

2
,

D̂(k) = 0, k ∈ Z\{1, −1},

and iD̂(−1) = 1
2
> 0. Then, by Theorem 3.1, the incoherent state

loses stability at

C\ = 2

β3(A)
, 3(A) := sup

λ∈σ(A)
|λ|. (22)

Example 3.3: (Classical Kuramoto model on full graph) In
the case of the full graph (i.e., complete graph with uniform coupling
strength), we have

Af(x) =
∫

�

f(y) dm(y), x ∈ �, f ∈ L2(�, m).

Clearly, A is a non-invertible operator, and the only eigenvalue of
A is 1. [The eigenvalue equation Af = λf implies that f must be a
constant, say f0 6= 0, satisfying f0 = λf0. Thus, λ = 1.] Moreover, in
the case that λ ∈ C \ {0, 1}, the operator A − λI is invertible since
for any g ∈ L2(�, m), the pre-image f is achieved under the unique
choice

f :=
c

1−λ − g

λ
, c :=

∫

�

g(y) dm(y).

Thus, we have σ(A) = {0, 1}. Hence, for the Kuramoto model on the
full graph, we obtain by Example 3.2 that

C\ = 2

β
, (23)

in agreement with previous analysis (see also e.g., Ref. 6).
Remark 3.4: Sakaguchi50 obtained for the critical coupling of

the full graph the formula (in Sakaguchi’s notation)

KC(D) = 2

(∫ ∞

−∞

1

ω2 + 1
g(Dω + ω0) dω

)−1

. (24)

In our framework, matching the assumptions and the notation cor-
rectly, we have ω0 = 0, D = 1

β
, and g = δ0. Note that in Sakaguchi’s

framework, the variance of the Brownian term fi(t) is 2Dt, while

in our framework, the Brownian term
√

2β−1Wk has variance 2
β
t

for each k; thus, we must have D = 1
β
. Thus, Sakaguchi’s formula

simplifies to

KC(D) = 2

(∫ ∞

−∞

1

ω2 + 1
g(Dω) dω

)−1

= 2

(

1

D

∫ ∞

−∞

1
(

x
D

)2 + 1
dδ0(x)

)−1

= 2D = 2

β
= C\, (25)

which is exactly just the special case of the far more general formula
we calculated in Example 3.3.

Although we have now a very nice formula for C\, it is not
immediately clear for which classes of networks this formula works
as N → ∞. After all, Theorem 3.1 only makes claims about sta-
bility/instability based upon the assumption of the validity of the
mean-field VFPE. Only if we already knew that the mean-field limit
VFPE would be valid for certain classes of networks, i.e., if it does
approximate—in a suitable sense—the oscillator system for finite
but large N, then we could be certain applying our result for finite
large networks. Proving such an approximation result in full gen-
erality is difficult, although first steps exist for the deterministic
Vlasov case.43,44,46,47 For example, one issue in this context is that
the mean-field only holds in a scaling limit upon re-normalizing the
sums appearing in the Kuramoto model suitably via the density of
the graph. However, empirically testing the formula for C\ via var-
ious classes of large finite networks using numerical simulation is
certainly possible, and we shall proceed with this approach.

IV. INCOHERENCE–COHERENCE TRANSITION FOR
FINITE AND INFINITE OSCILLATOR NETWORKS

We want to check the prediction for the incoherence–coherence
transition given in Theorem 3.1 for the mean-field limit by numer-
ical simulations. The challenges we face in doing so stem from the
fact that numerical simulations are bound to a finite-dimensional
representation of Eq. (1) and to a finite simulation time. Thus, while
Theorem 3.1 can only hold in an approximative sense for N < ∞,
the finite system size and simulation time also incur uncertainty
in the detection of the incoherence–coherence transition. Several
points need to be taken into account when detecting the transition
from incoherence to coherence that we outline below.

To see this, it is instructive to observe the dynamics for the
case of the Kuramoto model where oscillators interact with D(u) =
sin(u) on a complete graph with uniform coupling. The collec-
tive dynamics of all oscillators is described by the order parameter
r(t) defined in (3) and is shown in Fig. 1 for numerical solu-
tions of (2) for varying coupling strengths C and fixed system size
N = 1000 and noise level β = 50. Initial phases are chosen to cor-
respond to incoherent oscillations (see Sec. IV A on numerical
methods). The dynamics of the order parameter r is subject to fluc-
tuations, which stems from two sources: (i) the stochastic dynamics
inherent to the system and (ii) finite-size effects induce pseudo-
random fluctuations of order O(N−1/2) that vanish in the limit
N → ∞.51 After a transient time, Ttr, we observe that the dynam-
ics settle into a quasi-stationary state (on average); i.e., the order
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FIG. 1. Time evolution of r for numerical solutions of (2) for different values of C.
Clearly, the time traces of r are subject to (random) fluctuations. Also, for higherC,
the time traces of r settle, after a transient, at some quasi-stationary state (dashed
lines). Other parameters are β = 50 and N = 1000.

parameter fluctuates around a constant mean value and is bounded
by minimal and maximal values. If the trajectory after the transient
attains a minimal value arbitrarily close to 0 during the observed
time interval, we say that the population oscillates incoherently; if
the minimal value never approaches 0, the dynamics are said to
be (partially) coherent or synchronized (perfect synchrony occurs
only for r = 1), and we observe increasing synchrony for larger
C. Accordingly, Fig. 1 allows us to distinguish incoherent oscilla-
tions for weak coupling strengths (C = 0 to C = 0.03), and partially
coherent oscillations occur for stronger coupling (C ≥ 0.04), which
agrees well with the prediction of C\ = 0.04 given by (23) for the
continuum limit. For further details on the incoherence–coherence
transition of the Kuramoto model, see also Ref. 6.

These observations point toward an implementation of numer-
ical methods and measurements as outlined below.

A. Numerical methods

We calculate numerical solutions of (1) with a first-order
Euler–Maruyama scheme with a time step 1t = 0.01. Initial
conditions/phases correspond to low synchrony compliant with
incoherence, i.e., either the equidistant state θk(0) := 2πk/N (uni-
form complete graph, Erdös–Rényi graph, regular ring lattice with
r = 400, and spherical graph) or the random state where θk(0)
(regular ring lattice with r = 25, sinusoidal graph, and Lorentzian
graph) is drawn from the uniform distribution on the inter-
val [0, 2π) (two types of initial conditions were chosen since
other attracting states were present for the regular ring lattice
with r = 25). To characterize the post-transient dynamics, we use

the order parameter r(t) =
∣
∣
∣

1
N

∑N
j=1 eiθj(t)

∣
∣
∣ in Eq. (3) and mea-

sure its temporal minimum and maximum, as well as its time
average,

rmin := min
t∈T

(r(t)), (26)

rmax := max
t∈T

(r(t)), (27)

r̄ := |T |−1

∫

T
r(t)dt, (28)

where T := [Ttr, T] with Ttr being the (estimated) transient time and
T the total length of the simulation.

To average over stochastic effects, such as Brownian motion
and random graphs (Erdös–Rényi graph and small-world graph),
we average these measurements over several realizations of solu-
tions of (2) [i.e., ten realizations to account for Brownian motion
for eight (random) graph realizations] and denote ensemble aver-
ages with angular brackets 〈·〉. To numerically test Theorem
3.1, we calculate 〈rmin〉, 〈r̄〉, and 〈rmax〉 for different values of
C and compare the resulting curves with C\. The sampling
points for the coupling C are non-uniformly spaced with a
higher density in regions of interest (indicated as blue dots in
Fig. 2).

A suitable transient time Ttr can be determined based on
the following considerations. The actual transient is maximal for
C = C\ and decreases for C > C\; see Fig. 1. One could esti-
mate Ttr for each value of C individually to optimize for com-
putational effort; but for simplicity, we estimated the length
of Ttr only at C = C\ and used this Ttr for all probed val-
ues of C, as this choice guarantees a sufficiently long tran-
sient time. Due to the fluctuations present in the signal of r(t)
(pseudo-random fluctuations and stochastic noise), the estima-
tion of Ttr is heuristic; i.e., it is done by visual inspection. This
estimate of Ttr improves with increasing N as the amplitude
of (pseudo-random) fluctuations decreases. Taking these consid-
erations into account, we chose Ttr = 700, T = 1000,1t = 0.01,
N = 1000 for all our numerical solutions of (2).

B. Graph(on) topologies and their associated
incoherence–coherence transitions

We now define different graph structures for which we carry
out numerical simulations to test for the onset of the incoher-
ence–coherence transition. Results for the incoherence–coherence
transitions for the various graph topologies are summarized
in Fig. 2.

1. Incoherence–coherence threshold for finite and
infinite oscillator systems

We extend our analysis to different coupling topologies while
using the coupling interaction D(u) = sin(u). The theoretically pre-
dicted threshold for the incoherence–coherence transition, C \, valid
in the mean-field limit is calculated using (22). We shall compare
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FIG. 2. Incoherence–coherence transition for numerical solutions of (2) for different coupling topologies. The dashed black lines show the respective value of C\. The red
dashed lines show 〈rmin〉 and 〈rmax〉, while the blue lines show 〈r̄〉. (a) Uniform complete graph, C\ = 0.08. (b) Regular ring lattice with r = 25,C\ = 0.8. (c) Regular ring
lattice with r = 400,C\ = 0.05. (d) Lorentzian graph withµ = 0.01,C\,N = 0.0718. (e) Lorentzian graph withµ = 0.001,C\,N = 0.0713. (f) Spherical graph withM = 50,
C\,N = 0.8003. (g) Small-world graph with k = 100, p = 0.5,C\ = 0.2. (h) Sinusoidal graph, C\ = 0.08. (i) Erdös–Rényi graph with p = 0.5,C\ = 0.08. Parameters for
all graphs: N = 1000,1t = 0.01, Ttr = 700, T = 1000,β = 50, ten realizations of Brownian motion, eight realizations of the graph (if random). C\,N is evaluated when C\

cannot be evaluated.

the numerical findings to this theoretical prediction for coupling
topologies where it is possible. However, for certain graphops A,
a characterization of σ(A) exceeds the scope of this study (spheri-
cal graph in Sec. IV B 2 4; Lorentzian graph in Sec. IV B 2 6). In
such cases, we instead compute the eigenvalues σN(AN) of a discrete
coupling matrix AN that approximates A. We expect that the finite-
dimensional matrices AN can be used to provide an approximation
to (at least the boundary of) the spectrum of the limiting graphop
A as N → ∞, and therefore, C\ can be approximated by its discrete

corollary

C\,N = 2

β3N(AN)
, (29)

where 3N(AN) := maxλ∈σN(N−1AN) |λ| is the maximal eigenvalue

associated with AN. Finally, we also mention the possibility of “spec-
tral pollution,”52 which, in principle, can occur when numerically
approximating the spectrum of an operator with finite-dimensional
matrices. However, as we shall see, our numerical and analytical
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results are consistent; we, therefore, anticipate that the numerical
calculations are sufficiently stable.

2. Coupling topologies

a. Regular ring lattice with r neighbors. Nodes for this coupling
topology may be imagined to be arranged on a ring such that every
node is linked to a given number of r nearest neighbors. In the
continuum limit N → ∞ , the ring lattice graphon can be defined as

K(x, y) =
{

1, min{|x − y|, 1 − |x − y|} ≤ h,

0 otherwise,
(30)

where 0 ≤ h ≤ 1/2 is the (continuous) coupling range for oscillators
located at x and y on �. The graphop A defined via this graphon
kernel K has 3(A) = 2h [this can be shown, e.g., by writing K(x, y)
as a Fourier series, and the values of σ(A) are given in Ref. 53.]

For N < ∞, we simply define the regular ring lattice graph via

AN
kj =

{

1, k 6= j and min{|k − j|, 1 − |k − j|} ≤ r,

0 else,
(31)

where the (discrete) coupling range r = r(h) ∈ [N] for oscillators
located at k and j in [N] satisfies 0 ≤ r ≤ N/2 with N even. It is easy

to check that3N(AN) = 2r/N. In our simulations, we choose r from
which the value h for the corresponding graphon kernel follows via
h = r/N. We then have3(A) = 3N(AN) = 2r/N. We note two lim-
iting cases; namely, we obtain all-to-all coupling for h = 1/2 and
zero coupling for h = 0.

b. Erdös–Rényi graph. The Erdös–Rényi (ER) graph(on) is con-
structed in a random process where the presence (or absence) of
every edge (of the complete graph) is chosen with a probability
p ∈ [0, 1].

In the continuum limit, N → ∞, the Erdös–Rényi graphop
simply becomes the complete (all-to-all) graphop with constant uni-
form coupling strength p; i.e., the corresponding graphon kernel is
K(x, y) = p; see Ref. 54. It follows then that C\ = 2/(βp).

For finite oscillators N < ∞, a realization of the ER graph on
N nodes may be obtained by drawing N(N − 1)/2 random numbers
akj, 1 ≤ k < j ≤ N, from the uniform distribution on the interval
[0, 1]. The adjacency matrix of the graph is then

AN
kj = AN

jk =
{

1, k < j, akj ≤ p,

0 else.
(32)

For p = 1, we obtain all-to-all coupling with uniform coupling
strength 1 (complete graph), while p = 0 yields zero coupling.

c. Small-world graph. The small-world (SW) graph55 interpo-
lates between a regular ring lattice and a ER graph structure, thus
creating a topology that is quite regular but also entertains random
links across the network. This structure results in short path lengths
even when nodes are far away on the ring.

For finite graphs, N → ∞, the small-world graphop A can be
constructed via the graphon kernel56,57 given by

K(x, y) = (1 − p)W(x, y)+ 2ph, (33)

where

W(x, y) =
{

1, min{|x − y|, 1 − |x − y|} ≤ h,

0 else,
(34)

with (continuous) coupling range 0 ≤ h ≤ 1/2 [note that W(x, y)
is identical to K(x, y) in (30) further above for the regular ring lat-
tice]. It can be shown that3(A) = 2h [to see this, one needs to write
K(x, y) in terms of a Fourier series; the values of σ(A) are given by
Gao and Caines53].

For N < ∞, realizations of the SW graph on N nodes may be
obtained via the procedure introduced by Watts and Strogatz:55 One
starts with a regular ring lattice on N nodes with r nearest neigh-
bors (discrete coupling range). One selects a constant probability
p ∈ [0, 1]. For each node k and each link between k and its r nearest
neighbors to the right, we draw a random number X ∈ [0, 1] i.i.d.
from the uniform distribution. If X ≤ p, we draw a random integer
j from the uniform distribution on [N]. If k 6= j and the edge (k, j)
does not yet exist, it is created and the old link deleted.

In our numerical setting, we simply pick a value r and the value
h for the corresponding graphon kernel follows from h = r/N. We
numerically confirmed that 3N(AN) ≈ 3(A) = 2h. We shall thus
use the value C\,N ≈ C\ = 1/(βh).

d. Spherical graph. The action of the spherical graphop A :
L2(S2) 7→ L2(S2) on a function f is defined by

(Af)(x) =
∫

y⊥x

f(y)dνx, (35)

where νx is the uniform measure. The spherical graphop thus inte-
grates f over the circle on the unit sphere that consists of all the
points perpendicular to x. The resulting circle is the equator of the
point x. The spherical graphop does not have a graphon kernel
or a known spectrum; therefore, we need to calculate C\ via (29).
Moreover, a matrix approximation to the spherical graphop has to
our knowledge not yet been proposed. Here, we propose a pos-
sible approximation without claiming any convergence properties
as N → ∞. Choosing N (approximately equidistant) sample points
x1, . . . , xN on the unit sphere, we may obtain a matrix AN approxi-
mating A by defining AN

kj = AN
jk = 1 if xk and xj are approximately

perpendicular; otherwise, AN
kj = AN

jk = 0. The discretized version of

(35) then reads

(ANf)k = 1

N

N
∑

j=1

AN
kjf(xj). (36)

We refer to AN as a spherical graph. Three requirements should be
made on AN. For each point xk, the points xj for which AN

kj = 1

should (i) lie sufficiently close to the equator of xk, (ii) be sufficiently
equidistant, and (iii) be (almost) equally many for all k. Clearly, if
we take an arbitrary point on the unit sphere, one can place M per-
fectly equidistant points on its equator. However, (i) and (ii) must
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be fulfilled reasonably well for all N points and their respective
equators. Therefore, the points should form a regular grid. While
a perfectly regular grid of N > 6 points on the sphere is impossible,
there exist approximately regular grids.58 Here, we place the points
in a spiral of width 0.1 + 1.2N around the sphere, starting and end-
ing (approximately) on the poles. This method is implemented in the
Mathematica Software package.59 We denote the set of points with
this spacing on the unit sphere as P. The task is to determine subsets
Ek ⊂ P, 1 ≤ k ≤ N, such that each Ek discretizes the equator of xk.
To this end, we first calculate pkj := |〈xk, xj〉| for each 1 ≤ k < j ≤ N
to determine how close the pairs of points are to being perpendicu-
lar. Then, we specify M, the desired (approximate) cardinality of all
Ek’s. Now, we can, for each k, find the (approximately) M points xj

with the smallest values of pkj and make them members of Ek, under
the constraint that if xk ∈ Ej, then xj ∈ Ek, to ensure that AN is sym-
metric. We end up with a (symmetric) AN that fulfills demands (i)
and (ii) in an acceptable manner, while demand (iii) is fulfilled well:
|Ek| is either M or M − 1 for all 1 ≤ k ≤ N (see Fig. 3).

Since the spherical graphop cannot be defined via a graphon,
we determine3N(AN) = 0.049 98, and thus, C\,N = 0.8003.

e. Sinusoidal graph. In the sinusoidal coupling topology, nodes
are coupled most strongly to their nearest neighbors, the coupling

FIG. 3. Matrix approximation for the spherical graphop. Blue dots indicate the
sample points, black circles mark points belonging to the discretized equator
of one of the exemplary points (yellow diamond), and red squares mark points
belonging to the discretized equator of the other exemplary point (green dia-
mond). The two exemplary points are, thus, members of each other’s discretized
equators. Parameters are N = 1000 and M = 50.

then smoothly decreases the farther neighbors are apart, finally the
coupling is zero between nodes opposite on the ring. We define the
graphon kernel as

K(x, y) = 1

2
(1 + cos 2π(x − y)). (37)

It can be shown53 that the graphop A induced by K has3(A) = 1/2
so that C\ = 4/β = 0.08.

For N < ∞, we define the matrix AN by

AN
k,j = 1

2

(

1 + cos

(

2π
k − j

N

))

. (38)

f. “Lorentzian” graph. We also consider graphs for which a
mean-field description is more challenging and which, therefore,
could potentially fail to exhibit the behavior predicted by Theorem
3.1. A good candidate would be an irregular and sparse graph with
few very strong links, while the vast majority of links is very weak.
We can define such a topology based on the Lorentzian (graphon)
kernel,

K(x, y) = µ/π

(x − x0)
2 + (y − y0)

2 + µ2

+ µ/π

(x − y0)
2 + (y − x0)

2 + µ2
, (39)

where x0, y0 ∈ [0, 1]. K(x, y) peaks in the points (x0, y0) and (y0, x0),
and converges to a sum of delta distributions centered at these
points as µ → 0. We approximate this graphon in the finite
representation as

AN
kj = µ/π

(
k
N

− x0

)2 +
(

j

N
− y0

)2

+ µ2

+ µ/π

(
k
N

− y0

)2 +
(

j

N
− x0

)2

+ µ2

. (40)

We use the values x0 = 0.25, y0 = 0.75 with µ = 0.01 or µ = 0.001.
Computing the spectrum σ(A) of the graphop A defined by K
exceeds the scope of this work, and we use the eigenvalues of AN,

3N
(

AN
)
∣
∣
∣
∣
µ=0.01

= 0.5573, 3N
(

AN
)
∣
∣
∣
∣
µ=0.001

= 0.5612,

to obtain

C\,N
∣
∣
∣
∣
µ=0.01

= 0.0718, C\,N
∣
∣
∣
∣
µ=0.001

= 0.0713.

V. CONCLUSION AND OUTLOOK

We formulated a mean-field theory for stochastic phase oscilla-
tor models with nontrivial coupling, i.e., heterogenous graph topolo-
gies and coupling weights. Our analysis for Kuramoto-type models
with odd symmetric coupling functions, obtained via linearization
around the incoherent solution branch, yields an exact formula
for the critical coupling strength C\ at the incoherence–coherence
transition in the mean-field limit. Numerically integrating finite
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representations [see Eq. (1)] agrees very well with the predicted
threshold C\ [Eq. (22)] for a wide range of heterogeneous graph
structures (see Fig. 2).60 We, therefore, expect our theory to be appli-
cable to a large range of applications with heterogeneous oscillator
interactions, such as systems with non-uniform coupling associated
with chimera states61 or XY-oscillator type models with random
coupling.34,62

For certain graph topologies characterized by strong sparsity,
large variance in coupling strengths, or other types of “clusteriza-
tion” implying coupling fragmentation in the network, the mean-
field description is expected to break down, in particular, also in
terms of correctly predicting the incoherence–coherence transition
for finite-size systems. We found that such a problem occurs at least
for one instance, namely, for the Lorentzian graph topology [see
Figs. 2(d) and 2(e)], for which the detection of a sharp transition
point numerically is difficult. The Lorentzian graph is character-
ized by only a few nodes with very strong edge weights, while
the vast majority of edge weights are very weak: the graph topol-
ogy is effectively very sparse. This implies that we need a much
larger C to observe coherent oscillations. As becomes apparent from
comparing panels (d) and (e), the different quality of the incoher-
ence–coherence transition between the Lorentzian and the other
graphs considered is especially pronounced as the effective spar-
sity increases (µ → 0). Note that not merely larger overall coupling
strength C is needed to achieve (partial) coherence when compared
to other topologies; if that were the case, one would just observe
larger C\ for the Lorentzian graph as compared to the other graphs,
and the coherence onset would still set in at C = C\. Rather, the
onset of coherence appears to be delayed beyond C = C\ so that
the increase of partial synchrony sets in very slowly as C increases.
This observation becomes especially pronounced for very smallµ so
that the coupling kernel becomes effectively very sparse. Thus, the
Lorentzian graph represents an interesting coupling topology that
demarcates a possible class of graphs for which—at least for cer-
tain values of µ—our mean-field description and prediction for the
incoherence–coherence transition for the finite-size representation
break down.

While we extended the mean-field theory for the stochastic
Kuramoto model with all-to-all connectivity and uniform cou-
pling strengths to heterogeneous connectivity with non-uniform
coupling strengths, certain constraints apply to our model. These
may limit the validity of our theory and prompt avenues for
future research. For instance, we have assumed that the cou-
pling function D(u) is odd. This assumption excludes, in par-
ticular, the Kuramoto–Sakaguchi model, which has a coupling
function D(u) = sin (u + α) with a phase-lag α. This phase-lag
allows one to tune the coupling interaction to be a sine func-
tion vs cosine, distinguishing gradient-like and integrable dynam-
ics, respectively [compare with Eq. (2) without noise (β−1 = 0)]
and implies different incoherence–coherence transitions (Note that
a mix of such interaction is also essential to observe symmetry
breaking chimera states with nonuniform synchronization patterns
on the network61,63)—extending our theory to such interactions
would be of interest. Coupling functions D(u) of higher harmonic
order have recently attracted much interest, which imply more
complicated stability regimes and transitions between incoher-
ence and coherence.64–67 Moreover, interactions with arbitrary (e.g.,

non-symmetric) coupling interactions D = D(uk, ul) are possible,68

which imply directed graph topologies.47 While we studied the
Kuramoto model with identical intrinsic frequencies, the presence of
distributed frequencies is also of interest. Finally, extensions to other
phase oscillator models, such as the Kuramoto model with inertia26,69

or the theta neuron (or QIF neuron) that only performs rigid
rotations corresponding to spiking above a threshold current, are
worth mentioning. It would be very useful to derive rigorous mean-
field descriptions for the above-mentioned systems; today, mean-
field descriptions are available only for full graph structures.70,71

Finally, one might also consider transitions between—or bifur-
cations of—states other than incoherence or coherence, such as
chimera states or twisted states. Twisted states arise in bifurcations
due to negative eigenvalues from the graph operator.72 It would be
interesting to extend the mean-field theory developed here to such
cases. Some work in these directions has been done in the context
hypergraphs.73

Another important avenue for future research is to clarify the
validity regime for mean-field descriptions for very sparse and very
heterogeneous structures. Note carefully that the effective dimen-
sion of the VFPE mean-field equation (15a) will grow the more
heterogeneous the graph is due to the dependence of the node type
encoded by points in �. Hence, a mean-field description can still
exist, and our results indicate that this mean-field is often still very
useful to determine whether some number of nodes starts to tran-
sition from incoherence to partial synchronization. Yet, for more
complex patterns, involving an interplay between all different mean-
field node types on very sparse structures, we anticipate that the
mean-field description will eventually not be of much use as it is
also high-dimensional. In summary, to fully determine the theoret-
ical and practical limitations of heterogeneous mean-field VFPEs
remains a challenging problem for future work.
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