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ABSTRACT

We present a method for the in situ determination of Young’s modulus of a nanomechanical string resonator subjected to tensile stress.
It relies on measuring a large number of harmonic eigenmodes and allows us to access Young’s modulus even for the case of a stress-
dominated frequency response. We use the proposed framework to obtain Young’s modulus of four different wafer materials, comprising
three different material platforms amorphous silicon nitride, crystalline silicon carbide, and crystalline indium gallium phosphide. The result-
ing values are compared with theoretical and literature values where available, revealing the need to measure Young’s modulus on the sample
material under investigation for precise device characterization.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0100405

Young’s modulus of a material determines its stiffness under
uniaxial loading. It is, thus, a crucial material parameter for many appli-
cations involving mechanical or acoustic degrees of freedom, including
nano- and micromechanical systems,1 cavity optomechanics,2 surface or
bulk acoustic waves, including quantum acoustics,3,4 nanophononics,5

or solid-state-based spin mechanics,6 just to name a few. For quantita-
tive prediction or characterization of the performance of those devices,
precise knowledge of Young’s modulus is required. This is particularly
important, as the value of Young’s modulus of most materials has been
known to strongly depend on growth and even nanofabrication
conditions such that relying on literature values may lead to significant
deviations.7–10 This is apparent from Fig. 1 where we show examples of
experimentally and theoretically determined values of Young’s modulus
along with common literature values for three different material plat-
forms. For amorphous stoichiometric Si3N4 grown by low pressure
chemical vapor deposition (LPCVD), for instance, experimental values
between 16011 and 370GPa12 have been reported. The situation is con-
siderably more complex for crystalline materials, for which additional
parameters such as the crystal direction or, in the case of polymorphism
or polytypism, even the specific crystal structure, affect the elastic

properties. For these materials, Young’s modulus can, in principle, be
calculated via the elastic constants of the crystal.13 However, its determi-
nation may be impeded by the lack of literature values of the elastic
constants for the crystal structure under investigation, such that the
database for theoretical values is scarce. This is seen for the ternary semi-
conductor alloy In1�xGaxP, where even the gallium content x influences
Young’s modulus.13 For 3C–SiC, another crystalline material, theoretical
predictions vary between 12514 and 466GPa,15 even surpassing the
spread of experimentally determined values, because the literature pro-
vides differing values of the elastic constants. The apparent spread of the
reported values clearly calls for reliable local and in situ characterization
methods applicable to individual devices.

While Young’s modulus of macroscopic bulk or thin film sam-
ples is conveniently characterized using ultrasonic methods16,17 or
static techniques such as nanoindentation,18 load deflection,12,19 or
bulge testing,20–22 determining its value on a nanostructure is far from
trivial. For freely suspended nanobeams and cantilevers, a dynamical
characterization via the eigenfrequency provides reliable results.7,8,23–25

However, this method fails for nanomechanical devices such as mem-
branes or strings subject to a strong intrinsic tensile prestress, where
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the contribution of the bending rigidity and, thus, Young’s modulus to
the eigenfrequency becomes negligible. Given the continuously
increasing interest in this type of materials resulting from the remark-
ably high mechanical quality factors of several 100 000 at room tem-
perature25–27 arising from dissipation dilution,11,28,29 which can be
boosted into the millions by soft clamping and further advanced con-
cepts,30,31 this calls for an accurate method to determine Young’s mod-
ulus of stressed nanomechanical resonators.

Here, we present a method for in situ determination of Young’s
modulus of nanomechanical string resonators. It is based on the
Euler–Bernoulli beam theory and relies on the experimental character-
ization of a large number of harmonic eigenmodes, which enables us
to extract the influence of the bending rigidity on the eigenfrequency
despite its minor contribution. We showcase the proposed method to
determine the respective Young’s modulus of four different wafers,
covering all three material platforms outlined in Fig. 1.

According to the Euler–Bernoulli beam theory, the out-of-plane
flexural eigenfrequencies of a doubly clamped string subjected to ten-
sile stress with simply supported boundary conditions are calculated
as39,40

fn ¼
n2p
2L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

12q
þ rL2

n2p2q

s
; (1)

where n is the mode number, L is the length, h is the thickness of the
resonator, q is the density, E is Young’s modulus, and r is the tensile
stress. For the case of strongly stressed nanostrings, the bending con-
tribution to the eigenfrequency, i.e., the first term under the square
root, will only have a minor contribution compared to the significantly
larger stress term. Hence, the eigenfrequency-vs-mode number dia-
gram will approximate the linear behavior of a vibrating string,
fn � ðn=2LÞ

ffiffiffiffiffiffiffiffi
r=q

p
. So even for a large number of measured harmonic

eigenmodes, only minute deviations from linear behavior imply that
Young’s modulus can only be extracted with large uncertainty.
However, computing f 2n =n

2 for two different mode numbers and

subtracting them from each other allows it to cancel the stress term
from the equation, yielding

f 2n
n2
� f 2m
m2
¼ E

p2h2ðn2 �m2Þ
48L4q

; (2)

withm 6¼ n. This equation can be solved for Young’s modulus

E ¼ 48L4q
p2h2ðn2 �m2Þ �

f 2n
n2
� f 2m
m2

� �
; (3)

which allows us to determine Young’s modulus from just the basic
dimensions of the string resonator, the density, and the measured
eigenfrequency of two different modes.

The associated uncertainty dE obtained by propagation of the
uncertainties of all parameters entering Eq. (3) is discussed in the sup-
plementary material. We show that the uncertainty of the density, the
thickness, and the length of the string lead to a constant contribution
to dE, which does not depend on the mode numbers n and m. The
uncertainty of the eigenfrequencies, however, is minimized for high
mode numbers and a large difference between n andm. Therefore, it is
indispensable to experimentally probe a large number of harmonic
eigenmodes to enable a precise result for Young’s modulus.

To validate the proposed method, we are analyzing samples fabri-
cated from four different wafers on three material platforms outlined
in Fig. 1. Two wafers consist of 100 nm LPCVD-grown amorphous
stoichiometric Si3N4 on a fused silica substrate (denoted as SiN-FS)
and on a sacrificial layer of SiO2 atop a silicon substrate (SiN-Si). The
third wafer hosts 110 nm of epitaxially grown crystalline 3C–SiC on a
Si(111) substrate (denoted as SiC). The fourth wafer comprises a
100 nm thick In0.415Ga0.585P film epitaxially grown atop a sacrificial
layer of Al0.85Ga0.15As on a GaAs wafer (denoted as InGaP). All four
resonator materials exhibit a substantial amount of intrinsic tensile
prestress. Details regarding the wafers are listed in the supplementary
material.

On all four wafers, we fabricate a series of nanostring resonators
with lengths spanning from 10 to 110lm in steps of 10lm as shown
in Fig. 2. However, as the tensile stress has shown to depend on the
length of the nanostring in a previous work41 and might have an

FIG. 2. Scanning electron micrograph of a series of nanostring resonators with
lengths increasing from 10 to 110lm in steps of 10lm.

FIG. 1. Young’s modulus for In0.415Ga0.585P, 3C–SiC, and LPCVD Si3N4. Our mea-
sured values and uncertainties are shown as filled colored circles and colored
shades, respectively, whereas literature values are represented as open symbols.
Colored open triangles correspond to values computed form literature values of the
elastic constants, matching the crystal direction of the investigated resonators.
Measured and other literature values are shown as open black diamonds and
crosses, respectively. For the sake of visibility, we omit all stated uncertainties.
Values are taken from: 1,11 2,16 3,19 4,25 5,20 6,23 7,21 8,12 9,32 10,33 11,31,34 12,30

13,35 14,22 15,18 16,10 17,14 18,36 19,37 20,38 21,15 and 22.13 Labels for measured
values are found below the corresponding symbol, while all other labels are situated
above.
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impact of Young’s modulus,42 we focus solely on the three longest
strings of each sample for which the tensile stress has converged to a
constant value41 (see the supplementary material for a comparison of
Young’s modulus of all string lengths).

For each resonator, we determine the frequency response for a
series of higher harmonics by using piezoactuation and optical inter-
ferometric detection. The drive strength is adjusted to make sure to
remain in the linear response regime of each mode. The interferometer
operates at a wavelength of 1550nm and is attenuated to operate at
the minimal laser power required to obtain a good signal-to-noise ratio
to avoid unwanted eigenfrequency shifts caused by absorption-
induced heating of the device. This is particularly important as the
position of the laser spot has to be adapted to appropriately capture all
even and odd harmonic eigenmodes. We extract the resonance fre-
quencies by fitting each mode with a Lorentzian function as visualized
in the inset of Fig. 3. Figure 3 depicts the frequency of up to 29
eigenmodes of three SiN–FS string resonators. Solid lines represent
fits of the string model (fn � ðn=2LÞ

ffiffiffiffiffiffiffiffi
r=q

p
) with r being the only free

parameter (see the supplementary material). The slight deviation
observed for high mode numbers is a consequence of the bending con-
tribution neglected in this approximation. Note the fit of the full model
[Eq. (1)] yields a somewhat better agreement; however, Young’s mod-
ulus cannot be reliably extracted as a second free parameter in the
stress-dominated regime.

However, taking advantage of Eq. (3), we can now determine
Young’s modulus along with its uncertainty for each combination of n
and m. All input parameters as well as their uncertainties are listed in
the supplementary material. To get as much statistics as possible, we
introduce the difference of two mode numbers D ¼ jm� nj as a
parameter. For instance, D ¼ 5 corresponds to the combinations
ðn ¼ 1;m ¼ 6Þ, 2, 7, 3, 8, …,. For each D, we calculate the mean value
of �E and dE .

The obtained values of Young’s modulus are depicted as a func-
tion of D for all four materials in Fig. 4. Note that only D values com-
prising two or more combinations of mode numbers are shown. The
individual combinations EðDÞ contributing to �E for a specific D are
visualized as gray crosses, whereas the mean values of Young’s modu-
lus �E for each value of D are included as colored circles.

Clearly, Young’s modulus of each material converges to a specific
value for increasing D. These values are extracted by averaging over
the obtained values of �E and summarized in Table I. Note that only
the upper half of the available D points have been included in the aver-
age in order to avoid some systematic distortions appearing for low D.

The uncertainty associated with the mean Young’s modulus dE
is indicated by gray shades. As discussed in more detail in the

FIG. 3. Measured eigenfrequency as a function of the mode number for the three lon-
gest SiN-FS strings including fits of the string model (solid lines). Inset depicts the fre-
quency response of the fundamental mode (n¼ 1, L ¼ 110lm; f1 ¼ 3:37MHz),
including a Lorentzian fit (solid lines) to the data (dots).

FIG. 4. Determined Young’s modulus as a function of D for the four different materi-
als SiC (green), SiN –FS (orange), SiN –Si (red), and InGaP (blue). Gray crosses
correspond to individual combinations of jm� nj. Their mean values �EðDÞ are
shown as colored circles. Note that while all combinations of n, m are included in
the calculation of �E for a given D, not all of them are shown as gray crosses as
some heavy outliers appearing mostly for low values of D have been truncated for
the sake of visibility. The complete uncertainty is represented by the gray shade,
whereas its D-dependent contribution arising from the uncertainty in the eigenfre-
quency determination is represented by the colored error bars.

TABLE I. Young’s modulus including the total uncertainty determined for the four dif-
ferent materials.

SiN–FS SiN–Si SiC InGaP

E (GPa) 254(28) 198(22) 400(38) 108(7)
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supplementary material, the D-dependence of the uncertainty arises
solely from the uncertainty in the eigenfrequency determination.
Therefore, this contribution to the total uncertainty is highlighted sep-
arately as colored error bars.

For small D, a large uncertainty in the eigenfrequency determina-
tion is observed, which dominates the complete uncertainty dE . It
coincides with a considerable scatter of the individual combinations,
which is also attributed to the impact of the eigenfrequency determina-
tion. As expected, for increasing D, the uncertainty in the eigenfre-
quency determination decreases, such that the complete uncertainty
dE becomes dominated by the constant contribution originating from
the uncertainties in the density, thickness, and length of the string.
The total uncertainty is obtained by averaging dE over the upper half
of the available D points. It is also included in Table I.

The resulting values for Young’s modulus are also included in
Fig. 1 as colored dots using the same color code as in Fig. 4. Clearly,
the determined values coincide with the parameter corridor suggested
by our analysis of the literature: for InGaP, where no independent
literature values are available, we compute Young’s modulus13 from the
elastic constants of InGaP with the appropriate Ga content (x¼ 0.585)
and crystal orientation [110], yielding Eth

InGaP ¼ 123GPa13,43 (which is
included as the theory value for InGaP in Fig. 4). This is rather close to
our experimentally determined value of EInGaP ¼ 1086 7GPa. For
SiC, we can calculate Young’s modulus as well; however, the elastic
constants required for the calculations vary dramatically in the litera-
ture. As also included as theory values in Fig. 1, we can produce values
of Eth

SiC ¼ 125,14 286,36 419,37 452,38 or 466GPa,15 just by choosing dif-
ferent references for the elastic constants. For our material, we measure
a Young’s modulus of ESiC ¼ 4006 38GPa, which is in perfect agree-
ment with the experimentally determined literature values of 39822 and
400GPa18 by Iacopi et al. It is also in good agreement with the elastic
constants published by Li and Bradt,37 yielding 419GPa for the orienta-
tion of our string resonators. Interestingly, SiN–FS and SiN–Si exhibit
significantly different Young’s moduli of E SiN�FS ¼ 2546 28 and
E SiN�Si ¼ 1986 22GPa, respectively. In Fig. 1, we can see two small
clusters of measured Young’s moduli around our determined values,
suggesting that the exact Young’s modulus depends on growth condi-
tions and the subjacent substrate material even for the case of an amor-
phous resonator material.

In conclusion, we have presented a thorough analysis of Young’s
modulus of strongly stressed nanostring resonators fabricated from
four different wafer materials. The demonstrated method to extract
Young’s modulus yields an accurate prediction with well-defined
uncertainty. It is suitable for all types of nano- or micromechanical res-
onators subjected to intrinsic tensile stress. As we also show that litera-
ture values provide hardly the required level of accuracy for
quantitative analysis, even when considering the appropriate material
specifications, the in situ determination of Young’s modulus is an
indispensable tool for the precise and complete sample characteriza-
tion, which can significantly improve the design of nanomechanical
devices to fulfill quantitative specifications or the comparison of exper-
imental data to quantitative models when not using free fitting param-
eters. Furthermore, the presented strategy can also be applied to
two-dimensional tensioned membrane resonators. However, in the case
of anisotropic Young’s modulus, only an average value will be accessible,
such that the present case of a one-dimensional string resonator is better
suited to characterize Young’s modulus of a crystalline resonator.

See the supplementary material for a list of used material parame-
ters, a discussion of the uncertainties, and the stress dependence of
Young’s modulus.
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