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Challenges in HPC
Many challenges in attaining peak performance:
• hardware and compilers
• system topology
• heterogeneous systems
• available libraries, algorithms, and implementations

keep increasing

Figure: Transistor count over time. From
https://ourworldindata.org/moores-law
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Challenges in HPC
Many challenges in attaining peak optimal performance:
• hardware and compilers
• system topology
• heterogeneous systems
• available libraries, algorithms, and implementations

keep increasing

Main issues & potential trade-offs:
• tuning cannot be done entirely a priori
• architecture-aware tuning vs. portability
• ease of use vs. customization
• tuning can be (very) expensive
• when to tune

Figure: Transistor count over time. From
https://ourworldindata.org/moores-law
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HPC application development

Three main roles can be identified:

• field/application expert: develops the PDE/model

• algorithms expert: implements and tunes numerical schemes

• optimization expert: optimizes the code (intrinsics)

HPC experts cannot (generally) be expected to fulfill all of the above roles
⇒ The decisions should try to be decoupled as much as possible using abstractions, code generation, and numerical libraries
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HPC application development

Three main roles can be identified:

• field/application expert: develops the PDE/model

• algorithms expert: implements and tunes numerical schemes

• optimization expert: optimizes the code (intrinsics)

HPC experts cannot (generally) be expected to fulfill all of the above roles
⇒ The decisions should try to be decoupled as much as possible using abstractions, code generation, and numerical libraries
⇒ Traditionally, HPC Centers mainly offer support regarding this last aspect
⇒ HPC development should be more approachable [to the domain expert], with special focus on algorithmic aspects!
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Self-Adapting Numerical Software (SANS) [1]

Beyond the initial mathematical model, successful management of complex computational environments involves:

• Algorithmic decisions

• Management of the parallel environment

• Processor-specific tuning of kernels

Meaning that the following elements are necessary: Numerical Components + Analysis Modules + Intelligent switch

Examples: ATLAS, PHiPAC, FFTW, . . .
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The Thirteen Berkeley Dwarfs
Main Algorithms/Challenges in Computing [2]:
• Dense Linear Algebra
• Sparse Linear Algebra
• Spectral Methods
• N-body problems
• Structured grids
• Unstructured grids
• MapReduce (Monte Carlo)
• Combinational Logic
• Graph Traversal
• Dynamic Programming
• Back-track and Branch & Bound
• Graphical Models
• Finite State Machines
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Sparse Linear Algebra: The Solver Selection Problem
We want to solve:

Ax = b
or, rather:

QAP−1 (Px) = Qb

We have different choices to make
• direct and iterative solvers
• preconditioning (incl. permutation, scaling, . . . )
• other internal settings (GMRES(r ), ILU(k ), ASM(k ),

. . . )
• data structures

To make our lives easier, we use PETSc
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Sparse iterative linear solvers

Figure: Flowchart of iterative methods. From [3]

Direct methods have high memory
requirements, but iterative methods tend to
have trouble with (very) ill-conditioned
problems

General guidelines exist

... but no method is the absolute best

... and solvers might be unstable, stagnate,
or diverge
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Related research

Black-box classifiers & beyond:
• Heuristics – Self-Adapting Large-scale Solver Architecture

(SALSA) [4]
• Embeddings – Yeom et al [5]
• Black-box ML – Lighthouse [6]
• Using Neural Networks [7]
• Using Graph-based Machine Learning [8]

Main takeaways:
• A defined set of matrix properties will be the input features
• Regression rather than classification helps contemplate

relative performance
• Misclassification or ROC curves don’t necessarily convey

the impact of a wrong choice
• Embedding can alleviate the impact of unbalanced and

limited data
• Preconditioned accuracy might (strongly) differ from actual

solver accuracy
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Overview

Figure: Overview of the solver selection pipeline
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Feature selection

Define a regression problem with solver runtime as
target

• Solve the regression problem with Gradient
Boosting

• Recover the relative feature importance from the
model

• define a cut-off tolerance for features to be included in
the final analysis

Figure: Selection via regression analysis
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Embedding
We use word2vec’s skip-gram model with negative
sampling based on (matrix ,solver)→{good ,bad}
labeled pairs.

• Consider both matrices and solvers as part of the
corpus

• Set ‘good’ solvers in a matrix’s context
• Use ‘bad’ solvers as negative samples
• Hidden layer values will correspond to the

embeddings

NI : Number of Matrices + Solvers
NV : Number of Embedding Dimensions

A→ (ε1,ε2, · · · ,εk)
Figure: Embedding using Word2Vec
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Projection
Test matrices will be out-of-sample, so they don’t have an
encoding

⇒ Use the training sample features to find a sparse
linear combination

⇒We do this via LASSO regression restricting to
positive coefficients

⇒ Use this coefficient vector in the embedding space

f′ : test sample features
F : training sample set features
δ : target sparsity

f′ =
(
f ′1, f
′
2, · · · , f ′n

)
→

(
ε
′
1,ε
′
2, · · · ,ε ′k

)

min
α
‖f′−Fα‖2

2

s. t. ‖α‖1 ≤ δ ,

αi ≥ 0

Fα → Eα
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Solver Selection

Now that the test sample has an embedding, it suffices to
use existing information to predict suitable solvers

We can use e. g., k-Nearest Neighbors to determine the
preferred solver for the test matrix

Figure: Prediction based on k-Nearest Neighbors
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Experimental Setup
Performance/runtime measurement data

• SuperMUC-NG Phase 1
− Intel Skylake Xeon Platinum 8174 processors
− 48 cores and 96 GB memory per node

• Theta KNL: GNN-dataset from [8]
− Intel Xeon Phi 7230 processors
− 64 cores and 96 GB memory per node

• Blue Gene/Q: lighthouse-dataset from [6]
− Intel Westmere Xeon X5650 processors
− 12 cores and 72 GB memory per node

Prediction experiments Workstation

• Intel i7-10700 CPU
• NVIDIA Quadro 5000 GPU
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Convergence on selected matrices

Figure: runtimes on 1 node of SuperMUC for different solvers

Different matrices are resolved
effectively by different solvers

H. Liu Weng | Data-driver Solver Selection for Sparse Linear Matrices | SIAM PP – Mar. 08, 2024 19



Convergence on selected matrices

Figure: runtimes on 1 node of SuperMUC for different solvers

Different matrices are resolved
effectively by different solvers

Even in cases where many/all solvers
converge, runtime can vary (very)
wildly
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Scaling on selected matrices

Figure: runtimes on varying numbers of nodes of SuperMUC for different solvers
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Scaling on selected matrices

Figure: runtimes on varying numbers of nodes of SuperMUC for different solvers

Figure: runtimes vs. node count for nlpkkt80
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Experiments: Feature selection
Top features (R2 = 0.72):

Figure: feature importance

Observations:
• tends to overemphasize size-dependent features

since problem size ∝ runtime
• features have very distinct ranges (from binary

features to some potentially reaching MaxValue)
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Experiments: Embedding

the SuiteSparse matrix performance data from both Lighthouse [6] (left) and Tang et al [8](right) is embedded into a
20-dimensional space. Points are colored by best solver

Figure: PCA of embedding for runtime data from Lighthouse [6] Figure: PCA of the embedding for runtime data from Tang et al [8]
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Experiments: Projection and Prediction
Applying the projection requires a regularization
parameter which can be predetermined or tuned

Observations:
• the optimal regularization parameter varies

strongly based on the data
• normalization or scaling of the properties

makes a significant difference between the
combination found

• problems of interest will in practice be much
larger than the test data

Prediction accuracy:
40%

62.5±1.6% (Normalized Discounted Cumulative Gain)

Figure: predicted vs. best runtime
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Experiments: Projection and Prediction
Applying the projection requires a regularization
parameter which can be predetermined or tuned

Observations:
• the optimal regularization parameter varies

strongly based on the data
• normalization or scaling of the properties

makes a significant difference between the
combination found

• problems of interest will in practice be much
larger than the test data

Bonus: Prediction for ACTIVSg70k_AC matrices:
• recommends using: BiCGSTAB with

Hypre/BoomerAMG
• accurately captures configurations actually

solving the problem
• completes in 0.152 s (vs. 0.142 s for best

configuration tried: GMRES + BoomerAMG)

Prediction accuracy:
40% (Misclassification error)
62.5±1.6% (Normalized Discounted Cumulative Gain)

Figure: predicted vs. best runtime
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Conclusions & Next steps

• While accuracy is not currently great, recommendations generally in line with common knowledge

• Results can be improved if data is less varied (e.g., sticking to a more restricted set of problems)

• There’s lots of tuning possible to enhance the framework: (hyper)parameters, scalings, metrics, models, . . .

Further directions to explore: Now also consider how this all changes with different hardware...

... and add GPUs into the mix...

... and mixed precision...

... and batched solves...

... and so much more...
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Property list & highlighted features

Figure: Full feature set. Taken from [9]

Figure: Ranked feature set.
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