Removing Inconsistencies of Reduced Bases in Parametric Model

 Order Reduction by Matrix InterpolationS. Schopper ${ }^{1}$, and G. Müller ${ }^{1}$
${ }^{1}$ Technical University of Munich, School of Engineering and Design, Chair of Structural Mechanics

Motivation

$$
\Sigma:\left\{\begin{aligned}
\mathbf{M} \ddot{\mathbf{x}}(t)+\mathbf{C} \dot{\mathbf{x}}(t)+\mathbf{K x}(t) & =\mathbf{f} u(t), \\
y(t) & =\mathbf{g x}(t) .
\end{aligned}\right.
$$

Motivation

Motivation

$\Sigma(\mathbf{p}):\left\{\begin{aligned} \mathbf{M}(\mathbf{p}) \ddot{\mathbf{x}}(t)+\mathbf{C}(\mathbf{p}) \dot{\mathbf{x}}(t)+\mathbf{K}(\mathbf{p}) \mathbf{x}(t) & =\mathbf{f}(\mathbf{p}) u(t), \\ y(t) & =\mathbf{g}(\mathbf{p}) \mathbf{x}(t) .\end{aligned}\right.$

Motivation

Outline

- Mathematical System Description
- Parametric Model Order Reduction by Matrix Interpolation
- Removal of Inconsistencies via Adaptive Sampling and Clustering
- Results
- Conclusion and Future Work

Mathematical System Description

Parametric Dynamic Systems

Linear-time invariant, parametric dynamical systems with single input and single output (SISO) in second-order form are regarded:

$$
\Sigma(\mathbf{p}):\left\{\begin{align*}
\mathbf{M}(\mathbf{p}) \ddot{\mathbf{x}}(t)+\mathbf{C}(\mathbf{p}) \dot{\mathbf{x}}(t)+\mathbf{K}(\mathbf{p}) \mathbf{x}(t) & =\mathbf{f}(\mathbf{p}) u(t) \tag{1}\\
y(t) & =\mathbf{g}(\mathbf{p}) \mathbf{x}(t)
\end{align*}\right.
$$

with mass, damping and stiffness matrix $\mathbf{M}(\mathbf{p}), \mathbf{C}(\mathbf{p}), \mathbf{K}(\mathbf{p}) \in \mathbb{R}^{n \times n}$, and input and output mapping $\mathbf{f}(\mathbf{p}) \in \mathbb{R}^{n \times 1}$ and $\mathbf{g}(\mathbf{p}) \in \mathbb{R}^{1 \times n}$, which depend on d parameters $\mathbf{p}=\left[p_{1}, p_{2}, \ldots, p_{d}\right]$. The vectors $\mathbf{x}(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}$ and $y(t) \in \mathbb{R}$ denote the state, input and output.

Parametric Dynamic Systems

Linear-time invariant, parametric dynamical systems with single input and single output (SISO) in second-order form are regarded:

$$
\Sigma(\mathbf{p}):\left\{\begin{align*}
\mathbf{M}(\mathbf{p}) \ddot{\mathbf{x}}(t)+\mathbf{C}(\mathbf{p}) \dot{\mathbf{x}}(t)+\mathbf{K}(\mathbf{p}) \mathbf{x}(t) & =\mathbf{f}(\mathbf{p}) u(t) \tag{1}\\
y(t) & =\mathbf{g}(\mathbf{p}) \mathbf{x}(t)
\end{align*}\right.
$$

with mass, damping and stiffness matrix $\mathbf{M}(\mathbf{p}), \mathbf{C}(\mathbf{p}), \mathbf{K}(\mathbf{p}) \in \mathbb{R}^{n \times n}$, and input and output mapping $\mathbf{f}(\mathbf{p}) \in \mathbb{R}^{n \times 1}$ and $\mathbf{g}(\mathbf{p}) \in \mathbb{R}^{1 \times n}$, which depend on d parameters $\mathbf{p}=\left[p_{1}, p_{2}, \ldots, p_{d}\right]$. The vectors $\mathbf{x}(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}$ and $y(t) \in \mathbb{R}$ denote the state, input and output. After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}) \tag{2}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.

Parametric Dynamic Systems

After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}) \tag{3}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.
We assume that no reasonable affine representation of the parametric dependency of the following form is available (exemplarily shown for the stiffness matrix):

$$
\begin{equation*}
\mathbf{K}(\mathbf{p})=\mathbf{K}_{0}+\sum_{i=1}^{M} f_{i}(\mathbf{p}) \mathbf{K}_{i}, \quad i=1, \ldots, M \tag{4}
\end{equation*}
$$

where $f_{i}(\mathbf{p})$ are scalar functions. [BGW15]

Objective

After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}) \tag{5}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.
We want to generate a parametric reduced-order model (pROM) that allows to solve the above transfer function efficiently and

Objective

After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}) \tag{5}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.
We want to generate a parametric reduced-order model (pROM) that allows to solve the above transfer function efficiently and

- does not require an affine representation of the parametric dependency,

Objective

After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{5}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.
We want to generate a parametric reduced-order model (pROM) that allows to solve the above transfer function efficiently and

- does not require an affine representation of the parametric dependency,
- is valid for a large range of the parameters, and

Objective

After performing a Laplace transformation, the transfer function of the system can be computed as

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{5}
\end{equation*}
$$

with the complex frequency $s \in \mathbb{C}$.
We want to generate a parametric reduced-order model (pROM) that allows to solve the above transfer function efficiently and

- does not require an affine representation of the parametric dependency,
- is valid for a large range of the parameters, and
- is generated via an adaptive algorithm.

Parametric Model Order Reduction by Matrix Interpolation

Parametric Model Order Reduction by Matrix Interpolation

We follow the approach of pMOR by matrix interpolation by [PMEL10]:

$$
\left\{\mathbf{M}\left(\mathbf{p}_{k}\right), \mathbf{C}\left(\mathbf{p}_{k}\right), \mathbf{K}\left(\mathbf{p}_{k}\right), \mathbf{f}\left(\mathbf{p}_{k}\right), \mathbf{g}\left(\mathbf{p}_{k}\right)\right\}
$$

Parametric Model Order Reduction by Matrix Interpolation

We follow the approach of pMOR by matrix interpolation by [PMEL10]:

$$
\begin{gathered}
\left\{\mathbf{M}\left(\mathbf{p}_{k}\right), \mathbf{C}\left(\mathbf{p}_{k}\right), \mathbf{K}\left(\mathbf{p}_{k}\right), \mathbf{f}\left(\mathbf{p}_{k}\right), \mathbf{g}\left(\mathbf{p}_{k}\right)\right\} \\
\Downarrow \operatorname{Project~into~} \mathbf{V}_{k} \in \mathbb{C}^{n \times r},\left(\mathbf{x}\left(\mathbf{p}_{k}\right) \approx \mathbf{V}_{k} \mathbf{x}_{r}\left(\mathbf{p}_{k}\right)\right) \\
\left\{\mathbf{M}_{r}\left(\mathbf{p}_{k}\right), \mathbf{C}_{r}\left(\mathbf{p}_{k}\right), \mathbf{K}_{r}\left(\mathbf{p}_{k}\right), \mathbf{f}_{r}\left(\mathbf{p}_{k}\right), \mathbf{g}_{r}\left(\mathbf{p}_{k}\right)\right\} \\
\text { with } \\
\mathbf{K}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{K}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \quad \mathbf{M}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{M}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \quad \mathbf{C}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{C}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \\
\mathbf{f}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{f}\left(\mathbf{p}_{k}\right), \\
\mathbf{g}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{g}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k},
\end{gathered}
$$

Parametric Model Order Reduction by Matrix Interpolation

We follow the approach of pMOR by matrix interpolation by [PMEL10]:

$$
\left\{\mathbf{M}\left(\mathbf{p}_{k}\right), \mathbf{C}\left(\mathbf{p}_{k}\right), \mathbf{K}\left(\mathbf{p}_{k}\right), \mathbf{f}\left(\mathbf{p}_{k}\right), \mathbf{g}\left(\mathbf{p}_{k}\right)\right\}
$$

\Downarrow Project into $\mathbf{V}_{k} \in \mathbb{C}^{n \times r},\left(\mathbf{x}\left(\mathbf{p}_{k}\right) \approx \mathbf{V}_{k} \mathbf{x}_{r}\left(\mathbf{p}_{k}\right)\right)$
$\left\{\mathbf{M}_{r}\left(\mathbf{p}_{k}\right), \mathbf{C}_{r}\left(\mathbf{p}_{k}\right), \mathbf{K}_{r}\left(\mathbf{p}_{k}\right), \mathbf{f}_{r}\left(\mathbf{p}_{k}\right), \mathbf{g}_{r}\left(\mathbf{p}_{k}\right)\right\}$
with

$$
\begin{array}{ll}
\mathbf{K}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{K}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, & \mathbf{M}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{M}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \quad \mathbf{C}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{C}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \\
\mathbf{f}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{V}_{k}^{\mathrm{H}} \mathbf{f}\left(\mathbf{p}_{k}\right), & \mathbf{g}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{g}\left(\mathbf{p}_{k}\right) \mathbf{V}_{k}, \\
\text { where } \\
& \left(\mathbf{K}\left(\mathbf{p}_{k}\right)-\omega^{2} \mathbf{M}\left(\mathbf{p}_{k}\right)\right) \boldsymbol{\phi}=\mathbf{0} \\
\mathbf{V}_{k}= & {\left[\boldsymbol{\phi}_{1}, \boldsymbol{\phi}_{2}, \ldots, \boldsymbol{\phi}_{r}\right] .}
\end{array}
$$

Parametric Model Order Reduction by Matrix Interpolation

Parametric Model Order Reduction by Matrix Interpolation

Parametric Model Order Reduction by Matrix Interpolation

For a meaningful interpolation, the reduced operators should be in the same coordinate system. To achieve this, the following approach was suggested in [PMEL10]:

1. Find a generalized coordinate system. For this purpose, find the most significant basis vectors by concatenating all N sampled bases and then performing an SVD:

$$
\begin{equation*}
\left[\mathbf{V}_{1}, \mathbf{V}_{2}, \ldots, \mathbf{V}_{N}\right]=\mathbf{U} \boldsymbol{\Sigma} \mathbf{Y}, \quad \mathbf{V}_{k} \in \mathbb{C}^{n \times r}, \quad k=1, \ldots, N \tag{6}
\end{equation*}
$$

The most significant basis vectors are the first r columns in \mathbf{U} and denoted with \mathbf{R} :

$$
\begin{equation*}
\mathbf{R}=\mathbf{U}(:, 1: r) \tag{7}
\end{equation*}
$$

Parametric Model Order Reduction by Matrix Interpolation

For a meaningful interpolation, the reduced operators should be in the same coordinate system. To achieve this, the following approach was suggested in [PMEL10]:

1. Find a generalized coordinate system. For this purpose, find the most significant basis vectors by concatenating all N sampled bases and then performing an SVD:

$$
\begin{equation*}
\left[\mathbf{V}_{1}, \mathbf{V}_{2}, \ldots, \mathbf{V}_{N}\right]=\mathbf{U} \Sigma \mathbf{Y}, \quad \mathbf{V}_{k} \in \mathbb{C}^{n \times r}, \quad k=1, \ldots, N \tag{6}
\end{equation*}
$$

The most significant basis vectors are the first r columns in \mathbf{U} and denoted with \mathbf{R} :

$$
\begin{equation*}
\mathbf{R}=\mathbf{U}(:, 1: r) \tag{7}
\end{equation*}
$$

2. Transform the individual reduced operators from their individual bases \mathbf{V}_{k} to the generalized coordinate system \mathbf{R} :

$$
\begin{equation*}
\tilde{\mathbf{K}}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{T}_{k}^{\top} \mathbf{K}_{r}\left(\mathbf{p}_{k}\right) \mathbf{T}_{k}, \quad \tilde{\mathbf{C}}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{T}_{k}^{\top} \mathbf{C}_{r}\left(\mathbf{p}_{k}\right) \mathbf{T}_{k}, \quad \tilde{\mathbf{M}}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{T}_{k}^{\top} \mathbf{M}_{r}\left(\mathbf{p}_{k}\right) \mathbf{T}_{k}, \quad \tilde{\mathbf{f}}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{T}_{k}^{\top} \mathbf{f}_{r}\left(\mathbf{p}_{k}\right), \quad \tilde{\mathbf{g}}_{r}\left(\mathbf{p}_{k}\right)=\mathbf{g}_{r}\left(\mathbf{p}_{k}\right) \mathbf{T}_{k}, \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{T}_{k}=\left(\mathbf{R}^{T} \mathbf{V}_{k}\right)^{-1}, \quad \tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} \tag{9}
\end{equation*}
$$

Parametric Model Order Reduction by Matrix Interpolation

Inconsistencies in Reduced Bases

In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

$$
\begin{equation*}
\tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} . \tag{10}
\end{equation*}
$$

Inconsistencies in Reduced Bases

In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

$$
\begin{equation*}
\tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} . \tag{10}
\end{equation*}
$$

Therefore, the reduced dependency that shall be learned does not only depend on the change of the full operators, but also on the change of the reduced basis:

$$
\begin{equation*}
\tilde{\mathbf{K}}_{r}(\mathbf{p})=\tilde{\mathbf{V}}(\mathbf{p})^{\mathrm{H}} \mathbf{K}(\mathbf{p}) \tilde{\mathbf{V}}(\mathbf{p}) \tag{11}
\end{equation*}
$$

Inconsistencies in Reduced Bases

In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

$$
\begin{equation*}
\tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} . \tag{10}
\end{equation*}
$$

Therefore, the reduced dependency that shall be learned does not only depend on the change of the full operators, but also on the change of the reduced basis:

$$
\begin{equation*}
\tilde{\mathbf{K}}_{r}(\mathbf{p})=\tilde{\mathbf{V}}(\mathbf{p})^{\mathrm{H}} \mathbf{K}(\mathbf{p}) \tilde{\mathbf{V}}(\mathbf{p}) \tag{11}
\end{equation*}
$$

Strong changes in the reduced bases introduce inconsistencies in the training data for the matrix interpolation. They can occur due to several reasons:

- Model Order Reduction method used [FE15]

Inconsistencies in Reduced Bases

In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

$$
\begin{equation*}
\tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} . \tag{10}
\end{equation*}
$$

Therefore, the reduced dependency that shall be learned does not only depend on the change of the full operators, but also on the change of the reduced basis:

$$
\begin{equation*}
\tilde{\mathbf{K}}_{r}(\mathbf{p})=\tilde{\mathbf{V}}(\mathbf{p})^{\mathrm{H}} \mathbf{K}(\mathbf{p}) \tilde{\mathbf{V}}(\mathbf{p}) \tag{11}
\end{equation*}
$$

Strong changes in the reduced bases introduce inconsistencies in the training data for the matrix interpolation. They can occur due to several reasons:

- Model Order Reduction method used [FE15]
- Change of the system dynamics [BNN $\left.{ }^{+} 15\right]$

Inconsistencies in Reduced Bases

In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

$$
\begin{equation*}
\tilde{\mathbf{V}}_{k}=\mathbf{V}_{k} \mathbf{T}_{k} . \tag{10}
\end{equation*}
$$

Therefore, the reduced dependency that shall be learned does not only depend on the change of the full operators, but also on the change of the reduced basis:

$$
\begin{equation*}
\tilde{\mathbf{K}}_{r}(\mathbf{p})=\tilde{\mathbf{V}}(\mathbf{p})^{\mathrm{H}} \mathbf{K}(\mathbf{p}) \tilde{\mathbf{V}}(\mathbf{p}) \tag{11}
\end{equation*}
$$

Strong changes in the reduced bases introduce inconsistencies in the training data for the matrix interpolation. They can occur due to several reasons:

- Model Order Reduction method used [FE15]
- Change of the system dynamics [BNN $\left.{ }^{+} 15\right]$
- Mode switching and truncation [ATF15]

Detection of Inconsistencies

The angles between the subspaces spanned by the two orthonormal bases \mathbf{V}_{i} and \mathbf{V}_{j} are computed by first performing an SVD on the following product [ATF15]:

$$
\begin{equation*}
\mathbf{V}_{i}^{\mathrm{H}} \mathbf{V}_{j}=\mathbf{X} \boldsymbol{\Sigma} \mathbf{Y}^{\top}, \quad i, j=1, \ldots, N \tag{12}
\end{equation*}
$$

The subspace angles can then be found as

$$
\begin{equation*}
\varphi_{l}=\arccos \left(\sigma_{l}\right), \quad l=1, \ldots, r . \tag{13}
\end{equation*}
$$

$$
\begin{aligned}
& \varphi_{1}=0^{\circ} \\
& \varphi_{2}=90^{\circ}
\end{aligned}
$$

Removal of Inconsistencies via Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

/ consistent / unknown / inconsistent

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

/ consistent / unknown / inconsistent

Adaptive Sampling and Clustering

/ consistent / unknown / inconsistent

Adaptive Sampling and Clustering

/ consistent / unknown / inconsistent

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Adaptive Sampling and Clustering

Results

Results - Timoshenko Beam - Beam Height h

A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic force of varying frequency ($[0,1000] \mathrm{Hz}$). The adaptive sampling and clustering algorithm is compared to the original version of pMOR by Matrix interpolation [PMEL10] and a method for inconsistency removal by [ATF15].

Parameter	Range/Value	Unit
Height h	$[0.02,0.05]$	m
Thickness t	0.01	m
Length l	1.0	m
Young's modulus E	$2.1 \cdot 10^{11}$	$\mathrm{~N} / \mathrm{m}^{2}$
Poisson's ratio v	0.3	-
Density ρ	7860	$\mathrm{~kg} / \mathrm{m}^{3}$
Rayleigh damping α	$8 \cdot 10^{-6}$	$1 / \mathrm{s}$
Rayleigh damping β	8	s

Table: Geometry and material parameters of the 3D cantilevered beam.

Results - Timoshenko Beam - Beam Height h

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic force of varying frequency $([0,1000] \mathrm{Hz})$. Rayleigh damping is used: $\mathbf{C}=\alpha \mathbf{K}+\beta \mathbf{M}$.

Parameter	Range/Value	Unit
Length l_{x}	$[0.055,0.080]$	m
Length l_{y}	$[0.020,0.045]$	m
Length l_{z}	0.05	m
Beam thickness t	0.001	m
Young's modulus E	$4.35 \cdot 10^{9}$	$\mathrm{~N} / \mathrm{m}^{2}$
Poisson's ratio v	0.3	-
Density ρ	1180	$\mathrm{~kg} / \mathrm{m}^{3}$
Rayleigh damping α	$8 \cdot 10^{-6}$	$1 / \mathrm{s}$
Rayleigh damping β	8	s

Table: Geometry and material parameters of the Kelvin Cell.

Results - Kelvin Cell - Adaptive Sampling \& Classification

Results - Kelvin Cell - Adaptive Sampling \& Classification

Results - Kelvin Cell - Adaptive Sampling \& Classification

Results - Kelvin Cell - Adaptive Sampling \& Classification

Results - Kelvin Cell - Adaptive Sampling \& Classification

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Original pMOR by Matrix Interpolation [PMEL10]

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Inconsistency Removal by [ATF15]

Conclusion and Future Work

Conclusion \& Future Work

Our objective was to generate a parametric reduced-order model (pROM) that allows to solve the transfer function

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{14}
\end{equation*}
$$

efficiently and

- does not require an affine representation of the parametric dependency,
- is valid for a large range of the parameters
- is generated via an adaptive algorithm.

Conclusion \& Future Work

Our objective was to generate a parametric reduced-order model (pROM) that allows to solve the transfer function

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{14}
\end{equation*}
$$

efficiently and

- does not require an affine representation of the parametric dependency,
\rightarrow Parametric Model Order Reduction by Matrix Interpolation
- is valid for a large range of the parameters
- is generated via an adaptive algorithm.

Conclusion \& Future Work

Our objective was to generate a parametric reduced-order model (pROM) that allows to solve the transfer function

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{14}
\end{equation*}
$$

efficiently and

- does not require an affine representation of the parametric dependency,
\rightarrow Parametric Model Order Reduction by Matrix Interpolation
- is valid for a large range of the parameters
\rightarrow Partitioning of the parameter space, generation of several local pROMs
- is generated via an adaptive algorithm.

Conclusion \& Future Work

Our objective was to generate a parametric reduced-order model (pROM) that allows to solve the transfer function

$$
\begin{equation*}
H(s, \mathbf{p})=\mathbf{g}(\mathbf{p})\left(s^{2} \mathbf{M}(\mathbf{p})+s \mathbf{C}(\mathbf{p})+\mathbf{K}(\mathbf{p})\right)^{-1} \mathbf{f}(\mathbf{p}), \tag{14}
\end{equation*}
$$

efficiently and

- does not require an affine representation of the parametric dependency,
\rightarrow Parametric Model Order Reduction by Matrix Interpolation
- is valid for a large range of the parameters
\rightarrow Partitioning of the parameter space, generation of several local pROMs
- is generated via an adaptive algorithm.
\rightarrow Adaptive sampling

Future Work

References

[ATF15] David Amsallem, Radek Tezaur, and Charbel Farhat. Real-time solution of computational problems using databases of parametric linear reduced-order models with arbitrary underlying meshes. Journal of Computational Physics, 326, 062015.
[BGW15] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review, 57(4):483-531, jan 2015.
[BNN ${ }^{+}$15] M. A. Bazaz, S. A. Nahve, M. Nabi, S. Janardhanan, and M. U. Rehman. Adaptive parameter space sampling in matrix interpolatory pmor. In 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pages 83-89, March 2015.
[FE15] Michael Fischer and Peter Eberhard. Application of parametric model reduction with matrix interpolation for simulation of moving loads in elastic multibody systems. Advances in Computational Mathematics, 41(5):1049-1072, October 2015.
[PMEL10] Heiko Peuscher, Jan Mohring, Rudy Eid, and Boris Lohmann. Parametric model order reduction by matrix interpolation. Automatisierungstechnik, 58:475-484, 082010.

MOR Method

MOR Method - Proper Orthogonal Decomposition

MOR Method - Modal Truncation

Change of System Dynamics

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Mode Switching and Truncation

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Original pMOR by Matrix Interpolation [PMEL10]

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Inconsistency Removal by [ATF15]

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Original pMOR by Matrix Interpolation [PMEL10]

Results - Kelvin Cell - Dimensions l_{x} and l_{y}

Adaptive Sampling and Clustering

Inconsistency Removal by [ATF15]

