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ĥl̂

z x
y

y(t)

u(t)

Σ(p) :

{
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Mathematical System Description
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Parametric Dynamic Systems
Linear-time invariant, parametric dynamical systems with single input and single output (SISO) in second-order form are regarded:

Σ(p) :

{
M(p)ẍ(t)+C(p)ẋ(t)+K(p)x(t) = f(p)u(t),

y(t) = g(p)x(t),
(1)

with mass, damping and stiffness matrix M(p), C(p), K(p) ∈ Rn×n, and input and output mapping f(p) ∈ Rn×1 and g(p) ∈ R1×n,
which depend on d parameters p = [p1, p2, . . . , pd]. The vectors x(t) ∈Rn, u(t) ∈R and y(t) ∈R denote the state, input and output.
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After performing a Laplace transformation, the transfer function of the system can be computed as

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (2)

with the complex frequency s ∈ C.
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Parametric Dynamic Systems
After performing a Laplace transformation, the transfer function of the system can be computed as

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (3)

with the complex frequency s ∈ C.

We assume that no reasonable affine representation of the parametric dependency of the following form is available (exemplarily
shown for the stiffness matrix):

K(p) = K0 +
M

∑
i=1

fi(p)Ki, i = 1, . . . ,M, (4)

where fi(p) are scalar functions. [BGW15]
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Objective
After performing a Laplace transformation, the transfer function of the system can be computed as

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (5)

with the complex frequency s ∈ C.

We want to generate a parametric reduced-order model (pROM) that allows to solve the above transfer function efficiently and

• does not require an affine representation of the parametric dependency,
• is valid for a large range of the parameters, and
• is generated via an adaptive algorithm.
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Parametric Model Order Reduction by Matrix
Interpolation
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Parametric Model Order Reduction by Matrix Interpolation
We follow the approach of pMOR by matrix interpolation by [PMEL10]:
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⇓ Project into Vk ∈ Cn×r, (x(pk)≈ Vkxr(pk))

{Mr(pk), Cr(pk),Kr(pk), fr(pk), gr(pk)}

with

Kr(pk) = VH
k K(pk)Vk, Mr(pk) = VH

k M(pk)Vk, Cr(pk) = VH
k C(pk)Vk,

fr(pk) = VH
k f(pk), gr(pk) = g(pk)Vk,
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Parametric Model Order Reduction by Matrix Interpolation
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Parametric Model Order Reduction by Matrix Interpolation
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Parametric Model Order Reduction by Matrix Interpolation
For a meaningful interpolation, the reduced operators should be in the same coordinate system. To achieve this, the following
approach was suggested in [PMEL10]:

1. Find a generalized coordinate system. For this purpose, find the most significant basis vectors by concatenating all N sampled
bases and then performing an SVD:

[V1,V2, . . . ,VN ] = UΣΣΣY, Vk ∈ Cn×r, k = 1, . . . ,N (6)

The most significant basis vectors are the first r columns in U and denoted with R:

R = U(:,1 : r). (7)

2. Transform the individual reduced operators from their individual bases Vk to the generalized coordinate system R:

K̃r(pk) = T⊺
k Kr(pk)Tk, C̃r(pk) = T⊺

k Cr(pk)Tk, M̃r(pk) = T⊺
k Mr(pk)Tk, f̃r(pk) = T⊺

k fr(pk), g̃r(pk) = gr(pk)Tk, (8)

with
Tk = (RT Vk)

−1, Ṽk = VkTk. (9)
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Parametric Model Order Reduction by Matrix Interpolation
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Inconsistencies in Reduced Bases
In the transformation, the vectors of the reduced basis are only reordered, but the subspace they span stays the same:

Ṽk = VkTk. (10)

• Model Order Reduction method used [FE15]
• Change of the system dynamics [BNN+15]
• Mode switching and truncation [ATF15]
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Detection of Inconsistencies
The angles between the subspaces spanned by the two orthonormal bases Vi and V j are computed by first performing an SVD on
the following product [ATF15]:

VH
i V j = XΣΣΣY⊺, i, j = 1, . . . ,N (12)

The subspace angles can then be found as
ϕl = arccos(σl), l = 1, . . . ,r. (13)

Vix2

Vix1

V jy1

V jy2

ϕ1 = 0◦

ϕ2 = 90◦
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Removal of Inconsistencies via Adaptive Sampling and
Clustering
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Adaptive Sampling and Clustering
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Results
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Results – Timoshenko Beam – Beam Height h
A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic
force of varying frequency ([0,1000] Hz). The adaptive sampling and clustering algorithm is compared to the original version of
pMOR by Matrix interpolation [PMEL10] and a method for inconsistency removal by [ATF15].

t

l

z x
y

y(t)

h

F

45◦

Parameter Range/Value Unit
Height h [0.02, 0.05] m

Thickness t 0.01 m
Length l 1.0 m

Young’s modulus E 2.1 ·1011 N/m2

Poisson’s ratio ν 0.3 -
Density ρ 7860 kg/m3

Rayleigh damping α 8 ·10−6 1/s
Rayleigh damping β 8 s

Table: Geometry and material parameters of the 3D cantilevered beam.
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Results – Timoshenko Beam – Beam Height h
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Results – Kelvin Cell – Dimensions lx and ly
A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic
force of varying frequency ([0,1000] Hz). Rayleigh damping is used: C = αK+βM.

lx ly

Parameter Range/Value Unit
Length lx [0.055, 0.080] m
Length ly [0.020, 0.045] m
Length lz 0.05 m

Beam thickness t 0.001 m
Young’s modulus E 4.35 ·109 N/m2

Poisson’s ratio ν 0.3 -
Density ρ 1180 kg/m3

Rayleigh damping α 8 ·10−6 1/s
Rayleigh damping β 8 s

Table: Geometry and material parameters of the Kelvin Cell.
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Results – Kelvin Cell – Adaptive Sampling & Classification
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Results – Kelvin Cell – Dimensions lx and ly
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Conclusion and Future Work
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Conclusion & Future Work
Our objective was to generate a parametric reduced-order model (pROM) that allows to solve the transfer function

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (14)

efficiently and

• does not require an affine representation of the parametric dependency,

→ Parametric Model Order Reduction by Matrix Interpolation

• is valid for a large range of the parameters

→ Partitioning of the parameter space, generation of several local pROMs

• is generated via an adaptive algorithm.

→ Adaptive sampling
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Future Work

Removing Inconsistencies of Reduced Bases in pMOR by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2024 43



References
[ATF15] David Amsallem, Radek Tezaur, and Charbel Farhat. Real-time solution of computational problems using databases of parametric linear

reduced-order models with arbitrary underlying meshes. Journal of Computational Physics, 326, 06 2015.
[BGW15] Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction methods for parametric dynamical systems.

SIAM Review, 57(4):483–531, jan 2015.
[BNN+15] M. A. Bazaz, S. A. Nahve, M. Nabi, S. Janardhanan, and M. U. Rehman. Adaptive parameter space sampling in matrix interpolatory pmor. In

2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), pages 83–89, March 2015.
[FE15] Michael Fischer and Peter Eberhard. Application of parametric model reduction with matrix interpolation for simulation of moving loads in

elastic multibody systems. Advances in Computational Mathematics, 41(5):1049–1072, October 2015.
[PMEL10] Heiko Peuscher, Jan Mohring, Rudy Eid, and Boris Lohmann. Parametric model order reduction by matrix interpolation.

Automatisierungstechnik, 58:475–484, 08 2010.

Removing Inconsistencies of Reduced Bases in pMOR by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2024 44



Removing Inconsistencies of Reduced Bases in pMOR by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2024 45



MOR Method

Removing Inconsistencies of Reduced Bases in pMOR by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2024 46



MOR Method – Proper Orthogonal Decomposition
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MOR Method – Modal Truncation
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