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Abstract: Some studies have investigated the potential role of transposable elements (TEs) in
COVID-19 pathogenesis and complications. However, to the best of our knowledge, there is no
study to examine the possible association of TE expression in cell functions and its potential role in
COVID-19 immune response at the single-cell level. In this study, we reanalyzed single-cell RNA
seq data of bronchoalveolar lavage (BAL) samples obtained from six severe COVID-19 patients and
three healthy donors to assess the probable correlation of TE expression with the immune responses
induced by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in COVID-19 patients.
Our findings indicate that the expansion of myeloid-derived suppressor cells (MDSCs) may be a
characteristic feature of COVID-19. Additionally, a significant increase in TE expression in MDSCs
was observed. This upregulation of TEs in COVID-19 may be linked to the adaptability of these
cells in response to their microenvironments. Furthermore, it appears that the identification of
overexpressed TEs by pattern recognition receptors (PRRs) in MDSCs may enhance the suppressive
capacity of these cells. Thus, this study emphasizes the crucial role of TEs in the functionality of
MDSCs during COVID-19.

Keywords: COVID-19; single-cell RNA sequencing; transposable elements; immune system;
myeloid-derived suppressor cells

1. Introduction

The rise of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in late 2019
led to a massive crisis and a global pandemic. Since its inception, it has resulted in over
689 million reported cases and more than 6.8 million deaths “https://www.worldometers.
info/coronavirus/ (accessed on 31 May 2023)”. COVID-19 exhibits a vast spectrum of
clinical manifestations based on disease severity in different cases of infection, ranging
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from mild upper respiratory tract symptoms to severe, multi-organ failure, and even
death. Although several studies have been carried out to unravel the detailed mechanistic
understanding of COVID-19, the underlying pathogenesis of COVID-19 and its optimal
treatment are still far from being clearly understood [1–3].

Transposable elements (TEs) make up around 50 percent of the human genome and
are classified into retrotransposons (class I) and DNA transposons (class II) [4]. Retro-
transposons, which amplify themselves in the genome, are classified into long terminal
repeat (LTR) and non-LTR elements. LTR elements consist of around eight percent of the
human genome and are categorized into four families: endogenous retrovirus (ERV), ERV-
K, ERV-L, and MaRL. In contrast, non-LTR retrotransposons consist of long-interspersed
elements (LINEs), short-interspersed elements (SINEs), and Sine-VNTR-Alu (SVA) [5]. It
has been debated that the dysregulation of TE expression participates in several diseases,
from cancer to neurological disorders [5–10].

Silencing TEs in hosts is crucial to prevent genome instability and inflammation [11]
However, recent evidence indicates that during a viral infection, TEs may be reactivated
and utilized by the host for antiviral defense. TE expression is a common occurrence in
various species and cell types during viral infections. This up-regulation of TEs happens
early in the infection process, even before significant increases in virus replication and
interferon gene expression, and is observed near genes involved in antiviral defense and the
response to interferons, suggesting a link to the host’s immune response. TE mRNAs and
proteins have the potential to activate the innate immune response by triggering pattern
recognition receptors (PRRs) [12].

Furthermore, the protein TRIM28, which plays a role in gene regulation and TE
silencing, is found at higher levels in the promoter regions of several antiviral genes.
When functional TRIM28 is lost, repression marks decrease at these promoters, leading
to increased gene transcription. In the case of HIV-1, activation of specific TEs known as
LTR12C, found upstream of interferon-inducible antiviral genes, has been shown to enhance
antiviral defenses in a way that depends on the promoter. Therefore, the derepression of
TEs near genes involved in the host’s innate immune system during infection is likely to
have an immediate and significant impact on the host’s defenses [13].

Another study explored the role of TEs in the variability of individual responses to
influenza A virus (IAV) infection. The data also revealed an inverse relationship between
the basal transcripts of TEs and viral load after infection, suggesting that TE transcription
contributes to the activation of innate immunity. Specific families of TEs were identified to
be associated with changes in chromatin accessibility following infection. These families
possess unique sequence characteristics, chromatin states, and an enrichment of binding
motifs for transcription factors. This suggests that these TEs may influence the diverse
responses individuals have to infection [14].

Recently, some studies have proposed the possible associations between COVID-19
severity and TEs [15–20]. Since TEs are activated and involved in inflammatory diseases,
various studies suggest the potential role of TEs in COVID-19 pathogenesis. In this regard,
Kitsou et al. revealed that TEs are strongly dysregulated in bronchoalveolar lavage fluid
(BAL) samples of COVID-19 patients [16]. Moreover, Zhang et al. suggested that derepres-
sion of LINE expression, induced by SARS-CoV2 infection, and consequent inflammatory
response, could cause SARS-CoV2 integration into the genome of infected cells [19].

Some studies have been carried out to decipher the COVID-19 pathology at the single-
cell level [21–23]. However, there is no single-cell RNA seq study to examine the possible
association of TE dysregulation in cell function and its potential role in COVID-19 immune
dysregulation, to the best of our knowledge.

Herein, we reanalyzed RNA-seq data from the bronchoalveolar lavage (BAL) samples
obtained from eight severe COVID-19 patients and four healthy donors at the single-cell
level to investigate the potential relationship between TE expression and the immune
responses triggered by the SARS-CoV-2 virus in COVID-19 patients.
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2. Materials and Methods

The sc-RNA sequencing data of BAL samples from eight COVID-19 patients (in-
cluding both alive and dead patients) and four healthy donors were retrieved from the
gene expression omnibus GEO [24,25] database under accession numbers GSE157344 [21]
and GSE151928 [26], respectively, and were extensively analyzed. In order to minimize
the influence of potential comorbidities, we selected four individuals from each study
group who were the youngest in age. The overall workflow of this method generated by
https://biorender.com is depicted in Figure 1. Moreover, the code is available at
https://github.com/mitra-frn/sc-TE-RNA/.
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Figure 1. The workflow of this study. ScRNA reads were aligned to ‘hg38 reference genome’ and
‘repeatmasker tracks’ using STAR and sc–TE aligners to count both genes and TEs. In the next step,
count matrixes were filtered, batch effects were removed, and all matrixes were integrated. Then, TEs
were removed temporarily from the integrated matrix. After PCA and clustering, TEs were added,
and DE analysis was conducted between all clusters. Finally, the correlation between DE TEs and
some pathways was investigated. This figure was created by BioRender.

2.1. Aligning Reads

Patients’ paired-end FASTQ files were aligned to UCSC hg38 genome assembly using
STARsolo (version 2.7.10a) [27] and v3 (3M-february-2018.txt) cell barcode whitelist files with
the setting’ –outSAMtype BAM SortedByCoordinate, –winAnchorMultimapNmax 100,
–outFilterMultimapNmax 100, –outMultimapperOrder Random, –outSAMmultNmax 1.

The aligned sc-RNA sequence reads of healthy donor samples were directly obtained
from the ENA database. They were aligned to hg38 genome assembly using STAR aligner
as well.

https://biorender.com
https://github.com/mitra-frn/sc-TE-RNA/
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2.2. Quantifying TE Expression

The traditional aligners cannot obtain an accurate quantitation of reads aligned to TEs,
as they ignore multi-mapping reads, which is critical for counting TEs. Therefore, we used
scTE (version 1.0.0) [28] aligner, which is compatible with STARsolo [27] output files.

Genome indices were built with the scTE-build function using UCSC genome browser
Repeatmasker track [29] and GENCODE in two modes: exclusive and nointron, and BAM
files were realigned via scTE function. Then, count matrices made by scTE were applied for
further analysis.

2.3. Preprocessing, Analysis, and Exploration of scRNA-seq Data

The Seurat (version 3.2.3) [30–33] is an R packagesatijalab.org/Seurat) designed to
analyze count matrixes and visualize data: At first, low-quality cells and cell doublets were
filtered out based on these criteria: 2% of cells with greater read-count RNA, 2% of cells of
each sample with low numbers of genes, or cells with more than 40% mitochondrial counts.

The filtered data were then normalized using ‘LogNormalize’ methods, and 2000 of
most variable genes were determined using the ‘FindVariableFeatures’ function in Seurat.
Samples were then integrated using the ‘IntegrateData’ function from the Seurat package
to correct the batch effect.

2.4. Principal Component Analysis (PCA) and Clustering

The TEs were temporarily removed from the count matrix to ensure that they did not
affect our clustering and were analyzed independently. After scaling the data, PCA was
performed using the RunPCA function in Seurat with default parameters.

The K-Nearest Neighbors Algorithm (KNN) graph was conducted based on the PCA-
reduced data, and unsupervised clustering was performed using ‘FindNeighbors’ and
‘FindClusters’. The TEs were added to clustered count matrix for further analysis.

2.5. Differential Expression (DE)

DE analysis was conducted on ‘RNA’ assays of count matrix, based on the ‘MAST’ [34]
method using ‘FindAllMarkers,’ and cell type was determined using cell markers.

2.6. Scoring Pathways and Correlation Test

The gene sets of pathways that are presumably related to the immune system functions
were retrieved from Gene Ontology (GO) [35,36], wiki pathway [37], Kyoto Encyclopedia
of Genes and Genomes (KEGG) [38–40], BioPlanet [41], and Reactome [42] databases
(Table S2). Average expression levels of these gene set in myeloid clusters and upregulated
genes (logFC > 0 and adj. p-value < 0.05) were calculated using ‘AddModuleScore’ in the
Seurat package.

The correlation between these pathways and upregulated genes in MDSC clusters was
evaluated using a calculated score with the ‘corr. test’ function in R version 4.0.4.

3. Results

To decipher the potential role of TE dysregulation in the immune deviation induced
by the SARS-CoV-2 virus in COVID-19 patients, scRNA-seq data, including a total of
324,135 cells in the BAL samples obtained from eight severe patients and four healthy
donors were reanalyzed (Table 1) [21,26].

Using a KNN graph constructed on the PCA-reduced data, single cells were clus-
tered and then labeled based on their canonical cell markers (Table S1). Average and
percent expression of canonical cell markers were shown in all clusters of three populations
(healthy, alive, and dead patients with severe COVID-19) (Figures S1–S3). Also, to visualize
these clusters, uniform manifold approximation and projection (UMAP) plots in these
three populations are shown below (Figure 2).
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Table 1. GEO accession number, clinical status, and clinical outcome of samples reanalyzed.

GEO Accession Clinical Outcome Clinical Status Tissue

GSM4593888 - Healthy BAL

GSM4593891 - Healthy BAL

GSM4593890 - Healthy BAL

GSM4593892 - Healthy BAL

GSM4762143 Alive Severe COVID BAL

GSM4762155 Alive Severe COVID BAL

GSM4762159 Alive Severe COVID BAL

GSM4762144 Alive Severe COVID BAL

GSM4762140 Dead Severe COVID BAL

GSM4762152 Dead Severe COVID BAL

GSM4762150 Dead Severe COVID BAL

GSM4762147 Dead Severe COVID BAL
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Figure 2. Single-cell analysis of cells from bronchoalveolar lavage (BAL) samples of individuals with
COVID-19 and controls. This plot, which was obtained by UMAP visualization, demonstrates major
cell types in BAL samples obtained from (a) healthy, (b) survived, and (c) dead patients. Each cell
type is depicted by a specific color, and their respective clusters are indicated by cluster No.

Based on the canonical markers, we identified major cell types, including neutrophils,
myeloid-derived suppressor cells (MDSCs), monocytes and macrophages, dendritic cells,
lymphoid cells, and epithelial cells. Notably, among these cell types, MDSCs, specifi-
cally cluster 11 in the healthy population, clusters 7 and 8 in the alive population, and
cluster 4 in the dead population, exhibited a distinct pattern of transcriptional element
(TE) upregulation (Tables S3–S5). These clusters demonstrated differential expression
of a significant number of TEs (logFC > 0 and adj. p-value < 0.05). As illustrated in
Figure 3, MDSC clusters exhibited a higher number of upregulated TEs compared to other
myeloid cell-type clusters. Furthermore, MDSC clusters exhibited a higher frequency in
infected patients. While MDSC clusters accounted for only 2% of all cells in the healthy
population, they represented 10% and 7% of the cell population in the alive and dead
populations, respectively.
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Figure 3. Bar plot summarizing the number of significantly upregulated transposable element (TE)
subfamilies (logFC > 0 and adj. p-value < 0.05) in myeloid cell-type clusters from healthy samples (a),
alive (b), and dead (c) patients. The subfamilies of transposable elements include DNA transposons,
long-terminal repeat elements (LTR), long-interspersed elements (LINEs), and short-interspersed
elements (SINEs) are depicted in red, blue, green, and yellow colors, respectively. The length of each
bar represents the number of upregulated TEs from each subfamily. Clusters that have a TE number
less than 50 are not represented in this illustration.

MDSCs Reveal Distinct Immunological Functions

MDSC clusters were identified in all healthy, survived, and dead patients, as labeled
in Figure 2.

By scoring each pathway based on the expression levels of its genes, the correla-
tion between the overexpressed genes in myeloid cell-type clusters (LogFC > 0 and adj.
p-value < 0.05) and the selected pathways was evaluated for the healthy, alive, and dead
populations. The results of this analysis are presented in Tables S6–S8.

As demonstrated in Figures S4–S6 and Tables S6–S8, there is a significant difference
in the function of MDSCs and other myeloid cell-type clusters. To facilitate a comparison,
we present seven pathways that exhibit greater variation among the first 12 myeloid cell
clusters as they represent the major population of myeloid cells. Notably, certain pathways
associated with neutrophil function displayed a negative correlation with MDSC function,
indicating the suppressive nature of these cells. Conversely, pathways such as Toll receptor
signaling, TNF signaling, and NF-kappa B signaling exhibited a positive association with
MDSC function (Figure 4).
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Figure 4. The correlation between seven specific pathways and overexpressed genes in the first
12 myeloid cell clusters from healthy, alive, and dead populations. There is a significant difference in
the function of MDSC clusters with highly upregulated TEs compared to other myeloid cell types.
MDSC clusters were cluster 11 of healthy samples (a), clusters 7 and 8 of alive patients (b), and cluster
4 of dead patients (c). MDSC clusters showed a negative correlation with neutrophil functions such
as degranulation, activation involved in immune response, immunity, and migration. However, some
pathways, including the Toll receptor signaling pathway, TNF signaling pathway, and NF-kappa B
signaling pathway, were positively associated with the function of MDSCs.

4. Discussion

This study aimed to examine whether TE dysregulation correlates with the immune
deviation induced by the SARS-CoV-2 virus in COVID-19 patients. To answer this question,
the BAL sample obtained from 12 samples (including 4 control, 4 alive patients, and 4 dead
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patients) were reanalyzed at the single-cell level. We identified a cluster of MDSC with a
higher population in COVID-19 than the control.

Under normal homeostatic conditions, myeloid progenitors are produced in the bone
marrow and appear as non-polarized or ‘resting’ MDSCs with very low suppressive activ-
ity. These cells can migrate to the periphery and differentiate into mature macrophages,
dendritic cells, and neutrophils while losing their suppressive properties. However, under
conditions of chronic inflammation, MDSCs including polymorphonuclear (PMN-MDSC)
and monocytic (M-MDSC) ones undergo differentiation arrest, proliferation, and polariza-
tion toward highly suppressive cells that migrate to the periphery and sites of inflammation.
Different subpopulations of MDSCs can sense changes in their surroundings and adjust
their behavior accordingly. Therefore, in the context of chronic inflammation, the various
subsets of MDSCs can sense changes in their environment and adapt accordingly due
to their plastic nature. These cells can modify their developmental pattern, phenotype,
and behavior in response to changes in environmental factors associated with chronic
inflammation [43].

Research has shown that MDSCs play a critical role in regulating immune responses
in various human diseases. MDSCs have the ability to inhibit T-cell proliferation and
activation, modulate cytokine production by macrophages, suppress natural killer (NK)
cell function, impair dendritic cell differentiation, and induce regulatory T cells (Tregs).
Additionally, MDSCs can inhibit the proliferation and differentiation of B cells and induce
regulatory B cells in multiple pathological conditions. These findings underscore the
importance of MDSCs in the pathogenesis of diseases and highlight their potential as a
therapeutic target [44–46].

Various studies have utilized advanced phenotypic and molecular techniques to in-
vestigate how the immune system interacts with the virus in COVID-19. Severe COVID-19
cases are characterized by alteration in the abundance, phenotype, and functionality of
neutrophils. High numbers of neutrophils have been found in the nasopharyngeal epithe-
lium, lungs, and blood of infected patients. Single-cell RNA sequencing has revealed the
emergence of immature neutrophils that resemble PMN-MDSCs, suggesting the presence
of immunosuppressive neutrophil precursors in severe COVID-19 cases. These precur-
sors may be released prematurely from the bone marrow and infiltrate the lung tissue in
severe cases, leading to the expansion of PMN-MDSCs and contributing to the observed
neutrophilia [47,48].

We identified that TEs are highly upregulated in some clusters with a resemblance to
myeloid cells. Notably, these cells were not recognized by canonical myeloid cell markers.
These clusters were annotated as myeloid-derived suppressor cells based on the upregu-
lation of some markers including Colony Stimulating Factor 3 Receptor (CSF3R) [49,50],
Nicotinamide Phosphoribosyl transferase (NAMPT) [51,52], and nuclear paraspeckle assem-
bly transcript 1 (NEAT1) [53,54]. The suppressive nature of MDSCs is in accordance with
the obtained results suggestive of the negative association of canonical neutrophil functions
including neutrophil migration, neutrophil-mediated immunity, neutrophil degranulation,
and neutrophil activation involved in immune response with the MDSC function [55].

Long non-coding RNAs (lncRNAs), including NEAT1 and metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1), were found to be highly upregulated in MDCS
clusters with overexpressed TEs (Tables S8–S10). This result is confirmed by others who
demonstrated that most lncRNAs are expressed under the control of TE promoters [56].
Recent studies suggested that the upregulation of NEAT1 and MALAT1 may be associ-
ated with inflammation and consequent tissue damage seen in severe COVID-19 [57–59].
Moreover, it has been reported that TE overexpression is associated with inflammatory
diseases. For instance, Macchietto et al. proved that TE overexpression is common in differ-
ent viral infections [12]. The overexpression of TEs in SARS-CoV-2 infection is confirmed
as well [16]. Noteworthy, autoantibodies against the endonuclease domain of the LINE1
gene are discovered in approximately 40% of SARS patients, which may be crucial in its
pathogenesis [60].
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Transcriptional regulatory networks are responsible for determining cellular identity,
function, and response to stimuli by controlling gene expression programs. Regulatory
elements such as promoters and enhancers act as ‘wires’ in the genome, connecting genes
into regulatory networks and regulating nearby gene expression [61]. TEs have been
suggested as playing a role in the evolution of regulatory networks due to their ability to
replicate throughout the host genome. While most TEs no longer encode functional proteins,
they often retain transcription factor binding sites and can influence the expression of
nearby genes. In recent years, there have been several studies demonstrating the important
role of TEs in host gene regulation, leading to the conclusion that the cooption of TEs is a
general mechanism shaping the evolution of mammalian gene regulatory networks [62–64].

Recent research suggests that TEs are frequently coopted to regulate genes involved in
immune processes. Studies have identified TEs being used as promoters [65], interferon-
inducible enhancers [64], and insulator elements in immune cells [66]. The unique pressures
involved in the evolution of immune regulatory networks may favor the cooption of TEs.
Immune genes are among the fastest evolving genes in the genome, reflecting the constant
need to adapt to new and evolving pathogens [61,64]. TEs, which are a major source of
genetic polymorphism, may facilitate the rapid adaptive evolution of immune responses
at the gene regulatory level due to their active or recently active status. In this regard, in
a study by Ye et al. [4], chromatin profiling data from mouse CD8+ T lymphocytes was
analyzed, revealing that multiple TE families contribute to predicted regulatory sequences.
They also found that immune cells exhibit the highest enrichment of TE-derived enhancers
compared to other cells, indicating that the cooption of TEs may more strongly influence
immune regulatory networks. So, one may speculate that TE upregulation in MDSCs
appears to be linked to the cells’ ability to adapt their phenotype and functional capabilities
in response to changes in their microenvironment [43]. TEs are repetitive and mobile
elements, and their involvement in the genomic plasticity of MDSCs may occur through
their insertion into coding or regulatory regions of immune-related genes. This can have a
functional impact on gene expression, leading to plasticity [11,61,67,68].

The defense against pathogens involves a series of coordinated events, beginning with
the host’s recognition of the invading pathogen, in which Toll-like receptors (TLRs) play a
crucial role. The purpose of sensing pathogens via TLRs is to quickly activate an innate
immune response to eliminate the pathogen. Alveolar macrophages and neutrophils are
well-known immune cells that are capable of phagocytosis and killing pathogens. Alveolar
macrophages are usually the first responders, but they are later replaced by neutrophils,
which are quickly recruited to the site of infection with the help of chemokines that are
primarily produced by lung epithelial cells and macrophages. Neutrophils produce various
harmful products, including reactive oxygen species and proteases, which can damage not
only the pathogen but also the host’s own cells. After the pathogen has been eliminated,
the host’s next priority is to initiate an appropriate anti-inflammatory response to prevent
further neutrophil recruitment. Neutrophils have a short lifespan and begin to undergo
apoptosis at the site of inflammation. To prevent lung injury, phagocytes must rapidly clear
these apoptotic cells, a process known as efferocytosis. This is the stage at which MDSCs
become involved in the host’s response to infection. MDSCs do not accumulate rapidly
in the lung after infection. Instead, they develop late after infection, which makes sense
because lung MDSCs produce IL-10 that can impede neutrophil recruitment if produced too
early. It has been revealed that lung MDSCs efficiently clear apoptotic neutrophils through
efferocytosis, aided by the IL-10 produced by the MDSCs. Successful pathogen clearance,
reduction in neutrophil infiltration, and elimination of dead neutrophils ultimately restore
tissue homeostasis. As we revealed in Figure 4, pathways related to neutrophil function
were negatively associated with the function of MDSCs, which suggests these cells play an
essential role in resolving lung inflammation by the inhibition of neutrophil functions [55].

The TLR2 and TLR4 signaling pathways induce the suppressive activity of MDSCs.
Activation of the NF-κB pathway by TLR2/4 leads to the expression of inflammatory factors
such as IL-6 and TNF-α. Subsequently, IL-6 and TNF-α activate both the STAT3 and NF-κB
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signaling pathways. Of particular note, the expression of the inflammatory factors S100A8
and S100A9 is regulated by STAT3. These factors act as TLR4 ligands, which then activate
the NF-κB pathway, leading to an upregulation of IL-6 and TNF-α expression. This forms a
feedback loop that enhances the expansion and activation of MDSCs [69].

As depicted in Figure 4, some pathways including the Toll receptor signaling pathway,
TNF signaling pathway, and NF-kappa B signaling pathway were positively associated
with the MDSCs function. Since PRRs, the same as TLRs, could recognize TEs [70,71],
one may speculate that the upregulated TEs in MDSCs could enhance the suppressive
activity of these cells. Although this assumption is based on limited evidence and requires
further investigation to establish its validity [72], it serves as an initial proposition for
further inquiry.

It should be noted that there were some limitations in our study. First of all, the
number of samples that were reanalyzed was limited, and the lack of samples from mild
patients in our analysis prevented us from generalizing this finding to COVID-19-mild
patients. Moreover, in this study, autonomous TE expression was not distinguished from
co-transcription or pervasive transcription. This might lead to overestimating TE expres-
sion and its functional effects on the studied process [73]. Another limitation of our study
is that we did not thoroughly investigate the potential role of TE downregulation in gene
expression related to COVID-19 infection. Our study observed a general upregulation
of TEs, with fewer TEs being downregulated, thus excluding the role of TE downregu-
lation in the gene expression changes observed. However, it is important to explore the
possible impact of TE downregulation on gene expression in future studies to fully under-
stand the complex dynamics between TEs and viral infections, particularly in the context
of COVID-19.

All in all, this is the first study to examine the possible association of TE and its
potential role in the COVID-19 immune responses at the single-cell level. Our results
suggest that the expansion of MDSCs could be a hallmark of COVID-19. Moreover,
we recognized that TEs are highly upregulated in MDSCs. The upregulation of TEs in
COVID-19 could be related to the plasticity of these cells in response to the microenviron-
ments. Moreover, it seems that the recognition of overexpressed TEs by PRRs in MDSCs
could strengthen the suppressive activity of these cells. Therefore, this study underscores
the importance of TEs in the functionality of MDSCs in COVID-19. However, further
studies are needed to decipher the probable causal link between TE overexpression in
MDSCs and their function seen in mild and severe COVID-19.
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