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Abstract: The number of maize seedlings is a key determinant of maize yield. Thus, timely, accurate
estimation of seedlings helps optimize and adjust field management measures. Differentiating
“multiple seedlings in a single hole” of maize accurately using deep learning and object detection
methods presents challenges that hinder effectiveness. Multivariate regression techniques prove more
suitable in such cases, yet the presence of weeds considerably affects regression estimation accuracy.
Therefore, this paper proposes a maize and weed identification method that combines shape features
with threshold skeleton clustering to mitigate the impact of weeds on maize counting. The threshold
skeleton method (TS) ensured that the accuracy and precision values of eliminating weeds exceeded
97% and that the missed inspection rate and misunderstanding rate did not exceed 6%, which is a
significant improvement compared with traditional methods. Multi-image characteristics of the maize
coverage, maize seedling edge pixel percentage, maize skeleton characteristic pixel percentage, and
connecting domain features gradually returned to maize seedlings. After applying the TS method to
remove weeds, the estimated R2 is 0.83, RMSE is 1.43, MAE is 1.05, and the overall counting accuracy
is 99.2%. The weed segmentation method proposed in this paper can adapt to various seedling
conditions. Under different emergence conditions, the estimated R2 of seedling count reaches a
maximum of 0.88, with an RMSE below 1.29. The proposed approach in this study shows improved
weed recognition accuracy on drone images compared to conventional image processing methods. It
exhibits strong adaptability and stability, enhancing maize counting accuracy even in the presence
of weeds.

Keywords: image processing; maize seedlings; weed; count; skeleton threshold segmentation

1. Introduction

Maize, as one of the most important food crops, has an irreplaceable position in
national food security, and its output is affected by genetic factors, cultivation methods,
and environmental impacts [1,2]. One of the common problems in farmland is that weeds
have a negative impact on crop growth and output [3–5], especially in maize planting,
where a large number of weeds significantly impacts the seedling quality of maize [6,7], an
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important determinant of seedling growth and development. Therefore, the evaluation of
maize seedlings in the presence of weeds is of great significance [8]. The competition of
weeds can lead to limitations in light, moisture, and nutrients, which affect normal seedling
growth and development. The existence of weeds also puts seedlings at greater risk of
mechanical damage and pest infestation, which further reduces the seedling quality of
maize [4,9]. Therefore, the quality of maize seedlings depends on accurately evaluating
the occurrence of maize, which has important guiding significance for farmers’ reasonable
formulation of prevention and control measures and maize production improvement [6,10].
The quantity of seedlings is the most direct and effective evaluation indicator of seedlings,
and no efficient seedling counting methods exist in actual production. Moreover, traditional
manual investigation is time consuming and laborious, and the operability is poor [11].

Currently, image analysis technology is a crucial tool for quantitative phenotypic
research in crops. The study of these quantitative traits includes, but is not limited to,
aspects such as the number of seedlings, the number of tillers, and the number of pan-
icles [12–14]. For example, automatic counting of the number of wheat seedlings was
performed using RGB images; the average accuracy rate in different agricultural processes
reached 89.94% [15]. The identity R2 of the number of maize seedlings was 0.89 [16]; the
average RMSE of the stems in the wheat multi-birth period was less than nine tillers per
square meter [17], the accuracy of the ears of wheat was higher than 90%, and the standard
deviation was less than 5% [18]. In another investigation, Liu et al. [19] first cleaned up
weeds in a maize field and then obtained images, which reduced the difficulty of counting
maize seedlings and limited the scope of the model applicable. Subsequently, Liu et al. [20]
used the drone image binding depth to learn the model and efficiently evaluate the number
of maize seedlings, the spacing and uniformity of the seedlings, and the seedling status.
However, the impact of weeds was not considered. As such, in the number of traits of
identification, including soil, water, and especially weeds, the impact on identification
accuracy was clear. Thus, how to effectively identify and eliminate weeds is the focus and
challenge of quantitative trait research [21–24].

In an environment where crops and weeds coexist, there are notable similarities in
color, texture, and spectral characteristics, making it challenging to distinguish between the
two based on singular features [25–28]. Additionally, the aforementioned features exhibit
limited generalizability to other datasets, resulting in significant variation in performance
when applied to different datasets. Tang et al. [29], in order to solve the instability of the
artificial design characteristics and the problem of weak generalization ability, proposed a
miscellaneous mixed model with a combination of characteristic learning and convolutional
neural networks. The weed recognition model was applied to soybean and its accompa-
nying weed recognition, and the accuracy rate of recognition reached 92.89%, proving the
superiority of the convolutional characteristics. Moreover, Espejo-Garcia et al. [23] pro-
posed a method that combines agricultural transfer learning with artificial images created
by generative adversarial networks (GANs) to solve the problem of accurate weed identifi-
cation in the absence of data sets; Jiang et al. [30] proposed a convolutional neural network
(CNN)-based graphics convolution network (GCN) method. The method performed well
on four different weed datasets, and its running time was greatly shortened compared with
that of other deep learning models; compared with dry land weeds, the environment of
aquatic weeds brought more interference factors. Further, Peng et al. [31] proposed a model
based on RetinaNet named Weeddet. This model improves the feature extraction capabili-
ties of the main network, characteristic pyramid network, and detection head to process
complex information in the image. It also reduces the structure of the characteristic pyramid
and the detection head and improves the detection speed. The model achieved 94.1% of
the high MAP and a 24.3 FPS reasoning time, which are better values than those achieved
by other rice and weed detection models. Further, Yu et al. [32] used multi-spectrometer
information to build a vegetation index to effectively distinguish the rice fields and weeds;
the accuracy of recognition reached 93.47%, and the Kappa coefficient was 0.859. This
method can provide theoretical support for the rational spraying of herbicides and reduce
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damage to the environment. Compared with the conventional feature method, the deep
learning network has obvious advantages in weed identification accuracy, but its huge com-
putational load and early database preparation make it ineffective [33,34]. Further, it is not
easy to promote in actual production, so image processing methods based on conventional
features are also constantly improving. Similarly, Zamani and Baleghi [35] optimized and
screened morphological characteristics, spectral characteristics, texture characteristics, and
thermal symbols through genetic algorithms and using extreme learning machines (ELM).
The network realized high-precision identification of rice and weeds with 98.08% accuracy.

Currently, in the actual production of maize, to ensure germination rates, the phe-
nomenon of “multiple seedlings in one single hole” still exists with high frequency. The
counting of seedlings in this situation is a challenge, primarily because two seedlings
overlap, making it difficult to separate seedlings through deep learning or semantic seg-
mentation. Therefore, in our research, we have attempted to find relevant features for
regression-based counting. However, this method’s accuracy is highly susceptible to the
influence of weeds.

Against this background, this paper proposes a method that combines shape features
with threshold skeleton clustering to mitigate the impact of weeds. We utilize these features
to achieve regression counting for maize. Additionally, by increasing the flight height
of unmanned aerial vehicles (UAVs) to improve the efficiency of image data acquisition
while ensuring the accuracy of weed segmentation, we achieve an efficient and precise
evaluation of maize germination status. This approach provides a scientific basis for corn
field management.

2. Material and Methods
2.1. Experimental Site

The field experiment was conducted at the experimental base of Yangzhou University
in Yangzhou City, Jiangsu, China (32◦30′ N, 119◦25′ E, elevation 21 m). The region is
characterized by a subtropical monsoon-influenced humid climate, with an average annual
temperature ranging from 14.8–15.3 ◦C and an average annual precipitation of 961–1048 mm.
The experimental plot was a maize breeding field consisting of 310 subplots. Each subplot
contained 12 holes, with two seeds planted per hole. The row spacing was 0.6 m, and the
plant spacing was 0.4 m. Conventional high-yield cultivation methods were applied for
other aspects of water and fertilizer management. To investigate maize seedling counting
under weed occurrence conditions, we did not apply herbicide during the seedling stage.

2.2. Image Acquisition

Image collection was divided into near-ground manual image acquisition and route-
planning collection. Near-ground manual image acquisition was carried out using a DJI
Mavic 3E (DJI, Shenzhen, China). The drone was equipped with a 1/2 CMOS telephoto
camera with an equivalent focal length of 162 mm, in addition to 12 million px, supported
56× hybrid zoom, and an RTK module; this could provide centimeter-level positioning.
We flew the drone to a height of 10 m and used 7× optical zoom to acquire images of each
community, obtaining a total of 310 images.

Route planning and collection were also carried out using the DJI Mavic 3E (DJI,
Shenzhen, China). The drone platform uses the autopilot system to perform scheduled
tasks. The flight mission was created and uploaded through the DJI Pilot 2 ground control
station. The flight altitude of this mission was 12 m, the heading overlap rate was 70%, and
the side overlap rate was 70%. The image was acquired in clear weather from 11:00 to 13:00
on 7 May 2023. In this study, DJI Terra (V3.6) was used for image splicing. The software
provides centimeter-level reconstruction, which can effectively avoid image distortion
and accurately present the details of maize and weeds, improving recognition accuracy
(Figure 1a).
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Figure 1. The workflow diagram of this study, including data acquisition, image processing and
data analysis, model construction, and validation. ((a) Image acquisition and preprocessing process;
(b) Maize counting process).

In the experimental design, 310 plots had the same planting area. ArcGIS 10.7 (En-
vironmental Systems Research Institute, Inc., Redlands, CA, USA) was used to mark the
maize planting area, and ENVI 5.6 (Exelis Visual Information Solutions, Inc., Boulder, CO,
USA) was used for clipping. The cropped planting area data were small and easy to process
and could effectively improve the extraction efficiency of seedling counting parameters
(Figure 1a).

2.3. Image Processing Workflow

At the seedling stage of maize growth, the predominant weeds encountered in maize
fields included Digitaria sanguinalis and Plantago asiatica. The distribution of these weeds
exhibited irregular patterns, as illustrated in Figure 2. This study focused on maize as the
target of detection and broadly categorized the weed distribution into two types: (1) discrete
weeds, located at a distance from the maize plants, and (2) weeds found in close proximity
or adhering to the maize plants. Consequently, before performing maize counting, we had
to segment and eliminate weeds belonging to these two scenarios. In this study, a method
was developed for detecting the presence of weeds, while the maize detection and counting
approach is presented in Figure 1.
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2.3.1. Method for Removing Discrete Weeds

To enhance the accuracy of background removal in the maize planting plot images, we
employed a specific method in this study. Initially, the plot images were converted from the
RGB color space to the L*A*B color space. Subsequently, K-means clustering was applied as
an image segmentation technique to eliminate the soil background. Owing to the similarity
in color features between weeds and maize, solely relying on color features cannot ensure
the complete removal of all weeds. In this growth stage, weeds exhibit distinct differences
in appearance and size compared with maize seedlings. Therefore, shape features such as
MajorAxisLength and Area were utilized to differentiate and identify weeds from maize.
This method effectively eliminates isolated weeds from the images.

2.3.2. Method for Removing Attached Weeds

After the elimination of discrete weeds, certain weeds remained connected to the maize
plants, forming a unified entity. To fully extract the maize seedlings, we performed addi-
tional processing steps to address the issue of weed–maize adhesion. This section primarily
encompasses the following procedures: (1) contour extraction of maize seedlings; (2) skele-
ton extraction; (3) application of the Harris corner detection algorithm to identify the inflec-
tion points of the skeleton, where the centroids were subsequently marked based on the
characteristics of the connected domain; (4) removal of short branches in the original skele-
ton based on the distance between the branching points and centroids (DC, Equation (1)), as
well as the lengths of the skeleton branches (BL, Equation (2)) (Equation (3)); (5) employing
K-means clustering on all the pixels within the connected domains of maize and weeds,
as well as the pixels within the skeleton (Equation (4)); and (6) color restoration of the
clustered results.

DC =
√
(x2 − x1)

2 + (y2 − y1)
2 (1)

BL =

√
(x4 − x3)

2 + (y4 − y3)
2 (2)

{DC > 100, In f lection point retention
BL ≤ 85, Branch deletion

(3)

Euclidean Distance = sqrt
(
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

)
(4)
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Here, x1, y1; x2, y2; . . .; xn, yn represent the corresponding point coordinates in the
binary image.

2.3.3. Evaluation of the Weed Removal Effect

In this study, the weed removal effect was evaluated using parameters such as accuracy,
precision, false positive rate (FPR), and false negative rate (FNR). The evaluation equations
are as follows:

Accuracy = (TP + TN)/ N (5)

Precision = TP / (TP + FP) (6)

FPR =
FP

(FP + TN)
(7)

FNR =
FN

(FN + TP)
(8)

where TP is the number of pixels correctly identified as maize (true positive); FP is the
number of pixels incorrectly identified as maize when they were actually weeds (false
positive); TN is the number of pixels correctly identified as weeds (true negative); FN is
the number of pixels incorrectly identified as weeds when they were actually maize (false
negative); and N is the total number of pixels in the image region containing both weeds
and maize.

2.3.4. Counting of Maize Seedlings

Owing to the field management requirements of maize planting, maize plant spacing
is relatively large, and maize leaves are smaller in the seedling stage. Overlapping and
adhesion of different plants rarely occur. However, in actual production, differences exist
in sowing quality, which results in differences in the number of seedlings per hole. It
is not unique, and there will be overlap and adhesion, so it is difficult to count only
through a certain image feature. To compare the impact of weeds on maize seedling
number detection, this study used four shape parameters as a multivariate linear model
to estimate the number of seedlings: the number of connected domains (NC), maize
coverage (Mc), maize seedling edge pixel percentage (Me), and maize skeleton feature pixel
percentage (Ms). Equations (9)–(11) were used to extract maize morphological information
for each subregion:

Mc(i) =
Pc(i)

Psm
(9)

Ms(i) =
Ps(i)

Psm
(10)

Me(i) =
Pe(i)

Psm
(11)

where Pc(i) is the number of pixels in the maize region of subregion i; Ps(i) is the number of
pixels in the maize skeleton of subregion I; Pe(i) is the number of pixels in the maize edge
feature of subregion i; Psm is the size of the subregion image; Mc(i) is the maize coverage
for subregion i; Ms(i) is the percentage of a skeleton image feature for subregion i; and Me(i)
is the percentage of edge image features for subregion i.

Mc =
Mc(i) − Mc(min)

Mc(max) − Mc(min)
(12)

Ms =
Ms(i) − Ms(min)

Ms(max) − Ms(min)
(13)

Me =
Me(i) − Me(min)

Me(max) − Me(min)
(14)
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Here, Mc(min) is the minimum value of the maize coverage parameter for each image;
Ms(min) is the minimum value of the skeleton image feature parameter for each image;
Me(min) is the minimum value of the edge image feature parameter for each image; Mc(max)
is the maximum value of the maize coverage parameter for each image; Ms(max) is the
maximum value of the skeleton image feature parameter for each image; and Me(max) is
the maximum value of the edge image feature parameter for each image.

By utilizing the above parameters, we could employ a multivariate stepwise regression
to estimate the number of maize seedlings.

2.3.5. Evaluation of Maize Seedling Counting Accuracy

The manual counts of maize seedlings in each plot were considered the ground truth
data. The data were divided into two equal parts, with 50% used for modeling and the
remaining 50% for validation. The evaluation metrics employed to assess the accuracy of
different weed treatment methods were root mean squared error (RMSE), mean absolute
error (MAE), coefficient of determination (R2), and accuracy rate. These metrics were
calculated using Equations (15)–(20):

RMSE =

√
1
m

m

∑
i=1

(pyi − tyi)
2 (15)

MAE =
1
m

∣∣∣∣∣ m

∑
i=1

(pyi − tyi)

∣∣∣∣∣ (16)

SSE =
m

∑
i=1

(pyi − tyi)
2 (17)

SST =
m

∑
i=1

(tyi − y)2 (18)

R2 = 1 − SSE
SST

(19)

Accuracy rate =

(
1 −

∣∣∣∣ ŷi − yi
yi

∣∣∣∣) · 100% (20)

where m is the total number of plots; pyi is the predicted value by the model for the ith
plot; tyi is the actual measured value for the ith plot; and y is the mean value of the actual
measurements.

The aforementioned variables were used in the calculation of evaluation metrics such
as RMSE, MAE, and R2.

3. Results and Analysis
3.1. Discrete Weed Segmentation Results

Weeds are the main interference that affects seedling counting, making it challenging
to use conventional image analysis methods for maize seed counting. By comparing the
color features of weeds and maize (Figure 3d), we observed a high overlap in the R color
component (Figure 3a) between weeds and maize in the range of 120–160. The G color
component (Figure 3b) for both weeds and maize fell within the range of 160–200. The B
color component (Figure 3c) showed values between 70 and 110 for both weeds and maize.
Consequently, we observed a limited color difference between maize leaves and weeds,
making it difficult to effectively eliminate weeds based on color features alone (Figure 3e).



Agriculture 2024, 14, 175 8 of 22

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 22 
 

 

3. Results and Analysis 
3.1. Discrete Weed Segmentation Results 

Weeds are the main interference that affects seedling counting, making it challenging 
to use conventional image analysis methods for maize seed counting. By comparing the 
color features of weeds and maize (Figure 3d), we observed a high overlap in the R color 
component (Figure 3a) between weeds and maize in the range of 120–160. The G color 
component (Figure 3b) for both weeds and maize fell within the range of 160–200. The B 
color component (Figure 3c) showed values between 70 and 110 for both weeds and maize. 
Consequently, we observed a limited color difference between maize leaves and weeds, 
making it difficult to effectively eliminate weeds based on color features alone (Figure 3e). 

 
Figure 3. Different methods to remove discrete weeds and segmentation threshold illustration ((a) 
Color feature: R; (b) color feature: G; (c) color feature: B; (d) original image; (e) image erosion method 
to remove the weed results; (f) shape feature weed removal results). 

Some weeds, such as Digitaria sanguinalis, posed a greater challenge in terms of seg-
mentation owing to their similar leaf morphology to maize. Both maize leaves and these 
weed species had elongated shapes. However, the projection area of these weeds in the 
image was significantly smaller than that of maize plants. Therefore, the “Area” feature 
could effectively distinguish between the elongated weeds and maize. Additionally, some 
weeds, like Plantago asiatica, had circular leaves. These weeds exhibited distinct overall 
contours compared with those of maize. Hence, differentiation could be achieved by 

Figure 3. Different methods to remove discrete weeds and segmentation threshold illustration
((a) Color feature: R; (b) color feature: G; (c) color feature: B; (d) original image; (e) image erosion
method to remove the weed results; (f) shape feature weed removal results).

Some weeds, such as Digitaria sanguinalis, posed a greater challenge in terms of
segmentation owing to their similar leaf morphology to maize. Both maize leaves and
these weed species had elongated shapes. However, the projection area of these weeds
in the image was significantly smaller than that of maize plants. Therefore, the “Area”
feature could effectively distinguish between the elongated weeds and maize. Additionally,
some weeds, like Plantago asiatica, had circular leaves. These weeds exhibited distinct
overall contours compared with those of maize. Hence, differentiation could be achieved
by utilizing the “MajorAxisLength” feature. By leveraging these specific shape-related
features, we could discriminate between maize and weeds exhibiting similar leaf structures.

The key to using the “MajorAxisLength” feature and “Area” feature parameters for
dividing maize and weeds was to determine the accurate threshold and sort the order
of “MajorAxisLength” values in all representative communities. Accordingly, when the
slope decrease between two points suddenly decreases, the two adjacent regions belong
to different categories. Next, a comparison of multiple groups revealed that when the
“MajorAxisLength” feature value was 30, the split effect was the best (Figure 3f). On this
basis, adding the “Area” feature parameter to assisted weeds and maize segments could
effectively reduce the effects of certain weed and maize shape similarity.
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3.2. Segmentation Results for Adherent Weeds

In Figure 4a, maize and weeds exhibit significant adhesion, which greatly affects the
accurate counting of maize seedlings. To address this issue, we propose a skeleton-distance-
based segmentation method, combined with distance clustering, to eliminate adherent
weeds, hereafter referred to as the TS method.
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In this study, the analysis focused on the skeleton of a single maize plant with adhe-
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by disconnecting the entire skeleton at the coordinates of the inflection points, we could 
separate the weed and maize skeletons. Note that the shorter skeleton closer to the center 

Figure 4. Adhesive weed segmentation combining skeleton thresholding and centroid distance
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coverage; (i) legend for parts (b,c)).

In this study, the analysis focused on the skeleton of a single maize plant with adhe-
sions, as depicted in Figure 4b. Within the image, the blue points represent inflection points
in the skeleton, the green points indicate breakpoints, and the orange four-pointed star
denotes the center of mass of the entire skeleton. Notably, the skeleton belonging to weeds
within the overall structure was characterized by a shorter length. Consequently, by discon-
necting the entire skeleton at the coordinates of the inflection points, we could separate the
weed and maize skeletons. Note that the shorter skeleton closer to the center of mass did
not pertain to the weed skeleton but to the center of the maize plant where new blades were
extending. Hence, when eliminating the short skeleton, this specific portion of the skeleton
had to be retained. The skeletons connected to breakpoints and possessing a shorter length
were indicative of weed skeletons (as highlighted by the skeletons in the purple circle,
Figure 4c). By appropriately selecting a threshold, we could effectively remove the weed
skeletons. The procedure started by connecting each inflection point to the center of mass,
calculating the distance (referred to as DC) between the two points, and sorting all DCs in
descending order. The inflection point corresponding to the shorter DC was considered the
internal position of the maize skeleton. When disconnecting the skeleton at the coordinates
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of the inflection points, we had to disregard the corresponding inflection points (Figure 4c),
while the remaining inflection points were used to cut the skeleton. By sorting the lengths
of the broken skeletons (referred to as BL) in descending order, we found that shorter BL
values represented the weed skeleton and had to be discarded. However, when DC = 50
and BL = 50 (Figure 4d), a portion of the weed skeleton was still retained and had not been
completely eliminated. Similarly, for the cases where DC = 50 and BL = 80 (Figure 4e) and
where DC = 50 and BL = 200 (Figure 4f), the skeleton at the center of the maize and the
skeleton corresponding to the maize leaf position were eliminated, respectively. Based on
an analysis of multiple sets of adherent weed images, we set the segmentation threshold
for DC to 100 and the threshold for BL to 85. By applying these thresholds, we could obtain
a segmented skeleton representative of the maize plant’s skeleton (Figure 4g). At this stage,
successful extraction of the complete maize skeleton had been achieved.

In Figure 4h, the black lines represent the maize skeleton, while the white regions
represent the connected components of weeds and maize. The shortest distance between
each pixel in the white regions and the skeleton was calculated, and the colors in Figure 5a
represent the magnitude of the distances, with red indicating greater distances. The
weed regions generally appeared red, while the maize regions appeared blue, indicating
a noticeable distinction between the two. To remove the adherent weed regions from the
maize regions, we used the K-means clustering algorithm to classify the minimum distances.
This led to the extraction of connected weed regions from the maize regions (Figure 5b).
The resulting clustered image was then filled and denoised to create a masked image of
the maize plants (Figure 5c). Finally, the weed-adherent maize plants were segmented by
applying the mask to color the respective areas (Figure 5d).
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The presented approach effectively and accurately removed weeds and adherent
weeds, as demonstrated by the segmentation results of four representative adhesive scenar-
ios in Figure 6. Cases 1 and 2 represent mild adhesion, while cases 3 and 4 depict severe
adhesion. From the obtained results, it can be observed that the method proposed in this
study exhibited high applicability across different levels of adhesion. Therefore, it proved
to be an efficient weed segmentation method.
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3.3. Comparison of Different Weed Removal Methods

To assess the impact of weeds on seedling counting during the early stages of maize
growth, we employed three methods to process the images of maize plots: (1) morphologi-
cal processing with a structural element size of 10 (referred to as MP-10); (2) morphological
processing with a structural element size of 5 (referred to as MP-5); and (3) the TS method.
The morphological processing involved erosion and dilation operations with different
structural element sizes (5 and 10) to remove weeds, and the results were compared with
those of the TS method. Figure 7a shows the outcomes of the three methods after weed
removal. When the structural element size was set to 10, the accuracy of weed removal was
relatively low, at only 55%. The false detection rate was 29%, indicating that a significant
number of weeds remained undetected. Moreover, the false negative rate was as high as
52%, indicating that more maize plants were mistakenly treated as weeds. In contrast,
when the structural element size was set to 5, the erosion process became more refined.
This led to a noticeable improvement in accuracy compared with that of MP-10, with
similar precision values. However, the false detection rate increased by 30% compared with
that if MP-10, meaning that smaller structural elements resulted in less erosion in weed
areas, preserving large weed regions. In contrast, the false negative rate decreased by 29%
compared with that of MP-10. Compared with those of MP-10 and MP-5, the TS method
exhibited significant improvements in both accuracy and precision, achieving values above
99%. Moreover, the false negative rate and false detection rate were both below 2%. These
results indicate that the TS method, based on shape features, is a more effective approach
for weed removal.
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Building upon the previous analysis, we further compared the performance of the
three methods in removing adherent weeds (Figure 7b). Evidently, both MP-10 and MP-5
failed to accurately remove adherent weeds, as their false positive rates (FPR) exceeded
45%. Particularly, MP-10 exhibited a significantly higher false negative rate (FNR) of
72%. In contrast, owing to the inclusion of a separate method specifically designed for
removing adherent weeds, the TS method demonstrated the same excellent performance in
eliminating adherent weeds as it did for overall weed removal.

3.4. Counting of Maize Seedlings

A total of 310 plots were planted in the experiment, among which five plots did not
have any seedlings emerge. The remaining 305 plots exhibited a primarily distributed
seedling count ranging from 10 to 16 (Figure 8). By extracting features from the images,
we constructed a seedling counting model to assess the accuracy of seedling counting
considering the influence of weeds. Previous studies have shown that a combination of
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three features—maize coverage (Mc), the percentage of maize seedling edge pixels (Me), and
the percentage of maize skeleton feature pixels (Ms)—can effectively estimate the number of
maize seedlings [19]. Building upon this foundation, this study further revealed that during
the early stages of maize seedling growth, maize plants exhibited compact body structures,
with limited adhesion between plants. Therefore, the number of connected domains (NC)
can serve as a reliable indicator of the count of maize seedlings. Consequently, four feature
parameters (i.e., Mc, Me, Ms, and NC) were utilized for seedling counting.
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When considering only three features (i.e., Mc, Me, and Ms) for seedling counting, the
presence of weeds significantly impacted the accuracy of the count. Figure 9a presents
the count of maize seedlings in each plot with no weeding. The R2 value for the training
set was 0.34. However, the validation set exhibited a notably lower R2 value of 0.09,
indicating the difficulty in accurately counting seedlings under weed interference. Under
the MP-5 treatment (Figure 9b), we observed an improvement in the R2 value, with a
remarkable 255.6% increase in the validation set R2. Additionally, both the RMSE and MAE
decreased. These improved results highlight the crucial nature of effective weed treatment
in enhancing the accuracy of seedling counting. By utilizing the proposed TS method for
image processing prior to counting (Figure 9c), we found that the R2 value for the training
set increased to 0.57. Furthermore, the R2 value for the validation set also demonstrated
improvement compared with the values for other treatments. The RMSE of the validation
set showed a reduction of 3.4%, while the MAE was decreased by 20.7%. These outcomes
collectively emphasize the necessity of weed removal during maize seedling counting,
affirming the feasibility of the segmentation method introduced in this study.

The study also examined the effect of weeds on seedling counting when incorporating
the NC feature. Without weed removal, the NC feature showed limited improvement in
counting accuracy (Figure 9d). However, when applying the MP-5 treatment to preprocess
the plot images before counting, we observed a significant increase in the R2 value for
the training set, accompanied by a notable reduction in the RMSE and MAE (Figure 9e).
Furthermore, after utilizing the TS method to preprocess the images, followed by counting,
the validation set exhibited an improvement of 118.42% in R2, a 52.49% increase in RMSE,
and a 54.94% increase in MAE. The incorporation of the NC feature significantly enhanced
counting precision (Figure 9f). However, in conventional methods, the inclusion of the
NC feature does not yield noticeable improvements. This can be attributed to the fact that
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remaining weeds and adhered weeds both contribute to higher NC values, thereby reducing
counting accuracy. These results emphasize that the utilization of the NC feature must
be accompanied by a highly accurate weed removal method to leverage its advantages in
counting accuracy.
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In the statistical analysis of the estimation results, different combinations of image
processing methods and linear regression feature parameters led to significant variation
in counting accuracy. For the NW and MP-5 treatments, the inclusion of the NC feature
resulted in a minor improvement in accuracy, averaging around 0.3%. Comparatively, the
TS method exhibited an overall counting accuracy improvement of 3% compared with
that of the NW and MP-5 treatments. The combination of TS and NC achieved the highest
accuracy among all combinations, reaching up to 99.20% (Table 1).

Table 1. Estimation accuracy under different methods and feature combinations.

Treatment Combination of Features True Values Predicted Accuracy (%)

NW
Mc, Me, Ms 1670 1587 95.02

Mc, Me, Ms, NC 1670 1590 95.21

MP-5
Mc, Me, Ms 1687 1624 96.27

Mc, Me, Ms, NC 1687 1630 96.62

TS
Mc, Me, Ms 1620 1589 98.09

Mc, Me, Ms, NC 1620 1607 99.20
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3.5. Results of Maize Seedling Counts under Different Seedling Proportions

The number of weeds and the number of seedlings are both important factors that
determine the accuracy of seedling counting. Therefore, the proposed weed elimination
method was used to detect plots with few and many maize seedlings and plots with few and
many weeds in the experimental fields. Treatments and seedling enumeration used multiple
stepwise regression. The results show that when the seedlings were few (Figure 10a), the R2

of the seedlings could reach 0.73, and the RMSE was 1.07; with more seedlings (Figure 10b),
the seedling count R2 decreased to 0.69, and the RMSE increased to 1.29, indicating that
the more seedlings produced, the more the accuracy of the count is affected. By analyzing
the original image, we speculated that the impact is mainly obstructed by maize blades;
in addition, in a small area with few weeds, the counting R2 could reach 0.88 (Figure 10c);
in a community with a large number of weeds (Figure 10d), the accuracy of counting was
greatly reduced, and the R2 was only 0.61. From this result, we can see that the accuracy of
counting is affected by weeds. As such, the proposed weed removal method can improve
the accuracy of the seedling counting under different seedlings.
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3.6. Application of Weed Division Method to Drone Images

The method proposed in this paper was applied to batch process UAV images of
310 plots, estimating the number of maize seedlings in different zones, as illustrated in
Figure 11. The counting of maize seedlings using UAV images yielded an R2 of 0.83 and
an RMSE of 1.55. Compared with the accuracy of the estimated results of near-ground
images, this value is still acceptable. These findings suggest that the weed removal method
proposed in this paper can be effectively applied to UAV data sources. The applicability of
the method is primarily influenced by image quality, indicating its feasibility for large-scale
production fields and potential for widespread adoption.
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4. Discussion
4.1. Impact of Weeds on the Monitoring of Maize Seedlings

The monitoring of maize seedlings is essential for the subsequent growth and devel-
opment of maize, but the occurrence of weeds is one of the main factors that affect maize,
especially the growth of seedlings, and untimely weeding operations can reduce nutrients,
slow development, and invite diseases and insect pests. Weeding is a necessary measure
to ensure the stable and increased production of crops. At present, the key point for the
monitoring of maize seedlings is to perform seedling detection. Common seedling detec-
tion mainly uses three methods in terms of color, texture, and vegetation index. Machine
learning algorithms including machine (SVM), random forest (RF), and K average pool clas-
sification are classified [36,37]. Second, through computer vision technology, the obtained
images are processed, and the seedlings are detected in combination with edge detection,
threshold division, and other methods. The third is the most popular target detection and
semantic segmentation method based on deep learning [38,39]. However, different seedling
detection methods are affected by weeds when monitoring the seedling period. Figure 12
is a characteristic comparison between the seedling period of maize and weeds. Whether
it was a multi-spectrum reflectance (Figure 12A) or the vegetation index (Figure 12B), the
difference between maize and weeds was not obvious. Features (Figure 12C–E) and texture
characteristics (Figure 12F–M) had a high degree of weight and could not be directly used
in the division of maize and weeds. Moreover, for the accuracy of the sensor, the differences
between the two were not enough to perform accurate threshold segmentation, which led
to the use of the above characteristics to detect or count maize plants. Certainly, previous
studies have identified numerous features that can differentiate between weeds and crops,
canopy temperature, hyperspectral characteristics, and shape features, among others, and
can achieve crop and weed segmentation under certain conditions. However, these features
are predominantly utilized for qualitative descriptions, leading to poorer segmentation
results when dealing with crop–weed adhesion situations. Given the aforementioned
challenges, an increasing number of researchers are directing their focus on deep learning
approaches, specifically the utilization of various networks—such as R-CNN, MSFCA-Net,
and U-Net—to facilitate feature learning and accomplish the segmentation of maize and
weeds. However, when a multitude of weed species exists in maize fields, this technique
requires an extensive sample size to fulfill the training requirements. Consequently, the
practical application thereof in actual production settings is limited in terms of flexibility.
Therefore, when monitoring during the seedling period, we must prioritize the weed prob-
lem. Weeding treatment beforehand can reduce the impact of weeds on image processing,
but the extraction of maize seedlings without weeding is more significant.
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4.2. Division Method of Adhesive Weeds

For crops and weed adhesions, the image segmentation of machine vision technology
or the target detection and semantic segmentation through the use of deep learning tech-
nology are commonly used solutions. Bakhshipour et al. [22] used small waves of texture
characteristics to achieve effective segmentation of crops and weeds under mild adhesion,
but this method cannot adapt to complex adhesion. Moreover, Yang et al. [40] proposed
a multidimensional convolutional network with weeds to pay attention to the network,
called MSFCA-NET, which showed strong robustness and generalization capabilities on
soybean, beet, carrot, and rice datasets and could realize the rapid removal of non-adhesive
weeds. Furthermore, the agglomeration method based on the skeleton distance could effec-
tively achieve different degrees of adhesion and division. Compared with the conventional
texture characteristics, the shape characteristics are more conducive to solving the adhesion
problem, and compared with deep learning methods, this method does not require a lot of
data sample training, making it more efficient.

4.3. Effect of Different Flight Heights on the Recognition of Maize Plant

The altitude of flight plays a crucial role in determining the quality of captured images.
An excessive flying height leads to a loss of image details, resulting in insufficient informa-
tion. Blurred images also pose challenges for the segmentation of maize and weeds. Flying
at a low altitude can impact the quality of image acquisition due to the airflow generated
by the rotation of drone propellers, thereby reducing counting accuracy. Additionally,
lower flight altitudes necessitate capturing a greater quantity of images to ensure complete
coverage of the plots, leading to decreased efficiency in image processing. Table 2 presents
the outcomes of maize seedling counting using the weed treatment method at varying flight
altitudes. The results show a gradual decrease in the R2 value as the flight height increased.
Beyond 20 m, a significant reduction in R2 was observed. This decline reveals that when the
ground sampling distance (GSD) exceeded 1 cm/pixel, the differentiation between maize
and weeds diminished, making it difficult to accurately capture the distinguishing skeletal
and shape characteristics of maize and weeds. Restrictions imposed by aircraft necessitated
a minimum altitude of 12 m for route-mode flight. Consequently, flying at lower altitudes
consumed considerably more time compared with route flights. By considering counting
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accuracy and flight efficiency, we found that it became possible to monitor the status of
maize emergence without being influenced by weeds. The optimal flying height was within
the range of 12–20 m. Moreover, the time and weather conditions during image acquisition
by the drone also impacted the results. Images obtained between 10:00 a.m. and 2:00 p.m.
exhibited higher modeling accuracy, and sunny weather yielded higher modeling accuracy
than cloudy conditions.

Table 2. Experimental parameters at different flight heights.

Flight Height (m) GSD (cm/px) Flight Duration R2

12 0.55 10 min 41 s 0.83
15 0.69 8 min 28 s 0.76
20 0.92 6 min 15 s 0.72
25 1.15 4 min 45 s 0.55
30 1.38 4 min 1 s 0.49

4.4. Application of the Weed Division Method to Drone Images

The method proposed in this paper enables accurate counting of maize seedlings.
Unmanned aerial vehicles (UAVs) can provide extensive and efficient image information.
The combination of these two aspects allows for the precise counting of emerged seedlings
and the creation of distribution maps. This integrated approach is valuable in practical
agricultural production. Figure 13a illustrates the actual number of seedlings in each plot
as measured, while Figure 13b represents the estimated number of seedlings using the
method proposed in this study. Different colors represent different counts. The significant
variability in seedling emergence across 310 plots of the entire field is apparent. How-
ever, the estimated results closely align with the actual values. The use of distinct colors
visually highlights areas with insufficient or excessive seedlings. This aids agricultural
practitioners in promptly assessing the seedling situation and formulating management
measures accordingly.
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4.5. Comparison of the Efficiency of Different Models

We compared three image processing methods for estimating seedling counts (Table 3).
The time required for the K-means clustering method and corner detection model is higher
than the method proposed in this article under the same sample size. More importantly, the
clustering method shows a significant issue of misclassifying weeds and maize seedlings,
leading to highly inaccurate seedling counts. Similarly, the corner detection model also
identifies many corners belonging to weeds, resulting in a substantial counting error.
Although the faster R-CNN model is close in accuracy to the method discussed in this paper,
it requires the annotation of samples before training and a sufficient number of samples
to ensure accuracy, and it also takes a longer time to train. The running environment
configuration of the above model is shown in Table 4.

Table 3. Time required for training and prediction by different methods.

Model Training + Prediction Time

Number of samples 50 100 150 200 300 1000
K-means 23.62 s 44.25 s 65.64 s 84.98 s 128.08 s -

Corner detection model 25.13 s 48.76 s 72.65 s 95.24 s 139.47 s -
Methods in this article 15.22 s 30.08 s 43.73 s 57.45 s 86.37 s -

Faster R-CNN - - - - - 3 h 25 min

Table 4. Model running environment.

Detailed Configuration

CPU Intel(R) Core (TM) i7-10700K
RAM 16 GB
GPU NVIDIA GeForce GTX 1660 SUPER

5. Conclusions

In response to the challenge of counting maize seedlings in the presence of weeds,
this paper presented a precise segmentation method that combines shape features with
skeleton-distance clustering to effectively distinguish between maize plants and attached
weeds. We utilized the extracted data of maize plant features such as Mc, Me, Ms, and NC,
which we quantified for regression analysis. The profound impact of weed occurrence on
the estimation of maize seedling quantities was thoroughly explored, and the accuracy of
the counting method was compared across varying levels of weed occurrence.

The following conclusions were derived:
(1) The threshold segmentation method based on image shape characteristics in this

article could effectively remove most of the discrete weeds among the maize field seedlings.
The optimized clustering method based on the skeleton distance could achieve maize
plant detection and extraction of the maize from weed adhesion. This provided a basis for
precision estimation of the number of seedlings.

(2) Based on the results of maize seedling counts, the best parameters for the estimated
number of maize seedlings were Mc, Me, Ms, and NC. The accuracy of the number of
maize seedlings under different weed removal methods clarified the number of weeds.
We observed an adverse effect on the estimation of the number of maize seedlings. After
removing weeds, the accuracy of the number of seedlings could reach 99.20%, which was
significantly improved compared with no weeding. Comparing the accuracy of the number
of seedlings under different proportions of weeds and seedlings, the occurrence of weeds
was found to have a greater impact on the estimation of the number of seedlings. Thus,
precise weed removal could be a necessary prerequisite for accurate counting.

(3) UAV imagery was employed to quantify the number of maize seedlings across
various seedling conditions. Both single indicators and comprehensive indicators were
utilized to assess the emergence status of maize in the presence of weeds. A comprehensive
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analysis was conducted on the emergence status of 310 plots within the experimental
site. The evaluation results serve as a scientific foundation for informed decision making
regarding variety selection and effective farmland management practices.

The results indicated that the proposed method demonstrated the capability to discern
maize plants amidst weed-infested surroundings; enhance the precision of maize segmenta-
tion; and (3) determine the count of seedlings emerging across diverse seedling conditions.
Nonetheless, this method possessed inherent constraints. In scenarios where numerous
seedlings coexisted within a single cavity or in areas densely populated with weeds, the
accuracy of estimating the quantity of seedlings was notably compromised. These concerns
represent pivotal focal points for future investigations, which could refine the counting
precision and adaptability of this approach in varying environmental settings.
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