
Citation: Boche, H.; Böck, Y.N.;

Mönich, U.J.; Fitzek, F.H.P.

Trustworthy Digital Representations

of Analog Information—An

Application-Guided Analysis of a

Fundamental Theoretical Problem in

Digital Twinning. Algorithms 2023, 16,

514. https://doi.org/10.3390/

a16110514

Academic Editors: Ali Sadiq,

Houbing Song, Ahmad Fadhil Yusof,

Sushil Kumar and Omprakash

Kaiwartya

Received: 30 September 2023

Revised: 20 October 2023

Accepted: 25 October 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Trustworthy Digital Representations of Analog
Information—An Application-Guided Analysis of
a Fundamental Theoretical Problem in Digital Twinning †

Holger Boche 1 , Yannik N. Böck 1,* , Ullrich J. Mönich 1 and Frank H. P. Fitzek 2

1 Chair of Theoretical Information Technology, Technical University of Munich, 80333 Munich, Germany;
boche@tum.de (H.B.); moenich@tum.de (U.J.M.)

2 Deutsche Telekom Chair of Communication Networks, Technical University of Dresden,
01187 Dresden, Germany; frank.fitzek@tu-dresden.de

* Correspondence: yannik.boeck@tum.de
† This paper is an extended version of our paper published in Boche, H.; Mönich, U.J.; Böck, Y.N.; Fitzek, F.H.P.

Optimization of Digital-Twin Representations of Analog Signals and Systems in Proceedings of the IEEE
International Conference on Communications 2023, Rome, Italy, 28 May–1 June 2023; further, it will be
discussed by Holger Boche and Frank H. P. Fitzek at the IEEE GLOBECOM within the tutorial Tactile Internet
Support for the Metaverse.

Abstract: This article compares two methods of algorithmically processing bandlimited time-continuous
signals in light of the general problem of finding “suitable” representations of analog information on
digital hardware. Albeit abstract, we argue that this problem is fundamental in digital twinning, a
signal-processing paradigm the upcoming 6G communication-technology standard relies on heavily.
Using computable analysis, we formalize a general framework of machine-readable descriptions
for representing analytic objects on Turing machines. Subsequently, we apply this framework to
sampling and interpolation theory, providing a thoroughly formalized method for digitally processing
the information carried by bandlimited analog signals. We investigate discrete-time descriptions,
which form the implicit quasi-standard in digital signal processing, and establish continuous-time
descriptions that take the signal’s continuous-time behavior into account. Motivated by an exemplary
application of digital twinning, we analyze a textbook model of digital communication systems
accordingly. We show that technologically fundamental properties, such as a signal’s (Banach-
space) norm, can be computed from continuous-time, but not from discrete-time descriptions of the
signal. Given the high trustworthiness requirements within 6G, e.g., employed software must satisfy
assessment criteria in a provable manner, we conclude that the problem of “trustworthy” digital
representations of analog information is indeed essential to near-future information technology.

Keywords: digital twinning; sampling; interpolation; Shannon series; bandlimited signals; Turing
machines; computability; computable analysis; trustworthiness

1. Introduction

State-of-the-art technological information processing happens mainly within the digi-
tal realm. Numerical values are quantized, and calculations are performed in discrete-time
computational cycles. In contrast, the information carried by the physical world surround-
ing any technological device is analog and continuous. Twelve years after Alan Turing
formalized the notion of digital computing [1], Claude Shannon established the theoretical
foundation of sampling and interpolation theory [2]. Since then, scientists and engineers
have extended Turing’s and Shannon’s theories and refined the relevant hardware, making
the analog world increasingly accessible to digital information processing.

As follows from Shannon’s sampling theorem, suitable (infinite) interpolation series
uniquely restore any bandlimited continuous-time signal, provided that the signal’s en-
ergy is finite and the samples are taken at least at the Nyquist rate. In its purest form,

Algorithms 2023, 16, 514. https://doi.org/10.3390/a16110514 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110514
https://doi.org/10.3390/a16110514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8375-8946
https://orcid.org/0000-0001-7640-6988
https://orcid.org/0000-0002-2390-7524
https://orcid.org/0000-0001-8469-9573
https://doi.org/10.3390/a16110514
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110514?type=check_update&version=1

Algorithms 2023, 16, 514 2 of 28

this result is present in signal processing and communications technology in the context
of analog–digital/digital–analog conversion. In principle, however, any computational
discretization method, such as finite-element algorithms, employs a similar paradigm: A
set of discrete points, sufficiently dense for the in-between to become negligible, represents
some continuous, physical object (c.f. [3] for a recent example in which the physical “object”
is an electromagnetic field).

Another recent concept in the domain of digital information processing is known
as digital twinning. According to the formalization established in [4], digital twinning
commonly involves a physical entity to be twinned, a machine-readable description (in
some machine-readable language) that represents the entity virtually on an appropriate
hardware platform, and an interaction between the entity and its description through
measurement and control. In this context, the machine-readable description is the entity’s
digital twin. More generally, if the particular type of computing hardware is not spec-
ified, we refer to the entity’s virtual representation as a virtual twin. Furthermore, the
term “entity” indicates that the virtual twin’s physical counterpart does not necessarily
have to be an actual object. In theory, any abstract formation—such as, for example, an
entire communication network [5], or, as above, an electromagnetic field—qualifies for
digital twinning, provided we can characterize it by a suitable mathematical model. De-
spite the different contexts, digital twinning resembles traditional Shannon Sampling and
Interpolation (SSI) in some aspects. Both approaches represent a physical entity (in the
context of SSI, a bandlimited signal) using digital data, digitalizing the relevant analog
information through a sequential measurement process. However, classical SSI is geared
towards completely restoring the physical entity, while digital twinning primarily aims to
recover the entity’s relevant properties. Within the employed mathematical model, relevant
properties usually take the form of a (mathematical) function or relation with a particular
interpretation on the practical level, such as the position of a material object at a given time
or the total energy contained in an electromagnetic field.

Originally associated primarily with Industry 4.0 [6], digital twinning is attracting
significant interest in many areas of modern technology. As part of the internet’s anticipated
evolution towards a unified metaverse, even more facets of the physical environment will
connect to virtual space. In particular, information processing will increasingly incorporate
the interaction between human multi-modalities (human senses) and the digital domain,
c.f. [7]. In order to make human senses experienceable, the computational infrastructure
will have to coordinate, process, and distribute the relevant information in real time. This
requirement imposes engineers with unprecedented technological challenges regarding
optimization, control, and decision-making. In this regard, research and development
advocates digital twinning as one of several critical enablers. The novel technological
applications that researchers envision in the context of digital twinning are just as ambitious.
Medical research, for example, considers applications such as disease-trajectory estimation,
optimization of medical-care timing, identification of biomarkers or elucidation of drug
mechanisms, and patient-tailored prediction of treatment effects, employing digital twins
of, e.g., a patient’s immune system [8].

Given the potential for hazardous impacts of future digital-twinning applications on
sensitive aspects of human well-being, the need to follow strict specifications on privacy,
integrity, reliability, and safety is manifest. The upcoming 6G industry standard for com-
munication technologies, which incorporates large parts of the technological infrastructure
for the metaverse and other digital-twinning applications, summarizes such requirements
by the term trustworthiness [9]. Depending on the potential hazards of an application, the
physical entity’s relevant properties must be reliably recoverable from the entity’s digital
twin. In practice, technological systems for critical applications must undergo technology
assessment, which evaluates the implementation with regard to criteria of provable perfor-
mance. When expressed in mathematical terms, e.g., by a margin of error, the recovered
property must almost surely meet, such criteria entail “sufficient” and “insufficient” ways
of representing a physical entity in virtual space. That is, the employed machine-readable

Algorithms 2023, 16, 514 3 of 28

language must satisfy specific structural characteristics, such that the relevant properties
can be reliably computed from any of the entity’s machine-readable descriptions. We
summarize this observation in terms of the following fundamental problem statement,
which we aim to elaborate on throughout this article.

Given an application that requires the processing of analog information, find a sufficient
way to represent the information on the chosen hardware platform.

The problem statement refers to general hardware platforms. As previously indicated,
future virtual-twinning applications will not necessarily be limited to digital technology,
c.f. [4]. However, in the scope of this article, we will only discuss traditional digital
computing. Hence, in the problem statement, we may replace “the chosen hardware
platform” with “digital hardware” in the context of the subsequent sections.

So far, our discussion on the fundamental problem statement and the associated
concepts has been abstract, without a clear picture of how they translate to actual engineer-
ing problems. Throughout the subsequent sections, we aim to draw a precise picture of
machine-readable languages, relevant properties, and proper representations for signal-
processing and communications-engineering applications that involve traditional SSI. Aside
from the conceptual similarities between digital twinning and SSI we discussed above,
SSI has relevant direct applications in digital twinning. In the context of general virtual
twinning, ref. [10] discussed an actual implementation of such an application, c.f. Figure 1.

Figure 1. Application of digital twinning as discussed in [10]. (Left) A robot (physical entity) is
moving on the floor of a laboratory environment. It is sequentially measuring its position relative
to a fixed coordinate system and transmitting the relevant data through wireless communication to
a receiving end. (Middle) The receiving end tracks the position and forms a virtual representation
(digital twin) of the robot inside the room. It updates the virtual representation to match the physical
robot whenever new information becomes available. The depicted image is thus a visualization of the
robot’s instantaneous machine-readable description. (Right) Using the robot’s virtual representation,
the receiving end computes the impulse response of the wireless communication link (the depicted
implementation uses a ray-tracing approach), i.e., a sequence of samples representing a bandlimited
signal. In essence, the impulse response forms a digital twin of the communication link.

Recall that traditional SSI aims at restoring the physical entity (i.e., a bandlimited
signal) entirely. The relevant analytic result is known as (generalized) Plancherel–Pólya
Theorem, c.f. Section 2 and Figure 2: The bandlimited signal uniquely determines the
corresponding sequence of samples, and vice versa.

Accordingly, we expect that any property of the bandlimited signal should be recov-
erable from the sequence of sampling values. At this point, Turing’s theory of digital
computing enters the stage: A priori, the (generalized) Plancherel–Pólya Theorem is a
purely analytic result. For it to hold on the algorithmic level, effectiveness in the sense of
computable analysis is required. In this context, we will analyze two machine-readable
languages emerging from the (generalized) Plancherel–Pólya Theorem for their structural
properties. We employ the theory of Turing machines and effective analysis, classifying
our results in terms of digital twinning and the article’s fundamental problem statement.
Particularly, we provide formal definitions of the terms machine-readable languages and
machine-readable descriptions, and discuss formal examples of relevant properties. After
the mathematical part of the article, we provide a brief subsumption and interpretation of

Algorithms 2023, 16, 514 4 of 28

our results, together with some prospects of how they affect near-future digital information-
processing technology.

Figure 2. Generalized Plancherel–Pólya Theorem (c.f. Section 2). By evaluating a bandlimited,
continuous-time signal (left) at all integer multiples of a suitable sampling interval T, we obtain
the sequence of samples (right) corresponding to the function under consideration. We can restore
the function through an (infinite) interpolation series, where each term is associated with one of
the sample sequence’s components. In particular, each term consists of a time-shifted interpolation
function multiplied by the associated sample. This way, the bandlimited function and the sequence
of sampling values uniquely determine each other.

The remainder of the article is structured as follows. In Section 2, we provide some
mathematical background on SSI, introducing the signal spaces `∞

0 , `1
0, B∞

0,π , and B1
π ,

and formally establishing the (generalized) Plancherel–Pólya Theorem in terms of the
Banach-space operators S? : B(?) → `(?) and T? := S−1

? . Applying the theory of Turing
computability and effective analysis, we continue to develop a framework of machine-
readable languages for B∞

0,π and B1
π . This framework formalizes the traditional theory

of digital signal processing for communications engineering based on a mathematically
rigorous notion of computability. Particularly, we define the machine-readable languages
X1 and X∞, which mirror the implicit quasi-standard in digital signal processing, and the
machine-readable languages F1 and F∞, which take the relevant signal’s continuous-time
behavior into account. In Section 3, we provide (for didactic purposes) a mathematical
model of digital-twinning systems such as the one shown in Figure 1, marking the Banach-
space norms ‖·‖∞ and ‖·‖1 as a relevant property of signals f ∈ B∞

0,π , f ∈ B1
π , respectively.

Guided by the exemplary application case, we establish our main results: The (generalized)
Plancherel–Pólya Theorem does not hold true on the algorithmic level. Depending on
which of the established machine-readable languages we choose, we either can or cannot
compute ‖ f‖∞, ‖ f‖1, respectively, despite all languages determining the relevant signals
uniquely in the (analytic) sense of the (generalized) Plancherel–Pólya Theorem. Finally,
Section 4 discusses several other signal properties our theory can analyze and closes the
article by interpreting our results as indicated above.

2. Materials and Methods

In the following, we provide a concise introduction to the mathematics of sampling
and interpolation, which are primarily based on the theory of Banach spaces and linear
operators. To this end, we introduce the Banach spaces `∞

0 , `p, B∞
0,σ, and Bp

σ , 1 ≤ p < ∞,
0 < σ < ∞. Commonly, B∞

0,σ and Bp
σ are referred to as Bernstein spaces. For a comprehen-

sive introduction, we refer the reader to [11,12].
By `∞

0 , we denote the set of all complex-valued sequences indexed by Z that vanish at
infinity. That is, we have

lim
k→∞

x[k] = lim
k→−∞

x[k] = 0

Algorithms 2023, 16, 514 5 of 28

for all x = (x[k])k∈Z ∈ `∞
0 . Equipped with the uniform norm ‖x‖∞ := supk∈Z|x[k]| the set

`∞
0 becomes a Banach space. Further, by `p, 1 ≤ p < ∞, we denote the Banach space of

pth-power-summable sequences with the p-norm

‖x‖p :=

(
∞

∑
k=−∞

|x[k]|p
)1/p

.

A function f : C→ C, z 7→ f (z) is called entire if it is well-defined and holomorphic
on all of C. For entire functions that are (essentially) bounded on the real line, we define the
essential-supremum norm ‖ f‖∞ := ess supt∈R| f (t)|. The space B∞

0,σ, 0 < σ < ∞, consists
of all entire functions f that satisfy the following conditions:

1. f is (essentially) bounded on the real line;
2. f of exponential type (c.f. [11], Lecture 1, p. 3ff) at most σ;
3. f (t) vanishes for t→ ±∞ on the real line.

Equipped with the essential supremum norm, the space B∞
0,σ becomes a Banach space.

Further, the Banach spaces Bp
σ , 1 ≤ p < ∞, consists of all functions in B∞

0,σ that are pth-
power integrable on the real line, equipped with the p-norm

‖ f‖p :=
(∫

t∈R
| f (t)|p dt

)1/p
.

Pure mathematics studies all of the spaces `∞
0 , `p, B∞

0,σ, and Bp
σ , 1 ≤ p < ∞, 0 < σ < ∞.

In contrast, only the spaces `1, `2, `∞
0 and B1

σ, B2
σ, B∞

0,σ occur frequently throughout signal
processing and communications engineering, the arguably most “well-known” ones being
`2 and B2

σ. They consist of discrete- and, respectively, bandlimited continuous-time signals
with finite energy and form the mathematical basis for the seminal results in SSI, established
before the relevant theory was extended to general Bernstein spaces. Fourier analysis
provides a bijective isometry between `2 and B2

σ: defining x f [k] := f (kπ/σ), k ∈ Z,
we have

[
F̃ f
]
(ξ) : =

√
π

2σ2

∞

∑
k=−∞

x f [k] e−πkξ/σ,

[
F f
]
(ξ) : =

1√
2π

∫
t∈R

f (t) e−ξt dt =

{[
F̃ f
]
(ξ), if− σ ≤ ξ ≤ σ,

0, otherwise,

for all f ∈ B2
σ, where F f denotes the Fourier Transform of f on the real line. Through the

definition of the sinc-function,

sinc(z) :=

{
sin(πz)

πz if z 6= 0,
1 if z = 0, ,

, z ∈ C,

and the linearity of the Fourier Transform, the isometry provides Shannon’s original
sampling theorem for the spaces `2 and B2

σ, we have

lim
N→∞

∫
R

∣∣∣∣∣ f (t)− N

∑
k=−N

x f [k] sinc
(
t− (kπ/σ)

)∣∣∣∣∣
2

dt = 0.

Since F f is zero outside the interval [−σ, σ], f is called bandlimited with bandwidth σ.
The spaces B2

σ, 0 < σ < ∞, thus correspond to the traditional notion of bandlimited signals.
Through the definition of exponential types (Point 2 of the requirements above), this notion
is generalized to a significantly larger class of functions. For 1 < p < ∞ arbitrary, the
Plancherel–Pólya theorem (Theorem 3, p. 152 in [11]) provides a nontrivial extension to the
Shannon’s sampling theorem.

Algorithms 2023, 16, 514 6 of 28

Theorem 1 (Plancherel–Pólya). Let 1 < p < ∞. For all sequences x ∈ `p, 1 < p < ∞, there
exists a unique function f ∈ Bp

σ , such that

lim
N→∞

∫
R

∣∣∣∣∣ f (t)− N

∑
k=−N

x[k] sinc
(
t− (kπ/σ)

)∣∣∣∣∣
p

dt = 0

is satisfied. In particular, f is the unique solution to the interpolation problem f (kπ/σ) = x[k],
k ∈ Z. Conversely, for all signals f ∈ Bp

σ , 1 < p < ∞, the sequence (f (kπ/σ))k∈Z belongs to `p

and there exist constants CL(p) > 0 and CR(p) > 0, independent of f , such that

CL(p)
∞

∑
k=−∞

| f (kπ/σ)|p ≤ ‖ f‖p
p ≤ CR(p)

∞

∑
k=−∞

| f (kπ/σ)|p

holds true.

For the spaces `1, B1
σ and `∞

0 , B∞
0,σ, 0 < σ < ∞, Theorem 1 does not hold to its full

extent. The (generalized) Plancherel–Pólya Theorem, which we will subsequently refer
to as generalized Shannon equivalence, provides the following: For all f ∈ B1

π , f ∈ B∞
0,π ,

respectively, and (f (kπ/σ))k∈Z = x f , we have f ≡ 0 if and only if we also have x f ≡ 0.
Furthermore, interpolation on the basis of sinc-functions provides uniform convergence on
all compact subsets of C, i.e., for all C > 0, we have

lim
N→∞

ess sup
z∈C,|z|≤C

∣∣∣∣∣ f (z)− N

∑
k=−N

x f [k] sinc
(
z− (kπ/σ)

)∣∣∣∣∣ = 0.

However, there exist sequences x ∈ `1, x ∈ `∞
0 , respectively, such that no function

f ∈ B1
σ, f ∈ B∞

0,σ, respectively, satisfies the interpolation condition x[k] = f (k) for all k ∈ Z.
For `1, the Kronecker-delta family δi ∈ `1, i ∈ Z, defined by

δi[k] :=

{
1, if i = k,
0, otherwise,

, k ∈ Z,

forms a simple example of such sequences. For an example in `∞
0 , see (A2). In other words,

the inclusions {x f = (f (k))k∈Z : f ∈ B1
π} ⊂ `1 and {x f = (f (k))k∈Z : f ∈ B∞

0,σ} ⊂ `∞
0

are proper. For further details regarding the generalized Shannon equivalence, we refer
to [11,12] (Lecture 21, pp. 155–162; Chapter 6, pp. 48–66).

The results established in the present article hold true for all spacesB1
σ, B∞

0,σ, 0 < σ < ∞.
In particular, the specific choice of σ is irrelevant. Therefore, without loss of generality, we
will restrict ourselves to the case of σ = π in the following, and denote

sinck : C→ C, z 7→ sinck(z) := sinc(z− k), k ∈ Z.

Further, most definitions and results hold analogously for both B1
π and B∞

0,π . For the
sake of brevity, we will thus employ the symbol ‘?’ as a placeholder that may be (uniformly)
replaced by ‘1’ or ‘∞’ within every appropriate scope (such as a definition, a lemma, a
theorem, or a proof), and write

`(?) :=

{
`∞

0 , if ? = ∞,
`1, otherwise,

B(?) :=

{
B∞

0,π , if ? = ∞,
B1

π , otherwise.

with some abuse of notation.
For notational convenience, we introduce the sampling operator S? : B(?) → `(?),

f 7→ S? f := (f (k))k∈Z and its inverse S−1
? =: T?, which we refer to as interpolation

operator. Subsequently, we will formalize the notion of computability for the spaces B(?)

Algorithms 2023, 16, 514 7 of 28

and `(?). Then, the (informal) question of whether the generalized Shannon equivalence
holds true on the algorithmic level corresponds to the (formal) question of whether the
operators S? and T? are computable in the chosen machine-readable language, which we
will address in Section 3. Observe that the sampling operator S? is bounded and injective.
Thus, the interpolation operator T? is well-defined on a linear subspace

dom
(
T?
)

:= img
(
S?
)
=
{

x f = (f (k))k∈Z : f ∈ B(?)
}

of B(?). However, T? is unbounded, and the subspace dom
(
T?
)

is not closed, c.f. (A1)
and (A4). Therefore, the set dom

(
T?
)

is not a Banach space itself, which is essential in
deriving the main results of our work.

Having established the analytic theory of sampling and interpolation, we will now
turn to the formalization of its computable variant. To this end, we provide a concise intro-
duction to the theory of Turing machines [1], µ-recursive functions [13], and computable
analysis [14–17]. Although mature topics in the field of computer science, they have not
yet received much attention within the signal-processing community.

Turing machines form an abstract mathematical model for digital computing. In fact,
the widely accepted Church–Turing Thesis implies that they form a definitive and universal
model of digital computing, i.e., any mathematical problem can (in principle) be solved
through a real-world digital computer if and only if it can theoretically be solved by a
Turing machine. Hence, if a certain algorithmic problem cannot be solved on a Turing
machine, it can definitely not be solved on an actual digital hardware. The algorithms a
Turing machine can compute is equivalent to the class of µ-recursive functions, c.f. [18] for
the proof of equivalence.

By N, we denote the set of natural numbers including zero. Throughout this article, it
will occasionally be necessary to exclude zero from N to obtain a meaningful mathematical
expression. As the reader may easily detect such a necessity from the relevant context, we
avoid indicating them explicitly by a distinguished notation.

We call a mapping natural-number function if it is of the form g : Nn ⊇→ N, n ∈ N,
where the symbol “⊇→” denotes partiality. That is, we have dom(g) ⊆ Nn. A par-
tial natural-number function is called total if the inclusion is improper, i.e., if we have
dom(g) ⊆ Nn. Then, the set of µ-recursive functions U consists of all those natural-number
functions that we can construct from the sucessor function, constant functions, and projec-
tion functions through application of composition, primitive recursion, and unbounded
search (Definition 2.1, p. 8, Definition 2.2, p. 10 in [14]). By U (n), n ∈ N, we denote the set of
µ-recursive functions in n arguments, where U (0) can be understood as the set N itself, i.e.,
constant functions in zero arguments. Accordingly, we have U (0) ∪ U (1) ∪ U (2) ∪ . . . = U .

Observe that, generally speaking, µ-recursive functions are partial. When Turing ma-
chines are modeled as actual state-based machines that perform computations in sequential
processing steps, the domain of the corresponding µ-recursive function equals the set of
inputs for which the Turing machine halts its computation in finite time. A set Ω ⊆ N is
called recursively enumerable if it is either empty or the domain of a µ-recursive function.
Consequently, a set Ω ⊆ N is recursively enumerable if and only if it is either empty or the
range of a total µ-recursive function. Furthermore, if Ω is recursively enumerable, there
exists a (total) µ-recursive function gΩ : N2 → {0, 1} that satisfies the following for all
n ∈ N:

• There exists a number m ∈ N such that gΩ(n, m) = 1 is satisfied if and only if n ∈ Ω
holds true;

• If gΩ(n, m) = 1 holds true for a number m ∈ N, then gΩ(n, k) = 1 holds true for all
k ∈ N that satisfy k > m.

Algorithms 2023, 16, 514 8 of 28

We call such a function a runtime function for Ω. A set Ω ⊂ N is called recursive if
both Ω and N \Ω are recursively enumerable which, in turn, holds true if and only if the
indicator function

1Ω : N→ {0, 1}, n 7→
{

1 if n ∈ Ω,
0 otherwise,

of Ω is a (total) µ-recursive function.
Alan Turing introduced the concept of computable real numbers in [1]. Our definition

of computable real numbers, and, subsequently, computable complex numbers, is based on
computable sequences of rational numbers (p. 14 in [15]).

Definition 1. A sequence of rational numbers, (rm)m∈N, is called a computable sequence of rational
numbers if there exist (total) µ-recursive functions g, h1, h2 : N→ N such that

rm =
(−1)g(m) · h1(m)

h2(m) + 1

is satisfied for all m ∈ N. Analogously, for n ∈ N, an n-fold computable sequence of rational
numbers is defined through (total) µ-recursive functions g, h1, h2 : Nn → N in n arguments.

Definition 2. A sequence of complex numbers, (sm)m∈N, is called a computable sequence of
rational-complex numbers if there exist a pair ((r1,m)m∈N, (r2,m)m∈N) of computable sequences of
rational numbers such that sm = r1,m + r2,m is satisfied for all m ∈ N. Analogously, for n ∈ N,
an n-fold computable sequence of rational-complex numbers is defined through a pair of n-fold
computable sequences of rational numbers.

Definition 3. A real number, x, is called computable if there exist a computable sequence of rational
numbers (rn)n∈N and a (total) µ-recursive function ξ : N → N such that |x− rn| < 2−M holds
true for all n, M ∈ N that satisfy n ≥ ξ(M). For a triple (x, (rn)n∈N, ξ) of this kind, we write
[(rn)n∈N, ξ]R = x. Further, we denote the set of computable real numbers by Rµ.

Definition 4. A complex number, z, is called computable if there exist a computable sequence
of rational-complex numbers (sn)n∈N and a (total) µ-recursive function ξ : N → N such that
|z− sn| < 2−M holds true for all n, M ∈ N that satisfy n ≥ ξ(M). For a triple (z, (sn)n∈N, ξ) of
this kind, we write [(sn)n∈N, ξ]C = z. Further, we denote the set of computable complex numbers
by Cµ.

In Definitions 3 and 4, the µ-recursive function ξ provides a computable way to control
the approximation error |x − rn|, n ∈ N, |z − sn|, n ∈ N, respectively. In this case, the
convergence of (rn)n and (sn)n∈N to x and z, respectively, is referred to as effective, and the
function ξ is called a corresponding effective modulus of convergence.

In the following, we will extend the established concepts of computability to the spaces
`(?) and B(?). To this end, we analogously write

C`(?) :=

{
C`∞

0 , if ? = ∞,
C`1, otherwise,

CB(?) :=

{
CB∞

0,π , if ? = ∞,
CB1

π , otherwise,

with the relevant formal definitions following below. Further, we employ an enumeration
ν : N→ Z, n 7→ ν(n) of the integers Z, defined through

ν(n) :=
1
2
(−1)(n mod 2)(n + (n mod 2)

)
.

Algorithms 2023, 16, 514 9 of 28

Definition 5. A sequence, x ∈ `(?), is called computable in `(?) if there exist a computable double
sequence of rational-complex numbers (sn,m)n,m∈N and a (total) µ-recursive function ξ : N→ N,
such that ∥∥∥∥∥x−

ξ(M)

∑
n=0

sn,M · δν(n)

∥∥∥∥∥
?

<
1

2M (1)

is satisfied for all M ∈ N. We denote the set of all such sequences by C`(?). Further, if we have
f = T?x for some f ∈ CB(?) (c.f. Definition 6), we write [(sn,m)n,m∈N, ξ]?X = f for the triple
(f , (sn,m)n,m∈N, ξ).

Definition 6. A function, f ∈ B(?), is called computable inB(?) if there exist a computable double
sequence of rational-complex numbers (s′n,m)n,m∈N and a (total) µ-recursive function ξ ′ : N→ N,
such that ∥∥∥∥∥ f −

ξ ′(M)

∑
n=0

s′n,M · sincν(n)

∥∥∥∥∥
?

<
1

2M (2)

is satisfied for all M ∈ N. We denote the set of all such functions by CB(?). Further, we write
[(s′n,m)n,m∈N, ξ ′]?F = f for the triple (f , (s′n,m)n,m∈N, ξ ′).

Observe that, generally speaking, linear combinations of sinc-functions are not ele-
ments of B1

π . However, specific linear combinations of sinc-functions with rational-complex
coefficients are, in fact, elements of B1

π , and the set of these linear combinations is dense in
B1

π . For details, we refer the reader to Appendix B, p. 6363f in [19] (upon minor adjustments,
the proof presented in the reference holds true for the restricted case of rational-complex
coefficients).

A sequence x ∈ C`(?) is called an elementary computable if there exists a rational-
complex (2L + 1)-tuple (zk)k∈I , I := {0, . . . , 2L}, such that we have

x :=
2L

∑
k=0

zk · δν(k).

Analogously, a function f ∈ CB(?) is called an elementary computable if there exists
an elementary computable sequence x ∈ C`(?) such that we have f = T?x. Hence,
elementary computable functions are exactly those functions that we can represented
by a finite interpolation series with rational-complex coefficients (zk)k∈I in the sense of
traditional SSI.

For x ∈ C`(?), a computable double sequence of rational-complex numbers (sn,m)n,m∈N,
and a (total) µ-recursive function ξ : N → N, let (1) be satisfied. Then, for all M ∈ N,
the sequence

xM :=
ξ(M)

∑
n=0

sn,M︸︷︷︸
:=zn

·δν(n)

is an elementary computable with coefficients zn, n ∈ N. The sequence of sequences
(xM)M∈N is called a computable sequence of elementary computable sequences. Further,
for all M ∈ N, we have ‖x− xM‖? < 2−M. In general, a sequence x ∈ `(?) is computable in
`(?) if and only if there exists a computable sequence of elementary computable sequences
(xM)M∈N that converges effectively towards x, with respect to ‖·‖? and a suitable effective
modulus of convergence.

Algorithms 2023, 16, 514 10 of 28

For f ∈ CB(?), a computable double sequence of rational-complex numbers (s′n,m)n,m∈N,
and a (total) µ-recursive function ξ ′ : N→ N, let (2) be satisfied. Analogously, for all M ∈ N,
the function

fM := T?

ξ ′(M)

∑
n=0

s′n,M︸︷︷︸
:=z′n

·δν(n) =
ξ ′(M)

∑
n=0

z′n · sincν(n) (3)

is an elementary computable with coefficients z′n, n ∈ N. The sequence of functions
(fM)M∈N is called a computable sequence of elementary computable functions. Further, for
all M ∈ N, we have ‖ f − fM‖? < 2−M. In general, a function f ∈ B(?) is computable in
B(?) if and only if there exists a computable sequence of elementary computable functions
(fM)M∈N that converges effectively towards f , with respect to ‖·‖? and a suitable effective
modulus of convergence.

Throughout the remainder of this article, we will prove the following: There exist
f = T?x ∈ CB(?) and (xM)M∈N as above, such that we have limM→∞ ‖ f − T?xM‖ 6= 0,
despite (xM)M∈N converging effectively towards x. In other words, even if (xM)M∈N
converges effectively towards x = S? f , the computable sequence of elementary computable
functions (T?xM)M∈N does not necessarily converge towards T?x. Section 3 will discuss
the consequences of this observation extensively. To this end, we will now establish two
preliminary lemmas, the proofs of which we provide in Appendix A.

Lemma 1. Let Ω ⊂ N be a recursively enumerable set. There exists a (not necessarily computable)
sequence (fm)m∈N of elementary computable functions in B∞

0,π that satisfies the following: the
sequence (xm)m∈N = (S∞ fm)m∈N is a computable sequence of sequences in C`∞

0 , and, for all
m ∈ N, we have

‖ fm‖∞

{
≥ 1, if 1Ω(m) = 1,
= 0, if 1Ω(m) = 0.

Lemma 2. Let Ω ⊂ N be a recursively enumerable set. There exists a (not necessarily computable)
sequence (fm)m∈N of elementary computable functions in B1

π that satisfies the following: the
sequence (xm)m∈N = (S1 fm)m∈N is a computable sequence of sequences in C`1, and for all m ∈ N,
we have

‖ fm‖1

{
≥ 1, if 1Ω(m) = 1,
= 0, if 1Ω(m) = 0.

For the general definition of computable sequences of abstract objects (such as those
used in Lemmas 1 and 2), see below.

Recall this article’s fundamental problem statement from Section 1: Given an applica-
tion that requires the processing of analog information, find a sufficient way to represent
the information on digital hardware. In order to provide a solution, we require a gen-
eral formalization of how to represent information on Turing machines, employing the
natural numbers as their “atomic” numerical object. The authors advise readers that this
formalization is somewhat abstract, but necessary for a mathematically rigorous treatment.
After establishing the formalization in its abstract form, we will put it in the context of SSI,
allowing for a less cumbersome and more intuitive treatment.

For two µ-recursive functions g1, g2 : Nn ⊇→ N, we write g1 = g2 if dom(g1) = dom(g2)
is satisfied, and for all (m1, . . . , mn) ∈ dom(g1), we have g1(m1, . . . , mn) = g2(m1, . . . , mn).
Furthermore, for ease of notation, we will make use of anonymous mappings. In general, an
explicit definition of a mapping is of the form G : A ⊇→ B, a 7→ G(a) := “EXPR(a)”, where
A and B are arbitrary sets, and “EXPR(a)” is the term defining G, such as, for example,
“a + a”, “a2”, “ln(a)”, and so on. If the context determines A and B without ambiguity, but

Algorithms 2023, 16, 514 11 of 28

does not require providing an explicit definition, we simply write (a 7→ “EXPR(a)”) to
denote the respective mapping.

The formalization of how to represent information on Turing machines builds upon
the existence of universal µ-recursive functions U : N × N ⊇→ N, an arbitrary one
of which we fix for the remainder of this article. Then, for every µ-recursive function
g : Nn ⊇→ N, n ∈ N, the following holds true: there exists a “program” M ∈ N such that
the function Un

M : Nn ⊇→ N, (m1, . . . , mn) 7→ Un
M(m1, . . . , mn), defined through

Un
M(m1, . . . , mn) := U(· · ·U(U(M, m1), m2) · · · , mn)

satisfies g = Un
M. Accordingly, for all n ∈ N, the universal µ-recursive function U provides

an equivalence relation on N: for M, K ∈ N, we have M ≡ K if Un
M = Un

K. Evidently,
the equivalence-relation’s quotient set {{K ∈ N : K ≡ M} : M ∈ N} is in one-to-one
correspondence with the the set U (n). We denote

[·]nU : N→ U (n), M 7→ [M]nU := Un
M,

which hints towards the usual notation for quotient sets in the context of equivalence
relations: we have [M]nU = [K]nU if and only if M ≡ K. We call the set

U(n) :=
{(

g,N, [·]nU
)

: g ∈ U (n)
}

a machine-readable language for the set U (n), and M ∈ N is a machine-readable description
of Un

M ∈ U (n). Furthermore, for n, m ∈ N, a mapping G : U(m) ⊇→ U(n) is called
computable if there exists a µ-recursive function g : N ⊇→ N such that, for all M ∈ N with
Um

M ∈ dom(G), we have

G
(

h,N, [·]mU
)
=
(

Un
g(M),N, [·]nU

)
.

For m1, . . . , mk ∈ N, we can extend the principle to analogously mappings of the form
G : U(m1) × . . . × U(mk) ⊇→ U(n). Observe that arithmetic operations on µ-recursive
functions, such as

(g1, g2) 7→
(
n 7→ g1(n) + g2(n)

)
,

(g1, g2) 7→
(
n 7→ g1(n)g2(n)

)
,

(g1, g2) 7→
(
n 7→ max{g1(n), g2(n)}

)
,

(g1, g2) 7→
(
n 7→ min{g1(n), g2(n)}

)
,

and so on, as well as composition, primitive recursion, and unbounded search (see above),
when seen as operations on µ-recursive functions, provide computable mappings in the
sense of the definition above. Throughout the remainder of the article, we will make implicit
use of the computability of mappings of the form G : U(m1)× . . .× U(mk) ⊇→ U(n) on
many occasions. For details, we refer to the SMN-Theorem, c.f. Theorem 3.5, p. 16 in [14].

Following the principle of U(n), n ∈ N, we can now define general machine-readable
languages and general computable mappings through an inductive scheme. For all n ∈ N,
the set of n-tuples of natural numbers, Nn, is an atomic machine-readable language, and for
all n, k ∈ N, a mapping G : Nn ⊇→ Nk, (m1, . . . , mn) 7→ G(m1, . . . , mn) is called atomically
computable if there exist functions g1, . . . , gk ∈ U (n) such that dom(G) is a (possibly
improper) subset of dom(g1) ∩ ...∩ dom(gk), and we have

G(m1, . . . , mn) =
(

g1(m1, . . . , mn), . . . , gk(m1, . . . , mn)
)

Algorithms 2023, 16, 514 12 of 28

for all (m1, . . . , mn) ∈ dom(G). A (non-atomic) machine-readable language for the (abstract)
set A is of the form

A :=
{(

a, ΛA, [·]A
)

: a ∈ A
}

,

where ΛA is a machine-readable language and [·]A : ΛA ⊇→ A is a partial surjective
mapping. Further, λ ∈ dom([·]A) is called a machine-readable description of [λ]A ∈ A.
Again, “[·]A” hints towards the usual notation for quotient sets: for λ1, λ2 ∈ dom([·]A),
we have λ1 ≡ λ2 if and only if [λ1]A = [λ2]A, i.e., λ1 and λ2 are two machine-readable
descriptions of the same abstract object. However, since [·]A is generally partial, so is the
induced equivalence relation. Finally, mapping G1 : A ⊇→ B, where A and B are machine-
readable languages, is called (non-atomically) computable if there exists a computable
mapping G2 : ΛA ⊇→ ΛB such that, for all λ ∈ dom([·]A) with ([λ]A, ΛA, [·]A) ∈
dom(G1), we have

G1

(
[λ]A, ΛA, [·]A

)
=
(
[G2(λ)]B, ΛB, [·]B

)
.

Unless defined otherwise, a sequence (an)n∈N of elements of A is called computable if
there exists a (total) computable mapping (n 7→ an). Observe that if A and B are machine-
readable languages for arbitrary abstract sets A and B, respectively, G1 naturally induces a
mapping G1 : A ⊇→ B according to

G1

(
a, ΛA, [·]A

)
=
(

b, ΛB, [·]B
)
⇔ G1(a) = b.

and vice versa. If, according to the specific context, there is no danger of ambiguity, we will
not distinguish between G1 : A ⊇→ B and G1 : A ⊇→ B.

In essence, a machine-readable language is a formal specification of how to repre-
sent abstract information on digital hardware, such that we can (in principle) trace this
specification down to the level of tuples of natural numbers and fundamental operations
thereon. Upon fixing a suitable µ-recursive pairing function (Chapter 1.4, p. 12 in [16]), i.e.,
a bijective mapping (

〈·〉1, 〈·〉2
)

: N 7→ N2, m 7→
(
〈m〉1, 〈m〉2

)
with 〈·〉1, 〈·〉2 ∈ U (1), every machine-readable language A exhibits a canonical numbering,
i.e., computable surjective mapping ϕA : N ⊇→ A, defined in an inductive manner:

• If A is an atomic machine-readable language, i.e., we have A = Nn for some number
n ∈ N, we define

ϕA(m) :=

m, if n = 1,(
〈m〉1, 〈m〉2

)
if n = 2,(

〈m〉1, 〈〈m〉2〉1, 〈〈m〉2〉2
)
, if n = 3,(

〈m〉1, 〈〈m〉2〉1, . . . , 〈〈m〉n−2
2 〉1, 〈〈m〉n−2

2 〉2
)
, if n ≥ 4,

where 〈m〉n2 denotes the n-fold successive application of 〈·〉2 to m;
• For a non-atomic machine-readable language A = {(a,B, [·]A) : a ∈ A} and a general

machine-readable language B with canonical numbering ϕB : N ⊇→ B, we define

ϕA(m) :=
(
a,B, [·]A

)
:⇔ [ϕB(m)]A = a,

with dom(ϕA) := {m ∈ dom(ϕB) : ϕB(m) ∈ dom([·]A)} accordingly.

Among other things, and together with the relevant pairing function (〈·〉1, 〈·〉2), the
canonical numbering facilitates the definition of machine-readable languages for tuples

Algorithms 2023, 16, 514 13 of 28

of the form (a1, a2) ∈ A1 × A2, provided we have already defined machine-readable
languages for the abstract sets A1 and A2.

Referring to this article’s fundamental problem statement, if we want to represent
abstract information on a digital machine in a sufficient way, we need to specify a machine-
readable language for the relevant abstract set, and then investigate the language’s struc-
tural properties. Albeit rarely explicit, this principle is used throughout the literature of
computable analysis. In the context of Banach spaces, it is strongly related to the definitions
of computability structures (Chapter 2.1, p. 80ff in [15]). Further, any canonical numbering
ϕA as defined above is essentially a numbering in the sense of a concept that is fundamental
in computability theory (Chapter 1.4, p. 12 in [16]). As indicated before, formal approaches
of this form are necessary for a mathematically rigorous theory of computable analysis. Yet,
they are somewhat cumbersome in use. In Definition 3, for example, we have implicitly
introduced a machine-readable language for the set of computable real numbers by defin-
ing the relation [(rn)n∈N, ξ]R = x. This convention is an abuse of notation regarding the
just-established formalization of machine-readable languages. Strictly speaking, we first
have to define machine-readable languages for the set of triples (g, h1, h2) : g, h1, h2 ∈ U (1).
Then, we have to define a machine-readable language for the set of computable sequences
of rational numbers. Finally, we have to define a machine-readable language for the set of
pairs ((rn)n∈N, ξ) as above, based on which we can define the machine-readable language
for the set of computable real numbers in the sense of Definition 3. Intuitively, on the
other hand, it is evident from Definition 3 that we describe a computable real number by
a suitable pair ((rn)n∈N, ξ), and we can implement computable mappings on computable
real numbers by applying µ-recursive functions to the “programs” (with respect to the
universal µ-recursive function U) of the underlying quadruple (g, h1, h2, ξ). Keeping the
formal definition in mind, we will, with some abuse of nomenclature and notation, employ
the following conventions for mathematical ease:

• A standard description of computable real number x consists of a pair ((rn)n∈N, ξ)
that characterizes x in the sense of Definition 3, and we write x = [(rn)n∈N, ξ]R. We
denote the associated standard machine-readable language by R;

• A standard description of computable complex number z consists of a pair ((sn)n∈N, ξ)
that characterizes z in the sense of Definition 4, and we write z = [(sn)n∈N, ξ]C. We
denote the associated standard machine-readable language by C.

For the set CB(?), the same convention applies. However, based on the generalized
form of Theorem 1, we have two different machine-readable languages available:

• A discrete-time description of f ∈ CB(?) consists of a pair ((sn,m)n,m∈N, ξ) that char-
acterizes f in the sense of Definition 5, and we write f = [(sn,m)n,m∈N, ξ]?X. We denote
the associated discrete-time machine-readable language by X?;

• A continuous-time description of f ∈ CB(?) consists of a pair ((s′n,m)n,m∈N, ξ ′) that
characterizes f in the sense of Definition 6, and we write f = [(s′n,m)n,m∈N, ξ ′]?F. We
denote the associated continuous-time machine-readable language by F?.

Returning to the abstract theory of machine-readable language once more, we can
consider the general case of an abstract set A with more than one associated machine-
readable language: in fact, even though any machine-readable language has necessarily
only countably many elements, there exists an uncountable number of machine-readable
languages for any nontrivial abstract set. Consider machine-readable languages A1 and A2
for the set A, and define the corresponding identity mapping

Id1,2 : A1 → A2, (a, Λ1, [·]1) 7→ Id1,2(a, Λ1, [·]1) := (a, Λ2, [·]2).

Algorithms 2023, 16, 514 14 of 28

We can now define a partial quasiorder on the class of machine-readable languages
for the set A as follows:

A1 � A2 :⇔ Id1,2 is computable,

A1 � A2 :⇔ Id1,2 is computable, but Id2,1 is uncomputable,

A1 ' A2 :⇔ Id1,2 and Id2,1 are computable.

Intuitively, if A1 � A2, we can find an algorithm that transforms any description
λ1 of any object a ∈ A in the language A1 into a description λ2 of the same object in
the language A2. For any computable mapping G : A2 ⊇→ B, where B is an arbitrary
machine-readable language, the composition G ◦ Id1,2 is computable as well. Thus, any
computational problem we can solve by means of the language A2, we can also solve by
means of the language A1. In view of this article’s fundamental problem statement, we can
distinguish four cases:

1. If A1 � A2, descriptions in the language A1 contain more information than descrip-
tions in the language A2;

2. If A1 ≺ A2, descriptions in the language A1 contain less information than descriptions
in the language A2;

3. If A1 ' A2, descriptions in the language A1 contain the same information as descrip-
tions in the language A2;

4. If neither of the previous cases holds, descriptions in the language A1 contain different
information than descriptions in the language A2.

The remainder of this article will address the relationship between the languages [·]?X
and [·]?F. The generalized Shannon equivalence motivates the engineering paradigm that
processing any (bandlimited) analog signal can be entirely moved to the discrete-time
domain, provided that we have a sequence of sampling values with sufficient quantization
accuracy available. However, as stated before, the generalized Shannon equivalence is an
abstract analytical concept, formalized in terms of the Banach-space operators S? and T?.
Previously in this section, we have stated that the (informal) question of whether the gener-
alized Shannon equivalence also holds true on the algorithmic level corresponds to the (for-
mal) question of whether the operators S? and T? are computable (in the machine-readable
language under consideration). In Section 3, we will establish that the computability of S?

and T? is essentially a rephrasing of the relationship between [·]?X and [·]?F.
Before concluding the present section, observe that we have CB1

π ⊂ CB∞
0,π . Further,

for all x ∈ `1, we have ‖x‖1 ≥ ‖x‖∞, and for all f ∈ B1
π , we have ‖ f‖1 ≥ ‖ f‖∞, implying

X1 � X∞|CB1
π and F1 � F∞|CB1

π

for the restrictions X∞|CB1
π and F∞|CB1

π of X∞ and F∞ to elements of CB1
π . We will briefly

return to these inequalities in Section 3.

3. Results

In the scope of our theory, digital twinning involves an abstract set A and a corre-
sponding machine-readable language A, both of which are results of how the relevant
technological system is modeled from an engineering perspective. When the system is
operated, it gives rise to a (not necessarily computable) sequence (at)t∈N of elements of A,
which ultimately emerges from a successive measurement process. In each instance t ∈ N,
at should, in one way or another, correspond to the instantaneous state of the physical
technological system. The details of this correspondence are, again, a result of modeling.
For example, referring to Figure 1, denote the robot’s instantaneous position at time t ∈ N
by ~κt ∈ R2. Further, denote by

K :=
{(

~κ, ΛK, [·]K
)

: ~κ ∈ R̃2
}

Algorithms 2023, 16, 514 15 of 28

a suitable machine-readable language corresponding to a countable set R̃2 ⊂ R2 of our
choice, and define

d
(
~κt,
(
~κ, ΛK, [·]K

))
:=
∥∥~κt − ~κ

∥∥
2, ~κ ∈ R̃2

Then, we might require that for a suitable computable mapping G : A ⊇→ K, a 7→ G(a)
and some ε > 0, we have

d
(
~κt, G

(
at
))

< ε

for all t ∈ N. Intuitively, we consider the robot’s instantaneous position a relevant property,
and thus want to be able to recover it from the robot’s virtual twin up to a certain error at
any instance in time.

Recall that Figure 1 (Right) illustrates the instantaneous discrete-time impulse response
of the transmission channel between the robot and the receiving end. Commonly, wireless
transmission channels are assumed linear, i.e., their behavior is determined entirely by
the relevant impulse response. Further, wireless communication systems are commonly
restricted to a specific frequency range, i.e., the transmission is bandlimited. Accordingly,
for all t ∈ N, the instantaneous physical transmission channel uniquely corresponds to a
bandlimited signal fph,t ∈ B1

σ, 0 < σ < ∞. Without loss of generality, we again consider
σ = π in the following. For (f , ΛX, [·]1X) ∈ X1 and (f , ΛF, [·]1F) ∈ F1, define

d
(

fph,t,
(

f , ΛX, [·]1X
))

= d
(

fph,t,
(

f , ΛF, [·]1F
))

:=
∥∥ fph,t − f

∥∥
1.

Then, for some εph > 0 and suitable computable mappings Gdt : A ⊇→ X1, a 7→ Gdt(a)
and Gct : A ⊇→ F1, a 7→ Gct(a), we might again require

d
(

fph,t, Gdt
(
at
))

< εph, d
(

fph,t, Gct
(
at
))

< εph (4)

respectively, to hold for all t ∈ N. Observe that (4) is a purely analytical relation, describing
the requirement that Gdt

(
at
)

and Gct
(
at
)

at each time t ∈ N provide a sufficiently accu-
rate approximation to the instantaneous properties of the physical channel. The “true”
sequence (fph,t)t∈N of channel characteristics does not need to consist of computable com-
ponents. In the design process of a digital-twin system, such as that shown in Figure 1, the
responsible engineer has to prove—based on mathematical modeling—that, during the
system’s operation, the sequence (Gdt(at))t∈N, (Gct(at))t∈N, respectively, will satisfy (4).
Recall that, by definition, both X1 and F1 are machine-readable languages for the set CB1

π .
Hence, according to Section 2, Gdt and Gct each induce a mapping Gdt : A ⊇→ CB1

π ,
Gct : A ⊇→ CB1

π , respectively. In the following, we assume Gdt and Gct to be the same, and
we denote Gdt(at) = Gct(at) =: ft. The system’s design process will then include the choice
between implementing (ft)t∈N using (Gdt(at))t∈N—i.e., approximating (fph)t∈N through
discrete-time descriptions—or using (Gct(at))t∈N—i.e., approximating (fph)t∈N through
continuous-time descriptions—the implications of which we will analyze subsequently.

Motivated by the generalized Shannon equivalence, the textbook approach considers
discrete-time descriptions of bandlimited signals. As indicated before, the evident advan-
tage of this paradigm consists of computational “convenience”. In a simplified manner,
the standard (abstract) engineering model—that is, without considering questions of com-
putability, yet—for the wireless communication (sub)system from Figure 1 may look as fol-
lows. At time t ∈ N, the robot aims to transmit one of M ∈ N messages to the receiving end,
for which he employs an encoding scheme Et : {1, . . . , M} → dom(T∞), m 7→ Et(m) := yt,m.
For reasons of simplicity, we summarize processes such as encoding (in the sense of infor-

Algorithms 2023, 16, 514 16 of 28

mation theory), channel precoding, modulation, and pulse shaping in this step. Setting
xph,t := S1 fph,t, the signal at the receiving end is of the form

yre,t := w +
(

xph,t ∗ yt,m
)
,

where w ∈ `∞
0 is a sequence of additive noise-like disturbances, and xph,t ∗ yt,m denotes

the convolution of xph,t and yt,m. The receiving end then employs a decoding scheme
Dt : `∞

0 → {1, . . . , M}, yre,t 7→ Dt(yre,t). Again, for reasons of simplicity, we summarize
processes such as demodulation, filtering, and decoding (in the sense of information theory)
in this step. Region-based decoding is a common way of implementing Dt, in which case
Dt is of the form

Dt(yre,t) := D
(
arg minn∈{1,...,N}

∥∥yre,t − yde,t,n
∥∥

∞

)
where yde,t,1, . . . , yde,t,N ∈ `∞

0 , N ∈ N, is a list of reference signals and D : {1, . . . , N} →
{1, . . . , M} is a mapping that assigns each reference signal an inferred message.

In the setup depicted in Figure 1, the choice of the pair (Et,Dt) will generally be based
on the robot’s digital twin, i.e., (assuming both the receiving end and the robot itself have
access to the sequence (at)t∈N), it will be implemented through computable mappings
at 7→ Et, at 7→ Dt, involving an optimization of some kind. For example, we may aim to
choose yt,1, . . . , yt,M and yde,t,1, . . . , yde,t,N such that

m = D
(
arg minn∈{1,...,N}

∥∥w +
(
xph,t ∗ yt,m

)
− yde,t,n

∥∥
∞

)
for all m ∈ {1, . . . , M} and all w ∈ `∞

0 that satisfy ‖w‖∞ < εw for some εw > 0. Accord-
ingly, upon implementing the communication system, we require yde,t,1, . . . , yde,t,N ∈ C`∞

0
and yt,1, . . . , yt,M ∈ dom(T∞) ∩ C`∞

0 . In theory, we can then entirely neglect the analog
part of the real system, i.e., the transmission of the signals through the physical (analog)
medium, in the design of our signal processing algorithms.

Again, recall that both X? and F? are machine-readable languages for the set CB(?).
In particular, per its definition, X? does not include the entirety of C`(?), which appears
unnecessary following the discussion above. In fact, there does not seem to be an obvious
reason to consider the space CB(?) at all. Assuming we are able to prove that the imple-
mentation of our systems satisfies (4), we even can perform the optimization of (Et,Dt)
within the discrete-time domain. Upon closer inspection, we find that despite the discus-
sion above, there exists a variety of reasons why we cannot neglect the analog part of the
communication system. We will discuss several of them in the following:

1. As mentioned above, any real implementation of our system will involve a steps
of digital-to-analog conversion of the transmission signal yt,m. However, any real-
world digital-to-analog converter will not be able to synthesize the signal T∞yt,m
perfectly. More realistically, we will be able to synthesize some signal f̃t,m, that exhibits
distortion from effects such as quantization and imperfect filtering. Depending on
the application, it may be necessary to compute the signal f̃t,m in the first place, or at
least compute the error ‖ f̃t,m − T∞yt,m‖∞, in order to ensure the proper transmission
of messages.

2. The generalized Shannon equivalence, which motivates the processing of signals in
the digital domain, is applicable as longs as the entirety of the considered system
is linear. In practical wireless communications systems, non-linear distortions are a
common issue. In particular, the analog subsystems of both the transmitter and the
receiving end have to operate within a certain dynamic range, which sets an upper
limit to the ‖·‖∞-norm of the analog signals they can process properly. Accordingly,
in order to avoid non-linear distortions, we need to be able to compute or at least
upper-bound the values ‖ f̃t,m‖∞ and∥∥ fph,t ∗ f̃t,m

∥∥
∞ ≤

∥∥ fph,t
∥∥

1

∥∥ f̃t,m
∥∥

∞ ≤
(∥∥ ft

∥∥
1 + εph

)∥∥ f̃t,m
∥∥

∞.

Algorithms 2023, 16, 514 17 of 28

The details of this issue are investigated in the context of bounded-input-bounded-
output (BIBO) stability analysis and the peak-to-average power ratio (PAPR) problem.

3. Analogous to the situation at the transmitter, we will not be able to measure the signal
yre,t perfectly at the receiving end. Due to finite quantization accuracy and imperfect
filtering, we obtain an approximate signal ỹre,t. Since the overall duration of sampling
is finite, we can assume ỹre,t and T∞ỹre,t =: f̃re,t are elementary computable. Choos-
ing yde,t,n ∈ dom(T∞) ∩ C`∞

0 , n ∈ {1, . . . , N}, and denoting fde,t,n := T∞yde,t,n, n ∈
{1, . . . , N}, we generally have ‖ỹre,t − yde,t,n‖∞ 6= ‖ f̃re,t − fde,t,n‖∞. Aside from com-
putational convenience, there is no a priori reason to perform decoding based on ỹre,t
and yde,t,1, . . . , yde,t,N rather than f̃re,t and fde,t,1, . . . , fde,t,N . In view of the mentioned
limitations of real-world systems, this observation becomes even more relevant: since
effects such as quantization are generally non-linear, information may actually be lost
if the decoding is performed in the space C`∞

0 rather than CB∞
0,π . Unless proven other-

wise for a specific case, the same argument holds true when we consider decoding
schemes other than region-based ones.

4. From a model-based perspective, taking imperfect sampling at the receiving end
into account raises another issue when considering the entire system within C`1. As
indicated above, we may want to design the system with a specified margin-of-error,
i.e., we want to guarantee that proper message transmission is possible as long as
we have ‖w‖∞ < εw. If we instead require ‖T∞w‖∞ < εw, we can provide the
continuous-time-domain upper bound∥∥ f̃re,t −

(
T∞w + (fph,t ∗ f̃t,m)

)∥∥
∞ ≤ εw + εph

∥∥ f̃t,m
∥∥

∞ +
∥∥ f̃re,t − (ft ∗ f̃t,m)

∥∥
∞

for the reconstruction error, which can then be transferred to the discrete-time domain.
Requiring ‖w‖∞ < εw alone is insufficient, since T∞w may be arbitrarily large in this
case nevertheless. Thus, we can provide an estimate for the reconstruction error only
if we consider the continuous-time domain of the system.

Consequently, we consider signals fph,t ∈ B1
π , ft ∈ CB1

π , f̃t,m, fde,t,n ∈ CB∞
0,π , t ∈ N,

m ∈ {1, . . . , M}, n ∈ {1, . . . , N}, and a communications system of the form

Et
(
m
)

:= ft,m, Dt
(

f̃re,t, t
)

:= D
(
arg minn∈{1,...,N}

∥∥ f̃re,t − fde,t,n
∥∥

∞

)
, (5)

T∞yre,t := T∞w +
(

fph,t ∗ f̃t,m
)
,
∥∥ fph,t − ft

∥∥
∞ < εph, (6)

in the following. Observe that we do not aim at actually implementing signal process-
ing in the analog domain. We merely aim at finding find proper digital representa-
tives for the continuous-time signals ft, f̃t,1, . . . , f̃t,M, fde,t,1, . . . , fde,t,N , xt, f̃t,1, . . . , f̃t,M,
fde,t,1, . . . , fde,t,N , since only considering their discrete-time counterparts is insufficient for
the reasons we mentioned above. Nevertheless, X? is, in principle, a valid way to represent
ft, f̃t,1, . . . , f̃t,M, fde,t,1, . . . , fde,t,N , xt, f̃t,1, . . . , f̃t,M, fde,t,1, . . . , fde,t,N , as follows from the
generalized Shannon equivalence: for each ((sn,m)n,m∈N, ξ) ∈ dom([·]?X), there exists ex-
actly one f ∈ CB(?) such that [(sn,m)n,m∈N, ξ]?X = f holds true, leaving us with the decision
of whether to implement the signal processing for ft, f̃t,1, . . . , f̃t,M, fde,t,1, . . . , fde,t,N based
on X1 and X∞ or F1 and F∞.

From Section 2, recall the inequalities X1 � X∞|CB1
π and F1 � F∞|CB1

π . Hence, if
possible, it may be beneficial to implement the signal processing for all of the signals
f̃t,1, . . . , f̃t,M, fde,t,1, . . . , fde,t,N based on X1 or F1 as well, since we can always recover
corresponding signal descriptions in X∞|CB1

π , F∞|CB1
π , respectively, if needed. On the

other hand, depending on the specific application, we may have to choose f̃t,1, . . . , f̃t,M,
fde,t,1, . . . , fdet,N ∈ CB∞

0,π \ CB1
π , in which case we necessarily have to resort to using either

X∞ or F∞. However, in any of the above cases, we must first and foremost be able to
compute the relevant norms of the involved signals to implement the communication
system. Before mathematical analysis, we summarize the relevant requirements as follows:

Algorithms 2023, 16, 514 18 of 28

In a communication system of the form (5) and (6), we consider ‖ ft‖1, ‖ f̃t,m‖∞, ‖ fde,t,n‖∞,
‖ ft ∗ f̃t,m‖∞, ‖ f̃re,t − fde,t,n‖∞, and ‖ f̃re,t − (ft ∗ f̃t,m)‖∞ relevant properties for all t ∈ N,
m ∈ {1, . . . , M}, n ∈ {1, . . . , N}. Thus, regarding any sufficient representation of signals
f ∈ CB(?) on digital hardware, we require to be able to recover ‖ f‖?. In other words,
the mapping ‖·‖? : CB(?) → Rµ, f 7→ ‖ f‖? has to be computable in the employed
machine-readable language.

Theorem 2. The mapping ‖·‖? : F? → R, (f , ΛF, [·]?F) 7→ (‖ f‖?, ΛR, [·]R) is computable.

Proof. Observe that for f ∈ CB(?) elementary computable, the mapping f 7→ ‖ f‖? is
computable. That is, for N, M ∈ N and a rational-complex (M + 1)-tuple z := (zm)m∈I ,
I = {0, . . . M}, there exists a computable mapping (N, z) 7→ G?(N, z) ∈ Q, such that∣∣∣∣∣G?(N, z)−

∥∥∥∥∥ M

∑
m=0

zm · sincν(m)

∥∥∥∥∥
?

∣∣∣∣∣ < 1
2N

holds true (provided the relevant norm exists). For f = [(s′n,m)n,m∈N, ξ ′]?F arbitrary, let the
computable sequence (fM)M∈N of elementary computable sequences satisfy (3). Further,
for M ∈ N, define

rM := G?
(

M, (s′n,M)n∈I(M)

)
, I(M) :=

{
0, . . . , ξ ′(M)

}
.

Then, (rM)M∈N is a computable sequence of rational numbers. Employing the triangle
inequality, we obtain

∣∣rM − ‖ f‖?
∣∣ ≤ ∣∣rM − ‖ fM‖?

∣∣+ ∥∥ f − fM
∥∥
?
<

1
2M +

1
2M =

1
2(M−1)

.

Thus, defining ξ : N → N, M 7→ M + 1, we have [(rM)M∈N, ξ]R = ‖ f‖?. Further,
it follows from the SMN-Theorem (c.f. Section 2) that the mapping ((s′n,m)n,m∈N, ξ ′) 7→
((rM)M∈N, ξ) (with ((s′n,m)n,m∈N, ξ ′) and ((rM)M∈N, ξ) as above) is computable, which
concludes the proof.

Theorem 3. The mapping ‖·‖? : X? → R, (f , ΛX, [·]?X) 7→ (‖ f‖?, ΛR, [·]R) is not computable.

Proof. The statement follows by contradiction from Lemmas 1 and 2, respectively. To this
end, assume the mapping ‖·‖? : X? → R, (f , ΛX, [·]?X) 7→ (‖ f‖?, ΛR, [·]R) is computable
and let (xk)k∈N be a sequence that satisfies Lemma 1, Lemma 2, respectively, for some
recursively enumerable nonrecursive set Ω ⊂ N. Then, there exists a computable mapping

k 7→
(
(sn,m(k))n,m∈N, ξk

)
such that for all k ∈ N, the pair ((sn,m(k))n,m∈N, ξk) determines xk in the sense of Definition 5,
and we have

[(sn,m(k))n,m∈N, ξk]
?
X = fk.

If the mapping ‖·‖? : X? → R, (f , ΛX, [·]?X) 7→ (‖ f‖?, ΛR, [·]R) is indeed computable,
there must also exist a computable mapping ((sn,m(k))n,m∈N, ξk) 7→ ((rm(k))m∈N, ξ ′k), k ∈ N
such that, for all k ∈ N, we have

[(rm(k))m∈N, ξ ′k]R = ‖ fk‖?.

Algorithms 2023, 16, 514 19 of 28

By concatenation, we conclude that k 7→ ‖ fk‖?, k ∈ N is computable as well. For all
k ∈ N, we define

r<(k) := rξ ′k(1)
(k)− 1

2
.

Then, r<(k) is a rational number, and the mapping k 7→ r<(k), k ∈ N, is computable.
For all k ∈ N, we further have r<(k) < limm→∞ rm(k) < r<(k) + 1 by construction, and
thus, k ∈ Ω ⇔ r<(k) > 0 by the requirements of Lemma 1, Lemma 2, respectively.
We define

g : N→ N, k 7→ g(k) :=

{
1, if r<(k) > 0,
0, otherwise,

and observe that, we have g = 1Ω. By the SMN-Theorem (c.f. Section 2), (k 7→ g(k)) is
computable, i.e., g is a µ-recursive function. Accordingly, Ω is recursive, which contradicts
the prerequisite of Ω being nonrecursive.

Theorem 4. We have F? � X?. In the sense of Section 2, the inequality is strict.

Proof. Denote by Id?
X,F : X? → F? and Id?

F,X : F? → X? the relevant identity mappings in
the sense of Section 2. That is, we have

Id?
X,F
(

f , ΛX, [·]?X
)
=
(

f , ΛF, [·]?F
)
,

Id?
F,X
(

f , ΛF, [·]?F
)
=
(

f , ΛX, [·]?X
)

for all f ∈ CB(?). We divide the proof in two parts: first, we prove that Id?
X,F is not

computable; second, we prove that Id?
F,X is computable.

In essence, the first part is a corollary of Theorems 2 and 3, which follows by con-
tradiction. Assume Id?

X,F is computable. By Theorem 2, the mapping ‖·‖? : F? → R,
(f , ΛF, [·]?F) 7→ (‖ f‖?, ΛR, [·]R), is computable. Hence, by concatenation, we obtain the
computable mapping∥∥Id?

X,F(·)
∥∥
?

: X? → R, (f , ΛX, [·]?X) 7→ (‖ f‖?, ΛR, [·]R),

contradicting Theorem 3. Thus, Id?
X,F cannot be computable.

The second part is a consequence of the continuity of the sampling operator S? :
B(?) → `(?). Particularly, there exist constants C? ∈ {q ∈ Q : log2(q) ∈ Z} such that
‖S? f‖? < C?‖ f‖? holds true for all f ∈ B(?). Let [(s′n,m)n,m∈N, ξ ′]?F = T?x be arbitrary. For
all M ∈ N, we have

1
2M >

∥∥∥∥∥T?x−
ξ ′(M)

∑
n=0

s′n,M · sincν(n)

∥∥∥∥∥
?

≥ 1
C?

∥∥∥∥∥x−
ξ ′(M)

∑
n=0

s′n,M · δν(n)

∥∥∥∥∥
?

.

Define K? := log2 C?, ξ : N→ N, M 7→ ξ ′(M+K?), and (sn,m)n,m∈N := (s′n,m+K?
)n,m∈N,

and observe that (sn,m)n,m∈N is a computable double sequence of rational-complex numbers
and ξ is a µ-recursive function. For all M ∈ N, we have∥∥∥∥∥x−

ξ(M)

∑
n=0

sn,M · δν(n)

∥∥∥∥∥
?

=

∥∥∥∥∥x−
ξ ′(M+K?)

∑
n=0

s′n,M+K?
· δν(n)

∥∥∥∥∥
?

<
C?

2M+K?
=

C?

C?

1
2M =

1
2M .

Thus, the pair ((sn,m)n,m∈N, ξ) determines x in the sense of Definition 5, and we have
[(sn,m)n,m∈N, ξ]?X = T?x. Further, by the SMN-Theorem (c.f. Section 2), the mapping
((s′n,m)n,m∈N, ξ ′) 7→ ((sn,m)n,m∈N, ξ) is computable, which concludes the proof.

Algorithms 2023, 16, 514 20 of 28

For the languages F? and X?, Theorem 4 corresponds to the Case 1 of the distinction
made in Section 2: descriptions in the language F? contain more information than descrip-
tions in the language X?. In Section 2, we also indicated a link between the relationship
of F? and X?, i.e., the inequality F? � X?, and the computability of the operators S? and
T?. In turn, whether S? and T? are computable is the formal rephrasing of whether the
generalized Shannon equivalence holds true on the algorithmic level. Consider the set

S?(CB(?)) :=
{

x ∈ C`(?) : x = S? f for some f ∈ CB(?)
}
⊂ C`(?),

i.e., S?(CB(?)) consists of those sequences x ∈ C`(?) that equate to some computable signal
f ∈ CB(?) under the action of T?. Naturally, we can define a machine-readable language l?
for S?(CB(?)) according to

[(sn,m)n,m∈N, ξ]?l = x :⇔ [(sn,m)n,m∈N, ξ]?X = T?x,

in which case the identity mappings (in the sense of Section 2) Id?
X,F : X? → F? and

Id?
F,X : F? → X? become the interpolation operator T? : l? → F? and sampling operator

S? : F? → l?, respectively. Then, according to Theorem 4, S? is computable, while T? is not.
As indicated in Section 2, this is due to the discontinuity of T? with regard to the relevant
norm. In other words, the generalized Shannon equivalence between B(?) and `(?) does
not hold true on an algorithmic level! Analytically, if

[(sn,m)n,m∈N, ξ]?X = [(s′n,m)n,m∈N, ξ ′]?F = f

holds true, both ((sn,m)n,m∈N, ξ) and ((s′n,m)n,m∈N, ξ ′) uniquely determine all mathemati-
cally well-defined properties of f , including ‖ f‖?. Algorithmically, as Theorems 2–4 show,
this is not the case. With respect to the requirements summarized above, we conclude our
analysis as follows:

The generalized Shannon equivalence between B(?) and `(?) does not hold true on an
algorithmic level. In particular, we observe the following:

• Regarding ‖ f‖? as relevant property, discrete-time descriptions of signals f ∈
CB(?) are an insufficient representative of analog information on digital hardware;

• Regarding ‖ f‖? as relevant property, continuous-time descriptions of signals f ∈
CB(?) are a sufficient representative of analog information on digital hardware;

• Any computation on the basis of discrete-time descriptions can be processed on
the basis of continuous-time descriptions as well, i.e., continuous-time descriptions
capture more information (in the sense of the distinction made in Section 2) than
discrete-time descriptions.

4. Discussion

In Section 2, we have established a formal framework of machine-readable languages
for analog bandlimited signals f ∈ CB(?) (recall that we used the symbol ‘?’ as a place-
holder that may be uniformly replaced by ‘1’ or ‘∞’). In particular, we have introduced
the languages X? and F?, which formalize discrete-time descriptions and continuous-time
descriptions for the elements of CB(?), respectively. In Section 3, we have applied the
established framework to a standard engineering model for wireless communication net-
works. Particularly, the model is relevant in the context of digital twinning, an exemplary
application of which we have discussed in Section 1. Then, we have shown that discrete-
time descriptions are, despite being the quasi-standard in digital signal processing, an
insufficient representative of the elements of CB(?): In contrast to continuous-time de-
scriptions, they do not allow for computing the norm ‖·‖?, which we substantiated to be
a relevant property within the considered model for wireless communication networks.
Finally, we have shown that any computation on the basis of discrete-time descriptions can

Algorithms 2023, 16, 514 21 of 28

be processed on the basis of continuous-time descriptions equally, i.e., continuous-time
descriptions capture “more” information than discrete-time descriptions.

Section 3 focuses on the ‖·‖?-norm as relevant property. Using the methods and
techniques we established in Sections 2 and 3, we can extend the results to several other
properties that can be considered relevant in particular applications. We will discuss several
of them in the following.

• Time concentration. For L ∈ Rµ, denote by rct(·, L) : R → R the function that
equals one for −L ≤ t ≤ L, zero otherwise. For a signal f ∈ CB(?), the function
fL : R → R, t 7→ rct(t, L) f (t) is an element of L?(R) (c.f. [12], Definition 2.1, p. 15).
We refer to the mapping

Γ : CB(?)×Rµ → Rµ, (f , L) 7→ ‖ fL‖?

as time concentration. It is computable as a mapping Γ : F? ×R → R, but not as a
mapping Γ : X? ×R→ R. For details, we refer to [20];

• Time evaluation. We refer to the mapping Φ : CB(?)×Rµ → Cµ, (f , t) 7→ f (t) as
time evaluation. It is computable as a mapping Φ : F1 ×R→ C, Φ : X1 ×R→ C, and
Φ : F∞ ×R→ C, but not as a mapping Φ : X∞ ×R→ C;

• Time derivative. Denote the time derivative of f ∈ CB(?) by d/dt f (among other
things, computing f 7→ d/dt f is essential for estimating system dynamics by means of
the mean-value theorem). We can directly compute the time derivative of elementary
computable functions in CB(?). Further, we have ‖d/dt f‖? ≤ π‖ f‖? for all f ∈ CB(?).
Hence, d/dt is computable as a mapping d/dt : F? → F?. In contrast, d/dt is not
computable as a mapping d/dt : X? → X?.

As indicated in Section 1, the upcoming 6G communication standard specifies large
parts of the technological infrastructure required for applications of digital twinning. These
applications span a broad range within what is called the critical infrastructure, including
medicine and healthcare, transportation, critical industrial facilities, and energy supply. In
this context, it is easy to imagine communication systems that must be designed fail-safe.
From Section 3, recall the reasons for considering a communication system’s analog part.
Point 4 list a possible requirement for such a fail-safe system: provided the noise sequence
‖w‖∞ does not exceed a “maximum credible amplitude” εw, correct message transmission
must be possible. Outside of communications engineering, such requirements are standard
in control theory and correspond to a distinction of design-basis events from beyond-
design-basis events. Traditionally, we find this distinction in engineering for safety-critical
facilities, such as nuclear power plants. Based on mathematical modeling, the plant is
designed to withstand all accidents whose occurrence is considered realistic. Consequently,
a model-to-system relationship guides the design process.

The replacement of the design process’s model-to-system relationship by a metamodel-
to system relationship is a distinguishing feature of digital twinning: any machine-readable
language necessarily incorporates a formal model of the physical entity it describes. In our
case, this formal model consists of the sampling and interpolation theory, as introduced in
Section 2. Once the relevant algorithms are implemented on the employed computing hard-
ware, the model itself becomes part of the physical system and its dynamics. Accordingly, a
conclusive generalization of the distinction between design-basis and beyond-design-basis
events for such systems considers the resulting interaction between computing hardware,
implemented algorithms, and physical agents.

The analysis of the structural properties of X? and F? in Section 3 follows this approach.
In order to ensure that the system as a whole can withstand all design-basis events, such as
any possible noise sequence not exceeding “maximum credible amplitude” εw, we need
to prove that the employed algorithm can capture those characteristics of the physical
entity that are relevant for design-basis events correctly. In other words, we require
the employed machine-readable language to provide sufficient representatives of the
analog world. This facet of trustworthiness is known as integrity [4,9]. To the best of the

Algorithms 2023, 16, 514 22 of 28

authors’ knowledge, this work is the first to consider the problem of identifying trustworthy
digital representations of analog systems. However, the problem is fundamental to digital
twinning, and the authors believe that it will receive increased attention in the anticipated
generation of communication technology.

Author Contributions: Conceptualization, H.B. and F.H.P.F.; methodology, H.B. and Y.N.B.;
validation, H.B., Y.N.B. and U.J.M.; formal analysis, H.B. and Y.N.B.; investigation, H.B. and Y.N.B.;
writing—original draft preparation, H.B., Y.N.B. and U.J.M.; writing—review and editing, H.B.,
Y.N.B., U.J.M. and F.H.P.F.; visualization, Y.N.B.; supervision, H.B. and F.H.P.F.; project administration,
H.B. and F.H.P.F.; funding acquisition, H.B. and F.H.P.F. All authors have read and agreed to the
published version of the manuscript.

Funding: The work of Holger Boche was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the National Initiative on 6G Communication Systems
through the Research Hub 6G-life under Grant 16KISK002; Excellence Cluster Cyber Security in
the Age of Large-Scale Adversaries (CASA), Ruhr University Bochum, 44801 Bochum. The work of
Yannik N. Böck was supported in part by the BMBF within the national initiative on Post Shannon
Communication (NewCom) under Grant 16KIS1004 and in part by the BMBF within 6G-life under
Grant 16KISK002. The work of Ullrich J. Mönich was supported by the BMBF within NewCom
under Grant 16KIS1003K. The work of Frank H. P. Fitzek was supported in part by the German
Research Foundation (DFG, Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence
Strategy—EXC 2050/1—Project ID 390696704—Cluster of Excellence “Centre for Tactile Internet
with Human-in-the-Loop” (CeTI) of Technische Universität Dresden and in part by the BMBF within
the program “Souverän. Digital. Vernetzt.” (joint project 6G-life, project identification number:
16KISK001K).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank Vlad-Costin Andrei and Xinyang Li of the
TUM ACES Lab for providing images and technological details of the exemplary digital-twinning
application discussed within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
collection, analysis, and interpretation of the established results, nor in the writing of the manuscript
or the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

SSI Shannon Sampling and Interpolation
BIBO Bounded-Input, Bounded-Output
PAPR Peak-to-Average Power Ratio

Appendix A. Proofs of Lemmas 1 and 2

This appendix provides detailed proofs of Lemmas 1 and 2 from Section 2, as well
as a brief discussion of the discontinuity of the interpolation operator T?. To this end, we
establish two additional supplementary results, Lemmas A1 and A2.

Lemma A1. There exists a computable sequence (fM)M∈N of elementary computable functions
in CB∞

0,π such that fM(1/2) ≥ 1, ‖S∞ fM‖∞ < 1/M, and ‖ fM‖∞ ≤ C are satisfied for all M ∈ N
and some number C > 0.

Observe that Lemma A1 implies the unboundedness (and hence discontinuity) of the
interpolation operator T∞. For (fM)M∈N as in Lemma A1,

lim
M→∞

‖T∞S∞ fM‖∞

‖S∞ fM‖∞
= lim

M→∞

‖ fM‖∞

‖S∞ fM‖∞
> lim

M→∞

1
1/M

= ∞ (A1)

Algorithms 2023, 16, 514 23 of 28

holds true. Further, it provides an example of a sequence x ∈ `∞
0 \ dom(T∞): for all N ∈ N,

we have∥∥∥∥∥ N

∑
M=1

S∞ fM
M

∥∥∥∥∥
∞

≤
N

∑
M=1

1
M2 =

π2

6
,

∥∥∥∥∥ N

∑
M=1

fM
M

∥∥∥∥∥
∞

≥
∣∣∣∣∣ N

∑
M=1

fM(1/2)

M

∣∣∣∣∣ ≥ ln(N), (A2)

i.e., there exists x ∈ `∞
0 with x = S∞ f1 + 1/2 · S∞ f2 + 1/3 · S∞ f3 + . . ., while the sequence

f1, f1 + 1/2 · f2, f1 + 1/2 · f2 + 1/3 · f3, . . . diverges with respect to ‖·‖∞.

Proof of Lemma A1. To begin with, consider a computable sequence of rational numbers
(rm)m∈N that satisfies rm − 2−m < π < rm for all m ∈ N. Further, define

sn,M :=
∞

∑
k=1

(−1)kδk[ν(n)]
∆
(
28M

) , ∆(m) :=
m

∑
k=1

−1
rm(k− 1

2)
, ξ(M) := 28M+1

for all n, m, M ∈ N. Then, the pair ((sn,M)n,M∈N, ξ) determines a computable sequence
(fM)M∈N of elementary computable functions in the sense of Section 2. For K = 28M,
M ∈ N, we have

fM :=
ξ(M)

∑
n=0

sn,M · sincν(n) =
1

∆(K)

K

∑
k=1

(−1)k sinck .

In the following, we will prove that (fM)M∈N satisfies the requirements of the lemma.
First, observe that

sincM

(
1
2

)
=

(−1)M

π(1
2 −M)

holds true for all M ∈ N. Consequently, for all K = 28M, M ∈ N, we have

fM(1/2) =
∑K

k=1(−1)k (−1)k

π(1
2−k)

− 1
rM

∑K
k=1

1
k− 1

2

≥ −
∑K

k=1
1

(k− 1
2)

∑K
k=1

1
1
2−k

= 1.

Next, recall that we have rN − 2−N < π < rN and thus rN < 4 for all N ∈ N . Hence,
the inequality

|∆(N)| = 1
rN

N

∑
k=1

1
k− 1

2
>

1
4

∫ N+1

1

1
τ − 1

2
dτ =

1
4

(
ln
(

N +
1
2

)
− ln

(
1
2

))
>

log2(N)

4

is satisfied for all N ∈ N. Furthermore, for all K = 28M, M ∈ N, we have

∥∥S∞ fM
∥∥

∞ = sup
m∈N

∣∣∣∣∣ 1
∆(K)

K

∑
k=1

(−1)kδk[m]

∣∣∣∣∣ ≤ 1
|∆(K)| sup

m∈N

K

∑
k=1

∣∣∣(−1)kδk[m]
∣∣∣ = 1
|∆(K)| <

1
M

.

It remains to be shown that the sequence (fM)M∈N is uniformly bounded in the norm
of its components, i.e., we have ‖ fM‖∞ < C for all M ∈ N and some number C > 0. For
t ∈ R and N ∈ N, we define

k1(t, N) : = max
(
{0} ∪ {n ∈ N : n ≤ N and n + 1 < t}

)
,

k2(t, N) : = min
(
{n ∈ N : n ≤ N and n− 1 > t} ∪ {N + 1}

)
,

k3(t, N) : =
k1(t,N)

∑
k=1

1
k1(t, N) + 1− k

+
N

∑
k=k2(t,N)

1
k− k2(t, N) + 1

.

Algorithms 2023, 16, 514 24 of 28

For t ∈ Z and M ∈ N, we have | fM(t)| ≤ ‖S∞ fM‖∞ ≤ 1. Furthermore, for all
t ∈ R \Z, and N ∈ N, observe that∣∣∣∣∣ N

∑
k=1

(−1)k sinck(t)

∣∣∣∣∣ ≤ N

∑
k=1

∣∣ sinck(t)
∣∣︸ ︷︷ ︸

≤1/(πt− πk)

< 2 +
1
π

k3(t, N),

holds true, as well as

1
π

k3(t, N) = 2 +
1
π

(
k1(t,N)

∑
k=1

1
k
+

N−k2(t,N)+1

∑
k=1

1
k

)
≤ 2 +

2
π

N

∑
k=1

1
k

(a)
< 2 +

2
π

+
2
π

log2(N),

where, (a) follows from the inequality ∑N
k=1

1
k < 1 + ln(N) < 1 + log2(N). Accordingly, for

all t ∈ R \Z, and K = 28M, M ∈ N, we have

∣∣ fM(t)
∣∣ = ∣∣∣∣∣ 1

∆(K)

K

∑
k=1

(−1)k sinck(t)

∣∣∣∣∣ ≤ 8 + 8
π + 8

π log2(K)
log2(K)

≤ 1
M

+
1

πM
+

8
π

< 4,

Thus, setting C := 4 concludes the proof.

Proof of Lemma 1. Let Ω ⊂ N be a recursively enumerable set with runtime function
gΩ : N2 → {0, 1}. Consider the function h : N2 → N defined according to

h(m, k) :=
L(k)

∑
l=0

(1− gΩ(m, l)), L(k) := 2k+2, (A3)

for m, k ∈ N. Further, let (fM)M∈N be a computable sequence of elementary computable
functions as specified by Lemma A1 and define fm,k := fh(m,k) for all m, k ∈ N. Then,
(fm,k)m,k∈N is a computable double sequence of elementary computable functions. More-
over, the sequence (xm,k)m,k∈N := (S∞ fm,k)m,k∈N is a computable double sequence of
elementary computable sequences.

For m ∈ Ω, there exists k ∈ N such that for all l ∈ N that satisfy l ≥ k, we have
fm,l = fm,k, i.e., the limit value liml→∞ fm,l exists and is an elementary computable function.
Furthermore, there exists an M ∈ N such that fM = liml→∞ fm,l is satisfied. We define

f ′m :=

{
liml→∞ fm,l if m ∈ Ω,
0 otherwise,

for all m ∈ N. Hence, (f ′m)m∈N is a (not necessarily computable) sequence of elementary
computable functions. Furthermore, the sequence (x′m)m∈N := (S∞ f ′m)m∈N is a sequence of
elementary computable sequences. In the following, we will prove by case distinction that
for all m ∈ N, the sequence (xm,k)k∈N converges effectively towards x′m in `∞

0 , with respect
to the µ-recursive modulus of convergence ξ : N2 → N, (m, K) 7→ K.

First, assume that m ∈ Ω is satisfied. Then, there exists k ∈ N such that for all K ∈ N
that satisfy K ≥ k, we have xm,K = xm,k. Consider the smallest such k ∈ N and observe the
following for all K ∈ N:

• If K ∈ N satisfies K ≥ k, we have ‖x′m − xm,K‖∞ = ‖xm,k − xm,k‖∞ = 0 < 2−K.
• If K ∈ N satisfies K < k, we have, by the properties of the runtime function gΩ and

the construction of h as above, h(m, k) ≥ h(m, K) = L(K) + 1 with L(K) as in (A3).
Accordingly, by x′m = xm,k and application of the triangle inequality, we also have∥∥x′m − xm,K

∥∥
∞ ≤

∥∥S∞ fh(m,k)
∥∥

∞ +
∥∥S∞ fh(m,K)

∥∥
∞ . . .

. . . ≤ 1
h(m, k)

+
1

L(K) + 1
≤ 1

2K+2 +
1

2K+2 =
2

2K+2 =
1

2K+1 < 2−K.

Algorithms 2023, 16, 514 25 of 28

Second, assume that m ∈ N \Ω is satisfied. Then, we have x′m ≡ 0. Observe the
following for all K ∈ N:

• With L(K) as in (A3), we have ‖x′m − xm,K‖∞ = ‖xm,K‖∞ ≤ (L(K) + 1)−1 < 2−K.

Following the preceding case distinction, we conclude that ‖x′m − xm,K‖∞ < 2−K is satis-
fied for all m, K ∈ N. In other words, for all m ∈ N, (xm,k)k∈N converges effectively towards
x′m in `∞

0 , with respect to the µ-recursive modulus of convergence ξ : N2 → N, (m, K) 7→ K.
Consequently, (x′m)m∈N is a computable sequence of sequences in C`∞

0 .
It remains to show that for all m ∈ Ω, we have ‖ f ′m‖∞ ≥ 1, while for all m ∈ N \Ω,

we have ‖ f ′m‖∞ = 0, which we again prove by case distinction.
First, recall that if m ∈ Ω is satisfied, f ′m is an elementary computable function such

that for some M ∈ N, we have fM = f ′m. By assumption, C ≥ ‖ fM‖∞ ≥ fM(1/2) ≥ 1 is
satisfied for some number C > 0 and all M ∈ N. Hence, for all m ∈ Ω there exists an
M ∈ N such that we have C ≥ ‖ f ′m‖∞ = ‖ fM‖∞ ≥ 1.

Second, recall that if m ∈ N\Ω is satisfied, then f ′m is the trivial elementary computable
function. That is, we have f ′m ≡ 0, in which case ‖ f ′m‖∞ = 0 holds true. Hence, for all
m ∈ N \Ω, we have ‖ f ′m‖∞ = 0.

Following the preceding case distinction, we conclude that for all m ∈ Ω, we have
‖ f ′m‖∞ ≥ 1, while for all m ∈ N \Ω, we have ‖ f ′m‖∞ = 0.

Lemma A2. There exists a computable sequence (fM)M∈N of elementary computable functions
in CB1

π such that ‖ fM‖1 ≥ 1, ‖S1 fM‖1 < 1/M, and ‖ fM‖1 ≤ C are satisfied for all M ∈ N and
some number C > 0.

Recall that Lemma A1 implies the discontinuity of T∞, as follows from (A1). In the
same manner, Lemma A2 implies the discontinuity of T1: For (fn)n∈N as in Lemma A2,
we have

lim
n→∞

‖T1S1 fn‖1

‖S1 fn‖1
= lim

n→∞

‖ fn‖1

‖S1 fn‖1
> lim

n→∞

1
1/n

= ∞ (A4)

Proof of Lemma A2. For all M ∈ N and with k(m) := −2m for m ∈ N, define the function
f ′M according to

f ′M := sinc− 1
M

M

∑
m=1

sinck(m) .

First, observe that ‖ f ′M‖1 < 4 + (5/π) ln(2M + 1) is satisfied for all M ∈ N. For a
detailed proof, we refer directly to Equation (18) in [19], where the relevant inequality is
explicitly derived. Since in addition, f ′M is a finite linear combination of sinc-functions, we
consequently have f ′M ∈ CB

1
π for all M ∈ N.

Second, observe that for all M ∈ N, we have (1/(6π)) ln(M/2)− (1/π) < ‖ f ′M‖1, which we
can deduce from Equation (11) in [19] with a few additional steps. We define η : R→ R, t 7→ η(t),

η(t) :=

0 if t < 0,
t sin(πt) if 0 ≤ t < 1,
sin(πt) otherwise.

Then, using Equation (11) in [19], we obtain the chain of inequalities

1
6π

ln
(

M
2

)
− 1

π
<
∫ ∞

0
f ′M(t)η(t) dt

(a)
<
∫ ∞

−∞
| f ′M(t)||η(t)| dt

(b)
≤
∫ ∞

−∞
| f ′M(t)| dt = ‖ f ′M‖1

for the function f ′M and all M ∈ N, where (a) follows from the fact that a(t) = 0 for all t < 0
and (b) follows from the fact that |a(t)| ≤ 1 for all t ∈ R.

Algorithms 2023, 16, 514 26 of 28

Let (rm)m∈N be any computable sequence of rational numbers such that for all M ∈ N,
we have

1
6π

ln
(

M
2

)
− 1

π
< rM ≤ ‖ f ′M‖1.

Observe that by construction of (f ′M)M∈N and since π is a computable number and ln(M/2)
is a computable sequence of computable numbers, such a sequence exists. Using k(m) as
above and K := 296M+13, we define

sn,M :=
1
rK

(
δ0[ν(n)]−

∞

∑
m=1

δk(m)[ν(n)]
K

)
, ξ(M) := 296M+13+2

for all n, M ∈ N. Then, the pair ((sn,M)n,M∈N, ξ) determines a computable sequence
(fM)M∈N of elementary computable functions in the sense of Section 2, and we have

fM :=
ξ(M)

∑
n=0

sn,M · sincν(n) =
f ′K
rK

(A5)

for all M ∈ N. In the following, we will prove that (fM)M∈N satisfies the requirements of
the lemma.

First, by construction of the sequence (rK)K∈N, we have 0 < rK ≤ f ′K for all K ∈ N.
Thus, following from (A5), we have fM ≥ 1 for all M ∈ N.

Next, observe that for all M ∈ N and with K = 296M+13, we obtain

‖S1 fM‖1 =
‖S1 f ′K‖1

rK
<

1 + 1/K ∑K
k=1 1

1/(6π) ln(1/2 · 296M+13)− 1/π
. . .

. . . <
2

1/(6π)1/2 log2(296n+12)− 1/π
=

2π
1/12(96M + 12)− 1

=
2π

8M
<

1
M

for the sequence (fM)M∈N, proving the second requirement of the lemma.
It remains to be shown that the sequence (fM)M∈N is uniformly bounded in the norm

of its components, i.e., we have ‖ fM‖1 < C for all M ∈ N and some number C > 0. We
have

lim sup
K→∞

‖ f ′K‖1

rK
< lim sup

K→∞

4 + (5/π) ln(2M + 1)
(1/(6π)) ln(M/2)− (1/π)

= lim sup
K→∞

(5/π) ln(M)

(1/(6π)) ln(M)
= 30.

Using (A5) and K = 296M+13 as above, it follows that ‖ fM‖1 < C holds true for some
number C > 0 and all M ∈ N, which concludes the proof.

Proof of Lemma 2. In large parts, the proof of the statement is analogous to the proof of
Lemma 1. For the sake of completeness, we repeat the relevant steps nevertheless.

Let Ω ⊂ N be a recursively enumerable set with runtime function gΩ : N2 → {0, 1}.
Consider the function h : N2 → N defined according to

h(m, k) :=
L(k)

∑
l=0

(1− gΩ(m, l)), L(k) := 2k+2, (A6)

for m, k ∈ N. Further, let (fM)M∈N be a computable sequence of elementary computable
functions as specified by Lemma A2 and define fm,k := fh(m,k) for all m, k ∈ N. Then,
(fm,k)m,k∈N is a computable double sequence of elementary computable functions. More-
over, the sequence (xm,k)m,k∈N := (S1 fm,k)m,k∈N is a computable double sequence of ele-
mentary computable sequences.

Algorithms 2023, 16, 514 27 of 28

For m ∈ Ω, there exists k ∈ N such that for all l ∈ N that satisfy l ≥ k, we have
fm,l = fm,k, i.e., the limit value liml→∞ fm,l exists and is an elementary computable function.
Furthermore, there exists an M ∈ N such that fM = liml→∞ fm,l is satisfied. We define

f ′m :=

{
liml→∞ fm,l if m ∈ Ω,
0 otherwise,

for all m ∈ N. Hence, (f ′m)m∈N is a (not necessarily computable) sequence of elementary
computable functions. Furthermore, the sequence (x′m)m∈N := (S1 f ′m)m∈N is a sequence of
elementary computable sequences. In the following, we will prove by case distinction that
for all m ∈ N, the sequence (xm,k)k∈N converges effectively towards x′m in `1

0, with respect
to the µ-recursive modulus of convergence ξ : N2 → N, (m, K) 7→ K.

First, assume that m ∈ Ω is satisfied. Then, there exists k ∈ N such that for all K ∈ N
that satisfy K ≥ k, we have xm,K = xm,k. Consider the smallest such k ∈ N and observe the
following for all K ∈ N:

• If K ∈ N satisfies K ≥ k, we have ‖x′m − xm,K‖1 = ‖xm,k − xm,k‖1 = 0 < 2−K.
• If K ∈ N satisfies K < k, we have, by the properties of the runtime function gΩ and

the construction of h as above, h(m, k) ≥ h(m, K) = L(K) + 1 with L(K) as in (A6).
Accordingly, by x′m = xm,k and application of the triangle inequality, we also have∥∥x′m − xm,K

∥∥
1 ≤

∥∥S1 fh(m,k)
∥∥

1 +
∥∥S1 fh(m,K)

∥∥
1 . . .

. . . ≤ 1
h(m, k)

+
1

L(K) + 1
≤ 1

2K+2 +
1

2K+2 =
2

2K+2 =
1

2K+1 < 2−K.

Second, assume that m ∈ N \Ω is satisfied. Then, we have x′m ≡ 0. Observe the
following for all K ∈ N:

• With L(K) as in (A6), we have ‖x′m − xm,K‖1 = ‖xm,K‖1 ≤ (L(K) + 1)−1 < 2−K.

Following the preceding case distinction, we conclude that ‖x′m − xm,K‖1 < 2−K is satis-
fied for all m, K ∈ N. In other words, for all m ∈ N, (xm,k)k∈N converges effectively towards
x′m in `1

0, with respect to the µ-recursive modulus of convergence ξ : N2 → N, (m, K) 7→ K.
Consequently, (x′m)m∈N is a computable sequence of sequences in C`1

0.
It remains to show that for all m ∈ Ω, we have ‖ f ′m‖1 ≥ 1, while for all m ∈ N \Ω, we

have ‖ f ′m‖1 = 0, which we again prove by case distinction.
First, recall that if m ∈ Ω is satisfied, f ′m is an elementary computable function such

that for some M ∈ N, we have fM = f ′m. By assumption, C ≥ ‖ fM‖1 ≥ 1 is satisfied for
some number C > 0 and all M ∈ N. Hence, for all m ∈ Ω there exists an M ∈ N such that
we have C ≥ ‖ f ′m‖1 = ‖ fM‖1 ≥ 1.

Second, recall that if m ∈ N\Ω is satisfied, then f ′m is the trivial elementary computable
function. That is, we have f ′m ≡ 0, in which case ‖ f ′m‖1 = 0 holds true. Hence, for all
m ∈ N \Ω, we have ‖ f ′m‖1 = 0.

Following the preceding case distinction, we conclude that for all m ∈ Ω, we have
‖ f ′m‖1 ≥ 1, while for all m ∈ N \Ω, we have ‖ f ′m‖1 = 0.

References
1. Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937,

s2-42, 230–265; Erratum in Proc. Lond. Math. Soc. 1938, s2-43, 544–546. [CrossRef]
2. Shannon, C.E. Communication in the presence of noise. Proc. IRE 1949, 37, 10–21. [CrossRef]
3. Asadzadeh, M.; Beilina, L. Stability and Convergence Analysis of a Domain Decomposition FE/FD Method for Maxwell’s

Equations in the Time Domain. Algorithms 2022, 15, 337. [CrossRef]
4. Böck, Y.N.; Boche, H.; Schaefer, R.F.; Fitzek, F.H.P.; Poor, H.V. Virtual-Twin Technologies in Networking. IEEE Commun. Mag.

2023, 1–7. [CrossRef]
5. Hong, H.; Wu, Q.; Dong, F.; Song, W.; Sun, R.; Han, T.; Zhou, C.; Yang, H. NetGraph: An intelligent operated digital twin platform

for data center networks. In Proceedings of the ACM SIGCOMM 2021 Workshop on Network-Application Integration (NAI ’21),
virtually, 23–27 August 2021; pp. 26–32.

http://doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1109/JRPROC.1949.232969
http://dx.doi.org/10.3390/a15100337
http://dx.doi.org/10.1109/MCOM.001.2200861

Algorithms 2023, 16, 514 28 of 28

6. Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415.
[CrossRef]

7. Fitzek, F.H.P.; Li, S.C.; Speidel, S.; Strufe, T.; Simsek, M.; Reisslein, M. (Eds.) Tactile Internet with Human-in-the-Loop; Academic
Press: Cambridge, MA, USA, 2021.

8. Laubenbacher, R.; Niarakis, A.; Helikar, T.; An, G.; Shapiro, B.; Malik-Sheriff, R.S.; Sego, T.J.; Knapp, A.; Macklin, P.; Glazier, J.A.
Building digital twins of the human immune system: Toward a roadmap. NPJ Digit. Med. 2022, 5, 64. [CrossRef] [PubMed]

9. Fettweis, G.P.; Boche, H. On 6G and trustworthiness. Commun. ACM 2022, 65, 48–49. [CrossRef]
10. Boche, H.; Böck, Y.; Deppe, C.; Fitzek, F.H.P. Networked Decision-Making through Virtual-Twin Technologies. IEEE Trans. Autom.

Control. 2023, Submitted for Review.
11. Levin, B.Y. Lectures on Entire Functions; American Mathematical Society: Providence, RI, USA, 1996.
12. Higgins, J.R. Sampling Theory in Fourier and Signal Analysis–Foundations; Oxford University Press: Oxford, UK, 1996.
13. Kleene, S.C. General recursive functions of natural numbers. Math. Ann. 1936, 112, 727–742. [CrossRef]
14. Soare, R.I. Recursively Enumerable Sets and Degrees; Perspectives in Mathematical Logic; Springer: Berlin/Heidelberg, Germany, 1987.
15. Pour-El, M.B.; Richards, J.I. Computability in Analysis and Physics; Springer: Berlin/Heidelberg, Germany, 1989.
16. Weihrauch, K. Computable Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 2000.
17. Boolos, G.S.; Burgess, J.P.; Jeffrey, R.C. Computability and Logic; Cambridge University Press: Cambridge, UK, 2002.
18. Turing, A.M. Computability and λ-definability. J. Symb. Log. 1937, 2, 153–163. [CrossRef]
19. Boche, H.; Mönich, U.J. Turing meets Shannon: Computable sampling type reconstruction with error control. IEEE Trans. Signal

Process. 2020, 68, 6350–6365. [CrossRef]
20. Boche, H.; Mönich, U.J. Computable time concentration of bandlimited signals and systems. IEEE Trans. Signal Process. 2021,

69, 5523–5538. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2018.2873186
http://dx.doi.org/10.1038/s41746-022-00610-z
http://www.ncbi.nlm.nih.gov/pubmed/35595830
http://dx.doi.org/10.1145/3512996
http://dx.doi.org/10.1007/BF01565439
http://dx.doi.org/10.2307/2268280
http://dx.doi.org/10.1109/TSP.2020.3035913
http://dx.doi.org/10.1109/TSP.2021.3112292

	Introduction
	Materials and Methods
	Results
	Discussion
	Appendix A
	References

