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Abstract: Layered nickelate oxides containing Ni1+/Ni2+ are isoelectronic to Cu2+/Cu3+ compounds
and of present interest with respect to recent findings of superconductivity in a series of different
compositions. It is thereby questionable why superconductivity is still rare to find in nickelates,
compared to the much larger amount of superconducting cuprates. Anisotropic dz2 vs. dx2−y2 orbital
occupation as well as interface-induced superconductivity are two of the main advanced arguments.
We are here interested in investigating the feasibility of synthesizing layered nickelate-type oxides,
where the Ni1+/Ni2+ ratio can be tuned by oxygen and/or cation doping. Our strategy is to synthesize
Sr-doped n = 1 Ruddlesden–Popper type Nd2−xSrxNiO4+δ single crystals, which are then reduced
by H2 gas, forming Nd2−xSrxNiO4−δ via a topotactic oxygen release at moderate temperatures.
We report here on structural studies carried out on single crystals by laboratory and synchrotron
diffraction using pixel detectors. We evidence the general possibility to obtain reduced single crystals
despite their increased orthorhombicity. This must be regarded as a milestone to obtain single
crystalline nickelate oxides, which further on contain charge-ordering of Ni1+/Ni2+, opening the
access towards anisotropic properties.

Keywords: non-stoichiometric transition metal oxides; superconducting Ni1+/Ni2+ nickelates; layered
nickelates; charge order; single crystal growth; topotactic oxygen release

1. Introduction

Recent findings of superconductivity in Nd0.8Sr0.2NiO2 thin films at Tc~15 K renewed
the interest in nickelates for high-Tc superconductivity research which is still essentially
dominated by copper oxides [1]. The underlying concept is related to the isoelectronic
configuration of Ni1+/Ni2+, compared to Cu2+/Cu3+, i.e., a seemingly critical valence
state of the transition metal is 3d9 − 3d8 [2–4]. A stimulating debate resulted in under-
standing the mechanism of the unconventional superconductivity in nickelates in com-
parison to the iso-structural and/or iso-electronic copper-based analogues. In particular,
the pairing symmetry of the superconducting order parameter in nickelate supercon-
ductors is still a controversial and open question [5–7]. Theoretical calculations have
supported the idea that nickelates have a similar gap symmetry to cuprates, with a domi-
nant (dx2−y2 )-wave pairing, despite its multiorbital nature [1,5–9]. Alongside this theory,
other propositions have been put forward, such as a dx−y-wave gap or a two-gap model
dz2 − wave + dx2−y2 − wave [10–12] or a transition between a gapped (d + is) − wave to a
nodal d-wave pairing state [13] for neodymium-based nickelates. First-principles density
functional theory calculations also showed the role of the 4f magnetism [14]. In addition,
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experimental spectroscopic studies on nickelate thin films have shown a mixture of d-wave
and s-wave signals at different locations of the film surface, suggesting the formation of
nonstoichiometric or secondary phases, thus complicating the determination of the true
coupling symmetry of the superconducting gap [15]. Nickel is right next to copper in the
periodic table, and it is long known to form compounds with similar structural configura-
tions as high Tc cuprates. Hole doped superconducting cuprates show a Cu2+/3+ mixed
valence state, i.e., a 3d9 − 3d8 configuration, which is considered to be a crucial parameter
for high-TC superconductivity [16]. Its nickel analogue containing Ni1+/2+, and thus with
an identical electronic configuration, is therefore also supposed to be a promising candidate
for superconductivity.

The appearance of superconductivity in Nd0.8Sr0.2NiO2 thin films was therefore an
important landmark intensifying research activity to synthesize new layered Ni1+/2+ con-
taining oxides. However, the stabilization of Ni1+ is not that common but favored in higher-
order Ruddlesden–Popper (RP)-type oxides with the general formula of An+1BnO3n+1,
which, e.g., for n = 3 in case of Pr4Ni3O10, only contains Ni2+. This phase can, however,
be reduced in a topotactic reaction under mild conditions (under H2 at 360 ◦C) towards
Pr4Ni3O8, with an average valence state of Ni1.33+. The Jahn–Teller distortion in nickelates
is generally much less pronounced and a better understanding of their respective electronic
structure thus becomes crucial in defining the extent of hybridization of nickel d-orbitals.

Similar to the cuprates, the Ni1+/2+ mixed valence state appears to be critical for
superconductivity in infinite layered compounds [17]. This is further reinforced by the
experimentally evidenced superconductivity in undoped Nd6Ni5O12 thin films with an
average valence state of Ni1.2+ [18]. Nd6Ni5O12 has been obtained by a low-T topotactic
reduction via the CaH2 method, leading to a mixed valence state of the nickel atoms of
Ni1+/Ni2+. The resulting layered structure is considered to be a T’ structural type similar
to the electron-doped Nd2−xCexCuO4 superconductor [19]. However, unlike cuprates,
superconductivity in nickelates was primarily seen only in thin-film samples, until the
recent findings on La3Ni2O7 single crystals showing superconductivity at Tc ≈ 80 K under
high pressures exceeding 14 GPa [20]. This bulk-type superconductivity puts into question
the idea that superconductivity in nickelates is induced by substrate/interface-induced
effects, thereby emphasizing the importance of having single crystalline nickelate samples
for understanding the origins of superconductivity.

The non-stoichiometric RP phases with n = 1, e.g., La2CuO4 or (Pr/Nd)2NiO4, present
a special case, as they can easily uptake oxygen to form R2BO4+δ [21–23], and for which
its ability to release oxygen is much less studied. Their structure consists of alternating
perovskite and rock-salt layers along the stacking axis, as shown in Figure 1a.

Some of these RP oxides have been shown to release oxygen, either by being reduced
in H2 atmosphere or by the CaH2 method. Cuprates like La2CuO4 and Nd2CuO4 have been
topotactically reduced to form an oxygen vacancy-ordered framework R2CuO3.5, containing
CuO2 dumbbells with all copper atoms being formally monovalent Cu1+ only [24,25]. We
were therefore interested in exploring to what extent this type of reduction reaction can be
transferred to RP nickelates and how oxygen vacancy ordering together with the nickel
valence state can be tuned by partially substituting the trivalent rare-earth atoms by bivalent
alkaline earth atoms, such as Sr. The feasibility to reduce RP frameworks with H2 gas
has been shown for polycrystalline Nd2−xSrxNiO4−δ, where Ni1+/Ni2+ valence states can
indeed be formed [26,27].

The appearance or not of superconductivity in nickelates is presently discussed in
terms of the dz2 vs. dx2−y2 orbital occupation as well as their degree of hybridization with
oxygen orbitals. As an example, the double occupation of the dz2 orbital in Jahn–Teller
distorted La2CuO4, with an increased apical Cu—Oap bond length, coupled to a large
p-d hybridization (dx2−y2 ), is seen as an essential trademark to mediate high-temperature
superconductivity upon La substitution by Sr or O doping [16]. The Jahn–Teller distortion
in nickelates is much less pronounced, and a better understanding of their respective
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electronic structures thus becomes crucial in defining the extent of hybridization of nickel
d-orbitals.
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Figure 1. (a) Crystal structure of Ruddlesden–Popper phase n = 1 (R2BO4, where R is a rare earth and
B a transition metal) in the tetragonal symmetry I4/mmm with alternating perovskite and rock salt
layers. Rare earth atoms are represented by silver spheres, transition metal atoms by blue spheres
and oxygen atoms are the red ones. (b) Taking out half of the equatorial oxygen atoms results in the
formation of the so-called S-phase, with Immm symmetry. The green spheres represent the former
equatorial oxygen positions that can be occupied in the case of intermediate stoichiometries.

However, it is difficult to experimentally access the orbital occupations on polycrys-
talline samples by spectroscopic methods. This problem can be overcome by resonant
inelastic X-ray scattering (RIXS) studied on oriented single crystals (bulk/thin-film), i.e.,
parallel and perpendicular to the c-axis. Beside the synthetic aspects, our motivation
concerns further on the feasibility of Ni1+/Ni2+ single crystal growth. Given the straight-
forwardness to easily reduce polycrystalline R2−xSrxNiO4 at the higher Sr content (x > 0.3),
we consequently explored the feasibility to reduce Nd1.3Sr0.7NiO4+δ single crystals. The
strategy here is to first synthesize Nd1.3Sr0.7NiO4+δ single crystals, which are then re-
duced in H2/N2 gas mixtures at moderate temperatures towards Nd2−xSrxNiO4−δ. Given
that the final stoichiometry is similar to the cuprates reported above, the availability of
Nd2−xSrxNiO3.5 type crystals would open up a panoply of studies, i.e., detailed structural
features as oxygen vacancy ordering, as well as their anisotropic electronic properties.

We report below on the synthesis conditions and structural characterization of the
H2-reduced Nd1.3Sr0.7NiO4−δ single crystals and polycrystalline powder, with mixed
Ni1+/2+ valence state, using laboratory and synchrotron single-crystal and powder X-ray
diffraction techniques.

2. Materials and Methods

Synthesis and single crystal growth. Polycrystalline Nd1.3Sr0.7NiO4+d was synthe-
sized by classical solid-state reactions at high temperature, starting from the precursor
oxides. Stoichiometric amounts of Nd2O3, SrCO3 and NiO powders (99.99% purity, Alfa
Aesar, Kandel, Germany) were thoroughly ground and calcinated for 12 h at 900 ◦C in air.
The obtained powders were then ground again and heated at 1250 ◦C for 24 h.

Nd1.3Sr0.7NiO4+δ single-crystal growth was performed by using a two-mirror optical
floating zone furnace as described elsewhere [28]. Seed and feed rods for crystal growth
were obtained by hydrostatic pressing of the as synthesized Nd1.3Sr0.7NiO4+δ powders at
10 bars in a cylindrical latex tube of 8 mm in diameter and 150 mm in length. To compensate
for steady evaporation of NiO during the crystal growth, a 2% molar NiO excess was added
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to the stoichiometric starting material. Very dense polycrystalline rods for single crystal
were obtained by subsequent sintering at 1250 ◦C for 18 h. The crystal growth was carried
out by the travelling floating zone (TFZ) method, using a two-mirror optical floating zone
furnace (NEC SC2, Japan) equipped with two 500 W halogen lamps. The growth was
carried out in oxygen flux with a speed rate of 3.3 mm/h with the feed and seed rods
counter rotating at 30 rpm.

Micron-sized Nd1.3Sr0.7NiO4+δ single crystals and polycrystalline samples were re-
duced in a 5% H2/N2 gas flow at 560 ◦C, as decomposition into the binary oxides started
to set in above 650 ◦C.

X-ray diffraction. Phase purity of the grown crystals was checked by laboratory X-ray
powder diffraction on a D8 Discover diffractometer (Bruker, Karlsruhe, Germany) equipped
with a Johansson monochromator for CuKα1 radiation and a fast detector with high energy
resolution (LynxEye XE-T). Powder diffraction patterns were analyzed using the FullProf
suite [29] and the crystal structure is visualized using the VESTA freeware (ver. 3.5.8) [30].
Single crystal X-ray diffraction (SXRD) studies were carried out using a STADIVARI (MoKα

source, Xenocs Microfocus tube) diffractometer (STOE, Darmstadt, Germany) equipped
with a DECTRIS 200 K Pilatus pixel-detector. In addition, synchrotron X-ray single crystal
diffraction was carried out on the beamline ID28 at the European Synchrotron Facility
(ESRF, Grenoble, France) (λ = 0.6968 Å), equipped with a 1 M Pilatus detector. Single-crystal
data analysis was performed using the SNBL Tool Box [31], the CrysAlis blue (Rigaku-
Oxford Diffraction) and an in-house developed software, with ALBULA (DECTRIS) for the
visualization, as well as the X-Area software package (version 1.86, STOE, Darmstadt).

Electron microscopy. The crystal quality and elemental composition were checked by
scanning electron microscopy (SEM) analysis using a JEOL JSM 6400 microscope (JEOL Ltd.,
Tokyo, Japan), equipped with an OXFORD INCA EDS instrument for atomic recognition
via X-ray fluorescence spectroscopy. SEM/EDS analyses were performed on a cross section
(6 mm in diameter) of the grown crystal after an accurate surface polishing and cleaning.

Thermogravimetric studies. To determine the overall oxygen stoichiometry, thermo-
gravimetric (TGA) measurements were carried out using a NETZSCH thermo-balance
(NETZSCH, Germany) applying a 5% H2/N2 gas mixture for reduction with a heating rate
of 5 ◦C/min. Measurements were performed on ground single crystals.

3. Results and Discussion
3.1. Crystal Growth and Characterization

Figure 2 shows the obtained Nd1.3Sr0.7NiO4+δ single crystal, 6 mm in diameter and
110 mm in length. Phase purity was checked by X-ray powder diffraction on a small section
of the as-grown single crystal that was crushed into fine powder. From the corresponding
XRD pattern, as shown in Figure 3a, the as-grown single crystal is single-phase without
any impurities.
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Figure 3. (a) Observed, calculated and difference XRD (Bruker D8 Advance, CuKα1) patterns of the
as-grown crushed Nd1.3Sr0.7NiO4+δ’ crystal indexed in I4/mmm space group, as obtained in profile
matching mode. Dot black points are the experimental data, red line is the calculated pattern and the
blue curve is the difference one. Vertical bars are related to the calculated Bragg reflection positions;
(b) SEM images (at different scales) of the crystal cross section, showing the absence of cracks or
intergrowth phases. In the insert table: summary of the elemental composition derived from by
EDX and reflecting, within the experimental incertitude, the nominal composition of the as-grown
Nd1.3Sr0.7NiO4+δ single crystal (oxygen, being a light element, is difficult to quantify by EDX due to
the limited sensitivity).

The pattern profile refinement carried out in the profile matching mode through
the Fullprof software (5.10, version January 2023) against the I4/mmm space group gives
the following lattice parameters: a = b = 3.7755(3) Å and c = 12.4548(1) Å. The chemical
composition and homogeneity of the crystals were verified by SEM coupled with the EDX
analysis on a section cut from the as-grown crystal. It was found to be free of cracks or
inclusions of secondary phases (Figure 3b). The atomic percentages of nickel, strontium
and neodymium are constant over the whole cross section, in agreement with the nominal
Nd:Sr:Ni stoichiometry 1.3:0.7:1 (inset of Figure 3b).

3.2. Reduction

Polycrystalline Nd1.3Sr0.7NiO4+δ obtained from a crushed single crystal was reduced
in a 5% H2/N2 gas flow. The reduction curve is depicted in Figure 4, where the weight
change is reported as a function of the temperature. The total weight loss amounts to
almost 6%: a first oxygen loss is observed above 400 ◦C, while a second and larger loss
starts at around 720 ◦C, corresponding to the decomposition into (1 − x/2)Nd2O3, (x)SrO
and Ni, as checked by XRD. It thus results that the oxygen stoichiometry of the starting
as-grown single crystal is 4.00(2), and there is the formation of the oxygen deficient phase
Nd1.3Sr0.7NiO3.54(2) at 560 ◦C, with an average Ni oxidation state corresponding to Ni1.7+.

The important oxygen loss is accompanied by a change in the symmetry towards
orthorhombic. After the reduction, the compound is single phase and with the profile
matching refinement of laboratory X ray powder diffraction, data could be indexed in the
orthorhombic Immm space group with lattice parameters a = 3.6163(4) Å, b = 3.8205(6) Å
and c = 12.6505(6) Å (see Figure 5). The initial fit of the X-ray data is rather poor (χ2 ∼= 12)
as some Bragg reflections (especially those where the a-axis is involved) show significant
asymmetries and anisotropic broadening which are difficult to model. The refinement
improves by the introduction of anisotropic strains using the spherical harmonics model
in the fit (χ2 ∼= 5), as implemented in the FullProf suite. Indeed, lattice microstrains
could be present due to fluctuations in the cell parameters if the reduction reaction is
not homogeneous or to antiphase/twin boundaries originating from the tetragonal-to-
orthorhombic transition, as will be discussed in detail in the following section.
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Figure 4. TGA weight loss curve obtained in 5%H2/N2 atmosphere with a heating rate of 5 K/min of
the ground Nd1.3Sr0.7NiO4+δ single crystal. The weight loss starting above 400 ◦C yields an oxygen
stoichiometry corresponding to Nd1.3Sr0.7NiO3.54(2) at 560 ◦C.
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Figure 5. X-ray diffraction pattern of the reduced crushed single crystal, showing the new phase
Nd1.3Sr0.7NiO3.54(2) with Immm symmetry (refinement in profile matching mode). Data were collected
on the Brucker D8 Discover X-ray diffractometer with CuKα1. The experimental data are represented
by the black dots, while the calculated pattern is indicated by the continuous red line. The blue
continuous line is the difference between the experimental and calculated intensities while the short
green vertical bars indicate the Bragg peak positions.

The pretty different lattices parameters after reduction imply important changes in the
a/b-axes, yielding an elevated orthorhombicity (orthorhombic strain r = (a− b)/(a + b) = 2.7%).
From the increase in the c-axis, from 12.4548(1) Å of the starting phase to 12.6505(6) Å of
the reduced one, it becomes evident that the O-vacancies are essentially introduced in the
equatorial sites. Releasing half of the equatorial oxygen atoms in an ordered way would
result in the formation of the so-called S-phase (see Figure 1b).

3.3. Single Crystal X-ray Diffraction

Figure 6a,b show the reconstructed (hk0) layers obtained on the single-crystal STOE
STADIVARI diffractometer for the as-grown and reduced phase, respectively. The non-split
single-crystal reflections of the starting crystal confirm the tetragonal symmetry, while
the reflection splitting for the reduced orthorhombic phase is related to the formation of
twin domains.
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Figure 6. (a,b) (hk0) reconstructed diffraction planes obtained from STOE STADIVARI diffractometer
for the as-grown single crystals of Nd1.3Sr0.7NiO4 and for the Nd1.3Sr0.7NiO3.54 reduced single
crystal, respectively. (c) Schematic representation of splitting in the (h00), (0k0) and (hk0) reflections,
expected from the tetragonal to the orthorhombic phase transition, implying the formation of four
twin individuals. For clarity, each twin pair is assigned with either black or green color. (d,e) Zoom on
the (330) and (200/020) Bragg reflections, clearly showing the characteristic splitting for a two-times
twinned crystal, i.e., the formation of 4 orthorhombic twin individuals.

The symmetry reduction from tetragonal to orthorhombic leads to the loss of the
diagonal mirror planes along [110]/[−110], becoming the common planes of the formed
twin individuals (see Figure 6c). It leads to the typical splitting of (h00) reflections ∆,
which is quantified by ∆ = tan−1 ( a

b
)
− tan−1 ( b

a ). ∆ becomes twice this value for (hh0)
reflections along [110]. It implies that a maximum of four orthorhombic twin individuals
can be achieved. The respective volume fractions can be quantified by analyzing the
outer “satellites” of the respective (hh0) and (−hh0) reflections. Typical values found for the
reflection splitting ∆ in RP phases, related to the tetragonal/orthorhombic phase transitions,
are generally below ∆ ≈ 1◦; as an example, the stoichiometric Nd2NiO4 shows a domain
separation with ∆ = 0.89◦ [16]. Given the important difference of the a/b lattice parameters
in Nd1.3Sr0.7NiO3.54, the domain separation is expected to achieve almost four times this
value, i.e., a ∆ corresponding to 3.72◦. Maintaining a faultless single-crystal characteristic
during the reduction reaction thus presents an important obstacle, as the related strain
increase is expected to destroy its pristine crystallinity.

The inspection of the reconstructed diffraction planes given in Figure 6 clearly indicates
that, despite the elevated orthorhombicity, all diffraction peaks still remain sharp. The
systematic presence of four contributions for (h00) reflections (Figure 6e), thereby indicates
the formation of four twin individuals, presenting an equal volume fraction of (1/4). This is
in agreement with a micro-twinning of the orthorhombic domains, as any unequal volume
fraction distribution would rather indicate the formation of large, i.e., individual, domains.
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A micro twinning is also in favor of minimizing the stress between individual domains.
A complete transformation towards the reduced orthorhombic phase is indicated by the
entire absence of the former, tetragonal (h00)-reflections, which are supposed to appear
in the center of the four orthorhombic (h00/0h0) reflections, thus indicating a complete
reduction reaction.

The angular separation of the twin domains in Nd1.3Sr0.7NiO3.54 is determined to
correspond to ∆ = 3.2◦ (Figure 7b). The reflection splitting measured is 0.5◦ lower compared
to what is expected from the orthorhombic lattice parameters obtained for polycrystalline
Nd1.3Sr0.7NiO3.54. This might be related to reduced reaction kinetics when compared to
the powder samples having a much lower grain size. Another reason might be a different
microstructure for sintered ceramics and crystallites obtained by recrystallization from
the melt.
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Figure 7. Reconstructed (hk1)-planes of the as-grown (Figure 7a,c) and reduced (Figure 7b,d)
Nd1.3Sr0.7NiO3.54 crystals investigated on a STOE STADIVARI diffractometer (a,b) and on the beam-
line ID28 at the ESRF (c,d). The high brilliance for the synchrotron study allows us to see the partial
decomposition of the crystal into a randomly oriented polycrystalline fraction, together with slightly
broadened reflections which appear on top of the main reflections, suggesting a Ni1+/Ni2+ charge
ordering centered on [010] with a modulation vector of Qn = ±0.4 b* applied for the 4 twin domains
(n) as further outlined in Figure 8. The reduced binary oxides, i.e., Nd2O3, SrO as well as NiO, are
simulated and shown in Figure A1. Diffuse scattering is observed between domains with a common
twin plane, i.e., respective couples of (hkl/khl) reflections, as shown in the inset in Figure 7d for the
(−301/0-31) couples, related to the formation of domain boundaries.
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Figure 8. (a) Reconstructed (hk0)-plane of the reduced Nd1.3Sr0.7NiO3.54 crystal, showing beside
the basic (hk0)-reflections diffuse satellites, which can be indexed applying a unidirectional mod-
ulation vector Qn = ±0.40 b* for all four twin domains (n), respectively, for each Bragg reflection
G = ha* + kb* + lc* + mQ, while m is limited here to 1st order satellite reflections only. The charge
ordering reflections are schematically indicated by red lines in (b) and follow in direction of the twin
scheme as indicated in Figure 6c. Note that for different twin domains orientations, the modulation
vector points into different directions, respectively.

A more complex domain formation is also indicated by the diffuse scattering as shown
for the (−301) reflection in Figure 7d. This is similar to what has been observed during the
electrochemical reduction of Pr2NiO4+δ performed at room temperature [32].

Investigations to explore possible oxygen ordering have been carried out by single-
crystal synchrotron diffraction at ID28@ESRF, as shown in Figures 7 and 8.

While no extra typical superstructure reflections related to oxygen ordering could
be uncovered [33], several broader reflections and powder lines are observed, indicating
a partial decomposition into the respective binary oxides, i.e., NiO, Nd2O3 and SrO (see
Figure A1). We underline that the quantity of the decomposed fraction remains very
low and essentially requires synchrotron radiation for its detection, as we were unable to
confirm these phases with laboratory diffraction methods (less than 0.2%).

The high brilliance of the synchrotron radiation thus enabled us to highlight slightly
broadened reflections, appearing for all main reflections. They can be indexed by a modu-
lation vector Qn = ±0.40 b*, in line with the twin scheme shown in Figure 6c, suggesting
a unidirectional Ni1+/Ni2+ charge ordering along [010] (see Figure 8b). This value is in
between the 1/3 stripe and 1/2 chequerboard like charge ordering as have been reported
for Ni2+/Ni3+ type nickelates, and is theorized in [34]. The charge ordering is thus along
the Ni-O vacancy direction, and consequently, it induces a kind of structural disorder,
due to the random distribution of the vacancies, related to the non-stoichiometry. The
charge ordering is established as an “average” ordering, rather than a discrete ordering
scheme, the latter allowing us to establish rational multiples of the unit cell. A rather
arbitrary arrangement as encountered here is also supposed to impact the slightly different
Ni1+-O and Ni2+-O bond length distribution on a local scale. It presents thus a valence state
ordering, realized on a shorter length scale, which appears by diffraction in an averaged
Ni1+-O and Ni2+-O bond length distribution. Despite the random distribution of oxygen
vacancies, the charge ordering is of 3D character, as indicated by the presence of respective
satellite reflections in higher-order planes, e.g., the (hk1)-plane shown in Figure 7d.
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4. Conclusions

High-quality single crystals of Nd1.3Sr0.7NiO4+δ were synthesized by the floating
zone method and reduced towards Nd1.3Sr0.7NiO3.54 by annealing in a H2 atmosphere.
Despite their high orthorhombicity, they maintained their crystalline integrity throughout
the reduction reaction.

The high brilliance of the synchrotron radiation thus enabled us to highlight slightly
broadened reflections, appearing for all main reflections. They can be indexed by a mod-
ulation vector Qn = ±0.4 b*, suggesting unidirectional Ni1+/Ni2+ charge ordering along
[010] (see Figure 8). This value is in between the 1/3 stripe and 1/2 chequerboard-like
charge ordering as has been reported for Ni2+/Ni3+ type nickelates [34]. It thereby appears
unusual to observe Ni1+/Ni2+ charge ordering already at room temperature, as this kind of
electronic ordering is supposed to appear at much lower temperatures, e.g., as found below
100 K for (Pr0.3La0.7)4Ni3O8 [34]. This might be a consequence of the fixed arrangements
of the O-vacancies, favoring to establish charge ordering on a local level. The charge
ordering is, however, established as an “average” ordering, rather than a discrete ordering
scheme, which would involve rational multiples of the unit cell. It presents thus a locally
defined valence state ordering, which, from a structural point of view, appears as a random
arrangement of Ni1+-O and Ni2+-O bond length distribution.

A rather arbitrary arrangement as encountered here is also supposed to impact the
slightly different Ni1+-O and Ni2+-O bond length distribution on a local scale without
long-range ordering. It is, however, unclear whether such an averaged charge ordering in
nickelates shows a similar competition towards superconductivity as discussed for d-wave
superconductors along the Cu-O-Cu bonds in cuprates [35].

In this regard, Tc gets almost suppressed for striped phased La2−xBaxCuO4, alongside
the coexisting charge and spin ordering. To judge this influence, a more systematic study
on the evolution of charge ordering with the Sr-doping, i.e., changes in the Ni1+/Ni2+ ratio,
is required.

The general possibility to obtain reduced single crystals despite their increased or-
thorhombicity must be regarded as a milestone to obtain single crystalline nickelate oxides
containing Ni1+/Ni2+, opening to access towards anisotropic properties. The Ni1+/Ni2+

valence distribution was evidenced as charge ordering, behaving as in the Sr-doped oxides
on an average scale, i.e., not established as long-range translational ordering. An average
valence distribution might readily allow charge fluctuations on a shallow energy range,
providing an attractive way to identify superconductivity descriptors.
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Figure A1. Reconstructed (hk0)-plane of the reduced Nd1.3Sr0.7NiO3.54 single crystals, data obtained
on ID28 at ESRF. The observed powder lines indicate a partial decomposition into the respective
binary oxides, i.e., NiO, Nd2O3 and SrO, simulated by the colored circles.
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