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Featured Application: This research contributes to the development of a technological method to
obtain highly accurate vehicle trajectory data. The reconstructed trajectory data play a key role
in traffic state prediction, traffic management and the decision making of autonomous vehicles
and robots.

Abstract: Vehicle trajectory usually suffers from a large number of outliers and observation noises.
This paper proposes a novel framework for reconstructing vehicle trajectories. The framework
integrates the wavelet transform, Lagrange interpolation and Kalman filtering. The wavelet transform
based on waveform decomposition in the time and frequency domain is used to identify the abnormal
frequency of a trajectory. Lagrange interpolation is used to estimate the value of data points after
outliers are removed. This framework improves computation efficiency in data segmentation. The
Kalman filter uses normal and predicted data to obtain reasonable results, and the algorithm makes
an optimal estimation that has a better denoising effect. The proposed framework is compared with a
baseline framework on the trajectory data in the NGSIM dataset. The experimental results showed
that the proposed framework can achieve a 45.76% lower root mean square error, 26.43% higher
signal-to-noise ratio and 25.58% higher Pearson correlation coefficient.

Keywords: vehicle trajectory reconstruction; outlier detection; Lagrange interpolation; filter denoising;
NGSIM

1. Introduction

Outliers and observation noises of vehicle trajectory data deteriorate the value of
the data in traffic state prediction and traffic management. Kovvali et al. pointed out
that vehicle trajectory data could be used to construct the driving behavior model, such
as car following, lane changing, cooperative driving, distance control and safe driving,
and proposed a data transcription and extraction method from video data to vehicle
trajectories [1]. Xie et al. proposed a non-parameter clustering Dirichlet process Gaussian
mixture model (DPGMM) to extract vehicle trajectories from 70-h traffic video data at
two intersections in Brooklyn and used hidden Markov models (HMMs) to recognize the
rear-end conflict risk for adjacent vehicles [2]. Taylor et al. researched driver heterogeneity
behavior and situation-dependent behavior in car-following scenes using large vehicle
trajectory datasets and proposed a dynamic time-warping algorithm with a time parameter
to calibrate the microscopic simulation model [3]. Chen et al. used heterogeneous traffic
data to estimate the state of spatial-temporal traffic and capture traffic congestion [4]. Li
et al. studied the cooperative perception framework of the vehicle microtraffic state based
on freeway and arterial vehicle trajectory datasets [5]. Tsanakas et al. used a microemission
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model to solve the problem of insufficient trajectory data [6]. Rempe et al. proposed a deep
convolutional neural network for the accurate estimation of space–time traffic speeds [7].
However, the vehicle trajectory data collected suffered from outliers and observation noises
by the communication signal occlusion, severe weather environment and so on. Outliers are
defined as data points that are significantly larger or smaller than the neighbor points. Lu
et al. identified obvious trajectory outliers and observation noises in the Next Generation
Simulation (NGSIM) trajectory dataset [8]. Punzo et al. used jerk analysis, consistency
analysis and spectral analysis to assess the data accuracy of vehicle trajectory data, and
the results of error statistics indicated that trajectory outliers and observation noises are
common in many datasets, such as NGSIM [9]. Coifman et al. took the I-80 data to illustrate
that there were many errors such as large acceleration and bumper position marking
errors [10].

Identifying and correcting outliers of vehicle trajectory data is one of the topics. Thie-
mann et al. took the vehicle dynamic performance (such as maximum speed, acceleration
time) as the judgment standard of abnormal speed and acceleration and used the moving
symmetric index average method to repair outliers [11]. Ge et al. detected outliers based
on outlying scores. An outlying score of a vehicle trajectory is calculated as the similarity
between the direction vector of a trajectory and those of other trajectories [12]. Punzo et al.
added a jerk and frequency spectrum to the threshold discrimination method based on
the vehicle dynamic performance threshold [13]. Wang et al. proposed an expectation
maximization (EM) algorithm to re-estimate the outliers [14]. Suvin et al. identified and
deleted outliers by resampling missing data [15]. Zhou et al. used a time-varying com-
pletion method to estimate trajectory data [16]. Hu et al. used data quality evaluation to
remove outliers in the Waymo Open Dataset (WOD) [17]. Many machine learning methods,
such as the convolutional neural network (CNN), support vector machine (SVM) and so
on, have been applied to predict trajectory data [18]. Chen et al. calculated the similarity
between original trajectories and trajectories of a dataset by attention-based learning [19].
Belhadi et al. developed a clustering algorithm to cluster the potential outliers and a KNN
algorithm to identify outliers from the cluster [20]. The methods deal with various types
of outliers but require many calibrated parameters. Thomas et al. illustrated the simple
structure of the Lagrange interpolation algorithm [21]. Liu et al. used trajectory historical
information and network topology geometry information to construct a weighting-based
map matching method to detect notable location errors and proposed an interpolation
method with path determination and trajectory interpolation to solve the low sampling
rate of vehicle trajectory data by GPS devices [22]. Wan et al. proposed a stacked au-
toencoder for detecting outliers of monitoring data. Based on the difference between the
input and the output of the trained stacked autoencoder, the Grubbs criterion and the
PauTa criterion are used to evaluate whether data points are outliers [23]. Peralta et al.
proposed unsupervised deep neural network models based on stacked autoencoders to
detect the outliers among position, speed and angular position [24]. Zhao et al. proposed a
three-step vehicle trajectory reconstruction method with the wavelet transform, Gaussian
kernel and Savitzky–Golay filter to reconstruct the trajectory data from 15 intersections. The
framework used Gaussian-kernel-based locally weighted linear regression to interpolate
the data after outliers were removed [25].

Observation noise removal has also received some research attention. Montanino
et al. analyzed the reason for the observation noise and used a low pass filter to reduce
the observation noise [26]. Thiemann et al. proposed a smoothing algorithm to denoise
the data of the beginning segment and the ending segment of a vehicle trajectory [11].
Wang et al. used the Kalman filter to reduce the observation noise of vehicle trajectory
data [27]. Frad et al. used the wavelet filter method to filter the observation noise of
vehicle trajectory data [28]. Durrani et al. used a symmetric index moving average filter
method to denoise in the NGSIM (US-101) dataset [29]. Chen et al. combined empirical
mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and the
wavelet transform to achieve noise suppression [30]. Hu et al. used the wavelet transform
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to denoise trajectory data [17]. It is known that the denoise and smoothing methods of
trajectory data mainly include the moving average filter, Kalman filter and symmetric
exponential average filter. Each denoising method has its advantages, but its parameters
remain unchanged. Nithin et al. proposed a multiple-model filtering adaptive method
to infer the observation noise and predict vehicle trajectories. The method integrated
maximum-likelihood multiple-model filtering and the unscented Kalman filter (UKF). The
adaptive UKF had been pretrained in the constant velocity model, constant turn rate model,
constant acceleration model and constant turn rate and acceleration model [31]. Mahajan
et al. used smoothing filters and extreme gradient boosting with adaptive regularization
to reduce the observation noise between speed and acceleration. The method had better
robustness in processing raw data from an unmanned aerial system compared with manual
thresholds [32]. Abbas et al. proposed a multimodel-based extended Kalman filter (EKF) to
reduce the vehicle location noise using the vehicle trajectory. The EKF used the velocity,
position and distance of the vehicle to construct a state vector matrix and used probability
calculation to obtain the predicted results [33]. Zhang et al. used a Kalman filter to reduce
the noise of prediction uncertainty while predicting real-time cooperative vehicle trajectory
with the kinematic and data-driven models [34]. Zhao et al. proposed a multi-objective
optimization control method based on expanded state observers in order to keep the
accuracy and stability, which are disturbed by a variety of factors in curved roads [35].

Built on the state of the art, the innovations of this study are summarized as follows:
(1) A Lagrange-interpolation-based framework for vehicle trajectory reconstruction is pro-
posed, which integrates the discrete continuous wavelet transform, Lagrange interpolation
and the Kalman filter, which can obtain a smooth trajectory. (2) Two kinds of Lagrange
interpolation polynomials are developed for reconstructing outliers between speed and
acceleration in vehicle trajectory data, which improve computation efficiency.

The remainder of this study is organized as follows. Section 2 describes the problems of
vehicle trajectory data that the paper is dealing with. Section 3 describes the methodology
of the proposed vehicle reconstruction framework in the paper. Section 4 shows the
processing reconstruction results of the framework by experiments. Section 5 discusses the
reconstruction results between the proposed method and the baseline method. Section 6
concludes this work and recommends further research directions.

2. Problem Statement

Vehicle trajectory data are very important to analyze the microscopic phenomena in
transportation systems. GPS devices have usually been used to collect trajectory data in
the last decades, but vehicle location sensors can generate a large amount of outlier and
observation noise due to a relatively low sampling rate and location error [22,24,31,36]. With
the development of multimedia equipment, many transportation researchers have used
high-resolution images to extract vehicle trajectory data, and the high-resolution images are
from videos and cameras, which are installed on an unmanned aerial vehicle, a moving car
or transportation infrastructures. But the immature computer vision extraction techniques
in complex traffic environments (e.g., vehicles are obscured by buildings or bridges in some
images) cause some unexpected data in extracted vehicle trajectory data [1,2,32].

The Next Generation Simulation (NGSIM) program uses videos and cameras to collect
high-quality traffic datasets including vehicle trajectory data. It is a classic and publicly
available dataset to support research on microscopic traffic state estimation and driving
behavior. The paper uses the NGSIM dataset to test the proposed framework of vehicle tra-
jectory reconstruction. According to previous studies [9,13,26,37], outliers and observation
noise are common in trajectory data in the NGSIM dataset. The original data in NGSIM
have recorded 25 types of information, such as vehicle ID, global time, velocity, acceleration
and so on. Figure 1 presents the outliers and observation noises of the trajectory data of
vehicle 1882 in the I-80 data subset. The speed is the longitudinal instantaneous speed
obtained from the first derivative of the longitudinal position data.
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Figure 1. Longitudinal speed of vehicle 1882 in NGSIM dataset.

Figure 1 shows that the original trajectory data generally have outliers and noises.
The data points indicated by arrows are not much different from neighbor data, but the
change in speed has exceeded the limit of vehicle dynamic performance and range of the
body tolerance limit (−8 m/s2, 5 m/s2). These rapidly changing data are considered as
detection errors. The data points indicated by the rectangular are significantly different
from neighboring data. The values do not conform to the rule of vehicle operation. The
data from frames 518 to 522 are extracted to illustrate this problem in Table 1.

Table 1. Outliers between frames 518 to 522.

Sequence Number 518 519 520 521 522

Speed (m/s) 0 0 22.68 18.62 10.63

Table 1 shows that the data of frame 520 are much larger than the values of previous
frames. This kind of outlier occurs for two reasons: the vehicle in previous frames is not
recognized, and the value is accumulated from previous frames and the current frame. On
the other hand, the data drift when the collection equipment is interfered with by factors
such as signal occlusion. The outliers mainly exist in speed and acceleration and do not
conform to vehicle dynamic performance. The outliers and observation noises in the raw
NGSIM trajectory data will seriously hinder further research of the microscopic behavioral
algorithm for modeling and simulation. The paper proposes a Lagrange-interpolation-
based framework to deal with these outliers and observation noises.

3. Methodology
3.1. Method Framework for Vehicle Trajectory Reconstruction

The Lagrange-interpolation-based framework for vehicle trajectory reconstruction
integrates the discrete continuous wavelet transform, Lagrange interpolation and the
Kalman filter (Figure 2). The discrete continuous wavelet (DWT) is a domain analysis
method to detect outliers between speed and acceleration in time series. Fifth-degree and
cubic Lagrange interpolation polynomials are developed for reconstructing the outlier
between speed and acceleration after the outlier identification. It is noted that the red circle
in the chain represents the location of the outlier before and after repaired, blue circles
represent normal values in the chain, and white circles represent normal values outside
the data chain. Finally, the Kalman filter is used to reduce observation noise and obtain
smooth vehicle trajectories.
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3.2. Outlier Detection

The DWT is a time–frequency domain analysis method of the signal compared with
the Fourier transform. It extracts time series features by frequency domain transformation
to reduce the dimension of feature space and make features more concentrated [38]. The
result of trajectory data is defined by Equations (1)–(3).

f (x) =
1√
M

∑
k

Wϕ(0, k)ϕ0,k(x) +
1√
M

∞

∑
j=0

∑
k

Wψ(j, k)ψj,k(x) (1)

ψj,k(x) = 2
j
2 ψ

(
2jx − k

)
(2)

DWT(j, k) =
〈

f (x), ψj,k(x)
〉

(3)

where f (x) is the original time domain signal; ϕ0,k(x) is the frequency domain function
with position coefficient k; and ψj,k(x) is the wavelet function with position coefficient
k and frequency coefficient j. Wϕ(0, k) is the approximation coefficient; Wψ(j, k) is the
detail coefficient.

DWT does not need computers to provide enough RAM in the calculation process
and directly discretize the data. According to the collected trajectory data, this paper uses
DWT based on the Symlet8 wavelet framework to identify outliers from neighbor data in
trajectory data.

3.3. Lagrange Interpolation

Re-estimating the corresponding position data after eliminating the outliers is neces-
sary. Using existing deep learning methods, it is difficult to reconstruct data adaptively and
reflect the relationship between independent variables and dependent variables accurately,
because the adaptive model is trained based on abnormal trajectory data. This paper finds
an approximate function p(xi) in a given interval to obtain the expected results. It is defined
by Equation (4).

p(xi) = f (xi)i = 0, 1, 2, · · · , n (4)

where xi is the value of ith points in the interval [0, n], and f (xi) is the truth function.
It is noted that the expected values are different when different interpolation functions

are selected, according to different bases and constraints in linear space. Lagrange inter-
polation is a special polynomial interpolation method for solving a class of polynomial
problems with given point values. It can choose appropriate estimation scales based on the
different characteristics of the data, compared with the mean interpolation method [39].
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Equation (5) shows how the method is used to re-estimate the removed outliers of speeds
and accelerations at any time.

Ln(x) =
n

∑
j=0

yjlj(x) =
n

∑
j=0

yj

n

∏
i = 0
i ̸= j

x − xi
xj − xi

(5)

where lj(x) is the Lagrange interpolation basis function of degree n.
After outliers are identified and eliminated, the method re-estimates the value of any

position within a given interval based on n + 1 different interpolation points. The paper
uses a number of data to construct an approximate function and obtain optimal parameters
with the least given adjacent data, and the data called a data chain (Figure 3) contain
outliers and twenty neighbor data.
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The paper uses the adjacent data in data chains to construct a Lagrange interpolation
polynomial and performs a lot of experiments to re-estimate outliers. It finds that the re-
estimated speed values obtained from the fifth-degree Lagrange interpolation polynomial
are the closest to the empirical vehicle trajectory data, and the convergence calculation of
the method takes less time. It is noted that there must be at least three data points on both
sides of a data chain when establishing the polynomial. If there are less than thirteen data
points between two outliers, the method should merge two neighbor chains into one chain.
When there are less than three data points outside the chain, this paper discusses two cases:
(1) When there is at least one data point at the boundary of the chain, the neighbor data
can be obtained from the other side of the chain to supplement data. (2) When there are no
data points at the boundary of the chain, the chain should be deleted. Compared with the
abnormal speed, the acceleration has less impact on the neighbor data, the paper finds that
the cubic Lagrange interpolation polynomial is more suitable for re-estimating acceleration.

3.4. Filter Denoising

Noise data impact data analysis and calculation. The Kalman filter is used to estimate
the state of a dynamic system according to the joint distribution of observed data at different
times [40]. Compared with the single observation estimation method, it establishes a
state space model for discrete stochastic systems through state equations and observation
equations. The method can be defined by Equations (6) and (7).

x(t + 1) = Φx(t) + Bu(t) + Γw(t) (6)

y(t) = Hx(t) + v(t) (7)

where x(t) is the vector of the state system; y(t) is the vector of the observation system;
Φ, B, Γ and H represent, respectively, the state transition matrix, control coefficient matrix,
input noise coefficient matrix and observation coefficient matrix; u(t) is input control,
initially set to be 0; w(t) is input white noise; and v(t) is observation noise.
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Kalman filtering removes noise through the prediction and update stages. The filter
uses the estimated values of the previous state to obtain the prediction values of the current
state in the prediction stage. The prediction formulas are defined by Equations (8) and (9).

x̂(t)− = Φx̂(t − 1) (8)

P(t)− = ΦP(t − 1)ΦT + Q (9)

where ∧ represents the predicted value; − represents the prior value; P(t) is the estimation
error covariance, and Q is the variance matrix of the process noise.

The values of the observation update are calculated with the current observed values
and the predicted values from the prediction stage to obtain more accurate estimated values
in the update stage. The update formulas are defined by Equations (10) and (11).

K(t) = P(t)−HT
(

HP(T)−HT + R
)−1

(10)

x̂(t) = x̂(t)− + K(t)
(

y(t)− Hx̂(t)−
)

(11)

P(t) = (I − K(t)H)P(t)− (12)

where K(t) is Kalman gain, and R is the variance matrix of the observation noise.
The paper uses Kalman filtering to repeat every time in order to denoise and make the

initial value of the state estimate equal to the initial value in the previous step (Figure 4).
The prediction formulas are used to predict the values at each time, and then the update
formulas optimize the estimated values.
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4. Results

DWT based on the Symlet8 wavelet framework was used to identify outliers with a
judgment threshold. The judgment threshold is [−8 m/s2, 5 m/s2] in the limit value of
human body bearing and vehicle dynamic performance. The outlier detection formula is
defined by Equation (13).

Sz
j = µj ± z × σj (13)

where Sz
j is the limit of drift data; µj is mean value; σj is standard deviation; z is the

coefficient of standard deviation, and it is taken as 1.96 under the 95% confidence interval.
The identification and re-estimation results of the proposed method are shown in

Figure 5. The frequency spectrum deeply analyzes the characteristics of the data source
system and determines whether there is noise in the vehicle trajectory data.

Figure 5 shows that the wavelet transform based on Symlet8 has better performance in
the recognition of outliers. Figure 5b shows that only 4.14% of the acceleration exceeded the
limit of human body bearing and vehicle dynamic performance. The re-estimated trajectory
data are more gentle than raw data. However, there are still data with frequencies greater
than 2 Hz in Figure 5c. It is necessary to reduce the noise interference in the trajectory data.
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The Kalman filter is used to reduce noise interference. The noise covariance is set to a
constant. The initial value of estimation error covariance P(0) is 1. It can avoid the value of
state estimation always being equal to the initial value. In order to determine the optimal
filter parameters, this paper establishes the optimal filter parameter model. It is defined by
Equations (14)–(16).

[Q, R] = f
(

Rsignalenergy, acceleration
)

(14)

S.T.



min(Rsignalenergy ≥ 95%)

|acceleration| ≤ 5m/s2

{Q, R} ⊆ T

T = {0.01, 0.02, 0.03, · · · , 1}

(15)

Rsignalenergy =
∑|x(t)|2f iltered

∑|x(t)|2original

× 100% (16)

where Rsignalenergy represents the signal energy ratio; x(t)original and x(t) f iltered are the state
values before and after filtering, respectively. The Q and R are in the interval [0, 1] and
increase at intervals of 0.01.

The values of Q and R are 0.05 and 0.15 by iterative calculation. The results of
denoising are shown in Figure 6.

Figure 6 shows that the speed of the trajectory data is smoother, and the acceleration
value is within the limits. Figure 6c shows that the amplitude of data frequency is less than
1 Hz. The Kalman filter is a recursive filter used to estimate the state of a dynamic system,
such as a traffic system or power system. It uses a series of measurements to produce an
estimate that is closer to the true state than any individual measurement and can better
adapt the geometric curve function input of the Lagrange interpolation polynomial in the
processing of vehicle trajectory reconstruction. In order to demonstrate that the Kalman
filter has better denoising results in vehicle trajectory reconstruction, the paper compares
the denoising results among the different variants of filters, such as the Savitzky–Golay
(S-G) filter, symmetric exponential moving average (SEMA) filter and extended Kalman
filter (EKF).
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Figure 7 shows that the Kalman filter is more sensitive to the observation noise and
reduces the error of the re-estimation data in the trajectory data, compared with SEMA
and EKF, such as the speed point at the 37th second (see Figure 7a) and the acceleration at
the 26th second (see Figure 7b). The S-G filter can greatly remove the noise in the vehicle
trajectory (see Figure 7c) but causes excessive denoising in some data.
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5. Discussion

This paper uses the 1942nd trajectory in the NGSIM dataset to repair outliers and
denoise, compared with the baseline method proposed by Montanino [37]. And it uses three
indexes (root mean square error (RMSE), signal-to-noise ratio (SNR) and Pearson correlation
coefficient (P)) to demonstrate that the proposed method has good reconstruction results.
The three measurements are defined by Equations (17)–(19).

RMSE =

√√√√ 1
N

N

∑
i=1

(
Si − Ŝi

)2

(17)

SNR = 10 log


N
∑

i=1
Si

2

N
∑

i=1

(
Si − Ŝi

)2

 (18)

P =

N
∑

i=1

(
Si − Si

)(
Ŝi − Ŝl

)
N
∑

i=1

(
Si − Si

)2 N
∑

i=1

(
Ŝi − Ŝl

) (19)

where Si is the empirical vehicle trajectory data [41]; Ŝi is the reconstructed trajectory data;
Si and Ŝl denote the average of the empirical vehicle trajectory data and the reconstructed
trajectory data, respectively; and N is the length of trajectory data.

This paper calculates the three measurements (RMSE, SNR and P) between the baseline
method and the proposed method. The results are shown in Table 2.

Table 2. Comparison of the measurements obtained by the two frameworks.

Index Baseline Method Proposed Method

RMSE
Position 0.05 0.035
Speed 0.08 0.05

Acceleration 0.43 0.13

SNR
Position 75.13 79.22
Speed 36.8 44.7

Acceleration 8.4 12.8

P
Position 1.00 1.00
Speed 1.00 1.00

Acceleration 0.77 0.967

Table 2 shows that the RMSE of the proposed method is smaller than that of the
baseline method. The SNR is greater than that of the baseline method. It shows that this
proposed method retains more trajectory information and denoises better. By calculating the
average increase percentage of the measurements, it finds that the RMSE of this proposed
method is reduced by 45.76%, the SNR is increased by 26.43%, and the P is increased by
25.58% compared with the baseline method.

It is observed that the results of the proposed method are better than those of the
baseline framework in Figure 8. The paper uses the acceleration distribution of trajectory
data to analyze the acceleration and its proportion. The acceleration distributions among
the proposed method, the baseline method and the original trajectory are shown in Figure 9.

Figure 9 shows that acceleration of more than 10% in original data is greater than
±9 m/s2. It exceeds the human body bearing limit. The acceleration of the baseline method
is more than 20% outside the range of ±5 m/s2, and that of the proposed method is in the
range of [−3 m/s2, 3 m/s2].
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Figure 9. The acceleration distribution: (a) distribution between raw data and repaired data by using
the proposed method; (b) distribution between raw data and repaired data by using baseline method.

The jerk value is the derivative value of acceleration. It indicates the change degree of
acceleration in unit time. It is used to analyze whether trajectory reconstruction results are
within the limitation of vehicle dynamic and driver driving behavior. The main indexes
include the percentage of jerks that are greater than ±15 m/s3, the maximum jerk value,
the minimum jerk value, and the percentage that the jerk symbol changes more than once
in one second (N). The results are shown in Table 3.

Table 3 shows that the percentage of jerks that are greater than ±15 m/s3 is 22.93%
in the original track; the reconstruction results of the baseline method and the proposed
method are 0.04% and 0.03%, respectively. The extreme jerks in the proposed paper are
[−13.26 m/s3, 16.83 m/s3]. They are much smaller than the processing results of the
original data and the baseline method. The N of the proposed method is 7.49%, compared
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with 13.65% of the baseline framework. It clearly shows that the proposed method has
better performance in reconstruction trajectory data.

Table 3. Jerk analysis of trajectory reconstruction results.

Index Original Trajectory Baseline Method Proposed Method

Jerk is greater than
±15 m/s3(%)

mean value 22.93 0.04 0.03
standard deviation 11.22 0.05 0.23

range [4.70, 69.23] [0.00, 1.75] [0.00, 4.32]

Maximum jerk
mean value 832.16 33.14 16.83

standard deviation 712.33 36.21 13.36
range [36.33, 8326.91] [3.96, 193.63] [0.93, 169.65]

Minimum jerk
mean value −978.62 −42.12 −13.26

standard deviation 1021.36 25.69 6.74
range [−8795.41, −36.85] [−121.16, −65.36] [−86.52, −1.36]

N
mean value 56.32 13.65 7.49

standard deviation 9.32 7.41 6.34
range [42.75, 63.26] [22.69, 43.77] [12.34, 37.69]

6. Conclusions

This paper analyzes the existence of outliers and observation noise in the vehicle
trajectory data and proposes a processing framework for vehicle trajectory reconstruction.
The framework integrates the discrete continuous wavelet transform, Lagrange interpo-
lation and the Kalman filter to identify outliers, re-estimate value after the outliers are
eliminated and reduce observation noise in time series. Lagrange polynomial interpolation
can be flexibly selected according to the number of trajectory points, which improves the
migration of the algorithm. The Kalman filter method with optimized filtering parameters
has better results compared with other filters. The proposed method is compared with a
baseline method on the NGSIM dataset, and the results indicate that (1) the RMSE obtained
by using the proposed method is 45.76% lower than that obtained by using the baseline
method. (2) The SNR obtained by using the proposed method is 26.43%. (3) The advantage
of the method in terms of the SNR is the largest when Q = 0.05 and R = 0.15. (4) The Pearson
correlation coefficient obtained by using the proposed method is 25.58%.

At least three interesting directions can be explored in further studies. Firstly, com-
pared to the trajectory reconstruction based on a geometric curve function, a methodology
based on deep learning (such as autoencoders, reinforcement learning, self-supervised
learning) could be explored. Secondly, the adaptability of trajectory reconstruction methods
should be further verified under complex road conditions. Finally, it is very interesting to
combine trajectory reconstruction with urban-delivery route optimization for driverless
delivery vehicles.
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