
R E S E A R CH A R T I C L E

Predicting stream water temperature with artificial neural
networks based on open-access data

Konstantina Drainas1 | Lisa Kaule2 | Stefanie Mohr3 | Bhumika Uniyal4 |

Romy Wild1 | Juergen Geist1

1Aquatic Systems Biology, TUM School of Life

Sciences, Technical University of Munich,

Freising, Germany

2Department of Hydrology, Bayreuth Center

of Ecology and Environmental Research

(BayCEER), University of Bayreuth, Bayreuth,

Germany

3Foundations of Software Reliability and

Theoretical Computer Science, TUM School of

Computation, Information and Technology,

Garching, Germany

4Professorship of Ecological Services,

Bayreuth Center of Ecology and

Environmental Research (BayCEER), University

of Bayreuth, Bayreuth, Germany

Correspondence

Juergen Geist, Aquatic Systems Biology, TUM

School of Life Sciences, Technical University

of Munich, Freising, Germany.

Email: geist@tum.de

Funding information

Bayerisches Staatsministerium für

Wissenschaft und Kunst; Deutsche

Forschungsgemeinschaft, Grant/Award

Number: GRK 2428

Abstract

Predictions of stream water temperature are an important tool for assessing potential

impacts of climate warming on aquatic ecosystems and for prioritizing targeted adap-

tation and mitigation measures. Since predictions require reliable baseline data, we

assessed whether open-access data can serve as a suitable resource for accurate and

reliable water temperature prediction using artificial neural networks (ANNs). For this

purpose, we trained and tested ANNs in 16 small (≤1m3

s ) headwater streams of major

types located in Bavaria, Germany. Between four and eight different combinations of

input parameters were trained and tested for each stream ANN, based on data avail-

ability. These were air temperature (mean, minimum and maximum), day of the year,

discharge, water level and sunshine duration per day. We found that the input combi-

nation with the highest accuracy (lowest RMSE) was stream-specific, suggesting that

the optimal input combination cannot be generalized across streams. Using a reason-

able, but random, input combination resulted in an increase in error (RMSE) of up to

>100% compared to the stream-specific optimal combination. Hence, we conclude

that the accuracy of water temperature prediction strongly depends on the availabil-

ity of open-access input data. We also found that environmental parameters such as

hydrological characteristics and the proportion of land use in the 5m riparian strip

and the entire catchment are important drivers, affecting the accuracy and reliability

of ANNs. ANNs' prediction accuracy was strongly negatively related to river length,

total catchment area and water level. High proportions of semi-natural and forested

land cover correlated with a higher accuracy, while open-canopy land use types such

as grassland were negatively associated with ANN accuracy. In conclusion, open-

access data were found to be suitable for accurate and reliable predictions of water

temperature using ANNs. However, we recommend incorporating stream-specific

environmental information and tailor the combination of input parameters to individ-

ual streams in order to obtain optimal results.
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1 | INTRODUCTION

With rising atmospheric temperatures, climate change affects stream

water temperatures due to the well-established relationship between air

and water temperature (Crisp & Howson, 1982; Kothandaraman &

Evans, 1972; Mohseni & Stefan, 1999; Webb et al., 2003). This is of par-

ticular relevance in small headwater streams, where the relatively low

mean stream depth is highly influenced by surface energy fluxes (Leach

et al., 2023), which are correlated with air temperature (e.g. solar radia-

tion). Moreover, headwater areas govern processes further downstream

and their coldwater spots provide important refugia for coldwater-

dependent species in light of climatic change (Kuhn et al., 2021). Stream

water temperature is naturally regulated by various drivers: meteorologi-

cal (air temperature and net radiation), hydro(geo)logical (discharge and

groundwater inflow), hydromorphological (stream width and depth), and

vegetational, the latter determining shading and evapotranspiration.

There are a number of anthropogenic activities that influence variables

such as discharge and flow variation, the proportion of surfaces ren-

dered impervious by urbanization, changes in ice cover, and thermal pol-

lution, which can additionally affect the water's thermal properties and

natural temperature regimes on a large spatial scale (Caldwell

et al., 2015; Nelson & Palmer, 2007). As one of the most common forms

of anthropogenic disturbance to ecosystems, land use plays a key role in

water temperature regulation, for example due to the partitioning of

precipitation into infiltration and surface runoff, which affects water

regimes on a (sub-)catchment scale.

Since temperature is the most crucial determinant of abiotic and

biotic processes, further anticipated changes in stream water temper-

ature due to global warming and other human impacts are expected

to have substantial effects on aquatic ecosystems (Smith, 1981). This

not only includes a decreased saturation concentration of oxygen trig-

gered by global warming (Piatka et al., 2021), but also changes in vis-

cosity, vapour pressure, density, and surface tension (Caissie, 2006).

Additionally, temperature controls a wide range of biological pro-

cesses, such as the decomposition rate of organic matter, species

composition in aquatic communities, biotic interactions, and energy

transfer in aquatic food webs (Woodward et al., 2010). The rapid pace

of global warming (IPCC, 2022) creates a need for more detailed pre-

dictions of future water temperatures in streams. These are urgently

required to enable an assessment of the potential impacts of climate

warming on the abiotic stream environment and the consequences for

biological communities. An understanding of this is also key to target-

ing and prioritizing mitigation and adaptation measures.

The importance of predicting stream water temperatures is reflected

by the variety of approaches that have already been tested. As stated in

Rabi et al. (2015), water temperature prediction models can generally be

divided into two major categories: deterministic and statistical. Statistical

models are in turn differentiated into parametric and non-parametric ones

(for definitions, see e.g. Rabi et al. (2015) or Benyahya et al. (2007)). The

availability of data for deterministic models, such as SHADE (Chen

et al., 1998) or CEQUEAU (St-Hilaire et al., 2000), is problematic, as many

variables are required for catchment and thermal representations, along

with complete time series for discharge and meteorological parameters.

While parametric statistical models have much lower data requirements

and are simple to use, their structure is specified from the start and hence

not flexibly adjustable to the data (Benyahya et al., 2007). This limitation

can lead to incorrect water temperature predictions when using linear

regression, a technique often applied to describe the relationship between

air and water temperature (Ahmadi-Nedushan et al., 2007; Crisp &

Howson, 1982; Harvey et al., 2011; Krider et al., 2013; Rabi et al., 2015;

Smith, 1981; Webb et al., 2003). At elevated and low air temperatures,

physical effects lead to non-linearity (Mohseni & Stefan, 1999), which is

beyond the limits of linear regression analysis.

In attempting to deal with the above challenges, the non-parametric

statistical approach of Artificial Neural Networks (ANNs) is increasingly

popular and has displayed equal or even higher accuracy (as evident

from RMSE) than the majority of deterministic and parametric statistical

models (Chenard & Caissie, 2008; Feigl et al., 2021; Hadzima-Nyarko

et al., 2014; Pilgrim et al., 1998; Piotrowski et al., 2015; Rabi

et al., 2015; Zhu et al., 2019,b,c). To the best of our knowledge, the

smallest and hence best RMSE values reported for water temperature

prediction using ANNs ranged between 0.46�C (Zhu, Heddam, Nyarko,

et al., 2019) and 1.58�C (Hadzima-Nyarko et al., 2014). In the following,

we refer to this “state of the art” range as “sota-range”.
Besides performance, a major benefit of using ANNs compared to

deterministic models are the lower data requirements. While deter-

ministic models require large amounts of data for predictions of water

temperature, ANNs have already displayed good results with compa-

rably limited information. It is currently unknown which input parame-

ters produce optimal results, and so their selection varies in different

studies. While air temperature is a key input parameter, its format var-

ies greatly, as do the additional input parameters, particularly those

concerning the temporal resolution of the data. Several studies used

only daily mean air temperatures or once-a-day-measurements (Graf

et al., 2019; Hadzima-Nyarko et al., 2014; Qiu et al., 2020; Rabi

et al., 2015; Zhu et al., 2019,b), while others are based on daily mean,

minimum and maximum air temperatures (Chenard & Caissie, 2008;

Feigl et al., 2021; Piotrowski et al., 2015). Most studies used discharge

or water level (Chenard & Caissie, 2008; Feigl et al., 2021; Qiu

et al., 2020; Zhu et al., 2019,b,c) and/or the day of the year as an addi-

tional input (Chenard & Caissie, 2008; Feigl et al., 2021; Hadzima-

Nyarko et al., 2014; Qiu et al., 2020; Zhu et al., 2019,b,c), while only

one study additionally used global radiation (Feigl et al., 2021) and

one the declination of the sun (Piotrowski et al., 2015).

Various measures can be obtained to determine the quality of a

prediction, the most prominent one being accuracy. Accuracy is an indi-

cator of how exactly an ANN predicts the output in the context of train-

ing and testing. However, climate change and natural variability involve

data variations that ANNs might not be sufficiently capable of learning,

since data obtained for training and testing cannot be used to represent

future climatic developments. It is therefore not sufficient to rely solely

on accuracy to determine the suitability of an ANN for its task. For clas-

sification networks, there are several methods available that provide

more insight into the behaviour of ANNs (for examples, see Bach

et al., 2015; Baehrens et al., 2010; Erhan et al., 2009; Huang et al.,

2020; Simonyan et al., 2013; and Sundararajan et al., 2017). However,

the prediction of water temperature is not a classification but a regres-

sion problem. In the field of regression problems, Mohr et al. (2021), to
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the best of our knowledge, were the first to develop a methodology,

able to give insight into the behaviour of regression models and to mea-

sure their behaviour not only on the basis of accuracy calculations but

also as a means of examining reliability. Consequently, we included

these methods in our study to enable a more holistic picture of water

temperature ANN performance.

While determining accuracy and reliability is important for under-

standing how much trust can be placed in a prediction, these mea-

sures do not fully explain the disturbances found in the predictions.

Variations in environmental conditions and the land use form sur-

rounding streams are highly relevant for explaining the behaviour of

ANNs, how they are influenced by environmental factors, and which

conditions allow for a reasonable use of ANNs for predicting water

temperature.

Hence, in this study, we address whether it is possible to train

accurate and reliable ANNs based on open-access data for small

(≤1m3

s ) headwater streams in Bavaria, Germany. Additionally, we

address whether an optimal combination of input parameters exists

and whether these combinations are unique for each stream or can be

generalized across streams. To confine the range of environmental

conditions in which ANNs can be optimally applied, we studied how

environmental parameters such as stream length, hydrological charac-

teristics and proportion of land use types affect ANN accuracy. We

hypothesized that open-access data suffices to predict water temper-

ature in small headwater streams with an RMSE in the sota-range. We

also hypothesized that the accuracy and reliability of ANNs are influ-

enced by both the input combinations and the environmental parame-

ters of the streams, which would make the optimal input combination

stream-specific.

2 | MATERIALS AND METHODS

2.1 | Study sites

For this study, we investigated 16 streams in major eco-regions of dif-

ferent geological origins throughout Bavaria, Germany. Figure 1

shows the locations of the gauging stations by Gewaesserkundlicher

Dienst Bayern (abbr. GkD) for each stream. Figures 2 and 3 depict

water temperature time series that were available for each of the

16 gauging stations. We selected streams with a mean annual dis-

charge of ≤ 1m3

s , based on open-access data from GkD. Using this cri-

terion, we were able to focus on headwater streams, which are of

special interest since they also govern processes further downstream.

2.2 | Measures of model performance

To assess the ANNs' performance, we used three different accuracy

metrics as described in the following and three newly developed reli-

ability metrics from Mohr et al. (2021) as described in Appendix A.3.

Our aim was to prioritize the used accuracy metrics according to their

expressive power regarding the reliability of ANNs. Therefore, we

conducted correlation analysis (see description in Section 2.6.2) to

identify connections between accuracy and reliability metrics. In the

following, we describe the three used accuracy metrics and define

them in Formulas 1, 2, and 3.

RMSE: According to Moriasi et al. (2007), the root mean square

error (for RMSE, see Formula 1) is an error index commonly used in

the context of model evaluation. A value of 0 indicates a perfect fit.

We chose this metric since it is regularly used in the context of

water temperature predictions with ANNs and is intuitively well

understandable.

R: The Pearson's product–moment correlation coefficient (for R,

see Formula 2) describes the degree of collinearity between predicted

and observed data (Rabi et al., 2015). It ranges from �1 to 1, where

0 indicates no linear relationship and �1 or 1 indicate a linear relation-

ship. In this study, we aimed for a positive correlation between the

observed and predicted values that is, values close to +1.

As the RMSE, this metric is regularly used in the context of water

temperature prediction with ANNs but in the contrary does not show

the mean error, but the degree of collinearity.

PBIAS: According to Gupta et al. (1999) as cited in Moriasi et al.

(2007), the Percent bias (PBIAS, see Formula 3) shows whether the

predictions are, on average, over- or underestimated. A value of 0 indi-

cates a perfect fit, while positive values indicate underestimation and

negative ones indicate overestimation.

This metric is uncommon in the field of water temperature predic-

tion with ANNs but opens up a new perspective, since the direction

of prediction inaccuracies (over- or underestimation) is displayed. On

the contrary, the other two metrics concentrate, in general, on the

amount of difference between observation and prediction.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

X

n

i¼1

Oi�Pið Þ2
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P
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� �
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To define the evaluation metrics, we followed the notation by

Rabi et al. (2015), where Pi is the ith predicted water temperature

value, Oi is the ith observed water temperature value, P is the average

of Pi , O is the average of Oi and n is the size of the dataset.

2.3 | Input

The data basis for the ANNs consisted of open-access data supplied

by the GkD and Germany's National Meteorological Service (DWD).

The data used for each stream consisted of the daily mean water tem-

peratures (�C), daily discharges (Q, m3/s) and daily mean water levels
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(L, cm), as obtained from each of the GkD gauging stations. Addition-

ally, the daily minimum, maximum and mean air temperatures (T, �C)

and the daily sunshine durations (S, defined by DWD as duration of

direct solar radiation at a given location) were derived from the two

closest DWD gauging stations for each stream. All data sets carried a

time stamp, which we recalculated to obtain the day of year (D) as

a continuous number. To improve the learning of our ANNs, we

employed data normalization, which is a common technique used in

machine learning (Han et al., 2011).

We trained and tested all ANNs by inputting data taken from four

consecutive days, with the predicted fourth day's daily mean water

temperature as the output. This amount of days was found to lead to

F IGURE 1 Location of GkD gauging stations throughout Bavaria, Germany.
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a better accuracy compared to ANNs with the input of 1, 2, 3, or

5 consecutive days at a case study in the Bavarian headwater catch-

ment Mähringsbach (Drainas, 2020).

Since not all data were measured continuously, we chose

time periods for each stream during which all the input

parameters were available (except for Scheine and Soellbach, for

which no sunshine data was available). The data used for each

stream, the DWD stations used for each GkD gauging station,

and the distances between them are presented in Appendix A.4

in Table A2.

F IGURE 2 Water temperature time series (I). (a) Abens. (b) Attel. (c) Aubach. (d) Aurach. (e) Bernauer Ache. (f) Grosse Ohe. (g) Illach. (h) Kirnach.
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To test the suitability of the different input parameters, we

trained and tested ANNs with all possible combinations of input

parameters for each stream. However, we rejected any combination

with no air temperature or date (Mohseni & Stefan, 1999; Zhu,

Nyarko, Hadzima-Nyarko, et al., 2019). We used the following com-

binations (names indicate the input parameters as abbreviated

above): DT, DTS, DTQ, DTL, DTQS, DTLQ, DTLS and allinputs

(DTQLS).

F IGURE 3 Water temperature time series (II). (a) Kleine Vils, (b) Otterbach. (c) Prien. (d) Scheine. (e) Soellbach. (f) Sulzbach. (g) Wiesent.
(h) Wolnzach.
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2.4 | The modelling approach: Artificial Neural
Networks

ANNs are a machine learning approach that is inspired by biological

nervous systems (da Silva et al., 2017). They can create output infor-

mation (in this study water temperature) based on given input

information (in this study different input combinations). To do so, they

need to learn the relationship between in- and output, for which

they need to be trained. Hereby the ANNs have access to the input as

well as to the output data and iteratively learn to predict the output

based on the input. After the training, the ANNs' ability to predict the

output is tested by only presenting the input and comparing the pre-

dicted output to the actual output information. In this study, this com-

parison was conducted by calculating the RMSE.

For the distribution into training and testing phase, the given dataset

needs to be divided into a training and a testing dataset. In this study,

this was done randomly in a ratio of 90% (training) to 10% (testing) as it

is default for an established library (see Appendix A.2 for details).

For this study, we trained and tested nine ANNs for each of the

14 waterbodies, for which all input parameters were available. Addi-

tionally, we trained four ANNs for Scheine and four for Soellbach

(no sunshine duration available), resulting in a total of 136 ANNs. The

ANNs were determined by using search methods from the scikit-learn

Python package (Pedregosa et al., 2011) (for a description of the

search methods, see Appendix A.1). Optimization was based on

the calculated root mean square error (RMSE), which we also

employed in this work as an accuracy metric (see Formula 1).

2.5 | Examination of environmental parameters

To determine the influence of the environmental parameters on the pre-

diction accuracy of ANNs, we examined the environmental parameters

of two different spatial scales for which an influence can be expected.

For that, we used ArcGIS software to create riparian strips upstream of

the 16 catchment outlets flanking 5 m left and right (measured from the

middle of the stream) of the entire stream length (in the following

referred to as “5 m riparian strip”). This width was chosen to capture

the direct impact of the landuse on the stream, e.g. in the form of shad-

ing. We obtained the stream geometry and catchment spatial maps as

input data from the Bavarian Environmental Agency (LfU) and used it to

extract various catchment characteristics. Once we had extracted the

spatial area of the riparian strips, we intersected the Corine Land Cover

(CLC) map (European Union, 2021) with shape files representing the

riparian strip and whole catchment area (in the following referred to as

“entire catchment resolution”) to integrate land use information. The

CLC map comprises an inventory of land cover in 44 classes. CLC uses a

minimum mapping unit (MMU) of 25 ha for areal phenomena and a min-

imum width of 100 m for linear phenomena. The MMU for mapping

CLC status layers is 25 ha. This means that no objects of less than 25 ha

can be present in the database; they are generalized into a neighbouring

feature, resulting in >25 ha polygons. Additionally, the minimum map-

ping width (MMW) of linear elements is 100 m, which means that no

objects (e.g., roads, rivers) of less than 100 m width are present in the

database.

2.6 | Statistical data analysis

2.6.1 | Environmental dataset

To determine which environmental and land use variables were linked

to ANN accuracy and reliability, we assembled an environmental data

set which describes the features of the assessed streams on two spa-

tial scales: the entire catchment and the 5 m riparian zone of the

stream banks. The data set included the following environmental

F IGURE 4 distLM-Eval-Eval-plot.
Resemblance: D1 Euclidian distance.
Strong correlation of RMSE and R
along dbRDA axis 1, discrimination of
streams by PBIAS on dbRDA axis
2. Input parameters: D, day of the
year; T, air temperature; Q,
discharge; L, water level; S, sunshine
duration; DTQLS, allinputs; R; PBIAS,

evaluation metrics as defined in
Formulas 1, 2, 3.
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parameters for the entire catchment resolution: total length of all trib-

utaries merging into the final river branch (total river length); the

length of the longest river branch of the catchment (longest river

length); proportion of land use type in the catchment (agriculture, for-

est, grassland, semi-natural land use, urban and water surfaces); total

catchment size; hydrologic parameters calculated over the entire mea-

surement time span, namely mean water level (MW), highest

measured water level (HW), lowest measured water level (NW), mean

discharge (MQ) and highest measured discharge (HQ); the number of

tributaries (tributaries); the number of days for which data was used

(DOD); the number of input data points per output data point (IPO);

the distance between the GkD station and the closest DWD station

(Dist1) and between the GkD station and the second closest DWD

station (Dist2).

Regarding the resolution of the 5 m riparian strip, only the land

use variables were provided, along with the total riparian strip area.

In Appendix A.4, the description and results of a principal compo-

nent analysis (PCA) are presented, showing the distribution of the

16 stream sites along the different environmental gradients captured

in our environmental dataset.

2.6.2 | Correlation analysis

To determine connections between the prediction accuracy and the

environmental parameters, we conducted correlation analysis. For this,

we used the calculated accuracy metrics (RMSE, R and PBIAS) for each

input combination and each waterbody, once for the entire catchment

and once for the 5 m riparian strip resolution. First, we used the

Shapiro–Wilk test to examine whether our datasets were normally dis-

tributed. We then tested the distribution both for each input combina-

tion separately and for each environmental parameter. We then

conducted tests to examine the correlation between each input combi-

nation and each environmental parameter. If both datasets were nor-

mally distributed, we used Pearson product moment correlation.

Otherwise, if one or both of the datasets was not normally distributed,

we used Spearman rank-order correlation. To visualize the rho and corr

values, we created heatmaps. We conducted all steps of the correla-

tion analysis with RStudio (RStudio Team, 2022; Warnes et al., 2020).

Additionally, we conducted correlation analysis to find connec-

tions between reliability and accuracy to assess which accuracy metric

is most suitable for displaying the reliability of an ANN's predictions.

Details are described in Appendix A.5.

2.6.3 | Distance-based linear model

As a multivariate approach, we used distance based Linear Model

(DistLM), which is based on a procedure called “distance based redun-

dancy analysis” (dbRDA) (Legendre & Anderson, 1999) and imple-

ments a routine that analyses and models the relationship between a

multivariate resemblance matrix and a set of given predictor variables.

DistLM is applied as a multivariate multiple regression that models the

explanatory significance of the environmental predictor variables via

partitioning of variation that facilitates permutation-based significance

testing. In our case, we first used the resemblance matrix of the

RMSE, R, and PBIAS values of all calculated ANN input combinations

and the same data as predictors, to reduce dimensionality. We chose

this combination of data, to investigate which of the accuracy metrics

and ANN input combinations explained most of the between-stream

variability and to identify any redundancy in the three accuracy met-

rics (Eval-predict). In a subsequent approach, we used the same

resemblance matrix but the environmental data set as predictor vari-

ables to determine the environmental variables that explain most of

the observed variations in the multivariate data set of accuracy met-

rics of different ANNs (Enviro-predict). For both approaches, we used

the DistLM function and redundancy analysis plots (dbRDA-plots) and

chose the step-wise method and Adjusted R2 for model comparison in

PRIMER v7 & PERMANOVA+ (Anderson et al., 2008).

3 | RESULTS

3.1 | Measures of model performance

To prioritize the use of the three different accuracy metrics applied in

this study, we evaluated which of them is most suitable to also display

the reliability of an ANN. Therefore, we conducted correlation analy-

sis between the accuracy and the reliability metrics (for detailed

results see Appendix B.2), which resulted in significant correlations

between two of the reliability metrics and the RMSE and one signifi-

cant correlation between reliability metrics and R and PBIAS each.

3.2 | Selection of ANNs and input parameters

The comparison of prediction accuracy of randomly searched ANNs

(see RandomizedSearch in Appendix A.1) for all different input combi-

nations (see Tables A3, A4, A5, and A6) showed that the optimal input

combination was different for each of the tested streams (see

Table 1).

The most frequently used combination of input parameters was

DTL (38% of all streams), followed by DTLQ (25% of all streams), allin-

puts (21%, if sunshine duration was available), DTQS (14%, if sunshine

duration was available) and DTQ (6% of all streams) (Table 2 top). The

combinations DT, DTS and DTLS were not selected as input combina-

tions with the greatest predictive power in any of the streams. Conse-

quently, the share of individual input parameters in the composition

of ANNs was as follows: day of the year and air temperature were

identified as input parameters in 100% of all streams, water level was

identified in 81% of all streams, discharge was identified in 63% of all

streams, and sunshine duration was identified in 36% of the streams

for which sunshine duration was available (Table 2 bottom). Using the

most accurate input combination for each stream based on the RMSE,

the RMSE values ranged between 0.373�C (Aubach) and 1.667�C

(Otterbach), R values ranged between 0.997 (Aubach) and 0.958

(Otterbach), and PBIAS values ranged between �0.767% (Kirnach)

and 0.112% (Prien). Comparing the input combinations with the
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highest accuracy according to the RMSE from each stream, with the

combinations of lowest accuracy, the error increased on average by

41% when a random input combination was used, compared to the

optimal combination, with a minimum of 5% (Otterbach) and a maxi-

mum of 102% (Scheine).

Given the number of ANNs and the accuracy metrics, a DistLM

(Eval-predict) was calculated to determine which of the accuracy met-

rics and ANN input combinations explained the majority of the

between-stream variability and to identify redundancy in accuracy

metrics. The RMSE and R values were strongly correlated along

dbRDA axis 1, implying that the accuracy of calculated ANNs was

very similarly reflected by these two metrics (Figure 4). Both allinputs-

ANNs of RMSE and R individually explained 58% of the total variabil-

ity in the dataset according to marginal testing, and the sequential

tests furthermore confirmed that the information of R and RMSE of

allinputs-ANNs was redundant, as only one of them was included in

the best-solution set of variables. However, the PBIAS values calcu-

lated on the basis of multiple input combinations were responsible for

approximately 35% of the remaining variability in the data set and dis-

tinctly discriminated streams on dbRDA axis 2, hence showing that

PBIAS provides information that cannot be substituted by the other

two used accuracy metrics, and even streams with high accuracy mea-

sures, as shown by the small RMSE or high R values, can be subject to

under- or overestimation in temperature predictions (Figure 4).

3.3 | ANN accuracy metrics

To determine connections between environmental parameters and

ANNs' accuracy, we conducted correlation analyses in the spatial

scales of entire catchment as well as 5 m riparian strip resolution.

3.3.1 | Entire catchment

With regard to the entire catchment resolution, we observed the most

statistically significant associations between accuracy metrics and

environmental parameters for RMSE (34), followed by R (16) and

PBIAS (6).

For RMSE (see Figure 5a), we detected significantly positive cor-

relations between all ANN input combinations and total river length

as well as between all ANN input combinations and the hydrologic

parameters MW and HW. Additionally, four ANN input combinations

correlated significantly positively with NW (DT, DTL, DTQ and DTLQ),

three ANN input combinations correlated significantly positively with

the longest river (DT, DTQ and DTLQ), and three ANN input combina-

tions correlated significantly positively with Dist1 (DTQ, DTQS,

DTLS). The R of all input combinations was significantly negatively

related to total river length and longest river length (Figure 6a). PBIAS

correlated significantly positively with total catchment area (DTLS)

and Dist1 (DT) and significantly negatively with DOD (DTLS and DTS)

and semi-natural land use (DTS) (Figure 7a).

3.3.2 | 5 m riparian strip

Significant associations between accuracy metrics and environmental

parameters in the 5 m riparian strip were most numerous for RMSE

(26), followed by R (21) and PBIAS (2). The RMSE values of all ANN

input combinations, with the exception of DTLS and DTS, were signif-

icantly positively correlated with total riparian strip area (Figure 5b).

Also, grassland was significantly positively associated with all ANN

input combinations except allinputs and DTQS. Semi-natural land use,

in contrast was significantly negatively correlated with RMSE values

TABLE 1 Evaluation of the most suitable ANN for each waterbody, as determined by RandomizedSearch.

Stream Inputs RMSE R PBIAS

Prien DTQS 0.733 0.969 0.112

Attel allinputs 0.453 0.995 0.004

Aubach DTLQ 0.373 0.997 0.033

Soellbach DTL 0.419 0.993 �0.090

Bernauer Ache DTLQ 0.586 0.988 �0.315

Kleine Vils DTL 0.535 0.997 �0.105

Illach allinputs 0.503 0.994 �0.136

Otterbach DTLQ 1.667 0.958 �0.248

Wiesent DTQS 0.623 0.985 0.158

Sulzbach DTLQ 0.736 0.990 �0.286

Abens allinputs 0.468 0.995 �0.084

Aurach DTL 1.301 0.969 �0.113

Scheine DTQ 0.920 0.980 �0.676

Grosse Ohe DTL 0.483 0.994 �0.344

Kirnach DTL 1.104 0.979 �0.767

Wolnzach DTL 0.476 0.988 �0.048

Note: Column titles: Stream, name of examined stream; Inputs, input combination used; RMSE, R, PBIAS, evaluation metrics as defined in Formulas 1,2,3.

Abbreviations: D, day of the year; DTQLS, allinputs; L, water level; Q, discharge; S, sunshine duration; T, air temperature.
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in DTLS, allinputs and DTQS. Also, the proportion of forest and water

surface in the riparian-strip area correlated negatively with RMSE

values.

Similarly, R values were significantly negatively related to the

total riparian strip area (all ANN combinations except DTS and DTLS),

negatively related to grassland (Figure 6b) and positively related to

semi-natural land use.

For PBIAS values (see Figure 7b), we only observed a significant

negative relationship with semi-natural land use (DT and DTS).

3.4 | Multivariate analysis of environmental
predictors of ANN accuracy metrics

To investigate which of the accuracy metrics and ANN input combina-

tions explained most of the between-stream variability and to identify

any redundancy in the three accuracy metrics, we conducted a

DistLM. We found that the 14 variables depicted in Figure 8

explained a total variation of R2 ¼0:99601, AdjustedR2 ¼0:94014.

60.5% of the 2-D configuration of the 12 streams was explained by

dbRDA axis 1 and 19.05% by dbRDA axis 2.

The DistLM's marginal tests indicated a significant relationship

between the multivariate configuration of the streams, based on the

three accuracy metrics (RMSE, R, PBIAS) with total river length

(prop = 0.35, p<0:01), longest river length (prop=0.28, p<0:01) and

Dist1 (prop=0.20, p<0:05). Total river length correlated with the

negative space of dbRDA axis 1, indicating that decreasing accuracy

in terms of RMSE and R (see Figure 8) was significantly correlated

with the total length of tributary streams. The streams exemplifying

this relationship were the Otterbach in the most negative space of

dbRDA axis 1, with a total river length of 41.43 km, contrasting the

Aubach with a total river length of 7.91 km, in the upper positive

space of dbRDA axis 1. On dbRDA axis 2, streams were mainly sep-

arated along a gradient of the parameters: longest river length,

Dist1, catchment area as well as proportions of grassland, semi-

natural land use and HW. Thus, when relating these findings to the

underlying configuration of accuracy metrics, environmental param-

eters on dbRDA axis 2 were positively associated with overestima-

tion (longest river length, Dist1, catchment area) or underestimation

(grassland, semi-natural land use and HW) of water temperature

prediction by ANNs.

4 | DISCUSSION

In line with our hypothesis, our results suggest that the accuracy and

reliability of ANNs' predictions for single streams are highly depen-

dent on input combination and environmental parameters. To under-

stand how environmental parameters affect ANNs' accuracy and

reliability, we analysed a broad range of environmental predictors,

showing that river length and water levels, the size of the catchment

and open-canopy land use types were particularly negatively associ-

ated with ANN accuracy in the streams we tested.

4.1 | Measures of model performance

To prioritize the use of the accuracy metrics RMSE, R, and PBIAS for

the evaluation of ANNs, we examined correlations between these

metrics and reliability metrics as established in Mohr et al. (2021). We

found, that not all accuracy metrics correlated significantly with all

reliability metrics, confirming the finding of Mohr et al. (2021), that

the use of accuracy metrics alone is insufficient and should be supple-

mented by reliability metrics.

TABLE 2 Top: Frequency of input combinations used for the best ANNs as depicted in Table 1. Bottom: Frequency of input parameters used
in input combinations in Top.

Input combination Frequency Percentage

DTL 6 of 16 38

DTLQ 4 of 16 25

allinputs 3 of 14 21

DTQS 2 of 14 14

DTQ 1 of 16 6

DT 0 of 16 0

DTLS 0 of 14 0

DTS 0 of 14 0

Input Parameter Frequency Percentage

Day of the year (D) 16 of 16 100

Air temperature (T) 16 of 16 100

Water level (L) 13 of 16 81

Discharge (Q) 10 of 16 63

Sunshine duration (S) 5 of 14 36

Note: Sunshine duration was only available for 14 streams.
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Still, we can conclude that as accuracy metric, the RMSE was the

most suitable one to reflect the reliability of an ANN, due to two sig-

nificant correlations with reliability metrics as opposed to one signifi-

cant correlation for R and PBIAS each. We also observed that the

RMSE had a greater resolution and hence contributed more significant

relationships with environmental parameters than R, probably because

it had a higher potential to reflect the high-resolution dynamics of

hydrologic parameters. This further confirmed the plausibility of its

F IGURE 5 (a) RMSE entire catchment; (b) RMSE 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive
as well as negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; T, air temperature;
Q, discharge; L, water level; S, sunshine duration; DTQLS, allinputs. Environmental parameters (y-axis): as described in Section 2.6.
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frequent use for measuring the accuracy of water temperature predic-

tion with ANNs (Ahmadi-Nedushan et al., 2007; Caissie et al., 1998;

Chenard & Caissie, 2008; Cho & Lee, 2012; Feigl et al., 2021; Graf

et al., 2019; Hadzima-Nyarko et al., 2014; Qiu et al., 2020; Quan

et al., 2020; Rabi et al., 2015; Rahmani et al., 2020; Rehana, 2019; St-

Hilaire et al., 2000; Zhu, Nyarko, Hadzima-Nyarko, et al., 2019).

We additionally employed PBIAS as an accuracy metric, which is

unusual for water temperature prediction with ANNs. Although we

saw advantages of including the PBIAS due to the different aspects of

model performance it highlights, in this study we were not able to find

any general significant correlations between the assessed environ-

mental parameters and the PBIAS. This might be because the PBIAS

F IGURE 6 (a) R entire catchment; (b) R 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive as well as
negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; DTQLS, allinputs; L, water level;
Q, discharge; S, sunshine duration; T, air temperature; Environmental parameters (y-axis): as described in Section 2.6.
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in general reflects variation in two directions, but in our study the

direction of estimation (over- or underestimation) did not necessarily

correlate with the examined environmental parameters in only one

direction. The overestimation was pronounced for Kirnach, a stream

with a very high proportion of grassland (72.58%) and a very low pro-

portion of semi-natural land cover (0.01%). In contrast, underestima-

tion of water temperature was pronounced for Aurach, a long stream

with a large catchment. These findings were also confirmed by the

F IGURE 7 (a) PBIAS entire catchment; (b) PBIAS 5 m riparian strip. Increasing intensity of red colour indicates increasing correlation (positive
as well as negative). Significance is marked with *p < 0.05 and **p < 0.01. Input parameters (x-axis): D, day of the year; DTQLS, allinputs; L, water
level; Q, discharge; S, sunshine duration; T, air temperature; Environmental parameters (y-axis): As described in Section 2.6.
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DistLM analysis of environmental predictors of evaluation metrics, in

which PBIAS/overestimation was associated with high proportions of

grassland, particularly in the 5 m riparian strip. Consequently, it would

be advisable to carefully check for both over- and underestimation of

water temperature prediction, particularly in catchments with high

proportions of open-canopy landscape.

4.2 | Input parameters

The most striking finding of this study was that the input combi-

nation with the highest accuracy was a stream-specific set of

input parameters, suggesting that the optimal input combination

cannot be generalized across streams. As important asset, this

study used a systematic procedure of training and testing ANNs

with different sets of input parameters, which provided us with

the opportunity to compare ANN accuracies within single

streams. While other studies like Feigl et al. (2021) previously

identified that the input combination has an effect on ANN per-

formance in general, our finding, that the optimal input combina-

tion is stream-specific, adds an important new insight to this field,

which can help to make stream water temperature predictions

more accurate in the future. As we were able to show, the error

in the prediction (RMSE) could increase to > 100% in a single

stream if a random input combination was used instead of the optimal

input combination. Even when using the allinputs combination, the

error increased by up to 34%, indicating that allinputs might be more

accurate than a random input combination, but still not as accurate as

if the combination was determined systematically. This result is in line

with the “explosion” of Myth #7 in Maier et al. (2023), where it is

stated that an increase in the number of input variables does not nec-

essarily improve model performance, but that these variables need to

be selected carefully. Clearly, the search for the optimal input combi-

nation is time consuming compared to a fixed procedure using a set of

pre-defined input variables. Hence, for supporting the application

of ANNs based on our results, we provide a flow chart to facilitate

decision-making along the process of water temperature prediction

with ANNs (see Figure 9).

Comparing the RMSE values from Table 1 to previous studies that

predicted water temperatures with ANNs (sota-range 0.46�C to

1.58�C), only one stream (Otterbach, RMSE = 1.667�C) had an RMSE

slightly higher than the sota-range. Further, 12 streams had an RMSE

within the sota-range and three streams had RMSE values even lower

than the sota-range, namely Attel (RMSE = 0.453�C), Aubach

(RMSE = 0.373�C), and Soellbach (RMSE = 0.419�C). To the best of

our knowledge, the RMSE values of Attel, Aubach and Soellbach were

the smallest ever reported for stream water temperature prediction

using ANNs.

F IGURE 8 distLM-Eval-Enviro-plot, Resemblance: D1 Euclidian distance, Correlation between total river length and negative space of dbRDA

axis 1, discrimination of streams by longest river length, Dist1, catchment area, proportions of grassland and semi-natural land use, and HW along
dbRDA axis 2. Environmental parameters: Total river length: Sum of lengths of all contributing rivers; Longest river length: Length of the longest
contributing river; Land use: agriculture, forest, grassland, semi-natural, urban, water; Catchment: Catchment size of all contributing catchments;
Area: Total buffer area; MW: Mean water level; HW: Highest measured water level; NW: Lowest measured water level; MQ: Mean discharge;
HQ: Highest measured discharge; Tributaries: Number of tributaries; DOD: Number of days for which data was used; IPO: Number of input data
points per output data point; Dist1: Distance between GkD station and DWD station 1; Dist2: Distance between GkD station and DWD station
2. Resolution: entire: Entire catchment; 5 m 5 m riparian strip.
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F IGURE 9 Flow chart with recommendations on stream-specific artificial neural network-development.
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Based on Zhu, Nyarko, Hadzima-Nyarko, et al. (2019), we

expected a minor role of discharge in explaining temperature, since

they state that discharge plays a minor role in stream water tempera-

ture prediction compared to the day of the year and that discharge's

importance increases for high-altitude catchments. Still, in all of the

streams of our study, the most accurate ANNs all had water level

and/or discharge as inputs. Unfortunately, Zhu, Nyarko, Hadzima-

Nyarko, et al. (2019) did not consider water level, which hinders direct

comparison with our results. Nevertheless, based on our results, we

suggest using at least one hydrologic input parameter for water tem-

perature prediction with ANNs, while we cannot generalize the rec-

ommendation to a specific hydrologic parameter, since this is highly

stream specific. Still, we conclude that no unique optimal input combi-

nation exists for each stream.

4.3 | Environmental influences on water
temperature prediction

Given the high specificity of input combinations we determined for

individual streams, it was a key interest of this study to identify

stream environmental conditions that govern the accuracy of ANNs.

In light of climate change, such knowledge is also highly relevant for

deducing mitigation and management strategies in streams related to

securing high oxygen concentrations (Piatka et al., 2021), endangered

fish populations (Wild et al., 2023), and temperature refuges (Kuhn

et al., 2021; Mejia et al., 2023). In contrast to existing approaches,

which mainly consider hyperparameter tuning and dataset length, the

associations between environmental parameters and ANN accuracy

allow a more mechanistic and realistic assessment of model applicabil-

ity at individual stream sites, as demonstrated for our datasets. Sev-

eral significant correlations between environmental parameters and

prediction accuracy of ANNs were identified, suggesting key influ-

ences of catchment hydrological variables.

Specifically, the accuracy of ANNs (RMSE and R) was strongly

related to total river and longest river length, total catchment area,

and the hydrological parameters MW, HW, and NW, indicating a

decrease in ANN accuracy with increasing river length, catchment

size, and water level.

Since stream water temperatures are defined by complex and

dynamic physico-chemical, hydrologic and atmospheric processes

and not solely based on air temperature (Caissie, 2006; Leach

et al., 2023), a possible explanation for the strong negative relation-

ship between ANN accuracy and river length and catchment area

could be the increase of air-temperature-unrelated complex influ-

ences along the flow path of streams. Beginning at the spring, the

water has a specific temperature, depending on its origin and the dis-

tance to its spring. As the stream water passes through the landscape,

energy exchange is influenced by advective fluxes like evaporation or

longitudinal changes in advection and radiation due to changes in veg-

etation (Coats & Jackson, 2020; Leach et al., 2023). Energy is added

by river bank and bed friction, and contact with the atmosphere

increases, as do the radiative fluxes (Dan Moore et al., 2005; Kuhn

et al., 2021; Webb et al., 2008). Hence, with increasing river length,

the potential number of complex influences increases and thus, the

accuracy of the water temperature predictions decreases. This is

especially pronounced for models like ANNs, which do not receive

additional information on catchment-size related variables but have to

learn in the context of local input parameters, measured at the gaug-

ing station.

As with river length and catchment size, higher levels of HW, NW

and MW were associated with a lower prediction accuracy (RMSE) of

ANNs. The relationship between extreme water levels (HW) and ANN

accuracy is due to difficulties in predicting the temperatures of water

sources entering the stream along its flowpath (e.g. groundwater,

hyporheic water, precipitation, anthropogenic water influxes

(Nelson & Palmer, 2007; Webb et al., 2008). During spates and

high-water events, these water sources contribute different

relative quantities to total water volume, and temperature mixing dur-

ing high water events is then presumably more difficult for ANNs to

predict. Additionally, it has been shown that air-water temperature

relationships are stronger and more sensitive for flows below median

levels (Webb et al., 2003), likely because high water levels lead to a

lower water-atmosphere interaction of the surface area compared to

total water volume, influencing radiation influx and sensible heat

transfer. As a result, depending on surrounding atmospheric tempera-

tures, energy fluxes are often easier to predict for smaller water vol-

umes, which explains the higher prediction accuracy for lower MW

and NW values of streams. Hence, the connection between increasing

water levels, in particular the HW values and decreasing accuracy in

water temperature prediction by ANNs, seems plausible and should

be considered when predicting water temperatures in streams during

periods of high water.

We found that the land use types semi-natural, forest and water

bodies had a positive effect on ANN accuracy. Further, our results

showed that high proportions of grassland in the 5 m riparian strip

(but not on the entire catchment resolution) correlated with decreas-

ing accuracy (RMSE) in water temperature prediction.

The land use surrounding a stream has a strong influence on its

temperature regime and humidity, which controls the water-

atmosphere interaction (Webb & Zhang, 1997). It can be assumed that

high proportions of grassland facilitated heat-induced evaporation,

which can lead to cooling effects especially during high temperature

phases (Ouellet & Caissie, 2023), inducing a paradoxical relationship

between air temperature (increasing) and water temperature (decreas-

ing). In low temperature phases, this effect is not induced, resulting in

an inconsistent relationship between air and water temperature,

hence potentially reducing the accuracy of water temperature predic-

tions based on air temperature data.

In general, open-canopy land use such as grassland involves

higher levels of radiation and heat fluxes due to a lack of shading and

temperature buffering through a micro-climate of complex riparian

vegetation. As solar radiation is the most important component of

heat transfer in streams (Webb & Zhang, 1997, 1999), accounting for
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70% of non-advective heat fluxes in a stream (Webb et al., 2008),

open-canopy land use forms are associated with higher air tempera-

tures and lower humidity, which can in turn result in more pro-

nounced temperature extremes and drought conditions in streams.

For example, Rutherford et al. (2004) and Ebersole et al. (2003) attrib-

uted a maximum temperature decrease of 4�C downstream of shaded

areas to the effect of riparian vegetation. In a simulation study, Wond-

zell et al. (2019) determined that shading through a mature forest can

account for a decrease of water temperature of 8�C. Johnson (2004)

quantified the net energy transfer in July in a stream in Oregon. Non-

shaded, the water temperature gained 580 W/m2, but fully shaded,

the stream's water lost 149 W/m2. Hoess et al. (2022) found that

shading by coniferous vegetation could even compensate for a tem-

perature increase caused by pond effluents. Also, without shading,

conduction between water and heated alluvial substrates is an often

underestimated process influencing stream water temperatures, par-

ticularly under forest harvest scenarios (Brown, 1969; Johnson &

Jones, 2000). Hence, riparian shading appears to be of paramount

importance for controlling and regulating stream water temperatures.

Our findings further demonstrated that for the prediction of water

temperatures using an air-water-temperature relationship, the land

use in the proximate riparian surroundings (in our case the 5 m ripar-

ian strip) seemed more important than the catchment's global land

use. Also, Kail et al. (2021) found that large trees in the 10 m riparian

strip are a better predictor of water temperature than the width of

riparian strips (in their case 30 m), due to the presence of large trees

that provided direct shade for the streams and hence cooled the

stream water highly effectively. As we showed that prediction accu-

racy (RMSE) was higher in streams with higher proportions of forest

and semi-natural land use (5 m riparian strip) and semi-natural land

use and water body area (entire catchment), it can be assumed that

riparian shade stabilizes water temperatures, hence facilitating more

accurate prediction, as water temperatures are likely more linearly

and consistently related to atmospheric temperatures. Also the pro-

portion of water bodies is likely related to prediction accuracy, due to

their temperature-buffering properties in the catchment. Our results

imply that larger proportions of open-canopy land use forms and the

associated higher radiation and low levels of shading can lead to high

levels of temperature variability, potentially hampering ANN accuracy

and reliability. Consequently, we advise greater caution when using

ANNs for streams in open-canopy landscapes.

5 | CONCLUSIONS

We conclude the following for water temperature prediction in

streams with ANNs, based on open-access data:

1. It is possible to use open-access data for water temperature pre-

dictions within the sota-range.

a. The use of open-access data, however, comes with the problem

that there is only a limited number of parameters. Hence, the

choice of streams for which the water temperature is to be

predicted is crucial for the accuracy and reliability of the

predictions.

b. For an optimal outcome, all available input parameters should

be tested for their suitability (see recommendations in

Figure 9).

2. If water temperature is to be predicted for a specific stream, it

might not be sufficient to use open-access data, especially if the

stream is characterized by specific environmental parameters,

which reduce the accuracy and reliability of water temperature

prediction.

3. If the ANN is intended to predict water temperature for a future

or past time with different climatic conditions compared to present

ones, not only the accuracy but also the reliability of the ANN

should be considered in the choice of architecture and input

parameters (see recommendations in Figure 9). If it is not possible

to test reliability, the RMSE is a good (but not in itself sufficient)

predictor of ANN reliability and should hence be used.

Our findings highlight that water temperature predictions are

more accurate and reliable in headwater streams closer to their

source, especially if adjacent land use comprises forests and natural

riparian vegetation that lack anthropogenic influences. The finding

that ANN prediction accuracy is distinctly compromised by distur-

bances in the riparian cover, which commonly accumulate along a

river's course, leads us to conclude that the lower ANN accuracy

reflects the increasing disturbances in the air-water-temperature

relationship. We propose that measures of ANN accuracy, as a proxy

for an inconsistent air-water-temperature relationship, could even

be used to indicate a functional and resilient water temperature

regime in headwater streams. Given the importance of small head-

water streams and spring ecosystems as refuges and highly special-

ized environments that feature a broad width of unique and

sensitive species requiring special protection (Cantonati et al., 2012;

Richardson, 2019), ANN accuracy measures could serve as an indica-

tive tool to identify, evaluate and monitor headwater streams with

regard to their temperature integrity and to support decision making

regarding where and how to best protect these unique environ-

ments. Further, this research highlights that anthropogenic and, spe-

cifically, land-use-derived disturbances along stream ecosystems

affect stream water temperatures and will consequently exacerbate

the climate-change-associated warming of stream water. We have

therefore added highly relevant information to the use of ANNs to

predict stream water temperatures. In combination with climate

change projections, ANNs could prove to be a cost-efficient and

invaluable resource for decision makers to use when assessing future

developments in stream water temperatures, aiding the evaluation

and prioritization of restoration, renaturation and adaptation mea-

sures in streams.
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APPENDIX

A | Additional information on Materials and Methods

A.1 | Searching algorithms Scikit-learn

Our results were obtained using RandomizedSearch, which, given dif-

ferent options, optimized the architecture and hyperparameter combi-

nation of the ANNs for each individual input combination and

waterbody.

RandomizedSearch certainly delivers a lower search quality

than GridSearch, since it only determines local optima, unlike

GridSearch, which delivers global optima. Still, as the ANN accu-

racy in our study demonstrated no weakness, in contrast to the

results in the literature, we can support the use of Randomized-

Search, since it requires considerably less computing power and

time. It is important to note, however, that even better results

for the RMSE might be obtained with GridSearch and so it may

be worth investing more time if fewer streams and less data

needs to be processed or the time and capacity investment does

not play a relevant role.

Difference between RandomizedSearch and GridSearch: While in

RandomizedSearch, random sets of hyperparameters are used and

tested, GridSearch tests all possible hyperparameter combinations

systematically. The process can be accelerated by preselecting hyper-

parameters to reduce the total number of hyperparameter combina-

tions. Of course, this again reduces the power of the search. In

conclusion we suggest not using GridSearch if time and/or computing

power are limited (see Figure 9).

A.2 | Results of RandomizedSearch

Using scikit-learn's RandomizedSearch, we determined an ANN with

the hyperparameter combination leading to the lowest RMSE, for

each waterbody and input combination. The RMSE values for all

ANNs determined by RandomizedSearch are presented in Figure A1,

according to waterbody. Figure A2 shows the same information but

sorted by input combination. In Tables A3, A4, A5, and A6, these

results are sorted by waterbody. The tables show which input combi-

nation for each stream reached what accuracy measures based on

which hyperparameter combination. The abbreviations stand for the

hyperparameters as indicated in the table below.

These combinations were attained by preselecting values for each

hyperparameter based on prior experience. As stated above, preselec-

tion can reduce the power of the search, so we recommend including

as many values as possible.

A.3 | Reliability of ANNs

Since common accuracy metrics only consider the differences

between observed and predicted values, they are not suitable for

assessing the reliability of the ANN, especially when it comes to

changes in the database as expected for climate change scenarios.

Hence, we also applied the reliability methodology as established in

Mohr et al. (2021) on ANNs with the allinputs input combination, as

determined by GridSearch.

A.3.1. | Perturbation analysis

Due to climate change, input variables will change in the future,

e.g. air temperatures will rise. Since the training and testing datasets

are retrieved from the past and cannot display future developments

properly, a thorough analysis regarding changes in the input data is

Abbr. Solver Maximum iterations Learning rate Learning Layers Activation function

loc lbfgs 100 000 0.0001 adaptive 5,20 logistic

rec lbfgs 100 000 0.0001 constant 80,20,5 relu

tac lbfgs 100 000 0.001 adaptive 80,10,5 tanh

werec adam 100 000 0.01 constant 160,80,10 relu

wtac adam 100 000 0.0001 adaptive 20 160,40 tanh

wtac2 lbfgs 100 000 0.0001 invscaling 80,10 tanh
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essential for the assessment of a model's reliability. In this study, we

applied perturbation analysis to simulate changes in the input vari-

ables. For that, we perturbed every input value except the date by

0.01 (normalized) and evaluated the changes in the mean output. This

reliability method is similar to accuracy metrics (comparison of

observed vs. predicted data) but differs in that the input is changed.

A.3.2. | MinMax analysis

To consider how reasonable an ANN works regarding its predictions,

it is useful to know the range of prediction values that the ANN can

display. Therefore, we used MinMax analysis, where we chose ran-

dom input values between 0 and 1 (normalized) to identify the opera-

tional range of each ANN. We optimized the initially chosen input and

repeated the method 10 times for each ANN for the minimum

and 10 times for the maximum value, respectively.

A.3.3. | Impact analysis

While the reaction of the ANN to perturbations and its operational

range already give a good overview of its reliability, the so-called

Impact Analysis, which is a method similar to sensitivity analysis

(Zurada et al., 1994), can be used to determine which input the ANN

is sensitive to, or, more specifically in our case, can be used to mea-

sure the importance of each input feature by determining its contribu-

tion to the water temperature calculation. With this information, it

can be assessed whether single input parameters are weighted unrea-

sonably high or low and hence predictions of future scenarios might

not be reliable.

A.4 | Principal component analysis

To assess the environmental variables used to distinguish between

the 16 assessed streams, we applied a principal component analysis

(PCA) based on the normalized environmental variables that we com-

piled in the environmental dataset. The PCA and all subsequent multi-

variate analyses were calculated with the statistical software PRIMER

v7 & PERMANOVA+ (Anderson et al., 2008).

A.5 | Correlation analysis

A.5.1. | Reliability metrics

As described for the accuracy metrics above, we also conducted a cor-

relation analysis of the reliability metrics. To do this, we correlated all

the environmental parameters of both resolutions (entire catchment

F IGURE A1 RMSE values for all input combinations per waterbody.
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F IGURE A2 RMSE values for all streams per input combination. Input parameters: D, day of the year; DTQLS, allinputs; L, Water level,
Q, discharge; S, sunshine duration; T, air temperature.

TABLE A1 Environmental parameter
for distLM I.

Stream Catchment Longest river length MW HW NW MQ HQ

Prien 52.82 15.15 0.24 220 3 1.70 128.00

Attel 66.14 11.01 0.28 188 10 1.00 24.70

Aubach 13.74 7.91 0.31 197 12 0.40 31.70

Söllbach 24.12 13.15 0.19 173 6 1.08 44.10

Bernauer Ache 36.53 8.80 0.48 215 29 0.80 37.10

Kleine Vils 43.25 9.55 0.51 229 25 0.97 55.90

Illach 25.09 19.99 0.50 225 34 0.79 24.90

Otterbach 91.74 22.79 0.89 235 70 0.83 32.10

Wiesent 135.38 14.46 1.34 195 110 1.05 6.88

Sulzbach 34.69 7.18 1.21 315 103 0.26 12.10

Abens 144.49 19.48 0.33 299 20 0.91 43.60

Aurach 123.59 28.20 1.37 278 110 0.66 20.20

Scheine 63.81 12.22 1.40 316 117 0.41 24.30

Große Ohe 18.70 5.15 0.44 165 19 0.60 23.80

Kirnach 25.31 21.15 0.35 223 10 0.77 49.50

Wolnzach 75.99 13.25 0.21 88 17 0.40 2.90

Note: Catchment, size of catchment (km2); HQ, highest water discharge over entire period (m3/s); HW,

highest water level over entire period (cm); Longest river length, length of longest contributing river (km);

MQ, mean water discharge over entire period (m3/s); MW, mean water level over total period (m); NW,

lowest water level over total period (cm); Stream, name of examined stream.
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and 5 m riparian strip) with the mean perturbation values as well as

with the results of the MinMax analysis that is, the minimum possible

values and the maximum possible values for the ANN with the allin-

puts combination for each stream.

A.5.2. | Accuracy versus reliability metrics

Finally, we conducted a correlation analysis between the accuracy

metrics RMSE, R, and PBIAS and the reliability metrics mean perturba-

tion, minimum of MinMax analysis and maximum of MinMax analysis,

to determine whether and to what extent the accuracy and reliability

metrics agree with and/or complement each other.

B | Additional information on Results

B.1. | Assessment of ANNs

Impact analysis: The mean importance, as an indicator of the con-

tribution of individual parameters for water temperature predic-

tion, showed that the impact of individual input parameters

strongly varied among streams (Figure B1). Calculating the mean

over all streams, we observed that the water level of the current

day (L) was the most important, with a value of 14%, followed by

the mean air temperature of the closest DWD station of the cur-

rent day (mean_St1), with a value of 11%. The greatest individual

importance value of 35% was determined for the mean air tempera-

ture of the closest DWD station for the current day (mean_St1) at

Grosse Ohe, for the water level of the current day (L) at Prien, and for

the water level 3 days before the current day (L:3) at Sulzbach. On the

other hand, we observed that for all streams, the sunshine duration (S)

for the current and the previous days had no impact (0%), contradict-

ing the findings of the accuracy metrics, in which some streams

displayed the highest accuracy when S was included as input

parameter.

MinMax analysis: MinMax analysis was applied to define the spe-

cific limits of water temperature prediction for each stream. For this

analysis, values between 0 and 1 (normalized) were randomly recom-

bined to identify the ANN's minimum and maximum water tempera-

ture predictions for each stream. The results of the MinMax analysis

were in line with the above results, showing that the maximum and

minimum range of the calculated values varied strongly depending on

the stream's specifics.

Observed water temperature minima (0.34 ± 1.10�C) and

maxima (19.55 ± 2.50�C) in the dataset differed from calculated

minima (�11.96 ± 12.06�C) and maxima (74.05 ± 27.34�C). The

mean delta (observed values minus calculated value) for the mini-

mum values was 12.30 ± 11.88�C, with a maximum delta of

40.64�C (Sulzbach) and a minimum of 0.09�C (Kleine Vils). The

mean delta for the maximum values was �54.50 ± 26.23�C with a

maximum of �10.67�C (Wiesent) and a minimum of �106.89�C

(Kirnach) (see Figure B2).

TABLE A2 Environmental parameter
for distLM II.

Stream Gauging station DOD IPO Stations Distances (km)

Abens Mainburg 3782 32 02410 j 05404 19.69 j 27.67
Attel Assling 1821 40 01103 j 04261 12.12 j 15.73
Aubach Au 2593 40 04261 j 03679 14.53 j 24.45
Aurach Rothaurach 883 40 04280 j 03668 4.56 j 29.13
BernauerAche Bernau 4815 40 00856 j 05941 13.90 j 17.13
GrosseOhe Taferlruck 4169 40 05800 j 01832 16.23 j 28.12
Illach Engen 1904 32 00125 j 15555 12.17 j 28.56
Kirnach Unterthingau 1012 40 15 555 j 02559 12.73 j 14.15
KleineVils Dietelskirchen 4355 40 13 710 j 03366 10.76 j 26.78
Otterbach Hammermuehle 8742 40 04104 j 04559 10.99 j 30.10
Prien Aschau 3505 40 05941 j 04261 15.84 j 18.01
Scheine Scheinfeld 996 36 01107 j 05149 21.55 j 21.82
Soellbach BadWiessee 2162 36 02319 j 03679 20.06 j 33.67
Sulzbach Koesfeld 4381 40 00867 j 07428 3.25 j 15.31
Wiesent Hollfeld 2379 40 00320 j 00282 16.76 j 27.33
Wolnzach Wolnzach 817 32 02410 j 05404 13.56 j 22.86

Abbreviations: Distances (km), distances between GkD gauging station and DWD station; DOD, number

indicating how many days served as data basis for training and testing; Gauging station, name of GkD

gauging station from which water temperature, discharge and water level were obtained; IPO, maximum

number of input values per output value; Stations, DWD stations from which air temperature data was

used, bold indicates that sunshine duration was available (value from closer station preferred if possible);

if no station is indicated in bold, no sunshine duration was available; Stream: name of stream

investigated.
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TABLE A3 Results of randomized
search for Prien, Attel, Aubach and
Soellbach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Prien allinputs rec 0.738 0.969 �0.111 0.938

Prien DT loc 0.940 0.949 �0.042 0.900

Prien DTQ loc 0.816 0.962 0.411 0.924

Prien DTQS rec 0.733 0.969 0.112 0.939

Prien DTL rec 0.737 0.969 0.237 0.938

Prien DTLQ wtac2 0.824 0.962 0.290 0.923

Prien DTLS rec 0.747 0.968 0.074 0.937

Prien DTS werec 0.962 0.946 �0.345 0.895

Mean 0.812 0.962 0.078 0.924

SD 0.087 0.009 0.227 0.017

Var 0.008 0.000 0.051 0.000

Attel allinputs rec 0.453 0.995 0.004 0.991

Attel DT loc 0.596 0.992 0.071 0.984

Attel DTQ tac 0.498 0.994 0.103 0.989

Attel DTQS rec 0.547 0.993 0.000 0.986

Attel DTL rec 0.464 0.995 0.108 0.990

Attel DTLQ tac 0.462 0.995 �0.127 0.990

Attel DTLS rec 0.546 0.993 0.158 0.986

Attel DTS tac 0.862 0.984 0.110 0.966

mean 0.554 0.993 0.053 0.985

SD 0.126 0.004 0.085 0.008

Var 0.016 0.000 0.007 0.000

Aubach allinputs rec 0.412 0.996 0.256 0.992

Aubach DT rec 0.415 0.996 0.314 0.992

Aubach DTQ tac 0.413 0.996 0.282 0.992

Aubach DTQS tac 0.443 0.995 0.272 0.991

Aubach DTL tac 0.385 0.997 0.163 0.993

Aubach DTLQ tac 0.373 0.997 0.033 0.994

Aubach DTLS loc 0.559 0.993 �0.066 0.986

Aubach DTS tac 0.416 0.996 0.424 0.992

mean 0.427 0.996 0.210 0.991

SD 0.054 0.001 0.149 0.002

Var 0.003 0.000 0.022 0.000

Soellbach DT rec 0.533 0.989 �0.183 0.977

Soellbach DTQ tac 0.437 0.992 �0.003 0.985

Soellbach DTL wtac2 0.419 0.993 �0.090 0.986

Soellbach DTLQ rec 0.433 0.992 �0.093 0.985

Mean 0.455 0.992 �0.079 0.983

SD 0.045 0.002 0.072 0.003

Var 0.002 0.000 0.005 0.000
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TABLE A4 Results of randomized
search for Bernauer Ache, Kleine Vils,
Illach and Otterbach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Bernauer Ache allinputs loc 0.616 0.986 �0.350 0.973

Bernauer Ache DT tac 0.784 0.978 �0.731 0.956

Bernauer Ache DTQ tac 0.637 0.986 �0.378 0.971

Bernauer Ache DTQS rec 0.641 0.985 �0.310 0.971

Bernauer Ache DTL loc 0.634 0.986 �0.458 0.971

Bernauer Ache DTLQ tac 0.586 0.988 �0.315 0.976

Bernauer Ache DTLS rec 0.653 0.985 �0.562 0.970

Bernauer Ache DTS loc 0.787 0.978 �0.570 0.956

mean 0.667 0.984 �0.459 0.968

SD 0.071 0.004 0.140 0.007

Var 0.005 0.000 0.020 0.000

Kleine Vils allinputs loc 0.555 0.997 0.152 0.993

Kleine Vils DT tac 0.632 0.996 �0.077 0.991

Kleine Vils DTQ rec 0.555 0.997 �0.025 0.993

Kleine Vils DTQS rec 0.564 0.997 �0.081 0.993

Kleine Vils DTL tac 0.535 0.997 �0.105 0.994

Kleine Vils DTLQ tac 0.552 0.997 �0.126 0.993

Kleine Vils DTLS tac 0.572 0.997 �0.131 0.993

Kleine Vils DTS tac 0.640 0.996 �0.178 0.991

mean 0.576 0.996 �0.071 0.993

SD 0.036 0.000 0.094 0.001

Var 0.001 0.000 0.009 0.000

Illach allinputs loc 0.503 0.994 �0.136 0.989

Illach DT loc 0.721 0.988 �0.559 0.977

Illach DTQ rec 0.592 0.992 �0.659 0.984

Illach DTQS rec 0.633 0.991 �0.470 0.982

Illach DTL tac 0.567 0.993 �0.026 0.986

Illach DTLQ rec 0.622 0.991 �0.091 0.983

Illach DTLS rec 0.560 0.993 �0.310 0.986

Illach DTS rec 0.737 0.988 �0.967 0.976

mean 0.617 0.991 �0.402 0.983

SD 0.075 0.002 0.302 0.004

Var 0.006 0.000 0.091 0.000

Otterbach allinputs rec 1.693 0.957 �0.254 0.915

Otterbach DT rec 1.704 0.956 �0.295 0.914

Otterbach DTQ werec 1.730 0.955 �1.134 0.912

Otterbach DTQS werec 1.713 0.956 �0.889 0.913

Otterbach DTL rec 1.700 0.956 �0.160 0.915

Otterbach DTLQ rec 1.667 0.958 �0.248 0.918

Otterbach DTLS werec 1.714 0.956 0.069 0.913

Otterbach DTS werec 1.747 0.954 0.369 0.910

mean 1.708 0.956 �0.318 0.914

SD 0.023 0.001 0.454 0.002

Var 0.001 0.000 0.206 0.000
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TABLE A5 Results of randomized
search for Wiesent, Sulzbach, Abens and
Aurach, for explanations see Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Wiesent allinputs rec 0.626 0.985 �0.060 0.970

Wiesent DT rec 0.798 0.976 0.076 0.951

Wiesent DTQ tac 0.637 0.985 0.077 0.969

Wiesent DTQS rec 0.623 0.985 0.158 0.970

Wiesent DTL tac 0.633 0.985 0.297 0.969

Wiesent DTLQ tac 0.625 0.985 0.153 0.970

Wiesent DTLS rec 0.624 0.985 �0.003 0.970

Wiesent DTS rec 0.778 0.977 �0.249 0.954

mean 0.668 0.983 0.056 0.965

SD 0.070 0.004 0.154 0.008

Var 0.005 0.000 0.024 0.000

Sulzbach allinputs rec 0.774 0.989 �0.176 0.978

Sulzbach DT rec 0.861 0.986 �0.380 0.972

Sulzbach DTQ rec 0.776 0.989 �0.309 0.977

Sulzbach DTQS tac 0.861 0.986 �0.424 0.972

Sulzbach DTL tac 0.770 0.989 �0.320 0.978

Sulzbach DTLQ tac 0.736 0.990 �0.286 0.980

Sulzbach DTLS rec 0.766 0.989 �0.310 0.978

Sulzbach DTS loc 0.863 0.986 �0.380 0.972

mean 0.801 0.988 �0.323 0.976

SD 0.049 0.001 0.071 0.003

Var 0.002 0.000 0.005 0.000

Abens allinputs tac 0.468 0.995 �0.084 0.990

Abens DT loc 0.670 0.990 0.081 0.980

Abens DTQ wtac2 0.512 0.994 0.094 0.988

Abens DTQS rec 0.496 0.994 �0.040 0.989

Abens DTL wtac2 0.474 0.995 0.135 0.990

Abens DTLQ rec 0.585 0.992 �0.045 0.984

Abens DTLS tac 0.471 0.995 �0.046 0.990

Abens DTS rec 0.623 0.991 0.045 0.982

mean 0.537 0.993 0.017 0.987

SD 0.073 0.002 0.076 0.004

Var 0.005 0.000 0.006 0.000

Aurach allinputs rec 1.464 0.961 0.507 0.924

Aurach DT rec 1.388 0.965 �0.082 0.931

Aurach DTQ rec 1.549 0.957 1.075 0.914

Aurach DTQS rec 1.756 0.944 0.877 0.890

Aurach DTL rec 1.301 0.969 �0.113 0.940

Aurach DTLQ rec 1.436 0.963 0.498 0.926

Aurach DTLS rec 1.609 0.954 0.912 0.908

Aurach DTS rec 1.355 0.967 0.632 0.934

mean 1.482 0.960 0.538 0.921

SD 0.140 0.008 0.413 0.015

Var 0.019 0.000 0.170 0.000
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TABLE A6 Results of randomized
search for Scheine, Grosse Ohe, Kirnach
and Wolnzach, for explanations see
Section A.2.

Waterbody Inputs Hyperparameter RMSE R PBIAS NSE

Scheine DT rec 1.449 0.949 0.948 0.900

Scheine DTQ rec 0.920 0.980 �0.676 0.960

Scheine DTL rec 0.947 0.978 �0.078 0.957

Scheine DTLQ rec 1.857 0.921 �1.687 0.836

mean 1.193 0.964 �0.191 0.927

SD 0.328 0.020 0.816 0.042

Var 0.108 0.000 0.666 0.002

Grosse Ohe allinputs rec 0.506 0.993 �0.440 0.987

Grosse Ohe DT tac 0.607 0.990 �0.603 0.981

Grosse Ohe DTQ wtac2 0.488 0.994 �0.517 0.988

Grosse Ohe DTQS loc 0.509 0.993 �0.561 0.986

Grosse Ohe DTL tac 0.483 0.994 �0.344 0.988

Grosse Ohe DTLQ tac 0.508 0.993 �0.297 0.987

Grosse Ohe DTLS rec 0.508 0.993 �0.309 0.986

Grosse Ohe DTS loc 0.566 0.992 �0.651 0.983

mean 0.522 0.993 �0.465 0.986

SD 0.040 0.001 0.129 0.002

Var 0.002 0.000 0.017 0.000

Kirnach allinputs rec 1.479 0.964 �1.794 0.926

Kirnach DT rec 1.348 0.969 0.074 0.939

Kirnach DTQ rec 1.453 0.964 �0.792 0.929

Kirnach DTQS rec 1.378 0.968 �1.317 0.936

Kirnach DTL rec 1.104 0.979 �0.767 0.959

Kirnach DTLQ loc 1.188 0.976 �1.093 0.952

Kirnach DTLS rec 1.273 0.972 �0.184 0.945

Kirnach DTS werec 1.755 0.947 �0.482 0.896

mean 1.372 0.967 �0.794 0.935

SD 0.187 0.009 0.569 0.018

Var 0.035 0.000 0.323 0.000

Wolnzach allinputs rec 0.528 0.985 0.426 0.970

Wolnzach DT rec 0.554 0.983 0.182 0.967

Wolnzach DTQ loc 0.508 0.987 0.659 0.972

Wolnzach DTQS rec 0.638 0.979 0.066 0.956

Wolnzach DTL rec 0.476 0.988 �0.048 0.976

Wolnzach DTLQ rec 0.558 0.983 0.005 0.966

Wolnzach DTLS rec 0.596 0.981 0.778 0.962

Wolnzach DTS rec 0.543 0.984 0.305 0.968

mean 0.550 0.984 0.297 0.967

SD 0.047 0.003 0.285 0.006

Var 0.002 0.000 0.081 0.000
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Perturbation analysis: We applied perturbation analysis to test the

degree to which the ANNs' predictions changed when historical input

data varied by 0.01 (normalized). The mean perturbation value over all

streams was 2.620 ± 2.109�C, with the highest mean perturbation

observed in Otterbach (9.981�C) and the lowest in Wolnzach (0.985�C).

B.2. | Relationship between accuracy and reliability metrics

Correlation analysis (see Table B1) resulted in one highly significant

correlation between RMSE and mean perturbation (ρ¼0:853,

p<0:001) and three significant correlations: between R and mean per-

turbation (ρ¼�0:599, p<0:05), between RMSE and MinMax-max

(ρ¼0:538, p<0:05) and between PBIAS and MinMax-max

(ρ¼�0:582, p<0:05). There were no significant correlations between

any of the accuracy metrics and MinMax-Min.

B.3. | Environmental characteristics of sites

The PCA of environmental conditions across the streams (Figure B3)

showed that the 16 sites were broadly distributed along multiple envi-

ronmental gradients. The first PC axis, covering 26.8% of the observed

variation (Eigenvalue = 6.44), structured streams primarily according to

the proportion of natural and forested vegetation and water bodies in

their surroundings. It exemplifies that the streams Grosse Ohe, Soell-

bach and Bernauer Ache feature a higher share of natural vegetation

than such streams as the Scheine, Kleine Vils or Sulzbach. Also hydro-

logical features of the streams investigated, such as NW and HW, were

reflected by PC1, with streams in the negative space of PC1 tending to

have higher mean and high water levels than those in the positive space.

The second PC axis, making up 16.6% of the observed variation in the

data set (Eigenvalue = 3.98), grouped streams largely according to the

proportion of agricultural and urban land use (with a high share, for

example, along Sulzbach andWolnzach and a low share in Kirnach, Prien

and Illach), while the proportion of grassland in the surroundings and

the total length of the river upstream from the sampling site grouped

streams in the opposite direction. Detailed proportions of land use are

depicted in Table C1. Further information on environmental parameters

is depicted in Tables A1 and A2.

B.4. | Environmental predictors of ANN reliability metrics

Regarding the overall catchment resolution (Table B2 top), we deter-

mined a significantly positive correlation between mean perturbation

F IGURE B1 Impact analysis for all input parameters in each stream. Inputs on x-axis indexed as below. Whiskers mark 95% confidence
intervals and bars mark mean importance for each input. St indicates the station from which air temperature was received (St1 = DWD station
closest to GkD gauging station, St2 = DWD station second-closest to GkD gauging station). The “addendum.No” indicates how many days prior
to D the data is from (0.1 = the day before D, 0.2 = 2 days before D, 0.3 = 3 days before D). Input values: D, day of the year; L, water level; max,
maximum air temperature; mean, mean air temperature; min, minimum air temperature; Q, discharge; S, sunshine duration.
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and HW (r¼0:67, p<0:01) as well as a significantly negative relation-

ship between the minimum values of the MinMax analysis and DOD

(r¼�0:60, p<0:05) and between the maximum values of the MinMax

analysis and semi-natural (r¼�0:55, p<0:05). For the 5m riparian

strip resolution (see Table B2 bottom), there was a significantly posi-

tive correlation between mean perturbation and grassland (r¼0:52,

p<0:05) as well as between the minimum values of the MinMax anal-

ysis and grassland (r¼0:50, p< 0:05).

C. | Additional information on the Discussion

C.1. | Accuracy and reliability

Not all accuracy vs. reliability metrics correlated significantly. This

confirmed the finding of Mohr et al. (2021), that the use of accuracy

metrics alone is not sufficient and must be supplemented with reli-

ability metrics. Still, we can conclude that as accuracy metric, the

RMSE is the most suitable one of those we used to reflect the reli-

ability of an ANN. We are able to conclude this thanks to the signifi-

cant correlations both to mean perturbation and to the maximum

values obtained in the MinMax analysis, while only one significant

correlation was demonstrated for R and PBIAS, respectively. We

also observed that the RMSE had a greater resolution and hence

contributed more significant relationships with environmental

parameters than R, probably because it had a higher potential to

reflect the high-resolution dynamics of hydrologic parameters. This

further increased the benefit of the RMSE and confirms the plausi-

bility of its frequent use for measuring the accuracy of water tem-

perature prediction with ANNs (Ahmadi-Nedushan et al., 2007;

Caissie et al., 1998; Chenard & Caissie, 2008; Cho & Lee, 2012;

Feigl et al., 2021; Graf et al., 2019; Hadzima-Nyarko et al., 2014;

Qiu et al., 2020; Quan et al., 2020; Rabi et al., 2015; Rahmani

et al., 2020; Rehana, 2019; St-Hilaire et al., 2000; Zhu, Nyarko,

Hadzima-Nyarko, et al., 2019).

In this study, we additionally employed PBIAS as an accuracy

metric, which is unusual for water temperature prediction with

ANNs. Although we see advantages in combining different accuracy

metrics and including the PBIAS due to the different aspects of

model performance it highlights, in this study we were not able to

find any general correlations between the environmental parameters

F IGURE B2 Comparison of calculated and observed minimum and maximum values for all waterbodies. Calculated values were determined
by MinMax analysis, observed values were retrieved from the datasets.

TABLE B1 Correlations between evaluation and assessment metrics.

RMSE R PBIAS

Mean perturbation 0.853*** �0.600* �0.185

MinMax_min �0.053 0.157 �0.091

MinMax_max 0.538* �0.213 �0.582*

*p < 0.05; **p < 0.01; ***p < 0.001.
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F IGURE B3 Principal component
analysis plot, all stream sites broadly
distributed along multiple environmental
gradients. Streams structured by PC axis
1 mainly according to the proportion of
natural and forested vegetation and
waterbodies in their surroundings, as well
as by NW and HW. Structure by PC axis
2 mainly according to proportion of

agricultural and urban land use.

TABLE B2 Correlation analysis of environmental parameters versus robustness measures, entire catchment and 5 m riparian strip.

Perturbation Min Max

Entire catchment

Total river length 0.406 �0.141 0.191

Longest river length 0.344 0.238 0.413

Agriculture 0.020 0.065 �0.128

Forest 0.003 0.000 �0.178

Grassland 0.456 0.026 0.426

Semi-natural �0.328 �0.081 �0.546*

Urban 0.068 0.135 �0.074

Water �0.140 0.084 �0.028

Catchment 0.044 0.221 �0.326

MW 0.421 �0.259 0.459

HW 0.671** �0.191 0.495

NW 0.250 �0.225 0.268

MQ �0.041 0.321 �0.289

HQ 0.279 0.115 0.147

DOD 0.038 �0.588* �0.171

IPO �0.050 �0.442 �0.070

Dist1 0.397 0.265 0.408

Dist2 0.121 0.024 0.283

Tributaries 0.324 �0.112 0.094

5 m riparian strip

Total river length 0.406 �0.141 0.191

Longest river length 0.344 0.238 0.203

Agriculture 0.037 0.197 �0.009
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and the PBIAS. This might be because the PBIAS reflects variation in

two directions, but the direction of estimation (over- or underestima-

tion) does not necessarily correlate with an environmental parameter

in only one direction. Even though the PBIAS showed no consistent

trends in the correlation analysis with either environmental parame-

ters or reliability metrics, the significant correlation between the

PBIAS and the maximum values of the MinMax analysis showed that

with increasing MinMax-max values, the ANNs tended to overesti-

mate water temperature. This overestimation was pronounced for

Kirnach, a stream with a very high proportion of grassland (72.58%)

and a very low proportion of semi-natural land cover (0.01%). In con-

trast, underestimation of water temperature was pronounced for

Aurach, a long stream with a large catchment. These findings were

also confirmed by the DistLM analysis of environmental predictors of

evaluation metrics, in which PBIAS/overestimation was associated

with high proportions of grassland, particularly in the 5 m riparian

strip. Consequently, it would be advisable to carefully check for both

over- and underestimation of the water temperature prediction, par-

ticularly in catchments with high proportions of open-canopy land-

scape (Figures C1–C6).

TABLE B2 (Continued)

Perturbation Min Max

Forest �0.421 �0.026 �0.309

Grassland 0.521* 0.001 0.498*

Semi-natural �0.365 �0.091 �0.220

Urban �0.162 0.110 �0.415

Water �0.140 0.084 �0.028

Area 0.341 �0.074 0.097

Abbreviations: Agriculture, forest, grassland, semi-natural, urban, water: land use; Area, total area of riparian strip; Area, total buffer area; Catchment, Total

size of all contributing catchments; D, Day of the year; Dist1, distance between GkD station and DWD station 1; Dist2, distance between GkD station and

DWD station 2; DOD, number of days for which data was used; DTQLS, allinputs; HQ, highest measured discharge; HW, highest measured water level;

IPO, number of input data points per output data point; L, water level; Longest river length, the length of the longest contributing river; Max, maximum

determined by MinMax-analysis; Min, minimum determined by MinMax-analysis; MQ, mean discharge; MW, mean water level; NW, lowest measured

water level; Perturbation, mean perturbation determined by perturbation analysis; Q, discharge; S, sunshine duration; T, air temperature; Total river length,

sum of lengths of all contributing rivers; Tributaries, number of tributaries.

*p < 0.05; **p < 0.01; ***p < 0.001.
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TABLE C1 Land use in entire catchment and in 5 m riparian strip.

Stream Total river length Agriculture Forest Grassland Semi-natural Urban Water

Prien 15.15 x 70.91 12.03 14.98 2.09 x

Attel 11.01 21.03 30.81 37.74 1.04 9.38 x

Aubach 7.91 x 34.30 63.92 x 1.79 x

Soellbach 13.15 x 77.92 1.62 18.58 1.83 0.05

Bernauer Ache 8.80 0.08 46.55 23.23 25.37 4.77 x

Kleine Vils 9.55 72.68 18.43 6.01 x 2.88 x

Illach 19.99 x 33.04 61.96 3.32 1.68 x

Otterbach 41.43 23.89 41.12 33.17 0.31 1.52 x

Wiesent 26.13 56.25 37.62 3.27 0.71 2.15 x

Sulzbach 13.89 75.33 11.55 10.12 x 2.99 x

Abens 19.48 62.78 21.59 8.45 0.81 6.38 x

Aurach 28.20 40.06 44.56 10.26 x 5.12 x

Scheine 12.22 38.62 41.44 17.04 x 2.89 x

Große Ohe 11.95 x 69.22 x 30.78 x x

Kirnach 39.51 x 23.91 72.58 0.01 3.50 x

Wolnzach 13.25 62.06 24.52 7.47 1.43 4.51 x

Stream Mean river length Agriculture Forest Grassland Semi-natural Urban Water

Prien 15.15 x 25.06 66.77 x 8.18 x

Attel 11.01 24.65 45.09 x 8.75 21.51 x

Aubach 7.91 x 58.12 34.00 x 7.88 x

Soellbach 13.15 x 73.06 1.81 12.62 11.33 1.17

Bernauer Ache 8.80 x 57.02 19.18 6.68 17.12 x

Kleine Vils 9.55 41.76 2.14 52.30 x 3.79 x

Illach 19.99 x 33.26 54.14 12.60 x

Otterbach 13.81 14.44 44.64 44.72 x 3.05 x

Wiesent 13.07 8.07 62.19 17.77 6.49 8.74 x

Sulzbach 6.95 67.38 x 21.31 x 11.31 x

Abens 19.48 32.37 6.86 44.65 x 16.12 x

Aurach 28.20 16.67 45.02 29.06 x 9.25 x

Scheine 12.22 24.94 11.21 55.46 x 8.39 x

Große Ohe 3.98 x 73.46 x 26.54 x x

Kirnach 19.75 x 21.32 70.58 x 8.1 x

Wolnzach 13.25 39.14 32.86 8.16 x 19.84 x

Note: Top: land use in entire catchment. Bottom: land use in 5 m riparian strip for whole river.

Abbreviations: Agriculture, forest, grassland, semi-natural, urban, water: Proportion of land use in percent, for 5 m riparian strip as mean over all arms;

Mean river length: (for 5 m riparian strips) If stream contained more than one arm, this is the mean of the lengths of the arms in km; Stream, name of

stream investigated; Total river length, sum of lengths of all contributing rivers in km.
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F IGURE C1 Cumulative barplot illustrating the shares of land use in the 5 m riparian strip.

F IGURE C2 Cumulative barplot illustrating the shares of land use in the entire catchment.
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F IGURE C3 Catchments (a) Abens, (b) Attel, (c) Aubach, and (d) Aurach.

34 of 37 DRAINAS ET AL.



F IGURE C4 Catchments (a) Bernauer Ache, (b) Grosse Ohe, (c) Illach, and (d) Kirnach.
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F IGURE C5 Catchments (a) Kleine Vils, (b) Otterbach, (c) Prien, and (d) Scheine.
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F IGURE C6 Catchments (a) Soellbach, (b) Sulzbach, (c) Wiesent, and (d) Wolnzach.
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