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Theory of Hybrid Microwave–Photonic Quantum Devices

Christian Jirauschek

The Maxwell–Lindblad transmission line (MLT) equations are introduced as a
model for hybrid photonic and microwave-electronic quantum devices. The
hybrid concept has long enabled high-bandwidth photodetectors and
modulators by using waveguide structures supporting microwave–optical
co-propagation. Extending this technique to quantum-engineered lasers
provides a route for greatly improved short-pulse and frequency comb
operation, as impressively demonstrated for quantum cascade lasers. Even
more, the self-organized formation of coupled microwave and optical
oscillation patterns has recently enabled photonics-based ultralow-noise
microwave generation. The MLT model provides a suitable theoretical
description for hybrid quantum devices by combining optical and microwave
propagation equations with a Lindblad-type approach for the quantum active
region dynamics. A stable numerical scheme is presented, enabling realistic
device simulations in excellent agreement with experimental data. Based on
numerical results and analytical considerations, it is demonstrated that the
functionality of the investigated hybrid quantum devices does not only rely on
local coupling effects, but rather benefits from microwave-optical
co-propagation, settling an ongoing debate. The MLT equations provide the
basis for systematic device development and extension of the concept to
other quantum-engineered hybrid devices based on, for example, quantum
dot or interband cascade structures, as well as for simplified analytical models
providing additional intuitive insight.

1. Introduction

The ability to generate periodic optical waveforms[1] with comb-
like spectra[2] directly from lasers has revolutionized metrology
and sensing, and has also impacted many other fields such as
materials processing and communications. This is achieved
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by active or passive mode-locking, result-
ing in periodically amplitude-modulated
(AM) and/or frequency-modulated (FM)
optical fields.[3,4] From an application
point of view, electrically pumped semi-
conductor lasers have many significant
advantages such as compactness, ro-
bustness, and cost-effectiveness, and are
available for a broad range of frequen-
cies. Combining optoelectronics with
microwave engineering has led to the
interdisciplinary field of microwave pho-
tonics, which has received tremendous
attention due to the unique possibil-
ities offered.[5–7] In particular, for a
suitably designed waveguide geometry
microwave-optical co-propagation effects
arise, which can for example be ex-
ploited in traveling-wave configurations
to achieve higher modulation and detec-
tion bandwidths.[6–9] This hybrid device
concept has recently been taken to an-
other level by applying it to quantum-
engineered mode-locked sources in the
form of quantum cascade lasers (QCLs).
These are a special type of nanostruc-
tured semiconductor laser which em-
ploys the quantized electronic states in a
multiple quantum well structure as laser

levels.[10,11] Thus the lasing wavelength and gain profile, as
well as the nonlinear optical and microwave properties, can be
custom-tailored. This enables a wide range of functionalities in
the mid-infrared (MIR) and terahertz (THz) range such as broad-
band frequency comb generation,[12,13] while for conventional
semiconductor lasers comb operation remains challenging.[14]

Since QCLs typically have cavity lengths in the mm range, the
repetition rate of the optical waveform, and hence the spacing
between two adjacent frequency comb lines, is on the order
of 10GHz, which is well-suited for the implementation of
hybrid optical and microwave functionalities.[15] The key lies in
combining the QCL active region with a metal-metal waveguide
structure, formed by contact layers on the top and bottom of the
active region.[16] In this way, simultaneously an optical waveg-
uide and a microwave transmission line is obtained, which can
be designed to support co-propagation of the optical field and
microwave–electronic signal.[17]

The device structure is schematically illustrated in Figure 1.
In such a setup, the generation of ultrashort mode-locked
THz pulses, which is highly relevant for numerous applica-
tion fields,[18–20] was demonstrated by exploiting co-propagation
of the externally applied microwave modulation signal and
the optical wave.[21,22] A similar strategy was exploited for the
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Figure 1. Schematic representation of the microstrip QCL as an example
of a hybrid optoelectronic and microwave quantum device. The microstrip
is represented by its equivalent circuit for an infinitesimal segment, cou-
pling to the quantum active region. The parameters and variables included
in the figure correspond to those introduced in Section 2. In the lower right
corner, the coordinate system used in our model is shown.

generation of broadband and low-noise THz frequency combs,[23]

which are essential in several application domains.[24] Notably,
this approach is fundamentally different from previous injection-
locked short-pulse[25] and frequency comb[12] setups, where the
applied microwave signal only affects the injection region of the
waveguide.[21,26] A particular appeal of the hybrid concept lies in
the potential to exploit self-seeded microwave signals in a free-
running device, thus eliminating the dedicated external circuitry
and electronics required for active modulation. This leads to a
new class of devices where both the optical and microwave dy-
namics can unfold in a self-organized manner. The microwave-
optical coupling is here provided by the quantum-engineered ac-
tive region, featuring both optical and low-energy transitions.[27]

There has been experimental evidence that microwave self-
seeding in microstrip QCLs contributes to comb stabilization,[23]

and may even enable mode-locking at the second or higher-order
harmonics in free-running QCLs.[28] Based on the same concept,
a hybrid terahertz-microwave source has been demonstrated, of-
fering a new route for the generation of extremely low-noise mi-
crowave signals of up to hundreds of GHz.[27] This paradigm of
hybrid device design has recently culminated in an approach for
independently tailoring the terahertz and microwave properties
based on a planarized waveguide geometry.[15]

Since the above-demonstrated hybrid device concept relies
on the coupled propagation of the optical radiation and the in-
jected or self-generatedmicrowave signal, a moderatemicrowave
loss across the waveguide length is crucial, and also the role of
microwave–optical phasematching has been emphasized.[17,21,27]

Thus, the proper choice of waveguide type and carefulmicrowave
design of the overall device are of critical importance. While
microstrips in the form of metal–metal waveguides have been
identified as the most suitable type for hybrid QCL devices,[17]

it has been pointed out that the microwave loss may still be
a limiting factor.[29] Furthermore, it has been argued that ef-
fective index matching and moderate microwave loss are more
difficult to realize for MIR than for THz QCL structures,[21,26]

although beneficial effects of microstrip-like waveguides have
also been observed for MIR devices.[30–33] Thus, there is an
ongoing debate if the observed phenomena are really due to
microwave-optical co-propagation or can be explained by conven-
tional modulation effects, with the measured microwave beat-

notes along the waveguide arising purely from local stimulation
by the laser radiation.[26] Clarification of the underlying mech-
anisms requires a detailed understanding of the processes in-
volved, and a comprehensive description of the hybrid optical-
microwave dynamics is all the more important for the targeted
design of mode-locked hybrid devices. In this context, it has
long been pointed out that a suitable modeling approach is still
missing.[8,34] Ultimately, the significance of a comprehensive the-
oretical model goes far beyond QCLs, since further types of
quantum-engineered lasers, such as interband cascade,[35] quan-
tum dot/dash (QD),[36,37] and not least the more conventional
quantum well lasers,[38] have been shown to possess favorable
properties for AM or FM mode-locking.[39] This makes them
highly suitable candidates for extending above discussed hybrid
concepts, such as the self-organized coupled microwave-optical
dynamics in free-running devices, to other spectral regimes.
The lack of a comprehensive hybrid model is resolved in

this paper. A common approach for modeling the semicon-
ductor laser dynamics are the Maxwell–Bloch (MB) equations.
Combining Maxwell’s equations for the optical field propaga-
tion with a density matrix (DM) approach describing the co-
herent electron–light coupling, this semiclassical theory consti-
tutes a basic and very widely used model for the coupled dynam-
ics of an optical field interacting with an ensemble of two-level
quantum systems.[40,41] The MB equations also provide the start-
ing point for simplified theories of the device dynamics.[42–45]

On the other hand, by extending the original two-level model
to multiple quantum states and introducing a generalized sys-
tem Hamiltonian, the resulting framework consisting of cou-
pled Maxwell and DM equations constitutes a powerful tool for
the detailed dynamicmodeling of quantum-engineered optoelec-
tronic devices.[46] We refer to this approach as Maxwell–Lindblad
(ML) equations since the DM dynamics is here described us-
ing the Lindblad formalism.[46,47] If desired, the Hamiltonian
matrix elements and Lindblad-type relaxation terms can be ex-
tracted from microscopic models or carrier transport simula-
tions, resulting in a realistic self-consistent description of the de-
vice dynamics.[48–50] Modeling of steady-state mode-locking re-
quires long-term simulations of the laser dynamics. Full-wave
3D simulations are too computationally expensive, and thus
the model equations are commonly reduced to the waveguide
propagation direction.[46] The microwave propagation is not con-
tained in the MB/ML equations, but can typically be regarded as
quasi-transverse electromagnetic for microwave-photonic struc-
tures and thus also be reduced to a single spatial dimension
in the form of a distributed equivalent-circuit transmission-line
representation.[51] Co-propagation effects in traveling-wave de-
vices have beenmodeled by coupling this description to basic op-
tical propagation equations,[52,53] and it was also proposed as early
as 2004 to include the transmission line dynamics into the the-
oretical description of mode-locked QCLs.[54] Along those lines,
we introduce an adequate model for hybrid quantum devices by
combining the transmission line equations with a ML-type ap-
proach featuring a suitable Hamiltonian, and refer to the result-
ing model as Maxwell–Lindblad transmission line (MLT) equa-
tions. Although such an approachmay seem straightforward, sev-
eral issues must be considered which may have impeded the de-
velopment of a self-consistent model including the microwave
dynamics: i) The strongly frequency dependent microwave loss
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of the transmission line must be adequately considered to obtain
a realistic description; ii) the coupling between quantum active
region and transmission line has to be self-consistently included
in the model in form of a hybrid interaction Hamiltonian; iii)
for the numerical evaluation of the resulting partial differential
equation set, a stable numerical scheme is required.
In detail, the paper addresses the following issues: In Sec-

tion 2, we introduce a self-consistent model for the coupled opti-
cal, quantum electronic, and microwave dynamics in the form of
the MLT equations. Section 3 contains an analytical discussion of
microwave propagation in transmission line structures. In Sec-
tion 4, we present a stable and efficient numerical scheme for
the MLT equations, enabling the direct simulation of experimen-
tally realized devices. Based on the obtained results, the presence
and significance of microwave-optical co-propagation effects is
demonstrated. The paper is concluded in Section 5.

2. Model

The modeling of mode-locked laser operation requires long-
term simulations over many hundreds or thousands of cavity
roundtrips.[48] Tominimize the numerical load, themodel is usu-
ally reduced from three spatial dimensions to a single one, in-
volving only the propagation coordinate x and time t.[46] As op-
posed to fully 3D approaches,[55] it is then not practical to de-
scribe both the optical and microwave field by a single set of
Maxwell’s equations for several reasons: In particular, the opti-
cal and microwave frequencies differ by more than two orders
of magnitude even for THz QCLs, and also the transverse mode
profiles deviate from each other (all the more so if the optical and
microwave confinement are designed separately),[15,17] resulting
in quite different effective parameters in the 1D model. Further-
more, the optical field is typically treated in the slowly varying en-
velope approximation (SVEA) in the propagation equation, along
with the rotating wave approximation (RWA) in the density ma-
trix equation, to reduce the numerical effort associated with the
fast oscillations.[46] On the other hand, the microwave propaga-
tion in transmission line structures is usually described in the
framework of a distributed-element model in terms of voltage
and current rather than field quantities, establishing a direct con-
nection to related characterization techniques and measurement
results[17] and readily allowing for adaption to different transmis-
sion line configurations.[52,53,56] Thus, we model the microwave
and optical dynamics by separate, but coupled propagation equa-
tions.

2.1. Microwave Propagation

The microwave propagation on the waveguide structure is de-
scribed in terms of the voltage u(x, t) and current i(x, t) (see
Figure 1). Here, it is advantageous to write u(x, t) = u0 + uΔ(x, t),
where u0 denotes the DC component of the input voltage at the
position of the wire bond, defining the operating point of the de-
vice, while uΔ contains the modulation. The transmission line
equations can then be written as

𝜕xuΔ = −L′𝜕ti − R′i ,

𝜕xi = −C′𝜕tuΔ − Jw (1)

R′, L′, and C′ have their usual meaning as transmission line
resistance, inductance, and capacitance per unit length in the
direction of the transmission line (x coordinate in Figure 1),
while J(x, t) denotes the current density flowing through the ac-
tive region of widthw. The inclusion of the waveguidemicrowave
losses, represented in Equation (1) by R′, is crucial for realis-
tic modeling.[26] Furthermore, R′ has a strong frequency depen-
dence which must be taken into account,[17] leading to additional
time derivative terms in Equation (1).[57] This model can be read-
ily adapted to more complex transmission line configurations by
adding further distributed components.[52,53,56] In the following,
we assume that u represents the voltage drop across the active
region. The boundary condition at x = 0 is given by the applied
pump current or voltage, which can be constant or modulated.
Assuming a waveguide of length Lwith open-circuit termination,
the boundary condition at x = L is i = 0.

2.2. Optical Propagation

In the MB equations, typically the SVEA is invoked to reduce the
numerical load.[46] The optical field is then written as

E =
∑
±

ℜ
{
E± exp

(
±i𝛽x − i𝜔ct

)}
(2)

with the complex slowly varying envelopes E±(x, t) of the forward
and backward propagating resonator field components, optical
carrier frequency 𝜔c, and propagation constant of the guided
mode 𝛽. E represents the optical field strength in polarization
direction, for example, for QCLs parallel to the growth direction
z of the heterostructure since the other field components do not
interact with the quantum active region.[46] The field propagation
equation is in the SVEA given by[46]

v−1g 𝜕tE± ± 𝜕xE± = − i
2
𝛽2𝜕

2
t E± − a

2
E± + ip± + Ssp± (3)

Here, a denotes the waveguide power loss coefficient, vg is the
group velocity, and p± contains the polarization induced by the
quantum system (see Equation (A6) in the Appendix). Also the
background group velocity dispersion (GVD), characterized by
the coefficient 𝛽2, is included in Equation (3), since it can con-
siderably affect both ultrashort pulse generation and frequency
comb operation.[35,42,43,58,59] Ssp± represents spontaneous emis-
sion, which is in the simulation used to start the laser action, and
furthermore adds fluctuations to the optical field. This process is
numerically implemented as spatially distributed random noise
source.[60] The boundary conditions for reflection coefficients r1,2
at the left and right facets are given by E+ = r1E− at x = 0 and
E− = r2E+ at x = L.[46]

2.3. Quantum System Dynamics

In the MLT model, the dynamics of the quantum active region
is described by the DM formalism. Here, we do not restrict our-
selves to the conventional two-level approximation which is of-
ten too restrictive for realistic device modeling, but rather use a
Lindblad-type multilevel approach, which may be supplemented
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Figure 2. Schematic illustration of the coupling between the DM, optical propagation, and transmission line equations. The current density J and
polarization p± are computed from the DM elements 𝜌ij. More specifically, in our model, p± is obtained from the relevant off-diagonal elements 𝜂ij in
the rotating reference frame.

by additional equations for the incoherent scattering-induced
transport.[46] For inclusion of the coupling to the microwave
transmission line, ourmodel has to be formulated in dependence
of bias voltage,[49,61] and yield the current density as an input for
the transmission line equations[48,61] (see Figure 2). The temporal
evolution of the density operator �̂� is described by the evolution
equation

𝜕t𝜌 = (iℏ)−1
[
ĤS, 𝜌

]
+ 𝜕t𝜌

||inc (4)

where ℏ denotes the reduced Planck constant. Within the 1D
model, �̂�(x, t) denotes the density operator of a representative
quantum system at themacroscopic position x in the laser waveg-
uide. The Hamiltonian for the quantum active region, for ex-
ample, a representative QCL period or QD featuring N relevant
states |n⟩ with energies En and associated transition frequencies
𝜔mn = (Em − En)∕ℏ, can be represented as ĤS = Ĥ0 + ĤT + ĤI.
The unperturbed Hamiltonian is given by Ĥ0 =

∑
n En|n⟩⟨n|. In

general, the system Hamiltonian may also contain off-diagonal
elements, which are included in ĤT. For example, many QCL
designs feature thick injection and/or extraction barriers, across
which electron transport is mediated by tunneling between
closely aligned energy levels, |𝜔mn| ≪ 𝜔c. The corresponding
Hamiltonian ĤT = ℏΩT,mn|m⟩⟨n| + ℏΩT,nm|n⟩⟨m| is commonly
expressed in terms of tight-binding basis states |m⟩ and |n⟩
localized at the left and the right side of the barrier, where
ℏΩT,mn = ℏΩT,nm denotes the coupling energy.

[62–64] Furthermore,
ĤI = −E(dmn|m⟩⟨n| + dnm|n⟩⟨m|) is the light–matter interaction
Hamiltonian in dipole approximation for an optical transition be-
tween two levelsm and n. Here, dmn represents the dipole matrix
element. It is given by dmn = −e⟨m|ẑ|n⟩ for QCL intersubband
transitions where e denotes the elementary charge, while it de-
pends on the conduction and valence bandBloch functions for in-
terband transitions.[46] If the system contains several relevant op-
tical transitions, each of them is represented by a corresponding
Hamiltonian. For optical transitions close to resonance, |𝜔mn| ≈
𝜔c, the RWA is commonly employed by inserting Equation (2)
and discarding the rapidly oscillating terms. Likewise, the inter-
action with the microwave field can be represented by a Hamilto-

nian of the form ĤI, where the modulation field strength across
the active region of thickness d is given by E = uΔ∕d. Due to the
comparably slow dynamics in the microwave range, the RWA is
here not applied, and the relevant transitions have frequencies|𝜔mn| ≪ 𝜔c. The diagonal matrix elements

⟨n|ĤI|n⟩ = e⟨n|ẑ|n⟩uΔ∕d =: E′
nuΔ (5)

correspond in first-order perturbation theory to the change in
eigenenergies ΔEn caused by a bias field uΔ. Writing the system
Hamiltonian as ĤS = Ĥ + ĤRWA, Ĥ describes the coherent
dynamics of the system due to Ĥ0, ĤT and the interaction with
the microwave field. Thus, the matrix elements of Ĥ are given by

Hmn = ℏΩmn =
{

En,0 + E′
nuΔ, m = n,

ℏΩT,mn − dmnuΔ∕d, m ≠ n
(6)

Here, En,0 are the level energies at the operating point u0. In a
tight-binding framework, the tunneling transitions have practi-
cally vanishing dipole moments, that is, dmn ≈ 0 for Ωmn ≠ 0.[65]

ĤRWA is the light–matter interaction Hamiltonian treated in
RWA. In this context, spatial hole burning (SHB), that is, the
formation of an inversion grating due to the standing wave
mode structure in Fabry–Pérot resonators, must be accounted
for, since it is known to significantly affect the semiconductor
laser dynamics.[42,43,46,61,66–68] For the resulting DM equations in
RWA, see Equation (A1)–(A5) in Appendix A.
Dissipation effects are in Equation (4) considered by the term

𝜕t�̂�|inc. Here, we use the usual Lindblad-type model,[46,47] where
incoherent transitions from a state |m⟩ to |n⟩ with a scattering
rate rmn result in terms 𝜕t𝜌nn|inc = −𝜕t𝜌mm|inc = rmn𝜌mm, and
analogously for the scattering in the reverse direction with
rate rnm. In this way, incoherent transport between the energy
levels of the quantum system can be taken into account. The
associated dephasing gives rise to terms 𝜕t𝜌mn|inc = −𝛾mn𝜌mn,
𝜕t𝜌nm|inc = −𝛾nm𝜌nm, where the dephasing rate is modeled
as 𝛾mn = (rm + rn)∕2 + 𝛾p,mn, with the total outscattering rate
rm =

∑
s≠m rms and pure dephasing contribution 𝛾p,mn = 𝛾p,nm.

In principle, bias-dependent scattering and dephasing rates
rij(uΔ) and 𝛾ij(uΔ) may be used in Equation (A1)–(A5).[49] This
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effectively introduces a time dependence into the Lindblad oper-
ators, which is compatible with the Lindblad approach.[46,69] The
inclusion of bias-dependent scattering rates may, for example, be
necessary for modeling scattering-assisted QCL designs, where
the electron injection/extraction is mediated by scattering rather
than tunneling. In this case, the current transport, and thus the
optical gain, strongly depends on the scattering cross-sections,[70]

while the behavior of resonant-tunneling designs is governed by
tunneling, already contained in the bias-dependent Hamiltonian
of Equation (6). Additional terms beyond the Lindblad frame-
work, such as nonlinear rate terms, may be required to apply the
model, for example, to QD lasers (see also Appendix A).
To obtain a self-consistent model which only requires the

device specifications and material parameters rather than using
fitting or empirical parameters, we couple the density matrix
equations of Appendix A to carrier transport simulations at the
operating point, providing the scattering and dephasing rates.[49]

The carrier transport simulations contain the full dependence
on the electron in-plane wave vector k, thus also providing the
subband electron distributions,[71] while this dependence has
been integrated out in the dynamical DM equations to reduce
the numerical load.[49] This approach enables long-term simula-
tions and seems especially appropriate for operating conditions
where the bias and current density modulations are only a few
percent of the DC values; thus, it is well-suited for the examples
discussed in Section 4. Its validity (without the inclusion of
transmission line effects) has been confirmed for various QCL
structures by comparison to experimental results.[49,50,72] In
principle, the MLT model can be refined by using a k-dependent
dynamical DM approach[73,74] and avoiding restrictions such
as the time-local nature of the Lindblad equation.[75–77] While
this adds versatility to the model, the numerical cost increases
significantly, thus impeding long-term dynamical simulations.

2.4. Coupling

The density matrix, optical propagation, and transmission line
equations are coupled as illustrated in Figure 2, resulting in
a closed model. The coupling induced by the optical field and
the polarization in the ML (i.e., optical propagation and DM)
equations is obtained in the usual manner via the polariza-
tion term Equation (A6) contained in Equation (3), and the
light–matter interaction terms in Equation (A1)–(A5) resulting
from the Hamiltonian ĤRWA. The quantum system and the
microwave transmission line are coupled via uΔ in Equation (6)
and the current density J in Equation (1), which is computed
from the density matrix.[46] For example, Equation (B1) in the
Appendix can be used under certain assumptions for QCLs, and
a model for the current density in QD media can be found in
literature.[61] While SHB in the active region in principle causes
short-scale spatial modulations of J, these do not transfer to uΔ
since they are strongly damped by the transmission line and,
thus, are here neglected for both J and uΔ.

3. Analytical Considerations

As discussed in Section 2.4, the transmission line couples to the
quantum active region via the voltage, andmodulation thereof in-

troduces a variation of the optical gain. Thus, for actively mode-
locked semiconductor lasers, microwave-optical co-propagation
effects can only be expected if a considerable voltage modula-
tion is obtained along the whole waveguide structure. For QCLs,
the fulfillment of this premise has been debated in literature[26]

and can be investigated based on simple analytical considera-
tions. As already discussed, for a realistic description of trans-
mission lines, it is vital to consider the dependence of R′(𝜔) (and
possibly other parameters) on the frequency 𝜔 = 2𝜋f ,[17] result-
ing in an operator function R′(i𝜕t) in Equation (1). In the follow-
ing, we assume that the DC resistance is negligible, R′(𝜔 = 0) ≈
0.[17] Besides using u(x, t) = u0 + uΔ(x, t), we insert the ansatz
i(x, t) = i0(x) + iΔ(x, t) into Equation (1), where u0 and i0 denote
the DC components defining the operating point of the device,
while uΔ and iΔ contain the (zero time-average) modulation sig-
nal. Assuming a small modulation voltage uΔ and neglecting
nonlinearities as well as dynamical effects in the quantum active
region, we can express Jw in Equation (1) as Jw ≈ J0w +G′uΔ,
where J0 and G′ are the active region current density and dif-
ferential conductance per unit length at u0. With the bound-
ary condition i0(L) = 0 as in Section 2.1, the DC current is then
given by i0(x) = J0w(L − x). For the time varying component,
we correspondingly have iΔ(L) = 0. Furthermore, we assume at
x = 0 a pump voltage modulation uΔ = u𝜔 cos(𝜔t). The trans-
mission line then forms a lossy half-wavelength resonator with
the fundamental resonance frequency 𝜔r = 𝜋c∕(Ln𝜔=𝜔r

), as used
in experiment to match the optical mode spacing.[17,21] Here,
n𝜔 is the microwave effective index at a frequency 𝜔, and c
denotes the vacuum speed of light. The analytical solution for
a given modulation frequency 𝜔 can be obtained by inserting
uΔ =

∑
± ℜ{u± exp(±i𝛽𝜔x − i𝜔t)} (where u+ and u− are the ampli-

tudes of the forward and backward propagating components) into
Equation (1), alongwith a corresponding ansatz for iΔ. This yields
withZ′(𝜔) = R′(𝜔) − i𝜔L′ andY ′(𝜔) = G′ − i𝜔C′ the standard re-
sults for the propagation constant 𝛽𝜔 = i(Z′Y ′)1∕2 and character-
istic impedance Z𝜔 = ±u±∕i ± = (Z′∕Y ′)1∕2. The modulated volt-
age is obtained as

uΔ(x, t) = u𝜔ℜ

{
cos

[
𝛽𝜔(x − L)

]
cos

(
𝛽𝜔L

) exp (−i𝜔t)
}

(7)

Separating the propagation constant into real and imaginary
parts yields 𝛽𝜔 = n𝜔𝜔∕c + ia𝜔 with the damping coefficient a𝜔.
Exemplarily, we determine the transmission line parame-

ters for the THz ultrashort-pulse QCL structure[21] as fol-
lows: We use R′ = 4.5 × 10−2(f ∕Hz)1∕2 Ωm−1 as measured for
a similar waveguide structure,[17] and G′ = 80 Sm−1 extracted
from measurements.[21] The Hammerstad formula yields L′ =
144 nHm−1 for the given microstrip geometry.[78] Finally, C′ =
1.13 nFm−1 is determined such that n𝜔 ≈ 3.9 is obtained at f =
12GHz.[21] The ultrashort-pulse QCL is driven close to𝜔r.

[21] The
ratio between the modulation amplitude at x = L and x = 0 is
then obtained from Equation (7) as 1∕ cosh(a𝜔L) = 0.26 for a𝜔 =
657m−1 and L = 3.1mm, that is, a significant voltagemodulation
is achieved across the device despite the high microwave loss.
Amore detailed assessment of the loss-induced damping is ob-

tained by evaluating the roundtrip-averaged voltage modulation.
For (fundamental) mode-locked operation, the optical roundtrip
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time is locked to themodulation period.We again assume a small
modulation uΔ as above (which is realistic considering the strong
microwave attenuation in the external circuitry[79]) and fast gain
dynamics. The latter applies, for example, to QCLs where the
gain recovery time is typically much shorter than the roundtrip
time.[21,80] The modulated part of the gain coefficient can then
approximately be written as gΔ(x, t) = guuΔ(x, t), with some pro-
portionality factor gu. To evaluate the modulation in the vicinity
of the optical pulse, a co-moving reference frame is introduced
via the retarded time coordinate t′ = t − xn𝜔∕c. The modulated
part of the roundtrip gain is then GΔ(t

′) = exp[2LguūΔ(t
′)], with

the roundtrip-averaged modulation voltage

ūΔ
(
t′
)
= 1
2L

∑
±

∫
L

0
uΔ

[(
x, t′ + (L ∓ L ± x)n𝜔∕c

)]
dx (8)

Inserting Equation (7), we obtain at 𝜔 = 𝜔r

ūΔ
(
t′
)
=

u𝜔
2a𝜔L

tanh
(
a𝜔L

)
ℜ
{
exp

(
−i𝜔t′

)2𝜋 + 2ia𝜔L
2𝜋 + ia𝜔L

}
(9)

This voltage waveform gives rise to a net gain window centered at
t′ ≈ 0, as required for active mode-locking.[3] For a𝜔 = 657m−1,
the roundtrip-averaged modulation amplitude is reduced by less
than 50% as compared to its maximum value u𝜔∕2 at a𝜔 = 0.
These basic considerations already show that despite consider-
able microwave damping in this THz QCL waveguide, the mod-
ulation signal not only acts locally at the injection point, rather,
propagation along the waveguide induces strong interaction with
the co-propagating optical pulse, increasing the effective mod-
ulation depth, and thus enabling devices with improved mode-
locking[21] and modulation bandwidth.[17]

The conventional scenario, that is, modulation of a waveguide
section with length Lm < L,[25] can also be investigated with above
model. For simplicity, related simulations typically consider only
the time dependence of the modulation signal in that section,
neglecting propagation effects and associated damping.[81–83] The
modulation bias is then given by uΔ = u𝜔 cos(𝜔t) for 0 ≤ x ≤ Lm,
and uΔ = 0 otherwise. Inserting uΔ into Equation (8), we obtain
at 𝜔 = 𝜔r the roundtrip-averaged modulation voltage

ūΔ
(
t′
)
= 𝜋−1u𝜔 cos

(
𝜔t′

)
sin

(
𝜋Lm∕L

)
(10)

For small modulation section lengths, Lm ≪ L, the effectivemod-
ulation strength increases linearly with Lm as intuitively expected,
ūΔ ≈ (Lm∕L)u𝜔 cos(𝜔t′). Furthermore, we obtain ūΔ → 0 for Lm
approaching L, indicating that short-pulse generation by active
mode-locking is not possible in this case, as also discussed in
previous theoretical works.[82,83] However, as also pointed out in
this context,[82] neglecting the spatial dependence is not realis-
tic for long modulation sections, explaining the discrepancy be-
tween this result and the full solution, Equation (9), which is in
line with the experimental findings.[21]

In a simplified model, the back-action of the optical field onto
the microwave transmission line signal can be estimated in the
following way: The net number of generated photons per unit
volume and time at a given cavity position is ṅp = (g − a)I∕(ℏ𝜔c).
Neglecting SHB, I = I+ + I− with I± = 𝜖0cn0|E±|2∕2 denotes the
optical intensity, where 𝜖0 and n0 are the vacuum permittivity and

optical refractive index. Furthermore, g is the power gain coeffi-
cient. Assuming each net photon emission event contributes an
electron to the current flow, we obtain a light-induced change in
current density

JI = eṅpLp = e
(
g − a

)
ILp∕

(
ℏ𝜔c

)
(11)

where Lp denotes the length of a single QCL period. Taking into
account the voltage dependence of the gain, we have g = (g0 +
guuΔ). The simplest way to include the fast gain dynamics is in
terms of an instantaneous saturation model g = (g0 + guuΔ)∕(1 +
I∕Is) with the saturation intensity Is; furthermore, gain filtering
due to the finite spectral gain bandwidth must be considered.[3]

However, the full light-matter interaction dynamics can only be
captured by a quantum mechanical model, such as the DM ap-
proach described in Section 2.3. By considering the contribution
of Equation (11) to the current density in Equation (1), its impact
on uΔ can be evaluated, which in turn again affects the gain g.

4. Numerical Model

While the analytical model in the section above provides valu-
able insights, it does not self-consistently include the back-action
of the optical dynamics on uΔ, which is at best justified for ac-
tive modulation close to threshold. This limitation can be over-
come by a comprehensive numerical model, fully accounting for
the microwave-optical co-propagation dynamics and resulting ef-
fects, such as the self-organized formation of oscillation patterns.
We have developed a stable and efficient numerical framework
for solving the Maxwell–Lindblad-transmission line model, con-
sisting of Equation (3), Equations (A1)–(A5), and Equation (1)
along with the adequate boundary conditions. The optical prop-
agation equation, Equation (3), is discretized using the Risken–
Nummedal (RN) finite differences scheme,[84] taking advantage
of its favorable numerical properties.[46] For the DM part, Equa-
tions (A1)–(A5), we use an explicit Adams–Bashforth three-step
method,[46] featuring good efficiency and stability. The transmis-
sion line equations, Equation (1), are solved using a special vari-
ant of the finite difference time domain (FDTD) method which
incorporates frequency dependent elements.[57] For this purpose,
L′ andR′ are represented in terms of a Debye rational approxima-
tion, the parameters of which are here extracted using Bayesian
optimization. We have extended this approach to incorporate the
current density J(x, t) contained in Equation (1). J, u, E±, and the
DM elements are defined on the same spatial grid. Using a grid
spacingΔx, the time step of RN is given byΔt = Δx∕vg,[46,84] while
FDTD requires a smaller interval due to the Courant stability cri-
terion. This is here achieved by performing two FDTD update
steps during Δt. FDTD requires a staggered grid, that is, i is de-
fined on a spatially and temporally shifted grid relative to u, and
the J grid is temporally shifted. Based on this grid, the coupling of
the equations via E±, p± and u (see Figure 2) can be straightfor-
wardly implemented, while the values of J at the required time
steps are determined by extrapolating the data obtained from
Equation (B1). In the following, we present exemplary simula-
tion results for an actively mode-locked short pulse[21] and a free-
running frequency comb[13] structure.
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Figure 3. Conduction band diagram of the THz active region in the tight-
binding picture. The probability densities for the relevant states belonging
to the representative period (full lines) and to adjacent periods (dashed
lines) are shown. The arrows indicate the dominant transport mecha-
nisms, namely scattering (block arrows) and coherent transport due to
optical (wavy arrow) or tunneling (circular arrows) transitions.

4.1. Example Actively Mode-Locked QCL Structure

While active mode-locking of QCLs can be described within
the conventional MB/ML equations,[81] modeling of microwave-
optical co-propagation effects requires the MLT framework. We
exemplarily simulate a microstrip QCL featuring a 3.1mm long
and 10𝜇m thick metal-metal waveguide, which is used for the
generation of ultrashort THz pulses in the ps range.[21] Our ac-
tive region model, illustrated in Figure 3, is adapted from a re-
lated structure[85] which this three-well design is based on. In our
model, scattering between all states is taken into account. The
periodic arrangement of quantum well stacks is implemented
in the usual way by taking a representative period and adding
suitable boundary conditions (see Appendix B). The states of the
representative period are in Figure 3 arranged such that coher-
ent transport due to tunneling and optical transitions only takes
place inside the period; that is, interperiod transport is exclusively
mediated by scattering. The active region parameters, such as
eigenenergies, dipole moments, coupling energies, and scatter-
ing as well as dephasing rates, are extracted from self-consistent
simulations based on the density matrix Monte Carlo approach
coupled to the Schrödinger–Poisson equation system.[71] In the
tight-binding picture used for our model in Figure 3, all the rel-
evant microwave transitions between closely aligned states coin-
cide with tunneling transitions.[65] The bias dependence enters
our model via E′

n (see Equation (6)), which causes an energetic
detuning of the tunneling transitions. The resulting stationary
current-voltage characteristics features a differential resistance
close to the measured value,[21] confirming the validity of our
model. The transmission line parameters L′,R′, andC′ have been
determined in Section 3.
In the following, we compare our simulations to avail-

able measurements[21] for actively mode-locked operation (cf.
Figure 4a in ref. [21]). Like in experiment,[21] operation close to
threshold is assumed for our simulation. We apply direct bias
modulation at the left microstrip end (see also Section 3) in
order to have a controlled modulation amplitude, which is not
affected by frequency dependent losses in the feed microwave
circuitry and imperfect impedance matching. We assume a bias
modulation of 0.8 kV cm−1 corresponding to ≈ 26mW, which
is realistic considering the experimentally injected microwave
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Figure 4. Simulated optical power and modulation bias voltage along the
waveguide for a single intracavity roundtrip in the unfolded cavity repre-
sentation, where the right half of the figure shows the backward propagat-
ing optical pulse. The time t is expressed in units of roundtrip time TR. The
central vertical line corresponds to the right facet, and the discontinuity of
the optical power is due to facet outcoupling.

power of 450mW[21] and the power attenuation of ≈ 12 dB in
the circuitry, measured for a comparable setup at 13GHz.[79] We
use the MLT equations to investigate the degree of mode-locking
in dependence of the modulation frequency by evaluating the
power and phase noise quantifiers.[86] Similar to experimental
observations,[21] the most stable mode-locked operation with
clearly separated periodic pulses is not obtained for modulation
at exactly the free-running repetition rate (13.05GHz in the
simulation), but rather for a slightly lower modulation frequency
of 12.86GHz. In Figure 4, the resulting microwave and optical
propagation dynamics in the waveguide cavity is illustrated for
a single cavity roundtrip (for the animated movie, see Movie S1
in the Supporting Information). In this case, the pulse precedes
the voltage bump, and thus the gain peak, for the most part
of the roundtrip, as also expected from standard active mode-
locking theory for the averaged pulse dynamics.[87] The pulse
outcoupled at the right facet (light blue central vertical line in
Figure 4) shows an asymmetry similar to experiment[21] with a
steep leading edge, and its full width at half-maximum (FWHM)
duration of 16 ps is comparable to the experimental value of
11 ps (cf. Figure 4a in ref. [21]). We note that at somewhat lower
modulation frequencies, the simulation yields even shorter
pulses (e.g., 11 ps at 12.7GHz), but then the noise quantifiers
do not quite fulfill the mode-locking condition.[86] The optical
pulse generates a photon-induced current component in the gain
medium, resulting in a local discharging of the transmission line
capacitance and thus producing a voltage dip on the microwave
signal. The modulation bias at the open end of the transmission
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line oscillates between−0.192 and 0.163 kV cm−1. Theminimum
value is in accordance with the analytically predicted reduction of
the modulation amplitude to 26% (see Section 3), while the maxi-
mum value is somewhat smaller due to the voltage dip. As noted
above, this back-action of the optical dynamics on the microwave
signal is not self-consistently included in the analytical theory
presented in Section 3. This effect becomes especially important
for high optical intensities and in the context of self-seeded
microwave modulation, as discussed in the next example.
To demonstrate the beneficial effect of the electronic mod-

ulation co-propagating with the optical pulse, we have re-
peated the simulations with roughly doubled microwave damp-
ing a𝜔, achieved by quadrupling the resistance to R′ =
0.18(f ∕Hz)1∕2 Ωm−1. While at the left microstrip end, the mod-
ulation remains unchanged, it experiences stronger damping
along the transmission line, and the roundtrip-averaged modu-
lation amplitude defined in Equation (9) reduces to 63% of its
previous value. Consequently, the simulated pulse duration in-
creases by ≈ 30%, and the noise quantifiers indicate only partial
mode-locking. This clearly confirms the beneficial effect of ex-
ploiting microwave-optical co-propagation to enhance the modu-
lation depth, as also suggested by experimental evidence.[17,21]

4.2. Example Free-Running Frequency Comb QCL Structure

As a second example, the MLT equations are applied to a free-
running THz frequency comb design.[13] This structure has pre-
viously been simulated using ML-type equations,[48,49,59] that is,
without considering microwave propagation. It has been ex-
perimentally and theoretically confirmed that synchronized mi-
crowave modulation supports the comb formation process.[23,83]

This is routinely achieved by active modulation of the injec-
tion current,[23,83] which can be modeled using the conventional
MB/ML equation framework as long as microwave propagation
effects do not play a role.[81–83] Alternatively, the experimentally
observed emergence of radio frequency (RF) beatnotes on the
metal–metal waveguide at the roundtrip frequency and multi-
ples thereof[13,23,27] can potentially be exploited in a free-running
device to generate a self-seeded microwave signal, resulting in
the self-organized formation ofmicrowave-optical oscillation pat-
terns. This approach is highly attractive since it does not require
the dedicated external circuitry and electronics needed for ac-
tive modulation. In this context, the use of an adapted waveg-
uide for a targeted enhancement of the microwave signal has
been proposed.[23] This self-seeding effect is not contained in the
MB/ML formalism; rather, the MLT equations are required for
proper modeling. Especially, this model can clarify to what ex-
tent the waveguide design matters, that is, if transmission line
effects beyond purely local oscillations play a role.
The four-well active region of the frequency comb structure

is modeled with a tight-binding scheme and periodic boundary
conditions similarly as above, employing the parameters used in
previous simulations.[48,49] We set 𝛽2 = 0 in Equation (3), corre-
sponding to the not correctly compensated case[48] since residual
GVD caused by the quantum system is still present. In contrast
to active mode-locking investigated in Section 4.1, we do here not
impose a biasmodulation at the left microstrip end, but rather as-
sume a constant current injection while self-sustained bias oscil-

Figure 5. Simulation results for free-running QCL comb device. a–d) Out-
coupled intensity and AC bias voltage at the right facet for an adapted
(a,b) and a not adapted (c,d) microstrip as a function of time (in units of
roundtrip time). e–g) Power spectral density of the optical field (e) and the
bias voltage (f,g) for the cases shown in (b) and (d).

lations may occur. Since here, as for active mode-locking, metal–
metal waveguides appear to be especially suited,[23] we tentatively
assume the same active region dimensions as above, and use
the same L′ and R′ as in Section 4.1. C′ is treated as a degree
of freedom to explore the influence of the microwave effective
index on device operation, and in particular to investigate if a fa-
vorable parameter range corresponding to the above-mentioned
adapted waveguide exists. We have performed MLT simulations
over 15 000 roundtrips for a large range of C′ between 0.3 and
2.1 nFm−1. The last 5000 roundtrips were evaluated, resulting
in a two-lobed discrete spectrum for all values of C′, as also ob-
tained in experiment and previous MB simulations not includ-
ing microwave propagation effects.[13,48,49] However, the degree
of self-locking, characterized again in terms of the power and
phase noise quantifiers, greatly depends on C′. Between ≈ 1.2
and 1.3 nFm−1, stable self-locking is obtained, as also indicated
by the temporal periodicity of both the optical and microwave
field, as well as the narrow spectral widths of the individual comb-
lines and the RF beatnote. For the other cases, irregular or multi-
periodic behavior arises. Also the spectral comb shape depends
on C′, albeit to a lesser extent, while the average outcoupled in-
tensity varies only slightly between 6.55 and 6.78 kWcm−2.
In the following, we exemplarily discuss simulation results

for C′ = 1.22 nFm−1 where stable self-locking is obtained, and
for C′ = 0.78 nFm−1. The first case represents a design with an
adapted waveguide, while the second case produces an unstable
comb, with similar shape and power/phase noise quantifier val-
ues as obtained from conventional MB/ML simulations of this
not fully dispersion compensated setup. In Figure 5, the time-
dependent intensity and modulation bias at the right facet are
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Figure 6. Simulated optical power and modulation bias voltage along the
waveguide for C′ = 1.22 nFm−1, represented in analogy to Figure 4.

shown for both cases, as well as the associated optical and mi-
crowave spectra. For the adapted waveguide (Figure 5a,b), the in-
tensity and bias time traces are highly periodic, while for C′ =
0.78 nFm−1 (Figure 5c,d), irregularities appear. The associated
optical and microwave power spectral densities are shown in
Figures 5e and 5f,g, respectively. The total optical comb power
is almost identical for both cases as mentioned above, but the
overall comb shapes differ somewhat, and more importantly, the
individual spectral lines are considerably broadened and thus
have a much lower peak value for the not adapted waveguide
(see Figure 5e). This broadening is also reflected by the funda-
mental RF beatnote at fR ≈ 13.1GHz, shown in Figure 5f: For
the not adapted microstrip, the FWHM linewidth is 10.2MHz,
while in the adapted case, it drops well below our numerical res-
olution limit of≈ 2.7MHz, and a similar behavior is obtained for
the intensity beatnote (not shown). The full RF spectrum con-
sists of regularly spaced lines and extends to several 100GHz,
as shown in Figure 5g and experimentally observed for a simi-
lar device.[27] Also here, for the not adapted waveguide, the lines
are much broader, and thus have a significantly lower peak value,
while the overall spectral power is comparable in both cases. In
Figure 6, the microwave and optical propagation dynamics over a
cavity roundtrip are illustrated for the structure with the adapted
waveguide (for the animated movie, see Movie S2 in the Support-
ing Information). The microwave bias oscillation has a similar
fundamental frequency as in Figure 4 due to the identical waveg-
uide parameters (apart from the slightly different C′). Also the
arising modulation pattern looks somewhat similar but is less
smooth, giving rise to the higher harmonics visible in Figure 5g.
The intensity, on the other hand, shows a much weaker modula-
tion than in Figure 4, as is typical for QCL frequency combs.[12]

The spatiotemporal variation of the current density for the setup
with the adapted waveguide, here characterized by its standard
deviation over a roundtrip, is ΔJI = 0.0194 kA cm−2. This value
can directly be compared to the analytical theory in Section 3:
Using the standard deviation of the gain-intensity productΔ[(g −
a)I] = 59.1 kWcm−3 extracted from the simulation, Equation (11)
yields with Lp =54.7 nm and 𝜔c∕(2𝜋) = 3.7 THz an estimate of
ΔJI = 0.0211 kA cm−2, in good agreement with the numerical re-
sult.
Besides assuming a constant current at the left microstrip end,

simulations of this structure have also been performed imposing
a constant voltage with or without an additional 3.1mm long feed
line, yielding stable self-locking around a similar value of C′ as
above. Interestingly, with the feed line self-locking is obtained
over a broader range of C′ (≈ 1.0..1.3 nFm−1), indicating that the
electric boundary conditions imposed by the external feed cir-
cuitry should also be considered in the design process of free-
running hybrid photonic andmicrowave-electronic QCL devices.
As already mentioned, the analytical transmission line model

of Section 3 does not self-consistently include the impact of the
optical dynamics on the microwave signal and, thus, is especially
suited for external modulation and operation close to threshold.
By contrast, the active region of the free-running structure inves-
tigated here cannot be represented by a simple conductance G′

as in previous work[17] and Section 3, since it features a strong
photon-induced current component driving the microwave dy-
namics. This clearly demonstrates the need for a comprehen-
sive model including the full optical, microwave, and active re-
gion dynamics for an in-depth analysis and targeted design of
hybrid quantum devices, as presented in this paper. We have also
performed simulations with increased total microwave damping
a𝜔L across the waveguide, achieved either by doubling a𝜔 as for
the actively mode-locked structure or by extending the length to
L = 5mm. No self-locking is obtained since the noise quantifiers
significantly exceed the mode-locking threshold,[86] although for
L = 5mm, they do get noticeably reduced around a certain C′.
Similarly as for the actively mode-locked structure, the ob-

tained results suggest that at moderate losses, microwave propa-
gation effects beyond purely local oscillations can build up along
the transmission line, enabling the observed self-locked opera-
tion for adapted values of C′.

5. Conclusion

In conclusion, a theoretical model for hybrid microwave–
electronic and photonic quantum devices has been introduced in
the form of the MLT equations, along with a suitable numerical
framework. Simulations of both directly modulated and free-
running hybrid QCL structures yield excellent agreement with
available experimental results and demonstrate the importance
of microwave–optical co-propagation effects. As analytically
and numerically shown in accord with experiment, the hybrid
concept enables more efficient device modulation, and thus
improved active mode-locking. Moreover, our simulations of
free-running devices reveal the emergence of broadband hybrid
terahertz-microwave generation, as recently observed in exper-
iment. Notably, for structures with suitably engineered waveg-
uides, we numerically demonstrate the self-organized formation
of regular microwave–optical oscillation patterns, potentially
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enabling self-stabilized comb operation. The presented model
provides the basis for systematic hybrid device development
and optimization under full consideration of the microwave
properties, as well as for extending the hybrid concept to other
quantum-engineered device platforms beyond QCLs.[35–39] Fur-
thermore, in analogy to simplified models for phase-locked
operation of quantum optoelectronic devices obtained from
the MB equations,[42–45] the MLT framework may serve as the
starting point for the development of (semi-)analytical models
for the hybrid operating regime.

Appendix A: Density Matrix Equations

We consider a quantum system with one or (in case of multiple laser
levels) several relevant optical transitions (dmn ≠ 0) in near-resonance
(|𝜔mn| ≈ 𝜔c). Furthermore, the system can contain tunnel coupling
(Ωmn ≠ 0) and relevant microwave transitions (dmn ≠ 0) between closely
aligned states (|𝜔mn| ≪ 𝜔c). We assume a Fabry–Pérot-type cavity where
counter-propagating waves with amplitudes E+ and E− form a standing
wave pattern, which results in SHB. Diffusion counteracts the formation
of an inversion grating and should thus be included in the model.[46]

While the diffusion coefficient is often assumed to be identical for all lev-
els, this is for example not true for quantum dot media where diffusion
mainly takes place in the reservoir.[67] Furthermore, there is a debate if
diffusion should also be considered for the coherences.[88] Thus, we use
a generalized approach, adding a term 𝜕t𝜌mn = ⋯ + Dmn𝜕

2
x 𝜌mn with dif-

fusion coefficient Dmn to the evolution equation of each DM element.
We start with Equation (4), taking the Hamiltonian ĤS = Ĥ + ĤRWA. The
matrix elements of Ĥ given by Equation (6) imply that also the transi-
tion frequencies 𝜔mn = Ωmm − Ωnn are bias dependent. For employing
the RWA, we substitute Equation (2) into Equation (4). Furthermore, for
all near-resonant optical transitions with dmn ≠ 0, we substitute 𝜌mn =∑

± 𝜂±mn exp[±i𝛽x − i𝜔csgn(𝜔mn)t] for the corresponding off-diagonal DM
element. As for SHB, the inversion grating’s periodicity corresponds to
that of the optical power. Thus, we make for all the remaining DM ele-
ments the ansatz 𝜌mn = 𝜌0mn +

∑
± 𝜌2±mn exp(±2i𝛽x). The equations in RWA

are then obtained by discarding terms oscillating rapidly in time. For a
more compact notation, we introduce rm =

∑
n≠m rmn, 𝜅mn = 𝛽2Dmn and

f± with f+ = E+, f− = E∗−.
For the diagonal DM elements, we obtain
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and 𝜌2−nn = (𝜌2+nn )
∗.

For the off-diagonal DM elements 𝜂±mn of optical transitions (dmn ≠ 0)
with 𝜔mn > 0, we get

𝜕t𝜂
±
mn = i(𝜔c − 𝜔mn)𝜂

±
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∑
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±
mn, (A3)

and use 𝜂±nm = (𝜂∓mn)
∗ to obtain the remaining elements. The condition|𝜔in| ≪ 𝜔c in above summation implies that we only include terms with

slowly oscillating elements 𝜌0in and 𝜌
2±
in since the other terms are discarded

in the RWA, and analogously for |𝜔mi| ≪ 𝜔c. For these DM elements, we
obtain the evolution equations

𝜕t𝜌
0
mn = i

∑
i

(
Ωin𝜌

0
mi − Ωmi𝜌

0
in

)
− 𝛾mn𝜌

0
mn

+ i
2ℏ

∑
±

⎡⎢⎢⎢⎣E
∗
±

∑
i

𝜔in>0

dmi𝜂
±
in + f±

∑
i

𝜔in<0

dmi𝜂
∓
in

− E∗±
∑
i

𝜔mi>0

din𝜂
±
mi − f±

∑
i

𝜔mi<0

din𝜂
∓
mi

⎤⎥⎥⎥⎦, (A4)

𝜕t𝜌
2+
mn = i

∑
i

(
Ωin𝜌

2+
mi − Ωmi𝜌

2+
in

)
− (𝛾mn + 4𝜅mn)𝜌

2+
mn

+ i
2ℏ

∑
±

⎛⎜⎜⎜⎝f∓
∑
i

±𝜔in>0

dmi𝜂
+
in − f∓

∑
i

±𝜔mi>0

din𝜂
+
mi

⎞⎟⎟⎟⎠, (A5)

and 𝜌2−nm = (𝜌2+mn)
∗. The remaining off-diagonal DM elements 𝜌mn are set

to 0 in our RWA model since carrier transport between the corresponding
levels m and n is then exclusively mediated by incoherent transport, con-
sidered in Equation (A1) and (A2) by the rates rmn. The polarization term
in Equation (3) is obtained from the 𝜂±mn in Equation (A3) as

p± =
n3D𝜔

2
c

𝜖0𝛽c2
Γ

∑
𝜔mn>0

dnm𝜂
±
mn, (A6)

with the electron number density n3D and overlap factor Γ. This model
can straightforwardly be adapted to QD lasers by adding suitable nonlin-
ear rate terms describing carrier exchange among the QD states and with
the wetting layer, and by considering both the electron and hole dynam-
ics which is most easily done using the excitonic approximation.[68] For
compatibility with the MLT model, carrier injection must be included in
dependence of the bias voltage rather than the current density.[61]

Appendix B: Treatment of Periodic Structures

QCLs consist ofmany equivalent periods of length Lp, corresponding to
coupled, ideally identical quantum systems. Usually, periodicity-breaking
effects, such as the influence of the electric contacts, the transverse depen-
dence of the optical field and possibly domain formation, are neglected,
and the QCL active region is modeled by a representative period, de-
scribed by a quantum system containing the N relevant states of a sin-
gle period with suitable periodic boundary conditions.[89] As discussed in
Section 2.3, tunneling across thick barriers (such as the injection and/or
extraction barriers in many QCL designs) can be included by using tight-
binding states rather than an extended basis.[62,90] The tight-binding basis
set is obtained by dividing the quantum structure into modules separated
by the thick barriers, and solving the Schrödinger–Poisson equation for
each module separately.[62,90] An alternative method for obtaining a suit-
able localized basis set without having to identify thick barriers are the
EZ states, obtained from a basis transformation of the extended energy
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eigenstates.[65] Apart from the optical and tunneling transitions, the trans-
port in QCLs is largely incoherent.[71,90,91] Thus, the states of a representa-
tive period can usually be chosen in the simulation such that tunneling as
well as optical transitions happen only inside the period and interperiod
transport is incoherent, that is, 𝜌mn = 0 if the levels m and n are in two
different periods. This enables an implementation of periodic boundary
conditions in the same way as for rate equation models of QCLs,[92,93] us-
ing that 𝜌mn = 𝜌m±N,n±N. Taking into account only scattering to adjacent
periods, periodic boundary conditions can then be implemented into our
model by replacing rmn in Equations (A1) and (A2) with the effective rates
r′mn = rmn + rm,n+N + rm,n−N, and making sure that the total outscattering
rate rm from level m also contains scattering to adjacent periods. In this
case, also the evaluation of the current density is possible in a simplified
manner, yielding

J = −e
(
n3DLp

) N∑
m,n=1

𝜌0mm

(
rm,n+N − rm,n−N

)
. (B1)

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This study was supported by the Deutsche Forschungsgemeinschaft via
QuantERA II project QATACOMB (project number 491801597).

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
density matrix, frequency combs, microwave photonics, mode-locking,
quantum cascade lasers, quantum devices, terahertz

Received: May 23, 2023
Revised: July 17, 2023

Published online: August 25, 2023

[1] L. Hargrove, R. L. Fork, M. Pollack, Appl. Phys. Lett. 1964, 5, 4.
[2] T. Udem, R. Holzwarth, T. W. Hänsch, Nature 2002, 416, 233.
[3] H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1173.
[4] D. Kuizenga, A. Siegman, IEEE J. Quantum Electron. 1970, 6, 694.
[5] J. Yao, J. Light. Technol. 2009, 27, 314.
[6] A. J. Seeds, K. J. Williams, J. Light. Technol. 2006, 24, 4628.
[7] J. Capmany, D. Novak, Nat. Photon. 2007, 1, 319.
[8] S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, J. Capmany, IEEE Mi-

crow. Mag. 2015, 16, 28.

[9] D. Marpaung, J. Yao, J. Capmany, Nat. Photonics 2019, 13, 80.
[10] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho,

Science 1994, 264, 553.
[11] R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G.

Davies, D. A. Ritchie, R. C. Iotti, F. Rossi, Nature 2002, 417, 156.
[12] A. Hugi, G. Villares, S. Blaser, H. C. Liu, J. Faist, Nature 2012, 492,

229.
[13] D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J.

Hayton, J.-R. Gao, J. L. Reno, Q. Hu, Nat. Photon. 2014, 8, 462.
[14] M. W. Day, M. Dong, B. C. Smith, R. C. Owen, G. C. Kerber, T. Ma, H.

G. Winful, S. T. Cundiff, APL Photonics 2020, 5, 121303.
[15] U. Senica, A. Forrer, T. Olariu, P. Micheletti, S. Cibella, G. Torrioli, M.

Beck, J. Faist, G. Scalari, Light Sci. Appl. 2022, 11, 347.
[16] K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang,

A. M. Sergent, D. L. Sivco, A. Y. Cho, Appl. Phys. Lett. 2002, 80, 3060.
[17] W. Maineult, L. Ding, P. Gellie, P. Filloux, C. Sirtori, S. Barbieri, T.

Akalin, J.-F. Lampin, I. Sagnes, H. E. Beere, D. A. Ritchie, Appl. Phys.
Lett. 2010, 96, 021108.

[18] M. Theuer, S. S. Harsha, D. Molter, G. Torosyan, R. Beigang,
ChemPhysChem 2011, 12, 2695.

[19] H. Guerboukha, K. Nallappan, M. Skorobogatiy, Adv. Opt. Photonics
2018, 10, 843.

[20] L. Consolino, S. Bartalini, P. De Natale, J. Infrared Millim. Terahertz
Waves 2017, 38, 1289.

[21] F. Wang, K. Maussang, S. Moumdji, R. Colombelli, J. R. Freeman, I.
Kundu, L. Li, E. H. Linfield, A. G. Davies, J. Mangeney, J. Tignon, S.
S. Dhillon, Optica 2015, 2, 944.

[22] A. Mottaghizadeh, D. Gacemi, P. Laffaille, H. Li, M. Amanti, C. Sirtori,
G. Santarelli, W. Hänsel, R. Holzwart, L. H. Li, E. H. Linfield, S.
Barbieri, Optica 2017, 4, 168.

[23] H. Li, P. Laffaille, D. Gacemi, M. Apfel, C. Sirtori, J. Leonardon, G.
Santarelli, M. Rösch, G. Scalari, M. Beck, J. Faist, W. Hänsel, R.
Holzwarth, S. Barbieri, Opt. Express 2015, 23, 33270.

[24] M. S. Vitiello, L. Consolino, M. Inguscio, P. De Natale,Nanophotonics
2021, 10, 187.

[25] C. Y.Wang, L. Kuznetsova, V.M. Gkortsas, L. Diehl, F. X. Kärtner,M. A.
Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song,
S. Haffouz, Z. R. Wasilewski, H. C. Liu, F. Capasso,Opt. Express 2009,
17, 12929.

[26] M. Piccardo, D. Kazakov, B. Schwarz, P. Chevalier, A. Amirzhan, J.
Hillbrand, S. Z. AlMutairi, Y. Wang, F. Xie, K. Lascola, S. Becker, L.
Hildebrandt, R. Weih, A. Belyanin, F. Capasso, IEEE J. Sel. Top. Quan-
tum Electron. 2019, 25, 9200112.

[27] V. Pistore, H. Nong, P.-B. Vigneron, K. Garrasi, S. Houver, L. Li, A.
G. Davies, E. H. Linfield, J. Tignon, J. Mangeney, R. Colombelli, M. S.
Vitiello, S. S. Dhillon, Nat. Commun. 2021, 12, 1427.

[28] F.Wang, V. Pistore,M. Riesch,H.Nong, P.-B. Vigneron, R. Colombelli,
O. Parillaud, J. Mangeney, J. Tignon, C. Jirauschek, S. S. Dhillon, Light
Sci. Appl. 2020, 9, 51.

[29] H. Li, W. Wan, Z. Li, J. Cao, S. Lepillet, J.-F. Lampin, K. Froberger, L.
Columbo, M. Brambilla, S. Barbieri, Opt. Express 2022, 30, 3215.

[30] A. Calvar, M. Amanti, M. Renaudat St-Jean, S. Barbieri, A. Bismuto, E.
Gini, M. Beck, J. Faist, C. Sirtori, Appl. Phys. Lett. 2013, 102, 181114.

[31] M. R. St-Jean, M. I. Amanti, A. Bernard, A. Calvar, A. Bismuto, E. Gini,
M. Beck, J. Faist, H. Liu, C. Sirtori, Laser Photon. Rev. 2014, 8, 443.

[32] F. Kapsalidis, B. Schneider, M. Singleton, M. Bertrand, E. Gini, M.
Beck, J. Faist, Appl. Phys. Lett. 2021, 118, 071101.

[33] P. Täschler, M. Bertrand, B. Schneider, M. Singleton, P. Jouy, F.
Kapsalidis, M. Beck, J. Faist, Nat. Photonics 2021, 15, 919.

[34] J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, M. Beck,
Nanophotonics 2016, 5, 272.

[35] J. R. Meyer, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D.
Merritt, I. Vurgaftman, Photonics 2020, 7, 75.

[36] E. U. Rafailov, M. A. Cataluna, W. Sibbett,Nat. Photonics 2007, 1, 395.

Laser Photonics Rev. 2023, 17, 2300461 2300461 (11 of 12) © 2023 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

[37] F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. v. Dijk,
D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O.
Drisse, E. Derouin, B. Rousseau, F. Pommereau, G.-H. Duan, IEEE J.
Sel. Top. Quantum Electron. 2007, 13, 111.

[38] E. Avrutin, J.Marsh, E. Portnoi, IEE Proc.-Optoelectron. 2000, 147, 251.
[39] L. Chang, S. Liu, J. E. Bowers, Nature Photon. 2022, 16, 95.
[40] L. Allen, J. H. Eberly, Optical Resonance and Two-Level Atoms, volume

28, Courier Corporation, North Chelmsford, MA 1987.
[41] R. W. Boyd, Nonlinear Optics, Academic, San Diego, CA 2003.
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