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Abstract

The launch of NASA’s Global Ecosystem Dynamics Investigation (GEDI) mis-

sion in 2018 opens new opportunities to quantitatively describe forest ecosys-

tems across large scales. While GEDI’s height-related metrics have already been

extensively evaluated, the utility of GEDI for assessing the full spectrum of

structural variability—particularly in topographically complex terrain—remains

incompletely understood. Here, we quantified GEDI’s potential to estimate for-

est structure in mountain landscapes at the plot and landscape level, with a

focus on variables of high relevance in ecological applications. We compared

five GEDI metrics including relative height percentiles, plant area index, cover

and understory cover to airborne laser scanning (ALS) data in two contrasting

mountain landscapes in the European Alps. At the plot level, we investigated

the impact of leaf phenology and topography on GEDI’s accuracy. At the

landscape-scale, we evaluated the ability of GEDIs sample-based approach to

characterize complex mountain landscapes by comparing it to wall-to-wall ALS

estimates and evaluated the capacity of GEDI to quantify important indicators

of ecosystem functions and services (i.e., avalanche protection, habitat provi-

sion, carbon storage). Our results revealed only weak to moderate agreement

between GEDI and ALS at the plot level (R2 from 0.03 to 0.61), with GEDI

uncertainties increasing with slope. At the landscape-level, however, the agree-

ment between GEDI and ALS was generally high, with R2 values ranging

between 0.51 and 0.79. Both GEDI and ALS agreed in identifying areas of high

avalanche protection, habitat provision, and carbon storage, highlighting the

potential of GEDI for landscape-scale analyses in the context of ecosystem

dynamics and management.

Introduction

Research on forest structure has a long tradition in forest

ecology (Watt, 1947; Whittaker & Woodwell, 1969). For-

est structure describes the number, size, and spatial

arrangement of trees and other wooded elements, which

is closely linked to ecosystem services (Andrew

et al., 2014). Climate and land use change put increasing

pressure on forest ecosystems globally, with profound

impacts on forest structure (Bohn & Huth, 2017;

McDowell et al., 2020). These impacts might be particu-

larly pronounced in mountain forests because mountain

areas warm 25–50% faster than the global average (Hock

et al., 2019). Mountain forests provide essential functions

and services to society, such as protection from natural

hazards (e.g., rockfall, landslides, flooding, snow
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avalanches) and provision of habitats to a wide variety of

species (Sebald et al., 2019; Stritih et al., 2021). These

functions and services are largely determined by forest

structure, e.g., protective forests need a certain height and

density to provide protection from avalanches (Baggio

et al., 2022), and keystone species of mountains forests

require a certain size and distribution of trees as their

habitat, e.g., Kortmann et al. (2018). Characterizing forest

structure hence enables tracking the response of mountain

forests and the functions and services they provide to cli-

mate and land use change (Atkins et al., 2018; Felipe-

Lucia et al., 2018).

Collecting field-based data on forest structure is labor-

intensive and limited in extent, which has increased the

interest in using remote sensing for complementing terres-

trial approaches in providing information on forest struc-

ture. While optical remote sensing has provided large-scale

insights into forest cover changes (Gao et al., 2020; Senf &

Seidl, 2022; Winkler et al., 2021; Wulder et al., 2020;), opti-

cal data is limited in its capacity to estimate structural

parameters (Tang et al., 2019). Active remote sensing tech-

niques, such as Light Detection And Ranging (LiDAR),

overcome many of these limitations and provide detailed

information on forest structure (Jucker, 2022; Lefsky

et al., 2002; Valbuena et al., 2020). LiDAR measures the

three-dimensional structure of forests by emitting laser

pulses and measuring the travel time of the emitting pulse.

Due to the capability of LiDAR to penetrate tree canopies,

its 3D point-clouds provide information not only about the

horizontal structure of the top canopy, but also allow for

describing the vertical structure of a forest canopy, includ-

ing sub-canopy trees (Jarron et al., 2020). Most LiDAR data

is acquired by aircrafts (i.e., airborne laser scanning [ALS])

and provides highly detailed wall-to-wall coverage at the

level of forest landscapes. Yet, ALS is also characterized by

high acquisition costs, often irregular acquisition times and

limited spatial coverage (Hancock et al., 2019), limiting the

assessment of forest structure across large spatial extents as

well as its application in regular monitoring efforts.

Spaceborne LiDAR systems can overcome some of the

limitations described for ALS above, with various mis-

sions being available for different purposes: measuring the

polar ice sheet mass balance (ICESat, ICESat-2) (Schutz

et al., 2005), aerosols and clouds (CALIPSO)

(Winker, 2007) as well as wind speed (Aeolus) (Banyard

et al., 2021). None of these missions primarily targeted

vegetation structure and their applicability to forests is

thus limited (Dubayah et al., 2020). This gap was filled

with the launch of NASA’s Global Ecosystem Dynamics

Investigation (GEDI) system. GEDI is a spaceborne

LiDAR sensor that is specifically designed for characteriz-

ing forest ecosystems (Dubayah et al., 2020). GEDI is

mounted on the International Space Station and started

its data acquisition in April 2019, covering all terrestrial

areas globally between 51.6° N/S in a sample-based

approach. Since the early 2020, GEDI’s scientific products

are available via NASA’s Land Processes Distributed

Active Archive Center, including a set of ready-to-use

structural metrics such as plant area index (PAI), foliage

height diversity (FHD) or canopy cover (Dubayah

et al., 2020; Fayad, Ienco, Baghdadi, et al., 2021).

Even though GEDI considerably advances our ability to

quantify vegetation structure across large extents, impor-

tant caveats need to be considered, particularly when

applying GEDI in complex mountain areas. First, LiDAR

metrices are sensitive to seasonal changes in foliage (Li

et al., 2018). As the leaf-on period is short in many

mountain regions, phenological effects are likely to influ-

ence GEDI metrics in mountain forests. Second, previous

studies have shown that the accuracy of GEDI depends

on sampling density (Schneider et al., 2020). Inherent to

GEDI’s sampling design, sampling densities are low in

highly-fragmented landscapes, such as mountain areas,

resulting in reduced accuracy. Third, it can be challenging

to separate ground and vegetation returns in steep terrain

(Fayad, Baghdadi, Alvares, et al., 2021). Compared to

other spaceborne LiDAR instruments, GEDI has a smaller

footprint of 25 m, which was designed to minimize such

slope effects (Duncanson et al., 2022). However, the foot-

print is still relatively large compared to ALS data

(~0.25 m), and a substantial bias can be expected when

using GEDI to estimating forest height on steep slopes

(Fayad, Baghdadi, Alcarde Alvares, et al., 2021; Ni

et al., 2021). The degree to which these factors are limit-

ing the use of GEDI for ecological applications in moun-

tain areas remains unclear to date. However, a tool such

as GEDI might be particularly valuable in mountains,

where accessibility for field-based assessments is often low

and where strong environmental gradients make large-

scale assessments particularly insightful.

Here, our objective was to assess the applicability of

GEDI data for characterizing the structure of mountain

forests. To address this objective, we first analyzed how

well GEDI performs in comparison to ALS in estimating

key forest structural parameters at the plot scale. Specifi-

cally, we quantified the trade-off between GEDI data

acquired through a longer period of time during the year

(resulting in higher data density) and a potential sea-

sonal/phenological mismatch to the reference ALS data.

Furthermore, we evaluated the impact of topography on

the estimation of structural parameters. Second, we inves-

tigated whether the sampling-based approach of GEDI is

able to capture the variability in forest structure at the

landscape scale, specifically analyzing whether rare cases

are under-sampled by GEDI. We subsequently assessed

how well GEDI is able to inform indicators of ecosystem
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functions and services, focusing particularly on protection

against avalanches, carbon storage, and habitat quality.

We conducted our study in two contrasting mountain

landscapes in Germany and Switzerland (Berchtesgaden

and Davos), to study our questions under a range of dif-

ferent ecological conditions (inner mountains vs. front

range, calcareous vs. crystalline geology etc.).

Materials and Methods

Study sites

We selected two study sites (Fig. 1) in the European Alps

that represent a wide gradient of biophysical features and

forest types. Berchtesgaden is situated in the south-

eastern part of Germany in the northern limestone Alps.

We focused our analyses on Berchtesgaden National Park,

an IUCN category 2 protected area of 20 808 ha. In total,

54% (11 835 ha) of the landscape is covered by forests, of

which 54% are evergreen coniferous forests, 32% are

mixed forests, 12% are larch-dominated forests and 2%

are broadleaved forests (Lotz, 2006). Dominant tree spe-

cies are Norway spruce [Picea abies (L.) Karst.], European

larch (Larix decidua L.) and European beech (Fagus sylva-

tica L.) (Becker, 2016; Thom & Seidl, 2022). The land-

scape is characterized by complex topography with steep

slopes (average slope of 29°) and a high elevation gradient

from 600 to 2700 m a.s.l., with the tree line at approxi-

mately 1700 m a.s.l. (Mayer, 1984). The forests were

largely managed before the establishment of the National

Park in 1978, and legacies of past land use are still shap-

ing current vegetation structure and composition.

The second study site, Davos, is located in the eastern

part of Switzerland and is dominated by sub-alpine and

alpine vegetation (1184–3181 m a.s.l.). The whole land-

scape is 45 216 ha in size, of which 16% (7200 ha) are

Figure 1. Overview map showing the location of the two study sites within the European Alps (dark green) (a). Hexagons in (b) and (c) show

GEDI point density per 50 ha cell for the two study sites Berchtesgaden (b) and Davos (c). (d) Illustrates GEDI’s sampling design, with GEDI

footprints shown as blue points. The histograms in (b) and (c) show the distribution of slopes within both study sites. GEDI, Global Ecosystem

Dynamics Investigation.
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covered by forests. The forests are 84% evergreen conifer-

ous, 13% larch-dominated and 3% mixed (AWN, 2019). In

contrast to Berchtesgaden, Davos is more strongly domi-

nated by conifers, in particular Norway spruce and Euro-

pean larch. The upper tree line in Davos occurs at

approximately 2160 m a.s.l. (Mietkiewicz et al., 2017), and

the average slope is 24°. Forests in Davos are largely man-

aged, with the main management objective being the main-

tenance of the protective function of forests (AWN, 2018;

Temperli et al., 2017).

Data

GEDI data

GEDI is a full-waveform laser-based instrument that sam-

ples footprints of 25 m diameter every 60 m along eight

data tracks that are 600 m apart (Dubayah et al., 2020).

For this study, we used GEDI level 2A (Dubayah, Hofton,

et al., 2021) and 2B (Dubayah, Tang, et al., 2021) prod-

ucts. Due to higher geolocation accuracy, we only used

version 2 data with a mean horizontal error of 10.3 m

(Luthcke et al., 2019). Level 2A data contain elevation

and percentiles of canopy height (Dubayah, Hofton,

et al., 2020), while the level 2B data contain vegetation

structural metrics such as PAI, FHD and canopy cover.

The metrics are computed based on the directional gap

probability from level 1B waveform data (Tang & Arm-

ston, 2019) using one out of six available algorithm set-

tings. The algorithm setting groups mainly differ in their

thresholds for detecting the background noise level and

thus the way waveforms are interpreted (Hofton

et al., 2019). Although the most appropriate algorithm is

automatically selected for version 2 data, we calculated

the metrics for all other non-default algorithm setting

groups manually and checked their agreement with ALS

data. Since this preliminary analysis showed that the

default algorithm setting had the best correlation with ref-

erence data, we performed all further analyses with

default settings.

We acquired 6766 and 4574 GEDI footprints for the

Berchtesgaden and Davos study sites, respectively. We only

used GEDI footprints that intersect with forests (using a

forest type data sets described in more detail in section

“Forest type data” below) and that met certain quality cri-

teria expressed by quality flag = 1 and degrade flag = 0.

Quality flags allow for filtering out low quality footprints

based on energy, sensitivity, amplitude, real-time surface

tracking quality, and differences to a digital elevation model

(Beck et al., 2021). GEDI data acquisition and processing

was conducted using the rGEDI package (v0.3.0) (Silva

et al., 2020) in the R software environment for statistical

computing and graphics (R Core Team, 2021).

ALS data

We used two ALS datasets available for both study sites

(Table 1) to benchmark GEDI estimates. The main differ-

ence between the two LiDAR datasets was the time of

data acquisition. While the ALS data in Berchtesgaden

was recorded at the end of the leaf-on season in 2021, the

ALS data from Davos was acquired at the beginning of

the leaf-off season in 2020. Point densities also differed

between both datasets (Table 1), but the horizontal and

vertical accuracies were similar. Accuracy was checked by

stripe overlap differences and deviations of the control

points before and after the adjustment.

To derive metrics comparable to GEDI from ALS data,

several pre-processing steps were applied. We performed

an outlier removal on the ALS point clouds using a noise

segmentation algorithm based on statistical outlier

removal and applied a spatial interpolation using the

Delaunay triangulation for point cloud normalization. All

of the ALS processing was done using the lidR package

(Roussel et al., 2020; Roussel & Auty, 2022) in R.

Forest type data

To test the effect of phenology on forest structure esti-

mates from GEDI, we stratified our study sites into ever-

green coniferous, deciduous coniferous, mixed, and

broadleaved forests. For Berchtesgaden we used the Habi-

tAlp dataset, a stereographic aerial interpretation of the

dominant habitat type (Lotz, 2006), which we reclassified

into the above mentioned classes. For Davos, we reclassi-

fied a forest stand map from 2019 (AWN, 2019) into the

same classes.

Forest structural metrics

We computed a consistent set of forest structural metrics

for both GEDI and ALS. Following the classification of

Atkins et al. (2018), the metrics can be divided into

groups describing height, area and density, heterogeneity

and cover and openness. For height, we used the relative

Table 1. ALS acquisition parameters for Berchtesgaden and Davos.

Parameter ALS Berchtesgaden ALS Davos

Acquisition date Sep. 2021 Aug.–Nov. 2020
Ø Point density (last pulses) 47.0 points/m2 16.9 points/m2

Wavelength 1064 nm 1064 nm

Horizontal accuracy <40 cm <20 cm

Vertical accuracy <10 cm <10 cm

ALS, airborne laser scanning.

602 ª 2023 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Investigating Forest Structure by Spaceborne LiDAR L. Mandl et al.



heights (RHs) as percentiles of the vertical distribution at

50 and 98% of LiDAR first returns. The 50th percentile

contains information about the distribution of tree size

classes, e.g., important for forest planning (Næsset, 1997),

whereas the 98th percentile corresponds to canopy top

height. Specifically, RH(x) is the height above the ground

below which x% of the backscattered energy is located in

the waveform (Zolkos et al., 2013):

RHx ¼ Σ
x nþ 1ð Þ

100
,

where x is the respective percentile and n is the total

number of ordered z values within the plot.

Area and density were represented by the PAI for

GEDI and the leaf area index (LAI) for ALS, which are

important and widely used parameter in plant ecology

(Fang et al., 2019; George et al., 2021) that are, e.g.,

indicative of the radiation absorbed by plant canopies.

Although LAI quantifies only leaves, and not the total

plant area such as PAI, the two indices are strongly

related because leaf area is usually orders of magnitude

larger than the tree’s other components (Kucharik

et al., 1998), i.e., LAI is a dominant component of PAI.

We calculated LAI from ALS by first determining the

leaf area density (LAD) profile of the canopy volume

according to Bouvier et al. (2015), which is the total

leaf area per unit volume:

LAD ¼ �Σ
lnP zð Þ

k
,

where P is the gap fraction of the canopy to a given

height z, and k is the extinction coefficient (here k = 0.5).

Gap fraction P was computed following the approach

proposed by Roussel et al. (2018):

P ¼ N 0; z½ �
N 0; zþdz½ �

with N[0; z] being the number of returns below z and

N[0; z + dz] the number of returns below z + dz (dz describes

the thickness of a forest layer in horizontal slices, here

dz = 1 m). The LAD assesses the number of laser points actu-

ally reaching the predefined height bins (=“thickness” of the
layer) and those passing the layer (=gap fraction P). Subse-

quently, the log of this quantity is calculated and divided by

extinction coefficient k as described in Bouvier et al. (2015).

Finally, LAI is derived by integrating LAD l(z) for all horizon-

tal bins dz (here dz = 1 m):

LAI ¼
Z z

0

l zð Þdz:

To describe the heterogeneity of the canopy, we calculated

FHD as defined by MacArthur and MacArthur (1961), a

metric that is widely used to describe forest canopy

complexity (Walter et al., 2021). FHD was computed

based on the Shannon-Weaver information index

(Shannon, 1948):

FHD ¼ �Σpi ln pi,

where pi is the proportion of horizontal vegetation in the

ith layer (here: 1 m horizontal bins), corresponding to

the ratio of LiDAR return in the ith layer to the total

returns (Clawges et al., 2008; MacArthur &

MacArthur, 1961). FHD quantifies the evenness and

diversity of the point cloud’s distribution across the

canopy.

Cover and openness was described by total canopy cover

and understory cover, the latter defined as vegetation

cover below 5 m We used the 5 m threshold as it corre-

sponds to the official forest definition of the FAO (2020),

but other thresholds could have been chosen instead.

Cover metrics describe the density of the canopy and are

thus related to light availability on the floor and the

growth of understory vegetation (Depauw et al., 2021).

We determined cover through the ratio of the number of

first returns (zfirst) > 2 m to the total number of first

returns (zfirst):

Canopy cover ¼ Σ
zfirst > 2

zfirst
:

As it is known that GEDI waveforms are affected by a

potential mix of ground and vegetation returns (Fayad,

Baghdadi, Alvares, et al., 2021), we used an adapted form

of GEDI’s cover metric. Based on the cumulative cover

profile (in 5 m height bins) available in the GEDI level

2B, we computed the cover above 5 m to minimize the

effect of mixing ground and vegetation returns (see also

Schneider et al., 2020). We did not apply such a height

threshold for the ALS derived cover metric. Understory

cover was calculated in the same way, but the point cloud

was previously filtered to include only points <5 m.

Statistical analysis

We modeled the relationship between ALS and GEDI-

derived metrics by using standardized major axis regres-

sion (SMA) implemented in the smatr package (v3.4.8)

(Warton et al., 2012). This statistical method assumes that

there are errors in both X and Y variables, as opposed to

ordinary least squares, which only assumes errors in the Y

variable; (Warton et al., 2006). SMA regression is recom-

mended when testing for the inter-dependence of two

measurements, in our case airborne and spaceborne

LiDAR (Warton & Weber, 2002). To estimate the param-

eters of the SMA, we used Huber’s M estimation, which
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is robust against outliers (Taskinen & Warton, 2011). We

conducted this analysis for several subgroups (season, for-

est type, topographic pattern), which are explained in

detail in the following.

Plot-scale analysis

First, we analyzed the plot-based agreement (plot here cor-

responding to the 25 m footprint size of GEDI) between

the GEDI and ALS forest structure metrics as a function of

time since ALS acquisition to assess the trade-off between

GEDI data density (increasing with time since ALS acquisi-

tion) and seasonal mismatch (also increasing with time

since ALS acquisition). The ALS data were collected at the

end of the leaf-on season (mid-September) in Berchtesga-

den and at the beginning of the leaf-off season (mainly in

September and October) in Davos. We compared the GEDI

and ALS data for acquisitions within �3 weeks around

ALS acquisition, within the full leaf-on and leaf-off season,

as well as for the full year to investigate inter- and intra-

seasonal effects. To maximize the number of footprints, we

used data from all years GEDI was available (2020–2022),
despite the ALS data being only available for 1 year. As

temporal cutoff between leaf-on and leaf-off we selected

mid-April and mid-September for both study sites. Based

on these findings, we selected a final set of GEDI data to be

used for subsequent analyses.

Subsequently, we examined whether seasonal effects on

the relationship between GEDI and ALS are determined

by forest phenology. To do this, we compared the agree-

ment between GEDI and ALS metrics across various for-

est types: evergreen coniferous, deciduous coniferous,

broadleaved and mixed. We subdivided coniferous forest

stands into evergreen and deciduous to capture the effect

of larch-dominated stands, which shed their needles in

winter and hence are expected to show different seasonal

effects. To further investigate the sensitivity of GEDI met-

rics to mountainous topography, we also compared the

match between GEDI and ALS among different slope clas-

ses. Slope was computed from the ALS-based digital ele-

vation model as the mean value within each 25 m GEDI

footprint. We grouped slopes into flat (slope < 15°) gen-

tle (15° ≤ slope < 35°) and steep (slope ≥ 35°) terrain.

Landscape-level analysis

At the landscape-level, we first assessed the performance

of GEDI’s sampling approach compared to wall-to-wall

ALS metrics computing cumulative distribution plots.

We gridded forest structure metrics at a 20 m resolution

(400 m2), which corresponds approximately the GEDI

plot size (490 m2). We evaluated whether GEDI is capa-

ble of capturing landscape-scale patterns of forest struc-

ture or whether biases are introduced by, e.g., under-

sampling ‘extreme’ values. Besides this analysis, we

gridded the mean values of GEDI and ALS metrics to a

50 ha hexagon grids and calculated agreement between

both datasets at the landscape scale. We additionally

tested 4 and 10 ha grids, but found that smaller grid

sizes resulted in many empty grid cells with no GEDI

footprint (over 50% of 4 ha cells and 30% of 10 ha cells

were empty for both sites, whereas 20% of the 50 ha

grid cells were empty). Finally, we derived a set of

parameters indicative for important ecosystem functions

and services from GEDI and compared them to the

same indicators derived from ALS to explore GEDI’s

utility for questions of applied ecology. Avalanche pro-

tection is an important regulating service of mountain

forests (Grêt-Regamey & Straub, 2006), which requires a

sufficient canopy cover and tree height (Frehner

et al., 2005). As proxy for habitat quality we used indi-

cators of habitat suitability for capercaillie (Teatro uro-

gallus), an umbrella species for avian biodiversity (Suter

et al., 2002). Finally, we used height and PAI as proxies

for forests’ carbon storage (i.e. amount of aboveground

biomass) and uptake capacity, respectively (Duncanson

et al., 2022; Zhao et al., 2021). All indicators were evalu-

ated on a binary scale for each grid cell: For avalanche

protection and habitat quality, we defined thresholds

above which these services and functions were positively

evaluated (Table 2). Due to a lack of absolute thresholds

and high spatial variability of carbon density (Seidl

et al., 2012), we defined forests with a high carbon stor-

age and uptake capacity as those in the top 25% of

height and PAI (based on ALS data), which corresponds

to RH98 > 24 m and PAI > 3.5 in our data and across

both study sites.

Table 2. Assessed ecosystem functions and services and their criteria and thresholds.

Ecosystem functions and services Criteria Reference

Avalanche protection Cover >50% AND height >5 m Frehner et al. (2005)

Habitat suitability for capercaillie FHD > 2 AND cover = [40; 70] Graf et al. (2013); Suter et al. (2002)

High carbon uptake and storage RH98 > 75th percentile AND PAI > 75th percentile Site-adaptive thresholds

FHD, foliage height diversity; PAI, plant area index; RH, relative height.
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Results

Plot-scale

The availability of high-quality GEDI data varied across

phenological seasons, with a higher availability of leaf-on

data in both study sites. In Berchtesgaden, 44% of the

footprints (6766) passed the quality check, of which

nearly 100% (6762) were recorded in the leaf-on season.

For Davos, only 21% of the footprints (4574) passed the

quality check and 77% of these (3519) were recorded in

the leaf-on season. We observed a trade-off between the

amount of GEDI footprints included in the analysis and

the temporal proximity of GEDI data to the date of

recording of the ALS data with regard to the agreement

between GEDI and ALS (Table 3). The agreement

between ALS and GEDI forest structural metrics was

highest when the date of recording of both sensors corre-

sponded closely. Agreement varied substantially between

metrics, with R2 values ranging from 0.0 to 0.52. Highest

agreement was found for RH50/RH98 and FHD, but also

for cover GEDI corresponded well to ALS (all R2 > 0.3,

see Table 3). Lower agreement was found for PAI and the

relationship was weakest for understory cover. Including

GEDI information for the whole leaf-on season increased

data availability, but decreased agreement. An even stron-

ger decrease in agreement was observed for only using

leaf-off observations, especially for metrics depending on

leaf area (i.e., PAI, cover and FHD). Using data for the

full phenological season (i.e., leaf-on and leaf-off)

improved agreement compared to using leaf-on data for

Berchtesgaden but not for Davos. Based on these analyses,

we chose two different time windows for both study sites

for subsequent analyses. For Berchtesgaden, we used data

in close temporal proximity (�3 weeks) to the ALS acqui-

sition (n = 2806). For Davos, however, data from the

leaf-on season was used (n = 3519) because there were

too few observations in close proximity to the ALS date

for further stratification of the data.

The agreement between GEDI and ALS also differed by

forest type, but these differences were not consistent

across both study areas. In Berchtesgaden, the agreement

was highest in broadleaved deciduous stands for most

metrics (Table 3), while RH98, FHD and cover were also

captured well in evergreen coniferous forests. In Davos,

where no broadleaved forests were present, evergreen

coniferous forests had the highest agreement for most

metrics, but FHD performed better in deciduous conifer-

ous forests.

Finally, the degree of agreement between GEDI and

ALS was generally highest in flat terrain (<15°) and

decreased with increasing angle of slope and was espe-

cially low on steep slopes >35°. Moving from moderately T
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slopes to steep slopes, agreement decreased more strongly

than between flat terrain and moderate slopes, indicating

that slope effects were non-linear across slope angles.

However, flat areas also had the largest biases for cover-

related metrics, with PAI and cover being systematically

underestimated by GEDI in flat terrain (Fig. 2). This bias

was particularly large at forest edges and in open forests.

Height-related metrics were overestimated on steeper

slopes, while FHD was least sensitive to slope at both

study sites.

Landscape-level

In a comparison of the distributions derived from GEDI

data to wall-to-wall ALS metrics, we found general agree-

ment between patterns across metrics and study sites.

Height metrics were overestimated by GEDI, while cover

metrics were underestimated (Fig. 3). We checked

whether underestimation was related to our adjusted

cover calculation, but using the default cover metric led

to even weaker agreement at the plot level, and still

underestimated ALS-derived cover at the landscape level.

For FHD, we found an inflection point, indicating that

GEDI overestimates vertically simple structures and

underestimates more complex stands. Consistent with the

plot level comparison, the results for understory cover

were poor.

The gridded GEDI metrics represented the spatial pat-

terns of forest structure well, resulting in higher R2 values

at the landscape scale compared to plot-level analyses

(Table 4; Fig. 4). We observed high agreement for height

and vertical structure metrics and only slightly lower

agreement for total canopy cover. For understory cover,

however, GEDI’s performance remained weak. The

observed spatial patterns were similar for both GEDI and

ALS, but GEDI tended to overestimate spatial variability

on the landscape (Fig. 4). Analyzing the distribution of

differences (Fig. 4) we found similar patterns across sites,

with a slight to medium overestimation of height metrics

and underestimation of cover metrics. For PAI and FHD,

both over- and underestimation occur with similar

frequencies.

Deriving indicators of important ecosystem functions

and services (Table 5; Fig. 5) from metrics of forest struc-

ture, we found high agreement between GEDI and ALS

for avalanche protection and habitat suitability. GEDI

predicted the same percentage of forests fulfilling the cri-

teria of each indicator as ALS. We also found high spatial

Figure 2. Differences between plot-level GEDI and ALS data grouped by forest type and slope category (flat = <15°, 15° < moderate = ≤35°,
steep = >35°). The first row of each group represents the Berchtesgaden study site (a) and the second row Davos (b). Violin plots show the

empirical density distribution of the data, boxplots within the violins indicate the median values (horizontal line), interquartile range (limited by

25th and 75th quantile) and outliers (>1.5 interquartile range below/above the 25th and 75th quantile). ALS, airborne laser scanning; GEDI,

Global Ecosystem Dynamics Investigation.
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agreement between ALS and GEDI-derived metrics for

both indicators. For carbon uptake and storage, our

results revealed somewhat larger discrepancies between

GEDI and ALS. Consistently across both sites, GEDI esti-

mated a higher proportion of the landscape to have high

carbon uptake and storage compared to ALS.

Discussion

Here we show that GEDI-based forest structural metrics

match ALS-based metrics with only moderate accuracy at

the plot level, but that agreement is high for landscape-

level metrics and indicators of ecosystem functions and

services. Despite limitations in making plot-level predic-

tions, GEDI is thus a useful tool for ecological analysis at

the landscape scale. Its utility is further amplified by the

free availability and near-global coverage of GEDI (i.e.,

<51.6° N and >51.6° S). Further, GEDI provides a set of

“ready-to-use” metrics that do not require any additional

computation or in-depth knowledge of LiDAR technol-

ogy. This makes GEDI interesting for ecologists not

trained in remote sensing analysis. That said, we describe

several factors limiting the applicability of GEDI data,

especially in complex terrain such as the mountainous

landscapes investigated here. Keeping those limitations in

mind is important for ecologists applying GEDI data to

their study system.

GEDI is designed as a sample-based instrument and

thus provides data only for a subset of the Earth’s surface.

We identified a trade-off between sample size and time

window of interest (which could be a summer maximum,

a certain disturbance event, etc.) that needs to be consid-

ered when using GEDI data. Phenology was particularly

important for metrics describing the distribution of vege-

tation in the canopy, as foliage determines how laser

beams are backscattered. Depending on the goal of the

Figure 3. Cumulative density distributions, comparing wall-to-wall (ALS) and sample-based (GEDI) metrics of forest structure at the landscape

level. If the GEDI line is above the ALS line, there is an underestimation of the metrics by GEDI. Conversely, GEDI below ALS indicates overestima-

tion. ALS, airborne laser scanning; GEDI, Global Ecosystem Dynamics Investigation.

Table 4. Landscape-scale agreement (R2) between ALS and GEDI

metrics, aggregated at 50-ha hexagon grids.

RH50 RH98 PAI FHD Cover

Understory

cover

Berchtesgaden 0.67 0.73 0.68 0.71 0.54 0.03

Davos 0.66 0.79 0.63 0.71 0.51 0.01

ALS, airborne laser scanning; FHD, foliage height diversity; GEDI,

Global Ecosystem Dynamics Investigation; PAI, plant area index; RH,

relative height.
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Figure 4. Landscape-scale analysis of ALS- and GEDI metrics gridded to 50 ha hexagons. The first three rows represent the Berchtesgaden study

site, the last three rows Davos. Δ represents difference grids resulting from GEDI–ALS. Density plots show the distribution of the deviance around

0 (=ALS value) and indicate over- and underestimation. Top three lines: Berchtesgaden; bottom three lines: Davos. ALS, airborne laser scanning;

GEDI, Global Ecosystem Dynamics Investigation.
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analysis, caution should be taken in selecting only obser-

vations from the leaf-on season, which becomes especially

important in mountain landscapes with short growing

seasons. We found generally lower agreement between

GEDI and ALS in deciduous coniferous stands, likely due

to larches having a more open canopy and weaker back-

scatter compared to other deciduous trees (e.g., beech),

which form denser canopies and thus have stronger back-

scatter (Heurich & Thoma, 2008). In addition, the conical

shape of conifers affects the height-related metrics as the

probability of a laser pulse intercepting the apex of the

crown is low (Lim et al., 2003; Næsset, 1997). Depending

on the local species community and forest type, a variable

performance of GEDI can thus be expected; this should

be taken into consideration before applying GEDI data.

We also found that estimates of understory cover cannot

be reproduced reliably by GEDI. Especially for forests

with dense canopy cover, the return backscattered from

the forest floor is rather weak, making it difficult to

detect this signal against high background noise (Dubayah

et al., 2020). Further, disentangling ground and under-

story vegetation returns is challenging as both signals are

mixed in the waveform. This is the reason for the under-

estimation of FHD by GEDI (Schneider et al., 2020), a

bias which we also observed for higher FHD values

(>2.5) in our analysis.

In agreement with other studies, we identified topogra-

phy as one of the strongest drivers of uncertainty in GEDI-

based forest structural metrics. The negative relationship

between slope and GEDI performance has been explained

by the fact that laser waveforms can be strongly elongated

in steep terrain (Schneider et al., 2020). The overestimation

of height-related metrics in our analysis can thus be, at

least partly, attributed to the slope bias (see also Adam

et al., 2020; Kutchartt et al., 2022; Lang et al., 2022; Liu

et al., 2021) GEDI’s canopy height estimates are further

strongly affected by vegetation height and canopy cover. As

shown by Kutchartt et al. (2022), GEDI tends to overesti-

mate canopy height for low vegetation and low canopy

cover. Having an alpine study site characterized by a large

height gradient and partially highly fragmented forest

cover, these two aspects may be considered as additional

drivers of GEDI’s overestimation of height. Another reason

is that GEDI is not able to distinguish vegetation from

other objects like rocks, leading to the incorporation of

such objects in the measurements (Potapov et al., 2021).

Slope correction algorithms are available for addressing the

slope bias of GEDI (e.g., Wang et al., 2019). However,

implementing these algorithms is not straightforward and

usually requires auxiliary data (e.g., high-quality digital ele-

vation models; Fayad, Baghdadi, Alcarde Alvares,

et al., 2021; Hancock et al., 2019; Ni et al., 2021). This

limits the use of GEDI in data-poor regions and as a

Table 5. Percentage of the forested landscape fulfilling the criteria

for selected ecosystem functions and services, derived from GEDI and

ALS metrics of forest structure.

Ecosystem service

indicator

Berchtesgaden Davos

GEDI ALS GEDI ALS

Avalanche protection 51% 48% 37% 36%

Habitat suitability

for capercaillie

41% 41% 58% 58%

High carbon uptake

and storage

30% 17% 25% 15%

ALS, airborne laser scanning; GEDI, Global Ecosystem Dynamics

Investigation.

Figure 5. ALS and GEDI grid cells that fulfill the criteria for the provisioning of the ecosystem functions and services “avalanche protection”,

“habitat suitability” and “high carbon uptake”. Grey grid cells indicate that the criteria were not fulfilled. ALS, airborne laser scanning; GEDI,

Global Ecosystem Dynamics Investigation.
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‘ready-to-use’ product for ecologists. Novel data-driven

algorithms (e.g., Lang et al., 2022 present a promising new

way to address the issue of topographic, but are not yet

operational). In addition to slope effects, a recent study

found that the expected geolocation error of 10 m may

account for more than 50% of the uncertainty in GEDI-

derived height metrics (Roy et al., 2021). Assuming that

this also applies for structural metrics, geolocation can be

considered a further factor introducing uncertainty in

mapping forest structure with GEDI.

Besides these GEDI-related limitations, the different

point density of the ALS reference data from Berchtesga-

den and Davos might be an additional source of uncer-

tainty. However, we assume that the effect of the different

point densities is only minor. As shown in Garcia

et al. (2017), different point densities of ALS data mainly

affect the metrics derived from a canopy height model,

but not the metrics derived directly from the point

clouds, as done in this study. Further, Garcia et al. (2017)

and LaRue et al. (2022) found metrics-specific point den-

sity thresholds, which vary between 1 and 7.5 points/m2.

Even though the ALS data from the study site in Davos

feature lower point density, it is still distinctively higher

than the critical threshold defined in these studies.

Finally, GEDI is intended for global applications

(Dubayah et al., 2020). In this study, we tested the applica-

tion of this global product locally, specifically for two rela-

tively small study sites in the European Alps. In doing so,

we faced an “agreement gradient” from the plot- to the

landscape scale and finally to indicators of relevance for

ecological applications, with increasing agreement between

GEDI and ALS with increasing scale and level of abstrac-

tion. Especially when considering indicators of relevance

for applied ecological questions, GEDI showed promising

potential for characterizing mountain forest ecosystems.

This might be especially true for ecological indicators that

are strongly related to forest structure, such as avalanche

protection. GEDI is thus a valuable instrument for deriving

landscape-level estimates of forest functions and services,

despite only moderate performance at the plot scale. This

makes GEDI a rich data source for ecological studies in

adjacent fields, such as ecological modelling (Blaschke

et al., 2004; Hiltner et al., 2022; Thom et al., 2022), assess-

ment of ecosystem services (Coops et al., 2016; Melin

et al., 2018; Moeslund et al., 2019; Vauhkonen, 2018) and

the evaluation of post-disturbance forest development

(Gelabert et al., 2020; Viana-Soto et al., 2022).

Conclusion

We compared metrics of forest structure derived from

GEDI to ALS-based metrics in two mountain landscapes

of the Alps. Our results support previous findings of a

topographic bias in GEDI’s canopy height estimates, and

highlights that this bias also applies to other structural

metrics provided by GEDI. We further show that phenol-

ogy and forest types affect the estimation of forest struc-

ture from GEDI. Nonetheless, when analyzed at the

landscape level the agreement between GEDI and ALS

was satisfactorily, suggesting that GEDI is a promising

tool for landscape-scale analysis of mountain forest struc-

ture. We further show that indicators describing the abil-

ity of forests to provide important ecosystem functions

and services can be estimated with high confidence from

GEDI, which illustrates its utility for applied ecological

research. GEDI is thus an important step towards a global

assessment of the structure and functioning of forest

ecosystems.
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