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Abstract: Mobile multi-robot systems are well suited for gas leak localization in challenging environ-
ments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous
environments, all while enabling autonomous operation, which is key to efficient swarm exploration.
To efficiently localize gas sources using concentration measurements, robots need to seek out informa-
tive sampling locations. For this, domain knowledge needs to be incorporated into their exploration
strategy. We achieve this by means of partial differential equations incorporated into a probabilistic
gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previ-
ously, we presented a potential-field-control approach for navigation based on this map. We build
upon this work by considering a more realistic gas dispersion model, now taking into account the
mechanism of advection, and dynamics of the gas concentration field. The proposed extension is
evaluated through extensive simulations. We find that introducing fluctuations in the wind direction
makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed
approach can recover the gas source distribution and compete with a systematic sampling strategy.
The estimator we present in this work is able to robustly recover source candidates within only a
few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the
applicability and robustness of robotic swarm exploration in dynamic and challenging environments
for tasks such as gas source localization.

Keywords: swarm robotics; robotic exploration; uncertainty mapping; artificial potential field control;
gas exploration; gas source localization; advection–diffusion equation

1. Introduction

Accurately predicting how airborne substances spread over space and time is of critical
importance for disaster response efforts in the context of incidents involving chemical,
biological, radiological, or nuclear materials. Localizing the source of a substance escaping
into the environment becomes interesting when considering harmful or toxic gases, un-
pleasant odors, or chemical compounds of geological origin. Examples of such applications
include early warning systems for chemical plants, monitoring of pipelines and industrial
facilities, tracking the unwanted release of greenhouse gases from landfills as well as sur-
veying of geological activities on remote celestial bodies. Utilizing mobile robotic platforms
equipped with suitable sensors and which are capable of autonomous operation emerges
as an outstanding solution for safely navigating and operating within these hazardous or
difficult environments.

To improve the autonomy of these robotic systems, it is essential to enable them to
gain an understanding of their surroundings. This perception and awareness can in turn
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be leveraged in the development of their operational and control strategies. From the
engineering perspective, this can be achieved either with data-driven learning methods, or
by incorporating domain knowledge, such as a gas dispersion model provided by physics.
The latter is particularly attractive when we consider non-visual sensors, producing limited
(as compared to visual sensors, like cameras) amounts of data. This approach forms the
basis of the methodology discussed in this research.

The general problem we consider in our work is referred to as gas source localization
(GSL) [1] in the robotic olfaction community. It concerns itself with identification of releases
of gaseous or airborne chemical compounds, and more specifically with the detection and
identification of the locations of these sources. When a gas is released, an increase in concen-
tration in the local surroundings of the source will be the immediate result. Fluid dynamic
effects like advection (wind) or diffusion may then carry on the increased concentrations
further into the environment. By observing this process through measurements of gas
concentrations in adequately chosen locations in the environment, one can try to infer the
location of the gas release.

Although some of these tasks can conceivably be conducted by human surveyors,
robotic systems can bring clear advantages. They eliminate the need to expose workers
to potentially harmful substances, and allow access to otherwise inaccessible or hostile
environments. We view GSL tasks as particularly well suited to multi-robot systems, i.e.,
teams of gas-detecting rovers or drones working in tandem to solve the source localization
problem. Such a system can benefit from the individual platform’s high mobility, the ro-
bustness to failure of single robots, the possibility of intelligent cooperative data processing
approaches, but most importantly from a significantly increased spatial sampling rate of
the gas dispersion process, as compared to that achievable by a single surveyor. Various
research groups in the field have developed experimental robotic platforms for the purpose
of GSL, be that on the lab scale [2–4] or as full-scale robotic platforms [5]. While some focus
on the robotic aspects alone, many aspire to develop machines that can operate as a swarm.
The key question that arises in this context is how to control a multi-agent system in a way
that is beneficial for GSL.

Early robotic GSL techniques were quite restrictive, assuming a fixed number of
sources and integrating source estimation into the robot’s movement strategy. For example,
chemotaxis-based [6,7] and anemotaxis-based [8,9] approaches aimed to guide robots along
chemical concentration gradients. However, these methods faced limitations due to the
complexity of real chemical plumes, in particular, smoothness of the concentration gradi-
ent [10]. More promising approaches in this context explore probabilistic methods that
utilize the inherent mathematical properties of the dispersion process. Rather than tracking
gas concentration gradients, these techniques treat the sources as hidden parameters that
are then inferred based on the gathered data [11]. Bayesian methods for parameter estima-
tion [12,13] are particularly attractive in this context. They enable what is typically referred
to as infotaxis approaches [14], where information about the parameters of interest, e.g.,
the precision of source release rate estimates, is used to define objectives for autonomous
navigation. These objectives aim to enhance GSL and guide the robots in finding the sources
using different information-theoretic criteria (see, e.g., [14–16]).

This article presents a further development of infotaxis-based GSL for multi-robot sys-
tems. We extend here our previous work [17], where we proposed a potential-field-based
method [18–20] for navigating a swarm of robots toward locations with high expected
information gain. The model used in [17] is a simplified description of the gas propagation
based on Poisson’s equation. In essence, this model assumed a steady state model of gas
propagation driven only by diffusion from an unknown number of sources. Although
simple, it allowed us to derive a spatial distribution that quantifies information, and use
this directly as a potential function for navigation of our multi-robot system, while avoiding
collisions and deadlocks. This goes in contrast to approaches where the potential function
needs to be explicitly constructed by first determining discrete target locations from the
information metric [21]. In this extension paper, we go beyond this highly idealized model
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of gas dispersion and consider the effects of advection as well as time dependency of the
gas propagation. To this end, we use a model based on an advection–diffusion equation
driven by an unknown source distribution. Through a probabilistic relaxation of the model,
we then formulate and sequential inference algorithm that allows for computing both
instantaneous concentration and source distributions, as well as the corresponding uncer-
tainties. The latter are used to compute an artificial potential function for navigating the
robots towards areas of high information content. We validate the method in simulations,
demonstrating its ability to efficiently localize the sources with a swarm of mobile robots.

The following paper is structured as follows. We will begin in Section 2.1 by introduc-
ing the process model that is used to describe the gas dispersion. Next, in Section 2.3 we
derive a probabilistic framework that will lead to the uncertainty map. It encodes a spatial
informativeness of all possible future measurement locations. For the robots introduced
in Section 2.4, and building upon this map, a potential-field-based control scheme is de-
veloped in Section 2.5 that guides the swarm agents to informative locations. In Section 3,
we will discuss the simulation system as well as the experiment settings used to validate
the method. This section is followed by a detailed analysis of the simulation results and
an assessment of the suitability of the developed exploration strategy and control scheme.
Finally, in Sections 4 and 5 we discuss and summarize our findings and provide an outlook
for future work.

Notation

Throughout this paper we will make use of the following notation. Vectors are
represented as boldface lowercase letters, e.g., x, and matrices as boldface uppercase letters,
e.g., X. Their transpose is denoted by (·)T. For a square matrix X the expression diag(X)
defines a vector composed of elements on the diagonal of X. We denote the probability
density function (PDF) of a Gaussian random vector with expectation a = E{x} and
covariance matrix Σ = E{(x− a)(x− a)T} as N (x|a, Σ). We will use the notation δx(Ω)
to specify a (multidimensional) Dirac measure over domain Ω with a support at x ∈ Ω. We
introduce the operator ∝e to indicate proportionality in the log domain; in other words,
x ∝e y implies that x = const · exp(y) for some constant term const independent of y and x.

2. Methods
2.1. Process Model

At the core of the gas exploration strategy, a model of the underlying process physics
is required, describing how the gas released from the source is transported into the en-
vironment. At the most general level, the dynamics of the propagating material can be
described by the Navier–Stokes equations [22]. When some fluid-dynamical effects can be
neglected, e.g., the compressibility of the material, a simplified descriptions can be chosen.
In this work, we specifically focus on the advection–diffusion equation. We assume incom-
pressible, isothermal flow of gas in a two-dimensional exploration environment Ω ⊂ R2

without convection. The mechanism of advection will describe the transport of the material
with the wind v(t) ∈ R2, which is assumed to be homogeneous over the exploration area.
The total release volume is assumed to be minor, such that the total volume and pressure
are unchanging, and the released gas exhibits neutral buoyancy. The continuous-time
continuous-space rendition of the corresponding advection–diffusion partial differential
equation (PDE) is then given as

d f (x, t)
dt

= κ ∆ f (x, t)− vT(t)∇ f (x, t) + q(x), x ∈ Ω, t ∈ R+, (1)

s.t. f (x, t) = 0, x ∈ Γ, t ∈ R+, (2)

where the time-varying concentration field f (x, t) over the spatial coordinate x=(x, y)T∈R2

is excited by the source distribution q(x). Diffusion—the first summand on the right-hand
side of (1)—is parameterized by the diffusion coefficient κ. The second summand resprents
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the advection term, followed by the excitation that models gas sources. An important part
of the model is the constraint (2), which specifies the Dirichlet boundary condition over the
boundary Γ ⊂ R2.

Although in some cases analytical solutions to (1) can be found [23], numerical so-
lutions are often of necessary. To this end, the process model is discretized, e.g., using
the finite difference method (FDM). Specifically, we partition Ω into N cells, from which
Q discrete cells represent the interior of Ω excluding the boundary. The concentration
in a cell is assumed to be constant, thus the continuous functions f (x, t) and q(x) can be
represented as N- and Q-dimensional discrete vectors f (t) and q, respectively. Note that
per our boundary condition (2), there can be no sources on Γ; thus, q ∈ RQ. To discretize
time, we introduce the discretization time interval ∆T, and sample time as t = k ∆T, k ∈ N0.
Now, skipping some details on discretization (the interested reader is referred to [22] for an
excellent introduction into finite difference and finite element methods), we can transform
Equations (1) and (2) into

IQ×N
fk − fk−1

∆T
= κ L fk − vTk D fk + q, (3)

B fk = 0, k ∈ N0, (4)

where L ∈ RQ×N is a discretized Laplace operator, D ∈ R2×Q×N is a tensor expressing a
finite differences gradient for wind in 2D, and IQ×N is a selection matrix that extracts the Q
non-boundary elements of fk. The matrix B ∈ R(N−Q)×N is a selection matrix that forces
elements of fk corresponding to the boundary to comply with the set boundary condition.

As a last step, we slightly regroup (3) to bring it into a more convenient form of
(

1
∆T

IQ×N − κ L + vTk D
)

︸ ︷︷ ︸
Ãk

fk −
(

1
∆T

IQ×N

)

︸ ︷︷ ︸
C̃

fk−1 = I q. (5)

Figure 1 shows three examples of how concentration fields fk for this process can
look like, as rendered by our forward simulator for a resolution of N = 21× 21 = 441
discretization cells. The simulation setup will be introduced in more detail in Section 3.
Shown are cases where q contains 2, 1, or 3 sources, respectively.

Figure 1. Three different snapshots of forward simulations of the process model.

2.2. Measurements

To take concentration measurements, we utilize a swarm of A robots equipped with
in situ gas concentration sensors. Each robot a = 1, . . . , A, occupying a position pa,t within
grid cell xn, is exposed to the concentration value present in that grid cell, as concentrations
are modelled to be constant throughout the space of a grid cell. More formally, we model
the noisy measurement za,t performed by the agent a, at a discrete time ti ∈ R+ within the
time interval designated the index k, as

za,ti = mT(pa,ti ) fk + ξa,ti , (6)
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where m(pa,ti ) ∈ RN is a selection vector that contains a 1 at index n, i.e., the index of the
element corresponding to the location pa,ti in the discretized representation of Ω, and that
is 0 everywhere else. The perturbation ξa,ti is modeled as random, normally distributed
noise with zero-mean and a variance of σ2

z .
By collecting the measurements of all agents in a vector, we can rewrite (6) as

zk = Mk fk + ξ, (7)

where Mk =
[
m(p1,t1), m(p1,t2), . . . , m(pA,t1), . . .

]T and ξ =
[
ξ1,t1 , ξ1,t2 , . . . , ξA,1, . . .

]T.
This vector zk will collect all measurements that happen during the interval designated

the time index k, taken by any agent a ∈ [1, . . . , A]. Since each agent may take multiple
measurements during this duration, the length of zk may in fact be larger than A.

We are now ready to formulate a probabilistic framework that forms the basis for the
proposed exploration algorithms.

2.3. Bayesian Estimation of Process Parameters

Our ultimate objective is to find the source distribution represented by the vector q.
This implcitly will require knowledge of the concentration distributions f1, ..., fk based on
the collected measurements z1, ..., zk. In other words, we are interested in computing the
posterior p(q, fk, ..., f0|zk, ..., z1), which we can construct iteratively as follows. For this,
please refer to Figure 2 for a graphical representation. We begin with k = 1. In this case,

p(q, f1, f0|z1) ∝ p(z1| f1)p( f1|q, f0)p(q)p( f0), (8)

with initial priors p(q) and p( f0). We will discuss those later in the text. For the next time
step k = 2 we can extend the posterior as

p(q, f2, f1, f0|z2, z1) ∝ p(z2| f2)p( f2|q, f1, f0)p(q, f1, f0|z1) (9)

∝ p(z2| f2)p( f2|q, f1)p(q, f1, f0|z1), (10)

where we use the fact that f2 is conditionally independent of f0 given q and f1 and reused
the posterior computed at the time step k = 1 in (8). Let us point out that this conditional
independence follows immediately from the PDE model (3). In general, this leads to the
following update rule:

p(q, fk, ..., f0|zk, ..., z1) ∝ p(zk| fk)p( fk|q, fk−1)p(q, fk−1, ..., f0|zk−1, ..., z1). (11)

Note that p( fk|q, fk−1) in essence encodes our process model according to (5). For a
perfect model fit, i.e., when (5) holds exactly, we have p( fk|q, fk−1) = δ f̃k

(RN), where f̃k is

the support of a Dirac delta function, such that Ãk f̃k + C̃k fk−1 = q (see (5)). We, however,
relax (5) as well as the associated boundary condition (4) by allowing stochastic deviations
from the equality. Specifically, we use a Gaussian distribution (see also [24]) to model
deviations from the exact equalities such that

p( fk|q, fk−1) ∝ exp

(
−λ2

A
2

∥∥∥Ãk f̃k + C̃ fk−1 − q
∥∥∥

2

2
− λ2

B
2
‖B f‖2

2

)
. (12)

Here, the parameters λA and λB represent the “degree” of model relaxation: as they
grow, the relaxed model approaches exact equality.

Further, as we see from (11), we need to define the likelihood of the measurements
p(zk| fk). Based on (7), this can be formulated as

p(zk| fk) ∝ exp
(
−λ2

z
2
‖Mk fk − zk‖2

2

)
, (13)

where we define λ2
z = σ−2

z .
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q

f0 f1 f2 f3 fk−1 fk· · ·

z1 z1 z3 zk−1 zk· · ·

Figure 2. Graph representation of the underlying probabilistic structure of the Bayesian estimation.

Let us now discuss the selection of prior distributions for q and f0. We assume that
the gas concentration at time k = 0 is zero everywhere. Thus, we set

p( f0) ∝ exp
(
−

τf0

2
‖ f0‖2

2

)
(14)

We will set τf0 to a high value that accounts for our “trust” in the initial condition
f0 = 0. For q, we similarly assume

p(q) ∝ exp
(
−τq

2
‖q‖2

2

)
(15)

with the parameter τq controlling the width of the prior and acting as regularization
parameters. In fact, as we will see later, this form of the prior will act as a `2 regularization
of the source distribution estimate.

As can be seen from (11), the posterior is a multivariate Gaussian distribution that is
growing in dimension with every new time step. To reduce the computational complexity,
we cut off the history at k − 1 by marginalizing over older concentration distributions
fk−2, ..., f0, i.e.,

p(q, fk, fk−1|zk, ..., z1) =
∫

...
∫

p(q, fk, ..., f0|zk, ..., z1)d fk−2, ..., d f0 (16)

This marginalised posterior can also be calculated in an iterative fashion with the
following update rule:

p(q, fk, fk−1|zk, ..., z1) ∝ p(zk| fk)p( fk|q, fk−1)p(q, fk−1|zk−1, ..., z1), (17)

with
p(q, fk−1|zk−1, ..., z1) ∝

∫
p(q, fk−1, fk−2|zk−1, ..., z1)d fk−2 (18)

where p(q, fk−1, fk−2|zk−1, ..., z1) was calculated in the previous time step k− 1 according
to (17). Note that (18) can be easily shown to be Gaussian, which follows from the gaussian-
ity of the likelihood (13), relaxed model (12), and priors (14) and (15). As a consequence, it
can be computed as

p(q, fk−1|zk−1, ..., z1) = N
((

fk−1
q

)∣∣∣∣
(

f̂k−1
q̂k−1

)
, Σ̂k−1

)
.

Finally, making use of the fact that all factors on the right-hand side of (17) are normal,
the marginalized posterior p(q, fk, fk−1|zk, ..., z1) is also Gaussian. As such, after relatively
simple algebraic manipulations we can express it as
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ln p(q, fk, fk−1|zk, ..., z1) ∝e

− 1
2

∥∥∥∥∥∥∥∥∥∥∥∥∥




λzMk 0 0
λA Ãk λAC̃ −λA I
λBB 0 0

0 Σ̂
− 1

2
k−1




︸ ︷︷ ︸
P




fk
fk−1

q




︸ ︷︷ ︸
θ

−




λz I 0 0
0 0 0
0 0 0

0 Σ̂
− 1

2
k−1







zk
f̂k−1
q̂k−1




︸ ︷︷ ︸
ν

∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(19)

in matrix notation. Here, we also defined vectors ν, θ and a matrix P to simplify further
notation. We note that in general, ν, θ, and a matrix P are all functions of the time index k.
We make this dependency implicit to unclutter notation. Now, we can compute moments
of p(q, fk, fk−1|zk, ..., z1) ≡ p(θ|zk, ..., z1) by simply completing the square as follows:

ln p(θ, |zk, ..., z1) ∝e −1
2
(Pθ− ν)T (Pθ− ν) (20)

= −1
2
(θ− (PTP)−1PTν)T PTP︸ ︷︷ ︸

Σ−1
θ

(θ− (PTP)−1PTν︸ ︷︷ ︸
µ

), (21)

where (PTP)−1PT is the pseudo-inverse of P, and Σθ = (PTP)−1 and µ = (PTP)−1PTν
are the covariance and mean of p(θ, |zk, ..., z1), respectively. Naturally, the mean µ readily
provides the MAP estimate of the posterior source q as well as states fk and fk−1.

Let us now inspect the covariance matrix Σθ in more detail. Using the structure of P
we can show that

Σθ =
(

PTP
)−1

=




Σ fk , fk
Σ fk , fk−1

Σ fk ,q
Σ fk−1, fk

Σ fk−1, fk−1
Σ fk−1,q

Σq, fk
Σq, fk−1

Σq,q


. (22)

Clearly, evaluating Σθ is computationally quite expensive (the dimension of Σθ is
(2N + Q)×(2N + Q), which can be substantial in practice), yet this is the price for com-
puting the uncertainty estimates of individual cells and is required for the proposed
exploration strategy.

For the exploration purposes we are more interested in the uncertainties related to fk
and q. These can be obtained by “extracting” specific block matrices from Σθ :

Σ̂k =

(
Σ fk , fk

Σ fk ,q
Σq, fk

Σq,q

)
. (23)

Indeed, each of the N diagonal elements of Σ fk , fk
corresponds to one grid cell, thus

giving us a certainty or, in the case of (23), the variance at a particular spatial location.
These variances reveal our (un-)certainty about an estimation of the concentration value at
a particular cell; we will refer to the aggregation of all these variances, σ2

fk
= diag

(
Σ fk , fk

)
,

as the uncertainty maps. Specifically,

• High variance of a particular cell would indicate little information about the concentra-
tion at this particular location;

• Low variance would indicate high information content, and thus changes in this partic-
ular element will have a strong impact on the deviations of the cost function from the
MAP optimum.

Likewise, the diagonal σ2
q = diag

(
Σq,q

)
represents variances of the estimated source

release rates at the corresponding Q locations. The objective of exploration will thus be to
reduce this uncertainty, i.e., some measure of σ2

fk
and/or σ2

q by taking measurements in
strategic locations.

Figure 3 shows a representative example of the uncertainty maps derived in this
section. As before, the chosen N = 441 yields a resolution of 21 × 21 grid cells. The
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process realization in question is being explored by two agents, and has three sources and
a dominant wind vector pointing left and down. This will cause intensity variances (σ2

fk
) to

“pool” along the left and bottom edge of the map. Because of this, as we will introduce later
on, our agents will start to roam into this area and take measurements there. Wherever
rovers have been, both the intensity variances (middle) as well as the source variances (σ2

q,
right) will be reduced. Because of this, the past trajectories become visible, especially in the
source variances. At the snapshot shown in this example, the uncertainty has been reduced
on the left edge of the map already, so agents should next focus on the bottom edge, where
intensity variances are highest (dark red area).

Figure 3. Representative intensity and source uncertainty maps for the process shown on the left.

In the following sections we will discuss in more detail the exploration strategy with
which we propose to solve this task, which exploits σ2

fk
to guide the robots towards more

informative sampling locations.

2.4. Robot Model

To explore the distribution of an unknown gas source, we deploy a swarm of mobile
robots capable of measuring gas intensity at their respective positions. To implement the
control law discussed in the following sections, we require a motion model for the robots.
Therefore, we refer back to the model outlined in our previous work (cf. [17]), which we will
restate here. We consider a swarm N := {1, . . . , A} of A mobile track-driven robots. Thus,
we use a simple unicycle-type motion model to represent each individual robot a ∈ N . The
state of a robot is fully described by its 2D position, pa(t) =

(
xa(t) ya(t)

)T ∈ R2, and the
heading angle θa(t) ∈ [0; 2π). The heading can equivalently be expressed in terms of the
forward and normal orientation vectors, ea

(
θa(t)

)
and na

(
θa(t)

)
, as depicted in Figure 4.

The dynamics of robot a are described using the state-space model

Ra :
{

ṗa(t) = ea
(
θa(t)

)
uv,a(t)

θ̇a(t) = uω,a(t),
(24)

that captures its non-holonomic constraints. Here, uv,a(t) represents the scalar control input
for linear velocity, which corresponds to forward/backward motion, while uω,a(t) denotes
the control input for angular velocity, representing the turn rate. The computation of these
control inputs is the responsibility of the control laws, derived in the following section.

x

y
e
(
θ(t)

)

θ(t)

n
(
θ(t)

)

x(t)

y(t)

Figure 4. Robot Geometry (from [17]).
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2.5. Potential Field Control

In this section, our aim is to develop a control scheme for the robots with the objective
to collect measurements as efficiently as possible. Essentially, the controller should guide
the robots to locations with high values in the uncertainty map. To achieve this, we employ
an Artificial Potential Field Control approach.

Artificial Potential Field Control is an approach from control theory that lends itself
well to the control of mobile multi-robot systems. Conceptually, it operates by constructing
a potential function across the spatial environment. This function assigns a potential value
to each point within this space. To navigate, each agent only needs to evaluate the gradient
of said potential function at its location. The field of these gradients is the so-called
potential field. By following the negative gradients of the potential, agents are automatically
steered toward local minima in the potential function. Consequently, the primary task of
the control engineer centers around designing an appropriate potential function. In this
context, regions of interest or goal positions are intended to be low points in the potential
function, which attract the robots. Regions that should be avoided, such as for collision
avoidance, should be elevated, creating peaks that repel the robots.

The potential function itself needs to be a continuously differentiable function
P : Ω→ R over the area of interest, Ω. Its spatial gradient dP

dx is the potential field. This
vector field can be interpreted as virtual forces that act upon the robots.

The potential function P can be conveniently constructed as the sum of several con-
tributing components. In our case, we take into account P = Prep + Pattr, that is a repulsive
component Prep which pushes rovers apart when they come into close proximity and
ensures collision avoidance, and an attractive component Pattr that guides agents towards
informative locations. Additional components could be taken into account in a straightfor-
ward manner. Arbitrarily shaped obstacles [25] are an example known in the literature, as
well as communication constraints between robots, among others. As these are well estab-
lished in the field, they are not incorporated here, although their effect on the performance
of the exploration scheme pose an interesting research question for future work.

In the remainder of this section, we will discuss the design of the components of the
potential function P. It is important to note that these, as well as the control laws derived
from them in the end, are identical to the versions presented in our previous work (cf. [17]),
and are stated here again for the sake of completeness.

2.5.1. Repulsive Potential

We design the repulsive potential Prep(x), x ∈ Ω, as the sum of individual repulsive
potentials ϕrep(x, pa(t)) around the position of each agent a:

ϕrep(x, pa(t)) =

{
kR
2 (‖x− pa(t)‖ − δ)2, ‖x− pa(t)‖ ≤ δ

0, otherwise,
(25)

such that Prep(x) = ∑
a∈N


1

2 ∑
b∈N\a

ϕrep(pb(t), pa(t))


. (26)

The fact that ϕrep(x, pa(t)) vanishes for distances from robot a larger than δ implies
that only the local neighborhood of any robot is relevant for its collision avoidance. With
the derivative of each individual ϕrep(x, pa(t)) (see Equation (27)), the potential field takes
the form of Equation (28):

∂ϕrep(x, pa(t))
∂x

=

{
kR

(
1− δ

‖x−pa(t)‖
) (

x− pa(t)
)T, ‖x− pa(t)‖ ≤ δ

0, otherwise,
(27)

which leads to
∂Prep(x)

∂x

∣∣∣∣
x=pa(t)

= ∑
b∈N\a

(
∂ϕrep(x, pa(t))

∂x

∣∣∣∣
x=pb(t)

)
. (28)
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The quadratic term in (25) creates a steeply increasing potential where robots get close
to each other. This leads to a linearly increasing repulsion “force” the closer two robots get,
which we can scale appropriately using the parameter kR.

2.5.2. Attractive Potential

We will next discuss the design of the attractive part of the potential function, Pattr(x),
based on the computed uncertainty map σ2

fk
(cf. Section 2.3). Our objective is to make

agents gravitate towards regions of high uncertainty. We assume that a new measurement
at such a location with high uncertainty is more informative than measurements at a
location with already low uncertainty. The reason for basing this potential function on σ2

fk

over σ2
q is motivated by the fact that measurements also sample, and thus directly reduce

the uncertainty of, fk. First, we normalize σ2
fk

to the range [0; 1], as the absolute scale of
uncertainty is not of interest. To obtain from this a continuously differentiable potential
function, we create an interpolation using a bivariate cubic spline,

ϕ(x) = CubicSpline




σ2
fk

max
i,j

σ2
fk


, s.t.

∥∥∥ϕ−
σ2

fk

max
i,j

σ2
fk

∥∥∥
2

2
≤ Nσ2

s , (29)

where ϕ is a vector aggregating elements ϕ(xi,j), xi,j ∈ Ω, in the same manner as fk (see
Equation (3)), and N is the number of grid cells, as before. The additional constraint allows
to smooth out small local extrema in ϕ(x); we choose σs = 0.05. Being a polynomial
representation makes ϕ(x) trivial to differentiate. Notice that it is a function of space, as
σ2

fk
implicitly depends on space as well.
Differentiating ϕ(x) directly is not desirable, however, as there are no bounds to its

steepness. Instead, we modify the vector field one last time; specifically:

dPattr(x)
dx

=
g(x)

α + ‖g(x)‖ , where g(x) = −∇ϕ(x). (30)

This vector field exposes robots to a bounded virtual force, until they come close to
an extremum, where they will stop and remain until the potential function updates. Note
that Equation (30) is akin to a sigmoid function with a saturation effect that ensures control
input limits are not violated, and can be tuned with a parameter α.

It should be noted that dPattr(x)
dx specifies the attractive field acting on the robots. It is

possible, however, that due to the saturation introduced in Equation (30) this field can no
longer be expressed as the gradient of a scalar potential function Pattr(x); in other words,
it may no longer be conservative. Yet, for our purposes this technicality is irrelevant, as
explicit Pattr(x) is not needed for navigation.

We would like to point out again that the attractive part of the potential function, along
with all modifications made to it, are applied in this work just like they have been presented
in our previous publication [17], as mentioned before, to which this paper is an extension.
We do this with the aim of evaluating how this method of constructing a potential field fares
with the new and improved process description using the advection–diffusion equations
(cf. Equation (1)).

2.5.3. Control Laws

To descend along the gradient of the potential function P, the robots need to align
themselves with the potential field. As in our previous work [17]), we use
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uω,a(t) = kω arctan


na

(
θa(t)

)T ∂P
∂Pa

ea
(
θa(t)

)T ∂P
∂Pa


 (31)

uv,a(t) = −kv
∂P
∂Pa

T

ea
(
θa(t)

)
, (32)

as control laws for the angular and forward velocity of robot a. The controller gains kω > 0
and kv > 0 are again set heuristically.

The role of the turn rate control law uω,a(t) is to turn the robot until it is aligned with
the gradient’s direction, with either its front or its rear facing down the potential hill. Since
the robot can drive both forwards or backwards, and it is thus irrelevant which side is
turned in the desired direction, the control law is chosen such that it takes the angle that
is closest.

The control law uv,a(t) adjusts the velocity dependent on the robots angle relative to
the gradient of P. The vector product between the gradient and the robot’s unit forward
vector ea

(
θa(t)

)
has the following effect: As the vector product will be zero when both

vectors are orthogonal, i.e., when the robot is turned orthogonal to the potential field, the
robot’s command linear velocity will become zero in this case; however, the robot’s angular
velocity will make the robot turn. The maximum command velocity at a particular location
can be reached if the two vectors are perfectly in line with each other, that is, when the
robot is facing straight “uphill” or “downhill” of the potential function. A more detailed
discussion can be found in [18].

2.5.4. Measurement Acquisition

Based on potential field navigation, robots are guided by the uncertainty map derived
from the gas dispersion model to locations of high uncertainty. As robots continue to follow
the local gradient in informativeness upwards, each subsequent point can be considered
more informative than the previous one. Due to this effect, it is advantageous to collect
measurements “along the way”, not only when reaching a local minimum in the uncertainty
map, as was performed in our previous work [17]. Furthermore, in contrast to the case
of static diffusion [17], the time-varying nature of the process means that only recent
measurements provide helpful information for estimating the source distribution. In
simple terms, the value and influence of older measurements fade out over time and are
gradually forgotten. Therefore, taking more measurements across the area of interest in the
current time step is advisable to obtain more recent information.

For these reasons, in our case, the robots sample the gas intensity at a constant rate of
10 Hz throughout their trajectory. This is an important deviation from our approach in the
previously presented conference paper [17], where we chose to take measurements only
when we reached a peak of the potential function. While these peak points indeed promise
to yield the maximum amount of information within their local neighborhood, continuous
sampling allows us to obtain even more information simply by measuring more frequently.
Additionally, we sample a larger subset of spatial locations in the same amount of time,
which is beneficial for the reasons outlined above. However, it is important to note that this
approach assumes that the robots are equipped with gas sensors capable of providing a
fast response time of 1

10 s (e.g., a photoionization detector).
For our simulation, we forward simulate the gas dispersion model (3) with an update

rate of 1 Hz. This results in a gas intensity map fk for each of these time steps k. To simulate
the gas sensor, we select the element of fk corresponding to the robot’s location and disturb
the value by random Gaussian noise, as explained in Section 2.2.

3. Simulations

In this chapter, we will evaluate the presented approach in randomized simulation
trials. We will test the exploration strategy presented thus far, and compare it against two
benchmark strategies. All will be evaluated under static and fluctuating wind conditions,
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and judged using the performance metrics we will introduce in this section. For all cases,
we will vary the swarm size and look at the influence this has on performance. The agent’s
starting poses, wind direction, and source distribution are always randomized. A detailed
analysis will follow in the discussion in Section 4. But first, we need to assign values to
some remaining simulation parameters introduced in Section 2.

3.1. Simulation Parameters

The physical dimensions in our simulations are set in accordance to a typical, robotics
laboratory environment. For discretization of the exploration domain, we choose a grid
size of 0.25 m. This value can be considered as on the order of the physical dimensions of
the robotic platforms. Further, it is small enough to capture a gas dispersion process in an
indoor environment with sufficient resolution. With a grid of size 21 × 21, we end up with
a total size of the exploration area of 5.25 × 5.25 m2. These are the same dimensions that
were analyzed in our previous paper (cf. [17]).

For the control laws, we need to choose the controller gains. We set the velocity gain
kv = 0.3 m

s to control the maximum cruising speed of the robots. The value of 0.3 m
s is

reasonable and achievable with typical hardware. It has to be remarked that the speed
is an important factor. Reducing the speed means that robots have more time to collect
information along their way. The turnrate gain is set as kω = 1.5 rad

s . It allows the rovers
to traverse the potential field in a smooth manner, and has been chosen heuristically. The
next control parameter is the separation constant in the repulsive potential field, which we
set to δ = 1.0 m. Once robots come within this distance from one another, they will begin
to experience a repulsive force, pushing them apart to avoid collisions. The associated
repulsion gain in the potential field is set as kR = 0.2. The overall potential field is smoothed
using a cubic spline interpolation. To achieve smoothing, aside from pure interpolation,
some error is allowed for at each support point. The amount of error is controlled by the
parameter α = 0.05.

As a last process parameter, the variance for the measurement noise, σ2
z , is chosen

in relation to the intensity values we can expect to measure using a typical gas sensor in
practice. Thus, we settled on a value of σz = 0.2. Keep in mind that this value is coupled to
the process matrix Ã by the equality λ2

z = σ−2
z (cf. Equation (13)). While this fixes the value

of λ2
z, we set λ2

B = 1000 to signify a very strong confidence in the boundary condition and
λ2

A = 3 to give some weight to the process model (cf. Equation (12)).

3.2. Performance Metrics

As we consider a dynamic process in this paper, comparing intensity reconstruction to
its ground truth is less meaningful. Since the primary goal is anyhow localizing gas sources,
comparing the reconstructed gas source distribution to the static ground truth is more
meaningful. Assigning a good metric to the quality of a reconstructed source distribution
can be quite elusive, because the reconstruction can deviate from the ground truth several
different ways. The following errors can manifest in the reconstruction:

• Wrong number of sources (too many, too few);
• Sources at the wrong location;
• Wrong source release rates (intensities).

The last one is, however, less relevant if we are interested in source localization only.
For illustration, consider the following ground truth and the three possible reconstruc-

tions presented next to it (cf. Figure 5). The first reconstruction has the wrong number of
sources compared to the ground truth but contains the true source locations with matching
intensities. The second correctly identifies the number of sources but with slight location
errors, and the third detects smaller sources roughly in the correct locations but fails to re-
construct individual sources accurately. It is quite challenging to determine which is better
or worse, as it depends on the application and the trade-off between missing or having
false detections. We see this ambiguity as a still open question in GSL when searching for
multiple sources.
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Ground Truth Reconstruction I Reconstruction II Reconstruction III

Figure 5. Three possible erroneous reconstructions, with ground truth always shown in green; size
indicates source strength. Which reconstruction is worse?

For this article, to evaluate the reconstruction performance we use the following
metrics. Here, the absolute strength of the sources is less important, compared to the
number and the locations of sources. As we mainly view accident and disaster response
scenarios as our application case, it is most important to find source candidates, and find
them quickly. Their precise strength, as well as their precise location, are less important
than getting to know the approximate locations, quickly.

To score the source reconstructions, we extract their local maxima. We consider a
candidate point p ∈ Ω to be a maximum and, therefore, as a source location, if it satisfies
both of the following conditions:

• The reconstructed value q̂(p) is the largest of any of the q̂(x) in the local surroundings
S(p) of p, i.e., ∀x ∈ S(p) : q̂(p) ≥ q̂(x).

• q̂(p) is at least 5 times larger than the smallest value of q̂(x) within S(p),
i.e., q̂(p) ≥ 5 q̂min for q̂min := minx∈S(p) q̂(x).

Points that satisfy these conditions we treat as the locations of the sources. For
S(p), we chose a neighborhood with a radius of three grid cells, i.e., ‖x− p‖2 ≤ R with
R = 3 · 0.25 m. Now we can compare the set of source location in the reconstructed
source distribution with the ground truth source distribution. To this end, we define five
criteria/metrics:

1. Our first performance metric is the time step when the two sets are exactly identical
for the first time. This time we denote as T≡first. This metric can be calculated for each
simulation run, and we can evaluate its statistics when running multiple simulations.

2. As a second metric, we consider the time step when the reconstruction is “nearly
exact” for the first time compared to the ground truth. We define “nearly exact” to
mean any source distribution that (I) has the correct number of source candidates,
and (II) all source candidates are very close to their correct location, i.e., the average
euclidean distance between p and its true position is less than 2 grid cells. The first
time of the “nearly exact” reconstruction we denote as T≈first.

3. Our third metric takes into account that the reconstruction may hit upon the correct
solution early on, then diverge from it temporarily, before it finally settles back into
the correct distribution. So, we can define a time when the reconstruction is “wrong”
for the last time. The time when the set of estimated source is last not exactly the
ground truth is denoted as T¬≡last .

4. Similar to T¬≡last , we can also define the last time when the reconstruction is not “nearly
exact”, where “nearly exact” is defined as in point two. This time we denote as T¬≈last .
In general, the following inequalities hold:

T≈first ≤ T≡first, (33)

T¬≈last ≤ T¬≡last . (34)

5. Last, we will have a look at the total source uncertainty, tr(σ2
q), over time. This metric

expresses the sum of source uncertainties at all locations, giving us a measure of
the total amount of remaining uncertainty in the system. In contrast to the other



Sensors 2023, 23, 9232 14 of 29

metrics, this can be calculated without knowing the true source distribution, even
online during an experiment.

3.3. Source Distributions

The source distributions for our simulations are drawn randomly. We have made the
following assumptions on the source distribution: We are interested in sparse distributions,
consisting of a few, isolated sources. To this end, we first draw a uniformly distributed
number between one and four reflecting the number of sources. Next, we randomly pick
locations in the environment for these sources. To account for sparse, spread-out sources,
and the Dirichlet boundary condition, we place additional constraints on the source spatial
locations. The source locations have to fulfill the following conditions:

1. Sources must be at least 10% away from the edges.
2. Sources must be at least 20% away from each other.

The percentages are to be understood as relative to the edge lengths of the exploration
area Ω, i.e., 5.25 m in our case. For each source location we determine the appropriate
element in our source distribution vector q. The corresponding element is set to a random
value between 50 1

s and 500 1
s for forward simulation of the gas dispersion process.

3.4. Wind Models

In our simulations, we want to evaluate our approach against two different wind
models. As introduced in Section 2, the wind vector v(t) is assumed to be uniform over the
entire exploration area.

As a first model, we assume a wind vector that is constant in time during the explo-
ration mission. The direction of the vector is drawn randomly. For this, we draw an angle
from a uniform distribution on the interval ϕ ∈ [0, 2π) and set wind strength v̄ to 0.3 m

s .
This gives us

v(t) = v̄
(
cos(ϕ) sin(ϕ)

)T. (35)

This simple wind model gives a nice baseline for the comparison of simulation runs.
We will refer to this model as the “static wind” case.

The second wind model we investigate aims to mimic realistic wind conditions that we
would expect in outdoor experiments. In these scenarios, the wind shows a dominant wind
direction that is static throughout a long period, but with strong fluctuations in momentary
wind direction around the mean value on the timescale of several seconds. For a simple
model of this behavior, we turn to an Ornstein–Uhlenbeck process. Essentially, this stochastic
process constrains a random walk to a mean direction with a relaxation force, giving us a
low pass filtered white noise [26]. The wind strength v̄ is set to the same value as in the
static wind case. This fluctuating wind model is defined as

vk+1 = v̄
(
cos(ϕk+1) sin(ϕk+1)

)T, (36)

with ϕk+1 = ϕk + γ
(

ϕµ − ϕk
)
+ ηk+1, (37)

where ηk+1 is a noise term drawn from a normal distribution of N
(

0, σ2
ϕ

)
and ϕµ is the

dominant wind direction, i.e., the mean value of this noise process. The parameter γ is the
relaxation force, driving the process back to its mean value of ϕµ. For the free parameters,
we choose γ = 0.05 and σϕ = 5°. Figure 6 shows the time series of the wind direction for
multiple realizations of the random process on a short time scale, while Figure 7 depicts one
such realization over a longer period of time. In both cases the dominant wind direction is
ϕµ = 30° and indicated as a red dashed line.
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Figure 6. Several realizations of our fluctuating wind model over 2 min, with a dominant wind
direction of ϕµ = 30° indicated as a red dashed line

Figure 7. One realization of the fluctuating wind direction plotted over 60 min., with a dominant
wind direction of ϕµ = 30° indicated as a red dashed line

3.5. Benchmarks

Our approach shall be compared against two trivial exploration strategies as a means of a
benchmark. This comparison shall yield a quantitative measure of how the proposed approach
compares performance-wise against an approach without an information-seeking component.

The first benchmark strategy is a meandering trajectory. All swarm agents systemat-
ically sample the exploration area to achieve a full coverage of the area. Figure 8 shows
an example of how a rectangular exploration area is split among four agents. The agents
start at a random location as in all the other simulations. They first head to their starting
positions, indicated as circles, and then follow trajectories in patterns as shown in the figure.
These trajectories lead them trough all cells in the discretization grid. Once they reach the
end of their path, they start over at the beginning.

Figure 8. Schematic drawing of meander trajectories for a swarm of four agents.

The second benchmark strategy is an exploration scheme where agents essentially
perform a random walk trough the exploration area Ω. Each agent randomly picks a
movement direction, and follows it for 10 s. To keep all agents within the exploration area,
agents are made to bounce off the edges of the exploration area, akin to light reflecting off a
flat surface. To keep the comparison fair, the agents also need to avoid collisions among each



Sensors 2023, 23, 9232 16 of 29

other. In this way, we can study the impact that the number of robots has on the performance
while also keeping the effect that the environment eventually becomes overcrowded with
agents. To this end, we utilize the repulsive potential fields for collision avoidance.

4. Results and Discussion
4.1. Evaluation of Swarm Size

In a first step, we would like to analyze the effect of the number of robots on the
performance of the reconstruction. We randomly choose 200 simulation environments
consisting of a randomly drawn wind direction and a random source distribution in
accordance with Section 3.3. We here employ the static wind model from Section 3.4
first. For every environment, we execute a simulation run of 10 min for a different swarm
size A ∈ [1, 2, 3, 5, 10], i.e., the number of robots. To evaluate the effect of swarm size on
performance, we first look at T≈first and T≡first. Based on the 200 simulation runs we generate
a boxplot of these metrics. When a simulation does not reach the particular criterion within
the 10 min, the corresponding time T is capped at 600 s.

Figure 9 shows T≡first for different numbers of robots. It is clearly observable that exploration
benefits heavily from an increasing number of swarm agents. For a single agent it is hard to
find the exact solution within the 10 min time frame, although it will sometimes happen by
chance. The time to first reach an exact reconstruction drops rapidly with an increasing number
of agents. Along with it, the variability in performance drops, visible in considerably smaller
quartiles around the median. This means the performance gets more reliable and less dependent
on chance. T≈first shown in Figure 10 paints a similar picture. As apparent from the significantly
reduced median times, a “nearly exact” solution can be found quite quickly by lager swarms,
and of course as expected, more quickly than an exact reconstruction.

Figure 9. Distribution of the time required to reconstruct the source locations exactly. Box plots show
quartile boundaries, and circles indicate outliers.

Figure 10. Distribution of the time required to reconstruct the source locations nearly exactly. Box
plots show quartile boundaries, and circles indicate outliers.
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Figures 11 and 12 confirm this trend for the duration until the reconstruction stays
correct, or nearly correct. It is, however, apparent that for all cases, there also seems
to be a trend of reconstructions deviating from the once correct solution again. Further
research is needed to address how to detect when a correct solution has been achieved,
and secondly, maintaining the reconstruction in such cases. While this phenomenon may
pose a significant challenge, practical applications may in fact benefit from the assumption
that true source candidates have previously been identified, enabling operators to act
accordingly on this information already.

Figure 11. Distribution of the time required until the last reconstruction of source locations is not
exactly correct. Box plots show quartile boundaries.

Figure 12. Distribution of the time required until the last reconstruction of source locations is not
nearly exact. Box plots show quartile boundaries.

Figure 13 depicts the total source uncertainty, tr(σ2
q), over time averaged over all

5× 200 simulations. As we can observe, tr(σ2
q) starts around an initial value of Q = 361,

influenced by our initialization based on the prior for the source distribution p(q). Over
time, we see the uncertainty monotonically decrease as more and more measurements are
taken. Within the chosen time frame of 10 min, the uncertainty does not reach a lower
bound, but we would expect that it continues dropping asymptotically ad infinitum. Being
a sum of variances, it will of course not drop below zero. The shaded area around the plot of
the mean total source uncertainty shows a 1σ interval of the distribution over all simulation
runs. The high variation indicated by the 1σ interval occurs due to the different swarm
sizes. This becomes clear from a more detailed look at Figure 14, where the uncertainty is
plotted for each swarm size. There we can also clearly see how larger swarms are able to
reduce total uncertainty faster.
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Figure 13. Total source uncertainty over time, averaged over all swarm sizes. Shaded area indicates
the 1σ interval.

Figure 14. Total source uncertainty over time, averages broken down for different swarm sizes.

Appendix A–F provide a direct side-by-side comparisons of the data presented in
Figures 9–14 for all simulations. The results of the our exploration strategy strategy are
always shown in the top row of the plots in Figures A1–A6, i.e., plot (a) and (b). The results
of the meandering strategy can be found in the middle row, i.e., plot (c) and (d), while
the results of the random walk strategy are always presented in the bottom row, i.e., plot
(e) and (f). The left column (a, c, e) shows results for simulations with static wind, while
on the right (b, d, f) we plots results for fluctuating wind. The same order applies for all
the different metrics plotted in Appendix A–F. Please refer to the appendix when further
comparisons are drawn in the following sections.

4.2. Our Approach vs. Meander

When comparing our approach against the meandering strategy, it is particularly
useful to look at the time course of the reduction of uncertainty, as depicted in Figure A6
(Appendix F). In the meander case, plot (c), steps are visible, making evident the durations
that each agent spends on their section of the map. For our approach, plot (a), the reduction
in uncertainty follows a much smoother trend. With the meandering strategy, agents are
constantly on the move and thus constantly measuring new locations. Also, because of
the systematic nature of the trajectory, there remain no spots that are not measured. It
is the combination of these reasons that lead to the fact that the final value of the total
source uncertainty at t = 600 s is quite a bit lower than for our approach, for all five
analyzed swarm sizes. This result is not entirely surprising, as our approach, informed by
the process physics, may opt to leave individual locations un-measured. Never obtaining a
measurement at some locations will have an influence of the metric of tr(σ2

fk
), as each grid

point is weighted equally in this sum; this does not necessarily mean that the reconstruction
will be worse, though.
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However, we see a trend that the tr(σ2
fk
) metric correlates with the other perfor-

mances indicators like T≡first or T≈first, e.g., when looking at the different swarm sizes. We
can observe that reducing uncertainty seems to be a good proxy for good estimation
performance. This leads us to conclude that future exploration strategies can use the
rate of uncertainty removal/reduction as a criterion, with the aim of achieving yet better
exploration performance.

4.3. Our Approach vs. Random Walk

When we compare our approach to the random walk sampling strategy, we find that
the random walk actually achieves significantly reduced median T≡first and T≈first times. This
trend holds for all swarm sizes. One particularly severe data point is the reduction in
median T≈first for the case of A = 5 agents by more than a factor of 2, as can be seen in
Figure A2 (Appendix B). In other cases, medians are much closer, like for A = 2 in the
same plots.

While it may be surprising at first that an information seeking approach would perform
worse than one that relies on pure randomness, the explanation lies in the details of the
strategy. In our exploration strategy, which proved effective in the static diffusion scenario
as detailed in [17], agents select movement destinations guided by their expected level of
informativeness. This also implies that they preferentially do not move to locations that are
deemed less informative; they will even try to avoid such areas on their path towards a
local extremum in uncertainty.

In fact, as a new solution is only computed every 10 s, agents may stay stationary
once they have reached a local maximum in uncertainty, and only start moving towards a
new location after the posterior has been updated again. While this strategy proved useful
in our previous publication, here, the fact that the random walk samples more spatially
distributed locations means that on average it will gather more information. Due to the
fact that we have a relatively small exploration area, this means that a high information
gathering rate alone, like provided by the random walk strategy, can produce already good
results. This idea will be discussed further in Section 4.5.

On the basis of the probabilistic framework presented in this work, that now also
incorporates advection and time-variancy, newly developed exploration strategies should
take into account that greedily going for the most informative nearby measurements (like
our approach does in this work) should be balanced with the total amount of sampled
locations, even if each single one may be less informative. Having measurements in more
different locations seems to be more important for exploration performance than more
measurements in “good” locations.

When comparing the time course of the reduction in uncertainty in Appendix F, we
can clearly see that the random walk is quicker at reducing the total uncertainty. This fact
is most pronounced for the case of A = 10 agents in the swarm. This is further evidence
that moving to informative locations and stopping to collect multiple measurements there
actually hinders the overall objective of dropping the total uncertainty, tr(σ2

fk
). It is worth

emphasizing, though, that both approaches usually do find a correct “nearly exact” or exact
source reconstruction easily within the simulated timeframe of 10 min (cf. Appendixes A and B).

4.4. Fluctuating vs. Static Wind

For the discussion in the previous sections, we have kept the wind static, with the
aim to achieve better comparability due to static environmental conditions. Nevertheless,
we also evaluate our approach as well as all benchmark approaches against the case of a
fluctuating wind model, as described in Section 3.4. The resulting plots of the simulations
with varying wind are always shown in the right column in the appendix, e.g., Figure A1
(Appendix A) depicts the results of our approach in fluctuating wind in the top left plot (a),
next to the plot on the top right (b), which is the same under static wind conditions.

Through the board, we can see that the fluctuating wind yields slightly reduced recon-
struction performance compared to static wind. This is to be expected, as the varying wind
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makes it a “harder” problem. Since agents only compute a solution every 10 s, they need
to average the wind vector over this time period and can thus only have an approximate
process model. This reduced model fidelity presumably causes the performance drop.

Regarding the time it takes for our approach to achieve an exact (T≡first) or nearly
exact (T≈first) reconstruction, the median times are quite similar. However, it is worth
noting that in the case of fluctuating wind, the worst-case performance worsens a bit, as
evident from the upper two quartiles shown in Figures A1b and A2b.

For the meandering strategy, this effect is much more pronounced, visible in the second
row of Figure A1 as well as the second row of Figure A2, respectively. For fluctuating
wind, plot (d), there always exists a simulation run that never finds an exact solution
(i.e., T≡first ≥ 600 s), independent of the swarm size. The upper quartile boundary for T≡first
exceeds the 280 s mark across all swarm sizes.

The random walk strategy copes a lot better with fluctuating wind. While we still see
some deterioration of performance when we compare the plots (e) and (f) in the last row
of Figure A1 as well as Figure A2, respectively, it is much less pronounced than for the
meandering benchmark. We attribute this phenomenon to the fact that the random walk,
at any given moment, has the potential to explore a more widely spread-out subset of all
possible source locations. Regardless of how the wind fluctuates, this provides the swarm
with an improved opportunity to infer the source distribution. Overall, we can draw the
conclusion that our potential field controlled robotic swarm deals with the addition of
fluctuating wind in a more robust manner than the systematic sampling of the meander.
The performance of the random walk also degrades a little bit, although it remains on a
higher level.

One effect that we can observe throughout the board is that by introducing fluctuating
wind, a once correctly identified source reconstruction may be lost again. This is visible
in the boxplots for T¬≡last and T¬≈last (right columns of Figures A3 and A4), but is especially
pronounced for the meander (Figure A3d). These figures show that it becomes almost
an exception that a simulation run remains on the correct solution until the end of the
simulation, with only a minority of total simulation runs still having an exact reconstruction
at the 600 s mark. The big issue in trying to remedy this effect is, of course, that the ground
truth source distribution is unknown to the swarm, and it is thus impossible to determine
with certainty when the estimation has converged to the correct reconstruction. When
considering possible application cases for source localization, this may not turn out to pose
a problem; however, as long as at some point the correct source locations are indicated to
the operators, appropriate conclusions can already been drawn, i.e., the source candidate
locations can be inspected already.

4.5. Rate of Information Gathering vs. Size of the Explored Areal

For this work, our aim was to show that the concept introduced in [17] can be extended
to other, more complex but also more realistic gas dispersion processes. Previously, we
only considered a static diffusion processes. In this article, we add time-varying wind into
the process description, by exploiting the advection–diffusion equation as a process model.

As we now have a time-varying process description, measurements age and get
forgotten overtime. Thus, we are required to gather a lot more recent information from
the environment. This circumstance led us to the decision to change the measurement
acquisition process. All agents now sample the environment at a constant measurement
rate of 10 Hz; in contrast, in [17] a robot just took a measurements when it reached the local
minimum of the potential function, leading to a few scalar measurements every couple
of seconds. Consequently, with our new measurement acquisition scheme, our rate of
information gathering is much higher.

Let us illustrate: Due to the cruising speed of 0.3 m
s , a robot can theoretically cover

12 cells every 10 s. A swarm of just five agents could sample 60 in every 10 s interval. This
is quite a significant proportion of the total amount of cells considering Q = 361 possible
source locations. So, simply by chance, even agents following a random movement strategy
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(i.e., the random walk) will sample enough of the environment to arrive at a reasonable
reconstruction of the source distribution. This shows the limitations of the experimental
setup: if the area to be explored is small enough, and if agents are able to move fast enough,
they can gather enough information without an intelligent sampling strategy.

Considering the size of the area to be explored also shows another challenge. If
instead of a 21 × 21 grid of cells, we chose a 101 × 101 grid, we would need to invert
not only a matrix of size 1243 × 1243 (2N + Q × 2N + Q, cf. Section 2.3, page 7), but
one of size 30,203 × 30,203. Considering that matrix inversions computationally scale on
the order of O(n3), this makes it computationally infeasible, especially if we intend to
implement it on embedded hardware. Nevertheless, increasing the exploration area is
the next step towards a realistic scenario for outdoor gas source exploration. A possible
approach would be to make use of computational synergies within the swarm, since every
robot comes with an onboard computer. By distributed algorithms like the message passing
algorithm introduced in [13] or intelligent splitting of the area of interest, the computational
complexity can be tackled in the future.

4.6. Performance of the Estimator

Our simulation results have shown that for the parameters of the investigated setting,
a simple motion strategy is enough to achieve good source distribution reconstruction
performance with the probabilistic inference framework presented in this paper. Even
though the potential field control scheme adopted from our prior work is no longer the
best exploration strategy, our results highlight the fact that the MAP estimator is able to
recover source candidates within a few seconds. This can be seen from the boxplots of T≡first
and T≈first in Appendixes A and B.

A great advantage of the estimator is the fact that it relies only on a few hyper-
parameters and requires little “tuning”. Next to inserting the physical parameters into the
PDE model, we are left with just two parameters: a boundary weight λB that we set to a
reasonably high value, and a process weight λA, which encodes the trust into our model.

It is worth pointing out that with the estimator we presented, with a moderate swarm
size of e.g., A = 5 agents, we can obtain a nearly exact reconstruction of the source
distribution in 120 s or less in over 50% of cases for all strategies, with or without wind.
This fact can be read from Figure A2, A = 5, as the boxplot quartiles below the median
line all lie under the 120 s mark. Admittedly, this is being helped by the relatively small
exploration area, which is at this point restricted by computational complexity. On the
other hand, the source distribution may be any of the randomly drawn ones, with up to
four distinct sources.

In summary, we can conclude that the probabilistic framework seems well suited to
be adapted and reused, while future work should focus on developing better motion and
exploration strategies.

4.7. Performance of the Potential Field Control

Our exploration strategy is based on a potential field based control scheme. It has been
applied successfully in our previous publication (cf. [17]) with a static diffusion process,
and has also shown success in reconstructing the advection–diffusion process presented in
this work. However, it has not emerged as the optimal movement strategy, as it has been
outperformed by benchmark approaches in certain aspects. Nevertheless, the potential
field control scheme has offered us collision avoidance to ensure collision-free paths, all
without the need for extensive planning efforts or parameter tuning. This alone justifies
consideration for incorporating it in both current and future exploration strategies.

Also worth investigating is whether it is possible to construct a potential function that
ensures a faster information gathering and better exploration performance. One limitation
that makes information gathering difficult is the tendency of potential field control to adopt
a “greedy” strategy. Since agents consistently follow their local gradients, they rely solely
on local information without engaging in global planning. Unless the global potential field
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has been thoughtfully designed to account for this aspect, agents controlled by potential
fields will consistently favor locally optimal solutions over globally superior ones.

5. Conclusions and Future Work

This work has addressed the challenging problem of estimating a gas source distribu-
tion from gas concentration measurements collected by a swarm of robots. We introduced
an approach that combines a probabilistic model of the gas dispersion process based on
the advection–diffusion equation with a potential field control method for information
gathering with multiple mobile robots. The probabilistic framework allows to estimate
the source distribution and to quantify uncertainties in the estimated parameters. The
computed uncertainty map was then used to design an artificial potential function that
could be utilized in a potential field control approach to guide the robots to areas of high
uncertainty while avoiding mutual collisions. In addition, some novel metrics have been
introduced and discussed. Having appropriate metrics is required to judge and compare ex-
ploration strategies. As it is not trivial to define what makes a good source reconstruction or
exploration strategy, we view this discussion as a valuable contribution to the community.

Extensive simulation studies were conducted to evaluate the approach under various
wind conditions, different swarm sizes, and numbers of gas sources. While the poten-
tial field based approach, which showed good performance in previous work on a static
diffusion process, has proven itself successful in gathering information also in the advec-
tion–diffusion process presented here to correctly reconstruct the true source distribution,
it was discovered to fall short in some aspects when compared to the benchmark strategies.
That being said, it showed promise in being able to reject model mismatch, i.e., due to
fluctuating wind.

Based on the analysis of the method and obtained simulation results, several key
directions for future development can be identified. These include the incorporation of
more realistic wind models that account for obstacles. Further, efforts should be spend
on the exploration of source priors promoting sparsity, such as sparse Bayesian learning
techniques. The latter are particularly attractive, as they would allow for taking into
account more realistic constraints of the underlying inverse problem. Furthermore, the
investigation of distributed parameter estimation approaches are of interest, similar to a
distributed Kalman filter. In this way, synergies in the robotic swarm could be exploited to
reduce the computational complexity in a practical realization of our GSL approach.

These avenues of research hold great promise for further advancing mobile robotic
GSL, offering opportunities for enhanced accuracy and applicability in real-world scenarios.
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Appendix A. Distributions of the Time Required to Reconstruct the Source
Locations Exactly

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A1. A side-by-side overview of T≡first, i.e., the distributions of the time required to reconstruct
the source locations exactly. Wind is static in the left column and fluctuating in the right. The first row
presents our approach, the second is the meander benchmark, the third the random walk benchmark.
Box plots show quartile boundaries, and circles indicate outliers.
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Appendix B. Distribution of the Time Required to Reconstruct the Source Locations
Nearly Exactly

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A2. A side-by-side overview of T≈first, i.e., the distributions of the time required to reconstruct
the source locations nearly exactly. Wind is static in the left column and fluctuating in the right. The
first row presents our approach, the second is the meander benchmark, the third the random walk
benchmark. Box plots show quartile boundaries, and circles indicate outliers.
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Appendix C. Distribution of the Time Required until the Last Reconstruction of
Source Locations Is Not Exactly Correct

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A3. A side-by-side overview of T¬≡last , i.e., the distributions of the time required until the last
reconstruction of source locations is not exactly correct. Wind is static in the left column and fluctuating
in the right. The first row presents our approach, the second is the meander benchmark, the third the
random walk benchmark. Box plots show quartile boundaries, and circles indicate outliers.
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Appendix D. Distribution of the Time Required until the Last Reconstruction of
Source Locations Is Not Nearly Exact

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A4. A side-by-side overview of T¬≈last , i.e., the distributions of the time required until the last
reconstruction of source locations is not “nearly exactly” correct. Wind is static in the left column and
fluctuating in the right. The first row presents our approach, the second is the meander benchmark, the
third the random walk benchmark. Box plots show quartile boundaries, and circles indicate outliers.
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Appendix E. Total Source Uncertainty over Time, Averaged over All Swarm Sizes

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A5. A side-by-side overview of tr(σ2
fk
) over time, i.e., the sum of source uncertainties at

all locations, giving us a measure of the total amount of remaining uncertainty in the system. The
shaded areas indicate the 1σ intervals. Wind is static in the left column and fluctuating in the right.
The first row presents our approach, the second is the meander benchmark, the third the random
walk benchmark.
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Appendix F. Total Source Uncertainty over Time, Averages Broken Down for Different
Swarm Sizes

(a) Static Wind, Our Approach

(c) Static Wind, Meander

(e) Static Wind, Random Walk

(b) Fluctuating Wind, Our Approach

(d) Fluctuating Wind, Meander

(f) Fluctuating Wind, Random Walk

Figure A6. A side-by-side overview of tr(σ2
fk
) over time, i.e., the sum of source uncertainties at all

locations, giving us a measure of the total amount of remaining uncertainty in the system. In contrast
to Figure A5, averages are broken down for different swarm sizes. The shaded areas indicate the 1σ

intervals. Wind is static in the left column and fluctuating in the right. The first row presents our
approach, the second is the meander benchmark, the third the random walk benchmark.
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