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Abstract: This research aims to investigate the average and heterogeneous impacts of digital agri-
cultural technology extension service use on eco-efficiency among 1302 maize-producing farmers
from a major maize-producing area in Northeast China in 2022. The slack-based measure model
with undesirable outputs is applied to calculate the eco-efficiency of maize production. To obtain an
unbiased estimation of the average effect, the self-selection problem generated by observable and
unobservable factors is solved by the endogenous switching regression model. Quantile regression
is utilized to analyze the heterogeneous effect. Notably, the mediated effects model is utilized to
examine the potential mechanism between them. Our findings indicate that digital agricultural
technology extension service use can increase maize production’s eco-efficiency. Digital agricultural
technology extension service users would have reduced the eco-efficiency of the service by 0.148
(21.11%) if they had not used it. Digital agricultural technology extension service nonusers would
have improved the eco-efficiency of the service by 0.214 (35.20%) if they had used it. The robustness
check reconfirms the results. Moreover, digital agricultural technology extension service use is more
helpful for maize farmers who have lower eco-efficiency than those who have higher eco-efficiency.
Digital agricultural technology extension service use can improve the eco-efficiency of maize produc-
tion through the application of organic fertilizers, green pesticides, and biodegradable agricultural
films. There are policy implications of these findings: there is an argument for using the publicity of
the digital agricultural technology extension service to encourage farmers to use sustainable inputs;
additionally, it might be worthwhile to implement a categorized promotion strategy based on the
different real-world situations.

Keywords: digital agricultural technology extension service; sustainable food production;
eco-efficiency of maize production; endogenous switching regression; potential mechanism

1. Introduction

Maize is an important staple food in China and the world [1,2]. As shown in Figure 1,
China is now the second maize producer in the world, accounting for 22.54% of the world’s
total production (277.20 million tons) and 21.06% of its cultivation area (43.36 million ha)
in 2022 [3]. Maize is a staple food in China, and its production has been higher than
that of rice and wheat for the past decade (as shown in Figure 2), which is important for
China’s food security; maize has strong adaptability to pests, diseases, climate change,
and differences in soil quality. It additionally has high output and is a multipurpose
crop, which can be consumed as a vegetable, fodder, and staple food. Maize is a vital
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food for rural socioeconomic development in China, and is widely distributed in China.
It is largely produced in ecologically fragile areas, such as in Northeast and Northwest
China, where the realization of sustainable maize production has a positive impact on
the local ecosystem [4–6]. Due to the overuse of agricultural production factors, such
as chemical fertilizers, chemical pesticides, and plastic films, environmental pollution
is currently one of the most prominent challenges facing sustainable maize production
and economic development in rural areas [7–11]. The key to achieving sustainable food
production is to improve the eco-efficiency (EE) of maize production, attaining higher
desirable outputs and lower undesirable outputs [12]. EE was first introduced in 1990 [13]
and has been widely used in different sectors and areas to measure sustainability [14–16]. In
agriculture, EE refers to the ratio of the economic value created by agricultural production
to the environmental impact [12,17–19]. In order to achieve an green agricultural transition
and build resource-saving and environmentally friendly agricultural production systems,
increasing agricultural efficiency within the restrictions of agricultural pollution discharge
is an essential decision. To accomplish sustainable agricultural production practices, it is
imperative to enhance EE.
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Digital agricultural technology extension service (DATES) is a new type of agricultural
technology extension service, combining the Internet (PC, smart phone, tablet, etc.) with
traditional agricultural technology extension services (neighborhood exchange, online
guidance, technical training classes, scientific and technological demonstrations, and mass
media presence such as newspapers, radio, television, etc.); it has the characteristics of
high efficiency, low cost, and high availability [20–22]. DATES can address challenges
in traditional agricultural technology extension services, such as poor timeliness, narrow
content limitations, time-consuming and labor-intensive offline guidance, and difficulty in
carrying out large-scale technical training lectures during the COVID-19 epidemic. This
contributes to promoting the sustainable transformation of food production [23]. The
Internet has been an efficient way to obtain sustainable production knowledge, especially
in rural China [24]. With the implementation of the “Internet Plus” strategy by Chinese
government, China’s rural netizens have grown from 156 million in 2012 to 308 million in
2022, and the Internet penetration rate in rural areas has increased from less than 23.70%
in 2012 to 61.90% in 2022, according to data provided by the China Internet Network
Information Center (as shown in Figure 3) [25]. The significant increase in rural Internet
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penetration rate and the number of rural netizens shows that a large number of rural
netizens have become potential target groups for DATES, providing solid support for the
application of DATES to farmers. On the other hand, these large numbers of rural netizens
are direct beneficiaries of the adoption of sustainable food production practices [20]. Thus,
DATES, as one of information and communication technologies (ICTs), has been a key
driver for agricultural economics growth, food sustainable production, and the integration
of agricultural digitalization and food production.
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Figure 3. Rural netizens in China from 2012 to 2022.

Many scholars have studied EE from different perspectives. Some of them evaluated
the EE of many agricultural products, i.e., wheat, cotton, soybeans, and rice [26–29], with
the average EE of different agricultural products being quite different, ranging from 0.51 to
0.89; this represents different room for improvement in sustainable production of different
crops, but only a few studies have explored the EE of maize production. Some studies
measured EE from macro, meso, and micro perspectives [30–36]. Although many methods
have been developed to evaluate EE, the two most commonly used methods in previous
studies are data envelopment analysis (DEA) and stochastic frontier analysis (SFA) [4].
SFA, as a parametric methodology, can handle the impact of uncontrollable factors on
inefficiency [37,38], but it is generally only suitable for single-output and multi-input
production [39]. DEA is a non-parametric frontier methodology to evaluate EE with
multiple inputs and outputs [40]. The method avoids issues related to model setting errors
and the impact of nontechnical factors on the EE [41]. In addition, the traditional DEA has
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a disadvantage in that it can easily overlook undesirable outputs during the calculation
process, so it cannot obtain the actual efficiency accurately. Subsequently, the slack-based
measure (SBM) model was introduced in 2001, which can overcome the shortcomings of
DEA [42]. Hence, this study adopts the SBM model with undesirable outputs.

Existing studies have increasingly concentrated on how DATESs use affects agricul-
tural production practices, especially sustainable agricultural practices (SAPs) selection.
First of all, DATESs have become an important channel for farmers to obtain technologies
and information related to sustainable food production, meeting their practical needs for
solving technical problems and obtaining technical guidance online, and avoiding the
shortcomings of inefficiency of technical information transmission and restricted time
and space that exist in traditional agricultural technology extensions [43,44]. Secondly,
as an efficient information tool, DATES can fill the information gap, reduce information
search costs, and accelerate the circulation of agricultural information [45–47]. Thirdly,
farmers use DATES to conduct two-way communication with the outside world, improve
their decision-making capabilities and risk perception before technology selection, reduce
information negotiation costs [48,49], and change farmers’ technology adoption preferences
in order to maximize the economic benefits of agriculture; in turn, these changes have a
potential impact on sustainable food production [50]. However, few studies have focused
on the relationship between DATESs and the EE of food production.

The main contribution of this study is to explore the direct effect, heterogeneous
effect, and potential mechanism of DATESs on EE while effectively solving the endogeneity
problem caused by observable and unobservable variables. This paper offers a possible
way to achieve sustainable food production from the perspective of DATESs and build a
theoretical bridge between DATESs and sustainable food production. The findings of this
paper will present detailed and timely empirical evidence for the expansion of DATESs
and a valuable reference for the sustainable development of food production.

The purpose of this paper is to explore the impact of DATESs use on EE of maize pro-
duction and potential mechanism between them. Differently from existing studies, DATES
use is referred to when maize farmers use the DATES to browse and obtain sustainable
technologies and input information about maize production rather than only having smart
phone apps or following public WeChat accounts. The endogenous switching regression
(ESR) model is utilized to address the self-selectivity bias from observable and unobserv-
able variables. An SBM model is employed to evaluate the EE of maize production, which
refers to the level of sustainable production. A quantile regression (QR) model is used to
investigate the heterogeneous impact of DATES on EE. A mediation model is employed to
explore the potential mechanism between them.

The rest of this paper is organized as follows. Section 2 presents the theoretical analysis
and research hypothesis. Section 3 describes the data and methodology used in this paper.
Section 4 presents the estimation results and Section 5 states the discussion. Section 6 states
the conclusions and policy implications.

2. Theoretical Analysis and Research Hypotheses
2.1. Direct Effects of the DATES

According to the new economic growth theory, it is known that technological progress
is an important engine for driving sustainable economic growth. DATES, as an important
driving force for promoting agricultural economic growth, deeply influences the dissem-
ination and diffusion of information related to the concept, technologies, and inputs of
sustainable food production; these contribute to the improvement of the EE of agricultural
production. On the one hand, DATES has accelerated the promotion and application
of maize sustainable production concepts and technologies. DATES can significantly re-
duce the cost of searching for information on sustainable maize production, alleviate the
asymmetry of agricultural information, deepen farmers’ knowledge of sustainable food
production, and lead farmers to gradually integrate their knowledge into all process of
maize production, thereby improving the EE of maize production. On the other hand, the
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development of the DATES has facilitated the dissemination and diffusion of knowledge
on inputs for sustainable production. DATES has greatly reduced the threshold of maize
farmers’ access to information on sustainable production inputs, accelerated the speed
of information dissemination, broken the traditional information dissemination network
based on blood or geography, and improved maize farmers’ knowledge of sustainable
inputs such as organic fertilizers, green pesticides, and biodegradable films, thus realizing
the improvement of the EE of maize production (as shown in Figure 4). Thus, this paper
proposes hypothesis 1:
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H1. DATES use can improve the EE of maize production.

2.2. Heterogeneous Effects of DATES

The impact of DATES use on the EE of maize farmers is heterogeneous. On the
one hand, DATES use improves the utilization efficiency of input factors such as capital
and land and leads to better allocation efficiency can be achieved in maize production.
However, according to the theory of marginal effect, with the continuous improvement
of the utilization efficiency of each input factor, the degree of the impact of DATES use
on input factors will gradually decrease; in turn, this affects the improvement of the EE
of maize production. On the other hand, the DATES will accelerate the accumulation of
human capital of maize farmers, but its acceleration effect also has a marginal decreasing
trend. The DATES has promoted the accumulation of human capital of maize farmers
by spreading sustainable production concepts, technologies, and inputs. The most direct
reflection of the accumulation of human capital is the change in the EE of maize production
(as shown in Figure 4). With the accumulation of human capital, the impact of DATES use
on the EE of maize production has gradually decreased. Based on the analysis, this study
proposes hypothesis 2:

H2. DATES use affects low-EE maize farmers to a greater extent than it affects high-EE maize farmers.

2.3. Mediation Effects of the DATES

The use of sustainable inputs can improve EE of maize production. As an efficient
information acquisition channel, the DATES can help disseminate and diffuse information
about sustainable inputs, thereby promoting the improvement of EE in maize production.
On the one hand, the DATES can significantly reduce the cost for maize farmers to obtain
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knowledge related to sustainable inputs. Under the assumption of rational choice theory,
if the benefits of sustainable input information are greater than their search costs, maize
farmers will actively search for and learn relevant information. This will help stimulate
maize farmers’ initiative in obtaining information, accelerate the accumulation of knowl-
edge about sustainable inputs, and thus affect the EE of maize production. On the other
hand, the DATES can increase the speed of information flow on sustainable inputs. Farmers
using the DATES can quickly obtain knowledge about sustainable inputs and the impact
on the agricultural environment, deepen their awareness of the environmental benefits
brought by sustainable inputs, and increase their willingness to use sustainable inputs; in
turn, these affect the EE of maize production (as shown in Figure 4). In view of this, this
study proposes hypothesis 3.

H3. DATES use improves the EE of maize production through the increased use of organic fertilizers,
green pesticides, and biodegradable agricultural films.

3. Materials and Methods
3.1. Data Collection

The farm household cross-sectional data from maize farmers were collected by agricul-
tural layout and regional development research group from September to December 2022
in Heilongjiang, Jilin and Liaoning provinces, China, including 18 researchers. As the three
important regions in the main maize-producing area of Northeast China, Heilongjiang,
Jilin, and Liaoning provinces were selected as the study regions. Maize output in these
three provinces exceeded 92.55 million tons, accounting for 33.39 percent of China’s maize
total output in 2022. Firstly, Changtu County in Tieling city, Daowai and Acheng Districts
in Harbin city, Longjiang and Gannan Counties in Qiqihar city, Gongzhuling, Jiutai, and
Yushu Counties in Changchun city, and Lishu County in Siping city were selected from the
main maize-producing areas of Northeast China based on the maize production capacity
and level of regional economic development. Secondly, 3–4 townships were randomly
selected from each sample district and county based on random sampling method, resulting
in 28 towns. Thirdly, 3–4 administrative villages were randomly selected from each town-
ship, resulting in 107 administrative villages. Finally, 10–16 maize farmers were randomly
selected from a complete list of maize farm households, which was provided by the com-
mittee within each administrative village. Therefore, the final sample included 1302 maize
farmers (as shown in Table 1). The survey was based on a participatory approach, with
one-on-one interviews with maize farmers. Thus, the sample is representative.

All of the sampled maize farmers were given a questionnaire. The survey was limited
to only decision makers (in most cases, the head of household is responsible for maize
production in Northeast China). This questionnaire employed a multi-criteria decision-
making approach. As the main objective of this study is to investigate whether the use
of the DATES improves the EE of maize production, we started by measuring the EE of
maize production for each maize farmer. Considering the use of the slack-based measure
(SBM) model to calculate EE, questions were designed to collect information on inputs,
desired outputs, and undesired outputs in maize production. Next, additional questions
were designed to determine whether the sample maize farmer households use the DATES
to access information on agricultural production technologies and inputs. Given the
control variables required for the endogenous switching regression (ESR) model, quantile
regression (QR) model, and mediation effects model, we also collected detailed information
on individual characteristics, production characteristics, and household characteristics.
Before the survey was performed, all of the respondents went through the same training to
make sure they understood the purpose of survey.
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Table 1. Sample distribution of maize farmers.

Provinces Cites (Counties
and Districts) Townships Administrative Villages

Number of
Samples and
Proportion

Liaoning Changtu County,
Tieling city

Changtu Town Dongming Village, Sandougou Village, Aiguo
Village, Shahezi Village

273 (20.97%)

Sihe Town Huajia Village, Qiaobei Village, Jijia Village

Dawa Town Caijia Village, Xiuyan Village, Guangwen
Village, Michang Village

Guyushu Town Xingguo Village, Guyushu Village, Dongfeng
Village, Dafang Village

Heilongjiang

Daowai District,
Harbin city

Yongyuan Town Yongyuan Village, Nangang Village,
Shuangyuan Village, Dongchuan Village

512 (39.32%)

Juyuan Town Juyuan Village, Xinfeng Village, Qianjin Village,
Xiaoshan Village

Tuanjie Town Dongxin Village, Xingxing Village, Tuanjie
Village, Hongli Village

Acehng District,
Harbin city

Pingshan Town Beichuan Village, Suizhong Village, Shuanghe
Village, Pingshan Village

Hongxing Town Zhenxing Village, Haixing Village, Haidong
Village, Cixing Village

Jinlongshan Town Fuxing Village, Lingxi Village, Yongxing
Village, Yudian Village

Longjiang County,
Qiqihar city

Longjiang Town Longdong Village, Longxi Village, Xianguang
Village, Jiuli Village

Longxing Town Longxing Village, Desheng Village, Wenhua
Village, Huayuan Village

Shanquan Town Pingan Village, Daquanzi Village, Longshan
Village

Gannan County,
Qiqihar city

Gannan Town Dongjiao Village, Xijiao Village, Fuqiang
Village, Changsheng Village

Dongyang Town Tongmeng Village, Heping Village, Lianhe
Village, Longsheng Village

Pingyang Town Dongsheng Village, Yongli Village, Jianguo
Village, Xinglong Village

Jilin

Jiutai County,
Changchun city

Qitamu Town Liujia Village, Hongqi Village, Xinxin Village

517 (39.71%)

Xinglong Town Xingxing Village, Xinglong Village, Jinchuan
Village, Hanjia Village

Donghu Town Heilin Village, Shuangshan Village, Wuyi
Village, Xinsheng Village

Yushu County,
Changchun city

Tuqiao Town Tuqiao Village, Weiguo Village, Baojia Village,
Shili Village

Xinli Town Yonghe Village, Taiping Village, Shuangyu
Village, Xinli Village

Daling Town Daling Village, Dalong Village, Linjia Village,
Linhe Village

Gongzhuling
County,

Changchun city

Xiangshui Town Wanlong Village, Chifu Village, Pingan Village,
Xiangshui Village

Daling Town Cuijia Village, Yonghe Village, Changfa Village,
Erdao Village

Shuanglong Town Xinmin Village, Hehe Village, Shifo Village,
Yongmao Village

Lishu County,
Siping city

Lishu Town Hujia Village Miaopu Village, Gaojia Village,
Yangjia Village

Wanfa Town Changsheng Village, Lijia Village, Moujia
Village

Donghe Town Donghe Village, Shengli Village,
Shuangchengzi Village
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3.2. Methodology
3.2.1. The Slack-Based Measure (SBM) Model

Assuming returns to scale are constant (CRS), the SBM model is as follows:

minρ∗ =
1− 1

m ∑m
i=1

s−i
xt

i0

1+ 1
s1+s2 (∑

s1
r=1

sg
r

yg
r0
+∑s2

r=1
sb
r

yb
r0
)

s.t.

x0 = Xλ + s−

yg
0 = Ygλ − sg

yb
0 = Ybλ + sb

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0

X = [x1, x2, · · · , xn] ∈ Rm×n

Yg = [yg
1 , yg

2 , · · · , yg
n] ∈ Rs1×n

υYb = [yg
1 , yg

2 , · · · , yg
n] ∈ Rs2×n

(1)

s represents the slack variable of input and output, and s−, sg, and sb are slack variables
denoting input excess, link excess, and output shortfall, respectively. s−, sg, and sb are the
variables when estimating the overall EE of DMU. s−, sg, and sb are strictly decreasing. xi0
represents the observed input of DMU i, yr0 represents the observed output of DMU r, and
m represents the number of decision-making units. X, Yg, and Yb are the matrices of the
input, good output, and bad output, respectively, while X, Yg, and Yb are all strictly larger
than zero. λ represents the constant vector. ρ* represents agricultural EE, ρ∗ ∈ [0, 1], ρ∗ = 1
means production units completely efficient, and s− = sg = sb = 0; ρ∗ < 1 means a
production unit is efficiency loss [5,51,52].

3.2.2. Endogenous Switching Regression (ESR) Model

Actually, maize farmers do not make random decisions about using DATES, so there is
an issue with self-selection. We employed the ESR model to address this issue, because ESR
allows us to figure out self-selection problem caused by both unobservable and observable
factors [53–56], and ESR models may perform better than propensity score matching (PSM)
that only focus on observable factors [57].

Theoretically, there are two steps in the ESR model. Firstly, a selection equation is
created to characterize whether maize farmers search, browse, and acquire sustainable
technologies and information through the DATES. It is notable that a maize farmer chooses
to use the DATES when the predicted value from doing so exceeds the value from not
doing so. Si is a dummy variable utilized to represent the binary option. Given that it is
impossible to observe the predicted value, but it is possible to observe whether a maize
farmer uses the DATES, let S∗

i represent the latent variable defining the probability of being
DATES user.

Firstly, the decision to use the DATES can be described as shown in Equation (2):

S∗
i = γiZij + νi (2)

where S∗
i represents the latent variable of the dummy variable Si, if S∗

i > 0, Si = 1; if
S∗

i ≤ 0, then Si = 0. Zij embodies a vector of independent variables used in the selection
equation. Note that the explanatory variables in Zij can be repeated with Xij, but for better
identification, Zij should contain at least one variable that is not included in Xij, that is, an
instrumental variable, which should have a direct impact on whether maize farmers use
the DATES but not on their EE; thus, we selected the communication signal strength of
the sample villages as the instrumental variable (IV). Considering that the communication
signal is the basis for daily communication, each maize farmer may not access WeChat
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accounts or apps of DATES, but is more likely to access the communication signal, and
DATES use and communication signal strength are strongly related. Thus, we believe
that the strength of the communication signal influences each maize farmer’s decision
to use DATES, but has no effect on EE. νi represents a random error term assumed to be
νi ∼ N

(
0, σ2

ν

)
, and γi denotes a vector of parameters to be estimated.

Secondly, two different outcome equations are established for DATES users and
nonusers in the following:

EE1i = ∑n
j=1 β1X1ij+µ1i, if Si = 1 (3)

EE2i = ∑n
j=1 β2X2ij+µ2i, if Si = 0 (4)

where DATES users and nonusers are represented by subscripts 1 and 2; Xij represents a
vector of independent variables for the outcome equations; βi is a vector of coefficients to
be estimated; and µ1i and µ2i are random error terms assumed to be µ1i ∼ N

(
0, σ2

1
)

and
µ2i ∼ N

(
0, σ2

2
)
, respectively.

The error terms in Equations (2)–(4) presume a zero-mean trivariate normal distribu-
tion, and the covariance matrix is listed as below:

cov(νi, µ1i, µ2i) =

 δ2
η δη1 δη2

δ1η δ2
1 δ12

δ2η δ21 δ2
2

 (5)

where δ2
η , δ2

1 , and δ2
2 are the variances of νi, µ1i and µ2i, respectively. The covariance between

νi and µ1i are δ1η and δη1; the covariance between νi and µ2i are δ2η and δη2; δ12 and δ21 are
the covariance between µ1i and µ2i, but they are not defined since EE1i and EE2i cannot be
observed simultaneously.

Given the self-selectivity bias, the random error terms µ1i and µ2i are listed as below:

E(µ1i|Si = 1) = δ1ηλ1i = δ1η IMR1i (6)

E(µ2i|Si = 0) = δ2ηλ2i = δ2η IMR2i (7)

where λ1i and λ2i are the inverse Mills ratios, which can correct for the selection bias [56,58].
The ESR model can help us to estimate the expected EE for DATES users and nonusers

in the counterfactual and actual contexts:

E(µ1i|Si = 1) = δ1ηλ1i = δ1η IMR1i (8)

E(µ2i|Si = 0) = δ2ηλ2i = δ2η IMR2i (9)

E(Y1i|Si = 0) = β2jX2ij + δ2η IMR2i (10)

E(Y2i|Si = 1) = β1jX1ij + δ1η IMR1i (11)

We can also estimate the average treatment effect on the treated group (ATT), which
is the difference between Equations (8) and (10), and the average treatment effect on the
untreated group (ATU), which is the difference between Equations (9) and (11).

ATT = E(Y1i|Si = 1)− E(Y2i|Si = 0) (12)

ATU = E(Y1i|Si = 0)− E(Y2i|Si = 0) (13)

Due to the self-selectivity bias is accounted for through this computation, ATT and
ATU indicate unbiased estimation.
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3.2.3. Quantile Regression (QR) Model

After measuring the average impact of using the DATES to access sustainable tech-
nologies and information on the EE of maize production, the heterogeneous impact on the
EE of maize production is further explored. The quantile regression model has two main
characteristics: one is that the model is not strongly constrained by the assumptions of the
error term, which can effectively avoid the influence of extreme values in the data, and
the estimation results tend to be more robust; and the other is constructed by using the
weighted average of the absolute values of the residuals to minimize the objective function,
which can estimate the regression coefficients of the explanatory variables under different
quantile points [59]. The specific model is as follows:

Qq = aq + bqXi + cqWi + εi (14)

where Qq denotes the EE of maize production of maize farmers; vector Xi represents the
explanatory variables, vector Wi represents the control variables; aq, bq, and cq denotes the
parameters to be estimated; and εi denotes the error term.

3.2.4. Mediation Effects Model

Combining the stepwise regression method and bootstrap method, the mediating role
of green inputs in the impact of using the DATES on the EE of maize production was tested.
The mediating effect model is as follows:

Yi = a0 + a1Xi + a2Ni + ε1 (15)

Mi = b0 + b1Xi + b2Ni + ε2 (16)

Yi = c0 + c1Xi + c2Mi + c3Ni + ε3 (17)

where Yi denotes the EE of maize production; vector Xi represents the explanatory variables;
vector Mi represents the mediating variables; vector Ni represents the control variables; a,
b and c denotes the parameters to be estimated; and ε is the error term.

4. Results
4.1. Descriptive Statistics

The variables are composed of two parts: (1) inputs, desirable output, undesirable
outputs, and related emission coefficients in the SBM model; (2) dependent variables,
control variables, instrumental variables, and treatment variables for the ESR model.

In terms of the SBM model, the desirable output is maize gross revenue per ha, and the
inputs consist of land, seed, fertilizer, labor, and others (including pesticides, agricultural
film, and machinery). The undesirable output is composed of carbon emissions and
nitrogen and phosphorus losses.

EE, as the dependent variable for the ESR model, is evaluated based on the SBM
model, ranging from 0 to 1.

The treatment variable for the ESR model is DATES use. DATES use is regarded
as maize farmers acquire sustainable production technologies and information through
WeChat public accounts or smart phone apps. See the following question from the ques-
tionnaire: “Do you use WeChat public accounts of DATES to access sustainable production
technologies and information?” Here, if the answer is “yes”, then it equals 1; otherwise, it
equals 0.

The instrumental variable (IV) in this paper is denoted as the communication signal
strength of the sample villages. Considering that the communication signal is the basis
for daily communication, each maize farmer may not access WeChat accounts or apps
of DATES, but is more likely to access the communication signal, and DATES use and
communication signal strength are strongly related. Thus, we believe that the strength of
the communication signal influences each maize farmer’s decision to use DATES, but has
no effect on EE. On a 5-point Likert scale (very poor, poor, average, good, and outstanding,



Agriculture 2024, 14, 292 11 of 23

equal to 1, 2, 3, 4, and 5, respectively), a question was devised to measure each maize
farmer’s satisfaction level of communication signal strength.

The control variables for the ESR model consist of two parts. The first part states maize
farmers’ characteristics, such as gender, age, health status, years of education, whether they
are village leaders, whether they participate in off-farm work, and whether they participate
in digital technology training. The second part is the production characteristics, involving
farm size, income from other crops production, the number of laborers in maize production,
degree of specialization, and distance from households to the nearest central market.

In this study, total carbon emissions of maize production process should include carbon
emissions caused by carbon sources such as fertilizers, pesticides, diesel fuel (including
sowing and harvesting), agricultural films, deep plow, and irrigation. The calculation
formula can be specified as follows:

C = ∑ Ci = ∑ ni × γi (18)

where C denotes the quantity of carbon emissions, Ci represents the emissions from different
carbon sources, ni denotes the usage amounts of inputs and diesel fuel and the deep plowed
area, and γi is the emission coefficient of different carbon sources in agriculture; Table 2
presents the agricultural carbon emission coefficient and reference sources.

Table 2. Agricultural carbon emission source, coefficient, and reference sources.

Source Carbon Emission
Coefficient References

Fertilizer 0.896 kg/kg Oak Ridge National Laboratory
Pesticide 4.934 kg/kg Oak Ridge National Laboratory

Diesel fuel 0.593 kg/kg Intergovernmental Panel on Climate
Change (IPCC)

Agricultural film 5.180 kg/kg
Institute of Resource, Ecosystem and
Environment of Agriculture, Nanjing

Agricultural University

Deep plow 312.600 kg/km2 College of Biological Sciences, China
Agricultural University

Irrigation 25 kg/ha Dubey [60]

In this study, the total nitrogen and total phosphorus produced in the maize production
process should be calculated using Formula (19):

E = mi × (ρi + δi) (19)

where E is the total nitrogen and total phosphorus losses in the maize production process;
mi is the nitrogen and phosphorus used in maize production process, which mainly come
from the chemical fertilizer input in the production process, expressed in pure amount
of chemical fertilizer; and ρi and δi are the nitrogen and phosphorus loss coefficients,
respectively, as presented in Table 3 [61].

Table 3. Chemical fertilizer loss rate in study areas.

Region Loss Rate (%)
Nitrogen Fertilizer Phosphate Fertilizer

Liaoning and Jilin 20 4
Heilongjiang 10 7

Table 4 presents the descriptive statistics of desirable outputs, inputs, and undesirable
outputs for the SBM model. From the perspective of maize production, we select the
cost of land, seed, fertilizer, labor, and others (including pesticides, agricultural film, and
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machinery) as inputs and maize gross revenue as the desirable output. As shown in Table 3,
compared to the DATES nonuser group, desirable output and most inputs in DATES user
group are higher than DATES nonuser group, except for seed.

Table 4. Descriptive statistics of inputs, desirable output, and undesirable outputs.

Variable Total DATES Users DATES Nonusers Difference

Desirable output (CNY/ha) 26,025.579 27,526.312 22,874.039 4652.272 ***
Land (CNY/ha) 1494.617 1550.556 1377.147 173.409 *
Seed (CNY/ha) 753.073 669.033 84.040 753.073

Fertilizer (CNY/ha) 2460.384 2508.372 2358.552 149.821 **
Labor (CNY/ha) 7658.409 7519.770 7952.627 −432.857 **
Others (CNY/ha) 1197.574 1232.485 1124.271 108.214 **

Total carbon emission (kg/ha) 1387.381 1467.790 1216.716 276.073 **
Total nitrogen loss (kg/ha) 170.3187 176.4504 157.302 19.1484

Total phosphorus loss (kg/ha) 34.3683 34.8462 33.3639 1.4823

Note: CNY is Chinese currency, 1 USD = 6.726 CNY in 2022, ***, **, and * denote significance at the 1%, 5%, and
10% significance levels, respectively.

Table 5 displays descriptive statistics for the ESR model variables. There are 882 DATES
users and 420 nonusers among the 1302 samples, indicating that 67.13% of maize farmers
use the DATES to obtain sustainable technologies and information about maize production
(as shown in Figure 5). The comparison between DATES users and nonusers reveals
obvious differences in several variables. For instance, the education years in DATES users’
group are significantly higher than those in the nonusers group. Compared to the DATES
nonusers, DATES users are younger, more healthy, well-educated, more willing to be
village leaders, have a larger farm size, earn more from other crops, and have more digital
technology training. Notably, these significant differences between the two groups suggest
the possibility of a self-selection issue in DATES use.

Table 5. Descriptive statistics of variables for the ESR model.

Variables Definition Total DATES
Users

DATES
Nonusers Difference

EE Ranges from 0 to 1 0.671 0.702 0.608 0.094 ***
DATES use 1 = yes, 0 = no 0.677 1.000 0.000 1.000 ***

Communication
signal strength

Very bad, bad, average, good and
excellent equal to 1–5, respectively 2.535 2.799 1.979 0.820 ***

Age Age of respondents 48.479 46.786 52.036 −5.250 ***
Gender 1 = male, 0 = female 0.749 0.820 0.600 0.220 ***

Health status 1 = very poor, 2 = poor, 3 = fair,
4 = better, 5 = very good 3.858 4.051 3.665 0.386 ***

Education Years of education 11.044 11.772 9.514 2.258 ***
Off-farm work 1 = yes, 0 = no 0.523 0.541 0.486 0.055
Village leader 1 = yes, 0 = no 0.157 0.197 0.071 0.126 ***

Farm size Maize planted area (hectare) 0.730 0.860 0.519 0.340 ***
Income from other

crops
Other crops gross revenue in 2022

(ten thousand CNY 1/ha) 5.300 5.345 5.025 0.320 **

Labor Number of laborers per household 2.320 2.452 2.213 0.239
Degree of

specialization
Maize production area/all arable

area, % 0.515 0.515 0.513 0.002

Digital technology
training 1 = yes, 0 = no 0.468 0.476 0.451 0.025 *

Market distance Distance from the household to the
nearest central market (km) 9.949 10.035 9.830 0.205

Note: 1 CNY is yuan, Chinese currency (1 USD = 6.99 CNY in 2022). ***, **, and * denote significance at the 1%,
5%, and 10% significance levels, respectively.
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4.2. Eco-Efficiency Scores

Table 6 presents the EE scores of maize production. The average EE for 1302 maize
farmers is 0.671, ranging from 0.397 to 1. There is a significant difference in EE between
DATES users and nonusers. The average EE of 881 people who use DATES is 0.702, while
that of 421 nonusers is 0.608. This shows that the average EE of maize production in DATES
users group is about 15.46% higher than that in DATES nonusers group, which is more
clear in Figure 6.

Table 6. Descriptive summary of EE scores.

Group Mean Standard
Deviation Min Max

DATES users 0.702 0.187 0.481 1
DATES nonusers 0.608 0.189 0.397 0.9

All 0.671 0.192 0.397 1
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4.3. Results of the ESR Model

As shown in Table 7, 16.66 is a significant value at the 1% level for the LR test of
independent equations, which implies that the selection and outcome equations are unre-
lated. Meanwhile, ln σ1 and ln σ0 are both significant, implying that there is a self-selection
problem [58,62]. Therefore, it is appropriate to adopt the ESR model.

Table 7. Estimation results of the ESR model.

Variable
ESR

Selection Equation Outcome Equations (EE)
DATES Users DATES Nonusers

Age −0.003 *** −0.002 *** −0.003 **
(0.004) (0.001) (0.001)

Gender 0.613 *** 0.079 *** 0.011
(0.094) (0.017) (0.022)

Health status 0.156 *** −0.076 −0.079
(−0.058) (0.076) (0.184)

Education 0.041 *** −0.001 0.002
(0.015) (0.002) (0.004)

Off-farm work 0.248 *** −0.011 0.030
(0.081) (0.012) (0.019)

Village leader 0.319 ** 0.068 *** −0.053
(0.130) (0.017) (0.035)

Farm size 0.167 ** −0.025 *** −0.029 ***
(0.042) (−0.005) (0.010)

Income from other crops −0.695 ** 0.252 *** 0.194 **
(0.298) (0.043) (0.077)

Labor −0.049 −0.016 *** −0.012
(0.042) (0.006) (0.010)

Specialization degree −0.127 -0.015 −0.108 ***
(0.134) (0.020) (0.031)

Market distance −0.078 −0.023 *** 0.007
(0.054) (0.008) (0.011)

Digital technology training 0.070 −0.031 ** −0.058 ***
(0.083) (0.013) (0.018)

Communication signal strength 0.355 ***
(0.039)

Constant −0.652 * 0.995 *** 0.767 ***
(0.372) (0.057) (0.092)

ln σ1
−1.712 ***

(0.031)

ln σ0
−1.748 ***

(0.050)

ρ1
−0.505 ***

(0.107)

ρ0
−0.253
(0.250)

Durbin–Wu–Hausman 30.009 ***

Cragg–Donald Wald F Statistic 70.965

Stock–Yogo critical values under 10% bias 16.380

LR test of independentequations 16.660 ***

Note: Figures in parentheses are robust standard error, ***, **, and * indicate significance at the 1%, 5%, and 10%
significance levels, respectively.

4.3.1. Determinants of DATES Use

The estimated coefficient of the IV (communication signal strength) is significant at 1%
level, and it met our expectation. This indicates that, the stronger the communication signal,
the more likely that maize farmers are to obtain sustainable technology and information
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through DATES. The Cragg–Donald Wald F statistic was 70.97, indicating that the null
hypothesis of weak instrumental variables (IV) was rejected. Therefore, IV is valid (Table 7).

Table 7 also demonstrates that a number of variables have a significant impact on
whether a maize farmer uses DATES or not. The variables of gender, health status, edu-
cation, off-farm work, village leader, farm size and communication signal strength have
significant positive effects on DATES use, but the variables of age and income from other
crops have a significant negative effect on DATES use.

4.3.2. Determinants of EE

Table 7 provides the coefficients for outcome equations. In general, the coefficients
of the independent variables for DATES users and DATES nonusers have quite different
statistical significance, which shows that these observable factors account for various
impacts of EE on maize production between the two groups, such as age, gender, village
leader, income from other crops, labor, specialization degree, and market distance.

There is a negative correlation between age, farm size, labor, specialization degree,
and market distance and the EE for DATES users and nonusers. The gender and village
leader factors have a positive impact on EE for only DATES users, and income from other
crops has a significant positive impact on EE for both groups.

4.3.3. Average Treatment Effects

Table 8 reports the predicted EE in the actual and counterfactual contexts, as well as
the treatment effects of DATES use by DATES users and nonusers. The ATT and ATU are
unbiased results after addressing the self-selection problem.

Table 8. Average treatment effects of DATES use on EE.

Group Use No Use ATT ATU

DATES users 0.701 0.553 0.148 *** —
DATES nonusers 0.822 0.608 — 0.214 ***

Note: *** indicates significance at the 1%, 5%, and 10% significance levels, respectively.

The value of ATT and ATU show that DATES use can improve EE of maize production
for both groups (Table 7). Specifically, EE of maize production would reduce by 0.148
(21.11%) for DATES users if they had not used DATES to obtain sustainable technology and
information about production. EE would increase by 0.214 (35.20%) for DATES nonusers if
they had used DATES (as shown in Figure 7). According to the average difference in EE
between DATES users and nonusers (approximately 0.093), ATT indicates that ignoring
self-selection bias would significantly underestimate the effect of DATES use on EE.

4.4. Robustness Check

The robustness test is conducted in treatment effects model (TEM) and ordinary linear
squares (OLS) regression to ensure the accuracy of the analytical findings (as shown in
Table 9). The results of the OLS show an underestimation of the impact of the use of DATES
due to the neglect of self-selection issues, but DATES use has a positive and significant
effect on the EE of maize production. TEM was first proposed by Maddala [62]. TEM results
support the reliability of the existing results, as shown in Table 7. Notably, the estimated
coefficients for DATES use in the outcome equation are significant and positive, indicating
that DATES use does increase EE. For the sake of simplicity, no more information about the
TEM and OLS is provided in this study. Therefore, hypothesis H1 is verified.
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Table 9. Robustness check based on the ESR, TEM, and OLS.

Items ESR TEM OLS

Coefficient of DATES use — 0.188 *** 0.076 ***
(0.026) (0.011)

ATT
0.148 *** — —
(0.004)

ATU
0.214 *** — —
(0.005)

Control variables Yes Yes Yes
Note: Figures in parentheses are robust standard error, *** indicates significance at the 1%, 5%, and 10% significance
levels, respectively.

4.5. Heterogeneous Analysis

The QR model’s findings illustrate the impact of DATES use on EE varies significantly
across different quantiles. If we only examine the homogenous or mean-based effects of
DATES use on EE of maize production, we cannot observe the results of this heterogeneity.
Table 10 shows a positive and statistically significant correlation between DATES use and
EE of maize production for the 15th, 30th, 50th, and 60th quantiles. Notably, DATES use
had the greatest effect on EE at lower quantiles, denoting that DATES use is more beneficial
to maize farmers with lower EE than to those with higher EE (as shown in Figure 8). It is
more clearly presented in Therefore, hypothesis H2 is verified.

Table 10. Heterogeneous impact of DATES use on EE.

Items
EE

15th 30th 50th 60th 75th

DATES users
0.097 *** 0.098 *** 0.079 *** 0.073 *** 0.033
(0.005) (0.005) (0.011) (0.019) (0.028)

Control variables Yes Yes Yes Yes Yes

Pseudo R2 0.193 0.141 0.083 0.115 0.156
Note: Figures in parentheses are robust standard error, *** indicates significance at the 1%, 5%, and 10% significance
levels, respectively.



Agriculture 2024, 14, 292 17 of 23

Agriculture 2024, 14, x FOR PEER REVIEW 18 of 25 
 

 

Table 9. Robustness check based on the ESR, TEM, and OLS. 

Items ESR TEM OLS 

Coefficient of DATES use — 0.188 *** 0.076 *** 
(0.026) (0.011) 

ATT 
0.148 *** 

— — 
(0.004) 

ATU 
0.214 *** 

— — 
(0.005) 

Control variables Yes Yes Yes 
Note: Figures in parentheses are robust standard error, *** indicates significance at the 1%, 5%, and 
10% significance levels, respectively. 

4.5. Heterogeneous Analysis 
The QR model’s findings illustrate the impact of DATES use on EE varies significantly 

across different quantiles. If we only examine the homogenous or mean-based effects of 
DATES use on EE of maize production, we cannot observe the results of this heterogene-
ity. Table 10 shows a positive and statistically significant correlation between DATES use 
and EE of maize production for the 15th, 30th, 50th, and 60th quantiles. Notably, DATES 
use had the greatest effect on EE at lower quantiles, denoting that DATES use is more 
beneficial to maize farmers with lower EE than to those with higher EE (as shown in Fig-
ure 8). It is more clearly presented in Therefore, hypothesis H2 is verified. 

 
Figure 8. Variation of coefficients with different quantiles. 

Table 10. Heterogeneous impact of DATES use on EE. 

Items EE 
15th 30th 50th 60th 75th 

DATES users 0.097 *** 0.098 *** 0.079 *** 0.073 *** 0.033 
(0.005) (0.005) (0.011) (0.019) (0.028) 

Control variables Yes Yes Yes Yes Yes 
Pseudo R2 0.193 0.141 0.083 0.115 0.156 
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4.6. Mechanism Analysis

The results of the mediation effects model are shown in Table 11.

Table 11. Estimation of mediation effect model.

Variable EE
Adoption of

Organic
Fertilizer

Adoption of
Green Pesticide

Adoption of
Biodegradable

Agricultural Films
EE

DATES use 0.094 ***
(0.011)

0.171 ***
(0.029)

0.188 ***
(0.029)

0.180 ***
(0.029)

Adoption of organic fertilizer 0.094 ***
(0.010)

Adoption of green pesticide 0.068 ***
(0.010)

Adoption of biodegradable
agricultural films

0.058 ***
(0.011)

Control variables Yes Yes Yes Yes Yes
Number of observations 1302 1302 1302 1302 1302

Note: Figures in parentheses are robust standard error, *** indicates significance at the 1%, 5%, and 10% significance
levels, respectively.

According to the second column of Table 10, the estimated coefficient of DATES use is
significant at 1% level, which means that DATES use significantly increases the EE of maize
production. In the third column, the estimated coefficient of DATES use is significantly
positive, implying that DATES use significantly increases the likelihood of maize farmers
adopting organic fertilizer. From the results of column 6, it can be seen that, after adding the
mediator variables, DATES use and application of organic fertilizer are both significantly
positively correlated with EE, which means that application of organic fertilizer plays a
part of the mediator effect in the effect of DATES use on sustainable maize production,
which accounts for 17.10% of the total effect; in other words, 17.10% of the improving
effect of DATES use on EE of maize production is achieved through the application of
organic fertilizer. In order to further test the robustness of the results of the mediation effect
model, the bootstrap method was used to test the mediation effect of organic fertilizer
application between DATES use and EE. The results showed that the direct effect was
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0.077 and the indirect effect was 0.016, which were both significant at the 1% statistical
level; the confidence interval of the indirect effect did not include 0, which indicated that
the application of organic fertilizer played a mediating role in the influence of DATES use
on the EE of maize production.

As can be seen from the results in column 4, the estimated coefficient of DATES use
is significantly positive, implying that DATES use significantly increases the likelihood of
using green pesticides by maize farmers. From the results in column 6, it can be seen that
after adding the mediator variables, DATES use and the use of green pesticides are both
significantly positively correlated with the EE of maize farmers’ production, indicating that
the use of green pesticides plays a part of the mediator effect in the impact of DATES use on
the EE of production, which accounted for 13.63% of the total effect; in other words, 13.63%
of the effect of the use of the DATES in enhancing the EE of maize farmers’ production
is realized through the use of green pesticides. This is realized through the use of green
pesticides. In order to further test the robustness of the results of the mediation effect
model, the bootstrap method was utilized to test the mediation effect of the use of green
pesticides in the relationship between DATES use and the EE of maize production. The
results showed that the direct effect was 0.081 and the indirect effect was 0.013, both of
which were significant at the 1% statistical level; the confidence interval of the indirect
effect did not include 0, indicating that the use of green pesticides plays a mediating role in
the impact of DATES use on the EE of maize production, and hypothesis H4 was verified.

Similarly, from the results in column 5, the estimated coefficient of DATES use is
significantly positive, implying that DATES use significantly increases the likelihood that
maize farmers will use biodegradable agricultural films. From the results in column 6,
it can be seen that after adding the mediator variables, both DATES use and the use of
biodegradable films are significantly positively correlated with the EE of maize farmers’
production, indicating that the use of biodegradable films plays a part in the mediating
effect of the impact of DATES use on the EE of production, which accounts for 11.16%
of the total effect, i.e., 11.16% of the effect of DATES use on improving the EE of maize
farmers’ production is through the use of biodegradable films. A proportion of 11.10% of
the total effect, that is, 11.10% of the effect of DATES use in improving the EE of maize
farmers’ production, is realized through the use of biodegradable agricultural film. In order
to further test the robustness of the results of the mediated effect model, the bootstrap
method was utilized to test the mediated effect of using biodegradable agricultural film
between DATES use and the EE of maize production. The results showed that the direct
effect was 0.083 and the indirect effect was 0.010, which were significant at the statistical
levels of 1%, respectively; the confidence interval of the indirect effect did not include 0,
which indicated that the use of biodegradable agricultural film played a mediating role
in the influence of DATES use on the EE of maize production. Therefore, hypothesis H3
is verified.

5. Discussion

For eco-efficiency scores, the average EE is 0.671, ranging from 0.397 to 1. There is a
significant difference in EE between DATES users and nonusers. The findings imply that
there is still room for EE improvement for all maize farmers; the level is lower than the
EE of wheat production in Japan [27], but it is higher than the EE of rice production in
China [29]. The average EE of maize production in DATES users group is about 15.46%
higher than that in DATES nonusers group. In other words, DATES use may lead to better
sustainable production performance. At the same time, it is necessary to improve farmers’
awareness of EE, especially in rural and ecologically fragile areas.

For factors influencing DATES use, the estimated coefficient of the age of the maize
farmer is significantly negative, implying that it is less likely for older maize farmers to use
DATES. This result is in line with existing research [34,58,63,64]. The coefficient of gender
of maize farmers is statistically significantly positive, implying that male maize farmers
are more likely to obtain sustainable technology and information through DATES use. The
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better a maize farmer’s health status, the more energy and capacity they have to learn how
to use the DATES, the more likely they are to obtain sustainable production information [65].
The more years of education the maize farmers have, the stronger their ability to acquire
new information and learn, the more inclined they will be to use the DATES to access
sustainable production technology and information. This is consistent with the findings
of existing studies [50]. Maize farmers with off-farm employment may be more likely to
use DATES because they may have broader horizons and be more likely to investigate
new sustainable technologies and information; this finding differs from the findings of
related studies [66]. There is a significant and positive correlation between DATES use
and farm size. Compared with farmers with small farm size, farmers with larger farm size
pay more attention to the long-term economic benefits of agricultural production, so they
have a greater incentive to enhance the sustainability of their agricultural production by
using DATES to obtain timely and useful technologies and information. Thus, larger-scale
maize farmers are much more likely to use DATES; this finding is inconsistent with the
conclusion of existing studies [58,66]. Furthermore, income from other crops has a negative
impact on the use of DATES, indicating that, the higher the income from other crops, the
more dependent maize farmers are on the current production methods and the lower their
willingness to choose to use DATES to change their production models. However, the
existing literature did not note this variable [20,47,67].

For the determinants of EE, at the 1% and 5% levels, the coefficient of age for DATES
users and nonusers are both significant and negative. It illustrates that the EE of maize
production decreases by between 0.002 and 0.003 for every ten-year increase in age, as-
suming all other variables remain constant. The significant and positive gender coefficient
for DATES users indicates that the EE of male maize farmers is 0.079, which is signifi-
cantly higher than that of female maize farmers; this finding is consistent with findings
on technical efficiency in the literature [66]. For DATES users, the village leader coefficient
is statistically significant and positive, indicating that the EE of village leaders who use
DATES is 0.068 higher than that of normal maize farmers who use DATES. This result is pri-
marily attributable to the responsibility of village leaders for transferring technologies and
information from the local government and relevant departments to farmers, enhancing
village leaders’ DATES use experience and leading to an increased likelihood of obtaining
sustainable information about superior technology and high-quality inputs; an existing
study supported this result [58].

Keeping other variables constant, the findings indicate that maize farmers with a
larger farm size would have decreased EE among maize farmers by between 0.025 and
0.029. Basically, maize production in China is usually labor-intensive and land-intensive.
Therefore, the production of a large-scale farm has become a challenge for maize farmers to
manage with precision; this may impede the improvement of EE [67].

Many researchers have not included the income from other crops in their analysis,
which is positively correlated with EE among DATES users. Maize farmers with higher
income from other crops are more able to invest in sustainable technologies and inputs into
maize production to improve EE. The number of laborers in maize production has a signifi-
cantly negative impact on EE for DATES users; this illustrates that, the greater the number
of laborers engaged in maize production, the greater the barriers to adopting sustainable
technologies and inputs. This makes it difficult to increase EE, but there is no such evidence
among DATES nonusers; this result is different to those presented in a previous study [58].
Moreover, for DATES nonusers, the significant and negative coefficients of specialization
degree implies that, the larger the proportion of maize-production area maize farmers man-
age, the lower EE they have. This is because maize farmers cannot understand sustainable
technology and information in a timely manner without the help of the DATES, which
limits EE improvement. The coefficient of market distance is negative and significant at the
1 % level, indicating that the presence of a long distance between maize farmers and the
market will impede the diffusion of sustainable technologies and information and hinder
the improvement of EE. Notably, digital technology training has a significantly negative
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impact on EE for both of the groups, implying that the current technical training is mainly
aimed at e-commerce, socialization, etc., and does not meet the sustainable development
needs of agricultural production. Accordingly, farmers’ time is used up through use of
DATES to learn sustainable production technologies and information, which negatively
affects EE; this finding is different from those presented in a previous study [58].

Overall, this study has several limitations. First, the analysis only focuses on maize
production; thus, the conclusion should be applied to other staple or cash crops with
caution. This is because of the fact that agricultural technologies and inputs for different
crops have fundamentally different requirements. Second, due to a lack of available funds
for research, the sample size in this study remains relatively small. All the farm households
in the sample were selected from Northeast China. In this context, caution needs to be
taken when generalizing the conclusions of this study to other regions in China. Third,
using cross-sectional data makes it difficult to examine the dynamic impact of DATES on
the EE of production.

Therefore, there are some areas for further research. Firstly, further study should try
to investigate the impact of DATES on EE and the mechanisms between them for different
staple or cash crops; even for different planting structures or crop combinations, it may
reveal thought-provoking results. Secondly, further study should seek more funding and
organize larger teams to collect as many samples as possible. Thirdly, further study should
construct a panel database to observe the long-term dynamic impacts of the DATES on EE.

6. Conclusions and Policy Implications

This study reveals the average and heterogeneous impacts of DATES use on the EE
of maize production and its potential mechanism; the study uses survey data from 1302
farmers in the main maize-producing areas of Northeast China. The main conclusions are
as follows: First, the average EE of maize production is 0.67, and the loss of EE reaches
0.33, indicating that there is still significant room for sustainable development in maize
production. Second, DATES nonusers would improve the EE of maize production by
35.20% if they had used it, indicating that DATES use can improve sustainable maize
production. The decision to use the DATES is significantly affected by age, gender, health
status, education, off-farm work, village leader status, farm size, income from other crops,
and communication signal strength; meanwhile, the EE of maize production is significantly
affected by age, gender, village leader status, farm size, income from other crops, number of
laborers, degree of specialization, market distance, and digital technology training. Third,
DATES use is more helpful for maize farmers with lower EE than it is for those with higher
EE, implying that the effect of DATES use gradually slows down as EE increases. Fourth,
the application of organic fertilizer, green pesticides, and biodegradable agricultural films
are significantly positively correlated with DATES use, indicating that DATES use can
promote the use of green inputs. At the same time, DATES use can contribute to sustainable
maize production through the application of organic fertilizers, green pesticides, and
biodegradable agricultural films.

Above all, relevant policy implications can be proposed. First, the government should
join hands with universities, colleges, and research institutions to popularize the concept of
sustainable food production through a combination of online and offline methods; addi-
tionally, farmers should be encouraged to adopt sustainable production technologies and
sustainable inputs. Secondly, governments should continue to expand their investments
in information and communication technology infrastructures in rural areas to empower
sustainable food production. Relevant departments should utilize all kinds of public ac-
counts, agricultural extension apps, and websites to accelerate the flow of information
on sustainable food production and, subsequently, accelerate the accumulation of human
capital. Thirdly, the government should implement a categorized promotion strategy based
on the actual situations of different production entities. They should pay more attention to
farmers with low EE and provide them with targeted digital technology training to achieve
sustainable food production. Finally, it is important to use the publicity of DATES to encour-
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age farmers to use more sustainable inputs; additionally, technical guidance and training
lessons should be provided to accelerate the transition to sustainable food production.
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