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Abstract: Unmanned Aerial Systems (UASs) are increasingly vital in precision agriculture, offering
detailed, real-time insights into plant health across multiple spectral domains. However, this tech-
nology’s precision in estimating plant traits associated with Nitrogen Use Efficiency (NUE), and the
factors affecting this precision, are not well-documented. This review examines the capabilities of
UASs in assessing NUE in crops. Our analysis specifically highlights how different growth stages
critically influence NUE and biomass assessments in crops and reveals a significant impact of specific
signal processing techniques and sensor types on the accuracy of remote sensing data. Optimized
flight parameters and precise sensor calibration are underscored as key for ensuring the reliability and
validity of collected data. Additionally, the review delves into how different canopy structures, like
planophile and erect leaf orientations, uniquely influence spectral data interpretation. The study also
recognizes the untapped potential of image texture features in UAV-based remote sensing for detailed
analysis of canopy micro-architecture. Overall, this research not only underscores the transformative
impact of UAS technology on agricultural productivity and sustainability but also demonstrates
its potential in providing more accurate and comprehensive insights for effective crop health and
nutrient management strategies.

Keywords: nutrient use efficiency; Unmanned Aerial Vehicle (UAV); meta-analysis; growth stage;
vegetation indices; signal process technique; sensor type

1. Introduction

Nitrogen plays a crucial role as the primary limiting nutrient for essential processes
in plants, including photosynthesis, regulation of phytohormones such as auxins and
cytokinins, and proteomic changes throughout their lifecycle [1]. However, the excessive
and inefficient use of nitrogen fertilizers not only increases crop production costs but also
leads to environmental issues such as soil degradation, water pollution, and biodiversity
loss [2]. To address these challenges, it is essential to assess the efficiency of nitrogen
utilization in crop production and evaluate its potential environmental impacts. Nitrogen
Use Efficiency (NUE) is a measure of how effectively a plant utilizes available nitrogen for
growth. A variety of indicators of NUE are widely used for this purpose. NUE is critical in
understanding nitrogen cycles and guiding nitrogen management practices. By accurately
measuring NUE, we can optimize nitrogen application, minimize wastage and leaching to
soil, and improve crop yield without compromising environmental sustainability. To date,
several methods have been employed for plant NUE assessment, including the system
nitrogen balances methods [3], calculated by comparing the difference between nitrogen
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inputs and nitrogen outputs [4]; soil-based methods which focus on the rate of soil nitrogen
mineralization, nitrification, and denitrification [5]; plant-based methods which involve
the nitrogen content collected and analyzed from plant tissues [6]; and isotope-labeled
method which could track the fate and movement of nitrogen in the soil-plant system [7].
In addition, with the development of remote sensing technologies, research is increasingly
using images taken by satellites and drones to monitor arable crops [8,9] and estimate NUE
over large area cropping systems [10] for a more comprehensive understanding of NUE in
a spatially explicit manner.

Drones, distinct from other remote sensing technologies, provide unparalleled flexibil-
ity and accessibility. They can transmit data in real-time, allowing for immediate analysis
and decision-making [11]. Combining different kinds of sensors with high spatial resolu-
tion imagers (i.e., Multispectral (MS), Hyperspectral (HSI), thermal, Light Detection and
Ranging (LiDAR)), it can be used for different types of monitoring tasks such as drought
stress [12], yield prediction [13], weed detection [14], nitrogen status [15], growth vigor [16].
So far, there have been articles on drone remote sensing-based assessment of NUE. For
instance, Yang et al. [17] predicted the NUE variations among the winter wheat genotypes,
where it was discovered that drone-carrying MS cameras can effectively predict time-series
of NUE throughout the growing season. This study has proved valuable in selecting elite
genotypes and monitoring crop performance under various nitrogen treatments. Liang
et al. [18] used UAV-based MS imagery to identify high NUE varieties of rice through the
entire growth duration. Their investigation indicated that UASs have immense potential to
determine NUE phenotypes.

The findings from these studies highlight the significant capability of drones in NUE
assessment. While the progression of UASs enhances the scope and precision of NUE as-
sessments across various crops and agricultural practices, it also presents several challenges.
Key among these are the inconsistencies arising from variations in growth stage, signal
processing technology, and sensor type [18]. Additionally, it is important to emphasize
that different methods of calculating NUE might result in significant variations in NUE
values, even when applied within the same experimental field and cropping system [19].
Therefore, it is critical to select and standardize the most appropriate UAV remote sensing
metrics for assessing NUE to ensure accuracy and consistency. This review aims (i) to
examine the moderators which affect remote sensing of crop nitrogen status; (ii) to quantify
the effects of various influencing moderators on crop NUE; (iii) evaluate the potential of
UASs for remote assessment of NUE quantitatively; and (iv) provide recommendations for
optimizing UAS technology for NUE assessment in agricultural practices.

2. Materials and Methods
2.1. Literature Search

Using the PRISMA protocol, we conducted a systematic review and meta-analysis of
studies that use UAVs to estimate NUE in agricultural systems. Figure 1 presents a flow
diagram of the study selection process. In the identification step, relevant literature was
retrieved from Scopus and Web of Science using search terms comprising keywords related
to UAVs and nitrogen use efficiency (shown in Appendix S2). The search was limited to
English-language research articles published from 1 January 1995 to 20 January 2024. The
studies classified as review papers, book chapters, reports, Ph.D. theses or errata were not
considered.

A total of 164 articles were obtained from the Scopus and Web of Sciences searches.
To be included in the review, a study was required to fulfill the following three criteria:
(i) the study uses UAS type; (ii) it focuses on vegetation NUE; (iii) it uses at least one of the
NUE indicators. A total of 35 studies were included in the quantitative analysis, as they
met the criteria and provided extractable data for all features. For each article, we extracted
metadata, including information related to the characteristics of the location, vegetation,
measurement period, sensor type, signal processing technique, vegetation index, R2, and
NUE indicators manually (Appendix S1).
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Figure 1. PRISMA flow diagram of the study selection process for the systematic review.

2.2. Data Extraction

Typically, the NUE is gauged in an indirect manner by measuring a suite of N-related
crop and/soil traits. The plant traits pertinent to the assessment of NUE typically en-
compass plant nitrogen content and uptake, grain protein content, biomass, and yield.
These traits are intrinsically linked to the calculation and assessment of NUE. Plant N-
related traits such as nitrogen content, leaf chlorophyll content, and protein content offer
an in-depth insight into the plant’s nitrogen dynamics. Similarly, attributes like biomass,
yield, and plant height, while serving as indicators, also elucidate the associations between
plant vitality and its nitrogen consumption. Moreover, the (Leaf Area Index) LAI and the
Thousand Grain Weight (TGW) reveal the plant’s photosynthetic efficiency and grain mor-
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phological characteristics, which are both closely influenced by N-related traits and trait
interactions [20,21]. Figure 2 summarizes the plant traits we extracted from the literatures
and used in this review for the NUE evaluation included. For a comprehensive and robust
meta-analysis, we honed our focus on six core trait categories directly related to NUE:
nitrogen content (covering both Plant Nitrogen Content (PNC), Plant Nitrogen Weight
(PNW), and Plant Nitrogen Accumulation (PNA)), biomass, direct NUE measurements,
LAI, Plant Height, and Grain Yield. Ensuring the validity of our research, we included
only those studies that transparently reported both the coefficient of determination (R2)
and the associated sample size for each trait in the quantitative analysis section. Through
our analysis, we pinpointed five pivotal variables (i.e., Sensor Types, Signal Processing
Techniques, Model Evaluation Procedures, Growth Stages, and Crop Types) that influence
the accuracy of plant trait estimation:
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Figure 2. Percentages of the plant traits used in the included publications. PNC: Plant Nitrogen
Content; LAI: Leaf Area Index; PH: Plant Height; TGW: Thousand Grain Weight; NG: Number of
Grains Per Area; SN: Spike Number; PNA: Plant Nitrogen Accumulation; PNW: Plant Nitrogen
Accumulation.

a. Sensor Types: We identified four sensor types that could potentially influence the
accuracy of trait estimation: RGB, MS, HSI, and a combination of RGB and MS sensors.

b. Signal Processing Techniques: To estimate vegetation characteristics, we employed a
range of signal processing techniques as outlined by [22]. These include Multivariate
Linear Methods (e.g., Partial Least Squares Regression, Stepwise Multiple Linear
Regression, and Multiple Linear Regression), Multivariate Non-Linear Methods (e.g.,
Random Forest and Support Vector Machine), Physically Based Approaches (utilizing
specific formulas), and Univariate Methods (involving Vegetation Indices and either
Linear or Non-Linear Regressions).

c. Model Evaluation Procedures: In the existing literature, two predominant strategies
for model evaluation are calibration and validation. Calibration R2 serves as a measure
of the model’s accuracy when derived from a training data set. In contrast, validation
R2 gauges the model’s capacity for estimating trait values in an independent test data
set, thereby providing insights into the model’s generalizability and stability.

d. Growth Stages: To standardize the data monitoring period across all studies, we
converted the reported growth stages to the BBCH scale [23], a globally recognized
scale for phenological staging in plants. We categorized the growth stages as follows:
early stage (BBCH 0–30), mid-stage (BBCH 31–60), and late stage (BBCH 61–90).
Additionally, we considered the entire growth period (BBCH 0–90) as a separate
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category. These categorizations were employed to assess the impact of different
growth stages on the accuracy of plant trait prediction.

e. Crop Types: The articles analyzed for prediction accuracy primarily focused on the
following crops: winter wheat, maize, barley, winter oilseed, and rice. These crops
were individually categorized to evaluate the differential impact of crop type on the
accuracy of plant trait estimation.

2.3. Data Analysis

In evaluating plant traits estimation accuracy within this meta-analysis, R2 is chosen
as our primary metric due to its wide acceptance and ease of interpretation. While both R2

and Normalized Root Mean Squared Error (nRMSE) are valuable for quantifying accuracy,
the latter is less commonly reported in the literature, limiting our ability to perform a
comprehensive analysis. It is acknowledged that variances in reported accuracies exist
both between and within individual studies. Between-study discrepancies often arise from
contextual differences such as geographical location and types of drones used in data collec-
tion. Additionally, within the same study, variations in traits estimation accuracy can also
be observed, attributable to the application of diverse signal processing techniques [22]. To
quantitatively estimate these two sources of variance and identify the moderating variables
that could influence the prediction accuracy, we utilize a three-level meta-analytic model,
in line with established methodologies. This approach allows for a nuanced understanding
of the factors contributing to accuracy disparities both within and across studies [24].

2.3.1. Data Transformation and Standardization

Plant traits estimation accuracy was typically expressed in terms of the R2. Initially,
the data set is imported from a CSV file (Appendix S1) and cleaned to ensure robustness in
the subsequent steps. This involves eliminating entries with missing R2 values. Because
meta-analytical three-level models assume normally distributed data [22] to enable a stan-
dardized comparison of accuracy across various studies. The R2 values in their original
form may not adhere to this assumption, especially in cases where the distribution of R2

values is skewed or bounded. This non-normality can lead to analytical complications and
potentially biased results in the meta-analysis. To address this issue and standardize the
comparison of accuracy across different studies, we employed a mathematical transforma-
tion known as Fisher’s Z transformation. This transformation converts the R2 values into a
metric that approximates a normal distribution, thereby making it more suitable for our
three-level meta-analytic model. This transformation is performed using the Equation (1):

Z =
1
2

ln
(

1 + r
1 − r

)
(1)

In this equation, Z represents the transformed value, and r is the square root of
R2, also known as the correlation coefficient. This transformation is symmetric around
zero, meaning that values of r close to 1 (high positive correlation) and −1 (high negative
correlation) are transformed to positive and negative extremes, respectively, while an r
value of 0 (no correlation) is transformed to 0 in the Z scale. The transformed values are
less bounded compared to R2 values, allowing for a more accurate estimation of effects and
variances across studies.

2.3.2. Model Formulation: Three-Level Random Effects Model

Upon standardizing the data, the first step in our modeling exercise involves establish-
ing a baseline model, commonly referred to as the “null” model. It does not yet include
any predictors or moderator variables, allowing us to establish a benchmark for comparing
other models that will include additional variables. This foundational model captures the
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overall effect size and provides initial estimates of between- and within-study variances.
Mathematically, the null model is formulated as:

Zijk = γ00 + ν0k + µjk + eijk (2)

here, Zijk represents the observed Fisher’s Z value for the ith samples in the jth study from
the kth data set. It is the outcome of the Fisher’s Z transformation applied to the R2 values,
as described previously. γ00 (Grand Mean) is the intercept in this model, representing the
overall mean effect size across all studies when all other effects are zero. This is the expected
value of the transformed effect size when the random effects due to study are not present.
ν0κ (Random Effect of Data Set—Level 3) represents the random effect due to the kth data
set. It accounts for the variation in effect sizes between different data sets that cannot be
explained by the overall mean alone. This term allows each data set to have its own unique
effect size, which is assumed to be normally distributed around the γ00. µjk (Random Effect
of Study within Data Set—Level 2) represents the random effect due to the jth study within
the kth data set. It captures the variability in effect sizes that occurs between studies within
the same data set. This allows for the acknowledgment that different studies may have
unique characteristics influencing their outcomes. eijk (Random Effect of Sample within
Study—Level 1) represents the random effect due to the ith sample within the jth study and
kth data set. It is essentially the error term that represents the unexplained variance after
considering the effects of the data set and the study. This includes measurement errors,
individual sample variability, and other idiosyncratic factors affecting the Fisher’s Z value.

2.3.3. Incorporating Moderator Variables (Fixed Effect)

To delve deeper into the nuances of traits estimation accuracy, we expand this null
model by incorporating moderating variables such as Sensor Type, Crop Type, Model
Evaluation Procedures, Signal Processing Technique, and Growth Stage. These variables
are introduced with the presumption that they systematically influence the traits estimation
accuracy, thereby allowing us to explore the intricacies of the data more comprehensively.

Mathematically, the extended model can be expressed as follows, where X represents
the matrix of moderator variables, and β represents the vector of coefficients associated
with these moderators (Equation (3)):

Zijk = γ00 + Xijkβ + ν0k + µjk + eijk (3)

This equation now includes the term Xijkβ, which captures the fixed effects of the
moderator variables on the transformed effect size.

2.3.4. Assessing Variability and Intra-Class Correlation

Following the introduction of moderators, we measure the proportion of variance in
the dependent variable that is attributable to the grouping structure in the data using the
Intra-class Correlation Coefficient (ICC). The ICC is calculated using the Equation (4):

ICC =
σ2

µ

σ2
µ + σ2

ν
(4)

where σ2
µ represents the estimated variance at the study level (Level 2). σ2

ν represents
the estimated variance at the data set level (Level 3). The ICC value ranges from 0 to
1. A high ICC suggests that the conditions or measurements within individual studies
are significant contributors to the variability in traits estimation accuracy. Conversely, a
low ICC would indicate that the variability (i.e., differences in geographical location, data
collection protocols, etc.) between data sets is more pronounced.
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2.3.5. Evaluating the Explained Variance

Finally, we assess the performance of the model by calculating the amount of variance
explained by the moderating variables at both the study (Level 2) and data set (Level 3)
levels. These are our overall levels in this analysis, and they help provide a comprehensive
understanding of the data’s structure. This is performed using the following equations:

R2
2 = 1 −

σ2
µ(1)

σ2
µ(0)

(5)

R2
3 = 1 −

σ2
ν(1)

σ2
ν(0)

(6)

where R2
2 and R2

3 represent the proportion of the variance at the study level (Level 2) and
data set level (Level 3), respectively. These metrics serve as robust indicators of the model’s
explanatory power, providing valuable insights into the influence of moderating variables
on traits estimation accuracy. A larger R2 value indicates that a substantial portion of
the variance is accounted for by the moderators, demonstrating their importance in the
model. σ2

µ(1) and σ2
ν(1) represent the estimated variances at Levels 2 and 3, respectively,

with moderator variables included. σ2
µ(0) and σ2

ν(0) represent the estimated variances at
Levels 2 and 3, respectively, in the null model, without moderator variables.

By adopting this thorough methodological approach, we aim to offer a nuanced,
robust, and comprehensive analysis, enhancing our understanding of traits estimation
accuracy across a diverse array of conditions and studies.

The ‘lme4’ package (1.1.34), ‘nlme’ package (3.1.162), and ‘dplyr’ package (1.1.34)
were used for data analysis, ‘ggplot2’ package (3.4.3) was used for data visualization in R
(version 4.3.0).

3. Results
3.1. Geographical Distribution and Research Trends

Figure 3 depicts the geographical spread of the 45 studies encompassed in this review,
spanning 13 different countries. In Asia, China emerges as a leading research hub with
25 studies, while in North America, the USA accounts for 6 studies. European research con-
tributions were diverse. Germany, Denmark, and Switzerland presented two studies each,
whereas Spain, France, Czechia, Italy, and Belgium had one study apiece. South America
and Africa were represented by Brazil and Morocco, respectively, each contributing one
study. From a climatic perspective, most studies focused on temperate regions, especially in
Europe and the USA. However, the Brazilian study offered insights into tropical conditions,
and arid perspectives were gleaned from studies in regions like Mexico and Morocco.
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Climatic variations distinctly affect nitrogen absorption, transformation, and leach-
ing [25]. For instance, rainwater can dissolve nitrogen in the soil and move it to deeper
soil layers or into rivers, lakes, and groundwater. This leaching results in a significant
loss of available nitrogen from the topsoil, affecting plant growth [26]. In arid regions,
drought conditions might lead to nitrogen accumulation as they can inhibit plant growth,
thus reducing nitrogen uptake [27]. It is evident that diverse climatic conditions necessitate
distinct management strategies and technological applications.

3.2. Comparing Indicators for Assessing NUE

Figure 4 presents the trend in the annual number of articles from 1995 to 2023, show-
casing the various indicators used for assessing NUE. One of the first article, published in
2015 reported the use of the Nitrogen Balance Index (NBI) to precisely assess the nitrogen
concentrations of paddy rice at a canopy level [28]. Subsequently, there has been a marked
upswing in publications centered around utility of UAV remote sensing for NUE, which
indicated the growing importance of assessing NUE for sustainable agriculture.
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Index; NupE: Nitrogen uptake Efficiency; NUtE: Nitrogen Utilization Efficiency; PFP: Partial Factor
Productivity.

After rigorous screening, seven different indicators were extracted from the 45 ref-
erences cited in this article. The Nitrogen Nutrition Index (NNI) was prominently fea-
tured [29], being referenced 26 times, showcasing a steady uptrend over time. Followed
by the Partial Factor Productivity (PFP), which was mentioned in eight publications [30].
The agronomic Nitrogen Use Efficiency (aNUE) [31] and Nitrogen Utilization Efficiency
(NutE) [18] were equally represented, each being mentioned in six studies. Among the
indicators, the Nitrogen uptake Efficiency (NUpE) [32] was the least cited, appearing in
1 publication.

While NNI does not directly measure NUE, it assesses the nitrogen status in plants,
providing insights into their nitrogen dynamics. NNI is calculated as the ratio of the actual
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N concentration to the critical N concentration, that is, the nitrogen concentration required
for plants to achieve maximum growth rate (Equation (7)). While it provides insights into
crop nitrogen dynamics, it differs from traditional metrics directly quantifying NUE [33].
Similarly, the chlorophyll-to-polyphenol ratio, known as the NBI (Equation (8)) [28], does
not directly appraise NUE. Essentially, NBI, as measured by the Dualex, taps into the fluo-
rescence properties of chlorophyll and polyphenols in plant leaves to infer the physiological
nitrogen response [34]. It could be a useful tool to infer aspects of nitrogen management,
but it does not directly evaluate NUE. However, in an broad understanding of nitrogen
dynamics in plants, both NNI and NBI can be perceived as pivotal indicators related to
nitrogen management [35].

NNI =
Nactual concentration

Nmaximum growth rate
(7)

NBI =
Fluorescencechlorophyll

Fluorescencepolyphenol
(8)

On the other hand, aNUE (Equation (9)) specifically quantifies the increase in yield
directly attributed to the applied nitrogen, effectively distinguishing between the contri-
bution of soil nitrogen and the impact of nitrogen fertilizer in enhancing crop yields [17].
Conversely, PFP (Equation (10)) assesses the total productivity of the farming system
in relation to its nitrogen inputs without distinguishing the base yield at zero nitrogen
inputs [31,36].

aNUE =
Yieldwith N f ertilizer − Yieldwithout N f ertilizer

Ntotal applied
(9)

PFP =
Yield

Ntotal applied
(10)

NutE (Equation (11)) quantifies the efficiency with which a plant converts absorbed
nitrogen into yield, serving as a direct indicator of yield-related nitrogen use. On the other
hand, NIE (Equation (12)) and NCE (Equation (13)), as defined by Olson et al. [37] are
specific types of NutE. NCE assesses how effectively a plant converts absorbed nitrogen
into above-ground biomass, while NIE focuses on the conversion efficiency of absorbed
nitrogen into grain yield. Although both NCE and NIE fall under the broader category
of NutE, they examine different aspects of nitrogen use: NCE considers the total biomass
produced, making it relevant for both grain and biomass crop systems, whereas NIE is
more specific to grain yield, thus being particularly pertinent to grain-oriented agriculture.

NUtE =
Yield

Ntotal uptake
(11)

NIE =
Yield

Ntotal uptake
(12)

NCE =
Above ground biomass

Ntotal uptake
(13)

While NIE is important in yield-oriented cropping systems, NCE encompassing the
entire above-ground biomass is of great interest in biomass product-oriented cropping
systems.

Finally, NUpE (Equation (14)) evaluates a plant’s proficiency in absorbing available
nitrogen from its environment, irrespective of the nitrogen source. Conversely, Apparent
Recovery Fraction (ARF) (Equation (15)) quantifies the proportion of applied nitrogen that
a crop assimilates [38]. Although both indices center on nitrogen uptake, their applica-
tion in nitrogen management studies have subtle differences. NUpE measures a plant’s
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overall efficiency in absorbing available nitrogen, encompassing both soil-derived and
other environmental sources. This includes nitrogen from fertilizers, biological fixation,
and atmospheric deposition, while ARF calculates the NUE by measuring the proportion
of nitrogen from fertilizers that is assimilated by the crop, compared to the total nitrogen
applied. Accurately distinguishing between NUpE and ARF is crucial in UAV-based NUE
assessments to effectively evaluate and optimize nitrogen fertilization strategies [39].

NUpE =
Ntotal uptake

Ntotal applied
(14)

ARF =
N f ertilizer plants − Nnon− f ertilizer plants

Ntotal applied
(15)

In addition to the NUE related indicators mentioned above, during the literature
research, NHI (Equation (16)), which is a measure of nitrogen transfer efficiency from
plant nutrient organs to grains [40], has been used to detect protein content accumulation
in rice [41]. Although NHI has a significant relationship with grain yield and protein
content [42], it is not included as a NUE-related indicators within the literature search.
Because it may not reflect the efficiency of nitrogen application and its utilization for yield.

NHI =
Ngrain accumulation

Nplant accumulation
(16)

The increased emphasis on multiple aspects of NUE, from the efficiency of nitrogen
uptake to its utilization, signals a move toward a more holistic understanding of N balance
in crop production systems [43]. This comprehensive approach is further enhanced by
the integration of UAVs, which brings a new dimension to precision agriculture [44].
The combination of UAVs with traditional NUE assessments allows for the collection of
high-resolution spatial data, offering unprecedented insights into crop nitrogen status
at a granular level. This synergy enables the delivery of nitrogen based on the actual
needs of the crop, improving efficiency [45], and reducing environmental impact [35]. The
resulting data from UAVs not only underpin the development of more spatially accurate
NUE indicators but also provide a valuable feedback mechanism for optimized crop N
management practices.

3.3. Specifications and Ground Sampling Distance (GSD)

The utility and effectiveness of UASs in the assessment of NUE related traits are largely
dependent upon the type of sensor deployed. Our comprehensive analysis of 45 pertinent
research studies reveals the trends and specificities of sensor types, their frequency of usage,
and corresponding Ground Sampling Distance (GSD). Here, we outlined the landscape of
sensor selection by examining their functional attributes and correlating them with GSD
values to discuss their suitability for various scenarios (shown in Figure 5).

MS sensors dominate the field, accounting for 62.3% of total sensor deployments,
making them the predominant choice for NUE studies [46]. MS sensors typically capture
light across a few visible and near infrared spectral bands at discrete wavelengths [47],
and to a lesser extent use the Mid Infrared (MIR) or Thermal Infrared (TIR) bands [48].
The versatility of MS sensors extends their utility across a broad array of traits that in-
directly relate to NUE. For example, they have been used for evaluating biomass [49],
PNC [50], yield [30], and Plant Nitrogen Uptake (PNU) [51]. Additionally, these sensors are
instrumental in measuring key NUE indicators such as the NNI [52], the PFP [46], and the
NUtE [10]. Therefore, MS sensors offer a comprehensive toolkit for assessing a wide range
of variables that contribute to a more holistic understanding of NUE traits. Meanwhile,
GSD of MS balances between image detail and spectral resolution, making them versatile
for characterizing N related traits.
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Accounting for 23% of sensor usage in the reviewed studies, RGB sensors are typically
employed for applications requiring high spatial resolution. RGB sensors have shown
effectiveness in predicting NNI [29], PNC, PNU [34], and measuring plant height [36],
which is linked to N uptake and NUE. However, their limited spectral bands makes them
best suited for studies that emphasize spatial detail (e.g., ground cover) rather than for
in-depth research requiring extensive spectral data [28].

HSI sensors, notable for their exceptional spectral qualities and constituting 14.8% of
sensor usage, provide data in large volume and complexity. This necessitates advanced
analysis methods, often incorporating machine learning and specialized software, to handle
the data’s high dimensionality [53,54]. As analytical techniques for HSI data have advanced,
there has been a surge in studies using HSI with UAVs for assessing plant NUE, particularly
in the recent years of 2022 and 2023, examining indicators like NNI [55,56], NUtE [10,37],
and NBI [57].

Selecting the ideal sensor for NUE evaluation depends on the specific goals and
conditions of the research. MS sensors are currently favored for their balance between
spectral and spatial resolution, suitable for a broad range of NUE studies. However, sensor
technology is evolving, with machine learning and AI potentially revolutionizing NUE
research. Anticipated advancements may combine the spatial accuracy of RGB sensors
with the comprehensive spectral data of HSI sensors through data and sensor fusion. The
fusion of advanced analytics with emerging sensor technology promises to refine NUE
mapping precision and align with sustainable resource management goals.

3.4. Flight Parameters and Spectral Characteristics

In the realm of UAV-based remote sensing for NUE assessment, flight height signif-
icantly impacts data acquisition and interpretation. Within the scope of this review, the
minimum flight height was recorded at 1.5 m above the canopy [58], aimed at optimizing
UAV-based data collection for winter wheat growth and nitrogen indicators (shown in
Figure 6). The median flight height across reviewed studies approximated 60 m, opti-
mally balancing spatial resolution and area coverage. This median elevation, in synergy
with sensor-specific GSD, governs the spatial resolution essential for capturing plant traits
variations.

For heights below 100 m, high resolution imagery is emphasized, making it ideal for
studies focused on individual plants or small agricultural plots. This range is predominantly
the operational domain for RGB sensors, which excel in capturing high-resolution color
data. Conversely, moderate heights between 100 and 300 m offer a balanced GSD conducive
for MS sensors, thereby extending their applicability to diverse agricultural predictions. HSI
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sensors are generally deployed at elevations exceeding 300 m to capture a comprehensive
spectral range according to the studies included in this review [37]. Although higher
heights minimize data variance due to short-term atmospheric changes, such as cloud
cover, they often compromise spatial resolution, signified by elevated GSD values.
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Figure 6. (a) Frequency distribution of flight height with the corresponding frequency dynamic
changes depicted by a fitted curve in blue; (b) Frequency distribution of frequently used bands
(Frequency > 1). R: Red band; G: Green band; NIR: Near-Infrared band; RE: Red Edge band; B:
Blue band.

Spectral band selection plays a critical role in NUE evaluation. Prominent bands
include Red (620–750 nm), Green (495–570 nm), Near-Infrared (NIR) (780–1000 nm), and
Red-Edge (RE) (680–730 nm). The Red and NIR bands are integral to indices like the
Normalized Difference Vegetation Index (NDVI) [31,49], correlating strongly with variables
such as leaf nitrogen content [49], biomass [59], and LAI [60]. The Green band is frequently
utilized in combination with Red and NIR bands for assessing early plant vigor [61],
providing valuable information related to greenness and chlorophyll [18]. The RE band
is sensitive to chlorophyll concentration [62]. In this band, the absorption of light by
chlorophyll drops sharply, while the scattering of light by the plant’s cellular structure
increases. This abrupt transition makes the RE band highly sensitive to variations in
chlorophyll concentration [62]. The Blue band is comparatively underutilized owing to
its limited canopy penetration and lower reflectance values, making it less suitable for
distinguishing plant nitrogen status [63].

In summary, flight height and spectral band selection are not uniform considerations
but are influenced by many factors such as research objectives and computational capacities.
A harmonized approach to these variables ensures the efficacy of UAV-based remote sensing
in NUE assessment. MS sensors, with their balanced GSD and spectral capabilities, emerge
as the most pragmatic choice due to their versatility in capturing a range of spectral
information while maintaining a reasonable spatial resolution. The MS bands present a
spectrum of opportunities for formulating relevant vegetation indices strongly correlated
with NUE. Thus, an intricate understanding of these inter-related parameters is pivotal for
researchers in tailoring UAV-based remote sensing experiments for NUE evaluation.

3.5. Commonly Used Vegetation Indices in NUE Assessment

Vegetation indices provide a simplified yet precise method for evaluating essential
agronomic parameters by reducing complex spectral data to easily interpretable metrics [44].
Evaluating vegetation indices necessitates careful consideration of factors such as saturation
thresholds, sensitivity to plant attributes, growth stage-specific applicability, canopy archi-
tecture, and environmental influences [64]. In this review, the NDVI and the Normalized
Difference Red Edge (NDRE) were identified as the two most frequently used vegetation
indices (Figure 7). NDVI, which uses the Red and NIR bands, is a versatile, general-purpose
index sensitive to various plant attributes. However, in high biomass conditions, NDVI
tends to saturate. This happens because chlorophyll almost completely absorbs the red
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light, while the leaf cell structure primarily scatters the NIR light [65]. NDVI saturation can
limit its effectiveness in dense vegetation, as the index may not reflect additional biomass or
nitrogen content beyond a certain leaf area density. Beyond a certain threshold of leaf area
or canopy cover [60], NDVI becomes less sensitive to subtle variations of the canopy. In
contrast, NDRE uses the Red Edge and NIR bands and is particularly sensitive to variations
associated with plant N trait [66,67]. Additionally, Green Normalized Difference Vegetation
Index (GNDVI) incorporates the green band along with the NIR band and is commonly
used for early plant vigor assessment [68]. It is less prone to saturation compared to NDVI
and usually has strong relation with dry matter [66], NNI [49], and aNUE [17].
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Index; DATT: DATT Index; G: Green band; MTVI2: Modified Triangular Vegetation Index 2; MGRVI:
Modified Green Ratio Vegetation Index.

The Chlorophyll Index (CI) is commonly calculated using various spectral bands,
specifically the Red Edge and Green bands. These variations give rise to different forms of
the index, namely the Chlorophyll Index in the Red Edge (CI Red Edge) and the Chlorophyll
Index with Green (CI Green). CI Red Edge has been found had a higher estimation accuracy
for NNI [47] and nitrogen content than CI Green [66]. For example, CI Red Edge is generally
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more sensitive to changes in chlorophyll concentration [69], making it suitable for assessing
N deficiency-associated chlorophyll change.

Similarly, the Green Ratio Vegetation Index (GRVI) is tailored to chlorophyll concen-
tration and serves as a dependable index for evaluating both plant health and nitrogen
status. It has a good performance when estimate AGB, NNI, and PNU [70].

In addition to the aforementioned VIs, indices such as Soil-Adjusted Vegetation Index
(SAVI), RESAVI: Red Edge Soil Adjusted Vegetation Index (RESAVI), Optimized Soil-
Adjusted Vegetation Index (OSAVI), Transformed Chlorophyll Absorption in Reflectance
Index (TCARI), Visible Atmospherically Resistant Index (VARI), and Enhanced Vegetation
Index (EVI) also provide unique advantages in UAV-based remote sensing for NUE assess-
ment. For instance, SAVI, RESAVI, and OSAVI minimize soil background influences [71,72],
making them ideal for regions with sparse vegetation. Even when the vegetation is not
dense, SAVIs provide more accurate estimates of vegetation attributes like biomass [73]
and LAI [74]. TCARI is often used in combination with OSAVI to form the TCARI/OSAVI
ratio, which further enhances its ability to estimate N related traits [75]. Additionally, VARI
was designed to work with standard RGB imagery, eliminating the need for NIR or Red
Edge bands [76]. While this makes the index accessible and easy to implement, it does
come with limitations in its ability to detect subtle variations in plant health or nutrient
status. This is because VARI does not incorporate NIR or Red Edge bands, which are
typically sensitive to these plant/canopy structural attributes. Therefore, the index is most
suitable for broader assessments focusing on overall vegetation cover rather than detailed
evaluations of physiological traits [77]. Lastly, EVI developed for satellite remote sensing
has been also employed for UAV-based nitrogen use efficiency assessments [31] and gained
significant attention recently [78,79]. Because it incorporates the blue band to correct for
atmospheric influences and includes a soil adjustment factor to account for the effects of
the ground surface beneath the vegetation, it is less sensitive to atmospheric conditions
and background soil variations compared to NDVI [80].

In the context of UAV-based NUE assessment, Modified Triangular Vegetation Index
2 (MTVI2), Simple Ratio (SR), Excess Green Index (ExG), Modified Soil-Adjusted Vegeta-
tion Index (MSAVI), and Modified Green Ratio Vegetation Index (MGRVI) are used less
frequently when compared to other VIs in UAV-based remote sensing for NUE assessment.
Several factors contribute to their less frequent usage. For example, MTVI2 is specifically
engineered for extracting the LAI [81] unless it is combined with Modified Chlorophyll
Absorption in Reflectance Index (MCARI) to form the MCARI/MTVI2 ratio [32]. The
SR index has variations such as Simple Ratio-Red Edge (SR-RE) and Simple Ratio-Near
Infrared (SR-NIR), which focus on the Red Edge and near-infrared bands, respectively.
Notably, SR-RE has been shown to have a stronger correlation with dry matter compared
to SR-NIR [82]. However, the use of only two spectral bands in the SR index limits its
capacity to capture the complexity and diversity of vegetation physiology and lacks the
soil adjustment features like SAVI or OSAVI [83]. ExG, which is commonly applied in RGB
is designed to maximize the response to green vegetation but may not be as sensitive to
other plant attributes such as NNI [34,84]. MSAVI and MGRVI are variations of existing
indices and might be overshadowed by their more established counterparts [59].

The current landscape of vegetation indices in precision agriculture is marked by a
dynamic interplay between established and emerging indices. As UAV technology and
spectral analysis methods progress, we anticipate a diversification in the suite of VIs applied
to assessments of various functional types of variables related to NUE. This expansion will
likely include both traditional indices, prized for their reliability, and innovative indices,
which may offer tailored insights for specific crop types, cropping system conditions (e.g.,
mixed and diversified cropping) and developmental stages (e.g., phenology). Such an
evolution is pivotal for the advancement of precision crop management, where the goal is
to achieve an optimal balance between N resource inputs and crop yield and quality and
ultimately optimal NUE from field to global scale.
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3.6. UAV-Based Trait Estimation for NUE Analysis

Using mixed-effects models, we discerned that the positive aggregate effect sizes for
these traits ranged between 1.12 and 1.48, a trend distinctly illustrated in Figure 8. Intrigu-
ingly, certain traits, namely Plant Height, LAI, and Grain Yield, despite their biological
relevance, found limited representation in extant literature. This limited number of studies
for these traits has led to broader confidence intervals, suggesting caution when interpret-
ing these results due to potential sample bias. Consequently, in our analytical approach,
we adopted a conservative stance, eschewing exhaustive performance analysis for these
traits, details of which are elaborated in Tables S1–S3 and Figures S1–S3 (Supplementary
Materials).

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 32 
 

 

 
Figure 8. Overall mean effect size and 95% confidence interval of each trait. n: Number of observa-
tions; Studies: Number of unique studies for each trait; NUE: Nitrogen Use Efficiency; N: Nitrogen; 
LAI: Leaf Area Index. 

Traits that have been extensively studied, such as NUE and biomass, exhibited robust 
predictive performances, each with an effect size of 1.18. Relatively, the nitrogen content, 
despite its fundamental biological relevance, displayed a slightly more modest model ef-
fect size, pegged at 1.12.  

Linear mixed model results underscore the significant influence of sensor type and 
signal processing technique on the accuracy of predicting NUE related plant traits includ-
ing nitrogen (Table 1, Figure 9), NUE (Table 2, Figure 10), and biomass (Table 3, Figure 11). 
The sensor type showed a pronounced difference in the effect on the three traits, with F-
statistics of 71.704 for N, 5.256 for NUE, and 18.311 for biomass, reflecting its critical role 
in the predictive modeling. The data elucidates that single sensor applications, such as 
HSI, significantly influence the nitrogen trait detection (Estimate = 1.395, SE = 0.174, p < 
0.001). HSI’s broad spectral range capture detailed information of plant canopy reflectance 
across numerous wavelengths, enabling precise detection of nutrient content [85], grain 
yield [85], LAI [56], and NUE [86].  

 

Figure 8. Overall mean effect size and 95% confidence interval of each trait. n: Number of observa-
tions; Studies: Number of unique studies for each trait; NUE: Nitrogen Use Efficiency; N: Nitrogen;
LAI: Leaf Area Index.

Traits that have been extensively studied, such as NUE and biomass, exhibited robust
predictive performances, each with an effect size of 1.18. Relatively, the nitrogen content,
despite its fundamental biological relevance, displayed a slightly more modest model effect
size, pegged at 1.12.

Linear mixed model results underscore the significant influence of sensor type and
signal processing technique on the accuracy of predicting NUE related plant traits including
nitrogen (Table 1, Figure 9), NUE (Table 2, Figure 10), and biomass (Table 3, Figure 11).
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The sensor type showed a pronounced difference in the effect on the three traits, with
F-statistics of 71.704 for N, 5.256 for NUE, and 18.311 for biomass, reflecting its critical role
in the predictive modeling. The data elucidates that single sensor applications, such as HSI,
significantly influence the nitrogen trait detection (Estimate = 1.395, SE = 0.174, p < 0.001).
HSI’s broad spectral range capture detailed information of plant canopy reflectance across
numerous wavelengths, enabling precise detection of nutrient content [85], grain yield [85],
LAI [56], and NUE [86].

Table 1. Regression models without moderator (Null) and with one moderator (Sensor Type, Crop,
Signal Processing Technique, Growth Stage, R2 Type, respectively) for Nitrogen. Esti.: Estimated
Coefficient; SE: Standard Error; Pr(>|t|): p-value; F: F-statistic; df: degrees of freedom; num:
Numerator Degrees of Freedom; den: Denominator Degrees of Freedom; p: p-value; ICC: Intra-class
Correlation Coefficient; R2

(2): proportion of the variance at the study level; R2
(3): proportion of the

variance at the data set level; MS: Multispectral sensor; HSI: Hyperspectral sensor. Significance levels:
*** p < 0.001, ** p < 0.01, * p < 0.05.

Moderator Regression Model Statistics Anova Test Variance of Effect Heterogeneity Measures

Null Fixed Effects F df p Level 2 Level 3 ICC R2
(2) R2

(3)
Esti. SE Pr(>|t|) (num; den) 0.031 0.146 0.175
1.116 0.052 0.000 ***

Sensor Type 71.704 8; 20.950 0 0.055 0.075 0.423 0 0.488
HSI 1.395 0.174 0.000 ***

HSI, LiDAR 1.368 0.180 0.000 ***
HSI, LiDAR,

Thermal 1.358 0.186 0.000 ***

LiDAR 0.397 0.180 0.0476 *
MS 1.167 0.084 0.000 ***

RGB 0.954 0.144 0.000 ***
RGB, MS 1.180 0.140 0.000 ***
Thermal 0.216 0.186 0.266

Crop 0.515 4; 12.530 0.726 0.025 0.146 0.144 0.205 0.003
Barley 0.959 0.312 0.003 **

Camelina 1.050 0.312 0.001 **
Cotton 2.005 0.413 0.000 ***
Maize 1.182 0.104 0.000 ***
Rice 1.288 0.123 0.000 ***

Winter Wheat 1.032 0.062 0.000 ***

Signal Processing Technique 40.446 3; 70.630 0 0.031 0.129 0.196 0 0.116
Multivariate

Linear 1.233 0.069 0.000 ***

Multivariate
Non-linear 1.344 0.067 0.000 ***

Physically based 2.005 0.401 0.000 ***
Univariate 0.886 0.060 0.000 ***

Growth Stage 6.295 3; 415.560 0 0.036 0.145 0.201 0 0.012
All 1.229 0.072 0.000 ***

Early 0.995 0.138 0.000 ***
Late 1.093 0.078 0.000 ***

Medium 1.085 0.061 0.000 ***

R2 Type 1.655 1; 415.890 0.199 0.027 0.145 0.157 0.128 0.011
Calibration 1.043 0.056 0.000 ***
Validation 1.148 0.051 0.000 ***

Number of obs: 435 Number of studies: 19

Notably, the integration of HSI with LiDAR sensors further enhance the model’s
predictive capability for NUE (Estimate = 1.152, SE = 0.187, p < 0.001). LiDAR’s ability to
generates high resolution three-dimensional structural information complements HSI’s
spectral data, enabling a more comprehensive assessment of crop phenotypes [85]. While
RGB sensors provide a high resolution imagery, MS sensors extend beyond the visible
spectrum, offering insights into plant stresses [79] and photosynthetic efficiency [56]. As
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a result, the fusion of RGB and MS sensors yields a significant estimate (Estimate = 1.18,
SE = 0.14, p < 0.001), suggests an effective strategy for enhancing data richness. Furthermore,
implementing thermal sensors, despite a modest effect in isolation (Estimate = 0.216,
SE = 0.186, p = 0.266), their utility increase when combined with other sensors [85]. These
sensors can detect subtle canopy temperature changes [87], indicative of water stress [12],
thus adding a critical dimension to the sensor spectrum and potentially improving the
accuracy of trait estimation.

In the case of crop type, the variance of effect is less pronounced, with F-statistics of
0.515 for Nitrogen and 0.501 for NUE, which are lower than those for sensor type. This
suggests that while the crop type does influence model predictions, its impact is small
compared to the sensor used for data collection. This variation may be rooted in physiolog-
ical differences between C3 and C4 crops. The C4 photosynthetic pathway is an advanced
mechanism that allows plants to more efficiently capture carbon dioxide and utilize nitro-
gen, particularly under conditions of high light intensity [88], high temperatures [89], and
dryness [90]. As a result, C4 crop (i.e., maize) may exhibit a lower leaf nitrogen content
(Estimate = 1.176, SE = 0.209, p < 0.001) than some C3 crops (i.e., cotton (Estimate = 2.005,
SE = 0.413, p < 0.001) and rice (Estimate = 1.288, SE = 0.123, p < 0.001)), which uses a more
common form of photosynthesis that is typically less efficient under warm, dry conditions
due to a process called photorespiration [91]. Besides, C4 crops typically show higher NUE,
as they can produce more biomass per unit of nitrogen absorbed [92].
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Surprisingly, the signal processing techniques manifest even greater variability, with
exceptionally high F-statistics, particularly in biomass estimation (F = 65.225), suggest-
ing that the selection of an appropriate technique is paramount for model performance.
Physical model-based techniques significantly elevated nitrogen estimation accuracy (Es-
timate = 2.005, SE = 0.401, p < 0.001). However, the high standard error (SE = 0.401)
underscores the need for accurate field measurements to refine these complex simulations.
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Compared with Multivariate Linear (Estimate = 1.233, SE = 0.069, p < 0.001) and Multivari-
ate Non-Linear regressions (Estimate = 1.344, SE = 0.067, p < 0.001), the relatively simpler
univariate regressions appear to have limited predictive power (Estimate = 0.886, SE = 0.06,
p < 0.001) in nitrogen estimation. The intricate interactions between spectral data and
physiological plant traits, often non-linear, are deftly handled by multivariate non-linear
techniques such as random forests [93], support vector machine [72], and extreme learning
machine [94]. These machine learning approaches have a pronounced impact on the assess-
ment of both NUE (Estimate = 1.427, SE = 0.082, p < 0.001) and biomass (Estimate = 1.478,
SE = 0.125, p < 0.001), showcasing their potential in modeling complex biological processes
integral to nutrient efficiency.

Table 2. Regression models without moderator (Null) and with one moderator (Sensor Type, Crop,
Signal Processing Technique, Growth Stage, R2 Type, respectively) for NUE. Esti.: Estimated Coeffi-
cient; SE: Standard Error; Pr(>|t|): p-value; F: F-statistic; df: degrees of freedom; num: Numerator
Degrees of Freedom; den: Denominator Degrees of Freedom; p: p-value; ICC: Intra-class Correlation
Coefficient; R2

(2): proportion of the variance at the study level; R2
(3): proportion of the variance at the

data set level; MS: Multispectral sensor; HSI: Hyperspectral sensor. Significance levels: *** p < 0.001,
** p < 0.01, * p < 0.05.

Moderator Regression Model Statistics Anova Test Variance of Effect Heterogeneity Measures

Null Fixed Effects F df p Level 2 Level 3 ICC R2
(2) R2

(3)
Esti. SE Pr(>|t|) (num; den) 0.116 0.076 0.604
1.18 0.072 0.000 ***

Sensor Type 5.256 8; 29.960 0 0.117 0.072 0.618 0 0.506
HSI 1.144 0.160 0.000 ***

HSI, LiDAR 1.152 0.187 0.000 ***
HSI, LiDAR,

Thermal 1.149 0.199 0.000 ***

LiDAR 0.872 0.187 0.000 ***
MS 1.177 0.104 0.000 ***

RGB 1.087 0.190 0.000 ***
RGB, MS 1.349 0.175 0.000 ***
Thermal 0.644 0.199 0.002 **

Crop 0.501 6; 15.000 0.798 0.134 0.076 0.639 0 0.483
Barley 1.014 0.458 0.033 *
Cotton 1.003 0.369 0.015 *
Maize 1.394 0.187 0.000 ***
Rice 1.175 0.169 0.000 ***

Soybean 1.401 0.399 0.002 **
Winter Oil seed 1.450 0.371 0.001 **
Winter Wheat 1.092 0.112 0.000 ***

Signal Processing Technique 30.372 3; 473.64 0 0.133 0.066 0.67 0 0.55
Multivariate

Linear 1.241 0.085 0.000 ***

Multivariate
Non-linear 1.427 0.082 0.000 ***

Physically Based 1.117 0.133 0.000 ***
Univariate 0.989 0.080 0.000 ***

Growth Stage 5.871 3; 474.31 0 0.126 0.075 0.629 0 0.491
All 1.110 0.081 0.000 ***

Early 1.348 0.102 0.000 ***
Late 1.254 0.086 0.000 ***

Medium 1.181 0.079 0.000 ***

R2 Type 6.612 1; 467.48 0.01 0.116 0.076 0.604 0 0.481
Calibration 1.176 0.075 0.000 ***
Validation 1.181 0.072 0.000 ***

Number of obs: 498 Number of studies: 25
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Table 3. Regression models without moderator (Null) and with one moderator (Sensor Type, Crop,
Signal Processing Technique, Growth Stage, R2 Type, respectively) for Biomass. Esti.: Estimated
Coefficient; SE: Standard Error; Pr(>|t|): p-value; F: F-statistic; df: degrees of freedom; num:
Numerator Degrees of Freedom; den: Denominator Degrees of Freedom; p: p-value; ICC: Intra-class
Correlation Coefficient; R2

(2): proportion of the variance at the study level; R2
(3): proportion of the

variance at the data set level; MS: Multispectral sensor; HSI: Hyperspectral sensor. Significance levels:
*** p < 0.001, ** p < 0.01.

Moderator Regression Model Statistics Anova Test Variance of Effect Heterogeneity Measures

Null Fixed Effects F df p Level 2 Level 3 ICC R2
(2) R2

(3)
Esti. SE Pr(>|t|) (num; den) 0.081 0.097 0.455
1.18 0.085 0.000 ***

Sensor Type 18.311 8; 11.518 0 0.017 0.084 0.17 0.444 0.424
HSI 0.810 0.150 0.000 ***

HSI, LiDAR 0.853 0.141 0.001 **
HSI, LiDAR,

Thermal 0.852 0.150 0.000 ***

LiDAR 0.561 0.141 0.008 **
MS 1.201 0.063 0.000 ***

RGB 1.928 0.177 0.000 ***
RGB, MS 1.122 0.079 0.000 ***
Thermal 0.296 0.150 0.087

Crop 0.328 3; 6.220 0.805 0.073 0.097 0.428 0 0.336
Barley 0.666 0.413 0.115
Maize 0.900 0.201 0.002 **
Rice 1.251 0.201 0.000 ***

Winter Wheat 1.264 0.102 0.000 ***

Signal Processing Technique 65.225 2; 257.652 0 0.175 0.076 0.698 0 0.484
Multivariate

Linear 1.378 0.132 0.000 ***

Multivariate
Non-linear 1.478 0.125 0.000 ***

Univariate 0.876 0.124 0.000 ***

Growth Stage 2.408 2; 279.126 0.092 0.09 0.097 0.483 0 0.34
All 1.265 0.101 0.000 ***

Late 1.193 0.105 0.000 ***
Medium 1.151 0.092 0.000 ***

R2 Type 11.976 1; 313.423 0.001 0.08 0.098 0.45 0 0.334
Calibration 1.168 0.088 0.000 ***
Validation 1.186 0.086 0.000 ***

Number of obs: 332 Number of studies: 13

Lastly, growth stage demonstrates moderate influence, with F-statistics of 6.295 for
Nitrogen and 5.871 for NUE, indicating that phenological stages of the crops have a
differential impact on the trait predictions. For nitrogen estimation, compared with early
growth stage (Estimate = 0.995, SE = 0.138, p < 0.001), both mid stage (Estimate = 1.085,
SE = 0.061, p < 0.001) and late stage (Estimate = 1.093, SE = 0.078, p < 0.001) showed a more
significant influence, reflecting the continued relevance of nitrogen during the reproductive
phases of plant development. In the context of NUE, it was unexpected to observe that
the early stage showed a high estimate accuracy (Estimate = 1.348, SE = 0.102, p < 0.001),
followed by the late stage (Estimate = 1.254, SE = 0.086, p < 0.001). The higher estimation
accuracy for NUE at the early growth stages may be attributed to the pivotal role that initial
nitrogen assimilation plays in setting the foundation for plant health and development [95].
Proficient nitrogen utilization during the early stages is often indicative of a robust root
system establishment [96] and vigorous foliar growth [95], which are both vital elements
for sustained nutrient absorption and utilization over the plant’s lifecycle [97].
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The ICC and the proportions of variance at the study level R2
2 and at the review

dataset level R2
3 are indicators of heterogeneity. The ICC for sensor type in nitrogen

estimation is quite high (ICC = 0.423), suggesting that the variations within the sensor
types are substantial and that there is a high degree of heterogeneity in how different
sensors capture information relevant to N content. In contrast, the ICC for crop type
in nitrogen estimation is relatively lower (ICC = 0.144), indicating that the variability in
nitrogen content attributable to differences among crop species is less pronounced when
compared to sensor types. In the context of NUE, the ICC for sensor type (0.618), crop
(0.639), growth stage (0.629), signal processing technique (0.67), and R2 type (0.604) are
uniformly high, which underscores the complexity of NUE as a trait and its sensitivity
to a variety of agricultural and methodological conditions. To improve accuracy, NUE
modeling must consider a multi-dimensional approach that integrates these diverse but
influential factors.

Our analysis demonstrates that the spectral resolution and range of sensor types are
crucial for the accurate prediction of biomass and nitrogen content, with HSI sensors being
particularly effective due to their wide spectral coverage. The fusion of sensor technologies,
notably HSI combined with LiDAR and Thermal imaging, provide enhanced prediction
capabilities by integrating structural and temperature data with spectral information.
Our analysis reveals that C4 plants like maize exhibit lower leaf nitrogen content but
higher NUE and biomass productivity under optimal conditions. This implies the need to
consider crop-specific physiological traits in nutrient management strategies for optimal
productivity. Signal processing techniques show significant variability in their influence
on trait prediction, with physical model-based techniques providing the highest accuracy
in nitrogen estimation. The intricate interactions between spectral data and physiological
plant traits are often non-linear and can be effectively captured by multivariate non-linear
techniques such as machine learning algorithms, which outperform univariate and linear
multivariate techniques in both NUE and biomass predictions. Growth stage significantly
influences nitrogen estimation accuracy, with early growth stages offering crucial insights
on plant health and vigor that is predictive of overall NUE. Early-stage data is particularly
valuable, indicating that initial nitrogen assimilation strongly predicts subsequent plant
productivity. Finally, the R2 types, both calibration and validation, are critical in model
assessment. Although high calibration R2 values suggest a good model fit, they also
warrant caution against overfitting, underscoring the importance of validation R2 as a
measure of the model’s ability to generalize across different studies.

4. Challenges and New Opportunities for UAV Remote Sensing in NUE
4.1. Accounting for the Effects of Phenological Variations on Spectral Data and Indicators of NUE

Growth stages are pivotal in determining the development of plant traits, particularly
NUE, which is closely linked with nitrogen-related traits. Our analysis reveals that the early
growth stage offers the highest accuracy in NUE estimation. This stage is characterized
by intensive activities such as protein synthesis [39], cell proliferation [98], chlorophyll
production for photosynthesis [45], and the synthesis of genetic materials such as DNA
and RNA [99], alongside root expansion and enhanced sunlight absorption [100]. These
processes are nitrogen-intensive, underlining the essential role of nitrogen in supporting
rapid growth and high nutrient uptake, including the synthesis of chlorophyll and other
growth-related activities. The correlation between chlorophyll and nitrogen content during
this phase facilitates precise predictions of nitrogen-related characteristics via remote
sensing, leveraging the spectral signatures of chlorophyll indicators of the plant’s nitrogen
status.

However, as plants advance to the reproductive stage, a notable shift occurs. The
plant’s nitrogen content may decrease as the plant diverts energy towards seed produc-
tion [101], leading to a diminished correlation between chlorophyll and nitrogen content.
This change can be attributed to several factors, including a physiological shift from leaf
development to reproduction, nutrient reallocation within the plant, and the impact of
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environmental stresses on nutrient uptake or chlorophyll synthesis. Consequently, the
predictive accuracy for nitrogen through remote sensing declines in later growth stages, as
spectral indicators become less representative of the plant’s nitrogen content. Additionally,
factors such as LAI, canopy structure, and soil background vary between growth stages and
can alter spectral signatures, further complicating accurate predictions of remote sensing in
estimating plant traits.

The vegetative stage is thus revealed as a critical period for analysis. During this phase,
plants exhibit their most dynamic growth, with increased chlorophyll content leading to
lower red reflectance in the visible spectrum. This spectral behavior, alongside rising LAI
and a dynamic canopy structure [102], not only highlights the plant’s vigorous growth
and elevated nitrogen demand [103] but also presents an opportune and challenging time
window for breaking down canopy spectral data into individual traits related to NUE
while eliminating the confounding effects of phenology. As the plant transitions into the
reproductive stage, physiological and spectroscopic profiles evolve [104]. Leaf chlorophyll
and nitrogen declines are asynchronous in both time point and magnitude, increasing the
complexity of attributing canopy spectral patterns to individual traits, such as the extent to
which the canopy spectral increase is due to nitrogen remobilization from senescing leaves
to developing reproductive parts.

4.2. Correcting Canopy Structural Effects on UAV-Derived NUE Estimates

The structural characteristics of the canopy, such as leaf density and orientation,
directly influence the absorption and reflection of light across different spectral bands,
thereby affecting the spectral signatures captured by UAV-based sensors [105,106]. Notably,
the canopy structure significantly modulates the spectral signatures detectable through
UAV remote sensing, making it critical to consider canopy structural variations when
gleaning insights on NUE of plant health [107,108].

Wheat canopies can be characterized by four main structural types based on the
orientation and disposition of their leaves, including horizontally spreading type, erect
type, semierect type, and mixed type [109]. The horizontally spreading type is characterized
by leaves that predominantly lie flat, parallel, or nearly so to the ground. This type of
canopy maximizes light interception when sunlight is abundant throughout the day [110].
Spectrally, this orientation yields consistent readings, though areas interposed between
leaves might exhibit shadow effects, potentially attenuating reflectance [111]. Conversely,
the Erect Type presents leaves that are oriented almost perpendicularly, facilitating sunlight
to permeate deeper layers, a trait beneficial for promoting photosynthesis in densely
cultivated areas [112]. This varied leaf orientation introduces a degree of spectral variability
due to complex interactions between light and the canopy. With sunlight striking leaves at
different angles, this orientation enhances multiple scattering, characterized by photons
undergoing several interactions with the canopy before they are reflected. The captured
spectral signatures can change based on the time of day or the position of the sensor, leading
to potential inconsistencies in the data [113]. The Semi-erect Type, situated between the
other canopy orientations, represents an intermediate type of leaf angle distributions. Its
distinct canopy structure is neither fully flat nor completely upright. The canopy’s mixed
orientations can lead to varied spectral responses and create nuances that introduce unique
challenges in image preprocessing due to the interplay of light conditions and spatial
heterogeneity within the canopy [114]. In contrast, the mixed type is characterized by a
more diverse blend of leaf orientations. This multifaceted structure further intensifies the
complexity, as the canopy encompasses a spectrum of light interactions, ranging from deep
penetrations to significant shadowing effects [115].

In summary, to enhance the accuracy of UAV-based NUE assessments, it is imperative
to correct canopy structure effects on spectral variability for predicting N content. This is
because the multiple scattering of photons due to leaf and canopy 3D arrangement compli-
cates reflectance, necessitating corrections for accurate foliar nitrogen content interpretation.
Canopy structures vary from horizontally spreading to erect types, each with unique light
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absorption and reflection patterns, posing challenges in spectral analysis. The implementa-
tion of advanced preprocessing methods such as BRDF corrections is crucial [116]. These
methods account for the leaf orientation and density-related spectral effects by normalizing
reflectance data to a standard geometrical perspective, thus minimizing the variability
caused by different viewing angles or solar positions. By incorporating these corrections,
we can reduce the confounding spectral influences of canopy structure, ensuring that the
variability in the data reflects actual differences in N rather than artifacts of how light
interacts with the canopy. This approach enhances the precision of the translation of
remote sensing data to biologically meaningful variables and leading to more reliable
interpretations.

4.3. Advancing Remote Sensing through Imagery Data Fusion and AI-Driven Feature Analysis

In the domain of remote sensing, the integration of data from various sensor tech-
nologies is a critical process, referred to as feature fusion. This methodology harnesses
the inherent strengths of each data compilation, maintaining their full dimensionality to
offer an expansive and nuanced perspective on the analyzed phenomena [64]. To date, the
majority of work employing multiple sensors take advantage of data integration rather
than data fusion [117–119], especially imagery data fusion. Different from data integration,
data fusion extends this paradigm by engaging in both the integration and condensation of
data, which can enhance efficiency and accuracy in representation. For instance, Jie et al.
adeptly used data fusion through the upscaling of UAV-derived maps to reconcile with
the coarser spatial resolution inherent in satellite imagery. This approach resulted in a
synthesized data compilation with an augmented predictive capacity and elevated confi-
dence in model output, demonstrating an efficacious reduction of data sets with enriched
analytical value [93]. Additionally, Canh et al. employed a sophisticated deep learning
approach utilizing convolutional neural networks (CNNs) to process a composite of hyper-
spectral, thermal, and LiDAR imagery. Their method transcended simple data integration
by reducing the overall data volume, thus amplifying the predictive power of the model
and refining the insights gained [85]. These data fusion techniques unify disparate data
forms to forge a composite analytical lens that markedly elevates the understanding and
prediction of phenotypic attributes.

The advent of Artificial Intelligence (AI) in remote sensing has propelled data fu-
sion methodologies to the forefront [120], especially with the use of Machine Learning
(ML) [121] and Deep Learning (DL) algorithms [122]. CNNs adeptly process grid-like
data from multispectral and hyperspectral images [120,123], while Random Forest (RF)
algorithms, with their robustness to overfitting, expertly integrate UAV and satellite data
to predict environmental variables [124,125]. Moreover, the SVMs, RNNs, LSTM networks,
Autoencoders, and GNNs each contribute uniquely to the fusion process, whether by
mapping complex land cover classifications or capturing temporal dynamics in satellite
time-series data [126–129], thereby facilitating continuous monitoring and forecasting of
ecological changes.

As mentioned in the previous section, the complexity of canopy structure poses
challenges to spectral analysis. While Texture Features (TFs) enrich spectral data analysis by
providing additional context, enabling differentiation between crops with similar spectral
profiles but distinct structural characteristics [130]. The incorporation of TFs into data
fusion processes addresses the complexities of interpreting intricate canopy structures.
Advanced image analysis methods, including GLCM [131] and LBP [132], elucidate the
nuanced spatial arrangements within the canopy, offering enhanced classification accuracy
and aiding in the distinction of spectrally analogous but structurally diverse canopies [133].
The integration of TFs with spectral data through advanced AI-driven algorithms like
CNNs, and supported by preprocessing strategies like BRDF corrections, represent the next
frontier in data fusion. Such integrative approaches not only consolidate information from
a broad spectrum of sources but also significantly refine the interpretability and utility of
the resultant models.
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This holistic perspective underscores the importance of sophisticated data fusion in
overcoming the challenges of remote sensing, specifically in agricultural contexts where
the accurate phenotyping of crop traits for improved resource use efficiency. As the remote
sensing field evolves, the impetus to harness the full potential of data fusion becomes
increasingly pivotal, promising to unravel the complexities of crop growth and health in an
ever-changing global environment.

5. Conclusions

UASs have significantly impacted the landscape of modern agriculture, serving as
crucial instruments in offering granular insights into plant health, growth, and NUE. This
review sheds light on the factors influencing UAV assessments of N status and N use
efficiency. These range from plant attributes, such as growth stages and canopy structures,
to technical aspects like sensor calibrations and flight parameters.

The incorporation of TFs in data analysis represents a pivotal advancement, enabling
more detailed and accurate canopy assessments. These features provide a detailed view
of the plant canopy’s micro-architecture. They enhance the information gained from
spectral data and offer a more accurate interpretation, particularly in cases where traditional
spectral indices are not sufficient. Furthermore, in an era where agriculture faces challenges
like sustainability, changing climate patterns, dwindling resources, and the ever-growing
demand for increased productivity, the role of UASs becomes indispensable. Their ability
to provide timely high-resolution data is invaluable, but the real potential lies in integrating
UAV-derived insights with data from other sensing platforms and scales. This multimodal
integration could potentially provide a comprehensive, multi-scale view of agricultural
landscapes, thereby enabling more informed decisions and effective interventions.

In the future, as the nexus between technology and agriculture deepens, UAVs, forti-
fied by advanced analytical methodologies and Artificial Intelligence (AI), are poised to be
at the forefront of precision farming. These technologies, when applied judiciously and
integrated seamlessly with other data sources, hold the promise of transforming current
agricultural practices to more productive and resource-efficient ones.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16050838/s1, Figure S1: Observed Fisher’s Z effect sizes with
their 95% confidence interval for Grain Yield; Figure S2: Observed Fisher’s Z effect sizes with their
95% confidence interval for Leaf Area Index; Figure S3: Observed Fisher’s Z effect sizes with their
95% confidence interval for Plant Height; Table S1: Regression models without moderator (Null)
and with one moderator (Sensor Type, Crop, Signal Processing Technique, Growth Stage, R2 Type,
respectively) for Plant Height; Table S2: Regression models without moderator (Null) and with one
moderator (Sensor Type, Crop, Signal Processing Technique, Growth Stage, R2 Type, respectively) for
Grain Yield; Table S3: Regression models without moderator (Null) and with one moderator (Sensor
Type, Crop, Signal Processing Technique, Growth Stage, R2 Type, respectively) for Leaf Area Index.
Appendix S1: Qualitatively analysis and quantitatively analysis; Appendix S2: Engine search.

Author Contributions: Conceptualization, J.Z. and K.Y.; methodology, J.Z.; software, J.Z.; validation,
J.Z. and K.Y.; formal analysis, J.Z.; investigation, J.Z.; resources, K.Y.; data curation, J.Z.; writing—
original draft preparation, J.Z.; writing—review and editing, Y.H., F.L., K.G.F. and K.Y.; visualization,
J.Z.; supervision, K.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partly supported by the AmAIzed project funded by AgroMissionHub.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: Special thanks to Haibo Yang for his invaluable support during the initial stages
of this review. His insights were crucial and significantly contributed to its successful completion.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/rs16050838/s1
https://www.mdpi.com/article/10.3390/rs16050838/s1


Remote Sens. 2024, 16, 838 25 of 30

References
1. Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of nitrogen in

agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol.
Res. 2020, 53, 47. [CrossRef]

2. Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats
to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [CrossRef] [PubMed]

3. EU Nitrogen Expert Panel. Nitrogen Expert Panel. Nitrogen Use Efficiency (NUE). In An Indicator for the Utilization of Nitrogen in
Agriculture and Food Systems; Wageningen University: Wageningen, The Netherlands, 2015.

4. Li, Y.; Li, B.; Yuan, Y.; Liu, Y.; Li, R.; Liu, W. Improved soil surface nitrogen balance method for assessing nutrient use efficiency
and potential environmental impacts within an alpine meadow dominated region. Environ. Pollut. 2023, 325, 121446. [CrossRef]
[PubMed]

5. Scheer, C.; Rowlings, D.W.; Antille, D.L.; De Antoni Migliorati, M.; Fuchs, K.; Grace, P.R. Improving nitrogen use efficiency in
irrigated cotton production. Nutr. Cycl. Agroecosyst. 2023, 125, 95–106. [CrossRef]

6. Stahl, A.; Friedt, W.; Wittkop, B.; Snowdon, R.J. Complementary diversity for nitrogen uptake and utilisation efficiency reveals
broad potential for increased sustainability of oilseed rape production. Plant Soil 2016, 400, 245–262. [CrossRef]

7. Wan, X.; Wu, W.; Shah, F. Nitrogen fertilizer management for mitigating ammonia emission and increasing nitrogen use efficiencies
by 15N stable isotopes in winter wheat. Sci. Total Environ. 2021, 790, 147587. [CrossRef]

8. Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine
learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [CrossRef]

9. Brinkhoff, J.; Dunn, B.W.; Robson, A.J.; Dunn, T.S.; Dehaan, R.L. Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral
Satellite Data. Remote Sens. 2019, 11, 1837. [CrossRef]

10. Hegedus, P.B.; Ewing, S.A.; Jones, C.; Maxwell, B.D. Using spatially variable nitrogen application and crop responses to evaluate
crop nitrogen use efficiency. Nutr. Cycl. Agroecosyst 2023, 126, 1–20. [CrossRef]

11. Li, J.-L.; Su, W.-H.; Zhang, H.-Y.; Peng, Y. A real-time smart sensing system for automatic localization and recognition of vegetable
plants for weed control. Front. Plant Sci. 2023, 14, 1133969. [CrossRef]

12. Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Mugnozza Scarascia, G.; Harfouche, A. UAV-Based Thermal Imaging for High-
Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [CrossRef]

13. Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice
using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens.
2017, 130, 246–255. [CrossRef]
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