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Aquaculture mollusc production is predominantly from Asia, with more than 80%

of the total biomass produced in China. Vietnam’s annual mollusc production is

growing rapidly but is comparatively small given its coastal resources. A

significant challenge for future mollusc production, and oysters in particular, is

the supply of high-quality spat. Most mollusc spat in Vietnam comes from local

wild sources or is imported from China. Particularly in the case of oysters, where

wild collection is low and importation of oyster spat into Vietnam from other

jurisdictions is not controlled, supply is unreliable and presents a biosecurity risk

to the industry. Controlling the life cycle in hatcheries can increase the

sustainability and reliability of spat supply with the advantages of genetic

enhancement in the long term. Beyond well-established selection methods

based on phenotypic data for pedigreed families, the rapid development of

genomic technology has enabled innovation in hatchery production based on

genetic programs. This technology allows greater insight into oyster genetics in

intensive aquaculture production systems. Recent reviews of selection programs

demonstrate that inbreeding control via mate selection is an effective strategy for

oyster species. Genetic response through combinations of individual and family-

based selection can enhance morphometric traits by 10% per generation and

disease resistance by 15% per generation in many aquaculture species. Genomic

techniques provide information for selecting candidates at an earlier stage and
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improve prediction accuracy. In this paper, we review the literature on popular

genomic tools and breeding techniques used for molluscs, focusing on the

Portuguese oyster, Crassostrea angulata. This is to better comprehend how

modern quantitative and molecular genetic technologies are being applied in

mollusc breeding programs. It considers opportunities for and the feasibility of

using genomic-based selection as well as the challenges that are faced in

breeding programs transitioning to these new methods.
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1 Introduction

The global production of marine bivalves for human

consumption is more than 15 million tonnes per year, and

represents about 14% of the total marine production in the world

(Wijsman et al., 2018). Before 2008, mollusc production in Vietnam

was dominated by clams (Meretrix meretrix and M. lyrata) with

seed collected from the wild, and small numbers of oyster spat were

collected from the wild because of the unavailability of seed

production technology. Other mollusc species, including oysters,

only accounted for a small proportion of total production (RIA1

annual report, 2012). Over the last decade, there has been

remarkable growth in oyster production in Vietnam (Ugalde

et al., 2023), despite many difficulties related to limited skill,

experience and technical knowledge of hatchery production and

grow out of stock, poor natural spat quality, extreme weather such

as typhoons, hatchery production failures, disease outbreaks, food

poisoning, and water pollution. The historic singular focus on clams

and lack of diversification has limited market opportunities and

predisposed the mollusc industry to the vulnerabilities that can arise

from such dependence. Disruptors such as poor natural spat fall

(settlement of larvae onto a suitable substrate), typhoons, hatchery

production failures or shortfalls, the accidental introduction or

outbreak of significant disease, food poisoning or pollutant scares

could cause or already have caused considerable industry and

social hardship.

In Asia, there is a wide range of oyster species being cultured,

including the Pacific oyster (Crassostrea gigas), the Portuguese

oyster (Crassostrea angulata), the Suminoe oyster (C. ariakensis),

the Zhe oyster (C. plicatula), and the Iwagaki oyster (C. nippona).

Among oyster species being cultured around the world, C. gigas and

C. angulata are the most common. These two oyster species are

difficult to distinguish using morphological traits (In et al., 2017).

They can hybridize and produce fertile progeny (Huvet et al., 2002).

Today, China produces 80% of the total production worldwide and

about 88% of value in 2016 (Botta et al., 2020), showing a major

shift since 1950 when Asia had only contributed 22% of world

oyster production (Botta et al., 2020). In Vietnam, the oyster

industry is growing rapidly and production of C. angulata had

reached 50,000 t in 2019). Now one of the most important oysters
02
being cultured in Asia, C. angulata, has become common to the

Pacific coast of Asia (Boudry et al., 1998; Foighil et al., 1998). The

species is a popular choice for aquaculture due to fast growth and

high survival (Batista, 2007), and was introduced into France in

1868, where production reached 100,000 t (Boudry et al., 1998).

However, it almost disappeared in Europe in the early 1970s due to

iridovirus outbreaks, which are commonly associated with gill

necrosis disease (Boudry et al., 1998; Lapegue et al., 2004). C.

angulata production in Europe has fallen to less than 10 t (FAO,

2007). Production of this species in China is estimated to be 21

million t, which is about 36% of the global oyster production (Botta

et al., 2020). In Taiwan, C. angulata was the major aquaculture

oyster species (Boudry et al., 1998), with production exceeding

20,750 t in 2004 (FAO, 2007). Oyster production in Vietnam has

taken 15 years to establish reliable hatchery production and grow

out techniques, being the culmination of international partnerships

and investment. The industry now needs to focus on improving

oyster quality and growout through the production cycle.

In 2002, the Research Institute for Aquaculture No.1 (RIA1) of

Vietnam started to develop hatchery production techniques for C.

gigas, however, the spat produced did not survive beyond 5 months

at growout sites (RIA1 annual report, 2009). To address survival,

RIA1 imported broodstock from Taiwan and China and had further

hatchery production attempts for C. gigas in 2007 (RIA1 annual

report, 2009), but hatchery production was poor due to sub-optimal

algal diet, rearing techniques and hatchery equipment. Some spat

was deployed to a growout site at Bai Tu Long Bay (Figure 1), but

there also, survival to a commercial size was very low (RIA1 annual

report, 2009). These attempts were followed by a project that

reviewed and improved hatchery methods and transferred

hatchery skills and knowledge which led to the successful and

reliable production of spat to establish the oyster industry in

Vietnam in 2008 (Pierce and O’Connor, 2014). The first

commercial batches of 10 million oyster spat were produced in

2008 and more than 22 million spat were generated in the following

years at Cat Ba National Broodstock Center (Figure 1), then being

delivered to farmers for grow-out. Following this, further

investment in oyster research projects by the Vietnamese

Government funded a research project aiming to establish

hatchery production and growout techniques targeting export
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(Giang, 2011). Portuguese oyster aquaculture in Vietnam has since

grown to a production level of approximately 50,000 tonnes in 2019

and is now the dominant mollusc species farmed in northern

Vietnam (In et al., 2017; Vu et al., 2020a; Vu et al., 2021b) where

it is well-suited to warm sub-tropical environments of this region.

The C. angulata industry in Vietnam continues to grow rapidly,

but production challenges are emerging. These are mainly related to

oyster quality and survival; however, these issues can be addressed

through breeding. The breeding techniques chosen need to be cost-

effective, at the same time addressing industry and market

requirements. This growing industry has enabled farmer

diversification creating more jobs, more assets, more protein

sources, and improved quality of life for farmers and their

families. However, these socio-economic benefits come with

challenges (Pierce and O’Connor, 2014).

Most current oyster production relies on cultch set spat from

Chinese and Vietnamese hatcheries. Chinese spat is imported

because there is insufficient locally produced spat in the peak

culturing season from March to June. The essential demands for

a successful and sustainable mollusc aquaculture industry are to

gain complete control over the entire life cycles of more species,

enhancing rearing technology in the hatcheries and improving

genetics to provide better quality spat in sufficient numbers for

industry. Selective breeding is a feasible option to address many

challenges facing mollusc production, particularly around

improving survival and oyster quality traits. C. angulata are an

important aquaculture species in Vietnam and experience high

losses through the growout period. Additionally, many oysters

when harvested are of poor quality due to fouling organisms and

infestations. Addressing oyster survival and quality will

dramatically increase production levels and the overall value of

this oyster industry. Focusing on reliable and high-quality spat

production within Vietnam will secure and safeguard this industry
Frontiers in Marine Science 03
into the future and reduce biosecurity risks that threaten

this industry.

The development of genotyping technology has opened an

opportunity to use powerful genetic tools in hatchery-based

breeding programs. In recent years, a significant number of full

genome sequences have been obtained and annotated in molluscs.

However, use of whole genome sequencing is usually expensive and

beyond the financial capacity of individual breeders in Vietnam and

many other countries where oysters are produced. Cheaper

alternatives include reduced-representation genome sequencing

techniques such as genotyping-by-sequencing (GBS) (Elshire

et al., 2011), RAD sequencing (RAD-sq) (Baird et al., 2008), and

DArTseq™ sequencing technology representing a combination of

DArT complexity reduction methods and next generation

sequencing platforms (Kilian et al., 2012; Courtois et al., 2013).

The principal aim of this review is to provide an overview of

molecular and quantitative genetic methods being adopted by

oyster industries in different regions of the world. The current

state of mollusc genetic programs worldwide is reported to identify

lessons for Vietnam to support and continue the recent rapid

growth of its oyster industry. In addition, the application of

genomic selection will also be reviewed as well as the use of

“omic” information in oyster genetic improvement programs

in Vietnam.
2 Reproductive biology and genetic
diversity in oysters

High fecundity together with a high genetic load results in large

variation in productive success among breeders (Hedgecock and

Pudovkin, 2011), a situation found in mollusc hatcheries (Lallias

et al., 2010). The unequal contribution of broodstock can rapidly
FIGURE 1

Selective breeding program of the Portuguese oyster (Crassostrea angulata) performed at the Research institute for Aquaculture No.1 (A) Location
for grow-out culture of different families of Portuguese oyster at Ban Sen Island-Van Don-Quang Ninh Province. Latitude and longitude (20.958115,
107.454345). (B) Conducting selective breeding program of the Portuguese oyster at the Northern National Broodstock Center for Mariculture (Xuan
Dam-Cat Hai-Hai Phong city). Latitude and longitude (20.746211, 106.990529).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1161009
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Le et al. 10.3389/fmars.2023.1161009
decrease the effective population size of breeding populations. This

may result in a decrease of genetic diversity due to genetic drift and

an increased level of inbreeding (Hollenbeck and Johnston, 2018),

as has been observed in other bivalve species with high numbers of

offspring such as the freshwater pearl mussel (Geist et al., 2021).

Consequently, the response to selection can decrease in the long-

term (Meuwissen and Woolliams, 1994). Genetic diversity of

broodstock for breeding can be restricted because of selection of

just a few outstanding families, or simply due to random sampling

of a few families as the species is highly fecund, and only a few

breeders may contribute to the majority of the next generation

(Taris et al., 2006). Oysters may be particularly vulnerable to loss of

genetic diversity and consequent inbreeding when no pedigree is

maintained as a single oyster female can release millions of eggs in

one spawning event (O’Connor and Dove, 2009). There are several

selection methods to enhance traits of interests such as mass

selection or family selection (Vu et al., 2020b). Mass selection is

able to improve traits of interest quickly. Although effective, mass

selection may quickly result in inbreeding if genetic diversity is not

properly monitored (Jourdan et al., 2023a). The selection of

individuals on the basis of best performance of certain traits

without regarding to pedigree information can lead to inbreeding

and loss of potentially valuable alleles and additive genetic variation.

Bivalve aquaculture is facing inbreeding concerns since fitness is

typically reduced at increasing inbreeding coefficients

(Charlesworth and Willis, 2009). Inbreeding depression leads to a

reduction of growth and an increase in mortality early in life as

reported in the European flat oyster (Naciri-Graven et al., 2000),

Pacific oyster (Evans et al., 2004), and Sydney rock oyster (In et al.,

2016; Vu, 2017). Methods to control inbreeding while securing the

rate of genetic gain include optimal selection of contribution

(Meuwissen, 1997) and mate selection (Kinghorn, 2011). Mate

selection is the avoidance of mating closely related individuals.

Poor management of inbreeding in hatcheries is a common cause of

the decrease in body traits and fitness (survival rate) of cultured

animals. Last but not least, other solutions can be considered in

actual selective programs such as importation of wild populations

from overseas or using molecular genetics to track the pedigree to

mitigate the inbreeding.
3 Current state of selective
breeding programs

The objective of breeding programs is to enhance one or more

traits of economic importance, like growth rate, survival, shape, yield,

shell or mantle colour, temperature tolerance, and disease resistance. A

common important commercial trait in mollusc species is growth,

especially for the initial phase of a breeding program because the

development of fast-growing strains can significantly lower production

costs by decreasing the culturing time (Saillant et al., 2009). Any trait

can be improved through genetic selection if heritable variation exists

for it (Boudry et al., 1997). Beside production traits, survival is

considered an essential trait for inclusion in selective breeding

programs as survival rates directly increase economic return for
Frontiers in Marine Science 04
aquaculture enterprises (Van Khang et al., 2018). Several studies have

shown additive genetic variance components for survival in molluscs

(Dégremont et al., 2005; de Melo et al., 2016). Though survival strongly

depends on species, weather events and production systems, all these

studies demonstrate that a main factor of economic loss across the

aquaculture sector is mortality. Mollusc grow-out is almost always

conducted in a natural environment that is highly variable being

exposed to extreme weather events and disease outbreaks. The

variability of stressors (pathogens) makes selective breeding for

survival and disease resistance very difficult as new pathogens appear

as fast as breeding programs are developed to combat them

(Dégremont et al., 2019). Nonetheless, programs have been

successfully developed for disease resistance. In the Sydney Rock

Oyster (S. glomerata) industry, winter mortality syndrome and QX

disease (Marteilia sydneyi) have caused an over 40% decline in

production (Heasman et al., 2000). However, the mortality from

both diseases has been reduced by selective breeding (O’Connor and

Dove, 2009). Since survival in bivalves is largely determined by the

genetic adaptability of a stock to local environmental conditions (Denic

et al., 2015), morphometric traits and survival should generally be traits

included in a selective breeding program. In addition to growth, disease

resistance and survival, other potentially important breeding objectives

include body condition or meat quality, soft tissue mass and shell

shape. Meat processing traits and body composition such as condition

index, and soft tissue mass are also important components of

commercial profitability as they impact the yield of the commercial

product, its quality, and its acceptance by the consumers (price) (Kause

et al., 2002; Neira et al., 2004). The lipid composition of the flesh also

impacts meat quality, including texture (Andersen et al., 1997), storage

characteristics (Lie, 2001), and eventually acceptance of the product by

the consumer. The meat condition is also one of the most important

criteria to assess the intrinsic response of molluscs to various

environments (Sasikumar and Krishnakumar, 2011). Therefore, a

new approach should be considered to the conditioning of oysters

prior to sale in an environment such as direct transportation of oysters

to the consumers/whole salers/retailers. Research could examine and

explore the genetic correlation between composition quality scores in

different environmental conditions for grow-out to determine if this

trait can be reliably improved. The ratio of dry weight: wet weight

reflects the percentage of drymatter in the soft tissue. The percentage of

water can indicate the energy balance of a tissue (Lucas and Beninger,

1985). The main trait of interest for genetic programs has been growth

rate. The other traits such as disease resistance, shape and uniformity,

condition index, and soft tissue will increasingly become important

(Appleyard and Ward, 2006; Kube et al., 2013). In addition to traits of

interest, the estimates of genetic parameters such as heritability, genetic

correlation, selection response are the key aspects of

breeding programs.
3.1 Heritability

Heritabilities vary with genetic variability, stage of life, and

environmental conditions (Gjedrem and Thodesen, 2005; Symonds

et al., 2019). Heritability estimates for morphometric, shape, soft
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tissue, and colour traits have been published in various oyster

species including S. glomerata (Dove et al., 2020), C. gigas (Evans

et al., 2009; de Melo et al., 2016; Wan et al., 2020), C. virginica

(McCarty et al., 2020; Peterson et al., 2020; Allen et al., 2021), O.

edulis (Naciri-Graven et al., 1998), Chilean oysters, Ostrea chilensis

(Toro and Newkirk, 1991), and C. angulata (Vu et al., 2020a; Vu

et al., 2020b). For C. gigas, heritabilities were 0.49; 0.36, 0.45; 0.35 at

12 months of age for shell height, shell length, shell width, wet

weight, respectively (Kong et al., 2015); and were 0.41, 0.51, 0.89,

0.40, 0.87, and 0.65 at 16 months of age for glycogen content, total

protein content, total fat content, zinc content, and selenium

content, respectively (Wan et al., 2020). From the above studies,

additive genetic variance for production traits can be a useful

indicator for starting a genetic program.

In addition, genetic markers are being developed as an efficient

tool to improve predicted accuracy of selection via utilising family

variance components, because parentage assignment using genetic

markers allows families to be cultured in a common environment,

eradicating a potentially confounding source of environmental

variation (Vandeputte et al., 2004; Vu et al., 2021a). Genetic

markers such as microsate l l i tes or single nucleot ide

polymorphisms (SNPs) are widely used in determining pedigree

relationships among animals from families reared together. Eight to

fifteen microsatellites have been used to assign parents with an

accuracy of over 99% in fish (Vandeputte and Haffray, 2014). The

rate of high null alleles in bivalves adds significantly to the cost of

parentage assignment (Hedgecock et al., 2004). In population

studies, null alleles may complicate the interpretation of

deviations from Hardy-Weinberg equilibrium, and multiple nulls

could confuse analyses of population structure (Reece et al., 2004).

Null alleles can be treated as recessive alleles for mapping purposes.

Another approach uses amplicon sequencing for a moderate

number of SNPs with very low amounts of missing data. For

instance, 10 microsatellites were enough to give consistent PCR

amplification across 74 full-sib families in Australian blue mussel,

which were validated from screening 135 microsatellites. Only

62.5% of 2,536 offspring tested were assigned to their true

parents. There are pros and cons between a traditional family

breeding program where families are kept separated, and

molecular marker assisted approaches. Use of parentage

assignment requires less infrastructure and labour to culture large

numbers of families separately. A disadvantage includes the

potential loss of many families due to differential mortality at

early life stages (especially in oysters where mortality can be

high). Next-generation sequencing (NGS) and genotyping-by-

sequencing (GBS) tools have been developed for various oyster

species (McCarty et al., 2022a). Nevertheless, they do not illustrate

easy transferability of the same set of markers from one population

to another (e.g. between training population and breeding

population) and are dependent on DNA quality, which limits

their potential to develop repeatable genomic analyses.

Alternatively, SNP arrays have been developed for the silver-lip

pearl oyster, P. maxima or in the Pacific oyster (Qi et al., 2017) or

the medium species (Gutierrez et al., 2017a). New techniques using

molecular markers could be a significant cost saver for oyster
Frontiers in Marine Science 05
programs, especially in Vietnam, if a SNP chip can be developed

that can predict and select candidate oysters to become parents for

the subsequent generations. However, an economic analysis and

comparison between traditional and genomic selection needs to be

made before genomic approaches can be widely used in Vietnam

oyster industry. Economic aspects need to be considered for the

short- and long- term effects of each selection method.
3.2 Genetic correlations

High genetic correlations result in selection for one trait

impacting correlated traits. Knowledge of such associations can be

used to enhance traits that are hard to measure or require sacrificing

individuals to be measured (Falconer and Mackay, 1996). Selection

for improved harvest whole weight in C. angulata can result in

improved soft tissue weight; while having little effect on other traits

such as shell shape, condition index, shell and mantle colour or

disease resistance (Vu et al., 2020a; Vu et al., 2020b). In addition,

genetic correlations between yield and both survival (0.38 ± 0.04)

and individual weight (0.90 ± 0.01) as well as between survival and

individual weight (0.25 ± 0.04) were all positive and medium-to-

high, suggesting that indirect gain in yield can be achieved by

selection for higher growth and/or survival (de Melo et al., 2016).

Other studies in C. gigas indicated that genetic correlations were

positive and moderate-to-high among trait groups and shell

dimensions (de Melo et al., 2021), ranging from 0.95 to 0.99

between individual average weight and individual weight (de

Melo et al., 2019). Favourable genetic correlations were found

between growth and hard to measure traits like soft tissue

condition in C. gigas (de Melo et al., 2016). However, there are

challenges in multiple trait selective programs when selection for

the main trait, results in a significantly negative and unfavourable

changes in correlated traits. In this circumstance, an index should

be developed to combine all advantages from commercial traits

of oysters.
3.3 Genotype by environment

The interactions of genotype by environment (G x E) are among

the most important problems affecting cultured animal and plant

species because they can result in highly different production

outcomes for the same strains in different environments (Falconer

and Mackay, 1996), and could necessitate separate breeding

programs for each production environment (Lynch and Walsh,

1998; Geffroy et al., 2021). Two forms of G × E interaction are

scaling and re-ranking (Sheridan, 1997; Nguyen, 2016). Firstly, the

scaling effect refers to the differentiation in variance of a trait across

environments. This effect is not a serious issue in genetic programs

as the correlation between environments will be high. It can be

handled by using analytical methods to accommodate the

heterogeneous variance and/or data transformation. The second

form of interaction is when the genetic correlation is low and re-

ranking of the performance of the families occurs over
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environments (Falconer and Mackay, 1996). The re-ranking effect is

more important than the scaling because it may require separate

breeding programs for each trait across environments, and that will

increase the cost of genetic improvement. Knowledge of how G × E

influences potential selection response and estimates of genetic

parameters will support the design and optimisation of breeding

programs (Mulder et al., 2006; Sae-Lim et al., 2016). Unfortunately,

G × E interactions have not been reported for most cultured

molluscs. Culture systems for oysters are diverse, for example,

bamboo rafts, net strings, and at different locations these may

cause G x E effects. Studies of the C. gigas have reported weak or

no G × E interactions for growth (Evans and Langdon, 2006) and

survival rate (Dégremont et al., 2007), across comparatively limited

regions. Similarly, G × E interactions between two testing locations

in Vietnam were low for whole weight at harvest and its uniformity

in C. angulata (Vu et al., 2021b). By contrast, considerable G × E

interactions for both yield and cumulative mortality were found in

the Eastern oyster, C. virginica (Proestou et al., 2016). Furthermore,

a study was carried out to evaluate G x E interactions at three sites

for harvest traits in C. gigas in China, showing that the G x E

interactions were moderate for growth traits (0.45 – 0.87), meat

yield traits (0.40 – 0.73) and shell shape (0.22 – 0.69); and G x E

interactions were found to be weak for harvest survival (0.80 - 0.86)

(Chi et al., 2023). In addition, genotype by environment can be used

as a tool to mitigate the immediate effects of future environmental

changes by altering gene expression and physiology (Sirovy

et al., 2021).
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3.4 Selection response

The heritability of production traits in molluscs can be higher

than in finfish because molluscs have higher fecundity that enables a

greater selection intensity (Gjedrem and Robinson, 2014). If a

traditional selection approach is used, then the outcome for the

generation of families and selection intensity would be the same for

fish and bivalves except that it can be easier to generate large

numbers of families simultaneously for bivalves since brooders can

be easily conditioned in very large numbers due to their small size

and limited requirements compared to fish. In bivalves, many

studies have measured realised selection response by comparing

selected and unselected lines. Most of these studies have reported

genetic gain after a mass selection generation. A few studies have

encompassed multi-generational mass selection such as in S.

glomerata (Nell et al., 1999; O’Connor and Dove, 2009; In et al.,

2016), in C. gigas (Langdon et al., 2003; Degremont et al., 2015) or

family-based selection in S. glomerata (Rye, 2012; Dove et al., 2020).

Other studies combined individual and family-based selection in C.

angulata (Vu et al., 2020a; Vu et al., 2021b) and C. gigas (de Melo

et al., 2016; de Melo et al., 2018). From the literature, the average

selection response per generation for growth has varied from 6.8%

for mussels to 12.1% in oysters; meanwhile selection response has

been higher for disease resistance (Hollenbeck and Johnston, 2018).

More specifically, selection response was above 6.0% per generation

in C. angulata after three selection generations in Vietnam. The

summary of selection responses in oysters is shown in Table 1.
TABLE 1 The outstanding selection responses of several cultured oyster species.

Species
Traits of
selection

Selection
method

Selection response (%/generation on
average)

Number of
generations

References

C. angulata Whole weight Family 6.8 3 Vu et al. (2020)

C. gigas

Survival (exposure to
OsHV-1)

Mass 16.15 4
Degremont et al.
(2015)

Mortality (summer
mortality)

Mass 18.75 2
Dégremont et al.
(2010)

Whole weight Family 2.26 5 de Melo et al. (2016)

Shell height Mass 10.0 2 Wang et al. (2012)

Survival Family 3.14 5 de Melo et al. (2016)

Yield Family 3.8 5 de Melo et al. (2016)

S. glomerata

Resistance to QW
disease

Mass 12.08 4 Dove et al. (2013)

Whole weight Mass 9.0 2 Nell et al. (2000)

Pinctada
martensii

Shell length (larval) Mass 7.46 1 Deng et al. (2009)

Ostrea
chilensis

Whole weight Mass 16.72 1 Toro et al. (1996)

Ostrea edulis Whole weight Mass 23.0 1
Newkirk and Haley

(1982)
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Another opportunity for genetic gain is to exploit non-additive

genetic variance in survival and other traits. Crossbreeding is the

optimal way to exploit heterosis for inbred lines rather than

selection, which has been considered as the standard method of

genetic enhancement for the majority of finfishes (Gjedrem and

Rye, 2018). A trait with more non-additive genetic variation has

greater potential for exploiting heterosis (Hollenbeck and Johnston,

2018). According to quantitative genetic theory, heterosis is only

expressed when there is some level of overdominance in a trait.

Crossing inbred strains is then able to capture a gain without

inbreeding (Falconer and Mackay, 1996). Heterosis has been

directly observed in some mollusc species (Hedgecock and Davis,

2007; Deng et al., 2010); while other studies have found little or no

evidence for heterosis across multiple strains and production

systems, as in C. angulata (In et al., 2017). Overall there is little

evidence for overdominance of relevant traits. One important

practical issue is the difficulty of producing and maintaining

separate inbred lines of molluscs for crossbreeding. If inbred lines

show inbreeding depression, outbred diverse populations need to be

maintained to assess whether crossing simply resolves inbreeding or

actually leads to real gain above the value of the outbred lines.

Oysters in particular, or molluscs in general are as easily grown and

maintained as other animals or plant species (Hallauer, 2008).

While inter-specific hybridisation has shown some success, such

as in abalone (Lafarga de la Cruz and Gallardo-Escárate, 2011), a

technical barrier for crossbreeding in most oyster species is seen in

the practical difficulties in maintaining and testing enough inbred

lines for effective genetic gain. In general, the principal strategy for

genetic improvement is to enhance production traits and control

inbreeding. For sustainable development, an oyster breeding

program, which delivers genetic gain for production traits, yet

limits inbreeding, is required. Maintaining a wide range of

genotypes could give a hatchery population more flexibility to

adapt to different environments (Boudry, 2008), while increasing

the resilience of the population.
4 Application of genomic information
in genetic improvement programs

4.1 Opportunities for genomic selection

Together with conventional selective breeding based on

phenotypes and pedigrees, there is the potential to use molecular

and genomic information to boost selection response (Martinez,

2007), particularly for traits that are difficult or expensive to

measure or have low heritabilities; this is especially the case for

markers that are linked to large effect Quantitative Trait Loci

(Robledo et al., 2017). For example, genomic selection is a good

option for difficult to measure traits such as soft tissue mass at

different ages. Whole genome sequencing costs are typically still too

high to routinely genotype all animals in a pedigree, especially for

non-model species. However, relatively inexpensive partial genome

information can now be acquired by “genotyping by sequencing”

(GBS). GBS provides not only a cost of low genotyping but also a
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significant amount of high-quality genetic marker information

which can be suitable for genomic selection. However, this

approach may result in missing data which is a problem for

genomic selection. Data can be imputed to infer the rest of

missing marker genotypes. In C. angulata, there is a significant

amount of missing data obtained by GBS. Therefore, the other

genotyping approaches such as whole genome sequencing with few

missing data should be preferred for genomic selection.

Among the Restricted-site Associated DNA sequencing (RAD-

seq) methods (i.e. GBS methods), Diversity Array Technology

(DArTseq) sequencing provides a mixture of a DArT complexity

reduction methods and next generation sequencing platforms

(Kilian et al., 2012). DArTseq is similar to DArT methods which

rely on array hybridisations. The technology is optimised for each

organism and application by selecting the most suitable complexity

reduction method (both the size of the representation and the

fraction of a genome selected for assays). The development of recent

technology such as genomic selection (GS), which is the extension

of marker assisted selection (MAS) to a genome-wide scale,

provides additional opportunities. Rather than aiming to discover

particular QTLs, genomic selection assumes that genetic markers

are sequenced at sufficient density such that all QTL are in linkage

disequilibrium with at least one marker (Hayes and Goddard,

2001). Practically, a reference population with the records of

genotypes and phenotypes is used to estimate the effects of each

marker on the phenotype of interest, and these effects are used to

estimate breeding values for relatives of the reference population

that have been genotyped but have no phenotypes (Hayes and

Goddard, 2001). MAS is beneficial for big effect loci, while genomic

selection is well-suited for enhancement of traits that are controlled

by many loci with small effect (Robledo et al., 2017).

Until now, GS has yet to be widely used in genetic programs for

bivalves in developing countries, even though some other

aquaculture species have applied them to increase the accuracy of

breeding values for various traits (Boudry et al., 2021; Vu et al.,

2021a; Vu et al., 2021c) and disease resistance (Bangera et al., 2017;

Robledo et al., 2018). In bivalves, there has been remarkable

investment in identifying QTLs, and large effect loci. QTL

mapping studies involving RAD-seq have been reported for

oysters (Wang et al., 2016). An important candidate QTL gene

named PROP1, which regulates hormone production of growth in

vertebrates, was identified from the growth-related QTL region

(Jiao et al., 2013). In addition, Wang et al. (2016) reported twenty-

seven quantitative trait loci (QTL) associated with five growth-

related traits. Unfortunately, none of the above QTLs were validated

in other populations or by PCR techniques. Although SNPs have

been widely used in terrestrial animals, there has been limited use of

SNPs for aquatic animal species. One of the main reasons for this

limitation is that suitable SNP chips are not currently commercially

available for molluscs and their development costs are very high.

With DArTseq technology, the genome sequence data can be

produced at relatively low cost, which provides an opportunity to

estimate genomic breeding values for complex traits that are

difficult or expensive to measure, and to identify underlying genes

associated with traits of interest. A few studies have used genotyping
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sequencing at low cost and shown that it can satisfy the

developmental demand of the oyster industry with a high

accuracy for commercial traits. Recently, DArTseq technology has

been used to calculate genomic relationship matrices in C. angulata,

and to estimate breeding values which are required for genomic

selection (Vu et al., 2021a). Estimated genomic heritabilities were

higher in whole weight, shell length, shell depth, shell width,

condition index, moisture, mantle and shell colour, taste,

tenderness than those estimated by pedigree records in C.

angulata (Vu et al., 2021a; Vu et al., 2021c), with similar results

found in C. gigas (Boudry et al., 2021; Yang et al., 2022), and C.

virginica (McCarty et al., 2022a).
4.2 Machine learning methods for
optimisation of genomic selection
in oysters

Machine learning (ML) algorithms have been revolutionizing

the methods of data analysis and have been implemented in almost

every science and engineering field of research. ML models have

been routinely used in genomic selection for crop improvement and

animal breeding programs (Statnikov et al., 2008; Wang et al.,

2022). Recently, ML methods have been used in oyster breeding and

genomics in three different ways. First, ML-based deep learning

models and convolutional neural networks were used in

conjuncture with machine vision systems to accurately predict

oyster growth and pearl quality traits such as colour, size, lustre,

and completion (Zenger et al., 2017; Zenger et al., 2019) and this

forms the basis of next-generation phenotyping in oyster breeding

programmes. These methods extract and analyse quantitative

information from digital images of oysters, which are not visible

to the human eye, and improve the accuracy of predicting the

phenotypes in an automated way (Zenger et al., 2017; Jourdan et al.,

2023a). Second, the Random Forest algorithm, a popular ML

method, is used to predict the missing genotypes of the eastern

Pacific oyster (Bernatchez et al., 2017). This reduces the cost of

genotyping and provides a similar level of genetic information that

could be obtained from high-density sequencing. Third, a typical

ML method divides the genetic data into two parts consisting of

training and testing (or validation) datasets. The ML algorithms

learn the details using the training dataset, and its prediction

efficiency is evaluated using the validation dataset. A derivation of

this method called fivefold cross-validation analysis is now

increasingly used in genomic prediction analyses of Portuguese

oysters (Vu et al., 2021c), European flat oysters (Peñaloza et al.,

2022), and Pacific oysters (Kriaridou et al., 2023). Typically, the

genotype data is divided into 80% training and 20% validation

datasets. The breeding values of the validation dataset were

predicted based on the information from the training dataset.

This process was repeated by randomly selecting samples into

training and testing categories, which improves the precision of

prediction. Therefore, the overall accuracy of prediction is higher

compared to conventional genomic prediction methods.
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5 Options for Vietnam to enhance
oyster spat quality

Despite some initial achievements in the C. angulata selection

program in Vietnam (including a new set of genetic parameters and

identifying the effects of the G×E interactions for morphometric,

soft tissue, and disease traits), implementation of the genetic

program for C. angulata is facing challenges. One challenge is

that the sex ratio is commonly unequal with a much larger

percentage of males (over 95%) than females (5.0%) for several

key production months (April to August 2014 to 2022) in northern

Vietnam. The rate of C. angulata whose sex was indeterminate was

around 10.7%. It may be feasible to use hormones to induce

changing of the sex from male to female. However, the cost of

hormone production must be compared to the profits of spat

production. Such an economic analysis, along with an analysis of

acceptance of this approach for targeted export countries, is

required to justify the use of hormones. Oyster sex is also thought

to be affected by the productivity of the culture areas. Therefore,

further studies need to be realised to properly understand the effect

of food concentration on the sex ratio of oysters. In Vietnam, there

are algal concentration fluctuations in the seawater environment

where oysters are grown. For example, from April to July, when the

algal concentration is low, the male oyster ratio is high and vice-

versa. However, there has been no research to investigate this

problem and to find suitable solutions for sustainable

development of oyster industry.

A second problem has been that the genetic diversity of the

current population is declining due to the unavailability of other

resource populations (Vu et al., unpublished). It is essential to

increase the genetic diversity of the current populations possibly by

importing parents from overseas (China or Taiwan) to boost the

genetic diversity and hence the ability to adapt to changing

conditions. However, this needs to be done in a structured and

rigorous way where the new genetic material is properly assessed for

the value it brings to the breeding program. Any new source of

genetic material should be assessed in terms of genetic diversity and

biosecurity to secure the current oyster populations in Vietnam.

The ability to source oysters from other existing industries also

raises the possibility of collaboration on the development of

breeding programs with other countries, which offers the

opportunity to share costs and potentially performance data for

mutual benefit. An additional challenge is the occurrence of

hybridization in the current oyster population where hybrid

offspring of C. angulata and C. gigas produced in commercial

farms in Vietnam degrades the genetic diversity of the

Vietnamese oyster population. Therefore, the genetic tools should

be used to differentiate C. angulata and C. gigas.

The proportion of diseased oysters is increasing due to declining

water quality in production areas in Van Don, Quang Ninh,

Vietnam. This is mainly due to anthropogenic impacts from

increasing population pressure. In particular, the recent

development of industrial zones near oyster production areas has

caused a decrease in water quality. Microplastics and the uptake of
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pollutants from the ocean are problematic for the oyster industry in

Vietnam. There is a need to look for locations to hold key oyster

families where the impacts of pollutants and diseases might be

reduced. A comprehensive study should be carried out to identify

the pathogens causing diseases in oysters. From that, a full solution

can be developed to treat these diseases in oysters. Last but not least,

relationships between disease and water environmental conditions

in oyster culturing areas need to be investigated to identify causes

of disease.

In addition to securing appropriate water quality and

production conditions, a genetic selection program which can

jointly select for whole weight, survival, and disease resistance

traits is necessary to develop the oyster industry further,

especially for an oyster industry with a production level of 50,000

t/annum. The selective breeding program of C. angulata has

completed the eighth generation from the base population

established from parents sourced from three geographic regions.

The importation of new genetic resources is essential to securing the

genetic diversity of the current oyster breeding population. It is also

time in Vietnam to improve the efficiency of genetic programs by

improving the accuracy of breeding value prediction by applying

genomic technologies. However, this requires a large investment for

research to further discover the actual benefits to oyster industry in

Vietnam. Due to the high initial cost for genomic selection, it would

be helpful to organise a workshop or conference to disseminate

knowledge to farmers and young researchers on how to utilise this

technology for the oyster industry in Vietnam. The formation of a

national genetic program which collaborates with industry would

be a wise action to improve the spat quality of oysters in a

sustainable way. The selective breeding nucleus populations are

currently held by RIA1, the big oyster companies are multiplicators,

and Universities such as Vietnam National University could assist

with genetic analysis and genetic program design.

Climate change poses one of the biggest threats to the oyster

industry in Vietnam, in particular through the increase in water

temperature that is anticipated. Water temperature affects

spawning, rearing and grow-out of oysters. Selective breeding can

mitigate the effects of climate change through improvement of traits

such as resilience to higher temperatures and salinity (Parker et al.,

2015; Parker et al., 2021). The best solution is for the big companies

to collaborate to solve problems on genotyping cost and develop

SNP chips that are affordable to farmers. To incorporate genomic

technology into current genetic programs, it is best to genotype all

candidates to become parents for subsequent generations and their

progenies. This would remove the need to rear oyster families

separately during the early stages and eliminate this common

environment confounding effect. Moreover, genomic selection can

occur at younger ages to decrease the operating and labour costs of

oyster farmers in Vietnam. The immediate need for research is to

develop SNP chips for C. angulata to reduce the genotyping cost.

Once SNP chips are available, the sequencing cost for one oyster is

currently $2 which is affordable for oyster farmers. Use of SNP chips

would allow farmers/researchers to select oysters easily using

markers associated with traits of interest. Currently, facilities/
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machines for molecular genetics do exist in Vietnam at

universities such as Vietnam National University, that could

provide genetic testing, prediction of estimated breeding values,

genetic program design and SNP chip development.
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