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Introduction: Resprouting is a crucial survival strategy following the loss of

branches, being it by natural events or artificially by pruning. The resprouting

prediction on a physiological basis is a highly complex approach. However,

trained gardeners try to predict a tree’s resprouting after pruning purely based on

their empirical knowledge. In this study, we explore how far such predictions can

also be made by machine learning.

Methods: Table-topped annually pruned Platanus × hispanica trees at a nursery

were LiDAR-scanned for two consecutive years. Topological structures for these

trees were abstracted by cylinder fitting. Then, new shoots and trimmed

branches were labelled on corresponding cylinders. Binary and multiclass

classification models were tested for predicting the location and number of

new sprouts.

Results: The accuracy for predicting whether having or not new shoots on each

cylinder reaches 90.8% with the LGBMClassifier, the balanced accuracy is 80.3%.

The accuracy for predicting the exact numbers of new shoots with the

GaussianNB model is 82.1%, but its balanced accuracy is reduced to 42.9%.

Discussion: The results were validated with a separate dataset, proving the

feasibility of resprouting prediction after pruning using this approach. Different

tree species, tree forms, and other variables should be addressed in

further research.
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1 Introduction

Disturbances to tree growth, like ice storms, fires, wind, and

diseases, are common in nature (Hauer et al., 2006; Simler et al.,

2018). They cause great loss in trees’ biomass, especially above the

ground. In view of this, resprouting is a vital survival strategy for

most tree species: new shoots can grow out of dormant buds rapidly

at certain positions after the disturbance. This process is recognized

as a major force in forest regeneration (Matula et al., 2019) and

significantly impacts forest dynamics (Martini et al., 2008). Humans

recognized and harnessed these phenomena from early times (Petit

and Watkins, 2003; Candel-Pérez et al., 2022). A famous example is

pollarding, where all the shoots of a tree crown are regularly cut off

to encourage the growth of new sprouts, which were used as

firewood and material for weaving baskets.

Regardless of the practical use, it is a highly interesting but, at the

same time, a very complex challenge to understand and predict the

resprouting patterns of trees caused by disturbances on a

physiological basis. These patterns are firstly determined by axillary

buds, which either form new shoots or enter dormancy (Suzuki,

2002). This “decision” is essentially controlled by hormone signals.

Auxin was considered one of the primary mediators in the 20th

century, while new findings indicate that cytokinins (Salam et al.,

2021; Schneider et al., 2022) and strigolactones (Gomez-Roldan et al.,

2008) play a major role in apical dominance and branching

inhabitation respectively. Without a clear conclusion yet regarding

their exact mechanisms, studies tried to understand resprouting

patterns from other micro and macro perspectives: its relation to

genetic regulation (Hill and Hollender, 2019), in responding to

seasonal adaptation (Singh et al., 2022), or by an explanation

known as Low Energy Syndrome (Martıń-Fontecha et al., 2018).

However, these endogenous physiological processes do not tell

the whole story of resprouting. Leaf area and light are redistributed

after the disturbances, which then affects photosynthetic processes

(Balandier et al., 2000). This does not simply mean a decrease in

photosynthetic capacities but involves the reallocation of carbon-

and other resources among plant organs such as fruits (Kohek et al.,

2015; Tosto et al., 2023) and flowers (Grechi et al., 2022). What

makes the impact of this disturbance even more complex is timing.

For example, summer pruning on an apple tree typically causes a

temporary loss of apical dominance and an increase in its cytokinin

supply. But depending on its exact timing, the dominance may be

delayed or even prevented (Saure, 1987). As a result, a precise

analysis of how a disturbance reshapes a tree using a physiological

approach must address the primary status of the hormone, resource

reallocation, and the timing issue. To our knowledge, no research

has brought all these aspects together so far.

Even without any precise analytical tools regarding resprouting

analysis, skilled practitioners learn how to prune a tree in their

charge. They neither measure its sap-flows with multiple sensors

nor meter the cytokinin concentration in chemistry labs. By going

around the tree and observing the main branches, they decide where

to prune. Their decisions are based on empirical knowledge of

natural phenomena, derived initially from accurate observations of

causes and effects – the tree’s resprouting reaction to the loss of
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branches by pruning. Countless repetitions of similar processes

have been experimented in horticulture over centuries (Saunders,

1898). For a gardener, their primary pruning skills may start with a

set of general rules written in a manual book (Brickell and Joyce,

1996). Then, their skills will independently evolve further through

repeated work practices specific to different climate zones, species,

etc. Suppose their pruning decisions lead to resprouting reactions

largely similar to their expectations, gardeners finally prove to be

able to predict the tree’s response purely on visual observation and

geometrical patterns without digging deep into simulating

physiological processes.

In horticulture and arboriculture, we currently see a strong

trend toward the automation of pruning by machines or robots

(Sam et al., 2022). So far, these are comparatively standardized

actions (Li et al., 2021; Sam et al., 2022), but the more complex the

tasks become in this regard, the more important is a plausible,

robust, and prompt prediction of the growth reaction of a tree to

pruning. At the same time, it can be assumed that in the future, trees

worldwide will increasingly experience growth disturbances due to

the consequences of climate change (drought, stronger and more

frequent storms), which will be coupled with a loss of biomass and

subsequent resprouting. In order to assess the development of such

trees, for example, in an urban context, also here a plausible, robust,

and prompt prediction of resprouting in response to the previous

loss of branches and twigs is necessary.

In this regard, physiological forecasts seem to be too complex,

rely on too many often-unknown parameters (e.g., weather), and

thus are likely to be too sensitive to errors and too slow [in reference

to, i.e., the applications in forecasting building energy performance

(Chakraborty and Elzarka, 2019; Fathi et al., 2020)]. The study at

hand aims to develop the basics for a prediction model on the basis

of geometric patterns corresponding to the approach of experienced

gardeners using a concrete example.

Rapid development in remote sensing is providing a solid base

for this aim. First of all, terrestrial LiDAR scanners can capture

detailed geometry of objects with a precision of up to 3 mm from

multiple standing positions (RIEGL, 2023). This method proves

capable of capturing a tree’s trunk and branches with more than 10

mm diameter (Gobeawan et al., 2018; Yang et al., 2022) during its

leaf-off state (Kükenbrink et al., 2022). Raw data is stored in the

form of a discrete point cloud. Furthermore, different approaches

have been developed to extract tree structure: skeleton abstraction

following occupancy grids (Bucksch et al., 2010; Sun et al., 2022);

branch direction by eigenvectors of point patches or sections

(Bremer et al., 2013; Raumonen et al., 2013); skeleton as the

Dijkstra’s shortest path from the tree base to ends (Du et al.,

2019; Li et al., 2022, 2022; Wang et al., 2014); skeleton redrawn

with searching steps (Hackenberg et al., 2014); learning the

reconstruction pattern through a neural network (Liu et al.,

2021). Overall, this abstracted information about tree architecture

is called the quantitative structure model (QSM) (Åkerblom et al.,

2017; Shu et al., 2022). In this way, every segment of the tree stem or

branch can be retrieved, containing its diameter, length, axial

direction, and hierarchy in the whole branching structure, as well

as the pointer to its parent and child segments.
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These data for a computational model can be compared with

human experiences. The process for an algorithm to “learn from

experience” without being explicitly programmed was defined as

machine learning (Samuel, 1959). Over 70 years of development,

machine learning models have proven capable and efficient to

inherently solve the 5 typical problems of data science, namely

classification, anomaly detection, regression, clustering, and

reinforcement learning (Alzubi et al., 2018). Among them,

classification models assign class labels to testing instances where

the high dimensional predictor features are known (Kotsiantis,

2007). Specific to our research, QSMs provide the high

dimensional features for describing tree segments while the

resprouting response of the trees are the class labels. In handling

them, the classification models have the advantage of 1) capturing

intricate and non-linear patterns within data autonomously (i.e.,

Hassona et al., 2021). The resprouting patterns are likely to be non-

linear to features in QSMs (see section 2.4). 2) They work for both

binary and multi-class classification problems (i.e., Teimoorinia

et al., 2020). The position of new shoots is a binary problem, while

the number of new shoots is a multi-class problem. 3) They have

good scalability to large datasets (Gupta et al., 2016). The total

number of tree segments can be large (see section 2.2). 4) They can

self-update through new training datasets. This allows the

prediction to improve its accuracy or be adapted to more species

and forms if having corresponding data (see section 4).

Additionally, from a practical aspect, open-source packages such

as scikit-learn (Pedregosa et al., 2011) have integrated common

classification models of machine learning, offering easy access to

adapt parameters for different applications. These characteristics

collectively make machine learning an attractive and powerful

approach for addressing resprouting prediction of trees

following pruning.

Equipped with the digital tools above, accurate information

regarding tree structures can be collected and processed in analogy

to what a real gardener does. Building on this, we are addressing the

following questions: How can we predict the position and number

of resprouting shoots based on a purely “visual approach” (pattern

recognition)? Which machine learning model achieves the best

accuracy for this task?
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2 Materials and methods

2.1 Study case

To address our questions, we looked for tree cases that are

frequently pruned in a distinct manner under similar

environmental conditions. At Bruns Nursery, Bad Zwischenahn

in north Germany, so-called table-topped plane trees (Platanus ×

hispanica) are grown in a clearly defined area under standardized

conditions. The crowns of these trees are shaped into a flat layer

through labour-intensive maintenance. This form probably

originates from Baroque gardens, where plants were kept in an

orthogonal manner to enhance the orientation or perspective

(Dobrilovič, 2010). Due to the expansion of the crown like an

umbrella, it is still used in European cities nowadays for shading

squares and pedestrian areas (e.g., the central square at Labouheyre,

France). To produce such trees, there are two phases in general. In

the first phase, a young plane tree with a naturally grown canopy is

intensively trimmed. At around 3 meters in height, six branches are

selected and bent horizontally into different directions with equal

angles in between. Where necessary, bamboo sticks are added as

temporary supports to force the branch into the aimed direction

(see “1st year” in Figure 1). In the second phase, new shoots or even

some of the older shoots from these six main branches are carefully

selected and pruned by experienced gardeners. Pruning decisions

are important at this phase to enable shoot growth only at desired

positions. Some shoots reserved from previous years could still be

trimmed off if there appears another new shoot that becomes a

better option. This procedure is repeated in the following years (see

“2nd-6th year” in Figure 1). Multiple reiterations of the tree by

resprouting result in a complex branching pattern. Due to the

annual pruning and relatively complex branching pattern, the

second phase of these cases is considered effective in analysing

the abilities of machine learning models in predicting resprouting

patterns based on quantitative structural tree models under

complex yet repetitive conditions. It should be noticed that the

aim of this study is not recreating this specific form of tree geometry

like the table-topped Platanus × hispanica but to gain fundamental

knowledge regarding resprouting reactions of trees.
FIGURE 1

The procedure for producing a table-topped platanus through iterative branch and shoot selection and pruning with an intensive labour force.
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2.2 Data acquisition and pre-processing

In the subsequent two winters, namely in January 2022 and

January 2023, an area consisting of 3- and 4-year-old table-topped

Platanus (see Figure 2A) planted in 3 rows at Bruns Nursery were

scanned with LiDAR scanner RIEGL VZ-400i. The scanner was

mounted on a tripod in 2022, while mounted on a vehicle (see

Figure 2B) in 2023. All the scans were set to the “Panorama30”

standard (with angular resolution 0.030°) and conducted in a “stop-

and-go”method. Scanning positions were located along each row at

every third tree (ca. 12 m). Point clouds from different scan

positions were automatically registered in RiSCAN Pro in

reference to GNSS coordinates recorded with Leica Zeno FLX100

plus (Leica, 2023; Yazdi et al., 2024). The original GNSS coordinates

indicate accuracies ranging between 0.68 to 0.80 m at different scan

positions. Therefore, the reliability of GNSS was set to low during

the automatic registration and the multistation adjustment. With all

the steps above, we got two point clouds containing all the tree cases

for the years 2022 and 2023, respectively. Afterward, individual

trees were segmented manually (see Figure 2C). This manual step is

efficient for our cases because those trees planted in the nursery

were almost perfectly aligned at an equal distance, and their crowns

did not touch each other. The ground surface was flat and clear.

There were no irrelevant objects, such as shrubs around tree trunks.

A total of 49 plane trees were scanned in 2022 while the number of

trees scanned in 2023 was 28 (due to tree sales during 2022, see

Figures 2D, E). As a result, we got point clouds of 28 plane trees for

both years.

The next step was to identify changes in the geometrical

structure of the trees in these two years (see Figure 2H). For this

purpose, the two corresponding scans regarding the same trees
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must be aligned. The GNSS coordinates have an offset of up to 0.8

meters, which is insufficient for our demand. The most common

algorithm for matching 3d models precisely, namely Iterative

Closest Point (Rusinkiewicz and Levoy, 2001), does not work for

these tree cases because the new shoots and the extensive pruning

on tree branches have altered their geometries significantly. A

supervised alignment by manually picking point pairs on

corresponding branch surfaces also caused visible deviations

owing to the girth growth. Finally, we manually aligned all tree

pairs individually using multiple views. This guaranteed the best

possible alignment despite significant geometrical changes between

the two scans. Only then were we able to precisely detect the

changes caused by growth and pruning between the point clouds. In

principle, point sets that only appeared in the scan of 2022 and

disappeared in the scan of 2023 should represent branches pruned

away. Conversely, point sets that were only found in 2023 should

represent new shoots. In practice, an object has no identical points

on its surface in two independent scans. To identify geometrical

changes on the two point clouds, cloud-to-cloud distance (Jafari

et al., 2017) was applied. For each point in one point cloud, this

function calculates its distance to its nearest neighbour in the other

point cloud using the Hausdorff distance (Taha and Hanbury,

2015). This calculation was conducted in CloudCompare, where

the octree level is set to “auto” (Girardeau-Montaut, 2023). Based

on the cloud-to-cloud distance values, a minimum distance

threshold ranging between 0.020 to 0.045 m was customized to

each point cloud for segmenting unchanged and changed tree

segments (see Figures 2F, G). When the alignment of the tree was

precise, and little noise was around the branches, the threshold was

set smaller to tell apart more accurate changes. Points whose

distances were larger than the thresholds represent tree segments
A B D E

F G H

C

FIGURE 2

The overall procedure for detecting pruned branches and new shoots from point clouds of LiDAR scans in two consecutive years. (A) A photo of the
table-topped plane trees grown at the nursery; (B) LiDAR scanner mounted on the vehicle; (C) segmented point cloud of the tree shown in the
photo; (D) the segmented point clouds of individual plane trees in 2022; (E) the segmented point clouds of individual plane trees in 2023; (F) labeled
points representing the pruned branches on the point clouds acquired in 2022; (G) labeled points representing the new shoots on the point clouds
acquired in 2023; (H) an integrated point cloud with points labeled as unchanged structure base, pruned branches and new shoots.
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that do not exist in the other scan. For those points in the scan of

2022, those changed points represent pruned branches, while those

points in the scan of 2023 represent new shoots (see Figure 2H).

Parallel to change detection, the point clouds were also used to

create quantitative structural models (QSMs) of the trees (see

Figure 3A) by TreeQSM (Raumonen et al., 2013) in MATLAB

(The MathWorks Inc., 2023) (see Figure 3B). Raumonen et al.

(2013) integrated multiple automatic steps in this pipeline to

recreate precise cylindrical models out of the dense point cloud of

an individual tree. The main steps are defining small sets of patches

on tree surfaces; segmenting patches into a trunk and branches

using iterative searching steps; fitting cylinders on point clouds of

the same branch; optimizations to reduce the error caused by noises

and occultations; generating statistics on cylinders and the tree.

Besides TreeQSM, some other open-source QSM reconstructing

tools like AdTree (Du et al., 2019) and AdQSM (Fan et al., 2020)

build tree structures by the Dijkstra’s shortest path and the

minimum spanning tree, respectively. In primary tests by the

authors, they appeared to be more sensitive to outliers in our

dataset. Primarily when they built detailed twigs at the branch’s

high end, shoots were invented on fake skeletons initiated by the
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outliers in the point clouds. Therefore, they did not reflect the actual

sprouting pattern. Compared to them, TreeQSM fits only cylinders

to point patches in defined sizes. This approach performs better in

noise and outlier resistance than those methods using Dijkstra’s

shortest path and the minimum spanning tree, being the most

faithful in describing the accurate tree geometries among the

mentioned tools. One limitation of the TreeQSM tool lies in the

robustness of the branch segmentation due to some random seeds

in patch generation. Following the manual book (Raumonen, 2022),

we tested 18 configurations of different settings regarding the patch

sizes for reconstructing the QSMs in TreeQSM on each point cloud.

For each configuration further, the reconstruction was repeated 15

times to reduce the impacts of pseudo-random numbers. Finally,

the QSM with minimum mean distances from points to trunk and

branch cylinders was chosen as the model for the corresponding

point cloud using the embedded function named “select_optimum”.

It should be addressed again that in our dataset, each tree is

represented with two different point clouds and two QSMs

accordingly, showing their stands in 2022 and 2023 respectively.

To further ensure a precise reconstruction, the outliers were pre-

deleted through the statistical outlier removal (SOR) tool (Rusu and
A B

D E F

C

FIGURE 3

The overall procedure for labelling and reorganizing the dataset. (A) point clouds of the same tree scanned in 2022 and 2023 respectively; (B) QSM
models out of the point clouds; (C) labeled point cloud as the reference; (D) final labeled QSM dataset consisting of the unchanged structure base
and the numbers of their pruned and new children cylinders; (E) integrated QSM with cylinders labeled as unchanged structure base, pruned
branches and new shoots. (F) labeled QSMs representing the trees scanned in 2022 and 2023, respectively.
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Cousins, 2011). This step was implemented in CloudCompare,

where the number of points used for mean distance estimation

was set to 6. The standard deviation multiplier threshold was set

to 1.
2.3 Labelling and reorganizing the dataset

In the pre-processing, the trimmed branches and the new

shoots were detected in the point clouds, while topological

cylinders were generated with TreeQSM. The next step was to

combine these two datasets. The individual cylinders of the QSMs

must be labelled as to whether they are part of an unchanged branch

(not considering the girth growth), a pruned branch or a new shoot.

This was achieved by using a distance threshold between points of

the cylindrical axis and their nearest neighbouring point of the

segmented point clouds. For our data, we examined only every

cylinder’s start and end point. If the sum of their mean distances to

their 10 nearest neighbours with the same label (i.e., trimmed

branches) was below 100 mm, this cylinder was labelled the same

(see Figures 3C, F). To enhance the accuracy of the labelling, three

more criteria were added based on practical rules when pruning

these trees: for any cylinder labelled as part of either a new shoot or

a pruned branch, its radius must be smaller than 20 mm (one-year-

old shoots do not reach more than 20 mm in diameter for the trees

at hand); for any cylinder labelled as part of a pruned branch, its

branch hierarchical order must be larger than 1 (not the tree trunk

and the primary branch); the label for trimmed branches and new

shoots on one cylinder is passed on to all its children cylinders.

After labelling, the cylinders of different labels (unchanged

branches, pruned branches and new shoots) are still separated in

two QSMs regarding the same tree. There is no correspondence

between these two QSMs, as their reconstruction processes are

independent. Therefore, cylinders of the trimmed branches in one

QSMmust be integrated into the other QSM that contains the main

tree structure and the new shoots, or reversely, cylinders of new

shoots must be integrated into the QSMwith the trimmed branches.

This is a tricky process. While the geometric data remain the same

for every cylinder, its topological data regarding the ID of the

cylinder, its parent cylinder, and its child cylinder must be

corrected, as well as the branch order and its position in the

branch. Regarding whether to transfer cylinders of new shoots or

pruned branches to the other QSM, considerations can be described

as follows. The pruned branches, in general, could only be the same

size or thicker than the new shoots. Consequently, cylinders of

pruned branches have higher robustness in their position through

cylinder fitting. As a result, the certainty of redefining their

topological parent in another QSM based on their relative

positions is supposed to be higher. So, for our dataset, the

cylinders of pruned branches were picked out from their original

QSM and integrated into the other QSM that has the new shoot

cylinders (see Figure 3E). Their new parent cylinders were redefined

as those whose endpoints were located closest to their starting point.

Based on this, the topological data for every single cylinder in the

newly merged QSM were entirely overwritten due to this change.
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Finally, the total number of pruned branches and new shoots on

every cylinder was counted (see Figure 3D). This became the crucial

attribute for the prediction models in the next step.
2.4 Prediction with various
classification models

After all the processes described above, the dataset contains

34,245 items, representing 28 table-topped plane trees. Each item

corresponds to one cylinder, which contains the following

attributes: tree’s ID; cylinder’s ID; parent cylinder’s ID; child

cylinder’s ID in the same branch; x-y-z coordinate of the cylinder

start; a normalized 3d vector of the axial direction; branch’s ID; its

sequence in the branch; branch order; cylinder length; cylinder

radius; the number of pruned children and new children; the

Boolean value if this cylinder is virtually added during QSM

reconstruction; the Boolean value if this cylinder is pruned out.

The relationships between each two attributes (except for the

IDs and Boolean values) are illustrated in Supplementary Figure 2.

For our research purpose, the sprout location and numbers are the

labels of new shoots on each cylinder. We tested classification

models in machine learning to find links between these topological

and geometrical attributes and the predicting target. Among these

target labels, 16,183 (47.3%) cylinders were labelled “-1”, meaning

that they were trimmed away. These cylinders are not feeding into

machine learning models. 15,348 (44.8%) cylinders have no new

shoot, thus labelled with “0”. 2,329 (6.8%) cylinders have one

new shoot (labelled “1”). There are fewer cylinder samples, whose

new shoot number is larger than “1”: 321 (0.94%) cylinders have

2 new shoots; 54 (0.16%) cylinders have 3 new shoots; 7 (0.02%)

cylinders have 4 new shoots; 2 cylinders have 5 new shoots; only 1

cylinder has 6 new shoots on it. Due to the extremely rare samples

with a high number of new shoots, we label those cylinders that

have more than 4 shoots with new shoot number 4.

Owing to the limited volume of data we acquired, the majority

of the items labelled with new shoot numbers from “0” to “4” must

feed into machine learning models (16,558 items representing 26

trees). Nevertheless, we reserved 2 trees (1,504 items) as an

evaluation dataset. This evaluation dataset was only used to

validate the results (see section 3), not to train the model. The

dataset for machine learning was further divided into a training set

(13,246 items) and a testing set (3,312 items, with a test size of 0.2).

The testing set prevented overfitting the models to the given data.

For getting a quick overview of the performances across a wide

range of classification models in machine learning on the dataset,

we used lazy predict (Pandala, 2023) to run scikit-learn (Pedregosa

et al., 2011) to compare 25 common classification models with their

default settings, including GaussianNB, NearestCentroid and

LGBMClassifier. Besides, we tested a basic Artificial Neural

Network (ANN) model built with Keras (Chollet, 2015). It

consisted of two hidden layers with 64 and 128 nodes,

respectively (see Figure 4 left). In addition, to examine a graph

neural network (GNN) model, the dataset for each tree was

processed to a graph (Salama, 2021), where every cylinder item
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was a node connected to its parent and children (the node

connection for one tree is illustrated in Figure 4 right). These

graph data were fed into a GNN model named “baseline classifier”

(see Supplementary Table 2.1), including 39,512 trainable and 1,174

non-trainable params.

We tested all these classification models in two manners of

labelling: binary labels that only classify cylinders if they will or will

not grow new shoots; multiclass labels that categorize cylinders

based on the exact number of new shoots ranging between 0 to 4.
3 Results

The accuracy, balanced accuracy, and F1 Score (weighted

average F1 score for multiclass labels) of the tested models in a
Frontiers in Plant Science 07
default setting or with a basic architecture (see section 2.4) are listed

in Figure 5. Each scoring index ranges between 0 and 1. 1 is the best

score, meaning that all the shoot labels are correctly predicted. On

the contrary, 0 is the worst score, representing no correct

prediction. In the figure, these models are shown in descending

order from the left to the right according to their total scores in

classifying binary labels. Among the three sub-scores, accuracy

reflects an overall rate of true predictions for all labels. Our

datasets are imbalanced in terms of different label numbers.

Therefore, balanced accuracy, which gives equal weights to the

true prediction rates for each label, is also an important indicator in

evaluating their performances. The F1 score is another effective

index for the imbalanced classifications but attaches more

importance to true positives (predicting the cylinders with new

shoots correctly), while it ignores the true negatives (predicting the
FIGURE 5

Benchmark of tested classification models for binary and multiclass labelling.
FIGURE 4

Architecture of the ANN (left) and Graph (right) of one tree used in our test.
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cylinders with zero shoot correctly). Based on these benchmark

scores, LGBMClassifier and GaussianNB have top scores for

predictions with binary and multiclass labels, respectively. The

confusion matrix of the LGBMClassifier with binary labels in the

testing set is shown in Supplementary Table 3.1. The confusion

matrix of the GaussianNB model with multiclass labels in the

testing set is shown in Supplementary Table 3.2.

To validate these two models further, we applied the trained

LGBMClassifier model and GaussianNB model to the evaluation set

with binary and multiclass labels respectively. The results of the

evaluation are visually illustrated in Supplementary Figure 3. Their

performance metrics including precision, recall, and F1 Score for every

label on the validation set are shown in Supplementary Tables 3.3 and

3.4. The accuracy, balanced accuracy, and weighted F1 score of both

models with the evaluation set (only 2 trees) have a maximum of

around 10% difference from the scores on the benchmark.

4 Discussion

To be able to meaningfully interpret and evaluate the results, it

is first necessary to discuss the specific conditions of the dataset and

resulting limitations.

The following factors may impact the accuracy of the extracted

geometrical data from the trees: 1) To prevent browsing the tree

barks, protecting covers were installed below 2 meters around the

tree trunks. This might have caused the diameter measured at trunk

cylinders to be slightly overestimated. However, we assume that this

has no influence on the prediction model. 2) Minor swinging of the

branches by wind during the LiDAR scanning might have caused

outliers or might have led to overestimating the diameter of the

smaller branches. Although the point clouds were denoised through

SOR filters, this does not guarantee the full deletion of these outliers

and could then cause inexistent branches in the cylindrical models.

3) Aligning the same trees with different geometries in the two years

has been a nonstandard manual process so far, which can cause

inconsistency in change detection and identification of parent

cylinders. A possible alternative to detect these changes is

comparing the occupancy grids (Hirt et al., 2021).

The total number of cylinders for training the models was limited

to 16,558, representing 26 trees. The percentage of the negative label

“0” makes up more than 92% of the total items, causing an

unbalanced rate for the number of positive samples (less than 2500

items). Unfortunately, these are all available data from the nursery.

Most importantly, the collected dataset in two consecutive years

reflects the growth of these trees under almost identical

environmental conditions and pruning regimes. More specifically,

the temperature, water content in the soil, wind direction and speed

as well as the time of pruning are all the same for these trees. This

means that our method can predict the resprouting pattern of this

kind of table-topped plane trees grown under the same conditions

as in this study. In case of any changes in the factors mentioned

above, it is unclear so far how accurate the prediction will be. For

instance, the model may not predict the growth of the same trees in

the following year. Horticultural experience even shows that a

change in the time of pruning of only one or two weeks can have

a significant impact on the growth of new shoots, especially if there
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is also a change in weather conditions (e.g., heat or drought

immediately after pruning).To understand whether those

environmental factors could also be addressed in a prediction

model in the same approach, these environmental data must be

collected and coupled with a larger quantity of trees. This hints at an

upcoming step in this study.

Except for the barriers in data quality, its available amount, and

environmental descriptors above, the following technical difficulties

in this computational workflow may be worth paying attention to.

1) Merging the QSMs of one tree scanned at different times is not

robust. To improve this, a reference-based cylinder fitting function

should be considered. In this way, the later QSM of the tree can be

built based on its previous QSMs. Then, the girth growth for each

cylinder can be precisely linked from time to time following this

idea. 2) For pruning and resprouting issues, positions and lengths of

actual internodes are more helpful than current cylinders that

contain only geometrical information and lack connections to

physiological processes. Axillary buds can possibly be identified in

detailed, colorful images of the tree trunks or branches. These can

be used for fitting cylinders faithful between physiological nodes of

the plants. 3) The LGBMClassifier and GaussianNB models are

lightweight and efficient. They have shown the best performance on

our relatively small dataset. If they were applied to bigger databases,

their accuracy remains to be evaluated, especially in handling a

higher diversity in tree ages and shapes. 4) After predicting the

position of new shoots, our current model did not answer the

ongoing growth of those shoots. It is possible to combine a L-system

growth simulation (Boudon et al., 2012) with the QSM (see Shu

et al., 2022). In this way, our model can be integrated as a tool to

interrupt a natural growth through branch pruning.

Finally, our current model is only the first step in understanding

resprouting patterns after one specific artificial disturbance, namely

pruning of table-topped trees. Nonetheless, we are optimistic that

the approach has great potential for further development and

application (see e.g. Yazdi et al., 2023). The application of such a

model is not limited to repeating what the gardeners can already do

but goes beyond knowledge boundaries regarding the resprouting

strategy of trees after disturbances. This can hopefully be achieved

through gathering massive tree database (e.g. Yazdi et al., 2024). By

searching this database, the “digital gardener” will likely find

evidence to support its predictions in a more complex context. In

agricultural automation, robots are already self-navigating through

an orchard (Ye et al., 2023) and picking fruits (Meng et al., 2023;

Wang et al., 2023). Following this trend, this study may offer hints

about how pruning decisions could be made by the “digital

gardener”. For this far vision, an open-source and uniform data

platform about trees [e.g., tree information modeling (Shu et al.,

2022)] is required.
5 Conclusion

Resprouting patterns are vital in understanding the regeneration

of trees after natural and artificial disturbances. The interrelationships

are very complex, involving the primary status of hormones, the

redistribution of resources, and timing issues. Until now, no single
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model has addressed all these factors with a physiological approach.

However, for centuries, gardeners and practitioners have been trained

to prune trees based on their intuitive predictions. They are able to do

so based on accumulated knowledge working with trees. In this study,

we gave it a first try addressing whether computational models,

especially machine learning models, could gain similar knowledge as

practitioners from horticulture: what are the location and numbers of

new shoots after pruning? Which model would achieve the

best performance?

For this purpose, we scanned a group of annually pruned plane

trees at a tree nursery with LiDAR. The detailed geometry and

topology of the branches were extracted through quantitative tree

models. The trimmed branches and new shoots were detected

through comparison between the scans in two consecutive years.

This information was finally labelled on a dataset for training

multiple classification models.

We tested 25 common classification models in machine

learning with default settings. Additionally, 1 ANN model and 1

GNN model with the most basic architectures were also tested.

Among these models, except for two, all other models have an

accuracy and an F1 score higher than 80%. For balanced accuracy,

the average score of all the models was ca. 70% for binary labels; for

multiclass labels, the average was 28.3%.

From the results, we can conclude that for the collected dataset,

most models work well in telling the position of new shoots but are

not accurate in describing the actual shoot numbers at the specific

location. For the best scored models with binary labelling, the

LGBMClassifier can predict the position of new shoots with an

accuracy of 90.8% and a balanced accuracy of 80.3%. For predicting

the exact number of the shoots, the GaussianNB Model performs

the best. The accuracy is 82.1% because most cylinders should have

the shoot number 0. However, the balanced accuracy is reduced

to 42.9%.

The innovation of this work was to identify the tree cases in a

controlled environment for studying their quantitative reactions to

disturbances. It is the first study to address the resprouting pattern

prediction with QSM data. To achieve this, it is highly novel to

combine QSMs of different times of a tree into one. It is also of

significant value to indicate a primary comparison of the

performances of various machine learning models in this task.

The applicability of the current model is limited to the studied

site, environmental conditions, tree species and form, and the

pruning time. In the next step, a larger amount of tree data is

being collected in the city of Munich to analyse how this approach

can be extended to a broader scope, maybe addressing some of the

environmental factors. In a further vision, a massive database of the

“digital gardener” would push forward the boundaries of knowledge

in understanding the resprouting strategies of trees facing natural

and artificial disturbances.
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