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Abstract: A test for detecting departures from meta-ellipticity for multivariate stationary time series is pro-
posed. The large sample behavior of the test statistic is shown to depend in a complicated way on the under-
lying copula as well as on the serial dependence. Valid asymptotic critical values are obtained by a bootstrap
device based on subsampling. The �nite-sample performance of the test is investigated in a large-scale sim-
ulation study, and the theoretical results are illustrated by a case study involving �nancial log returns.
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1 Introduction
In the recent decades, copula models have been successfully used in a wide range of applications, includ-
ing �nance, hydrology or risk management, see [18, 30, 31]. In the bivariate case, any of the most commonly
applied copula families, including the Gaussian, Clayton, Gumbel, Frank or t-copula, can be identi�ed as a
member of one of the following large (nonparametric) subclasses: the class of Archimedean copulas, the class
of extreme-value copulas or the class of elliptical copulas. The latter class also provides �exible parametric
families in the higher-dimensional case, while more work is needed to de�ne �exible models involving the
former two classes. Multivariate extreme-value copulas typically arise from max-stable process models [12],
while �exible copulas involving Archimedean building blocks may be de�ned based on certain hierarchi-
cal constructions [34]. Next to these approaches, vine copulas provide a versatile concept to connect mostly
arbitrary bivariate building blocks into �exible multivariate models [1]. More recent approaches in the multi-
variate case comprise Archimax copulas [10] or non-central squared copulas [32].

While testing the goodness-of-�t of a certain parametric class of copulas has attracted a lot of attention
[17, 21, 29],much lessworkhas beendevoted to testingwhether a copula belongs to any of the large subclasses
mentioned above. We refer to [7] for the case of Archimedean copulas, to [5] for tests for extreme-value copu-
las, while tests for the simplifying assumption in vine copula models can be found in [14]. Within this paper,
we are interested in testing for the null hypothesis that a copula is elliptical; a question that is of particular in-
terest in the context of �nancial riskmanagement [35, 43], but see also [19] for applications in hydrology. Note
that ellipticity of a copula is also referred to asmeta-ellipticity of the underlyingmultivariate distribution, see
[15] and [2]. For the case of observing i.i.d. data, respective tests have recently been investigated in [26] and
[37], both of which exploit the fact that all bivariate margins of a d-variate elliptical copula exhibit equal val-
ues for Kendall’s tau and Blomqvist’s beta. While the former authors work under the unrealistic assumption
that marginal distributions are known, the latter author considers suitable rank-based test statistics (see also
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[25], where similar tests were worked out independently). Critical values in [37] are then obtained by a certain
multiplier bootstrap procedure.

The present paper is motivated by the fact that available observations are often serially dependent time
series (in particular in the important context of �nancial risk management), such that the tests mentioned
in the previous paragraph are not valid anymore. We revisit the large sample theory for the respective test
statistics, show that the asymptotic distribution is typically di�erent than in the i.i.d. case, and propose a
suitable bootstrap approach to calculate valid critical values. The bootstrap scheme relies on subsampling
[36], and heavily exploits recent theoretical results in [28] on subsampling empirical copulas. It is important
to mention that we believe to also close important gaps in the theoretical results in [37]: while we believe
that his results regarding bootstrap validity are correct and provable, the given proofs lack mathematical
rigorousness (for instance, in his Appendix A.4, weak limit �elds are treated as if they were de�ned on the
same probability space as the original data; moreover, they are partly considered non-random).

The remaining parts of this paper are organized as follows: some mathematical preliminaries on copu-
las, elliptical distributions and bivariate association measures are collected in Section 2. The test for meta-
ellipticity is de�ned in Section 3, with respective large-sample theory and bootstrap results collected in Sec-
tion 3.1 and 3.2, respectively. Results from a large-scale Monte Carlo simulation study are presented in Sec-
tion 4. A case study on �nancial log returns is worked out in Section 5, while Section 6 brie�y concludes.
Finally, all proofs are postponed to Appendix A and B.

2 Mathematical preliminaries
Let X = (X1, . . . , Xd) ∈ Rd be a d-dimensional random vector with cumulative distribution function (c.d.f.)
F and continuous univariate marginal c.d.f.s F1, . . . , Fd. According to Sklar’s theorem [42], there exists a
unique copula C : [0, 1]d 7→ [0, 1] such that, for all x ∈ Rd,

F(x) = C(F1(x1), . . . , Fd(xd)) .

The unique copula C may be written as

C(u) = F(F−1(u1), . . . , F−d(ud)), u ∈ [0, 1]d ,

where F−k denotes the generalized inverse of Fk, k ∈ {1, . . . , d}.
A copula C is called elliptical if it is the copula of some elliptical distribution that is absolutely continuous

with respect to the Lebesgue measure. Recall that a random vector Z ∈ Rd is said to have an elliptical distri-
bution if it admits, for some µ ∈ Rd, some A ∈ Rd×m withm ∈ N, and some non-negative random variableR,
the decomposition

Z = µ +RAV ,

where V is a random vector that is independent of R and uniformly distributed on the unit sphere in Rm.
Note that the distribution of Z is absolutely continuous with respect to the Lebesgue measure i� R has a
Lebesgue density and if Σ = AA> is positive de�nite (Theorem 2.9 and the discussion on page 46 in [16]); the
corresponding Lebesgue density of Z is then given

fZ(z) = |Σ|−1/2g
(
(z − µ)Σ−1(z − µ)

)
, z ∈ Rd ,

for some function g that is in one-to-one correspondencewith the density ofR. As suggested by the above con-
struction, elliptical copulas are typically not available in closed form, twoprime examples being theGaussian
and t-copula. Following [15], a distribution on Rd with continuous marginal c.d.f.s is calledmeta-elliptical if
its associated copula is elliptical.

As explained in the next paragraph, elliptical copulas exhibit a remarkable relationship between two
well-known pairwise association measures: Kendall’s tau and Blomqvist’s beta [4, 27]. For k, ` ∈ {1, . . . , d}
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distinct and C non necessarily elliptical, the latter are de�ned as

τk` := E[sgn(Xk1 − Xk2)sgn(X`1 − X`2)]
= P((Xk1 − Xk2)(X`1 − X`2) > 0) − P((Xk1 − Xk2)(X`1 − X`2) < 0)

and

βk` := E[sgn(Xk − x̃k)sgn(X` − x̃`)]
= P((Xk − x̃k)(X` − x̃`) > 0) − P((Xk − x̃k)(X` − x̃`) < 0) ,

where (Xk1, X`1) and (Xk2, X`2) are independent copies of (Xk , X`), where sgn denotes the signum function
and where x̃k and x̃` denote the population medians of Xk and X`, respectively. It is well-known that the two
coe�cients are completely determined by the (unique) bivariate copula Ck` of (Xk , X`), i.e.:

τk` = τCk` = 4
1∫

0

1∫
0

Ck`(uk , u`) dCk`(uk , u`) − 1

and

βk` = βCk` = 4Ck`(0.5, 0.5) − 1 . (1)

Note that Ck` can be retrieved from C, as Ck`(uk , u`) = C(u(k`)), where, for u = (u1, . . . , ud) ∈ [0, 1]d and
A ⊂ {1, . . . , d}, the vector u(A) ∈ Rd denotes the vector where all components of u except the components
of the index set A are replaced by 1.

As a direct consequence of the de�nition of an elliptical distribution, all bivariate margins of an elliptical
distribution are elliptical as well. As a consequence, the same is true for elliptical copulas. It then follows
from Theorem 3.1 in [15] and Proposition 8 in [40] that, for all k, ` ∈ {1, . . . , d} with k < `,

τk` =
2
π arcsin(ρk`) = βk`, (2)

where ρk` = σk`/
√σkkσ``. As in [25, 26, 37], the latter will be the basis for the test for ellipticity. It is important

to note that there exist non-elliptical copulas for which (2) is met:

Example 2.1. (i) Consider the bivariate checkerboard copula C with Lebesgue-density

c(u, v) = 4 · (1A + 1B + 1C + 1D)(u, v)

where A = [0, 1/4]2, B = [1/4, 1/2] × [3/4, 1], C = [1/2, 3/4]2, D = [3/4, 1] × [1/4, 1/2]. A straightforward
calculation shows that τ = β = 0. The same is true for the copula whose induced law is the uniform distribution
on {(u, u) : u ∈ [0, 1]} ∪ {(u, 1 − u) : u ∈ [0, 1]}.

(ii) Among the most common bivariate copulas that are non-elliptical are the members from the Gumbel–
Hougaard, the Clayton and the Frank copula family (except for some cases at the boundary of the parameter
space). In Figure 1, we depict the absolute di�erence |β − τ| as a function of τ ∈ [0, 1] within the respective
families. It can be seen that the di�erence is largest for the Frank copula. Quite remarkably, we have τ = β for
some non-trivial members from the Clayton and Gumbel family.
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Figure 1: Absolute di�erence |τ − β| as a function of τ for the Frank, Clayton and Gumbel–Hougaard family.

3 Testing meta-ellipticity
Throughout this section, let X1, . . . , Xn with X i = (X1i , . . . , Xdi) ∈ Rd be a stretch of a strictly stationary
time series (X i)i∈Z of d-dimensional random vectors. The common c.d.f. of X i is F, which is assumed to have
continuousunivariate c.d.f.s F1, . . . , Fd, and its copula is denotedby C.Weare going to test for thehypotheses

H0 : C ∈ Celliptical vs. H1 : C ∉ Celliptical,

where Celliptical denotes the set of all elliptical copulas. A respective test statistic will be de�ned in Section 3.1.
For carrying out the test, we rely on suitable bootstrap approximations, which will be investigated in Sec-
tion 3.2.

3.1 The test statistic and its asymptotic behavior

By (2), the null hypothesis is equivalent to the fact that τk` = βk` for all k, ` ∈ {1, . . . , d} with k < `. For
detecting departures from ellipticity, it hence makes sense to investigate the di�erence between empirical
counterparts of the two coe�cients. It is important to note that, by construction, the test’s ability to detect
departures frommeta-ellipticity is limited by (1) the fact that it is completely based on investigating bivariate
margins, and by (2) the fact that the di�erence between Kendall’s tau and Blomquist’s betamay be small even
for non-elliptical copulas (see Example 2.1).

The classical sample version of Kendall’s tau is de�ned as

τ̂k`,n =
2

n(n − 1)
∑

1≤i<j≤n
sgn(Xki − Xkj)sgn(X`i − X`j) .

Obviously, τ̂k`,n is unbiased in case the underlying sample is serially independent. Under this assumption,
large sample theory dates back to [24] and can be found in classical monographs such as [45], Section 12.
In the case of serial dependence, large-sample theory may for instance be deduced from simple multivariate
extensions of the results in [13], see also Proposition 2.3 in [6].

Next, a suitable sample version of Blomqvist’s beta motivated by (1) is given by

β̂k`,n = 4Ĉk`,n(12 , 12 ) − 1 = 4
n

n∑
i=1

1(Ûki ≤ 1
2 , Û`i ≤ 1

2 ) − 1,

where Ûki = (n + 1)−1rank(Xki among Xk1, . . . , Xkn) and where, for uk , u` ∈ [0, 1]2,

Ĉk`,n(uk , u`) =
1
n

n∑
i=1

(Ûki ≤ uk , Ûk` ≤ u`) (3)

denotes the empirical copula. Note that, in the case of serial independence, β̂k`,n is in fact an asymptotically
equivalent version of the estimator initially proposed in [4], see [23]. Large sample theory in the case of serial
dependence is an immediate consequence of the results in [9].
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For the de�nition of suitable test statistics for H0, let β̂n = (β̂12,n , β̂13,n , . . . , β̂d−1 d,n)> and τ̂n =
(τ̂12,n , τ̂13,n , . . . , τ̂d−1 d,n)> denote vectors in Rd(d−1)/2 obtained by concatenating all pairwise estimators.
Moreover, let

D̂n = β̂n − τ̂n . (4)

We will next introduce three suitable conditions that will be su�cient to deduce asymptotic normality of D̂n
under H0.

The �rst condition concerns the serial dependence of the time series, and is taken from [9]. De�ne unob-
servable observations Uki = Fk(Xki) for k ∈ {1, . . . , d} and i ∈ {1, . . . , n} and let

Cn(u) = 1
n

n∑
i=1

1{U1i ≤ u1, . . . , Udi ≤ ud}, u = (u1, . . . , ud)> ∈ [0, 1]d . (5)

Moreover, let `∞([0, 1]d) denote the set of all bounded, real-valued functions on [0, 1]d and let C([0, 1]d)
denote the subset of continuous functions, both equipped with the supremum metric. Weak convergence in
`∞([0, 1]d) is to be understood in the sense of [44] and denoted by ‘ ’.

Condition 3.1. The empirical process αn =
√n(Cn − C) converges weakly towards a tight, centered Gaussian

�eld BC concentrated on D0, that is

αn =
√
n(Cn − C) BC in `∞([0, 1]d) ,

where D0 is given by

D0 =
{
α ∈ C([0, 1]d) | α(1, . . . , 1) = 0 and α(u) = 0 if some of the components of u are equal to 0

}
.

The condition is trivially satis�ed in the i.i.d. case, in which case the limit is a standard C-brownian bridge
on [0, 1]d. As outlined in [9], it is also met for the majority of the most common stationary time series models
like ARMA and GARCH processes or, more generally, for strongly mixing processes with mixing coe�cients

α(h) := sup
{
|P(A ∩ B) − P(A)P(B)| : A ∈ σ(. . . , X−1, X0), B ∈ σ(Xh , Xh+1, . . . )

}
(6)

of the order α(h) = O(h−a) for some a > 1. The covariance kernel of BC is then given by

Cov(BC(u),BC(v)) =
∑
h∈Z

Cov(1(U0 ≤ u), 1(Uh ≤ v)).

Finally, note that there exists an abundance of tests for hypotheses like stationarity, serial independence,
or the goodness-of-�t of a speci�c time series model; all of which may provide empirical evidence for the
circumstance that Condition 3.1 is met.

The second condition is essentially a further condition on the serial dependence, as it is trivially met for
i.i.d. data. It is, however, not met in general for time series, even for continuous stationary c.d.f.s: consider
for instance a random repetition process, where, at time t, the previous observation is repeated with positive
probability p or a new observation is generated independently with probability 1 − p.

Condition 3.2. For any k ∈ {1, . . . , d}, the kth component sample Xk1, . . . , Xkn does not contain any ties with
probability one.

The third condition concerns the regularity of C, and is taken from [41]. It is non-restrictive in the sense that
it is necessary for weak convergence of the empirical copula process with respect to the supremum distance
to a limit with a.s. continuous sample paths.

Condition 3.3. For any k ∈ {1, . . . , d}, the �rst-order partial derivatives ∂kC(u) exist and are continuous on
the set Uk = {u ∈ [0, 1]d : uk ∈ (0, 1)}.
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It is worthwhile to mention that, if one were only interested in weak convergence of β̂n, then it would be
su�cient to assume existence and continuity of the partial derivatives in a neighbourhood of the points {u ∈
[0, 1]d : ∑k 1(uk = 1/2) = 2,∑k 1(uk = 1) = d − 2} only (this follows from a straightforward modi�cation
of the arguments in [9], see also Lemma B.1 for the case of ellipticity). However, under such an assumption
only, proving our bootstrap consistency results in Section 3.2 would require substantial additional e�ort.

Finally, recall the empirical copula Ĉn de�ned in (3) and letCn =
√n(Ĉn −C) denote the empirical copula

process. As shown in [9] we have, under the previous conditions,

Cn =
√
n(Ĉn − C) GC

in `∞([0, 1]d), where the limiting Gaussian �eld GC is de�ned, for all u ∈ [0, 1]d, by

GC(u) = BC(u) −
d∑
k=1

∂kC(u)BC(u(k))

with u(k) = (1, . . . , 1, uk , 1, . . . , 1). The following theorem is one of themain theoretical results of this paper.

Theorem 3.4. Let X1, . . . , Xn be a stretch of a strictly stationary time series (X i)i∈Z of d-dimensional random
vectors with common c.d.f F, continuous univariate marginal c.d.f.s F1, . . . , Fd and copula C. If Conditions 3.1,
3.2 and 3.3 are met, then, for all (k, `) ∈ Bd,2 = {(k, `) ∈ {1, . . . , d} : k < `} and as n →∞,

√
n(β̂k`,n − βk`) = 4 ·Ck`,n(1/2, 1/2), (7)
√
n(τ̂k`,n − τk`) = 8

∫
Ck`,n(u, v) dCk`(u, v) + oP(1), (8)

where Ck`,n(u, v) = C(1, . . . , 1, u, 1 . . . , 1, v, 1, . . . , 1) with u and v at the kth and `th position, respectively.
As a consequence, under the null hypothesis of ellipticity, we have

√
n D̂n  Z ∼ Nd(d−1)/2(0, Σ), (9)

where Z = (Zk`)(k,`)∈Bd,2 with

Zk` := Ψk`(GC) := 4 ·Gk`,C(1/2, 1/2) − 8
∫
Gk`,C(u, v) dCk`(u, v). (10)

and where Σ = (Σ(k`),(k′`′))(k,`),(k′ ,`′)∈Bd,2 with Σ(k`),(k′`′) = Cov(Zk`, Zk′`′ ).

Remark 3.5. Under slightly more restrictive mixing conditions (see, e.g., [13]) and less restrictive conditions on
C, it can be shown that the limiting covariance may alternatively be written as

Σ(k`),(k′`′) =
∑
h∈Z

Cov
{
(h(β) − h(τ)k` )(Ukh , U`h), (h(β) − h(τ)k` )(Uk′h , U`′h)

}
, (11)

where, for u, v ∈ [0, 1],

h(β)(u, v) = 4 · 1(u ≤ 1
2 , v ≤ 1

2 ) − 2 · 1(u ≤ 1
2 ) − 2 · 1(v ≤ 1

2 ) (12)

h(τ)k` (u, v) = 8Ck`(u, v) − 4u − 4v + 2. (13)

A sketch-proof relying on U-statistic theory for strongly mixing observations is given in Section B.

For testingmeta-ellipticity, onemay use various real-valued functionals of D̂n de�ned in (4). Throughout this
paper, we opt for the L2-type test statistic

T̂n := n · D̂
>
n D̂n . (14)

In the i.i.d. case, relatedWald-type statistics have been found to provideworse accuracy, see [26] and [37]. The
latter may be explained by the fact that Wald-type statistics involve an estimator for an inverse covariance
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matrix of possibly small signals. Likewise L1- or L∞-type test statistics have been found to be of comparable
quality to the L2-statistic, see [37].

Now, Theorem 3.4 and the Continuous Mapping Theorem (see Theorem 1.3.6 in [44]) immediately yield

T̂n  T := Z>Z .

The limiting variable can be written as a weighted sum of independent chi-square variables with one degree
of freedom, where the weights depend in a complicated, statistically intractable way on the copula C and the
serial dependence of the time series. For that purpose, we will introduce a suitable bootstrap scheme in the
next section.

Remark 3.6. The proposed tests can straightforwardly be adapted to the situation where one is only interested
in testing whether some of the bivariate margins are elliptical.

3.2 A subsampling procedure

Among the abundance of bootstrap procedures, the subsampling approach [36] has recently attracted atten-
tion when working with empirical copulas for a number of practical reasons, see [28]. First of all, in compar-
ison to bootstrap schemes that are based on resampling with replacement, the approach does not arti�cially
introduce ties into the bootstrap samples, thereby avoiding what might be called a ‘tie-bias’. Next, in com-
parison to various versions of the multiplier bootstrap [6, 38], subsampling does not require expensive case-
by-case implementation of the bootstrap approximation (see also [37] for a multiplier bootstrap for testing
ellipticity). Finally, the subsampling approach may easily be modi�ed in such a way that it is valid for time
series data.

Following [28], we de�ne two di�erent subsampling schemes. The �rst one is only valid in the i.i.d. case,
while the lattermaybe applied to a general stationary time series (including the i.i.d. case). In the former case,
let N(iid)

b,n =
(n
b
)
denote the number of subsamples of size b that may be taken from X1, . . . , Xn and denote the

subsamples by
X[m]
b = (X[m]

1 , . . . , X[m]
b ), m ∈ {1, . . . , N(iid)

b,n }.

Under the plain assumption of observing a strictly stationary time series, let N(ts)
b,n = n − b + 1 denote the

number of possible subsamples that consist of b successive observations, and denote them by

X[m]
b = (X[m]

1 , . . . , X[m]
b ) = (Xm , . . . , Xm+b−1), m ∈ {1, . . . , N(ts)

b,n}.

Algorithm 3.7. For a given sample X1, . . . , Xn of size n:
1. Compute the statistic T̂n from (14).
2. Choose a number S ∈ N of bootstrap replicates and a subsampling size b ∈ {1, . . . , n} such that S ≤ Nb,n,

where Nb,n = N(iid)
b,n if the sample is (believed to be) i.i.d. and Nb,n = N(ts)

b,n if the sample is (believed to be) a
stationary time series that is not i.i.d.

3. For s ∈ {1, . . . , S}:
• Randomly select a subsample X

[Is,n ]
b = (X[Is,n ]

1 , . . . , X[Is,n ]
b ) of size b by drawing Is,n randomly from

{1, . . . , Nb,n}.
• Compute the statistic β̂

[Is,n ]
b,n and τ̂[Is,n ]b,n from the subsample.

• Compute the bootstrap statistic

T̂[Is,n ]b,n = (1 − b/n)−1b(β̂
[Is,n ]
b,n − β̂n − τ̂

[Is,n ]
b,n − τ̂n)

>(β̂
[Is,n ]
b,n − β̂n − τ̂

[Is,n ]
b − τ̂n).

4. An approximate p-value for the test based on T̂n is then given by

p̂S,b,n =
1
S

S∑
s=1

I{T̂[Is,n ]b,n > T̂n} .
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The following result concerning the validity of the subsampling procedure is the second main theorem.

Theorem 3.8. Suppose that X1, . . . , Xn is either i.i.d. or an excerpt from a strongly mixing stationary time
series with mixing coe�cient α(h) = O(h−a) for some a > 0, as h → ∞ (see (6) for the de�nition of α(h)
and note that, as a consequence, Condition 3.1 is met). Further, assume that Conditions 3.2 and 3.3 are met. If
b = bn →∞, b = o(n) and S = Sn →∞ as n →∞, then

p̂S,b,n
d−→

{
Uniform([0, 1]) , if βk` = τk` for all (k, `) ∈ Bd,2,
0 , if βk` ≠ τk` for some (k, `) ∈ Bd,2

as n → ∞. In particular, for α ∈ (0, 1), the test φS,b,n = 1(p̂S,b,n ≤ α) is an asymptotic level α for H0 which is
consistent against all alternatives with βk` = ̸ τk` for some (k, `) ∈ Bd,2.

It is important to note that, in view of Example 2.1, test φS,b,n is not consistent against any non-elliptical
copula. In practice, it is therefore advisable to complement the above test by suitable nonparametric tests
involving other important qualitative features of bivariate elliptical copulas, such as symmetry or radial sym-
metry (see [22] and [20], respectively, for the i.i.d. case).

4 Simulation study
The�nite-sample performance of the proposed test formeta-ellipticitywas investigated in a large-scaleMonte
Carlo simulation study. The study was designed to primarily illustrate the test’s level and power properties
for varying (1) sample size, (2) block length parameter, (3) dimension, (4) strength of the serial dependence,
and (5) strength of the cross-sectional dependence. We also illustrate that an application of the related test
from [37], which is designed for i.i.d. data, can fail in case of serial dependence.

4.1 Setup

The aforementioned goals were tackled by considering four di�erent copula families (Gaussian and t5 for H0,
Clayton and Frank for H1), three di�erent dimensions d ∈ {2, 3, 6}, �ve di�erent levels of serial dependence,
and �ve di�erent levels of cross-sectional dependence. With respect to the cross-sectional dependence, the
respective copula parameters were chosen in such away that all bivariatemargins exhibit the same Kendall’s
τ, taken from the set {0.1, 0.25, 0.5, 0.75, 0.9}.

With respect to the serial dependence, we opted for the following transformation of a classical Gaussian
AR(1)-model. First, starting from d independent AR(1)-models

Yk,i = φYk,i−1 + εk,i , (k ∈ {1, . . . , d}, i ∈ {1, . . . , n}),

with εk,i i.i.d. N(0, 1) and Yk,0 i.i.d. N
(
0, 1/(1 − φ2)

)
, whose stationary distribution is well-known to be

N
(
0, 1/(1 − φ2)

)
, we may construct random vectors V i = (V1,i , . . . , Vd,i) with independent standard uni-

formly distributed coordinates by setting Vk,i = Φ
(
(1 − φ2)1/2Yk,i

)
; Φ the c.d.f. of the standard normal

distribution. Next, for some given copula C as speci�ed above, the vectors V i may be transformed to (se-
rially dependent) observations U i from C by applying the inverse Rosenblatt transformation [39]. Overall,
the serial dependence is controlled by a single parameter φ, which was chosen in such a way that the lag 1
auto-correlation version of Kendall’s tau of (Yk,i)i varies in the set {0, 0.2, 0.4, 0.6, 0.8}.

Finally, the sample size nwas chosen to vary in {100, 250, 500, 1000}, while the block length parameter
was chosen to vary in {0.05n, 0.1n, . . . , 0.6n}. The number of Monte replications was set to N=1000, the
number of subsampling replications to S=300, and all testswere performed at a signi�cance level of α = 0.05.

Since the plain subsampling approach described in Algorithm 3.7 su�ers from the fact that observations
at the start andat the endof the observationperiodhave a reduced chanceof appearing in a randomly selected
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block of size b, we applied the following slight modi�cation: instead of drawing (in step 3) from the blocks
starting at observation X i with i ∈ {1, . . . , n−b+1} only, we also allow to subsample a block starting at Xn−i
with i ∈ {0, . . . , b − 2}, with the respective block being de�ned as (Xn−i , . . . , Xn , X1, . . . , Xb−i+1) (which
is similar in spirit to the circular bootstrap). Since b = o(n), this modi�cation does not make a di�erence
asymptotically, but we observed increased accuracy for �nite samples. Finally, for S = 300 ≥ n, there are only
n blocks to draw from, whence we did draw each block exactly once, instead of S times with replacement.

In terms of computing time, we remark that the subsampling approach with a single �xed subsampling
size b is advantageous over the multiplier bootstrap from [37], as calculating each bootstrap statistic relies
on only b = o(n) observations, compared to n observations for the latter. Within a small experiment with
b = bn0.95/4c, we found that the relative computing time ‘multiplier/subsampling’ ranges from 2.44 (d =
2, n = 100) up to 61 (d = 6, n = 1000). As a consequence, even evaluating the subsampling approach
for various block sizes from a grid does not necessarily make it computationally heavier than the multiplier
method.

4.2 Empirical level and empirical power results

In this section, we partially report the results from the simulation study, after thoroughly weighing complete-
ness against brevity.

First of all, Figure 2 shows empirical rejection probabilities for samples from the Gaussian model and
the Frank model in dimension d=3 for all chosen sample sizes, block sizes, serial dependencies and cross-
sectional dependencies as described in the previous section. Little dots at the left-hand side of each plot
refer to the empirical rejection probability of the test from [37] (which is designed for the iid case only). The
triangles at the right-hand side will be explained below.

In terms of level approximation (upper panel), we see that our test does not show a huge dependence on
the choice of the block length in most cases. Moreover, it is slightly conservative in many cases, in particular
for small sample sizes and large block sizes. For high levels of serial dependence, the test becomes liberal
for small block sizes. In comparison, Quessy’s test does not hold its level for moderate to high levels of serial
dependence. Similar results were obtained for dimensions d ∈ {2, 6} and for the t-copula.

In terms of power (lower panel), we observe very little power for sample size n = 100, but a great in-
crease with increasing sample size. Moreover, large block sizes tend to reduce the test’s ability to detect the
alternative. The latter may be explained by continuity reasons, observing that in the extreme case, n = b, we
have N(ts)

b,n = 1, which amounts to no power at all. Qualitatively similar results were obtained for dimensions
d ∈ {2, 6} and for the Clayton copula.

Based on the results summarized in Figure 2, as well as on those that were not reported for the sake of
brevity, we propose to use b = bn0.95/4c as a general formula for choosing the subsample size (which is
in accordance with the assumptions from Theorem 3.8). The empirical rejection probabilities for this block
size are displayed as triangles on the right-hand side of each plot in Figure 2. It can be seen that the choice
guarantees that the level is not exceeded, while at the same time reaching decent power properties.

Next, Tables 1, 2, and 3 report empirical rejection probabilities of our test for �xed subsample size b =
bn0.95/4c, and for the test from [37] based on a multiplier bootstrap (given in parentheses) for dimension
d = 2, 3, and 6, respectively. For the sake of brevity, we excluded the case τ = τ(cross) ∈ {0.1, 0.9} (for which
the results were qualitatively the same) and the sample size n = 100 (for which little to no power was visible).
The general �ndings are similar as for Figure 2: while our test keeps its level, Quessy’s test fails to do so for
moderate to high level of serial dependence. There are almost no di�erences between the t-copula and the
Gaussian copula models. In terms of detecting alternatives, the Frank copula exhibits much larger rejection
probabilities. Moreover, the rejection probabilities are largest for high levels of cross-sectional dependence
and small levels of temporal dependence. Finally, note that the Clayton copula may more easily be detected
to be non-elliptical by applying a suitable test for radial symmetry (adapted to the time series case).



130 | Axel Bücher, Miriam Jaser, and Aleksey Min

n = 100 n = 250 n = 500 n = 1000

A
R

 =
 0

A
R

 =
 0.2

A
R

 =
 0.4

A
R

 =
 0.6

A
R

 =
 0.8

20 40 60 40 80 120 100 200 300 200 400 600

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Block Size b

E
m

pi
ric

al
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y

tau (cross):

0.1

0.25

0.5

0.75

0.9

Gauss, d= 3

n = 100 n = 250 n = 500 n = 1000

A
R

 =
 0

A
R

 =
 0.2

A
R

 =
 0.4

A
R

 =
 0.6

A
R

 =
 0.8

20 40 60 40 80 120 100 200 300 200 400 600

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Block Size b

E
m

pi
ric

al
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y

tau (cross):

0.1

0.25

0.5

0.75

0.9

Frank, d= 3

n = 100 n = 250 n = 500 n = 1000

A
R

 =
 0

A
R

 =
 0.2

A
R

 =
 0.4

A
R

 =
 0.6

A
R

 =
 0.8

20 40 60 40 80 120 100 200 300 200 400 600

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Block Size b

E
m

pi
ric

al
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y

tau (cross):

0.1

0.25

0.5

0.75

0.9

Gauss, d= 3

n = 100 n = 250 n = 500 n = 1000

A
R

 =
 0

A
R

 =
 0.2

A
R

 =
 0.4

A
R

 =
 0.6

A
R

 =
 0.8

20 40 60 40 80 120 100 200 300 200 400 600

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Block Size b

E
m

pi
ric

al
 R

ej
ec

tio
n 

P
ro

ba
bi

lit
y

tau (cross):

0.1

0.25

0.5

0.75

0.9

Frank, d= 3

Figure 2: Empirical rejection probabilities for the Gaussian model (upper part) and Frank model (lower part) in dimension
d=3 against the block size b for n ∈ {100, 250, 500, 1000}. AR = c refers to the fact that the marginal AR models
were chosen in such a way that the lag 1 auto-Kendall-rankcorrelation equals c ∈ {0, .2, .4, .6, .8}. Likewise, τ(cross) ∈
{0.1, 0.25, 0.5, 0.75, 0.9} speci�es the (pairwise) cross sectional dependencies in terms of Kendall’s tau. Empirical rejection
probabilities for the test from [37] and for our test with �xed block size b = bn0.95/4c are depicted as points on the left side
and triangles on the right side, respectively.
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Table 1: Dimension d = 2: Empirical level (Panel A) and empirical power (Panel B) of our test for ellipticity based on the sub-
sampling procedure with block size b = bn0.95/4c and the test from [37] based on a multiplier bootstrap (in parentheses) with
signi�cance level α = 0.05. The model parameters are as in Figure 2.

AR τ n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Panel A: Gaussian t5
0 0.25 4.5 (5.6) 5.0 (5.1) 7.1 (5.5) 4.0 (5.5) 5.8 (5.8) 6.4 (5.5)

0.50 4.0 (6.2) 5.2 (5.0) 5.8 (6.0) 3.7 (5.7) 4.9 (4.3) 5.9 (4.4)
0.75 2.4 (4.8) 4.6 (4.8) 4.9 (5.2) 3.4 (4.5) 6.0 (6.2) 5.8 (6.1)

0.2 0.25 4.4 (5.1) 5.5 (6.3) 6.2 (5.5) 3.4 (5.7) 6.3 (6.3) 5.0 (5.0)
0.50 3.9 (6.7) 5.5 (6.1) 4.3 (4.1) 4.7 (6.2) 4.6 (4.6) 4.5 (4.6)
0.75 2.5 (4.5) 4.1 (5.7) 4.8 (5.3) 2.1 (5.8) 4.6 (5.8) 5.1 (5.5)

0.4 0.25 3.5 (6.2) 4.8 (6.7) 5.2 (6.5) 2.4 (4.2) 3.0 (5.1) 4.3 (5.3)
0.50 3.4 (5.2) 4.3 (5.9) 3.9 (4.8) 2.6 (5.4) 3.8 (6.2) 4.1 (5.3)
0.75 1.5 (5.4) 2.6 (5.8) 3.6 (5.0) 1.6 (6.2) 3.5 (5.6) 5.5 (7.3)

0.6 0.25 1.8 (7.8) 3.6 (7.8) 3.9 (6.9) 1.7 (7.8) 3.4 (8.8) 4.8 (8.4)
0.50 1.6 (6.3) 3.3 (9.3) 3.7 (7.8) 1.9 (8.3) 4.0 (8.6) 4.8 (8.9)
0.75 1.5 (9.4) 2.6 (8.0) 3.5 (7.1) 1.4 (6.9) 3.0 (6.7) 4.3 (8.0)

0.8 0.25 2.5 (22.3) 2.7 (23.8) 4.0 (26.5) 3.0 (20.0) 4.5 (25.1) 4.7 (27.7)
0.50 3.3 (23.1) 4.9 (24.3) 4.5 (25.6) 3.1 (18.5) 2.6 (23.0) 4.4 (23.7)
0.75 2.6 (15.7) 4.3 (20.0) 3.6 (19.7) 3.3 (17.0) 3.0 (18.5) 2.8 (19.7)

Panel B: Frank Clayton
0 0.25 9.4 (11.0) 18.9 (18.5) 28.9 (29.9) 4.6 (5.3) 5.5 (5.4) 6.8 (4.6)

0.50 25.4 (28.5) 43.0 (44.8) 71.9 (78.4) 4.6 (5.7) 7.0 (7.1) 9.9 (8.0)
0.75 25.0 (33.2) 54.2 (56.9) 80.0 (86.3) 10.5 (14.9) 25.1 (25.6) 45.9 (46.2)

0.2 0.25 8.5 (12.7) 18.9 (18.7) 26.1 (29.1) 3.5 (5.0) 4.9 (5.2) 5.5 (5.1)
0.50 19.7 (25.0) 46.0 (47.1) 67.7 (72.9) 4.3 (6.0) 6.0 (5.4) 8.9 (7.5)
0.75 24.6 (32.9) 55.0 (57.5) 77.0 (84.1) 11.0 (17.9) 23.7 (27.4) 43.2 (45.0)

0.4 0.25 6.4 (10.9) 14.7 (18.6) 27.8 (31.2) 3.2 (5.1) 4.5 (5.7) 5.6 (6.4)
0.50 20.3 (24.9) 39.8 (45.2) 65.8 (73.0) 3.3 (5.5) 5.2 (5.5) 9.7 (8.8)
0.75 20.8 (34.9) 51.2 (59.1) 78.5 (86.3) 7.6 (13.8) 19.8 (23.1) 44.4 (45.8)

0.6 0.25 4.8 (14.1) 12.0 (20.9) 21.3 (30.1) 3.1 (8.3) 3.1 (7.6) 4.5 (7.1)
0.50 12.4 (23.8) 33.4 (44.9) 58.1 (70.2) 2.1 (7.4) 4.9 (9.5) 8.9 (11.0)
0.75 15.4 (31.1) 42.9 (56.2) 69.3 (81.0) 4.6 (15.3) 15.7 (25.7) 35.9 (45.1)

0.8 0.25 4.7 (24.8) 6.5 (29.3) 13.4 (39.7) 3.8 (22.8) 3.8 (21.5) 3.1 (25.3)
0.50 5.8 (28.2) 13.1 (40.8) 31.7 (61.7) 3.1 (21.0) 3.5 (22.2) 5.1 (21.5)
0.75 7.4 (32.0) 18.8 (45.2) 44.7 (71.6) 3.6 (22.1) 7.7 (29.3) 17.0 (39.9)

5 Case Study
Elliptical copulas are popular for �nancial data due to their tractability, their �exibility and in particular their
ability to capture the dependence of extreme events. However, recent studies also report an observed non-
(meta-)ellipticity of stock returns, see, e.g., [11], [26]. Within this section, we illustrate ourmethodwith a case
study that allows to further enlighten this topic.

More precisely, we reconsider the case study from Section 5 in [26], consisting of a three dimensional data
set of 2663 daily log returns of the DAX, the Dow Jones Industrial Average and the Euro Stoxx 50 indices for
11 years in the period January 1, 2006 till December 31, 2016. Unlike in the empirical analysis in that paper,
we do not necessarily need to apply ARMA-GARCH-�lters to obtain approximately independent observations,



132 | Axel Bücher, Miriam Jaser, and Aleksey Min

Table 2: Analogue of Table 1 in dimension d = 3.

AR τ n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Panel A: Gaussian t5
0 0.25 3.6 (4.6) 4.7 (4.7) 4.5 (5.6) 2.4 (3.6) 5.0 (5.3) 4.0 (3.6)

0.50 4.0 (5.7) 4.2 (4.0) 4.7 (4.5) 3.6 (4.8) 5.4 (5.9) 5.0 (5.3)
0.75 3.5 (5.2) 4.5 (5.3) 4.3 (5.7) 2.9 (4.9) 4.9 (6.3) 4.6 (4.7)

0.2 0.25 2.1 (4.4) 4.1 (5.6) 4.4 (5.6) 2.0 (4.2) 4.3 (5.6) 3.7 (4.9)
0.50 3.2 (4.9) 5.7 (6.2) 4.5 (4.1) 2.5 (5.0) 3.2 (4.2) 4.3 (5.4)
0.75 2.9 (5.3) 4.7 (6.1) 4.4 (5.4) 2.0 (4.7) 2.8 (4.7) 3.9 (4.0)

0.4 0.25 1.7 (5.0) 2.8 (5.7) 4.1 (6.1) 2.4 (5.5) 4.3 (6.1) 3.5 (5.3)
0.50 2.1 (5.6) 3.7 (4.6) 3.6 (5.5) 2.6 (6.3) 2.8 (5.1) 3.4 (6.2)
0.75 2.6 (5.9) 2.5 (4.9) 2.9 (5.6) 1.7 (4.3) 3.0 (6.2) 2.4 (5.1)

0.6 0.25 1.7 (9.4) 4.0 (10.2) 3.9 (10.2) 1.8 (9.1) 2.8 (10.1) 3.7 (11.1)
0.50 1.5 (7.5) 2.4 (8.5) 4.5 (10.4) 2.1 (9.4) 1.6 (8.0) 3.5 (9.2)
0.75 0.9 (8.4) 1.5 (6.4) 3.4 (9.4) 1.4 (6.4) 2.2 (7.2) 3.2 (7.3)

0.8 0.25 4.4 (36.3) 4.3 (39.9) 2.7 (44.5) 3.2 (33.0) 3.4 (41.0) 3.9 (43.2)
0.50 3.4 (32.1) 4.5 (35.5) 2.8 (37.2) 4.2 (29.9) 3.0 (36.4) 4.3 (38.9)
0.75 3.6 (20.3) 3.8 (22.6) 3.3 (27.2) 3.9 (23.5) 3.7 (24.6) 2.9 (26.1)

Panel B: Frank Clayton
0 0.25 13.4 (16.6) 26.7 (28.3) 46.1 (52.6) 3.2 (4.1) 5.6 (5.0) 5.0 (5.3)

0.50 33.9 (37.4) 66.2 (69.8) 88.4 (93.3) 4.5 (5.1) 8.8 (7.8) 11.0 (9.0)
0.75 36.4 (45.2) 72.1 (76.4) 91.5 (96.4) 14.6 (17.1) 33.9 (33.2) 60.7 (62.0)

0.2 0.25 11.6 (16.0) 22.6 (26.3) 46.7 (54.3) 2.3 (3.8) 4.6 (5.1) 5.7 (6.0)
0.50 32.1 (38.1) 61.9 (65.7) 88.9 (93.7) 5.0 (6.0) 6.8 (6.6) 10.3 (9.8)
0.75 34.2 (43.6) 69.9 (74.3) 91.6 (96.2) 12.0 (16.1) 33.9 (32.1) 58.4 (61.0)

0.4 0.25 8.1 (15.2) 20.7 (26.9) 42.7 (52.1) 3.0 (6.7) 4.1 (6.0) 4.8 (6.3)
0.50 26.2 (36.4) 58.8 (65.6) 88.4 (94.6) 1.9 (5.2) 4.6 (5.8) 9.7 (11.0)
0.75 28.9 (42.7) 65.6 (72.5) 90.9 (95.5) 8.2 (17.3) 28.9 (33.3) 57.4 (61.5)

0.6 0.25 6.1 (18.1) 16.4 (32.7) 34.4 (52.5) 1.8 (9.2) 2.2 (8.9) 3.9 (9.1)
0.50 20.8 (39.5) 47.7 (65.0) 78.2 (89.8) 1.7 (7.1) 4.1 (10.0) 9.1 (14.2)
0.75 23.7 (40.0) 56.4 (71.9) 84.9 (94.0) 5.6 (16.7) 20.8 (32.2) 49.0 (58.6)

0.8 0.25 4.5 (36.3) 8.3 (48.9) 14.3 (61.0) 3.7 (36.9) 4.1 (37.5) 4.7 (42.4)
0.50 9.1 (43.1) 19.2 (60.8) 40.9 (80.4) 4.0 (31.1) 4.0 (34.1) 5.3 (37.0)
0.75 11.1 (39.2) 25.9 (63.0) 58.3 (86.0) 4.1 (25.3) 8.1 (39.3) 27.8 (57.3)

but may also investigate the raw data for ellipticity. For the sake of completeness, we chose to analyse both,
the raw data and �ltered observations.

Starting with the former, we may even investigate the six-dimensional data set (xt , yt , zt , xt+1, yt+1, zt+1)
for t ∈ {1, . . . , 2662}, where xt , yt and zt is the log return at day t of the DAX, Dow Jones and EURO Stoxx
index, respectively. Note that n = 2662. Eight hypotheses are of interest:
• Multivariate.Meta-ellipticity of the six-dimensional data set (denoted ‘1:6’) and of the three-dimensional

cross-sectional dependence of (xt , yt , zt)t=1,,...,2662 (denoted ‘1:3’).
• Temporal. Meta-ellipticity of the three marginal temporal dependencies of (xt , xt+1) (DAX, denoted

‘(1,4)’), of (yt , yt+1) (Dow, denoted ‘(2,5)’), and of (zt , zt+1) (Eurostoxx, denoted ‘(3,6)’).
• Crosssectional Pairs.Meta-ellipticity of the three pairwise dependencies of (xt , yt) (DAX-Dow, denoted

‘(1,2)’), of (xt , yt) (DAX-Eurostoxx, denoted ‘(1,3)’), and of (yt , zt) (Dow-Eurostoxx, denoted ‘(2,3)’).
Note that, for consistency, we restrict attention to t ∈ {1, . . . , 2662} for the cross-sectional dependencies,
despite the fact that we might include the observations for day 2663. Our test has been applied to each of
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Table 3: Analogue of Table 1 in dimension d = 6.

AR τ n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

Panel A: Gaussian t5
0 0.25 2.1 (3.4) 3.6 (3.8) 3.9 (5.4) 2.2 (3.4) 3.5 (5.3) 2.5 (3.4)

0.50 2.2 (3.5) 3.5 (4.3) 3.9 (5.1) 2.6 (3.6) 4.0 (4.1) 3.9 (5.5)
0.75 2.1 (4.1) 4.8 (4.7) 3.5 (4.4) 2.1 (4.0) 3.0 (4.8) 4.5 (5.6)

0.2 0.25 2.0 (4.9) 1.6 (3.9) 2.7 (4.0) 1.1 (3.3) 3.2 (5.2) 2.3 (4.9)
0.50 2.9 (4.4) 2.9 (4.3) 2.4 (3.9) 1.2 (2.8) 3.3 (4.4) 2.3 (4.0)
0.75 2.3 (4.5) 2.2 (4.7) 2.7 (3.7) 1.9 (4.5) 3.0 (4.8) 3.1 (4.5)

0.4 0.25 1.1 (4.2) 1.7 (5.0) 2.5 (6.5) 1.1 (5.2) 1.5 (5.4) 2.4 (4.9)
0.50 1.2 (4.7) 3.1 (6.8) 2.4 (5.2) 1.4 (5.7) 2.2 (6.1) 2.4 (6.0)
0.75 1.7 (4.8) 2.0 (4.8) 3.0 (4.7) 1.1 (4.5) 2.1 (4.5) 2.8 (5.5)

0.6 0.25 0.5 (12.2) 1.1 (15.4) 1.6 (14.1) 1.1 (11.5) 2.0 (14.3) 2.4 (15.2)
0.50 1.7 (10.5) 2.7 (11.7) 2.5 (12.1) 1.1 (8.8) 2.0 (12.2) 3.3 (12.1)
0.75 1.4 (6.7) 2.2 (8.0) 3.3 (7.8) 1.1 (7.0) 2.3 (9.1) 2.2 (8.6)

0.8 0.25 3.7 (67.6) 2.5 (79.5) 2.7 (87.1) 3.5 (65.7) 3.8 (79.6) 3.3 (84.5)
0.50 4.8 (55.2) 2.8 (66.9) 4.0 (75.2) 4.2 (54.1) 3.8 (66.1) 3.6 (69.7)
0.75 3.5 (30.5) 3.9 (37.4) 2.8 (37.8) 4.0 (29.1) 2.6 (34.9) 2.3 (38.5)

Panel B: Frank Clayton
0 0.25 20.8 (28.1) 49.3 (56.2) 78.5 (89.2) 1.9 (2.4) 3.2 (4.1) 4.8 (4.7)

0.50 56.7 (62.6) 91.1 (93.5) 99.6 (100.0) 4.0 (4.4) 8.9 (6.8) 13.6 (11.7)
0.75 52.4 (61.3) 86.5 (90.8) 98.3 (99.6) 20.9 (21.8) 51.6 (47.3) 82.6 (82.8)

0.2 0.25 17.6 (26.8) 45.1 (54.0) 78.2 (88.5) 2.1 (3.9) 2.8 (3.4) 2.7 (3.6)
0.50 53.7 (62.8) 90.2 (93.8) 99.1 (100.0) 3.4 (4.4) 6.7 (7.0) 14.4 (13.6)
0.75 52.1 (60.9) 85.6 (90.1) 99.3 (99.8) 18.8 (20.6) 48.0 (45.4) 79.5 (81.9)

0.4 0.25 12.2 (25.5) 38.5 (52.5) 78.5 (88.7) 1.1 (4.0) 3.4 (6.4) 3.4 (6.6)
0.50 50.0 (62.4) 86.6 (92.2) 99.7 (100.0) 2.5 (4.4) 6.3 (7.7) 10.2 (12.5)
0.75 45.4 (57.7) 84.2 (90.4) 98.2 (99.8) 14.9 (20.4) 45.7 (47.8) 75.7 (81.3)

0.6 0.25 8.7 (30.4) 26.4 (57.3) 65.0 (89.3) 1.0 (10.8) 1.7 (11.5) 2.5 (15.9)
0.50 32.1 (56.3) 75.1 (90.5) 95.7 (99.6) 1.1 (8.5) 3.9 (12.4) 10.7 (21.1)
0.75 35.8 (53.8) 75.7 (87.4) 95.3 (99.5) 10.6 (23.7) 32.6 (45.1) 67.3 (77.6)

0.8 0.25 6.9 (73.5) 10.2 (87.0) 27.3 (95.0) 4.4 (66.3) 2.6 (78.5) 2.6 (85.4)
0.50 15.1 (65.6) 32.3 (88.4) 64.6 (97.5) 4.1 (49.4) 3.1 (61.0) 7.3 (69.7)
0.75 14.7 (52.8) 36.7 (75.8) 67.5 (95.5) 4.2 (31.0) 11.5 (48.8) 37.9 (75.0)

the aforementioned situations with subsample sizes b ∈ {bcnc : c ∈ 0.1, 0.11, . . . , 0.39, 0.4} and with
b = bopt = bn0.95/4c = 449. The results for b = bcnc are summarized in Figure 3 and in the lower row of
Table 4, where we state the proportion of signi�cant p-values (≤ 0.5). The p-value for b = bopt can be found
in the upper row of Table 4.

The results can be summarized as follows: p-values for the six-dimensional data set, as well as for two
of the temporal dependencies (DAX and Eurostoxx) are clearly signi�cant at the �ve-percent level, even after
a Bonferroni correction. On the other hand, the test did not �nd any evidence against meta-ellipticity for
the temporal dependence of the Dow Jones index; this di�erence to the European indices may possibly be
explained by di�erences of �nancial market regulations in the European Union and the US.

Furthermore, the cross-sectional dependency of (xt , yt , zt) is found to be weakly signi�cant, despite the
fact that none of the respective pairs is signi�cant when considered on its own. The latter is hence an instance
of the circumstance that comparably mediocre (pairwise) signals may add up to a strong overall signal. For
simplicity ignoring that the data is serially dependent, the �ndings may further be supported by standard
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Table 4: Upper row: p-values for the test with b = bopt = bn0.95/4c = 449. Lower row: proportion of p-values smaller than 0.05
among all tests with b ∈ {bcnc : c ∈ 0.10, 0.11, . . . , 0.39, 0.40}.

Dependency 1:6 1:3 (1,4) (2,5) (3,6) (1,2) (1,3) (2,3)
P-value(bopt) 0.000 0.055 0.009 0.989 0.000 0.062 0.264 0.082
Prop. of Rej. 1.000 0.452 0.871 0.000 1.000 0.097 0.000 0.065

model selection procedures. More precisely, for all three bivariate cross-sectional dependencies, the family
of t-copulas has been selected among 37 bivariate candidate models based on AIC and BIC model selection.
However, the estimated degrees of freedom are equal to 2.808 (standard error 0.236), 3.733 (0.398) and 2.900
(0.247), respectively, which are incompatible with a three-variate t-copula. Moreover, among the candidate
three-variate models, a (non-elliptical) d-vine model (with t-pair copulas) has been selected over the family
of t-copulas based on AIC and BIC.

Overall, the obtained results yield additional evidence for the non-(meta-)ellipticity of stock returns.
However, wewould like to stress once again that our empirical �ndings and interpretations should be treated
with caution when the null hypothesis cannot be rejected: we only test for the equality between Kendall’s tau
and Blomqvist’s beta, which is not a characterizing property of elliptical copulas (see Example 2.1).

Finally, following [26], we have also applied our test to the three-dimensional data set of sample size n =
2663 obtained from independently �tting ARMA-GARCH-models to themargins of (xt , yt , zt) and calculating
respective standardized residuals (see the last-named paper for precise model speci�cations). For simplicity,
we only report the result for the null hypothesis of three-dimensional cross-sectional meta-ellipticity, which
gets rejected at the 5% level with a p-value of 0.011. This is in line with the �ndings of [26] who obtained a
p-value of 0.030.

Multivariate Temporal Pairs Crosssectional Pairs

400 600 800 1000 400 600 800 1000 400 600 800 1000
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Figure 3: P-values as a function of the block size b for the eight hypotheses described in Section 5.

6 Conclusion
A test for detecting departures frommeta-ellipticity formultivariate stationary time series has been proposed.
Carrying out the test requires (approximate) critical values of a complex asymptotic distribution, which
were obtained using the subsampling bootstrap. Large-sample validity was proven. The test was found
to perform well for moderate sample sizes in a simulation study. An application to �nancial log returns
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provided evidence for their non-(meta-)ellipticity.
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A Proofs of the main results
Proof of Theorem 3.4. The assertion in (7) is obvious. For the proof of (8), we simplify the notation by occa-
sionally omitting the index k, `; i.e., we write τ̂n = τ̂k`,n , Ĉn = Ĉk`,n etc. Then,

1
4
√
n(τ̂n − τ) (a)=

√
n
(∫

ĈndĈn −
∫
CdC

)
+ Op(n−1/2)

=
∫

CndĈn +
√
n
(∫

CdĈn −
∫
CdC

)
+ Op(n−1/2)

(b)=
∫

CndĈn +
∫

CndC + Op(n−1/2)

(c)= 2
∫

CndC + oP(1), (15)

which is (8). Explanations:
(a) Note that τ̂n = 2Un − 1, where

Un = 2
n(n − 1)

∑
1≤i<j≤n

1{(Xki − Xkj)(X`i − X`j) > 0}

= 2
n(n − 1)

∑
1≤i= ̸j≤n

1(Xki > Xkj , X`i > X`j)

= 2
n2

n∑
i,j=1

1(Xki ≥ Xkj , X`i ≥ X`j) + Op(n−1).

Further,

2
n2

n∑
i,j=1

1(Xki ≥ Xkj , X`i ≥ X`j) =
2
n2

n∑
i,j=1

1(Ûki ≥ Ûkj , Û`i ≥ Û`j) = 2
∫
ĈndĈn .

(b) It is su�cent to show that
∫
CdĈn =

∫
ĈndC, which is related to the arguments given in the proof of

Theorem 5.1.1 in [33]. For the ease of reading, we give a self-contained proof. Conditional on (X1, . . . , Xn)
consider independent random vectors (U, V) ∼ C and (Un , Vn) ∼ Ĉn. We may then write∫

ĈndC = Pr(Un ≤ U, Vn ≤ V)

and ∫
CdĈn = Pr(Un ≥ U, Vn ≥ V).

Furthermore, by Condition 3.2, the distribution of Un is uniform on { 1
n+1 , . . . , n

n+1}, whence

Pr(U ≤ Un) =
∫

[0,1]

∫
[0,un ]

dFU(u)dFUn (un) =
∫

[0,1]

undFUn (un) =
n∑
i=1

i
n + 1

1
n = 1

2 .
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This implies

Pr(Un ≤ U, Vn ≤ V) = 1 − Pr(Un > U) − Pr(Vn > V) + Pr(Un > U, Vn > V)
= 1 − Pr(Un ≥ U) − Pr(Vn ≥ V) + Pr(Un ≥ U, Vn ≥ V)
= Pr(Un ≥ U, Vn ≥ V),

and hence (b).
(c) We have to show that

∫
Cnd(Ĉn − C) = oP(1). This is direct consequence of the continuous mapping

theorem and Lemma C.8 in [3].
The convergence result in (9) is a direct consequence of (7),(8), the continuousmapping theorem and the fact
that, under ellipticity,

√
n(β̂k`,n − τ̂k`,n) =

√
n(β̂k`,n − βk`) −

√
n(τ̂k`,n − τk`).

Finally, normality of the limit in (9) follows from the fact thatGC is Gaussian and Ψk` de�ned in (10) is linear.

Proof of Theorem 3.8. We only need to prove the weak convergence result for p̂S,b,n. For simplicity, we only
consider the strongmixing case, the proof for the i.i.d. case is essentially the same. For the weak convergence
result under the null hypothesis, it is su�cient to show that

(T̂n , T̂[I1,n ]b,n , T̂[I2,n ]b,n ) d−→ (T, T[1], T[2]) (16)

where T[1], T[2] are i.i.d. copies of T, the weak limit of T̂n. Indeed, the assertion then follows from Corollary
4.3 in [8], observing that T has a continuous c.d.f.

For the proof of (16), recall that, by Theorem 3.4, T̂n = {Ψ(Cn) + oP(1)}>{Ψ(Cn) + oP(1)} with

Ψ(Cn) =


4 ·C12,n(12 , 12 ) − 8 ·

∫
[0,1]2 C12,n(u1, u2)dC12(u1, u2)

4 ·C13,n(12 , 12 ) − 8 ·
∫
[0,1]2 C13,n(u1, u3)dC13(u1, u3)

...
4 ·Cd−1,d,n(12 , 12 ) − 8 ·

∫
[0,1]2 Cd−1,d,n(ud−1, ud)dCd−1,d(ud−1, ud)

 .

Suppose we have shown that

T̂[Is,n ]b,n =
{
Ψ(Ĉ[Is,n ]

b ) + oP(1)
}>{Ψ(Ĉ[Is,n ]

b ) + oP(1)
}
, (17)

where Ĉ[Is,n ]
b =

√
b(Ĉ[Is,n ]b − Ĉn) with Ĉ[Is,n ]b the empirical copula based on the subsample X[Is,n ]

b . The assertion
in (16) then follows from the continuous mapping theorem and

(Cn , Ĉ[I1,n ]
b , Ĉ[I2,n ]

b ) (CC ,C[1]
C ,C[2]

C ) in {`∞([0, 1]d)}3; (18)

the latter convergence being a consequence of Theorem 3.3 in [28].
It remains to show (17), which follows from

√
b(β̂[Is,n ]k`,b − β̂k`,n) = 4 · Ĉ[Is,n ]

b (12 , 12 )

and
1
4
√
b(τ̂[Is,n ]k`,b − τ̂k`,n)

(a)=
√
b
(∫

Ĉ[Is,n ]k`,b dĈ
[Is,n ]
k`,b −

∫
Ĉk`,ndĈk`,n

)
+ OP(b−1/2)

=
∫

Ĉ[Is,n ]
k`,b dĈ

[Is,n ]
k`,b +

√
b
(∫

Ĉk`,ndĈ[Is,n ]k`,b −
∫
Ĉk`,ndĈk`,n

)
+ OP(b−1/2)

(b)=
∫

Ĉ[Is,n ]
k`,b dĈ

[Is,n ]
k`,b +

∫
Ĉ[Is,n ]
k`,b dĈk`,n + O(b

1/2/n) + OP(b−1/2)

(c)= 2
∫

Ĉ[Is,n ]
k`,b dC + oP(1).

Whence it remains to explain (a), (b) and (c) in the latter equation. For that purpose, as in the proof of Theo-
rem 3.4, we will omit the index k, `.
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(a) This follows by the same arguments as for the proof of (a) in (15).
(b) Conditional on (X1, . . . , Xn) and Is,n, consider independent random vectors (Un , Vn) ∼ Ĉn and
(Ub , Vb) ∼ Ĉ[Is,n ]b . We may then rewrite∫

ĈndĈ[Is,n ]b = Pr(Un ≤ Ub , Vn ≤ Vb),
∫
Ĉ[Is,n ]b dĈn = Pr(Un ≥ Ub , Vn ≥ Vb).

Under the no-ties condition in Condition 3.2, the subsample X[Is,n ]
b does not contain ties either, whence

Pr(Vn < Vb) = Pr(Un < Ub) =
b∑
j=1

( ∑
i: i
n+1 <

j
b+1

1
n
)1
b

= 1
nb

b∑
j=1

{ j(n + 1)
b + 1 + O(1)

}
= n + 12n + O

(1
n
)
= 1
2 + O

(1
n
)

and

Pr(Vn = Vb) = Pr(Un = Ub) =
1
b

b∑
j=1

Pr(Un = j
b+1 ) ≤

1
n .

These two equations imply

Pr(Ub ≤ Un , Vb ≤ Vn) = 1 − Pr(Ub > Un) − Pr(Vb > Vn) + Pr(Ub > Un , Vb > Vn)
= Pr(Ub ≥ Un , Vb ≥ Vn) + O(1/n),

where the O-terms are not depending on (X1, . . . , Xn) and Is,n. This implies (b).
(c) Wehave to show that

∫
Ĉ[Is,n ]
b d(Ĉ[Is,n ]b −C) = oP(1)and

∫
Ĉ[Is,n ]
b d(Ĉn−C) = oP(1). This is a direct consequence

of (18), the continuous mapping theorem and Lemma C.8 in [3].
Finally, consider the alternative. By the same arguments as under the null hypothesis, we have

(T̂[I1,n ]b,n , T̂[I2,n ]b,n ) d−→ (T[1], T[2]),

where T[1] and T[2] are as in (16). By Lemma 2.3 in [8], we have

sup
x∈R

∣∣∣1S
S∑
s=1

1(T̂[I1,s ]b,n ≤ x) − FT(x)
∣∣∣ = oP(1),

where FT denotes the c.d.f. of T. As a consequence,

p̂S,b,n = 1 − FT(T̂n) + oP(1) = oP(1),

where the last equality follows from T̂n →∞ in probability under the alternative.

B Sketch-proof of Remark 3.5
Lemma B.1. Under the null hypothesis of ellipticity, and if each Ck` has continuous partial derivatives in a
neighbourhood of (1/2, 1/2), we have

sup
k= ̸`

∣∣∣√n{β̂k`,n − βk`} − Bk`,n∣∣∣ = oP(1), n →∞,

where, for k, ` ∈ {1 . . . , d} with k = ̸ `,

Bk`,n =
1√n

n∑
i=1

{
h(β)(Uki , U`i) − E[h(β)(Uki , U`i)]

}
,

and where h(β) is de�ned in (12).
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Proof. Fix k, ` ∈ {1, . . . , d} with k = ̸ `. By ellipticity of Ck`, we have Ck`(u, v) = u + v − 1 + Ck`(1 − u, 1 − v),
which implies ∂jCk`(u, v) = 1 − ∂jCk`(1 − u, 1 − v) for j ∈ {1, 2}; in particular ∂jCk`(1/2, 1/2) = 1/2. A
straightforward modi�cation of Corollary 2.5 in [9] then implies

√
n{Ĉk`,n(12 , 12 ) − Ck`(12 , 12 )} = αk`,n(12 , 12 ) − 1

2{αk`,n(12 , 1) + αk`,n(1, 12 )} + oP(1)
= 1

4Bk`,n + oP(1),

where αn =
√n(Cn − C) with Cn as de�ned in (5) and where the oP(1)-term is uniform in k, `. Since√n(β̂k` −

βk`) = 4√n{Ĉk`,n(12 , 12 ) − Ck`(12 , 12 )}, we obtain the assertion.

Lemma B.2. For k, ` ∈ {1 . . . , d} with k ≠ `, let

Tk`,n =
1√n

n∑
i=1

{
h(τ)k` (Uki , U`i) − E[h(τ)k` (Uki , U`i)]

}
,

where h(τ)k` is de�ned in (13). Then, under suitable mixing conditions (e.g., Theorem 2.1 in [13]),

sup
k= ̸`

∣∣∣√n{τ̂k`,n − τk`} − Tk`,n∣∣∣ = oP(1), n →∞.

It is important to note that no regularity condition on C is needed (see also [45] for the i.i.d. case).

Proof. Note that τ̂k`,n may be identi�ed as a non-degenerate U-statistic with kernel

Hkl(u, v) = 2 · I(u(k,`) < v(k,`)) + 2 · I(v(k,`) < u(k,`)) − 1.

Further note that, for V ∼ C,

E[Hk`(u, V)] = 1 − 2P(Vk ≤ uk) − 2P(V` ≤ u`) + 4Ck`(uk , u`) =
1
2h

(τ)
k` (uk , u`)

and, for an independent copy U of V,

E[Hk`(U , V)] = −1 + 4E[Ck`(Uk , Ul)] = τk`.

The assertion then follows from a straightforward multivariate extension of Theorem 2.1 in [13].

Under the combined assumptions from the previous two lemmas, we obtain

sup
k= ̸`

∣∣∣√n(β̂k`,n − τ̂k`,n) − n−1/2 n∑
i=1

(h(β) − h(τ)k` )(Uki , U`i) − E[(h(β) − h(τ)k` )(Uki , U`i)]
∣∣∣ = oP(1).

As a consequence,
√
n(β̂n − τ̂n)

d−→ Nd(d−1)/2(0, Σ),

where the entries of Σ are given by (11). This is exactly the result claimed to be true in Remark 3.5.
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