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Abstract: Condition monitoring of industrial robots has the potential to decrease downtimes in
highly automated production systems. In this context, we propose a new method to evaluate health
indicators for this application and suggest a new health indicator (HI) based on vibration data
measurements, Short-time Fourier transform and Z-scores. By executing the method, we find that
the proposed health indicator can detect varying faults better, has lower temperature sensitivity and
works better in instationary velocity regimes compared to several state-of-the-art HIs. A discussion
of the validity of the results concludes our contribution.

Keywords: industrial robot; condition monitoring; health indicator

1. Introduction

Industrial robots are a fundamental part of highly automated production systems,
which can be found in the automotive or electronics industry [1]. Since they operate in
complex production cells and as a part of linear production lines, robot malfunctions lead
to long downtimes for repair or replacement and, hence, to increased costs. In particular,
robot gear faults are responsible for the longest downtimes because they often require the
replacement of the whole robot [2]. The condition monitoring (CM) of these gears offers
the potential to resolve this issue. CM is the monitoring of an asset’s health using sensor
data. The health state represents a wear reserve before a failure occurs. This health state
is quantified with a health indicator (HI). A significant monitored change in this health
indicator can be used as a decision-making aid in the planning of maintenance actions [3].

1.1. State-of-the-Art

In recent years, different HIs based on vibration data for several industrial robot
components, such as bearings, gears and motors, and their specific faults have been
investigated. Furthermore, several approaches to cope with instationary signals in CM
have been presented. The next two sections give a short overview of these topics followed
by a section stating the contribution of our publication.

1.1.1. Vibration-Based Robot Condition Monitoring

A fault detection method was developed in [4], which first uses a novel phase-based,
time-domain averaging method to remove the deterministic part of the vibration signal.
Subsequently, the root mean square (RMS) and power spectrum entropy of the remaining
residual signal are calculated as health indicators. A vibration signal based CM system
for SCARA robots was implemented in [5], which in the first step uses statistical HIs
of the time-domain signal to detect the occurrence of a defect and in the second step
uses an artificial neural network to diagnose the fault type. A three-layer architecture for
remote fault diagnosis of industrial robot gearboxes was proposed using vibration signals
in [6]. In the diagnosis layer, the authors present a performance evaluation approach
using a support vector machine (SVM), a remaining useful life prediction by a Markov
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model and a fault-type diagnosis based on a Bayesian network. The degenerative behavior
of an industrial robot gear was observed with vibration sensors by [7] as well as [8] in
accelerated wear tests. After pre-processing the signals using order tracking and spectral
auto-correlation, the characteristic fault frequencies were calculated and monitored by root
mean square analysis, which revealed a trend correlating with increasing wear. In addition
to the installation of accelerometers, other additional data sources were investigated in this
context. The acoustic emission technology was used to detect robot gearbox faults based
on the ball spinning and ball passing frequency of the bearings in [9]. The changes of the
RMS-HI and characteristic frequencies for functional and broken strain gears of industrial
robots were investigated in [10]. The classification and regression performance of different
data-driven models based on frequency-domain data and principal component analysis
for dimensionality reduction was evaluated in [11].

1.1.2. Time–Frequency-Based Health Indicators

In addition to vibration data based CM approaches for industrial robots, there also
exist several publications considering HIs from the time–frequency-domain. Here, ap-
proaches based on the Short-time Fourier transform (STFT), Wavelet transform (WT) or
Hilbert Huang transform (HHT) can be divided. STFT is used to derive two HIs named
Prominence and Compliance in [12] to detect bearing faults based on their characteristic
fault frequencies. A similarity measure between the STFT spectrograms based on standard
deviation and correlation is combined with a simple classifier in [13] to detect bearing
faults. The same objective was pursued in [14] by means of the marginal time integration
of STFTs. Bearing fault classification by means of non-negative matrix factorization or
convolutional neural networks and STFT was evaluated in [15,16].

In the field of WT, several approaches exist for different assets. CM of brushless DC
motors is investigated based on energies for characteristic frequencies based on both STFT
and WT in [17]. A decomposition rate is used in [18] for CM of electric drives based on WT.
RMS and Kurtosis are calculated for the WT coefficients for broken bar fault detection in
electric drives and combined with a neural network for fault classification in [19]. Bearing
fault classification was performed with an SVM based on WT in combination with singular
value decomposition for dimensionality reduction in [20]. The spectra of WT coefficients
were the basis for the calculation of statistical HIs and frequency specific energy values for
the CM of bearing faults in [21]. The similarities of continuous WT spectra are used as an HI
for bearing fault detection [22]. The permutation entropy derived from flexible analytical
wavelet transform was used as a feature for an SVM for bearing fault classification [23].
Impulse factor, Kurtosis and RMS based on WT coefficients were used for bearing fault
detection of helicopters [24]. Statistical features and Hoelder’s exponent were derived
from WT coefficients for milling tool health state monitoring. Here, the HIs were the input
for an SVM and Decision Tree classifier [25]. HIs were derived by a convolutional neural
network for milling tool condition monitoring based on the wavelet decomposition in [26].
Energies of WT coefficients were also used for detecting generator and gear faults in wind
turbines [27]. Different entropy-based and statistical features were used in [28] for gearbox
health monitoring in combination with an SVM. Energy and entropy values derived from
WT for characteristic frequencies are applied for gearbox condition monitoring in [29].

In [30], the Shannon entropy based on HHT was used for the CM of gears. HHT was
also used in [31] to derive HIs by an autoencoder based on the Marginal Hilbert Spectrum.
A component dependent frequency energy based on HHT was used as a label in [32] for a
CNN-based regression model trained on raw vibration time series data for bearing fault
detection. Different statistical and entropy-based HIs were calculated from the Intrinsic
mode functions (IMFs) derived by HHT in [33].

1.2. Contribution to the State-of-the-Art

However, none of these publications assess vibration data-based HIs’ ability to de-
tect faults in an industry-like industrial robot application setting. It is characterized by
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changing robot axes’ velocities, changing temperatures of the gears due to unbalanced
robot utilization and unknown robot gear fault types. This is why we present a new HI
for robot gear condition monitoring, which potentially copes with these characteristics.
Furthermore, we propose a method to evaluate the suitability of HIs for the task of robot
gear condition monitoring. We apply this method on the newly formulated HI and several
HIs from the state-of-the-art.

2. Materials and Methods

This section is divided in two parts. First, the newly developed HI is presented.
Afterwards, the methodologies to evaluate the HI’s performance and data sets used in this
context are explained.

2.1. Time–Frequency-Domain-Based Z-Score

The concept of the newly designed HI is based on two cornerstones. To deal with
instationary velocity regimes, which are found in robot applications due to the typical
movement patterns of a robot, the HI is based on time–frequency-domain data. Simultane-
ously, the HI must take into account a certain variance of this data due to environmental
changes such as temperature fluctuations. This is realized by the concept of Z-scores, a
common similarity measure from statistics [34]. The process to calculate the new HI is
depicted in Figure 1.

Figure 1. Process to derive the Z-score-based HI.

In detail, the new HI is based on high-frequency sampled acceleration sensor data.
Data from one measurement are transformed to a time–frequency-spectrogram by usage
of the STFT, which is calculated according to Equation (1). Here, τ and ω are time and
frequency indices, x(n) is the time series signal of the vibration signal at timestep n and w
is a windowing function with the length R.

spec(τ, ω) = |
∞

∑
n=−∞

x(n)w(n− τR)e−jωn| (1)

To set up the HI, a certain number of vibration signal spectrograms must be collected
for the robot to capture its signal signature in a healthy state with its stochastic variations.
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This takes place in an initialization phase. For this, initially, two measurements must be
collected. In this context, a measurement is defined as the collection of vibration data
over one single movement. Based on this data, the two spectrograms are calculated. To
determine whether this reference quantity of two spectrograms captures the stochastic
variation of the signal, the overall mean (Equation (2)) and standard deviation (Equation (3))
of the spectrograms are calculated.

spec(τ, ω)avg =
1
k

k

∑
i=0

spec(τ, ω)i (2)

stdspec, overall =
1

0.5FT

T

∑
τ=0

0.5F

∑
ω=0

√
∑k

i=0(spec(τ, ω)i − spec(τ, ω)avg)2

k
(3)

In these formulas, k describes the number of measurements in the reference quantity.
T is the time length of each measurement, F is the sampling frequency and spec(τ, ω)avg is
the average value of spec(τ, ω) over measurements 0 to k. Afterwards, one measurement
is added to the reference quantity at a time, and again avgspec,overall and stdspec,overall are
calculated. Plotting these standard deviations over the number of measurements in the
reference quantity usually first shows an increase in stdspec,overall and then a saturation as
can be seen in Figure 2. If this saturation is reached, the reference quantity can sufficiently
represent the stochastic behavior of the signal signature. In the shown example, this
saturation is reached after 5 measurements.

5 10 15 20

0.005

0.006

0.007

0.008

0.009

0.01

0.011

Number of measurements

S
td

 in
 r

ef
er

en
ce

 d
at

a

Figure 2. Saturation of the standard deviation in the time–frequency spectrograms.

After the initialization, an HI can be determined based on a newly collected measure-
ment. For this, the measurement’s spectrogram overall Z-score is determined according to
Equation (4) .

HImeas =
1

0.5FT

T

∑
τ=0

0.5F

∑
ω=0
|
spec(τ, ω)meas − spec(τ, ω)avg,re f

spec(τ, ω)std,re f
| (4)

In this context, spec(τ, ω)avg,re f and spec(τ, ω)std,re f are the mean value and the stan-
dard deviation of spec(τ, ω) for all measurements in the reference quantity. In Figure 3, the
STFT and Z-score spectrograms of exemplary vibration measurements from a healthy and
a faulty robot gear are depicted. The Z-score-based spectrogram of the faulty measurement
shows more prominent changes compared to the STFT-based spectrogram.
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Figure 3. Comparison of STFT and Z-score spectrograms from healthy and faulty robot gear measurements.

2.2. Hi Evaluation Method

To compare the ability of the newly designed HI to cope with industrial robot applica-
tion characteristics, we followed a three step approach. First of all, we investigated how
well the designed HI can detect different kinds of faults in comparison to HIs from the
state-of-the-art. Second, we investigated the temperature sensitivity of HIs from the state-
of-the-art meeting this criterion and our HI. Third, we investigated the trend behavior of
HIs showing a low temperature sensitivity on data from two accelerated wear tests. These
three steps are now described more precisely. The overall process of our investigations is
also described in Figure 4.

Figure 4. Overall process of the evaluation method.

2.2.1. Varying Fault Detection Analysis

We used the FEMTO data set, which is described in detail in [35], to select HIs capable
of detecting different faults. The data set is available in [36]. This data set provides run
to failure vibration data from 16 identical bearings and for different faults and working
conditions defined by the applied load and the rotational speed. The acceleration sensor
sampled data with 25.6 kHz, one measurement has a length of 0.1 s and measurements were
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taken in equidistant timesteps of 10 s for all bearings. The test run for one bearing ended
when the signal from the acceleration sensor exceeded 20 g. Therefore, different numbers
of measurements are available per bearing ranging from 230 to 2803. We calculated
the HIs summarized in Table 1 for all measurements of one sensor. These HIs were
derived from several review papers regarding gearbox and bearing CM [37–40] and the
publications mentioned in Section 1. Therefore, the HI calculation was based either on the
raw acceleration signal, an enveloped signal as described in [41] or the residual signal as
suggested by [4]. Additionally, the newly designed HI presented in Section 2 was calculated
for the measurements based on the raw signals.

Table 1. Calculated HIs.

HI Name HI Abbreviation HI Source

Crest Factor CrF [40]
Dominant Frequency DomF [37]
Impulse Factor ImpF [38]
Kurtosis Kurt [39]
Margin Factor MarF [38]
Mean Mean [40]
Median Med [40]
Median Frequency MedF [37]
Peak Peak [39]
Peak to Peak PtP [39]
Root Mean Square RMS [39]
Skewness Skew [40]
Spectral Centroid SpC [37]
Spectral Flux SpF [37]
Spectral Rollover SpRO [37]
Spectral Entropy SpE [4]
Standard Deviation Std [39]
Discrete Wavelet RMS DWTRMS [19]
Discrete Wavelet Impulse Factor DWTImpF [19]
Discrete Wavelet Kurtosis DWTKurt [19,38]
Discrete Wavelet Entropy DWTEntr [4,19]
Discrete Wavelet Decomposition Rate DecompRate [18]
Hilbert Huang Entropy HHTEntr [30]
Intrinsic Mode Function RMS IMFRMS [33]
Intrinsice Mode Function Impulse Factor IMFImpF [33]
Intrinsic Mode Function Kurtosis IMFKurt [33]
Intrinsic Mode Function Entropy IMFEntr [33]
Time Domain Integral TDI [14]
Z-score Z-score -

To detect whether these HIs are sensitive to multiple faults, different techniques can
be applied. In addition to filter techniques, ensemble, wrapper and embedded methods
exist [42]. However, the latter three techniques combine classification or regression models
with HIs for their evaluation. Hence, this evaluation is always dependent on the used
models. Thus, we chose to use filter methods for the evaluation. Here, different figures of
merit for regression and classification tasks can be applied, such as trendability, robustness,
monotony or discriminance [42]. To combine these different performance indicators, we
fitted different basic functions on the HIs calculated for the last 20 percent of measurements
per bearing. These functions were first and second degree polynoms, exponential and
sigmoid functions. For each of the fits, we calculated the R² value. This means that we
received four R² values per HI and bearing. High R² values of these fits correlate with a
high trendability, monotony, robustness and discriminance, which are desirable for HIs. To
evaluate whether an HI can detect several damages, we considered only the best R² value
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per HI and bearing. We plotted the statistics of these 16 remaining R² values per HI as a
boxplot. Suitable HIs should show high R² values with low variance.

2.2.2. Temperature Sensitivity Analysis

HIs showing this behavior were analyzed regarding their temperature sensitivity. For
this purpose, we acquired vibration data from an industrial robot test rig. This test rig
consists of a KUKA KR510 industrial robot with an attached load of 365 kg. We attached
acceleration sensors close to the gearboxes as shown in Figure 5 on the right side. These
sensors have a sampling rate of 26 kHz. The acceleration direction of the sensors was
orthogonal to their contact area. For data acquisition, the robot performed a trajectory
where each joint was moved individually at different speeds in an angle area of 10°,
as described in Figure 6, and for different gear temperatures in the range of 25 °C and
60 °C and 5 °C steps. One measurement per axis lasted 8 s. The gear temperature was
measured at the gearbox cap with an infrared thermometer. For each temperature step, four
measurements were made. For each measurement at each temperature step, the remaining
HIs were calculated. To determine the temperature sensitivity, we divided the average
HI values calculated from measurements at the highest gear temperatures by the values
calculated from measurements at the lowest temperature. HIs with a high sensitivity were
eliminated for the last step.

Figure 5. Robot test beds.
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Figure 6. Measurement trajectory for the temperature sensitivity analysis.

2.2.3. Accelerated Wear Test Analysis

Here, we calculated the remaining HIs for measurements from two data sets from
accelerated robot wear tests to see how these HIs perform in a more industry like setting
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and how they cope with instationary velocity behavior. The first data set was collected
during a time range of approximately one year with an ABB robot of type RB 6600-255/2.55.
During the data acquisition, the robot performed an isolated movement of the second axis
in an angle area of 150° for each measurement. Vibration data were only acquired with
a sensor attached axially at the robot axis 2 gearbox. At the end of the experiment, the
gearbox was dismantled and faults on the bearings and the shafts of the gear were found.
A total of 2290 measurements, equally distributed over time, were taken for our analysis
from this data set. One measurement lasted 1.6 s and the sampling rate was 10 kHz. More
detailed information about this experiment can be found in [7,8]. The second data set
was derived from another experiment. Here, the second axis of an ABB IRB 7600-340/2.8
was moved in an angle area of 80° continuously over the time frame of three months.
The vibration sensor attached to the gearbox cap of axis 2 sampled with 20 kHz and one
measurement lasted 2.15 s. The measurement setup is presented on the left side in Figure 5.
The experiment ended after a roller element of a bearing had cracked and had blocked the
gear. In this time range, 920 vibration measurements were taken in total in equidistant
time steps. The faults, which occurred in both experiments, can be seen in Figure 7. In both
experiments, environmental conditions such as load and trajectory were kept constant.
Fluctuations of the temperature were kept at a minimum due to the constant movements
of the robots. In this way, signal changes are likely to be correlated to increasing wear.

Figure 7. Faults in the accelerated wear tests, lower image following [7].

3. Results

This section is divided in three parts. First, the results from the varying fault detection
experiments are shown. Secondly, the results from the temperature sensitivity analysis are
presented. Finally, the application of the HIs on the two accelerated wear tests is described.

3.1. Varying Fault Detection Analysis

From the 16 bearing experiments, the HIs presented in Table 1 were calculated. We
used the first 100 measurements per bearing as the reference quantity for the Z-score-HI
and set R to 128. Figure 8 shows the R² values for a selection of different HIs as a box
plot. The R² statistics for all HIs can be found in Appendix A. The abbreviations of the
HIs are explained in Table 1. The PtP-, Peak-, RMS-, Std- and Z-score-HI show the highest
R² values on average. They also show the lowest variance between the different bearings.
This means that these HIs detect different faults most reliably. Other HIs show also high
trend values but only for some of the bearings. HIs derived from the frequency-domain
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(DomF, SpC, SpE, SpF, SpRO) perform worse compared to HIs from the time-domain. The
preprocessing steps of enveloping the signal or calculating the residual signal do not affect
the HI trend behavior significantly, which can be seen in Tables A1–A3. The TDI-, and
DWTRMS-HI for specific frequency bands also show high average values with changing
variance (see Table A4). If these HIs would be used for robot gear condition monitoring,
the progress of all frequency band specific HIs would have to be tracked as different faults
stimulate changes in different frequency bands.

CrF DomF
ImpF

Kurt
MarF

Mean
Med

MedF
Peak

PtP RMS
Skew

SpC SpE SpF SpRO
Std Z-score

0
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lu
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Figure 8. R² values for different HIs and bearings from the FEMTO data set based on raw signals.

3.2. Temperature Sensitivity Analysis

Based on this result, we conducted the temperature sensitivity analysis for the PtP-,
Peak-, RMS-, Std-, TDI-, DWTRMS- and Z-score-HI. Here, we used one measurement per
temperature step as the reference quantity for the Z-score-HI and set R to 128. Figure 9
shows the change of the HIs per axis in percent for the PtP-, Peak-, RMS-, Std- and
Z-score-HI. The RMS- and Z-score-HI show the lowest temperature sensitivity overall.
Figure 10 shows the results for the DWTRMS-HIs. Here, high sensitivities for different
detail coefficient DWTRMS-HIs exist. Figure A1 shows the temperature sensitivity of the
TDI-HIs of different frequency bands. Here, a similar result can be seen compared to the
DWTRMS-HIs. The data of Figures 10 and A1 can also be found in Tables A5 and A6. In
general, the data from axis 4 show the highest temperature sensitivity for all HIs. The
comparably higher sensitivity of the HI values derived from data at axis 4 can be related to
the robot trajectory. During the trajectory, the robot arm was stretched out, which leads to
greater elasticity at the position of the sensor at axis 4. This can cause increased vibrations,
which are magnified under changing temperature influences. Given the results of the
temperature sensitivity analysis, we analyzed the data sets from the accelerated wear tests
with only the RMS- and the Z-score-HI. The other HIs were excluded due to their high
temperature sensitivity. Even though some frequency band specific DWTRMS-HIs and
TDI-HIs show low sensitivity, they were excluded as robot gear faults do not have to
stimulate these frequency bands with low sensitivity.
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Figure 9. Temperature sensitivity for different HIs and robot axes.
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Figure 10. Temperature sensitivity for different DWTRMS-HIs and robot axes.

3.3. Accelerated Wear Tests Analysis

In this analysis, we used the first 100 measurements as the reference quantity for the
Z-score-HI and set R to 256. For smoothing, we applied a rolling average with a window
length of 15 on both HI series. The progress of the HIs in the accelerated wear test of the
ABB IRB 7600 is shown in Figure 11. Both HIs show a plateau with increased values at the
end of the experiment. It can be assumed that, at this point in time, faults have already
been present. Here, the increased HI values over a longer time period could have been
used as a decision criterion for maintenance actions.
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Figure 11. Z-score-HI and RMS-HI for the IRB 7600 experiment.

The measurements at the very end show decreased values again. We assume that this
decrease is correlated to a part of the bearing roller. In the end of the experiment, one of
the roller elements showed a large pit. During the measurements showing the higher HI
values this detached part of the roller element could have been still slightly fixed at the
roller element and thus could have caused high vibration. After full detachment, this noise
level decreased again. For the measurements before the plateau, the RMS-HI shows higher
fluctuations compared to the Z-score-HI. For instance, the RMS-HI shows a first high peak
around measurement 100. Such peaks could lead to false alarms in a condition monitoring
scenario and should be avoided.

The progress of the HIs in the other accelerated wear test performed with the ABB
IRB 6600 is shown in Figure 12. Here, the Z-score-HI shows a trending behavior and
the RMS shows a stationary progress. Both HIs show a high increase during the last
measurements. In this experiment, the trending behavior of the Z-score could have been
a criterion to execute maintenance actions. This information is not present in the RMS-
progress. Based on the fact that the Z-score showed a better trend behavior in the ABB IRB
6600 experiment and less noisy behavior in the ABB IRB 7600 experiment, we suggest the
use of the Z-score-HI for the condition monitoring of robot gears.
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Figure 12. Z-score-HI and RMS-HI for the IRB 6600 experiment.
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4. Discussion

The discussion is divided in four parts. First, some remarks regarding our designed
HI are given. Afterwards, three parts make up the Results subsections.

To derive the spectrograms required for the Z-score-HI, the length of the window
function must be defined. High values for R result in a high frequency resolution and low
values in a high time resolution. For the individual experiments, we chose window lengths
that lead to a good compromise between time and frequency resolution by inspecting
spectrograms created with different window lengths. We chose window lengths that lead
to spectrograms appearing the least noisy in a visual inspection. In an industrial setting, an
automated approach should be developed for this dependent on the robot’s trajectory and
the used sensor.

The motivation to use the FEMTO data set to investigate HI performance was to assess
HIs’ capability to detect multiple faults. Within a robot gearbox, which are mostly RV
reducers, not only bearings but also the gear teeth can have faults. Such faults are not
taken into account by our analysis explicitly. However, the bearing faults present in the
FEMTO data set, e.g., pitting, are similar to typical gear teeth or shaft damage from a signal
analysis point of view. Damage from all components modulate the acceleration signals
at a specific frequency and its sidebands. Exactly this capability to track such changes in
the signal was investigated in our analysis. There also exist HIs that track energy changes
at the specific component fault frequencies. Such HIs were excluded from our analysis
because expert knowledge about the geometric characteristics of the gears, e.g., the bearing
diameters or the number of roller elements, is required to calculate these HIs. This expert
knowledge is usually not available to industrial robot users. We also excluded HIs that
could be derived automatically from machine learning models, such as autoencoders, as
the physical interpretation of these HIs is difficult and hence a transferability between
different robot systems is questionable from our point of view.

Regarding the results of the temperature sensitivity analysis, it must be pointed out
that the results are valid only for the chosen robot trajectory. As the dynamic behavior of
the robot changes within its working space, this analysis should be performed individually
for trajectories and robot systems. However, from a theoretical point of view, the Z-score-HI
possesses the ability to cope with these temperature fluctuations independently of the
trajectory. Temperature variations lead to variance in the STFT spectrograms. This variance
is taken into account in the spec(τ, ω)avg,re f and spec(τ, ω)std,re f during the initialization
phase. Hence, Z-score-HIs derived from measurements from functional robot gears and
different temperatures will show only little differences in the Z-score-HI value. This
becomes more clear considering Figure 13. Here, the STFT and Z-score spectrograms from
two vibration measurements of the temperature sensitivity experiment are shown. On the
left side, the spectrograms from a cold gear measurement are depicted. On the right side,
the spectrograms from a warm gear measurement are shown. Differences are visible in
the STFT spectrograms around seconds 1 and 2. No differences are visible in the Z-score
spectrograms. The scales of the STFT spectrograms reach from −5 to 0 and the scales of the
Z-score spectrograms from 0 to 1.5. Hence, the relative changes of the STFT spectrograms
are bigger compared to the Z-score spectrograms. In this example, the total relative change
in energy in the STFT spectrogram is 9.15 percent, whereas the total relative change in the
Z-score spectrogram is just 1.63 percent.

Finally, the results from the accelerated wear tests show noisy progress over time.
This hinders a simple or automated detection of faults in a condition monitoring behavior.
To establish an automated CM system, a suitable trend detection in combination with
an outlier detection system must be set up. A trend detection system could identify HI
progress shown as in Figure 12, whereas an outlier detection system could detect progress
as depicted in Figure 11. The development of such a system also marks the outlook of our
future work.
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Figure 13. Spectrograms from cold and warm gear measurements.

5. Conclusions

Condition monitoring of robot gears has the potential to decrease production system
downtimes. The state-of-the-art provides many health indicators to track the health state
of gears. We analyzed these health indicators regarding specific requirements rising from
typical industrial robot applications. These requirements are the ability to detect different
faults, low temperature sensitivity and the capability to deal with instationary velocity
behavior. Additionally, we suggested a new health indicator based on STFT spectrograms
and Z-scores that can cope with these requirements. Our analysis showed that the RMS
health indicator and our suggested health indicator meet the defined requirements the best.
Data from accelerated wear tests show that for an automatic condition monitoring system
a combination of a trend detection and an outlier detection system that can deal with a
noisy signal is required.
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Appendix A

Table A1. R² statistics for HIs derived from the normal signal.

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std Z-Score

Mean 0.231 0.354 0.287 0.336 0.296 0.034 0.063 0.467 0.822 0.844 0.887 0.242 0.599 0.488 0.514 0.491 0.887 0.934
Std 0.246 0.351 0.289 0.334 0.298 0.076 0.147 0.311 0.173 0.145 0.215 0.289 0.298 0.281 0.225 0.322 0.215 0.080
Min 0.005 0.013 0.007 0.004 0.006 0.003 0.007 0.024 0.259 0.397 0.082 0.004 0.025 0.067 0.135 0.035 0.082 0.644
Max 0.706 0.998 0.764 0.869 0.773 0.323 0.618 0.941 0.987 0.985 0.990 0.888 0.944 0.971 0.900 0.984 0.990 0.983

Table A2. R² statistics for HIs derived from the enveloped signal.

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpE SpF SpRO Std

Mean 0.215 0.139 0.284 0.299 0.296 0.776 0.819 0.496 0.816 0.816 0.872 0.275 0.605 0.464 0.462 0.514 0.898
Std 0.229 0.248 0.283 0.328 0.291 0.296 0.248 0.318 0.178 0.178 0.227 0.303 0.286 0.298 0.276 0.309 0.131
Min 0.005 0.001 0.006 0.001 0.005 0.010 0.014 0.023 0.246 0.246 0.074 0.008 0.046 0.013 0.012 0.007 0.427
Max 0.635 0.997 0.741 0.919 0.766 0.977 0.983 0.981 0.988 0.988 0.989 0.905 0.939 0.978 0.901 0.987 0.987

Table A3. R² statistics for HIs derived from the residual signal as suggestet by [4].

CrF DomF ImpF Kurt MarF Mean Med MedF Peak PtP RMS Skew SpC SpF SpRO Std SpE

Mean 0.329 0.423 0.348 0.365 0.355 0.032 0.088 0.608 0.847 0.859 0.884 0.237 0.701 0.609 0.605 0.884 0.534
Std 0.270 0.348 0.303 0.337 0.312 0.089 0.187 0.292 0.178 0.153 0.221 0.319 0.196 0.202 0.213 0.221 0.316
Min 0.010 0.021 0.003 0.007 0.018 0.001 0.001 0.016 0.211 0.328 0.082 0.003 0.425 0.147 0.132 0.083 0.023
Max 0.802 0.992 0.828 0.858 0.830 0.374 0.671 0.988 0.987 0.987 0.990 0.943 0.959 0.930 0.977 0.990 0.969
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Table A4. R² statistics for HIs derived from the time–frequency-domain. DWT-, IMF-, and TDI-
based HIs were calculated for different frequency bands. The frequency bands are encoded in the
abbreviation of the HI name. Large numbers correspond to high frequency bands for TDI-HIs and
low frequency bands for DWT- and IMF-HIs.

Mean Std Min Max

DWTRMS5 0.891 0.207 0.099 0.990
DWTRMS4 0.889 0.223 0.032 0.988
TDI33 0.882 0.087 0.583 0.965
DWTRMS6 0.882 0.216 0.117 0.991
TDI43 0.871 0.156 0.296 0.983
IMFRMS2 0.869 0.227 0.014 0.991
TDI36 0.867 0.203 0.095 0.976
TDI14 0.865 0.154 0.327 0.970
TDI35 0.864 0.202 0.096 0.981
TDI22 0.862 0.196 0.135 0.963
TDI34 0.861 0.197 0.114 0.974
TDI23 0.860 0.181 0.200 0.961
TDI21 0.859 0.197 0.147 0.971
DWTRMS3 0.859 0.245 0.019 0.998
TDI37 0.857 0.208 0.072 0.969
TDI39 0.853 0.221 0.017 0.975
TDI15 0.847 0.218 0.035 0.982
IMFRMS1 0.845 0.210 0.091 0.978
TDI44 0.844 0.223 0.004 0.984
TDI13 0.842 0.224 0.015 0.975
TDI12 0.841 0.218 0.022 0.969
TDI40 0.840 0.215 0.072 0.969
TDI24 0.837 0.223 0.027 0.954
TDI41 0.836 0.221 0.061 0.970
TDI16 0.833 0.228 0.022 0.969
TDI42 0.830 0.221 0.072 0.964
TDI18 0.830 0.237 0.044 0.976
TDI10 0.830 0.214 0.025 0.966
TDI5 0.827 0.273 0.032 0.995
TDI6 0.825 0.263 0.015 0.983
TDI8 0.825 0.206 0.051 0.948
TDI9 0.824 0.209 0.047 0.954
TDI4 0.823 0.273 0.151 0.995
TDI45 0.820 0.220 0.013 0.986
TDI20 0.818 0.277 0.066 0.963
TDI38 0.816 0.259 0.038 0.972
TDI32 0.815 0.272 0.090 0.968
TDI46 0.813 0.218 0.023 0.987
TDI7 0.813 0.264 0.008 0.973
TDI47 0.812 0.217 0.013 0.988
TDI11 0.812 0.251 0.017 0.966
TDI17 0.808 0.293 0.005 0.967
DWTRMS2 0.804 0.297 0.101 0.981
IMFRMS3 0.803 0.243 0.025 0.961
TDI3 0.803 0.290 0.148 0.987
TDI49 0.792 0.215 0.018 0.990
TDI19 0.782 0.304 0.026 0.959
TDI28 0.782 0.270 0.014 0.960
TDI50 0.780 0.216 0.026 0.989
TDI52 0.770 0.216 0.025 0.989
TDI30 0.769 0.293 0.049 0.964
TDI25 0.769 0.290 0.025 0.966
TDI53 0.767 0.215 0.025 0.989
TDI54 0.766 0.215 0.025 0.990
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Table A4. Cont.

Mean Std Min Max

TDI48 0.765 0.252 0.024 0.988
TDI55 0.765 0.215 0.028 0.989
TDI58 0.762 0.215 0.026 0.990
TDI57 0.761 0.216 0.028 0.989
TDI60 0.756 0.222 0.028 0.989
TDI31 0.747 0.312 0.073 0.971
TDI51 0.747 0.253 0.022 0.989
TDI29 0.744 0.297 0.032 0.961
TDI2 0.744 0.319 0.069 0.977
DWTRMS1 0.740 0.306 0.026 0.978
TDI27 0.739 0.292 0.027 0.954
TDI63 0.736 0.253 0.028 0.989
TDI62 0.736 0.254 0.026 0.990
TDI59 0.735 0.254 0.024 0.990
TDI56 0.735 0.254 0.023 0.989
TDI61 0.734 0.254 0.024 0.989
TDI64 0.732 0.254 0.024 0.989
TDI26 0.712 0.342 0.043 0.964
IMFRMS4 0.665 0.335 0.035 0.985
HHTentr 0.646 0.317 0.021 0.982
TDI1 0.588 0.313 0.011 0.937
IMFRMS5 0.567 0.313 0.016 0.934
IMFRMS6 0.460 0.223 0.110 0.829
DecompRate 0.458 0.292 0.075 0.974
DWTKurt5 0.383 0.296 0.014 0.821
DWTKurt2 0.381 0.318 0.007 0.815
DWTEntr6 0.380 0.319 0.017 0.991
DWTImpF2 0.377 0.308 0.005 0.806
DWTKurt4 0.361 0.315 0.007 0.851
DWTKurt6 0.353 0.330 0.003 0.860
DWTImpF6 0.327 0.280 0.001 0.796
DWTImpF5 0.326 0.274 0.001 0.766
IMFRMS7 0.326 0.271 0.026 0.863
TDI0 0.325 0.246 0.037 0.906
DWTImpF3 0.325 0.260 0.017 0.701
IMFKurt1 0.320 0.314 0.009 0.816
DWTKurt3 0.319 0.296 0.007 0.827
DWTImpF4 0.302 0.273 0.004 0.748
IMFImpF1 0.288 0.280 0.009 0.838
IMFKurt3 0.287 0.288 0.017 0.843
IMFKurt4 0.286 0.222 0.024 0.677
DWTKurt1 0.282 0.217 0.012 0.722
IMFImpF4 0.277 0.202 0.014 0.601
IMFKurt2 0.263 0.274 0.010 0.689
IMFEntr2 0.254 0.265 0.012 0.867
DWTEntr5 0.254 0.291 0.001 0.989
DWTImpF1 0.251 0.213 0.006 0.660
IMFImpF3 0.242 0.253 0.016 0.761
IMFEntr1 0.232 0.280 0.009 0.944
IMFImpF2 0.224 0.185 0.011 0.602
IMFEntr3 0.207 0.269 0.013 0.888
IMFKurt5 0.184 0.215 0.007 0.822
IMFRMS8 0.181 0.238 0.000 0.682
IMFImpF5 0.164 0.187 0.007 0.693
IMFEntr4 0.153 0.138 0.005 0.524
DWTEntr4 0.136 0.235 0.005 0.969
IMFImpF6 0.121 0.118 0.010 0.377
IMFKurt6 0.121 0.125 0.010 0.428
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Table A4. Cont.

Mean Std Min Max

IMFEntr6 0.105 0.102 0.009 0.393
DWTEntr3 0.101 0.187 0.003 0.783
IMFEntr5 0.095 0.095 0.002 0.367
IMFEntr7 0.089 0.092 0.003 0.276
DWTEntr2 0.062 0.111 0.001 0.417
IMFImpF7 0.048 0.039 0.002 0.134
IMFKurt7 0.042 0.033 0.002 0.106
IMFEntr8 0.032 0.111 0.000 0.461
DWTEntr1 0.031 0.034 0.003 0.141
IMFImpF8 0.026 0.028 0.000 0.078
IMFKurt8 0.021 0.031 0.000 0.114
IMFRMS9 0.000 0.000 0.000 0.000
IMFKurt9 0.000 0.000 0.000 0.000
IMFImpF9 0.000 0.000 0.000 0.000
IMFEntr9 0.000 0.000 0.000 0.000
IMFRMS10 0.000 0.000 0.000 0.000
IMFImpF10 0.000 0.000 0.000 0.000
IMFKurt10 0.000 0.000 0.000 0.000
IMFEntr10 0.000 0.000 0.000 0.000
IMFRMS11 0.000 NaN 0.000 0.000
IMFImpF11 0.000 NaN 0.000 0.000
IMFKurt11 0.000 NaN 0.000 0.000
IMFEntr11 0.000 NaN 0.000 0.000

Table A5. Temperature sensitivity of the different DWTRMS-HIs.

1 2 3 4

DWTRMS1 4.944734 41.833250 13.225817 27.640727
DWTRMS2 9.431779 61.784386 20.966405 52.444752
DWTRMS3 11.100870 67.906341 17.372290 64.555873
DWTRMS4 16.176322 88.064015 19.294715 82.614996
DWTRMS5 13.631686 87.439763 17.451681 90.271799
DWTRMS6 10.015797 70.887870 19.141733 93.391435

Table A6. Temperature sensitivity of the different TDI-HIs.

Axis 1 Axis 2 Axis 3 Axis 4

TDI0 7.887680 3.623626 4.032428 9.856386
TDI1 7.345230 13.780192 1.419329 15.104011
TDI2 5.702217 46.387687 23.876372 24.639909
TDI3 6.721355 47.590460 22.691756 42.390072
TDI4 10.873829 59.621503 24.158641 38.671919
TDI5 13.127752 74.783219 17.398075 54.988992
TDI6 14.670516 59.576255 12.953424 75.739203
TDI7 18.161779 57.596831 17.545132 65.254182
TDI8 15.090433 70.501830 11.004508 68.946535
TDI9 19.130819 94.756567 10.267873 63.083458
TDI10 19.817337 140.434648 22.212611 48.494003
TDI11 31.037879 152.473705 28.134321 75.366125
TDI12 33.675873 93.057559 18.953184 98.385403
TDI13 26.250892 79.866002 17.152706 92.669107
TDI14 11.635896 58.286933 24.510069 86.809206
TDI15 23.377379 46.907903 16.496553 72.502066
TDI16 30.064213 55.243855 11.119799 59.119520
TDI17 21.268743 64.332588 7.938803 79.776374



Robotics 2021, 10, 80 18 of 20

Table A6. Cont.

Axis 1 Axis 2 Axis 3 Axis 4

TDI18 9.808639 52.933143 4.197856 87.106639
TDI19 3.420408 57.102301 3.507140 94.175140
TDI20 0.062629 58.697728 5.538016 107.584154
TDI21 17.433815 60.093605 12.872000 112.916761
TDI22 23.980438 65.038102 9.486835 164.461250
TDI23 23.749318 91.055389 11.379480 152.353906
TDI24 11.483126 109.842746 21.619409 121.442989
TDI25 6.596706 85.653753 23.250270 111.067700
TDI26 16.057350 68.794132 20.724566 88.922105
TDI27 16.557670 68.373539 18.973086 114.047417
TDI28 19.372075 65.937430 13.256130 140.639806
TDI29 22.613427 68.081118 27.002980 129.175849
TDI30 15.441241 68.255349 31.219217 111.829705
TDI31 4.729546 68.353458 28.824115 116.071704
TDI32 1.112630 69.440683 18.666493 104.393062
TDI33 3.010018 66.107354 13.594603 104.544706
TDI34 6.223136 49.771212 14.597765 135.411471
TDI35 10.119042 33.536590 4.257545 167.094574
TDI36 0.777079 33.963467 0.393118 158.518025
TDI37 0.893584 47.211867 18.367647 110.996278
TDI38 8.789406 39.550853 33.938136 55.254421
TDI39 18.286551 4.903817 23.615781 35.301715
TDI40 28.767525 34.224059 6.485524 47.061077
TDI41 21.670495 39.728416 9.696093 33.227046
TDI42 4.437817 59.765908 18.549288 79.919517
TDI43 0.147523 52.939389 19.848252 83.294446
TDI44 0.446057 53.539446 19.351326 79.595920
TDI45 0.657082 52.356513 19.032092 77.824663
TDI46 0.199947 55.873800 19.528656 75.827413
TDI47 1.388775 57.010168 19.014225 76.394986
TDI48 2.097117 57.774286 18.889822 76.077127
TDI49 3.164926 58.959065 18.696796 75.814731
TDI50 3.851514 59.592621 18.410404 75.719379
TDI51 4.577587 60.339446 18.308180 75.543086
TDI52 5.160258 60.877095 18.211340 75.458546
TDI53 5.659315 61.365144 18.069126 75.348426
TDI54 6.077128 61.761218 17.976632 75.218693
TDI55 6.436426 62.077612 17.945549 75.121278
TDI56 6.763257 62.361230 17.851473 75.050770
TDI57 7.080730 62.591447 17.781367 74.975471
TDI58 7.369667 62.781646 17.783673 74.880725
TDI59 7.622924 62.946830 17.710259 74.853578
TDI60 7.828532 63.078384 17.670637 74.815067
TDI61 7.974544 63.177746 17.693925 74.733074
TDI62 8.072173 63.259698 17.636933 74.758740
TDI63 8.128858 63.308959 17.623715 74.750804
TDI64 8.147158 63.322210 17.664456 74.689287
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Figure A1. Temperature sensitivity for the different TDI-HIs and robot axes.
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