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Simple Summary: Management of brain metastases adjacent to the motor cortex and pyramidal
tract bears an elevated risk for treatment-related morbidity and, hence, a reduced quality of life. For
safe resection, navigated transcranial magnetic stimulation (nTMS) motor mapping combined with
diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS) is used to guide the neurosurgeon
to preserve motor function. So far, during radiotherapy motor structures are not respected as organs
at risk. In this study, the practicability of DTI-FTmot.TMS in adjuvant radiotherapy planning of brain
metastases was investigated, demonstrating a potentially significant dose reduction to cortical and
subcortical motor structures.

Abstract: Background: Resection of brain metastases (BM) close to motor structures is challenging
for treatment. Navigated transcranial magnetic stimulation (nTMS) motor mapping, combined with
diffusion tensor imaging (DTI)-based fiber tracking (DTI-FTmot.TMS), is a valuable tool in neurosurgery
to preserve motor function. This study aimed to assess the practicability of DTI-FTmot.TMS for local
adjuvant radiotherapy (RT) planning of BM. Methods: Presurgically generated DTI-FTmot.TMS-based
corticospinal tract (CST) reconstructions (FTmot.TMS) of 24 patients with 25 BM resected during later
surgery were incorporated into the RT planning system. Completed fractionated stereotactic intensity-
modulated RT (IMRT) plans were retrospectively analyzed and adapted to preserve FTmot.TMS.
Results: In regular plans, mean dose (Dmean) of complete FTmot.TMS was 5.2 ± 2.4 Gy. Regarding
planning risk volume (PRV-FTTMS) portions outside of the planning target volume (PTV) within
the 17.5 Gy (50%) isodose line, the DTI-FTmot.TMS Dmean was significantly reduced by 33.0% (range,
5.9–57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (p < 0.001). There was no significant decline in the
effective treatment dose, with PTV Dmean 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy (p = 0.063) after adaption.
Conclusions: The DTI-FTmot.TMS-based CST reconstructions could be implemented in adjuvant IMRT
planning of BM. A significant dose reduction regarding motor structures within critical dose levels
seems possible.
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1. Introduction

Brain metastases (BM) are the most frequent brain tumors, accounting for about 50% of
all intracranial neoplasms, and the incidence is tenfold higher than that for gliomas [1].
Overall, 10–40% of all cancer patients will develop BM over the course of the disease and
the incidence of BM is increasing, which results from better radio-oncologic and systemic
treatment options for many cancer types, with improved survival and hence higher risk for
BM during lifetime [2–4].

Large or symptomatic lesions can be disabling, thus requiring rapid resection for fast
and persisting symptom relief [5,6]. However, especially BM close to the primary motor
cortex and the corticospinal tract (CST) bears a high risk for treatment-related decline in mo-
tor function. Therefore, these lesions are challenging for treatment, underscoring the need
for tools that can help to preserve motor function and reduce treatment-related morbidity.
Lately, navigated transcranial magnetic stimulation (nTMS) has emerged as a valuable tool
in neurosurgery [7,8]. With linking stimulation to three-dimensional (3D) neuronavigation,
real-time motor mapping allows for an individual location of functional cortical motor
spots that can differ from anatomical landmarks due to a tumor’s space-occupying effects,
paired with potential functional reorganization [9–12]. In addition, nTMS motor mapping
has been recently combined with diffusion tensor imaging fibertracking (DTI-FTmot.TMS),
thus offering the possibility to trace the course of the individually mapped CST from
the cortex to the medulla oblongata, in spatial relation to the lesion [13–15]. Therefore,
preoperative DTI-FTmot.TMS has been suggested to facilitate tumor resection while keeping
motor function stable and, consequently, could improve clinical outcome [16–18].

Despite best medical treatment, local recurrence rates can still be up to 50% after
removal of BM, which is related to remnant tumor cells necessitating adjuvant radiotherapy
of the resection cavity to improve local control [19,20]. Although modern techniques
are applied for adjuvant radiotherapy (RT), there are growing indications for radiation-
mediated decline of motor function [21–23]. Routine sparing of the precentral gyrus and
CST in RT planning is not supported so far, mainly because the real clinical impact is
not sufficiently proven [24–28]. However, in the light of prolonged survival and better
prognosis for cancer patients, preserving a patient’s quality of life and self-independence is
of growing concern.

Against this background, this study investigated the implementation of DTI-FTmot.TMS
in adjuvant stereotactic RT of motor-eloquent BM for avoidance of motor structures.

2. Materials and Methods
2.1. Patient Selection

In this retrospective monocentric study, 24 patients with 25 BM resected during later
surgery that were located close to the CST were included. All patients underwent tumor
resection after having received nTMS motor mapping. After surgery, they were treated
with hypo-fractionated stereotactic RT (hFSRT) to the surgical bed. Medical records were
reviewed for demographic (sex, age, and grade-prognostic assessment (GPA) [29]), patho-
logic, oncologic treatment, RT planning, and clinical outcome data. Dosimetric data were
extracted from the treatment planning system (TPS; Aria, version 13.0; Varian Medical
Systems, Palo Alto, CA, USA; dose calculation AAA 13, dose grid spacing 2.5 mm). All
patients were operated and irradiated at the academic medical centre in the period from
June 2016 to October 2020.

2.2. Navigated Transcranial Magnetic Stimulation

Preoperative nTMS motor mapping was performed before tumor resection, based
on a 3D contrast-enhanced T1-weighted sequence (repetition time (TR)/echo time (TE):
9/4 ms, 1 mm3 isovoxel covering the whole head) from presurgical cranial magnetic
resonance imaging (MRI). These images were imported into the Nexstim eXimia NBS
system (version 4.3. and 5.1.1; Nexstim Plc., Helsinki, Finland). The hemisphere ipsilateral
to the metastases was motor mapped. Single pulse application with an intensity of 105% of
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the individual resting motor threshold (rMT) was used for stimulation of the cortical
representations of the upper extremity, accordingly, for the lower extremity, a single pulse
application with an intensity of least 130% of the rMT was applied [8,26,27]. A stimulation
point evoking a motor-evoked potential (MEP) with an amplitude ≥50 µV and an MEP
onset latency within the common limits for the upper or lower extremities was defined as a
motor-positive spot [30–32].

2.3. Diffusion Tensor Imaging Fiber Tracking

DTI-FTmot.TMS was generated based on the nTMS motor maps, applying a determin-
istic algorithm implemented in Brainlab Elements (version 3.1.0; Brainlab AG, Munich,
Germany). Thus, presurgical MRI data including DTI (TR/TE: 5000/78 ms, voxel size
of 2 × 2 × 2 mm3, one volume at b = 0 s/mm2, and 32 volumes at b = 1000 s/mm2),
anatomical T2-weighted, and contrast-enhanced T1-weighted sequences were fused, and
both the motor-positive spots and the ipsilateral brain stem were dedicated as regions of
interest (ROIs) [8,13,33,34]. Fibers in between the ROIs (motor-positive nTMS spots and
brain stem) with a minimum fiber length of 100 mm and passing a fractional anisotropy
threshold of 0.1–0.2 were detected. A CST reconstruction originating from motor-eloquent
areas as identified by nTMS was finally presented as a result from this process [8,13,33,34].

2.4. Elastic Image Fusion

For further data processing of the DTI-FTmot.TMS results, preoperative and postopera-
tive MRI data (with the same sequences) were fused. MRI-based elastic fusion (EF) was
performed for the purpose of compensating for potential brain shift after tumor removal
of brain metastases [35–37]. Correction of image distortions and shifts particularly for
diffusion MRI were obtained using the EF algorithm (Brainlab AG, Munich, Germany).
Selected structures as the presurgical mapped CST were considered concomitantly in this
process [35–37].

Regarding this process, the edges of the metastasis based on the contrast-enhanced
T1-weighted MRI-sequence were visually defined, and the spot closest to the DTI-FTmot.TMS
based CST was tagged. Linear measurements were then carried out from the tumor edge
to the nearest CST fibers, and the distance was saved and defined as the minimum lesion-
to-CST distance [14,15,38].

2.5. Target Delineation and Radiotherapy Planning

Presurgical MRI datasets with EF and DTI-FTmot.TMS results of 24 patients who had
previously undergone local adjuvant RT after BM resection were imported into the TPS
(Eclipse, version 13.0; Varian Medical Systems, Palo Alto, CA, USA) for retrospective dosiet-
ric adaption. These images were fused with the original planning computed tomography
(CT) scans using the automatic registration mode. In case of inaccuracy, manual registration
was conducted.

The DTI-FTmot.TMS results appeared as 3D objects. Pre-existing treatment plans were
utilized. Target delineation was achieved as follows: the resection cavity including any
residual tumor, in cases of subtotal resection and the surgical tract were defined as gross
total volume (GTV), according to the valid consensus guideline [28]. Moreover, to cover
microscopic spread, a margin of 2 mm was added to the GTV, thus delineating the clinical
target volume (CTV) with adaptation to anatomical barriers such as the skull, falx, ten-
torium, and brain stem. Finally, in regard to patient movement, the CTV was expanded
by 1 mm to cover minor setup errors, defining the representing planning target volume
(PTV). The organs at risk (OARs, optical nerves, optical chiasm, brain stem, cochleae, lenses,
lacrimal glands, bulbi, pituitary gland, and hippocampi) were delineated in line with an
established consensus guideline [24]. Thereafter, the respective DTI-FTmot.TMS of each
patient was contoured as planning risk volume (PRV; FTmot.TMS) within the ARIA thresh-
olding mode (range, 500- to 2000 Hounsfield units), with manual corrections. Mostly dual
volumetric arc IMRT (VMAT) plans were calculated, with only one 3D plan applied. Dose
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prescription was 7 × 5 Gy, which was prescribed to the conformally enclosing 95%-isodose
line. In two patients, original fractionation was 6 × 5 Gy, so plans were re-calculated to
7 × 5 Gy for better comparison. Plan normalization was homogenized for all plans, with
95% of the prescribed dose covering 99.0% of the target volume.

RT-mediated cortical atrophy and injury of white matter (WM) tracts appear dose-
dependent beyond 20 to 30 Gy [39,40]. Subsequently, treatment plans were adapted by
reducing the dose as much as reasonably achievable (spare) to FTmot.TMS segments within
the 17.5 Gy-isodose line, equivalent to 19.25 Gy in 2 Gy fractions with an alpha/beta of
3 (EQD23). Portions of FTmot.TMS within the PTV (overlap) were not spared, to ensure
adequate treatment dose. All planning was performed by one experienced medical physicist
to exclude inter-observer variability. In addition, the inverse planning process was strictly
standardized, regarding constraints and structures used. In this retrospective analysis
adapted plans were not used for real patient treatment.

2.6. Dosimetric Analysis and Comparative Evaluation

Spatial relation of FTmot.TMS and the dose distribution was characterized by the pro-
portional overlaps of FTmot.TMS with specific isodose levels, as expressed in relative volume
of FTmot.TMS receiving at least 100% (35 Gy), 95% (33.25 Gy), 90% (31.5 Gy), 50% (17.5 Gy),
and 25% (8.75 Gy) of the prescribed dose (V100%35Gy, V95%33.25Gy, V90%31.5Gy, V50%17.5Gy,
and V25%8.75Gy), based on the dose-volume histogram (DVH). For both plans (FTmot.TMS
regular and FTmot.TMS spared), DVH parameters for PTV, FTmot.TMS, and organs at risk
(optical nerves, optic chiasm, brain stem, hippocampi, lacrimal glands, lenses, eye bulbs,
cochleae, and pituitary gland) were evaluated for median dose (Dmean) and maximum
dose (Dmax). Dose to healthy brain was assessed by the absolute volume of brain (minus
cavity) receiving at least 28 Gy (V28Gy) in seven fractions, which is the equivalent biological
effective dose (alpha/beta = 3) of 12 Gy (V12Gy) in single-fraction radiosurgery, or 24.4 Gy
(V24.4Gy) for FSRT with 5 fractions [26,41].

Dose conformity was assessed based on the following parameters and formulas:

I. Coverage =
PTIV
PTV

[42].
This parameter is applied to see how well the PTV is covered by the prescription

dose, where PTIV is the target volume encompassed by the prescription isodose volume
(PIV)(=PIV ∩ PTV). A value of/or close to 1.0 would indicate a perfect coverage.

II. Selectivity =
PTIV
PIV

[42].
Selectivity is used as an indicator to see how ideal the prescription dose fits the

PTV, thus covering areas beyond the PTV. In other words, higher values stand for less
unnecessary coverage of normal brain beyond the PTV and hence better selectivity.

III. Conformity index CIPaddick =
PTIV × PTIV
PTV × PIV

[43].

Expressing coverage × selectivity, plan quality decreases with lower index values,
with an ideal value being one.

Clinical motor function both preoperatively and postoperatively, on follow-ups, was
analysed on retrospective chart review and expressed according to the British Medical
Research Council scale (0–5) with 0/5 = no contraction, 1/5 = flicker/trace contraction,
2/5 = active movement (AM) with gravity eliminated, 3/5 = AM against gravity, 4/5 = AM
against resistance, and 5/5 = full strength [44].

For assessment of local control, images were assessed in adaption of the response
assessment criteria, proposed by the Response Assessment in Neuro-Oncology Brain Metas-
tases (RANO-BM) group [45]. Radiographical response was measured multidimensionally
and was recorded for every resection cavity postoperatively, at every follow-up visit. Le-
sions were considered measurable in case of nodular contrast enhancement visible on two
or more axial slices and measurable with a minimum size of 5 mm (longest diameter (LD)).
For measurable lesions >5 mm and <10 mm, an increase or decrease in LD of <3 mm was
considered a stable disease (SD), and an increase of≥3 mm compared to early postoperative
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MRI (within 48 h after resection) was considered a progressive disease (PD). Regarding
measurable lesions of ≥10 mm, a minimum increase of 20% in LD was considered PD,
otherwise SD.

2.7. Statistical Analyses

Statistical analyses and creation of graphs were conducted with SPSS (version 24.0;
IBM Inc., Armonk, NY, USA). Descriptive statistics were applied for patient- and tumor-
related characteristics as well as doses and volumes investigated in the present analysis.

Tests for statistical significance between values were performed using Pearson´s
correlation analyses and t-tests for paired samples. Survival and local progression were
estimated using the Kaplan–Meier function, and for local progression, patients dying
without evidence of local recurrence, and patients remaining free of local recurrence at the
end of follow-up were censored. The threshold of statistical significance was set at p < 0.05.

3. Results
3.1. Patient Characteristics

In this study, a total of 24 patients with 25 histo-pathologically proven BM close to
the motor cortex and/or CST were analysed, which were resected during neurosurgery.
The female-to-male ratio was 17:7 and the median age at diagnosis was 60.4 years (range,
32–78 years). Furthermore, non-small cell lung cancer (n = 7) and breast cancer (n = 5) were
the most frequent primary tumors.

The left hemisphere was predominantly affected (16 vs. 8), 14 BM were in the frontal
lobe and 7 in the parietal lobe. The mean graduated prognostic assessment (GPA) score
was 2.2 ± 0.8 (range, 1–3.5) and 2.0 ± 0.9 (range, 0.5–3.5) pre- and postoperatively, respec-
tively (p = 0.07). Mean volume of the resection cavity as measured on planning MRI was
7.1 mL ± 8.6 (range, 0.5–31 mL) and the volume of FTmot.TMS was 54.6 mL ± 18.7 (range,
19.5–91.0 mL), respectively. The closest distance from the edge of the cavity to the CST
(lesion-to-CST-distance) had a mean of 0.28 cm (range, 0–1.2 cm).

The PTV overlapped with FTmot.TMS, in 17 out of 25 cases, on average with 0.5% (range,
0–1.2%) of FTmot.TMS. Between FTmot.TMS and PTV, the mean distance was 0.1 cm (range,
0–1.3 cm).

Summarized patient and tumor characteristics are displayed in Table 1.

Table 1. Patient and tumor characteristics of 24 patients harboring metastases of different primary
tumors close to motor-eloquent brain structures. All patients received preoperative navigated tran-
scranial magnetic stimulation (nTMS)-based diffusion tensor imaging fiber tracking (DTI-FTmot.tms)
of the corticospinal tract (CST). After resection they were treated with radiotherapy in an adjuvant set-
ting. Motor deficits were graded according to the British Medical Research Council (BMRC) scale 0–5,
with 0/5 = no contraction to 5/5 = full strength. Tumor entity was defined on histopathological. Ab-
breviations: CUP = Cancer of unknown primary, GTR = gross total resection, STR = subtotal resection.

Total Number of Patients 24

Gender
Female 17
Male 7

Age at primary treatment
(Mean and range)

60.4 years
(32–78 years)

Primary Tumor
(Number of patients)

Non-small cell lung cancer 7
Breast cancer 5

Colorectal carcinoma 2
Ovarian cancer 2
Ewing sarcoma 1

Malignant melanoma 1
Hidradenocarcinoma 1
Urothelial carcinoma 1
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Table 1. Cont.

Vulvar cancer 1
Hepatocellular carcinoma 1

Gastric carcinoma 1
Adenocarcinoma-CUP 1

Tumor-affected hemisphere
L 16
R 8

Tumor localization
Frontal 13

Temporal 2
Parietal 9

Extent of resection
>95% = GTR 21

80–95% = STR 3

Preoperative systemic therapy (number of patients)
Systemic therapy (total) 16

Chemotherapy 14
Immunotherapy 7

Postoperative systemic therapy (number of patients)

Systemic therapy (total) 18
Chemotherapy 15

Immunotherapy 12
unknown 3

Maximum tumor volume (mean and range) 11.4 cm3

(0.4–57.1 cm3)

Distance tumor—nTMS fibre tract (mean and range) 0.4 cm
(0.0–1.9 cm)

Preoperative motor deficits BMRC
5/5 14
4/5 7

<3/5 3

Postoperative motor deficits BMRC
5/5 13
4/5 8

<3/5 3

Follow-up motor deficits (6 months after surgery) BMRC

5/5 17
4/5 4

<3/5 1
unknown 2

Motor deficits at follow-up before tumor progression (number
of patients)

n = 2

BMRC
5/5 2

<3/5 1

Motor deficits at maximum follow-up (number of patients) BMRC
5/5 20
4/5 3

<3/5 1

3.2. FTmot.TMS Dose Statistics

The intersection of FTmot.TMS with the 100%, 95%, 90%, 50%, and 25%-isodose line
(V100%, V95%, V90%, V50%, and V25%) was 1.7% (range, 0–7.1%), 2.4% (0–9.4%), 3.1%
(0–11.4%), 10.9% (0.4–38.7%), and 22.0% (6.1–51.2%) of the FTmot.TMS, respectively. With
sparing FTmot.TMS, V100%–V25% were reduced by −88.2% to 0.2% (0–1.1%, p = 0.01),
−83.5 ± 12.1% to 0.5% (0–2%), −74.2% to 0.8% (0–2.7%), −66.8 ± 18.7% to 4.3% (0–12.8%),
and 34.5% to 14.2% (2.2–30.2%, p < 0.01; Figure 1). There was no statistically significant
change of FTmot.TMS Dmax (34.7 ± 4.0 Gy vs. 33.6 ± 7.8 Gy, p = 0.18; Figure 1, Table 2).

In regular plans, FTmot.TMS Dmean was 5.2 ± 2.4 Gy, with plan adaption FTmot.TMS
Dmean was reduced by 24.7% (range, 4.4–76.7%) to 3.8 ± 1.8 Gy (p < 0.001). For PRV-
FTTMS segments that were beyond the PTV (FTmotexPTV), reduction of Dmean was -26.8%
(range, 4.4–76.7%, p < 0.01) from 4.8 ± 2.1 Gy to 3.3 ± 1.4 Gy (p < 0.001; Figure 2A). Within
the 50% (17.5 Gy)-isodose level, the relative reduction of FTmot.TMS (FTmotexPTV50%) was
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minus 33.0% (range, 5.9–57.6%) from 23.4 ± 3.3 Gy to 15.9 ± 4.7 Gy (Figure 2B). Regarding
portions within the 25% (8.75 Gy)-isodose level (FTmotexPTV25%), there was a decrease of
Dmean from 17.6± 4.2 Gy to 12.5± 3.6 Gy (−29.2± 12.2%; Figure 2C, Table 2). The was no
significant correlation between relative reduction of FTmot.TMS Dmean with the overlap of
FTmot.TMS and PTV (−0.14, p = 0.5), distance between FTmot.TMS and cavity (0.29, p = 0.16),
and the distance between FTmot.TMS and PTV (0.34, p = 0.97). An example case with DVH
is illustrated in Figure 3.
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Figure 1. RT plan adaption for avoidance of FTmot.tms translates into decline of proportional overlap,
with corresponding isodose levels expressed as V95%, V90%, V50%, and V25% (%), with and without
sparing (spare vs. regular). Mean V90% decreased by 74.2% (3.1% to 0.8%) and V50% by 66.8%
(10.9% to 4.3%). All results are significant (p < 0.001).

Table 2. Dose exhibition of nTMS derived fiber tract in regular plans (regular), and plans with dose
adaption for sparing (spare). Mean dose of the total fiber tract decreased by 1.4 Gy. Segments of
the CST beyond the PTV and inside 50%-Isodose-level reduced from 23.4 Gy to 15.9 Gy. Spatial
overlap in percent of total volume for different isodose levels and FTmot.tms were described as
V100%35Gy, V95%33.23Gy, V90%31.5Gy, V50%17.5Gy, and V25%8.78Gy. After plan adaption volumes
were significantly lower (p < 0.001).

Structure Unit Regular Spare p-Value

nTMS.motor Dmean (Gy) 5.2 ± 2.4 3.8 ± 1.8 p < 0.001
exPTV Dmean (Gy) 4.8 ± 2.1 3.4 ± 1.4 p < 0.001

FTmotexPTV50% Dmean (Gy) 23.4 ± 3.3 15.9 ± 4.7 p < 0.001
FTmotexPTV25% Dmean (Gy) 17.6 ± 4.2 12.5 ± 3.6 p < 0.001

V100%35Gy (in %) 1.7 ± 2.3 0.2 ± 0.4 p < 0.001
V95%33.23Gy (in %) 2.4 ± 3.1 0.5 ± 0.7 p < 0.001
V90%31.5Gy (in %) 3.1 ± 3.7 0.8 ± 1.0 p < 0.001
V50%17.5Gy (in %) 10.9 ± 9.8 4.3 ± 4.0 p < 0.001
V25%8.78Gy (in %) 22.0 ± 10.5 14.2 ± 7.9 p < 0.001
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Figure 2. (A–C). Boxplots representing mean dose (Dmean) of different segments of DTI-FTnTMS
based cortico-spinal tract beyond the planning target volume (FTmot exPTV), during regular treat-
ment (FTmotexPTV regular), and after plan optimization for dose reduction (FTmotexPTV spare).
Decline of dose exposition for all FTmotexPTV is minus 1.4 Gy (p < 0.001) (A). For segments both
beyond the PTV and within the 17.5 Gy—isodose level (FTmotexPTV50%) Dmean reduction is minus
33.0% (range, 5.9–57.6%) from 23.4 Gy to 15.9 Gy (p < 0.001) (B). Looking at FTmot.nTMS portions
both outside the PTV and within the 8.25 Gy—isodose level (FTmotexPTV25%) only, Dmean is
decreased by (−29.2 ± 12.2%) (p < 0.001) (C).
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Figure 3. This figure illustrates the external beam plans for radiation therapy (RT) planning in one
patient with a metastasis affecting the parietal lobe. The nTMS based DT-FT are seen delineated
as organ at risk (FTmot.tms) in yellow and PTV in red. Of note, there is a slight overlap of the PTV
with FTmot.tms. Dose distribution is portrayed in dose color wash from high (red) to lower (green to
blue) dose. Each of the left planar views show regular treatment planning without taking FTmot into
account. On both the left axial and coronal slide dose distribution is shown for regular plans, each
of the right planes depicts dose for optimized plans. The higher dose is drawn away from the fiber
tract. On a dose-volume histogram (DVH), dose reduction is seen as a steeper gradient for FTmot.tms

outside the PTV (FTmotexPTV) after optimization (yellow line, triangle), compared to the original
RT treatment plan (yellow line, quadrate). Accordingly, the FTmot.tms areas beyond the PTV and
within the 50% isodose line (FTmotexPTV50%) are displayed in magenta. DVH for PTV is equal up to
a relative dose of 95%, but with a higher maximum dose (red lines).
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3.3. PTV Coverage, Conformity, and Outcome

With FTmot.TMS avoidance, the PTV coverage did not significantly change, thus keeping
an ideal value of 1.0 vs. 1.0 (p = 0.08). Prescription isodose volume (PIV35Gy) enlarged from
27.4 ± 24.4 mL to 28.0 ± 25.3 mL (p = 0.004), thus selectivity (0.88 ± 0.0 vs. 0.83 ± 0.1;
p < 0.001) and Paddick-Conformity Index (0.88 ± 0.1 vs. 0.83 ± 0.1; p < 0.001) dropped
accordingly. PTV Dmean did not significantly change with 35.6 ± 0.9 Gy vs. 36.0 ± 1.2 Gy
(p = 0.064), both PTV Dmax and D2% (Gy) increased from 37.2 ± 0.9 Gy to 38.6 ± 1.2 Gy
(p < 0.001) and from 37.0 ± 0.5 Gy to 37.7 ± 1.1 Gy (p < 0.001), respectively (Table 3).

Table 3. Dosimetric values of PTV in regular treatment plans (regular) and with sparing (spare) DTI-
FT based CST. In comparison, Dmean of the PTV is not negatively affected. Coverage of target volume
is equal after plan optimization. Changes of prescription isodose volume (PIV) were observed which
decreased Selectivity and Paddick CI after recalculation, however were still appropriate. Gradient
indices changes are minor, even though significant.

PTV Regulare DTI-FT Spared p-Value

Dmax (in Gy) 37.2 ± 0.9 38.6 ± 1.6 p = 0.00
Dmean (in Gy) 35.6 ± 0.9 36.0 ± 1.2 p = 0.06
Dmin (in Gy) 32.8 ± 1.3 31.9 ± 1.6 p = 0.34

Coverage 1.0 ± 0.0 1.0 ± 0.0 p = 0.08
Selectivitiy 0.9 ± 0.1 0.8 ± 0.1 p = 0.00
Paddick CI 0.9 ± 0.1 0.8 ± 0.1 p = 0.00

Dose expositions of brain and OARs were assessed for comparison of both treatment
plans. Dose to the healthy brain (brain—cavity) was estimated with absolute volume receiv-
ing 28 Gy or more (V28 Gy in ml). With FT sparing V28 Gy increased was 25.9 ± 15.9 mL
compared to 25.3± 14.9 mL without FT avoidance (p = 0.4). All other OAR dose constraints
were met and are detailed in Table 4.

Table 4. Dose exhibition of brain and organs at risk. In comparison there were some minor changes
but after recalculation dose limits were kept respectively.

OAR Side DVH Value Regular DTI-FT
Spared p-Value

Brain Dmean (Gy) 3.9 ± 1.9 3.5 ± 1.6 p = 0.51

Healthy Brain (Brain minus Cavity) V28Gy (cc) 25.3 ± 14.9 25.9 ± 15.9 p = 0.40
V24Gy (cc) 33.5 ± 19.7 35.0 ± 21.9 p = 0.22

Hippocampus ipsilateral Dmean (Gy) 1.8 ± 3.6 1.9 ± 3.7 p = 0.84
contralateral Dmean(Gy) 0.9 ± 1.8 0.9 ± 1.8 p = 0.91

Brainstem Dmax (Gy) 1.7 ± 3.0 1.8 ± 3.2 p = 0.59
Chiasm Dmax (Gy) 1.3 ± 2.0 1.2 ± 1.8 p = 0.19

Optic Nerve ipsilateral Dmax (Gy) 0.9 ± 1.4 0.9 ± 1.3 p = 0.75
contralateral Dmax (Gy) 0.7 ± 1.1 0.7 ± 1.1 p = 0.81

Pituitary Dmax (Gy) 0.6 ± 1.0 0.6 ± 0.9 p = 0.41

Lacrimalis Gland
ipsilateral Dmax (Gy) 1.3 ± 2.3 1.6 ± 3.0 p = 0.13

contralateral Dmax (Gy) 0.9 ± 1.5 0.9 ± 1.6 p = 0.99

Cochlea
ipsilateral Dmax (Gy) 0.4 ± 0.6 0.4 ± 0.7 p = 0.10

contralateral Dmax (Gy) 0.1 ± 0.1 0.2 ± 0.1 p = 0.61

Bulbus
ipsilateral Dmax (Gy) 1.3 ± 2.1 1.8 ± 3.1 p = 0.15

contralateral Dmax (Gy) 1.1 ± 1.7 1.0 ± 1.5 p = 0.29

Lens
ipsilateral Dmax (Gy) 0.7 ± 1.3 0.8 ± 1.5 p = 0.85

contralateral Dmax (Gy) 0.5 ± 0.7 0.5 ± 0.7 p = 0.75

3.4. Clinical Outcome Data and Follow-Up

Based on Kaplan–Mayer analysis, estimated local control (LC) and overall survival at
12 months after surgery were 85.9% (95%-CI 71.0–100%) and 68.1% (95%-CI 48.5–87.7%), re-
spectively. Kaplan–Mayer curves are displayed in the supplemental section (Figures S1 and S2).
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One patient had a new grade 4/5 motor deficit postoperatively that subsided quickly until
adjuvant RT. According to BM-RANO, there were two cases of suspected PD at 10 and
8 months after surgery, respectively: one patient died, secondary to extracranial tumor
progression before any advanced imaging or biopsy could be performed, the other patient
had salvage whole-brain radiotherapy (WBRT) for distant progression. A third patient had
local PD, which was confirmed by 18-fluor-ethyl-positron-emission tomography. Based
on retrospective analysis those patients did not reveal new motor deficits. All BM-RANO
target lesions had growth towards the CST, but numbers were too low for deeper interpreta-
tion of growth patterns in relation to DTI-FTmot.TMS. One patient had symptomatic RN with
predominantly progressive peri-cavitary edema, causing headaches and deterioration of
pre-existing hemiparesis due to post-surgical hemorrhage. In this patient, RN was treated
with 3 cycles of bevacizumab 7.5 mg per m2 body surface every three weeks, and symptoms
subsided with regressive edema on follow-up scans.

4. Discussion

In this study, we implemented nTMS-based DTI-FT of the CST in postoperative
fractionated stereotactic RT planning of motor-eloquent BM. Plan adaptions for sparing
subcortical motor structures resulted in significantly lower dose expositions of motor fiber
tracts in the high-dose area despite high dose gradients offered by stereotactic techniques.

Advances in systemic cancer management have improved survival for numerous types
of solid cancer, therefore the number of patients harbouring BM is increasing [46,47]. Small
clinical inapparent BM are commonly treated with stereotactic radiosurgery. According
to established guidelines, resection should be carried out in patients with single BM and
controlled primary disease or when histopathologic diagnosis is crucial for decision-making
in cancer management, e.g., in cases of unknown primary tumors or when changes in
molecular profiles compared to the primary tumor are suspected [48–50]. Patients with
large and/or symptomatic lesions benefit from neurosurgical resection regarding rapid
symptom relief, whereas a preferably extended resection is prognostically relevant for local
control [51,52]. Of note, supra-marginal resection can even improve local control but with a
higher risk of neurological deficits [53]. Therefore, in the management of motor-eloquent
BM, advanced tools for mapping of cortical and subcortical structures, subserving motor
function, are needed to reduce treatment related morbidity [54–56].

Therefore, functional pre-operative, nTMS based mapping of the motor cortex has
been implemented in neurosurgery for sparing the individual primary cortical motor ar-
eas [44,57]. nTMS-based cortical mapping has been demonstrated to correspond with direct
electrical stimulation (DES), which is regarded as the reference standard of intraoperative
electrophysiological cortex mapping [18,58,59]. As further development, nTMS-generated
cortical maps can be linked to DTI-FT, offering an individual function-based CST tractog-
raphy, thus brain tumors adjacent the cortex and CST can be best resected, while motor
function is preserved [13–15]. In contrast to peace-mal resection, en-bloc dissection along
the brain-tumor interface is beneficial for local control, and decreases the risk for lep-
tomeningeal spread, implying a relatively high risk for local recurrence through remnant
cells, after resection [60–62]. Therefore, adjuvant RT is strongly needed to eliminate residual
microscopical tumor spread in the resection cavity to prolong local control and improve
outcome [19,20]. Several studies have demonstrated excellent local control rates up to 93%
with hFSRT to the surgical bed [63–66]. Stereotactic radiation techniques enable a precise
dose deposition to the cavity and the surrounding brain, with steep dose gradients to spare
healthy brain tissue and OARs such as brain stem, optic chiasm, and optical nerves. Con-
trary to surgery, functional cortical and subcortical brain regions are not specifically spared
and declared as structures at risk. Radiation-mediated injury of WM tracts such as the CST
is seen as one cause of motor dysfunction after RT. Specifically, WM degeneration is mainly
mediated by impaired oligodendrogenesis, vascular injury, and neuro-inflammation, which
appear to happen in a linear dose-response pattern [67].
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Generally, DTI quantifies spatial diffusion processes of water molecules, permitting
conclusions on changes in WM microstructure [68,69]. Thus, DTI metrics such as mean
diffusivity and fractional anisotropy can be used as biomarkers for RT-mediated injury of
interhemispheric WM tracts and corpus callosum, associated with a decline in processing
speed, or microstructural damage of cerebral motor structures, including the pyramidal
tract, causing deterioration of fine motor skills [23,70].

So far, studies investigating dose exhibition of the motor cortex and CST in the setting
of adjuvant stereotactic cavity RT after removal of BM are scarce. We therefore investigated
24 patients with 25 supratentorial BM for whom preoperative nTMS-based DTI-FT was
retrospectively implemented into treatment planning for dose avoidance of the motor
cortex and CST. In this cohort, Dmean of the PRV for motor structures (FTmot.TMS) was
5.2 ± 2.4 Gy (range, 1.8–12 Gy) with a mean cavity-to-tract distance of just 0.2 cm (range,
0–1.0 cm), and in 17 of 25 cases a proportional overlap of FTmot.TMS with the PTV of 1.1 mL
(range, 0.1–2.9 mL) was observed. For ensuring adequate treatment dose to the PTV, only
FTmot.TMS segments beyond the PTV were spared (FTmotexPTV). Thus, FTmotexPTV could
be significantly reduced by −26.8% (p < 0.001) (Figure 2A). When only looking at portions
within the “high-risk” isodose line (17.5 Gy) (FTmotexPTV50%), dose reduction was even
more prominent with −33% (range, 5.9–57.6%) (Figure 2B). Accordingly, the volume of the
FTmot.TMS receiving the highest dose (equal to or more than 95% of the prescription dose
(V95%)) dropped by −83.5 ± 12.1% (p < 0.001), respectively (Figure 1). Those numbers
demonstrate the potential dose reduction to motor areas that can be achieved despite the
yet steep dose gradients offered by stereotactic RT.

However, median treatment dose (Dmean) and dose coverage of the PTV were not neg-
atively affected. During our procedure of plan adaptation, the prescription isodose volume
(PIV35Gy) enlarged from 27.4 ± 24.4 mL to 28.0 ± 25.3 mL (p = 0.004) translating into less
ideal, yet still appropriate numbers for selectivity (0.88 ± 0.0 vs. 0.83 ± 0.1; p < 0.001) and
Paddick-Conformity Index (0.88 ± 0.1 vs. 0.83 ± 0.1; p < 0.001), with values of our present
study being in the range of previous studies [43,71,72]. For better dosimetric comparison
regarding FTmot.TMS, plans were not optimized in terms of individual normalization meth-
ods; yet we found higher values with plan normalization for 95% of dose covering 99.0% of
the PTV, compared to covering 99.9%: Selectivityspare, 0.83 ± 0.1 vs. 0.76 ± 0.1 (p < 0.001),
and Paddick-CIspare, 0.81 ± 0.1 vs. 0.76 ± 0.1 (p < 0.001).

Application of nTMS-based motor cortex mapping in hFSRT planning was investigated
in a previous study reporting on 30 patients with resected BM, adjacent to the precentral
gyrus, receiving adjuvant hFSRT, of whom 11 patients were eligible for plan optimization.
The Dmean of the nTMS-based primary motor cortex was 23.0 Gy in 7 fractions, with cortical
sparing a significant dose reduction of 18.1% to 18.9 Gy could be demonstrated, being
obtained without affecting treatment doses to the PTV [73]. A further 19 patients exhibited
low motor cortical dose exposition of 9.7 Gy and were not further analyzed. Another study
investigated 22 patients receiving stereotactic RT to 23 cavities after removal of BM, and
Dmean of the nTMS-defined motor cortex was 9.66 Gy, and after plan optimization for
avoidance Dmean was 6.49 Gy [74]. Furthermore, DTI-FTmot.TMS integrated in adjuvant RT
planning of motor-eloquent high-grade glioma (HGG) has been recently demonstrated to
enable significant dose reductions for avoidance of the CST [75]. So far, there are only a
few studies demonstrating the potential impact of radiation to motor structures on motor
function. In one study, DTI-FTmot has been applied in treatment planning of Gamma Knife
(GK) stereotactic radiosurgery (SRS) of solid tumors for pyramidal tract sparing, with
74 patients (BM 50%, mean volume 28.9 ± 26.2 mL) divided in two groups: DTI-avoidance
(CST Dmax < 15 Gy) vs. control goup [75]. After 6 months, the DTI-avoidance group
had significantly lower complication rates (not specified by authors), higher performance
scores (Karnofsky Performance Status), and higher muscle strength of the affected limb [76].
Other authors propagated a dose constraint for the volume of the pyramidal tract receiving
<20–25 Gy in GK-SRS, based on a cohort of 24 patients stereotactically treated for arterio-
venous malformations (AVMs) [77]. They reported on two patients with large AVMs within
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the internal capsule having permanent motor complications, and for those patients, V25Gy
and V20Gy were 8400 mL/302 mL and 400 mL/89 mL, respectively [77]. Generally, the
internal capsule seems more predisposed for RT-induced WM injury than the corona radiata,
most likely due to the higher fiber density [23,77]. Another recent trial demonstrated
WM injury based on DTI metrics from fractionated RT doses > 20–30 Gy which were
associated with a decline in motor functions [23]. The aforementioned studies used DTI-
based tractography only, while DTI-FTmot.TMS enabled operator-independent and function-
based ROI seeding for CST reconstruction, linking functional cortical motor spots with
corresponding CST delineation. Thus, there are no clear dose constraints in terms of
RT-mediated WM degeneration and or RT-related functional motor dysfunction yet. RT
induced damage of white matter tracts appears with doses higher than 20 Gy and 30 Gy,
after 9–11 months and 4–6 months, respectively [39]. In regard to dose related cortical
atrophy, the average reduction of cortical thickness increases with higher doses. A total
of 34.6 Gy was demonstrated as an average break point dose with higher thinning per Gy,
beyond that dose [40]. In our study on hFSRT for larger treating volumes with margins of
2–3 mm, rather conservative constraints were applied for CST avoidance in accordance with
recent data, demonstrating impaired motor function after fractionated RT dose > 20–30 Gy.

Another potential cause for RT-associated motor complications is radiation necrosis
(RN). Treatment volume, fractional dose, and total RT dose are risk factors for RN [78,79].
In postoperative stereotactic RT of BM, rates are up to 33.5% for predominantly large
lesions [80]. In general, adjuvant hFSRT seems favourable over single-fraction radiosurgery,
in terms of higher LC and lower incidences of RN, most likely due to breaks between
fractions and a higher biologic effective dose (BED) [26,64,81–84]. In our cohort there was
one case with symptomatic radiation necrosis, but symptoms subsided on anti-angiogenic
medication (bevacizumab). There were no major motor complications after hFSRT observed.
However, in the retrospective setting, there were no data on advanced motor assessment
available to detect minor changes in motor strength that could still affect quality of life.

One limitation of our study is the yet unproven clinical relevance of sparing cortical
and subcortical motor structures in radiotherapy. However, there are in-vitro data demon-
strating RT mediated injury of white matter tracts and cortical atrophy. Furthermore, one
study demonstrated a decline of fine motor skills after normo-fractionated RT in brain
tumor patients, and another trial has shown that avoidance of the CST in high-single
dose RT for AVM can preserve motor function. In our study, we could not demonstrate a
correlation of motor skills with dose to nTMS-based DTI-FT due to the small number of
patients and the retrospective character with no advanced neurologic assessment.

Compared to adjuvant RT of resected glioma for BM, there is no standard of care in
terms of fractionation and dose, target delineation (+/− surgical tract), and additional
margins to cover suspected infiltration zones so far. Furthermore, the cavity volume
can vary over time after surgery. Several studies have demonstrated variable changes
of the cavity volume within weeks after surgery [85–87]. Thus, this limits the results of
our study, because we applied a postoperative stereotactic RT concept for resected BM,
that is not standardized yet. Further, in this study BM amenable for surgery were rather
large and symptomatic due to proximity to eloquent structures, perilesional edema, and a
shift of the pyramidal tract, due to space-occupying effects. However, only preoperative
DTI-FTmot.TMS were available, which were integrated into our RT planning system and
merged with postoperative planning CT and MRI. Secondary to regressive perilesional
edema, a lower space-occupying shift of the CST and potential cavity dynamics in the
early postoperative course, not all pre-operative DTI-FTmot.TMS could be reliably fused
with postoperative imaging. We addressed this issue by applying EF to keep imbalances
minor and to enhance accuracy for fusion.

5. Conclusions

This study integrated functional subcortical fiber tracts into adjuvant hFSRT planning
for the management of BM, demonstrating a proof-of-concept design for CST avoidance.
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Life expectancy will further increase in the future due to targeted and more effective
systemic treatments among cancer patients. Thus, preserving a patient´s quality of life and
self-independence will be of growing concern, emphasizing the need for tools to potentially
reduce long-term side effects of current treatments. Further studies are warranted to
evaluate the most suitable RT techniques for sparing of the cortical and subcortical motor
structures. The real impact on clinical outcome needs to be investigated in prospective
clinical trials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers15010282/s1, Figure S1: Kaplan-Meyer curve for overall
survival. Estimated OS at twelve months was 68.1% (95%-CI 48.5–87.7%); Figure S2: Kaplan-Meyer
curve for local progression free survival when excluding patients receiving additional RT post IORT.
Estimated LC is 85.9% (95%-CI 71.0–100%); Table S1: High and low gradient indices in regular
treatment plans (regular) and with sparing (spare) DTI-FT based CST. Gradient indices changes are
minor, even though significant.
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