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In Brief
Distinguishing between protein
products of a gene is
complicated by many peptides
that such isoforms have in
common. Grouping
indistinguishable proteins
alleviates this issue but leads to
problems with estimating false
discovery rates (FDRs) in large-
scale experiments as false
positives accumulate. Here,
protein group FDR estimation
methods were evaluated on
accuracy and sensitivity. Our
new Picked Protein Group FDR
method performed best and
reanalysis of the draft human
proteome in ProteomicsDB
found >1200 genes with multiple
protein products.
Highlights
• Evaluating protein group FDR estimation methods with entrapment and simulated data.• Accurate & sensitive protein group FDR method on databases with protein isoforms.• Tool for combining multiple large-scale MaxQuant searches on protein group-level.• Analysis on ProteomicsDB identified >1200 human genes with multiple protein groups.
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TECHNOLOGICAL INNOVATION AND RESOURCES
Reanalysis of ProteomicsDB Using an Accurate,
Sensitive, and Scalable False Discovery Rate
Estimation Approach for Protein Groups
Matthew The1,* , Patroklos Samaras1 , Bernhard Kuster1,2 , and Mathias Wilhelm1,3,*
Estimating false discovery rates (FDRs) of protein identi-
fication continues to be an important topic in mass
spectrometry–based proteomics, particularly when
analyzing very large datasets. One performant method for
this purpose is the Picked Protein FDR approach which is
based on a target-decoy competition strategy on the
protein level that ensures that FDRs scale to large data-
sets. Here, we present an extension to this method that
can also deal with protein groups, that is, proteins that
share common peptides such as protein isoforms of the
same gene. To obtain well-calibrated FDR estimates that
preserve protein identification sensitivity, we introduce
two novel ideas. First, the picked group target-decoy and
second, the rescued subset grouping strategies. Using
entrapment searches and simulated data for validation,
we demonstrate that the new Picked Protein Group FDR
method produces accurate protein group-level FDR esti-
mates regardless of the size of the data set. The validation
analysis also uncovered that applying the commonly used
Occam’s razor principle leads to anticonservative FDR
estimates for large datasets. This is not the case for the
Picked Protein Group FDR method. Reanalysis of deep
proteomes of 29 human tissues showed that the new
method identified up to 4% more protein groups than
MaxQuant. Applying the method to the reanalysis of the
entire human section of ProteomicsDB led to the identifi-
cation of 18,000 protein groups at 1% protein group-level
FDR. The analysis also showed that about 1250 genes
were represented by ≥2 identified protein groups. To
make the method accessible to the proteomics commu-
nity, we provide a software tool including a graphical user
interface that enables merging results from multiple
MaxQuant searches into a single list of identified and
quantified protein groups.

Algorithms for protein quantification and identification from
mass spectrometry (MS) data are continuously challenged by
the ever growing trend towards large-scale experiments.
Today, it is not at all uncommon to perform experiments
resulting in hundreds, or even thousands, of MS data files
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(1–4). While such data is increasingly deposited into search-
able public data repositories such as ProteomicsDB (5), PRIDE
(6), MassIVE (http://massive.ucsd.edu), or PeptideAtlas (7),
estimating the proportion of false positive identifications (false
discovery rate; FDR) at the gene-level is a nontrivial task
(8–10). An even larger challenge is presented by distinguishing
between different protein products from the same gene (11),
such as splice variants (12) or SNPs or when analyzing mix-
tures of orthologous proteins from different species such as
human/mouse xenografts or bacterial communities in meta-
proteomics (13).
The most prevailing method for estimating FDRs makes use

of so-called target-decoy models (14), where decoy peptide/
protein sequences are added to the collection of genuine (i.e.,
target) peptide/protein sequences to serve as a model for false
hits. The underlying assumption is that the database search
engine identification score distributions of decoy and incorrect
target peptide-spectrum matches (PSMs), peptides, and
proteins are the same. Violations of this assumption can lead
to inaccurate FDR estimates, referred to as loss of FDR con-
trol. A well-working FDR estimation procedure should both be
accurate, that is, reflecting the true proportion of false dis-
coveries, and sensitive, that is, maximizing the number of
acceptable discoveries at a defined threshold (typically 1%).
When large-scale datasets begun to appear in the literature, it
was soon recognized that naively compiling lists of identified
proteins by combining large numbers of experiments led to
loss of control of the protein FDR (15, 16) and that applying the
simple target-decoy approach led to issues with reduced
sensitivity (1). The latter turned out be the result of an unin-
tended asymmetry between decoy proteins and falsely iden-
tified target proteins. This is because false target PSMs may
arise from both correct and false target proteins, whereas
decoy PSMs only arise from decoy proteins, which are false
by definition (17).
This asymmetry was subsequently resolved by the devel-

opment of the picked target-decoy strategy (picked TDS) (8).
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Picked Protein Group FDR
Briefly, the picked TDS (pT) compares the highest observed
search engine PSM score for a target protein with its
respective sequence-reversed or shuffled decoy protein and
only retains the entry with the highest score. This strategy re-
established the assumption that false target protein identifi-
cations have the same score distribution as decoy protein
identifications. As a result, the pT increased the number of
confidently identified proteins compared to the classic TDS (8,
9). Savitski et al. (8) employed this pT to calculate protein-level
FDRs using a method called the Picked Protein FDR
approach. This method was designed to operate at the gene
level and, for simplicity, discarded identified peptides that are
shared between multiple protein sequences. This choice was
made because shared peptides are rare when only canonical
protein sequences are considered. However, not considering
shared peptides led to reduced sensitivity when searching
databases containing multiple protein isoforms of a gene. This
is because if a peptide is shared between two protein isoforms
of a gene but is the only peptide identified for that gene, the pT
would discard this peptide and neither isoform of the gene
would be reported.
As proteomic technology has improved over time to enable

profiling proteomes at more and more depth, the above
simplification may no longer be acceptable in many circum-
stances. Indeed, it has been estimated that up to 50% of all
peptide sequences are shared between multiple protein se-
quences when considering all protein isoforms resulting from
alternative RNA splicing (18). In turn, this leads to complica-
tions for protein identification and quantification (19). If a
peptide is shared between two protein isoforms of a gene and
if it is the only peptide identified for that gene, one can
confidently mark the gene as identified but one cannot be
certain regarding which of the two isoforms (or both) are
identified. A popular way to address this issue is to combine
proteins that share identified peptides into a group and treat
such a group of proteins as a single entity (20). In the above
simple example, the two protein isoforms would be combined
and treated as one protein group with the interpretation that at
least one of the two sequences was actually present in the
sample (21). In reality, both shared and distinct (i.e., unique)
peptides may be identified for protein isoforms of the same
gene. Therefore, proteins are typically only grouped if a pro-
tein’s identified peptides are a subset of the identified pep-
tides of another protein. The identification of even a single
unique peptide for each of the isoforms would prevent iso-
forms to be grouped even if they had (many) identified pep-
tides in common. This may lead to the identification of multiple
protein groups for a given gene and, in some cases, even
particular protein isoforms.
Protein grouping has become very popular because it pro-

vides some of the desired granularity for distinguishing
different protein products from the same gene. However, the
subject of estimating protein group-level FDR has received
little attention (20–22). In particular, three unresolved problems
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may be noted. First, the pT cannot directly be applied to
protein groups, as the decoy counterparts of the target pro-
teins in a protein group are not necessarily also grouped
together. This is because the decoy counterpart proteins have
their own set of identified shared and unique (decoy) peptides
upon which grouping is based. One could artificially group all
decoy counterparts into a decoy protein group but this vio-
lates the need to treat target and decoy proteins in the same
manner, which is at the very heart of the target-decoy idea.
Second, protein grouping leads to a practical problem when
combining or comparing large datasets. Because the
composition of protein groups depends on the set of identified
peptides, proteins that were grouped together in one dataset
are likely not grouped with the same composition of proteins
in another dataset. This makes comparisons between data-
sets difficult unless all the data is combined and searched
again, which is not practical for very large datasets or when
looking at entire repositories. Recently, a tool to produce
protein grouping results for multiple Percolator output files
was released designed for metaproteomic datasets (23).
However, to the best of our knowledge, no tools exist yet that
can easily combine results from multiple MaxQuant searches
with consistent protein grouping. Third, even with protein
grouping, many high-confident peptides may still be shared
between multiple protein groups and can, therefore, not un-
equivocally be attributed to a single protein group. Some
methods apportion such cases over the protein groups con-
cerned using probabilistic models (24–27) but these often
require the data to adhere to specific probability distributions,
have problems with scaling, and have hard-to-interpret
models and results (28). To avoid such complications, a
popular alternative is the Occam's razor heuristic (also known
as the "law of parsimony" or “razor peptides” (rS)), most
notably employed in the MaxQuant software platform (29).
Here, a typical decision rule for shared peptides is to assign
them to the protein group with the highest number of identified
unique peptides and arbitrarily pick one of the protein groups
in case of a tie. Although such rules may pick the correct
protein group in a majority of cases, the number of cases
where it picks the wrong protein group accumulates in large-
scale experiments. Worse still, these cases do not arise from
decoy protein groups because, whichever decoy protein
group a shared decoy peptide is attributed to, is false by
definition. Therefore, these false positive targets remain un-
accounted for when computing FDRs, leading to a loss of FDR
control and anticonservative FDR estimates (28).
Note that gene-level FDRs and protein group-level FDRs

differ fundamentally due to the type of entities in the lists they
are calculated on, that is, genes andprotein groups respectively
and can, thus, generally not be compared to each other. How-
ever, one can calculate gene-level FDRs on a list of protein
groups by, for example, only retaining the best scoring protein
group per gene. The reverse, that is, calculating protein group-
level FDRs froma list of genes, is only possible in themost trivial
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sense, where each gene is its own protein group. In the
following, we will exclusively use protein group-level FDRs.
To address the above issues, we introduce the Picked Pro-

tein Group FDRmethod, along with an accompanying software
tool, which extends the Picked Protein FDR approach to pro-
tein groups. In particular, we show that this method identifies
up to 4% more protein groups than the method used by
MaxQuant while simultaneously correctly controlling the pro-
tein group-level FDR. Furthermore, we show that the method
scales to very large numbers of experiments, exemplified by
the reanalysis of the entire human section of ProteomicsDB.
The tool comes with a graphical user interface operating under
Windows as well as a Python package. The software also
contains the option to merge results from multiple searches
into a single list of quantified protein groups (label-free quan-
tification, intensity based absolute quantification, tandemmass
tag) and provides an output similar to MaxQuant’s proteinG-
roups.txt. Instructions for download and use can be found at
https://github.com/kusterlab/picked_group_fdr.
EXPERIMENTAL PROCEDURES

Datasets

RAW files for a deep proteome study of 29 healthy human tissues
(Wang et al. (30), PXD010154; HCD data only) corresponding to 50
million MS2 spectra were searched using MaxQuant (v1.5.3.8) against
the human Swiss-Prot database including isoforms and TrEMBL en-
tries downloaded from UniProt (accessed: March 27, 2020, 95,943
protein sequences), concatenated with a list of contaminants, as
provided with MaxQuant, as well as reversed decoy sequences for all
entries. Trypsin was specified as protease with up to two missed
cleavages. Both peptide and protein-level FDR thresholds were set to
100% and default values were used for all other parameters. This data
set is referred to in this article as the Wang_base dataset.

All PSMs assigned to human samples in ProteomicsDB (accessed:
June 08, 2020) including both Mascot and MaxQuant search results
for all proteases formed the PrDB dataset used in the current study
and consists of 77 distinct projects of varying size (supplemental
Table S1), totaling 269 million target and 141 million decoy PSMs
(100% PSM-level FDR, searched against Swiss-Prot database
including isoforms and TrEMBL entries).

For both the Wang_base and PrDB datasets, we produced three
lists of PSMs that were filtered to only include PSMs with peptide
sequences that mapped to the canonical Swiss-Prot, the Swiss-Prot
with isoforms databases and the Swiss-Prot+TrEMBL with isoforms,
respectively. These protein sequences were obtained from Proteo-
micsDB (accessed: July 05, 2020). Note that these filtered lists of
PSMs will slightly differ from the results of a normal search against
these respective databases. In the filtered lists, PSMs with sequences
not present in the reduced databases are discarded instead of
matched to another sequence within the reduced database. As this
equally affects incorrect target and decoy PSMs, this should not lead
to any biases for FDR estimation.

Entrapment Searches

To assess if protein group-level FDRs are well-calibrated for the
protein group-level FDR estimation methods presented below,
entrapment searches were performed (31). Briefly, in entrapment
searches, the target database is extended by an entrapment
database, typically 5 to 10 times the size of the target database, which
only contains protein sequences known to be false.

Entrapment databases were constructed as follows (for a graphical
overview, see supplemental Fig S1A):

1. The target database was in-silico digested with Trypsin/P as
protease, without missed cleavages. Only peptides longer than
six amino acids were retained.

2. A fraction S (see below) of peptides was randomly selected to
remain unchanged, thereby creating shared peptides between
the target and entrapment databases (9).

3. All other peptide sequences were shuffled, while keeping the
C-terminal amino acid the same.

4. Finally, these shuffled peptides replaced their original versions in
the target protein sequence, resulting in an entrapment protein
having the same number of shared peptides as the target version.

5. Steps 2 to 4 were repeated four times to yield an entrapment
database five-times the size of the original target database.

Entrapment databases were generated for two different fractions S
of shared peptides, with S = 0.5 representing the shared ratio of the
Swiss-Prot+Isoforms database and S = 0.04 representing the shared
ratio of the Swiss-Prot database. The spectra from Wang_base were
searched against each of these entrapment databases with MaxQuant
(v1.5.3.8). Trypsin/P was specified as protease and no missed
cleavages were allowed, to reflect the construction of the entrapment
databases. The peptide-level FDR threshold was set to 10%
(searching with 100% peptide-level FDR was prohibitively slow) and
the protein-level FDR threshold to 100%. All other parameters were
set to default values. These datasets are referred to Wang_trap_0.5
and Wang_trap_0.04, respectively.

Peptide-Level Filtering

For protein-level FDR estimation methods, it is common to supply
the list of PSMs without applying a peptide-level FDR threshold (8, 9).
This allows the estimation of protein-level FDRs for proteins with only
weak evidence. This could be especially relevant for distinguishing
protein isoforms, which usually have few unique peptides. Note that,
for parsimony-based protein inference methods that do not apply
protein-level FDR estimation, it is vital to apply a strict peptide-level
FDR threshold before protein grouping to prevent excessive accu-
mulation of false protein groups.

However, for MaxQuant’s method, we noted a decrease of up to 9%
in thenumberof identifiedprotein groupsat 1%protein group-level FDR
for the 100%peptide-level FDRcutoff compared toMaxQuant’s default
1% peptide-level FDR cutoff (supplemental Fig. S2). This decreasewas
due to the addition of low confident peptides that were filtered out in the
1% peptide-level FDR cutoff results. As MaxQuant computes protein
group scores by a multiplication of posterior error probabilities (PEPs),
these low confident peptides actually decreased the confidence in their
corresponding protein relative to proteins without low confident pep-
tides. To make the comparison to MaxQuant fairer and to rule out the
permissive FDR threshold as a confounding factor when comparing
methods,weapplieda1%peptide-level FDRcutoff for allmethods. This
cutoff was applied per raw file, as is done in MaxQuant.

Percolator PSM Rescoring

For the three Wang datasets, the evidence.txt MaxQuant output
files were processed by a custom python script to create a percolator
input file by extracting the following features: Andromeda score,
Andromeda delta score, peptide length, charge (one-hot encoded),
mass, enzymatic N-terminal, enzymatic C-terminal, missed cleavages,
number of modifications, delta mass, and absolute delta mass. This
file was subsequently processed by Percolator v3.04. The resulting
PSM target and decoy output files were merged back with the original
Mol Cell Proteomics (2022) 21(12) 100437 3
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evidence.txt and the Q-value and PEP columns were updated with the
new values provided by the Percolator analysis.

For the PrDB dataset, PSMs were grouped by project (n = 77) and the
same features as above were extracted, minus the delta mass and abso-
lute delta mass features. These two columns were incomplete in Proteo-
micsDB and were, therefore, discarded. Percolator was applied to each
project separately, so that theweightsof thesupport vectormachinecould
be adjusted for each project. The percolator results were extracted on
peptide level, where only the best scoring PSMper peptide sequencewas
retained. The resultingpeptide lists (one for eachproject)weremerged into
a single list, using the -log10(q-value) of the peptide as the score and only
retaining the best PSM for each peptide. Peptide-level q-values were then
recalculated on this final list of (unique) peptide sequences.

Simulated Data

Entrapment searches provide a good way to assess the validity of
FDR estimates, but as it requires researching the data, this becomes
prohibitively computationally expensive for datasets comprising hun-
dreds of experiments. Therefore, lists of peptides were simulated with
respective scores and labels (correct/incorrect) that recapitulate
experimental results to a degree that they agree with the observations
made with entrapment searches on a qualitative level. Specifically, the
proteotypicity was used to select peptides, that is, conditional prob-
abilities of detecting a peptide, given that the corresponding protein
was identified. Furthermore, the probabilities of a protein to be
detected were used, to replicate the typical observation that some
proteins are identified in almost every experiment, whereas others
might only be identified in only one or a few of experiments. Both the
proteotypicity values (protein_probs) and protein detection probabili-
ties (peptide_probs) were calculated from the data in ProteomicsDB.
The simulation is described in pseudo-code below.
Pseudocode for generatio

Input:-
n_exp: number of experiments-
n_prot_mean: mean number of proteins present per experiment-
n_prot_stdev: stdev number of proteins present per experiment-
tp_score_mean: mean of score distribution for true positives-
tp_score_stdev: stdev of score distribution for true positives-
fp_score_mean: mean of score distribution for false positives-
fp_score_stdev: stdev of score distribution for false positives-
incorrect_ratio: proportion of incorrect peptides without FDR thresho
peptide_fdr: peptide fdr threshold, should be lower than protein_fdr-
protein_probs: probability for each protein to be present-
peptide_probs: probability for each peptide (including shared peptid
Algorithm:

1. For each experiment
a. Pick n_prot ~ N(n_prot_mean, n_prot_stdev) proteins to be p
b. Draw n_prot true positive target proteins from the target dat
c. Calculate minimum peptide score corresponding to given pe

incorrect_ratio) / incorrect_ratio; fp_score_mean, fp_score_s
d. For each true positive target protein

i. Draw true positive peptides based on their peptide_probs
ii. Draw score for each true positive peptide from a truncate

tp_score_stdev)
e. Randomly draw 2 * tp_peptides * peptide_fdr / (1 - peptFDR

databases
f. Draw score for each false positive peptide from a truncated

fp_score_stdev)
2. Do protein grouping based on observed peptides
3. Calculate protein group FDRs
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For the simulated datasets in this article, the input parameters were
estimated from the Wang_base dataset, where one experiment cor-
responds to one of the 29 tissues analyzed: n_protein_mean = 10.000,
n_protein_stdev = 1000, tp_score_mean = 2.5 tp_score_stdev = 0.7,
fp_score_mean = 0.0, fp_score_stdev = 0.7, incorrect_ratio = 0.6,
peptide_fdr = 0.01. Data was simulated for 10, 100, 200, 300, 400, and
500 experiments, to assess the performance of the different protein
group-level FDR estimation methods at different scales. Additionally,
datasets were simulated where the combined list of experiments had a
10% peptide-level FDR per raw file or a global 1% peptide-level FDR.

Protein Grouping

A common practice to alleviate the problem of distributing shared
peptide identifications between multiple protein sequences is to group
proteins into so-called protein groups. In this article, we considered
the following options:

No Grouping–Each protein is considered its own protein group. In
databases with many protein isoforms or homologous proteins, this
will result in many shared peptides between the protein groups.

Subset Grouping–Proteins are grouped if the peptides for one
protein form a subset of the peptides for a second protein. This will, for
example, group isoforms of the same gene if no isoform-specific
peptides are identified. This method is, for example, used by
MaxQuant.

Rescued Subset Groupin–The idea behind this new two-step
procedure is to prevent that protein groups are split into multiple
groups due to the presence of low-confident PSMs. To achieve this,
first, a regular subset protein grouping (sG) is performed, producing a
list of protein groups, PG1. Next, we filter the list of PSMs using a
PSM-level threshold equivalent to a 1% protein group-level FDR,
which is calculated based on PG1. Then, a second sG is performed
n of simulated datasets

ld-

es!) to be present given that the protein is present

resent
abase
ptFDR and incorrect_ratio: min_score = Φ-1(1 - peptFDR * (1 -
tdev)

d normal distribution: trunc_norm(min_score, ∞; tp_score_mean,

) false positve peptides from all peptides in target and decoy

normal distribution: trunc_norm(min_score, ∞; fp_score_mean,
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using this filtered list of PSMs, producing a second list of protein
groups PG2. Finally, PG2 is supplemented with protein groups from
PG1 that did not contain proteins already present in a protein group in
PG2. This last step ensures that protein groups above 1% protein
group-level FDR also have FDR estimates.

Shared Peptides

After protein grouping, peptides have to be assigned to protein
groups. This is simple if all proteins the peptides could originate from
are all in the same protein group. However, one needs to decide on
how to deal with peptides shared between proteins that are not in the
same protein group. Two options are considered in this article:

Razor Peptides–The rS strategy forces the assignment of a shared
peptide to one of its associated protein groups based on which of
these had the highest number of unique peptides. In case of a tie for
the highest number of unique peptides, the tie is broken randomly.

Discard Shared Peptides–Here, all peptides that are shared be-
tween protein groups are discarded.

Protein Group Scoring

To rank protein groups by confidence of identification, protein
group scores are computed based on the identification probabilities of
the constituent peptides. Here, three options for protein group scoring
were evaluated.

Multiplication of MaxQuant PEPs–The protein group score used by
MaxQuant is based on multiplying peptide PEPs. This score was re-
implemented in Python and verified by comparing it to the protein
group score that MaxQuant itself reported for each protein group. In
reproducing the protein group scores reported by MaxQuant, we
noted that the peptide PEPs were first divided by a constant, which
appeared to be chosen with a view to maximizing the number of
identified protein groups. Therefore, we implemented a grid search to
optimize this constant before calculating the protein group scores.

Best MaxQuant PEP–This takes the −log10(PEP) of the best
scoring PSM for the protein as the protein group’s score.

Best Percolator PEP–This takes the −log10(PEP) of the best
scoring PSM after rescoring with Percolator as the protein group’s
score.

Protein (Group) TDS

Before protein group-level FDR estimation, one can optionally
perform a target-decoy competition step on the protein group-level.
This competition has been shown to resolve problems with
decreased sensitivity that results from an asymmetry between decoy
proteins and falsely identified target proteins as noted in the
introduction.

Classic TDS–All proteins are passed to the FDR calculation without
any protein-level target-decoy competition taking place.

Picked TDS–This is a target-decoy competition step at the protein
level. For each target protein, one notes down the corresponding
decoy protein that was constructed by reversing or shuffling the target
protein sequence. These two paired-up proteins are considered each
other’s counterpart protein and only the highest scoring out of the two
is retained.

Picked Group TDS–This is a target-decoy competition step at the
protein group level. First, we mark all leading proteins for each
protein group, that is, proteins which cover all identified peptides
associated with the protein group. When going down the list of
protein groups (sorted by decreasing identification score), protein
groups are removed for which one or more counterpart leading
protein was observed in the current (higher scoring) protein group.
Note that if no protein grouping (nG) is done, this procedure is equal
to the pT.
Protein Group-Level FDR

The null hypothesis for the identification of a protein group (21) was
defined as “none of the proteins in the protein group had a correct
PSM”, making the alternative hypothesis: “at least one of the proteins
in the protein group had at least one correct PSM”. This then leads to
the interpretation that if one rejects the null hypothesis, at least one
(but potentially multiple or even all) of the proteins in the protein group
was correctly identified by a PSM. Note that this hypothesis does not
attempt to answer the question of absence and presence of a protein
(proteins can be present in the group without having a correct PSM).

To assess which protein groups were correctly identified, we make
use of the protein group scores defined above and use the number of
decoy protein groups as an estimate for the number of incorrect target
protein groups. First, protein groups are sorted by protein group
score, starting with the best scoring protein group. The protein group-
level FDR for a protein group is estimated as the ratio of the number of
decoy protein groups and target protein groups with a better score
than the current protein group.
Summary of Methods

The options listed above for peptide-level FDR threshold, protein
grouping, usage of shared peptides, protein scoring, and protein
group FDR calculation can be combined in any desired constellation.
Below is a summary of the methods used in the main text.

MaxQuant
• Grouping: subset grouping (sG)
• Shared peptides: Occam’s razor (rS)
• Scoring: multiplication of MaxQuant PEPs (mmP)
• TDS: classic (cT)
Savitski
• Grouping: no grouping (nG)
• Shared peptides: discard (dS)
• Scoring: best Percolator PEP (bpP)
• TDS: picked (pT)
Picked Protein Group FDR
• Grouping: rescued subset grouping (rsG)
• Shared peptides: discard (dS)
• Scoring: best Percolator PEP (bpP)
• TDS: picked group (pgT)
Savitski + Classic FDR
• Grouping: no grouping (nG)
• Shared peptides: discard (dS)
• Scoring: best Percolator PEP (bpP)
• TDS: classic (cT)
Discard + Picked Group
• Grouping: subset grouping (sG)
• Shared peptides: discard (dS)
• Scoring: best Percolator PEP (bpP)
• TDS: picked group (pgT)
Razor + Picked Group
• Grouping: subset grouping (sG)
• Shared peptides: Occam’s razor (rS)
• Scoring: best Percolator PEP (bpP)
• TDS: picked group (pgT)
Classic Protein Group FDR
• Grouping: rescued subset grouping (rsG)
• Shared peptides: discard (dS)
• Scoring: best Percolator PEP (bpP)
• TDS: classic (cT)

We observed that MaxQuant PSM-level PEPs are less well-
calibrated than those generated by Percolator, which led to
Mol Cell Proteomics (2022) 21(12) 100437 5
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anticonservative protein group-level FDR estimates for the Max-
Quant PEPs but not for the PEPs generated by Percolator
(supplemental Fig. S1). Using the Percolator, PEPs had the added
benefit of a 7% increase (164k versus 154k) in the number of peptide
identifications at 1% peptide-level FDR compared to using the
MaxQuant PEPs (supplemental Fig. S1E). Therefore, the best
Percolator PEP (bpP) was selected as the default choice for protein
scoring. Results are also shown for mmP and best MaxQuant PEPs
where these were relevant.
RESULTS

Protein Group-Level FDR Estimation

Protein group-level FDR estimation can be broken down
into multiple stages, where one of several available options at
each stage has to be chosen. We define a method as a
particular combination of chosen options. Any one method
takes a list of PSMs as input and generates a list of protein
groups with associated protein group-level FDRs as output.
We used two large-scale datasets to evaluate several protein
group-level FDR estimation methods in terms of accuracy and
sensitivity (Fig. 1). Specifically, we compare (1) MaxQuant’s
method, (2) the Picked Protein FDR method by Savitski et al.,
and (3) a novel Picked Protein Group FDR method which will
be introduced further below. We demonstrate that the two
state-of-the-art methods have issues either with calibration or
sensitivity and that the Picked Protein Group FDR method
resolves both of these problems (Fig. 2A).
The different methods, stages of data processing, and

associated options are described in detail in the Experimental
Procedures section but a brief overview is given here for
convenience. First, one has to decide how proteins are
grouped. The simplest option is to not group proteins at all
(nG), that is, each protein is its own protein group. sG (Fig. 2B)
groups proteins if the identified peptides of one protein are a
subset of the identified peptides of another protein. Rescued
subset protein grouping (rsG) is an extension of sG that will be
introduced in more detail further below. Second, peptides
shared between protein groups can either be discarded
shared peptides (dS) or assigned using Occam’s razor
(Fig. 2C), that is, assigned to the protein group with the
highest number of identified peptides, with ties broken
+TrEMBL (unrev.)
+isoforms
SwissProt

Wang et al.
29 tissues (deep)

~30M PSMs

ProteomicsDB
80 projects

~250M PSMs

Simulated data
500 experiments
~25M peptides

SP+iso+TrEMBL
+entrapment

SP+iso+TrEMBL

FIG. 1. Overview of datasets and evaluations.We used entrapment s
the accuracy of FDR estimates of different protein group-level FDR esti
three databases with increasing levels of redundancy (SwissProt cano
proteome study and the human section of ProteomicsDB. FDR, false di
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randomly. Next, one has to calculate a score for each protein
based on the scores of peptide identifications (omitted from
Fig. 2A for simplicity). As the default choice, we used bpP
among all PSMs for a protein group, while also showing re-
sults for mmP and best MaxQuant PEPs where relevant for the
comparison of methods. Finally, one has to choose TDS for
protein groups. In the classic TDS (cT), all target and decoy
protein groups are passed onto the FDR estimation stage. In
the pT (Figs. 2 and 3D), the score of each target protein is
compared to its shuffled or reversed decoy counterpart pro-
tein and only the best scoring out of the two proteins is
retained. The picked group TDS (pgT) is an evolution of the pT
that specifically deals with protein groups and which will also
be introduced further below.
As input to the protein group FDR estimation methods, we

used the MaxQuant evidence.txt results filtered at 1% peptide-
level FDR and 100% protein-level FDR and used Percolator to
re-score the PSMs (see Experimental Procedures). All options
and methods for protein group-level FDR estimation have been
implemented in a Python package named Picked Group FDR
(https://pypi.org/project/picked-group-fdr/). The results shown
below were generated with v0.3.0.

The Savitski Method Shows Reduced Sensitivity for
Databases Containing Isoforms

The protein FDR estimation method we proposed in Savitski
et al., based on the pT, has been shown to avoid the accu-
mulation of decoy matches at the gene level in large datasets,
while correctly controlling protein-level FDR (8, 9). We rean-
alyzed a recently published dataset of deep proteomes of 29
human tissues (30) by searching 50 million tandem mass
spectra (MS2) against three human protein sequence data-
bases of different size and containing increasing peptide level
sequence redundancy (Swiss-Prot, Swiss-Prot+Isoforms,
Swiss-Prot+Isoforms+TrEMBL). This dataset will be referred
to as the Wang_base dataset.
When only taking canonical protein sequences into account

(Swiss-Prot), we observed a 3% gain in identified proteins for
the Savitski method compared to MaxQuant’s method
(Fig. 3A). This modest increase is realized despite the fact that
Protein group 
FDR estimation

e.g.
� Savitski (Picked protein FDR)
� MaxQuant
� Picked protein group FDR

Evaluate FDR 
calibration

Evaluate 
sensitivity

earches on a deep proteome study as well as simulated data to assess
mation methods. We also evaluated the sensitivity of the methods on
nical, SwissProt+isoforms, and SwissProt+iso+TrEMBL) for the deep
scovery rate.

https://pypi.org/project/picked-group-fdr/
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FIG. 2. Overview of protein group-level FDR estimation methods, its constituent stages, and the available options at each stage. A, a
protein group-level FDR estimation method takes a list of PSMs and chooses one of the available options at each of the three stages: protein
grouping, handling of shared peptides, and target-decoy strategy. B, subset grouping combines proteins into groups if the peptides of one
protein (ProteinA) form a subset of the peptides of another protein (ProteinB). C, the razor peptide approach assigns a shared peptide to the
protein group with the most unique identifications. D, the picked target-decoy strategy performs a target-decoy competition on protein level,
retaining only the best scoring protein out of each target-decoy pair. FDR, false discovery rate; PSM, peptide-spectrum match.

Picked Protein Group FDR
the Savitski method does not perform protein grouping (nG)
and dS, whereas MaxQuant’s method uses sG and rS, both of
which can enhance sensitivity. When we applied the pT to
results of searches against protein databases including iso-
forms (Swiss-Prot+Isoforms) and unreviewed protein se-
quences (Swiss-Prot+Isoforms+TrEMBL), the sensitivity of the
Savitski method drops compared to MaxQuant’s method
(Fig. 3A). We also obtained the counter-intuitive result that
fewer proteins are identified the larger the database that is
used. This drop in sensitivity can largely be attributed to the
discarding of the shared peptides in the Savitski method. This
is because the fraction of shared peptides increases drasti-
cally with the increasing sequence redundancy of tryptic
peptides obtained by in-silico digestion (Fig. 3B). For the most
redundant database, Swiss-Prot+Isoforms+TrEMBL, 63% of
all peptides are shared by at least two protein sequences. This
effect is also evident in the MaxQuant search results, where
75% of the peptides were shared by two or more protein
sequences for this database (supplemental Fig. S3).

Development of the Picked Protein Group FDR Method

In light of the above, we hypothesized that the negative
effect of a high rate of shared peptides on the identification of
proteins could be addressed by a more appropriate method of
protein grouping and subsequent adjusted FDR estimation. In
order to be able to use the pT, we had to solve the issue that
target and decoy proteins are not necessarily grouped in a
way that would allow fair competition. For example, a target
protein group may consist of proteins D, E, and F, whereas the
decoy protein group that contains the decoy counterpart of
protein D, REV_D, also contains REV_F and REV_H (Fig. 4A),
whereas REV_E forms a different protein group of its own.
Therefore, we extended the pT to handle such cases that arise
from protein grouping and we term this extension the pgT.
This strategy first sorts the protein groups by descending
protein identification score. Then, while going down the sorted
protein group list, all protein groups that contain at least one
counterpart protein of a leading protein in the current protein
group (but with a lower score) are eliminated (Fig. 4A, see
Experimental Procedures).
To verify that the pgT leads to well-calibrated protein group-

level FDRs, we searched the Wang et al. dataset against the
Swiss-Prot+Isoforms+TrEMBL database augmented with an
entrapment database (31) (Wang_trap_0.5 dataset, see
Methods). This entrapment database was constructed in such
a way that it mimicked the proportion of shared peptides as
found in the Swiss-Prot+Isoforms database (50% shared
peptide ratio). When using pgT together with sG and dS, we
Mol Cell Proteomics (2022) 21(12) 100437 7
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Picked Protein Group FDR
observed that the resulting FDRs were well-calibrated over the
entire FDR range (Fig. 4B). However, when we changed this
method to use rS, the results showed anticonservative FDR
estimates. A similar behavior was observed for the MaxQuant
method, because it also uses rS.
The anticonservative behavior when using rS is a result of

false positives that remain unaccounted for by the decoy
model, as explained in the introduction and in Figure 4C. This
effect becomes stronger as more false positives are included in
the input list of PSMs, for example, when applied to large-scale
datasets or when permissive PSM-level FDR cutoffs are used.
Neither using different scoringmethods nor the pgTwas able to
lead to well-calibrated protein group-level FDRs when using rS
(supplemental Fig. S4). When reducing the shared peptide ratio
to 4% (supplemental Fig. S5; Wang_trap_0.04 dataset,
mimicking Swiss-Prot’s shared peptide ratio), this effect was
not as apparent anymore, as the effect of rS is reduced.
Combining pgT with dS led to well-calibrated FDR esti-

mates but the loss in the number of identified protein groups
was not completely resolved (Fig. 4B). This is because a group
of proteins with one (or more) high-confident shared peptide
8 Mol Cell Proteomics (2022) 21(12) 100437
identifications can be split over two protein groups owing to
the presence of low-confident peptides that are unique to
particular isoforms and are present in the same group
(Fig. 4C). In such cases, high-confidence shared peptides are
shared by two protein groups and are discarded by pgT. This
results in neither protein group being identified, in turn, leading
to reduced sensitivity of protein group identification.
To overcome the shortcomings of (1) using rS, leading to

anticonservative protein FDR estimates (Fig. 4D, orange),
and (2) dS, leading to reduced sensitivity (Fig. 4D, purple),
we propose an extension to sG that we term rsG (Fig. 5A).
First, a regular sG is performed and the PSM-level score
cutoff corresponding to a 1% protein group-level FDR is
computed. Second, using this cutoff, the high-confident
PSMs are retained from the original list and sG is per-
formed on this filtered list of PSMs. The final list of protein
groups consists of the protein groups from the second
grouping, supplemented with protein groups from the first
grouping for which none of its proteins were already in a
protein group from the second grouping. By removing the
effect of low-confident PSMs on the protein grouping pro-
cedure, more high-confidence peptides can be uniquely
mapped to a protein group. This reduces the fraction of
discarded precursors from 0.21 for sG to 0.15 for rsG, a
30% decrease (Fig. 5B). On the Wang_trap_0.5 dataset,
pgTDS combined with dS and rsG (rsG, dS, bpP, pgT)
shows well-calibrated FDRs (Fig. 5C). This combination of
options in this new method will henceforth be referred to as
the Picked Protein Group FDR method.
We analyzed the Wang_base dataset using the new Picked

Protein Group FDR method and compared the results to
those obtained by MaxQuant’s method (sG, rS, mmP, cT),
the Savitski method (nG, dS, bpP, pT), and rsG with the cT
(bpP, rsG, dS, cT). For the database with the smallest ratio of
shared peptides (Swiss-Prot), the pT of the Savitski method
led to the expected moderate increase in identified proteins
at 1% protein group-level FDR compared to MaxQuant’s
method which uses the cT. The same was observed for the
Picked Protein Group FDR method, which showed an in-
crease of 4% in the number of identified protein groups
relative to MaxQuant’s method. When including isoforms into
the analysis (Swiss-Prot+Isoforms), the number of identified
proteins using the Savitski method drops by 21%, as
observed above. In contrast, this is not the case for methods
that use rsG, for which an increase of 4 to 5% in the number
of identified protein groups was observed compared to the
Swiss-Prot database. This is because one can now identify
multiple protein groups per gene. For the Swiss-
Prot+Isoforms+TrEMBL database, the number of protein
groups at 1% FDR roughly doubled when using the Picked
Protein Group FDR method compared to the Savitski method
(Fig. 5D). There was also an increase of 4% in the number of
identified protein groups by switching from cT to pgT and a
2% increase compared to MaxQuant’s method. However, as
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Picked Protein Group FDR
demonstrated above, the FDR estimates of MaxQuant’s
method are likely not well-calibrated due to the use of rS.
Hence, the actual FDR might be higher than the reported 1%
on this list of protein groups. In summary, the Picked Protein
Group FDR method obtained the highest number of identified
protein groups across the three differently sized databases
while correctly controlling protein group-level FDR. This led
to 15,600 confidently identified protein groups in this human
proteome represented by 29 healthy tissues.

The Picked Protein Group FDR Method Scales to Very
Large Datasets

Next, we evaluated if the Picked Protein Group FDR method
would scale to analyzing very large datasets. Because
entrapment database searches are computationally expensive
when performed at scale and because they change the orig-
inal database in terms of size and shared peptides, we instead
used simulated data (see Experimental Procedures) as a way
to generate large-scale datasets to verify protein group-level
FDR estimates. To verify the validity of the simulated data,
we checked if we could recover the qualitative effects
observed for the Wang_trap_0.5 and Wang_trap_0.04 data-
sets. To this end, we estimated the appropriate input param-
eters for the simulation from the entrapment experiments
using the Wang et al. dataset. We then simulated PSMs for the
two entrapment searches (4% and 50% shared peptide ra-
tios), where each experiment was controlled at 10% or 1%
peptide-level FDR. The results of the different protein group
FDR methods for simulated and entrapment datasets were
similar for both shared peptide ratios (supplemental Fig. S6).
For example, we observed the aforementioned anti-
conservative behavior resulting from allowing rS in the 50%
shared peptide ratio data which was hardly noticeable at the
4% shared peptide ratio.
We next simulated data to investigate the effect of

combining hundreds of experiments containing about 10,000
Mol Cell Proteomics (2022) 21(12) 100437 9
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Picked Protein Group FDR
proteins each and searched against Swiss-
Prot+Isoforms+TrEMBL and controlled at 1% peptide-level
FDR per experiment (Fig. 6 and supplemental Fig. S7). As ex-
pected, the more experiments were combined, the larger the
anticonservative effect of rS became (Fig. 6A). At the same
time, the number of protein groups at 1% FDR for the Picked
Protein Group FDR method increased as the number of com-
bined experiments increased (Fig. 6B). Furthermore, and as
expected, using a 10% peptide-level FDR threshold per
experiment greatly exacerbated the anticonservative behavior
of methods employing rS (supplemental Fig. S8). Reassuringly,
the current best practice in proteomics of applying a global 1%
peptide-level FDR after combining all experiments did largely
resolve the calibration issues caused by rS, although some
anticonservative behavior could still be observed in the very
low FDR region. However, this did not lead to more identified
protein groups compared to the Picked Protein Group FDR
method (supplemental Fig. S9).
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Finally, we applied the Picked Protein Group FDR method to
the reanalysis of the entire human section of ProteomicsDB
which comprises 77 projects representing many different types
of proteomic applications, 19,800 LC-MS/MS runs leading to
410 million PSMs. As expected, we observed a sharp increase
of 71% in the number of identified protein groups compared to
the Savitski method (18,000 versus 10,500) when searching
against Swiss-Prot+Isoforms+TrEMBL but identified an almost
identical number when searching the canonical Swiss-Prot
database only (15,600 versus 15,500; Fig. 7A). Furthermore,
the Picked Protein Group FDR method showed the expected
behavior of identifying more protein groups when searching
Swiss-Prot+Isoforms+TrEMBL (18,000) than Swiss-
Prot+isoforms (17,000) or Swiss-Prot (15,600). At the gene
level, we observed the expected and desired behavior that the
same genes were identified when searching Swiss-
Prot+Isoforms or Swiss-Prot (Fig. 7B). Searching Swiss-
Prot+Isoforms, the Picked Protein Group FDR method
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mation for databases including isoforms. A, bar plot showing the
number of protein groups at 1% FDR. The Picked Protein Group FDR
method exhibits an increase in the number of protein groups as iso-
forms and unreviewed proteins are included in the database. This is
mainly because multiple protein groups can now be identified per
gene. B, Venn diagram on gene level comparing the Savitski method
without isoforms (red) and the Picked Protein Group FDR method with
isoforms (blue). The Picked Protein Group FDR method reveals in-
formation about protein isoforms, with 8% of the identified genes
having multiple identified protein groups (gray). FDR, false discovery
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Picked Protein Group FDR
resulted in 1230 genes with multiple identified protein groups
(supplemental Table S2).
DISCUSSION

Here, we introduced the Picked Protein Group FDR method
for calculating protein group-level FDRs. This method ach-
ieves higher sensitivity than alternative state-of-the-art
methods, correctly controls protein group-level FDR, and
scales well to repository-sized datasets. We developed a
Python package and an accompanying graphical user inter-
face that implements this method. This software tool can
directly be applied to MaxQuant search results, with the op-
tion of combining multiple search results in a single protein
group analysis. On a deep proteome study of 29 healthy hu-
man tissues (Wang_base), the number of identified protein
groups was increased by up to 500 (+4%) compared to
MaxQuant’s method. The reanalysis of the human section of
ProteomicsDB resulted in 15,600 identified genes, similar to
the number previously obtained with the Savitski method. Out
of these identified genes, 1230 had multiple identified protein
groups when searched against the SwissProt database with
isoforms included. This number is substantially higher than the
246 genes previously reported by Abascal et al. (32). These
authors purposely employed very stringent selection criteria in
order to minimize the number of false positives, as the authors
had observed artifacts of unaccounted false positives on
peptide level (33). Here, we used a 1% protein group-level
FDR filter, which corresponded to a rather stringent 0.12%
peptide-level FDR filter. Manual inspection of the results in-
dicates that in the vast majority of such genes, high-confident
peptides are available unique to each of the protein groups.
However, further research will be needed to assess the validity
of these results.
Mol Cell Proteomics (2022) 21(12) 100437 11
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To resolve sensitivity and calibration issues of the state-of-
the-art methods, the Picked Protein Group FDR method in-
troduces rsG for protein grouping and pgT for target-decoy
competition of protein groups. rsG extends regular subset
grouping with a second protein grouping step in which low-
confident PSMs are ignored. This is comparable to the cur-
rent best practice of applying a global 1% peptide-level FDR
cutoff before protein grouping but has the benefit of producing
FDR estimates for protein groups without peptides below the
peptide-level FDR cutoff. The pgT extends the pT to handle
protein groups. It is easy to implement and is identical to the
pT when protein grouping is not performed. However, it
should be noted that the pgT is a heuristic rule that relies on
the similarity in composition, for example, number of proteins
and shared peptides, of incorrect target protein groups and
decoy protein groups. One can indeed construct (artificial)
examples where pgT produces undesirable results, for
example, an incorrect target protein group consisting of one
protein eliminating a decoy protein group with 10 decoy pro-
teins that happen to share one peptide. Nevertheless, we
demonstrated here through our calibration experiments that,
in practice, the protein groups competing against each other
are similar enough to ensure a fair competition and, thereby,
accurate FDR estimations.
Furthermore, we demonstrated that the use of rS can lead to

anticonservative protein group-level FDR estimates. Fortu-
nately, we observed in our simulation experiments that this
bias will likely be minor if the best practice of applying a global
1% peptide-level FDR cutoff before protein grouping is used.
We acknowledge that rS increase the number of peptides for a
protein group and thereby stabilize protein abundance esti-
mates. However, it cannot be guaranteed that the assignment
to one of the protein groups in question is indeed correct.
Using rS might, therefore, lead to a false sense of confidence in
the presence and abundance of specific isoforms.
More concerningly for protein quantification, isoform-

specific peptides are frequently only identified in a small
fraction of samples. This often leads to high levels of missing
values for isoforms, regardless of whether rS are used or not.
One way to address this issue could be to take the abun-
dances of the peptides shared between isoforms into account
(34, 35). As such methods still have to prove their reliability, we
recommend doing differential abundance analysis on gene
level and using isoform-level quantification only in cases
where enough information is available.
In summary, the current study presents a method for protein

group FDR estimation that is both correct and sensitive. The
accompanying software as well as the data simulation scripts
are open-source, providing the proteomics community useful
new tools to design, develop, and test methods for estimating
protein group-level FDRs. The authors also expect that the
ability of the software to generate consistent protein group
identifications when combining search results from different
(and possibly large) datasets will make proteomic experiments
12 Mol Cell Proteomics (2022) 21(12) 100437
more comparable without the need for expending large
computational resources.
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