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Study-based evaluation of accuracy and usability of wearable 
devices in manual assembly
Barbara Tropschuh, Susanne Windecker and Gunther Reinhart

Institute for Machine Tools and Industrial Management (iwb), Technical University of Munich, Garching, 
Germany

ABSTRACT
The fourth industrial revolution shapes today’s private and indus-
trial environments, implying increased digitalization, connectivity, 
and artificial intelligence. Wearable devices support digital commu-
nication by displaying information and monitoring health-related 
aspects by measuring vital signs. Even though various wearables for 
measuring vital signs are already used in private life, they have not 
yet found their way into the production environment. This could be 
due to poor data quality or a lack of acceptance among employees 
regarding the usability of wearables during work activities. This 
paper aims to evaluate the accuracy and usability of selected wear-
able devices in manual assembly. Therefore, two user studies were 
conducted in a rebuilt production environment. The first study 
focuses on the data accuracy of the heart rate measurement of 
different wearables during manual assembly. In the second study, 
the usability of the selected wearables is evaluated with the think-
ing-aloud method during a manual assembly task and 
questionnaires.
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1. Introduction

In today’s turbulent industrial environment, manufacturing companies are confronted 
with contrary developments regarding employees and workplaces. Due to the demo-
graphic change, companies face an aging workforce with declining physical and mental 
performance requirements (Gajewski et al., 2018). At the same time, the increasing 
number of product variants with low repetition rates and frequent changes in the work 
task lead to more complex workplaces (ElMaraghy et al., 2013). The adaptation to these 
evolving requirements poses various challenges, especially for elderly employees (DAK- 
Gesundheit, 2018). In this way, mental and physical overstrain can arise, leading to 
assembly errors in the short term and sick days in the long term (Rusnock & Borghetti, 
2018). To detect this overstrain as well as to prevent work errors and sick days, wearable 
devices can be used to measure employees’ vital signs to master their health in produc-
tion, e.g. measuring the heart rate with a fitness tracker or an ear sensor (Storm, 2020). 
Due to the progress in electronics, microsystems, and information technology, new 
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devices with enhanced functions constantly enter the market (BMBF, 2018). These 
devices are already used extensively in private life. However, they have hardly been 
implemented in the production environment (Teucke et al., 2020).

This paper examines the accuracy and usability of wearable devices measuring vital 
signs in manual assembly. Section two reviews the literature on data accuracy and 
usability of wearables. Afterward, the accuracy and usability of different wearables are 
analyzed in two user studies in the Innovation Lab of the iwb (section three). Thereby, 
test persons conducted a specific assembly task in a replicated production environment. 
The results of the studies are described in section four. An interpretation and discussion 
of the results follow in section five before this paper is summarised.

2. Wearable devices in manual assembly

Wearable devices represent a subset of smart devices worn directly on or in the body. 
Sensors, cameras, and microphones are embedded in these devices to record personal 
and environmental data (European Commission, 2014). According to Guk et al. (2019), 
wearable devices are classified into portable, attachable, implantable, and ingestible 
devices (Guk et al., 2019). These devices can, for example, continuously monitor employ-
ees’ vital signs, postures, or actions. In the approach of Dimitropoulos et al. (2021), 
a human-robot collaborative cell is described where the robot adapts to the ergonomic 
and process needs of the worker using data from wearable devices (Dimitropoulos et al., 
2021). Gkournelos et al. (2018) also focus on the collaboration between robots and 
humans by developing a smartwatch application to directly interact with the robot, e.g. 
via voice or manual guidance (Gkournelos et al., 2018). By monitoring employees’ vital 
signs, physical and mental overstrain can be detected (Teucke et al., 2020). Thus, 
corrective measures can be initiated to avoid long-term effects on the employees 
(Teucke et al., 2020). Peruzzini et al. (2017) present an overview of parameters for 
human factors monitoring in industry 4.0, e.g. heart rate or skin temperature, with 
suitable monitoring tools for user experience analysis (Peruzzini et al., 2017). 
Moreover, Peruzzini et al. (2020) use these human factors to assess workers’ ergonomics 
performance and perceived comfort with eye-tracking systems and wearable biosensors 
(Peruzzini et al., 2020). Furthermore, various comparative studies analyzed the data 
accuracy of, e.g. step counts, sleep duration, or estimated energy expenditure (EEE) 
recorded by different wearable devices, e.g. Fitbit One and Zip, Jawbone UP, or Nike 
Fuelband (Case et al., 2015; Ferguson et al., 2015; Lee et al., 2014; Wallen et al., 2016). The 
results of these studies show that the wearable devices are consistently less accurate than 
the actual step count or the measures of research-grade devices (e.g. chest strap, ECG- 
electrodes). Research-grade devices are devices for which data quality and accuracy have 
already been scientifically verified. These devices are now used as comparison devices. 
The above results were obtained both under laboratory conditions and under real 
conditions. For instance, (Wang et al., 2017) conducted a comparative study to determine 
the heart rate (HR) accuracy of selected wrist-worn wearable devices. The heart rate data 
tracked by the Apple Watch, Mio Fuse, Fitbit Charge HR, and Basis Peak were compared 
to the Polar H7 chest strap data within a laboratory setting. The study revealed that none 
of the examined wearables achieved the accuracy of the chest strap (Wang et al., 2017). 
Besides the data validity of heart rate, the comparative study by Wallen et al. (2016) also 
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considered the accuracy of step count and the estimated energy expenditure (EEE) of 
wrist-worn devices (Wallen et al., 2016). Therefore, the authors compared the accuracy of 
the Apple Watch, Fitbit Charge HR, Samsung Gear S, and Mio Alpha against research- 
graded measures under laboratory conditions. The study’s main findings inlcude that 
there is no device superior to the comparative devices and, on a variable level, the HR 
data is consistently more accurate than EEE and step count throughout all devices 
(Wallen et al., 2016). Regarding the accuracy of wearable devices, the research focuses 
on evaluating wrist- and hip-worn wearables of the category of portable devices. 
Moreover, the papers concentrate on the accuracy of wearable devices for use in private 
life and healthcare. Thus, no studies have considered the accuracy of the wearables 
during production-related activities. Furthermore, new devices with improved functions 
and better data quality enter the market, making it necessary to check whether the 
improved data quality is already suitable for use in production. Regarding the use of 
wearable devices in occupational environments, Mettler & Wulf (2019) analyze the 
affordances and constraints of wearable use from an employee’s perspective (Mettler & 
Wulf, 2019). They analyze possible physiologic measurement systems (e.g. measuring 
physical activity with step count) and constraints like privacy or technological indepen-
dence. Privacy concerns and the associated restrictions regarding personal freedom and 
individuality play an essential role in using wearables in a company environment 
(Mettler & Wulf, 2019). Luse & Burkmann (2020) focus on the use of RFID wearables 
in the workplace, analyzing privacy concerns (Luse & Burkman, 2020). The results show 
that being monitored has a negative impact on employee satisfaction. Therefore, higher 
transparency during implementation can help integrate such new devices into the 
corporate environment (Luse & Burkman, 2020). Usability is very closely linked to the 
acceptance of the employees. Khakurel et al. (2020)_describe usability issues related to 
wearable devices (Khakurel et al., 2020). Thereby, they identified three categories regard-
ing usability challenges. These are device characteristics, deployment on the body, and 
the external devices used to synch with the wearables. Due to motion artifacts, device 
characteristics and wearing position can negatively affect data accuracy or connectivity 
(Khakurel et al., 2020).

This paper compares the data accuracy of a wrist-worn, ear-worn, and attachable 
device to a criterion measure (Polar H10 chest strap) under production-specific condi-
tions. In addition to the accuracy aspects, a second user study applying the think-aloud 
method is conducted to externalize cognitive processes concerning selected wearable 
devices while performing assembly tasks. This provides insights into relevant usability 
topics in the production environment.

3. Research method

To measure the data accuracy and usability of selected wearable devices in manual 
assembly, two user studies were conducted at the Innovation Lab of the iwb. The 
test setup consisted of an assembly workstation with an axle carrier and a flow rack 
containing all the mounting parts as well as the required assembly tools. A digital 
worker information system displayed the right assembly locations on the axle 
carrier. The test persons assembled and disassembled mounting parts, such as 
hoses, clamps, beams, and bolts on a truck axle carrier at the rebuilt cycle-based 
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manual assembly workstation. Figure 1 shows the study set up at the Innovation Lab 
of the iwb. The overall overarching study concept for measuring physical and 
mental strain during manual assembly with smart devices was approved by the 
ethics committee of the Technical University of Munich (No. 388/20 S-KH). In 
addition, participation in the study was voluntary, and each test person signed an 
informed consent form. The participants in both studies were between 19 and 
28 years old. Due to Covid-19 restrictions, it was not possible to include external 
industrial test persons in the study. Therefore, only students and members of the 
Institute for machine tools and industrial management participated. The wearable 
devices under evaluation were chosen according to the selection method in 
(Tropschuh et al., 2020), considering restricting criteria of the workplace and 
discussions with partners from the automotive industry to integrate a practical 
view on smart devices. Thereby, heart rate was selected as the measurement para-
meter, restrictions of the production environment were identified (e.g. no protrud-
ing buttons on watches), and a final selection of possible devices was conducted 
with the help of industry partners to consider real company criteria such as 
economic aspects. The selected devices are the cosinuss°One ear sensor, the 
Garmin vívosmart 4 fitness wristband and the skin patch movisens EcgMove 4 
(see, Figure 2). For example, the Garmin vívosmart 4 fitness wristband was selected 
due to its pure form (no protruding buttons), the small size, and the moderate price 
compared to Apple watches. The Polar H10 chest strap is considered a reference 
device. The following sub-sections address the systematic approach of the two 
studies separately.

Figure 1. Study setup at the Innovation Lab of the iwb.
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3.1. Accuracy of wearable devices in production

The first study focuses on the accuracy of the heart rate measurement of the selected 
wearable devices in the rebuilt production setup. The heart rate has been the most 
frequently used value for measuring and evaluating health status (Dias & Paulo Silva 
Cunha, 2018). For this reason, the current study uses this vital sign to compare the 
accuracy of the cosinuss°One ear sensor, the Garmin vívosmart 4 fitness wristband, and 
the skin patch movisens EcgMove 4 against the data from the Polar H10 chest strap. Due 
to its high data accuracy, the Polar H10 chest strap has already been used as a reference 
device in past research (e.g. Dooley et al., 2017; Gillinov et al., 2017; Wang et al., 2017). 
The sample size of 25 participants (9 women, 16 men) resulted mainly from the timing of 
the study between two covid lockdown phases. As 25 test subjects are sufficient for initial 
suggestions and statements on the subject, the data collection was ended. The 25 
participants wore the four devices simultaneously during the user study while performing 
the assembly task. This assembly task is performed twice at the replica workstation with 
different cycle times (7.30 min, 5.45 min).

The data analysis is carried out in three steps: In the first step, descriptive statistics 
were used to identify the essential characteristics of the individual data sets. Additionally, 
Spearman’s rank correlation analyses were calculated to determine the strength of the 

Figure 2. Selected wearable devices to be evaluated.
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monotonic relationship between the HR data of the devices. In the second step, the data 
sets of the evaluated wearable devices were mapped to the chest strap data according to 
the timestamps. Regarding the wearables, the fitness tracker measured every second if the 
wrist movement was not too much. The ear sensor tracked the heart rate every two to 
three seconds, and the skin patch, as well as the chest strap, were measured continuously. 
All data sets from the beginning of the assembly were considered, excluding data due to 
incorrect configuration of the device or if the device didn’t measure the heart rate due to 
movements. To compare the heart rate, only the timestamps that are available for both 
devices were compared. The conformity of the wearables towards the reference device is 
assessed and quantified using Bland-Altman diagrams. These plots allow comparing an 
established measurement method (i.e. the Polar H10) with a new measurement method 
(i.e. the Garmin vívosmart 4, the cosinuss°One, and the movisens EcgMove 4) by 
identifying the range of variation using 95 % limits of agreement (LoA) (Bland & 
Altman, 1999). This way determined whether two measurement methods were of similar 
quality (Bland & Altman, 1999). In the third evaluation step, Wilcoxon’s signed-rank 
tests were performed to determine whether the HR data recorded by the evaluated 
devices were statistically significantly different from the data measured by the reference 
device. Furthermore, the mean percentage error (MPE) and the mean absolute percen-
tage error (MAPE) values were calculated as the average absolute value of the errors of 
each device relative to the criterion measures to measure how accurate the devices are 
compared to the reference device.

3.2. Usability of wearable devices in production

In the second user study, the usability of the selected wearable devices is evaluated. 
Fifteen new participants (aged 19 to 28 years, 7 women and 8 men) performed the same 
assembly tasks as in the previous study in four iterations. In each iteration, a different 
wearable device is worn by the participant and assessed with the think-aloud method as 
well as a follow-up paper-based questionnaire. The think-aloud session is intended to 
generate insights into relevant usability aspects and which features of the selected 
wearables are perceived positively or negatively by the participants in the assembly 
environment. To capture these feelings and preferences as part of their underlying 
cognitive processes, participants are encouraged to verbalize anything that comes to 
mind associated with the worn device while performing the assembly task. In contrast, 
the follow-up questionnaire for the respective device after each assembly round serves to 
quantitatively obtain specific information on the topics of intrusion, portability, ease of 
use, wearing comfort, and interchangeability. Each criterion expresses one attribute, 
except for portability, which describes two characteristics, i.e. shape and dimensions 
and weight. These attributes are measured on a 5-point Likert scale, with strongly agree 
and strongly disagree anchor points (e.g. The chest strap is comfortable to wear. | I fully 
agree → I do not agree at all). Additionally, two open-ended questions focus on which 
attributes and features the participants like best or worst about the device, e.g. What 
features did you like best about the Skin Patch?/What did you notice most positively 
when wearing the Skin Patch?. The questionnaire’s general, cross-device part is answered 
at the end of the fourth iteration. Thereby, the preferred device for use in manual 
assembly is selected among the four evaluated devices, and the reasons for this selection 
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should be provided. Participants conduct the study with a random order of wearables to 
eliminate bias and increase data quality across all devices. The first iteration might 
require participants to focus more on the underlying task even though a trial assembly 
run was carried out before the first iteration. Figure 3 shows the protocol of the usability 
study with the used methods.

The analysis of the think-aloud method starts with the review of the protocols (Tesch, 
1990). This review serves to gain a comprehensive understanding of the nature of the 
preferred characteristics of wearable devices in general and in the assembly context, in 
particular. On this basis, common themes are determined and coded to derive the 
frequencies of occurrence of the aspects identified. For the follow-up questionnaires, 
the answers to the open-ended questions regarding the most positive and negative 
characteristics of the respective device are combined with those of the think-aloud 
protocols and jointly evaluated according to the identified common aspects. The answers 
to the closed questions are evaluated using descriptive statistics. This approach is 
employed for the per-device questions based on the predefined criteria and the cross- 
device question where the preferred device is selected.

4. Description of the results

4.1. Accuracy of wearable devices in production

The descriptive statistics reveal that the differences in the HR data between the cosinuss° 
One and the reference device are the greatest. In contrast, the differences between the 
movisens EcgMove 4 and the reference device are the smallest (see, Figure 4). The box 
plot was chosen to display the data distribution of the different devices graphically. The 
colored rectangle, the box, indicates the area that contains the middle 50 % of the data 
(Emerson & Strenio, 2000). It is limited by the lower and upper quartiles, and the line in 
each box represents the median of the values. The adjacent antennas at the top and 
bottom, also called whiskers, represent the mild outliers (Emerson & Strenio, 2000). The 
points outside the whiskers are extreme outliers, which either represent true extreme 
values or indicate device malfunctions. All relevant requirements underlying the Bland- 
Altman plot are fulfilled. The Bland-Altman diagram is a method for comparing two 
measurement methods with the graphical display of the data deviation (Martin Bland & 
Altman, 1986). The green line M indicates the mean value of the data difference between 
two measurement methods. By distributing the deviation points, the range of variation 
can be visualized, and it can be checked whether one measurement method measures 

Figure 3. Protocol of the usability study.
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higher or lower than the other in principle (systematic measurement error). The Bland- 
Altman plots indicate that the Garmin vívosmart 4, on average, overestimates the HR 
data compared to the reference device. In contrast, the cosinuss°One and the movisens 
EcgMove 4 underestimate this data (see, Figure 5). Furthermore, visual inspection of the 
Bland-Altman plots for the Garmin vívosmart 4 and the cosinuss°One illustrates that 

Figure 4. Comparison of the differences in HR data.

Figure 5. Bland-Altman plots of the devices to be evaluated.
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more than one-third of the mean differences lie outside the limits of agreement (LoA), i.e. 
the lower and upper LoA. The LoA is calculated according to (Martin Bland & Altman, 
1986) so that 95 % of the received values are contained. Consequently, these measure-
ment methods do not represent acceptable deviations from the Polar H10. In contrast, 
almost all mean differences lie within the range of variation for the movisens EcgMove 4. 
Hence, this device represents an acceptable deviation and, thus, a valid alternative to the 
Polar H10.

Since a normal distribution of the data is not assumed, the following non-parametric 
statistical tests are performed. Spearman’s rank correlation coefficient reveals a strong 
correlation for all devices under evaluation with the reference device (ear sensor and 
chest strap: p = 0.575; fitness tracker and chest strap: p = 0.612; skin patch and chest strap: 
p = 0.911). Calculating the Wilcoxon signed-rank test with a significance level of 5 %, the 
significant results are obtained for the Cosinuss chest strap combination (z = 14.95, 
p < 0.001) and the Garmin-chest strap combination (z = −8.05, p < 0.001). The Wilcoxon 
test was not significant for the combination of movisens and chest strap (z = −0.42, 
p = 0.672). This indicates that the cosinuss°One and the Garmin vívosmart 4 have 
a higher deviation in HR data compared to the polar chest strap, whereas the movisens 
EcgMove 4 has a very low deviation but is not statistically significant. Regarding the 
Garmin vívosmart 4, the mean percentage error (MPE) is 3.44 % and the mean absolute 
percentage error (MAPE) is 9.70 %. For the cosinuss°One, the MPE is 4.33 % and the 
MAPE is 9.69 %. The slightest error was detected for the movisens EcgMove 4 with an 
MPE of 0.46 % and a MAPE of 6.60 %.

4.2. Usability of wearable devices in production

Based on the qualitative part of the study, ten usability topics are identified by 
a theoretical deductive literature approach: wearing comfort, ease of use, restrictions in 
performing the assembly task, and fit represent the predominant themes across all 
devices. In contrast, hygiene, appearance, wearing with other equipment, sustainability, 
damage during assembly, and occupational safety are less prevalent.

For the Garmin vívosmart 4 fitness wristband, almost all participants stated that it is 
comfortable to wear and easy to use, like an ordinary watch. In addition, the lightweight 
and small dimensions of the wristband were positively emphasized. However, some 
participants reported that the rubber wristband felt uncomfortable on the skin, espe-
cially when sweating. In addition, it was difficult for almost all participants to navigate 
through the device without a prior explanation. The reasons are the small display, 
inconvenient haptic feedback, and undefined symbols. However, many participants 
indicated that they expected to get along well after a short learning period. Regarding 
restrictions in performing the assembly task, most participants did not feel restricted by 
the wristband. Nevertheless, occupational safety problems and damage during the 
assembly task could occur when the wristband gets caught or the employee gets 
distracted by the display’s information. Some participants positively mentioned the 
appearance of the wristband as high quality.

Regarding the cosinuss°One ear sensor, the majority of the test persons could not 
imagine becoming accustomed to the device and wearing it for an extended period as the 
device felt uncomfortable and unfamiliar. In addition, almost all participants highlighted 
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that the device limits the hearing ability. This could also cause safety problems since 
warning signals might not be noticed. Some participants mentioned that the ear sensor 
does not fit properly and could slip out. However, many participants considered it 
positively that the ear sensor does not restrict movement during the assembly task. 
Nevertheless, a few participants felt that they performed the assembly task more slowly 
not to slip out the ear sensor. Fitting the sensor to the ear was simple for some 
participants as they found this sensor to fit like regular headphones. However, the 
simultaneous wearing of the ear sensor with other equipment (glasses, hearing aid, ear 
protection) was difficult and unpleasant.

Regarding the Polar H10 chest strap, most participants stated that the chest strap 
felt uncomfortable to wear and described the strap itself as very disturbing. 
Numerous participants experienced that the strap cut into their skin while at the 
same time did not remain firmly in one place. Almost all participants stated that the 
wearing comfort decreased while performing the assembly task as the chest strap 
slipped even more during movements. Expectations about becoming accustomed to 
the strap varied across participants. Besides, it was positively commented that the 
Polar H10 had no immediate impact on the execution of tasks. Considering the ease 
of use, most participants found the strap intuitive to apply, whereas adjusting the 
length of the strap was not easy when it was already worn.

In terms of the movisens EcgMove 4 skin patch, most participants did not 
consider the device as uncomfortable but unusual. Therefore, the majority stated 
that they became accustomed to wearing the skin patch within a few minutes. Most 
participants noticed positively that the device had no direct contact with the 
assembly task. In some movements, especially rotational movements in the upper 
body or with the left arm, a restriction was perceived as the sensor is attached 
slightly to the left side of the body. Regarding the ease of use, almost all participants 
noted that the adhesive patches could only be attached with detailed instructions. 
Furthermore, a considerable amount of force is necessary to reattach the sensor to 
the adhesive patches leading to pain in the chest while clipping it in. Concerning the 
fit of the skin patch, the majority of the test persons stated that they were afraid that 
the adhesive would not hold properly. In contrast to the other devices, sustainability 
was addressed several times as the sensor is attached with two disposable patches. 
New patches must be applied each time the sensor is worn.

Considering the best and worst rated device per criterion, the following can be 
observed (see, Figure 6): The wristband scores best on all criteria except ease of use. 
The chest strap ranks best in terms of ease of use. However, it is also the most negatively 
evaluated device for the criterion of comfort. The ear sensor performs the worst across all 
criteria, except for comfort. Meanwhile, the skin patch is not rated best or worst for any 
criterion, with average values determined in each case. Regarding the cross-device 
evaluation, the majority of participants prefer the wristband. Including the option of 
multiple responses, twelve out of fifteen participants opt for the wristband, three for the 
chest strap, and two for the skin patch. Meanwhile, no person chooses the ear sensor as 
the preferred device. The reason given by the test persons for choosing the wristband was 
that they were already used to this type of device.
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5. Interpretation and discussion

The user study on the accuracy of selected wearable devices in manual assembly provides 
statistical evidence that the movisens EcgMove 4 represents a valid method for measuring 
the HR during production-related activities. By contrast, the Garmin vívosmart 4 and the 
cosinuss°One show high variability in HR data compared to the reference device. This 
implies that these two devices might be insufficiently accurate to measure the HR of 
production employees.

Regarding the usability of the selected wearable devices in manual assembly, the 
qualitative part of the user study reveals that wearing comfort, ease of use, restrictions 
in performing the assembly task and fit constitute the prevalent usability topics for all 
devices. The quantitative part of the study shows that among all devices evaluated, the 
Garmin wristband and the Cosinuss ear sensor were rated best and worst, respectively. 
This rating is also reflected in selecting the favorite device, where 80 % of the participants 
indicated that the Garmin wristband would be the preferred device to use in the produc-
tion environment. This was because the participants were already familiar with this type of 
device, as it is similar to a conventional watch. This shows that employees tend to be more 
accepting of technologies they are already familiar with in their private lives than devices 
they have never been exposed to before. Furthermore, sustainability aspects like reusability 
of the devices and no single-use patches were especially important for the participants, as 
well as a self-explanatory user interface and a small size of wearables. These aspects, in 
particular, should be taken into account when designing next-generation wearables.

It is important to note that the current findings exhibit certain limitations. First, the 
results might be restricted because of the selection of participants (young, healthy, 
educated) and the small set of wearable devices (one device per category, i.e. wrist- 
worn, ear-worn, attachable). Furthermore, the analyzed data accuracy, usability, and 
comfort of the selected devices could be related to their brand and model. Therefore, 
generalizing the results of a single device to an entire product category is restricted. 
Second, the effects on the comparison between the Garmin vívosmart 4 and the reference 
device Polar H10 may be limited because the data of the Garmin device is only available 
in an irregular manner, without standardized measurement intervals (e.g. no measures 
for a minute). Therefore, it is possible that the actual time at which a value was tracked 
and the timestamp do not match. Third, the think-aloud method cannot ensure that 
every participant’s thought is captured as only the verbalized aspects can be recorded.

Figure 6. Overview of the evaluation of the selected devices by predefined criteria and preferred 
wearable devices of the participants (first choice).
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6. Conclusion and outlook

This paper analyses the accuracy and usability of a few selected wearable devices in 
manual assembly. The results demonstrate statistical evidence that the movisens 
EcgMove 4 is valid for measuring HR data. At the same time, the Garmin vívosmart 4 
and the cosinuss°One showed high variability relative to the reference device. Therefore, 
the latter two devices might not be accurate enough to collect HR data in manual 
assembly. The study on the usability of wearable devices combined qualitative (think- 
aloud) and quantitative (questionnaire) methods within a production-specific laboratory 
setting. The qualitative part of the user study revealed that the topics wearing comfort, 
ease of use, restrictions in performing the assembly task, and fit were the most critical 
topics across devices. Based on the quantitative part of the study, it became evident that 
the Garmin vívosmart 4 was rated best among all the devices evaluated.

Comparing the results of the two user studies, it can be seen that users most accept the 
fitness wristband, but it provides only insufficient data quality. Therefore, a compromise 
often must be made when selecting suitable wearable devices. For example, the skin patch 
achieved average evaluations regarding the usability aspects and, at the same time, 
reached high data quality.

The next step in our research is to verify the results in a field study with production 
employees of different ages and physical conditions. Furthermore, different devices could 
be included, e.g. implantable and ingestible devices and other devices of the already used 
wearable device categories. In addition, further studies will be conducted to validate the 
results with multiple devices per category (e.g. ear sensors or fitness trackers). On the one 
hand, this will allow generalizable, group-specific statements and the best devices for use 
in assembly to be identified. Moreover, further improved devices will enter the market, 
which should also be tested in terms of data quality and comfort. For practical applica-
tion, restrictions and regulations regarding the privacy and tracking of employees need to 
be considered. Furthermore, it must be ensured that the collected data cannot be used for 
direct performance measurement of individual employees but are only available in an 
anonymous form, e.g. for planning and scheduling.
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