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Abstract: The standardized driving cycles, which are used around the globe for the development
and homologation of automobiles, consist of a series of speed points versus time, to represent
typical driving conditions and to exclude the influence of a human driver. However, with respect
to autonomous vehicles (AVs), the driving style is defined in driving algorithms as a characteristic
of the vehicle. Therefore, driving style should be considered in driving cycles. In this research,
using MATLAB/Simulink® we developed the AVDC (Autonomous Vehicle Driving Cycle) Tool,
which is capable of generating driving cycles based on driving style characteristics. The autonomous
vehicles being investigated drive in a simulated environment along a straight road amongst other
traffic vehicles, applying standard cycles to ensure the representativeness of generated autonomous
cycles. The autonomous vehicle is piloted by adaptive cruise control (ACC) for car-following and
free driving. Overtake logic decides whether passing will be attempted. Driving style is defined by
four aspects—comfort, safety, swiftness, and economy—and determines the control parameters in
the driving algorithm. The driving cycles generated by the AVDC Tool for a variety of driving styles
show diverse characteristics, thus indicating the effective representation of various driving styles.

Keywords: driving cycle; driving style; autonomous vehicle

1. Introduction

Nowadays, autonomous driving is a significant trend in the automotive industry [1–3].
Numerous automotive manufacturers, suppliers, start-ups, and research institutes are
conducting research and development on relevant technologies including algorithms.
Autonomous vehicles change the relationship between human and vehicle as the driver
is no longer required, and every person inside the vehicle is a passenger. As a result,
the design concept for vehicles should be adapted to improve user experience during
autonomous driving situations [4]. Automotive manufacturers should develop AVs in such
a way that users can comfortably perform numerous activities during the trip, such as
reading, watching videos, playing, and working.

In the current development of vehicles, driving cycles are commonly used to evaluate
the consumption and emissions of traditional vehicles [5], or the range of electric vehicles,
as well as to iteratively optimize technical design [6,7]. The current driving cycles all have
fixed speed profiles in order to eliminate driver influence [8]. However, in AVs the driving
style is a feature of the vehicle itself. Therefore, it should be considered in the driving cycles.
In this context, we focus on designing driving cycles for AVs that depend on the driving
style.

With this aim, the AVDC (Autonomous Vehicle Driving Cycle) Tool [9] was developed
using MATLAB/Simulink® [10], which utilizes a specific driving style as an input when
generating a cycle. Therefore, a driving cycle can be constructed for a certain driving style.
The driving style is divided into four aspects within the tool: comfort, safety, swiftness, and
economy. In the simulation, the AV being investigated followed a configurable scenario
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in which it drove among traffic vehicles on a straight road. The chosen driving style
determined the control parameters of the driving algorithm. The simulated speed profile
of the AV was recorded as the output cycle.

2. State of the Art

The objective of this research—driving cycles for AVs—is a new topic addressed in few
publications, although partially automated (SAE Level 2 [11]) vehicles are already running
on public roads. Therefore, papers from the relevant research fields will be reviewed in this
section, namely driving cycle, driving style, and AV assessment.

2.1. Development of Driving Cycles

Extensive studies are being conducted on the development of driving cycles, based on
which numerous cycles have been created in various countries and regions [12]. Examples
of existing driving cycles used in legislative regulations for passenger cars include the New
European Driving Cycle (NEDC) [5], the Worldwide harmonized Light vehicles Test Cycle
(WLTC) [13], FTP 75 (Federal Test Procedure) [12] in the USA, the China Automotive Test
Cycle (CATC) [14], and JC08 (Japan Cycle) [15] in Japan. A comprehensive collection of
existing driving cycles can be found in [8,16].

Galgamuwa et al. [17] summarized the methods used in the literature regarding
driving cycle development and divided the procedure into four steps: route selection, data
collection, cycle design, and cycle evaluation. Real-world driving data on the selected
routes are first collected and processed. Then, a driving cycle is generated and evaluated
based on the data, in order to statistically represent real driving conditions. Figure 1 shows
the general procedure for driving cycle development using driving data.
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Figure 1. General procedure for driving cycle development using real driving data, based on [16,18].

The existing approaches were designed for vehicles driven by humans, since cycle
construction using real-world driving data ensures a good representability of vehicle usage.
For AVs, a similar approach can be adapted using AV driving data. Nevertheless, individual
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driving style is not considered in this method, which fails to meet the objective of this
research. Our new method will be explained in Section 3.

2.2. Evaluation of Driving Style

As a subjective and empirical concept, driving style has no standard definition and
is described variously in the literature. Elander et al. [19] offered the following definition:
Driving style refers to “the way individuals choose to drive, or driving habits that have
been established over a period of years”. Sagberg et al. [20] reviewed definitions within
articles and found three common points: First, driving styles differ from person to person
or between groups of people. Second, a driving style is a habitual manner of driving that
represents a relatively stable aspect of driving behavior. Third, in most definitions, driving
styles reflect conscious decisions by the driver. Several factors could influence the driving
style of a driver—including personality, driving experience, driving knowledge, driving
environment, social culture, and technical aspects [20,21].

The influence of driving style exists on a variety of levels. In terms of traffic en-
gineering, the driving style of vehicles influences traffic flow density [22,23] and road
safety [20]. At the vehicle level, energy consumption and emissions are influenced by
driving style [24–26]. For passengers, driving style affects travel comfort and safety [27–29].

The research on driving style can be divided into two categories—classification and
valuation. In the former category, driving styles have been classified in several types.
A typical classification is based on whether the driver drives fast, which then leads to
two or three classes: A driver with a fast driving style, also referred as aggressive [30,31],
sporty [32], or assertive [33], prefers high speed, high acceleration, and a short distance
from the vehicle ahead. A driver with a slow driving style, also called cautious [30],
comfortable [32,34], calm [31], or defensive [33], prefers the opposite. The third class refers
to the style in between, i.e., normal.

In the valuation category, the examined driving styles are assessed with a numeric
score. Therefore, the driving style can be evaluated for various aspects. Jachimczyk
et al. [35] chose eight indicators for the rating of three driving style aspects—comfort,
safety, and economy. Each indicator (based on the examined driver) is first scaled with an
expert value into a rating from 0 to 1. The ratings for the same aspect are combined into an
overall aspect rating using the area enclosed by all relevant ratings. Numerous research
projects focus on a specific aspect rather than overall driving style. Schockenhoff et al. [34]
studied ride comfort during two driving maneuvers—double 90◦ turn and slalom. The
test subjects sat in the test car while the maneuvers were being performed with specific
driving styles. The relationships between the subjects’ ratings of discomfort and the data
for measured indicators were evaluated using regression analysis. Regarding subjective
feeling of safety, Kondoh et al. [36] studied driver risk perception during car-following
on a driving simulator. Two indicators were selected: time-to-collision (TTC) and time-
headway (THW). The overall risk perception (RP) was defined as the weighted sum of
their reciprocals. Lu et al. [37,38] pointed out the limitations of RP and proposed another
valuation for safety—the safety margin (SM) value, which considers reaction time and
maximum deceleration during braking. The SM corresponds to subjective safety better
than RP in wider speed ranges.

The main issue for driving style evaluation is that of choosing appropriate criteria and
indicators. Several researchers have investigated driving style during certain maneuvers,
including car-following on a motorway [23,30], overtaking on a motorway [39], braking to
a full stop [40], lane changing [34], and slalom [34]. During the maneuvers, related physical
values were measured and used directly or indirectly as indicators of driving style. Another
option is that of evaluating the driving style for a whole trip. In this case, average and
root mean square (RMS) values have been used for indicators. Typically measured values
include velocity, acceleration, distance, and time-headway to the front vehicle [31,35,41].
These values are feasible and could indicate several aspects of driving style.
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2.3. Assessment Methods for Autonomous Vehicles

With conventional vehicles, driving cycles are used to benchmark energy consumption
and emissions. In the evaluation of electrical vehicles, driving cycles are also important
for range determination. Although autonomous driving has been researched in numerous
studies, there exist few publications about the assessment methods.

Mersky and Samaras [42] developed a test procedure for AV consumption. In the
simulation, the tested AV follows a vehicle applying the American legislative driving cycle
(FTP or HWFET). Initially, the test vehicle is positioned 5 m behind the front vehicle before
the latter starts moving. The AV follows using an ACC (Adaptive Cruise Control) system.
The test ends when the front vehicle completes its driving cycle. The speed profile of the
AV is recorded as the cycle, based upon which the consumption during the process is
calculated by means of a consumption model. Depending on various parameters in the
ACC strategy, the fuel efficiency of the AV cycle can vary from 3% worse to 10% better than
the original cycle.

Roshdi, et al. [43] proposed an evaluation framework for AVs that converts data from
test drives or simulations into standardized test data. The series of built-in criteria, as well
as user-defined criteria, can be used for the evaluation. Since this study focuses on the
framework, the exact equations for calculating the criteria have been omitted.

2.4. Research Gap

As mentioned in Section 2.1, the conventional methods for driving cycle development
are not suitable for AVs. Mersky and Samaras [42] proposed a method in which the AV
follows a vehicle running with standard cycles, but driving style is not investigated in this
method.

For AVs, the driving style is an important characteristic for customers and has yet to
be thoroughly investigated (Section 2.2). Driving styles are often classified into a few types,
which are insufficient for representing the variety of driving styles regarding different
customers. The indicators for driving styles have been proposed in various papers.

This paper intends to fill the gap between driving style and driving cycle. We objec-
tively represented the driving style with objective indicators and implemented the driving
style when generating a driving cycle.

3. Development of the AVDC Tool

The AVDC Tool is capable of generating driving cycles based on various driving style
settings. In this section, the methods for development of the tool are described in detail.

3.1. Concept

According to the defined objective, the input of the tool is the driving style. In addition,
the output cycle is defined as a speed–time profile. The concept is explained in specific
detail in the following paragraphs.

3.1.1. Basic Concepts and Assumptions

The tool has been designed for the simulation of autonomously driven travel segments.
Therefore, the driving cycles can be determined for the autonomously driven segments
of L2 systems, up to fully autonomous L5 systems. The investigated AV is capable of
autonomous driving on well-maintained roadways without human driver intervention.
The AV can drive autonomously during the entire cycle.

Foreseeably, AVs will coexist with human-driven vehicles on the road. However,
communication between vehicles or between the vehicle and the infrastructure is not yet
feasible [44]. This leads to an environment in which the investigated AV can only collect
data from its own sensors. Other vehicles on the road are therefore assumed to be driven
by humans.

For simplification, only longitudinal dynamics were considered for all existing driving
cycles [8], due to their use for evaluating the consumption and emissions of the powertrain.
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The lateral dynamics were neglected because their impact on the powertrain concept design
is marginal. A purely longitudinal evaluation offers the option of executing the driving
cycles on a vehicle test bench. In the cycles generated by the tool, the AV merely drives
longitudinally along a virtual, straight road. Although the AV can overtake the front
vehicle, the lateral dynamics and steering are disregarded.

The longitudinal movement of the AV is controlled with an ACC system. In addition,
the AV can decide whether to overtake the front vehicle. The driving style of the AV affects
the parameters in the ACC controller and the overtaking logic.

In this paper, we consider only autonomous passenger vehicles, so the respective user
requirements and the driving style were studied, including driving dynamics, driving be-
havior, and driving conditions. Nevertheless, this methodology can be used for commercial
vehicles with appropriate modifications.

3.1.2. Structure of the Tool

The structure of the tool was developed on the basis of these assumptions (Figure 2).
The driving style of the AV is the input of the tool, and the driving cycle is the output. In
addition, driving conditions such as traffic density, road category, and speed limits can be
entered into the tool as settings.
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Figure 2. Structure of the AVDC Tool.

The driving style input is converted into the parameters of the driving algorithms,
consisting of the ACC system and the overtaking decision. In parallel, the driving scenario
is generated based on the driving conditions. The AV simulates driving in the generated
scenario to record the driving cycle. The tool was implemented via MATLAB/Simulink.

According to this structure, the three main tool components were the driving style,
the driving algorithm, and the driving scenario.

3.2. Criterion for Driving Style

The driving style of an AV impacts the passengers’ evaluation of the ride within
the vehicle, and thus the vehicle concept itself. Furthermore, different passengers prefer
different driving styles in different settings. Therefore, in order to focus on the passenger
perspective, customer-relevant properties—a metric commonly used in the automotive
sector—were applied to evaluate driving style aspects on a nominal scale from 5 to 10 [45].
We defined the driving styles with the four aspects: comfort, safety, swiftness, and economy.
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3.2.1. Comfort

The first step in criteria development was that of choosing appropriate indicators.
In the literature, acceleration a and jerk j are commonly used as indicators for ride com-
fort [34,46–48].

The human body has different levels of sensitivity at different vibration frequencies.
ISO 2631-1 systematically studied the effects of mechanical vibration on humans [49,50].
For seated people, as for passengers in vehicles, there are two frequency weightings, one
for comfort (Wd) and one for motion sickness under longitudinal vibration (Wf) (Figure 3).
These two aspects have different biological mechanisms and therefore different frequency
weightings. The acceleration weighted with Wd and Wf are called acomf and asick.
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The instantaneous values were converted into average values in order to develop the
indicators for evaluating an entire trip. We used the root mean square (RMS), which is
recommended by ISO 2631-1 [49], where the higher value has a greater influence and should
then be given a higher weight. Therefore, three comfort indicators were chosen—acomf,RMS,
asick,RMS, and jRMS.

These indicators were then scaled into ratings between 5 and 10. For this purpose,
we used driving data as reference values. A VW ID.3 and a Tesla Model 3 were driven
around Munich for data collection [51]. Both test vehicles were equipped with OBD loggers
and smartphones for measurement. The measured signals from two devices were merged
into one speed signal with an additional plausibility check. The valid data meeting the
following criteria were used for further scaling:

• The driving segment was longer than 1 km.
• The speed signal was continuous and without sudden changes.
• The measured speeds from the OBD and the smartphone varied by a maximum of 5%.

Using these criteria, a total of 393 driving segments with a total distance of 1006 km
and duration of 12.6 h were selected. Since the GPS sensor caused strong signal noise, the
signal was filtered with a low-pass filter.

The comfort indicators developed were then applied to these driving data. Figure 4
shows the distribution of the three indicators and their fitting of normal distribution, the
parameters for which are listed in Table 1.

The indicators were scaled using the distribution function of the normal distribution,
value from 0 to 1. Figure 5 shows the distribution function Pcomf of acomf,RMS. The other
two indicators were scaled in the same way.
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Table 1. Parameters for normal distribution of comfort indicators.

Indicator Unit µ σ

acomf,RMS m/s2 0.1177 0.0591
asick,RMS m/s2 0.3365 0.2160

jRMS m/s3 0.8438 0.3890
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To assess an overall comfort rating, the three scaled indicators Pcomf, Psick, and Pj need
to be merged into a single value. We combined the three values compared to norm of vector
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and scaled the minimum and maximum value to rating 4 and 10 to calculate the comfort
rating Com f :

Com f =

1−

√
Pcomf

2 + Psick
2 + Pj

2

√
3

× 6 + 4. (1)

Although the minimum input for driving style aspects was 5 in the AVDC Tool, the
indicator was scaled with a minimum of 4. Thus, given that it is undesirable, very poor
travel comfort could be avoided in the generated cycle.

3.2.2. Safety

As an aspect of driving style, safety refers to passengers’ feeling of safety, rather than
freedom from accidents, as all AVs should be running accident-free. Subjective safety is a
customer-relevant property, as different passengers could have different preferences.

We applied the safety margin SM from Lu et al. [37,38], whose definition is given
below:

SM = 1−
(

vego τrea +
vego

2

2aB,ego
− vfront

2

2aB,front

)
/d, (2)

where vego and vfront are the speed of the ego AV and the front vehicle, d is the distance to
the front vehicle, τrea is the reaction time for braking, and aB,ego and aB,front are the braking
decelerations of both vehicles.

According to Lu et al., the typical value for τrea is 0.15 s, and the braking deceleration
equals to 0.75 g for used tires on a flat road surface [37]. Finally, this results in the simplified
Equation (2):

SM = 1−
[

0.15s vego +

(
vego + vfront

)(
vego − vfront

)
1.5 g

]
/d. (3)

To evaluate the safety of the whole trip, the SM calculated with RMS. In contrast to the
comfort indicators, a lower SM represents a greater hazard where greater weight should be
placed. Therefore, only the RMS of the subtrahend was calculated:

SMRMS = 1−
{[

0.15s vego +

(
vego + vfront

)(
vego − vfront

)
1.5 g

]
/d

}
RMS

. (4)

Thereafter, this indicator was scaled with the driving data into a rating. In Equation (4),
the distance and speed of front vehicle, which are not measured in most data collections,
are required. Lu et al. [37] provided the distribution of SM values from 34 taxi rides in
Beijing (Figure 6).

At several data points, the SM was larger than 1 because the subtrahend of Equation (4)
was negative. This was achieved when the ego vehicle was at a large distance from the
front vehicle and the distance was increasing, which can be considered a no-risk situation.
Therefore, these negative values were disregarded (set to zero) when calculating the RMS,
leading to an SMRMS smaller than 1. Consequently, only the distribution with SM < 1 was
used for the scaling. The cumulative distribution P(SM = 1) was given a rating of 10 and
P(SM = −∞) was given a rating of 4.
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3.2.3. Swiftness

In contrast to comfort and safety, swiftness is an objective aspect whose main criterion
for customers is travel time. For certain passengers, the shortest possible time on the road is
important. However, the actual travel time is strongly dependent on the distance travelled
and the road conditions, whereas driving style has only a limited influence. Therefore, the
real travel time ttrip was normalized with the minimum travel time tmin, which is the time
required if the vehicle always drives at the speed limit vmax on the entire route s:

tmin =
∫ s

0

dx
vmax(x)

, (5)

tnorm =
ttrip

tmin
(6)

According to German regulations, the speed limit is 50 km/h in the city and 100 km/h
on rural roads. There is no legal speed limit on the German motorway, so the recommended
speed of 130 km/h was used.

The normalized travel time tnorm was no longer dependent on the road categories
and distances, but it was still influenced by the driving scenario. Therefore, the scaling
was carried out for the value range of the indicator in the simulation. The maximum and
minimum possible travel time was calculated within the reasonable range of all control
parameters (the parameters and their ranges are defined in Section 3.5.1). According to the
simulation results, the upper and lower limits were 2.1 and 1.9, respectively.

The distribution function of the normal distribution was used for scaling the comfort
and safety indicators. Hence, the curve of the scaling had an S-shape (e.g., Figure 5). With
an S-curve, the function value is degressive at both boundaries. The S-shaped scaling is
suitable for subjective customer values, since the characteristics of various vehicle models
and the expectations of different customers are similar to the normal distribution [52].
However, the objective variables, such as travel time and consumption, are different. When
travel time or consumption is reduced, further reduction will be more difficult and costly.
Therefore, the value should not be degressive.

For this reason, we propose scaling the objective indicators logarithmically, whereby
an equal percentage improvement value leads to the same difference in rating. Figure 7
shows the logarithmic (7) and linear scaling (8) of the tnorm.

ylog(x) = b ln(a x), (7)

ylin(x) = a x + b. (8)
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The limits for customer values were mapped to ratings of 10 and 5, with which the
two coefficients a and b can be determined. The swiftness rating Fast was calculated with
the scaling function. Within the range used, the linear scaling approached the logarithmic
scaling because the change was small. Thus, linear scaling was used to simplify calculation.
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3.2.4. Economy

Whereas swiftness concerns time saving, economy refers to energy saving, which
reduces the operating cost of the vehicle. The evaluation of efficiency is one typical
application of driving cycles. In this paper, electric driven AVs were investigated, and
the consumption is described as the energy consumed per 100 km. In the simulation
for the driving cycle, the consumption was calculated using an open-source longitudinal
dynamics simulation (LDS) [53]. The simulated speed profile was entered into the LDS,
which calculated the electrical energy consumed during the driving cycle according to the
vehicle parameters.

To exclude the influence of the route, the consumption of the AV b100km,el was normal-
ized with a reference consumption b100km,ref of the front vehicle, which followed a standard
cycle. The normalized consumption bnorm represents the economy:

bnorm =
b100km,el

b100km,ref
. (9)

Similar to swiftness, the economy indicator was also scaled linearly with upper and
lower limits, which were 20% savings and 20% higher consumption (compared to original
standard cycle used for traffic vehicles), respectively. Figure 8 shows the economy indicator
scaling.
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3.3. Autonomous Driving Algorithms

Given that our focus was on the mixed traffic of AVs and non-AVs during the next
decade, known algorithms were chosen for modelling and simulation. According to the
concept behind the AVDC Tool, the investigated AV drives along a straight road. Therefore,
the AV is controlled by the ACC (Adaptive Cruise Control) system.

The ACC was modelled with a cascade control, consisting of a distance controller
and a speed controller [54] (p. 874) (Figure 9). The target distance xrel,set was equal to the
desired time headway tset multiplied by its ego velocity vego, adding the static distance d0
to maintain a safe distance at standstill:

xrel,set = vego tset + d0. (10)
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For a simple implementation, the distance and speed controllers were both P-controlled
with P-coefficient Pv and Pa. In the tool, the two P-controllers have been modelled as a
lookup table, which allows a variable proportional coefficient. For example, different
P values could be used for acceleration and deceleration, or for low and high control errors.

When the ego vehicle is not hindered by the front vehicle, the ACC controller operates
in free drive mode; the distance controller is not functional, and the speed controller is
regulated to the set speed vset.

In order to achieve a comfortable ride using ACC, the output set acceleration aset and
its derivation were limited with saturation at the lower and upper limits. ISO 15622:2018
defines the limits of acceleration and jerk of full speed range ACC system [55]. The upper
and lower limits are speed-dependent, as shown in Figure 10.

In the standard, only the limit for negative jerk is given [55]. To ensure ride comfort,
we defined the upper limit with same absolute value (Figure 11).

In addition to ACC, automatic emergency braking (AEB) was also implemented in the
driving algorithms in order to avoid a collision with the front vehicle. When the ACC is set
to a comfortable driving style, the AV may not brake with enough deceleration as the front
vehicle slows. The AEB can interfere to firmly brake the vehicle and prevent an accident.

During the simulated trip, the ego AV can choose to overtake traffic vehicles. Therefore,
overtaking logic is required to decide whether the AV will overtake. Since only 1-D
movement in the longitudinal direction was considered by the tool, an overtake was
simulated as the masking out of the front vehicle, after which the AV can detect and follow
the next vehicle ahead. When the ego AV has been overtaken, the overtaking traffic vehicle
cuts in and becomes the new front vehicle for the AV.
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Two criteria were designed for the overtaking logic:

1. The speed of front vehicle vfront is lower than the set speed vset by more than the
tolerance threshold vovt,tol:

vfront < vset − vovt,tol. (11)

2. The estimated distance required for overtake dovt,req is shorter than the available
distance dovt, where overtaking is allowed:

dovt,req < dovt. (12)

The permission for overtaking and the corresponding dovt is explained in Section 3.4.
Figure 12 shows the state diagram for the overtaking logic. When all conditions are

fulfilled for three seconds, an overtake is initiated by the ego AV. This time delay produces
stable overtaking decisions. Otherwise, the state could change rapidly in borderline cases.
After the overtaking has been started, the required distance dovt,req continues to be examined
according to (11). If the available dovt is no longer sufficient, the overtaking process will
be aborted. In this case, no new overtaking attempt can be started for 10 s (to avoid an
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attempt-abort loop). When the ego AV is 5 m ahead of the overtaken vehicle, the overtake
has been successfully completed.

When the logic is in the overtake state, the set speed of ACC vset is increased by 5%
to make the overtake faster and reduce the likelihood of an abort. When the overtake has
been completed or aborted, the vset is reset to the normal state.
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In addition to algorithms, the sensors and actuators of the AV were also modelled.
The modelled AV could use radar and camaras for the implemented ACC functions, which
is the industry standard. The sensors were modelled at a 250 m detection rate and can
measure the distance and speed of the front vehicle. The latency of measurement was set to
0.2 s, and the measurement error has been neglected in the tool.

The AV being investigated is assumed to have an electrical powertrain. The desired
acceleration aset is first limited between 5 m/s2 and −8 m/s2, considering the torque of
driving motor and the friction of the tires. The powertrain is then modelled as a first-order
inertial element with a 0.5 s time constant, where the desired aset is the input, and the actual
acceleration aego is the output.

3.4. Driving Scenario

According to the basic concepts in Section 3.1.1, the ego AV is traveling in mixed traffic
consisting of human-driven vehicles and AVs. Since no communication exists between
vehicles, all traffic vehicles can be considered to be human-driven. The existing driving
cycles, which were developed with real driving data, are intended to represent typical use
of the vehicles. Therefore, we used these driving cycles for the traffic.

For simplification, it was assumed that the traffic vehicles were driving at the same
time interval and following a certain driving cycle from the same position. Thus, all traffic
vehicles were at the same speed and in the same position, but traveling at different times.
During the journey, it is possible that the traffic vehicles would overlap at some times, e.g.,
during a standstill longer than the interval. This overlap was handled in the traffic module,
since only the front vehicle can be detected by the ego vehicle, whereas other traffic vehicles
have no influence. Furthermore, the traffic vehicles were not affected by the ego vehicle.

The ego vehicle may overtake traffic on those sections of the route where doing so is
permitted. Therefore, the route needs to be processed to determine whether overtaking is
allowed.
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First, it was necessary to increase the sampling rate of the traffic driving cycle. Since
the existing driving cycles are normally driven by drivers or robots on the test bench,
the speed profile of the cycles is defined in data points per second (1 Hz). The electronic
systems of AV can react within the millisecond range, and one second is too long for use as
a simulation time step for the autonomous driving algorithms; the ACC cannot control the
AV smoothly, and the AEB does not react in time because it intervenes only a few seconds
before an accident. For this reason, the simulation time step must be shorter. In the tool, the
time step was set to 0.02 s, or 50 Hz. Therefore, the profile was also interpolated to a 50 Hz
sampling rate. The modified-Akima interpolation in MATLAB was utilized to prevent
overshoots.

Permission for overtaking is determined using the interpolated speed profile. The
route sections are marked as permissible for overtaking if they fulfill the following two
criteria:

1. The speed is within a window of 15 km/h for at least 20 s. This means that the vehicle
travels at an approximately constant speed in the route section. If the speed changes
rapidly, overtaking is inappropriate.

2. The minimum speed in the window is higher than 30 km/h. The vehicle drives slowly
when hindered by the driving environment, e.g., traffic lights or congestion. In these
situations, overtaking is also inappropriate.

Using these criteria, all positions along the route are assessed as to whether an overtake
is permissible. The distance available for overtaking dovt at each position is then calculated.
This means the distance to the next point from which overtaking is not allowed. An
overtaking operation must be completed within dovt.

In addition, the ego vehicle can be overtaken by traffic. The vehicles behind the ego
vehicle are masked out until they are 20 m ahead of the ego vehicle, i.e., the overtaking
traffic vehicle cuts in 20 m in front of the ego vehicle and then becomes detectable. At stops,
the ego vehicle stops a few meters (static distance d0) behind the front vehicle. The rear
traffic vehicle drives in front of the ego vehicle and stops at the same position as the front
vehicle. The distance does not reach 20 m and the vehicle remains hidden. When the front
vehicle starts moving, the ego vehicle can move and follow the same front vehicle.

Furthermore, the road categories need to be identified to determine the speed limit.
Under Germany’s traffic regulations, the maximum speed limit is 50 km/h in the city and
100 km/h on rural roads. There is no speed limit on German motorways, so the recom-
mended speed of 130 km/h is applied. The road categories are identified for microtrips,
which are defined as the sections between two adjacent stops. The road categories are
determined according to the highest speed of the microtrip vtrip,max (Table 2). This method
is particularly suitable for the driving cycles built with several microtrips selected from
different categories, e.g., WLTC [13].

Table 2. Classification of road categories according to the highest speed.

Road Category Highest Speed in km/h

Urban vtrip,max ≤ 60
Rural 60 < vtrip,max < 110

Motorway vtrip,max ≥ 110

Some driving cycles are designed for a specific road category. Specifically, the Eu-
ropean ARTEMIS project has three cycles each for urban roads, rural roads, and motor-
ways [56,57]. In this case, the corresponding category is set for the cycle.

3.5. Parameterization of Driving Style

After the completion of the described modules, it was possible to determine the
parameters for different driving styles. As discussed in Section 3.2, four aspects were
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defined—comfort, safety, swiftness, and economy. Each aspect was assigned a rating from
5 to 10, where 5 is the lowest but still acceptable, and 10 is best value for users.

Every controller parameter of the AV influences multiple aspects simultaneously. We
used data-based modelling to analyze the interdependencies between the aspects and the
parameters.

Figure 13 shows the workflow of this process. First, the setting parameters were
chosen and used to generate test points with DoE (Design of Experiment) ( 1©). The set of
test points were then input into simulation and the generated cycles evaluated for driving
style aspects ( 2©). These data were used to build the numerical model for each aspect ( 3©).
The parameters for different driving styles were generated with these models ( 4©).
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Figure 13. Workflow for parameterizing the driving style.

3.5.1. Definition of Setting Parameters

As setting parameters, we chose eight parameters having a significant influence from
among the autonomous driving algorithms (Table 3).

Table 3. AV setting parameters.

Parameter Unit Min. Value Ref. Value Max. Value Description

tset s 0.5 2 3 Set time headways of ACC

Pa - 0.3 0.7 2 P-coefficient of speed controller

Cbrk - 0.66 1 1.5 Coefficient for deceleration

Pv - 0.03 0.07 0.2 P-coefficient of distance
controller

Cvset - 0.8 1 1.2 Coefficient for set speed

amax m/s2 1 2 4 Maximum acceleration of ACC

jmax m/s3 2 5 10 Maximum jerk of ACC

vovt,tol km/h 5 20 40 Tolerance speed for overtaking

The first seven parameters belong to the ACC system. The tset, Pa, and Pv are explained
in Section 3.3. The reference values were determined according to [54]. The coefficient Kbrk
describes the ratio of Pa,neg and Pv,neg in a negative direction to Pa and Pv in the positive
direction:

Pa,neg = Cbrk Pa, (13)

Pv,neg = Cbrk Pv. (14)

Figure 14 shows the speed controller with different Pa in the positive and negative
directions.



World Electr. Veh. J. 2022, 13, 108 16 of 26

The coefficient vpara represents the relative target speed. The ACC target speed vset is
equal to vpara times speed limit vmax:

vset = Cvset vmax. (15)

The maximum value of vpara is 1.2. When vpara is greater than 1, the vset will not
exceed the speed limit vmax in the city or on rural roads, but the AV can drive faster than
the recommend speed of 130 km/h on the highway. Figure 15 shows the vset for different
road categories with different Cvset.

The limits of acceleration and jerk in the ACC are not fixed values, but rather speed-
dependent characteristic curves (Figures 10 and 11). When the limits amax and jmax are
varied, the shape of the characteristic curve is maintained, i.e., amax and jmax are halved at
a speed of 20 m/s.
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The variable vovt,tol is a parameter in the overtaking logic (10). The higher the vovt,tol,
the slower the front vehicle speed that the AV can tolerate.

3.5.2. Design of the Experiment

The setting parameters and their value ranges were entered into the Model Based
Calibration toolbox (MBC) of MATLAB [58]. The test points were generated using MBC,
with every test point consisting of eight valid values for each parameter. The test points
were designed according to the experimental design to fill evenly and completely the
high-dimensional space of the input parameters. The Sobol sequence in the MBC toolbox
was used for the test design. To determine the appropriate size of the test set, four sets with
different sizes were generated: 256, 512, 1024, and 2048 test points. Apart from the test sets,
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a validation set was generated using a different method—Latin hypercube—because the
test points were generated partially randomly. Therefore, the validation set did not overlap
with the test sets. The validation set consisted of 100 test points.

The four test sets and the validation set were input into the simulation. Since we were
investigating the traffic environment in Germany, the European ARTEMIS cycles were used
for traffic [57]. The WLTC has a significantly lower acceleration than ARTEMIS, so it cannot
match the use case in Germany. The three cycles in ARTEMIS—urban road, rural road, and
motorway—were simulated consecutively. The driving style indicators for the three road
categories were combined for the evaluation of the driving style aspects. Subsequently,
each test point was assigned ratings for comfort, safety, swiftness, and economy.

The validation set was filtered according to the results of the simulation, i.e., only the
points with a sum of the four aspects exceeding 28 were selected (Com f + Sa f e + Fast +
Eco > 28). Points with a lower rating are not included because a poor overall rating means
an unfavorable combination of parameters. Out of 100 points in the validation set, 90 points
fulfilled this criterion.

3.5.3. Modelling of Driving Style Aspects

Using the data of test sets, models of the four driving style aspects were built indi-
vidually. The MBC toolbox offers several types of models, among which the Radial-Basis-
Function (RBF), Hybrid-RBF, and Gaussian-Process-Model (GPM) methods were used. For
each model, numerous model variants were generated using these three methods and were
checked with the validation set. The model variant with the smallest root mean square
error (RMSE) during the validation was selected. The response models of the four aspects
and eight parameters are shown in Appendix A. To determine the appropriate size of the
test set, the four test sets were each modelled and validated. The validation RMSEs of the
four aspects in four test sets are listed in Table 4.

Table 4. Validation RMSE of the driving style aspects in the test sets.

Valid. RMSE Comfort Safety Swiftness Economy

256 points 0.506 0.185 0.234 0.079

512 points 0.424 0.157 0.191 0.082

1024 points 0.363 0.141 0.157 0.075

2048 points 0.354 0.123 0.141 0.068

With the increase of the test set, RMSE can be reduced regressively, and no overfitting
appears. In the following steps, the test set with 1024 points was used since 2048 points
offered only a small advantage and increased the calculation time considerably.

3.5.4. Generation of the Parameter Set

The parameter set consists of the lookup table of the setting parameters. For each
desired combination of driving style aspects, the parameter set gives the corresponding
values of the eight parameters. The aspects are given as integers between 5 and 10, i.e., each
aspect has six possible input values.

The four aspects are coupled with complicated interdependencies. Three of them—
comfort, safety, and swiftness—are selected as free inputs, while the fourth—economy—is
optimized using the model. For calculation of the parameters, the three free aspects are
entered as constraints and the economy is maximized. This optimization problem can then
be mathematically represented:

max Eco(tset, Pa, . . . , vovt,tol)
s.t. Com f (tset, Pa, . . . , vovt,tol) = Com fset,

Sa f e(tset, Pa, . . . , vovt,tol) = Sa f eset,
Fast(tset, Pa, . . . , vovt,tol) = Fastset.

(16)
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This approach offers several advantages: First, one of the aspects (economy) is op-
timized. Second, the problem has only three constraints instead of four, so it is easier to
find the parameters that satisfy the constraints. Third, the solution to an optimization
problem is usually unique. Otherwise, it might be difficult to choose the parameters from
among multiple solutions. Economy was chosen as the optimization objective because most
customers prefer lower consumption, and thus low operating costs. Reducing consumption
is also central to the sustainable development of the automotive industry.

Given that the indicators of comfort and safety were scaled degressively, the rating 10
represents an infinite value for the indicators. Thus, customer ratings of 10 in the constraints
are slightly reduced until a solution is available.

Since the three free aspects each have six possible values, the number of combinations
of the inputs is 63 = 216. However, not all combinations can be solved through optimization,
i.e., some combinations cannot be achieved regardless of the parameters. The achievable
range is approximately an inclined plane, which means that three aspects cannot all have
high (or low) ratings at the same time. The optimization successfully solves 55 out of 216
combinations. The parameters of 55 combinations constitute the parameter set for the
driving style.

The 55 points in the parameter set were again entered into the simulation to validate
the modelled driving style ratings. The RMSEs of the model and the simulation are shown
in Table 5. The RMSEs of the parameter set somewhat higher than those of the model, but
are acceptable.

Table 5. Validation RMSE of the parameter set.

Comfort Safety Swiftness

Model RMSE 0.363 0.141 0.157

Parameter set RMSE 0.440 0.239 0.255

All work packages for the tool have been developed at this point.

4. Results

A graphical user interface was designed using App Designer in MATLAB, to make it
easier for users to interact with the tool. The interface is shown in Appendix B.

The main feature of the AVDC Tool is the generation of driving cycles for different
driving styles. 55 styles were configured during the parameterization. In this section, three
typical configurations have been selected for presentation and discussion of results:

• Comfortable driving style with Com f = 10, Sa f e = 9, Fast = 6,
• Safe driving style with Com f = 8, Sa f e = 10, Fast = 5,
• Swift driving style with Com f = 7, Sa f e = 6, Fast = 10.

Each driving style selected has a maximum rating of 10 on one of the driving style
aspects, so the features of the different aspects are distinct. The parameters of the three
driving styles are listed in Table 6, along with a comparison to the reference values.

The three driving styles show clear differences in the parameters. The comfortable
driving style has the lowest Pa so the AV reacts smoothly to speed differences. The low
vpara and high vovt,tol make the comfortable driving style patient and slow. The safe driving
style has some similarities to the comfortable style, e.g., similar tset, low vpara and amax, and
high vovt,tol. However, the safe driving style has a much higher Pa in order to allow the AV
to adapt quickly to the speed of the front vehicle. One typical feature of the safe driving
style is a Kbrk greater than 1, which means the AV tends to brake hard and accelerate gently.
For the swift driving style, a short time headway tset is maintained. With high Pa and Pv,
and a Kbrk smaller than 1, the AV can accelerate aggressively. In this driving style, the
limitations amax and jmax are also increased. The high vpara and low vovt,tol mean that the
AV tends to drive fast and will not tolerate a slow front vehicle.
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Table 6. Setting parameters for the selected driving styles.

Parameter Unit Ref. Value Comfortable Safe Swift

tset s 2 2.43 2.40 0.65

Pa - 0.7 0.50 1.43 1.49

Cbrk - 1 1.00 1.30 0.86

Pv - 0.07 0.15 0.04 0.12

Cvset - 1 0.80 0.80 1.06

amax m/s2 2 1.93 1.46 3.91

jmax m/s3 5 5.96 4.52 8.61

vovt,tol km/h 20 26.00 20.77 11.16

ARTEMIS cycles were used for the driving scenarios, consisting of three cycles for
urban roads, rural roads, and motorways. Thus, autonomous cycles were generated
separately for three road categories. Figure 16 shows the cycles for the comfortable driving
style.
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With the comfortable driving style, the speed fluctuations of the traffic vehicle are
well smoothed to achieve more comfort. Because the AV is driving relatively slow, it was
overtaken several times during the cycles on rural road and motorway.

Figure 17 shows the urban cycle of the safe driving style for comparison. Compared
to the comfortable style, the speed was adjusted rapidly to match the front vehicle with the
safe riding style. The smoothing effect was significantly lower.
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Several attributes of the cycles were calculated and are listed in Table 7 to compare the
driving styles comprehensively:

• T—the duration of the driving cycle,
• v—the average speed during the driving cycle,
• vego,max—the highest speed during the driving cycle,
• aRMS—the RMS value of acceleration during the driving cycle,
• jRMS—the RMS value of the jerk during the driving cycle,

• 1
TTC —the mean of the reciprocal of TTC during the driving cycle,

• Novt—the number of vehicles overtaken during the driving cycle (if the ego vehicle is
overtaken by traffic, the number is counted as negative).

• b100km,el—the consumption of the drive cycle (in LDS of Tesla Model 3 with rear-wheel
drive [53])
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As expected, the comfortable driving style had the lowest aRMS and jRMS. The safe
driving style had the lowest 1

TTC and the swift driving style had the shortest T and the
highest v, vego,max and Novt. The generated driving cycles were able to demonstrate the
characteristics of the different driving styles, thus meeting the objective of the AVDC Tool.

Table 7. Evaluation attributes of the cycles with different driving styles.

Road
Category

Driving
Style

T
s

¯
v

km/h
vego,max

km/h
aRMS
m/s2

jRMS
m/s3

1
TTC
1/s

Novt
-

b100km,el
kWh/100 km

urban

original 986 17.8 57.7 0.80 0.95 / / 14.56

comfortable 998 17.5 40.0 0.55 0.44 0.038 −1 11.84

safe 1006 17.3 40.0 0.68 0.78 0.013 −2 12.55

swift 986 17.8 50.0 0.75 0.86 0.084 0 13.97

rural

original 1076 57.8 111.5 0.64 0.66 / / 15.61

comfortable 1099 56.6 80.1 0.47 0.25 0.015 −2 14.42

safe 1108 56.1 80.1 0.56 0.46 0.006 −3 14.71

swift 986 63.0 105.0 0.75 1.16 0.053 9 17.20

motorway

original 1063 100.1 150.4 0.56 0.66 / / 24.44

comfortable 1195 89.0 104.1 0.39 0.25 0.007 −13 20.13

safe 1194 89.0 104.1 0.47 0.40 0.003 −13 20.28

swift 1023 103.9 144.3 0.66 0.63 0.025 4 21.16

5. Discussion

We built the AVDC Tool for AV development, in which context driving style should be
considered as one characteristic of an AV, and different customers prefer different driving
styles [53,59]. The tool can be used to generate driving cycles that correspond to a specific
driving style. When an AV is developed for a specific user group, the AV should run
according to the driving style that the group prefers. The corresponding driving cycles
could be generated using the tool and used to calculate the energy consumption for the
chosen driving style. In addition, the required driving power and force can be calculated
during the cycles. This will help the engineers to determine the powertrain specifications.
The service life of the components can also be estimated using the generated cycles.

The tool contains three main modules—driving style, driving algorithm, and driving
scenario. Well-developed algorithms for automated driving have been implemented in
the tool. Driving style has been divided into four aspects—comfort, safety, swiftness, and
economy. With reference to previous studies, the indicators for each aspect were selected
and then scaled into unified ratings from 5 to 10 using driving data or simulation results.
With these evaluation criteria, each journey was evaluated according to the four aspects
of driving style. The driving scenario was modelled as a traffic flow on a straight road.
The investigated AV drove in the flow and decided for itself which behavior to perform. It
could both overtake other vehicles and be overtaken by other vehicles. Such a standardized
scenario provided good comparability between different styles.

So far, the tool has been developed in a merely simulative environment, and this
methodology has not yet been validated with experiments. The indicators for evaluating
driving styles were developed with the help of previous publications. It has not been vali-
dated whether the evaluation of comfort and safety correspond to the subjective perception
of users. Also, the generated driving cycles have not been tested with real vehicles, so it
remains uncertain whether they will meet expectations.

The AV has been modelled with a simple ACC system and overtake logic, which
may be outdated when compared to state-of-the-art research on autonomous driving. The
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perception of the AV has also been simplified. In further research, the AVDC Tool could be
combined with more advanced autonomous driving algorithms.

In this research, we developed the tool for the conditions in Germany. However, the
driving conditions are adjustable in the tool, so they can be adapted for other countries or
areas as well. The driving scenario defined by the author was simplified and is different to
real driving scenarios. In the simulated scenario, the AV drives on a straight road without
curves, traffic lights, road junctions, or other elements. Whether these simplifications are
appropriate and how much influence they have was not investigated in this context.

As driving cycles for AVs have been little investigated in previous studies, we intend
to develop an innovative methodology for doing so. Further research should improve the
different modules of the tool in order to achieve more detailed and more accurate results.

6. Conclusions

We have developed the AVDC Tool, which is capable of generating driving cycles for
specific AV driving styles. The driving style is defined by way of four aspects—comfort,
safety, swiftness, and economy. The first three are input as ratings from 5 to 10 in the
tool, while the economy will be optimized. The investigated ego AV drives on a straight
road together with traffic vehicles, which run according to the existing driving cycles. The
control parameters for the AV are determined by the input driving style. The speed profile
of the ego vehicle is recorded as the generated cycle.

This paper focuses on a topic that has been rarely investigated. We have developed a
new methodology for generating driving cycles according to AV driving style. Therefore,
the main significance of this paper is to propose a methodology for generating AV driving
cycles.
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Appendix A. Response Models of the Parameters

World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 24 of 27 
 

 

Appendix B. GUI of the AVDC Tool 

6 8 10

6.5 7

7.5 8

8.55 6 7 8 9

1
2

3
t _set

6 8 10

0.5
1

1.5
2

P _a
0.8

1
1.2

1.4
C

_brk
0.05

0.1
0.15

0.2
P _v

0.8
1

1.2
C

_vset
1

2
3

4
a _m

ax
2

4
6

8
10

j_m
ax

10
20

30
40

v _ovt,tol



World Electr. Veh. J. 2022, 13, 108 24 of 26

Appendix B. GUI of the AVDC Tool
World Electr. Veh. J. 2022, 13, x FOR PEER REVIEW 25 of 27 
 

 

References 
1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging 

Technologies. IEEE Access 2020, 8, 58443–58469. https://doi.org/10.1109/ACCESS.2020.2983149. 
2. Mallozzi, P.; Pelliccione, P.; Knauss, A.; Berger, C.; Mohammadiha, N. Autonomous Vehicles: State of the Art, Future Trends, 

and Challenges. In Automotive Systems and Software Engineering; Dajsuren, Y., van den Brand, M., Eds.; Springer: 
Berlin/Heidelberg, Germany, 2019; pp. 347–367, ISBN 978-3-030-12156-3. 

3. Shreyas, V.; Bharadwaj, S.N.; Srinidhi, S.; Ankith, K.U.; Rajendra, A.B. Self-driving Cars: An Overview of Various Autonomous 
Driving Systems. In Advances in Data and Information Sciences: Proceedings of ICDIS 2019; Kolhe, M., Tiwari, S., Trivedi, M.C., 
Mishra, K.K., Eds.; Springer: Singapore, 2020; pp. 361–371, ISBN 978-981-15-0693-2. 

4. Koenig, A.; Schockenhoff, F.; Koch, A.; Lienkamp, M. Concept Design Optimization of Autonomous and Electric Vehicles. In 
Proceedings of the 2019 8th International Conference on Power Science and Engineering (ICPSE), Dublin, Ireland, 2–4 December 
2019; IEEE: New York, NY, USA, 2019; pp. 44–49, ISBN 978-1-7281-6081-8. 

5. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards 
for New Passenger Cars and for New Light Commercial Vehicles, and Repealing REGULATIONS (EC) No 443/2009 and (EU) No 
510/2011; Publications Office of the European Union: Luxembourg, 2019. 

6. Kim, M.-J.; Peng, H. Power management and design optimization of fuel cell/battery hybrid vehicles. J. Power Sources 2007, 165, 
819–832. https://doi.org/10.1016/j.jpowsour.2006.12.038. 

7. Carraro, E.; Morandin, M.; Bianchi, N. Traction PMASR Motor Optimization According to a Given Driving Cycle. IEEE Trans. 
Ind. Appl. 2016, 52, 209–216. https://doi.org/10.1109/TIA.2015.2477479. 

8. Barlow, T.J.; Latham, S.; McCrae, I.S.; Boulter, P.G. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle 
Emissions; Version: 3; TRL Limited: Wokingham, UK, 2009. 

9. Duan, X.; Schockenhoff, F. Autonomous Vehicle Driving Cycle Tool. Available online: 
https://github.com/TUMFTM/AV_Driving_Cycles (accessed on 17 June 2022). 

10. The MathWorks, Inc. Simulink—Simulation and Model-Based Design. Available online: 
https://ww2.mathworks.cn/en/products/simulink.html (accessed on 9 April 2022). 

11. SAE International. SAE Levels of Driving Automation™ Refined for Clarity and International Audience. Available online: 
https://www.sae.org/blog/sae-j3016-update (accessed on 14 March 2022). 

12. Zhang, X.; Zhao, D.-J.; Shen, J.-M. A Synthesis of Methodologies and Practices for Developing Driving Cycles. Energy Procedia 
2012, 16, 1868–1873. https://doi.org/10.1016/j.egypro.2012.01.286. 

13. Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-
wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transp. 
Res. Part D Transp. Environ. 2015, 40, 61–75. https://doi.org/10.1016/j.trd.2015.07.011. 

14. GB/T 38146.1-2019; China Automotive Test Cycle—Part 1: Light-Duty Vehicles. China National Standardization 
Administration: Beijing, China, 2019. 

0 200 400 600 800 1000 1200
Time /s

0

10

20

30

40

50

60
Cycle 1

0 100 200 300 400 500 600 700 800 900 1000
Time /s

0

10

20

30

40

50

60
Cycle 4

Cycle 2

Cycle 3

Cycle 5

Cycle 6

Sp
ee

d/
(k

m
/h

)
Sp

ee
d/

(k
m

/h
)

Sp
ee

d/
(k

m
/h

)
Sp

ee
d/

(k
m

/h
)

References
1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging

Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]
2. Mallozzi, P.; Pelliccione, P.; Knauss, A.; Berger, C.; Mohammadiha, N. Autonomous Vehicles: State of the Art, Future Trends, and

Challenges. In Automotive Systems and Software Engineering; Dajsuren, Y., van den Brand, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 347–367, ISBN 978-3-030-12156-3.

3. Shreyas, V.; Bharadwaj, S.N.; Srinidhi, S.; Ankith, K.U.; Rajendra, A.B. Self-driving Cars: An Overview of Various Autonomous
Driving Systems. In Advances in Data and Information Sciences: Proceedings of ICDIS 2019; Kolhe, M., Tiwari, S., Trivedi, M.C.,
Mishra, K.K., Eds.; Springer: Singapore, 2020; pp. 361–371, ISBN 978-981-15-0693-2.

4. Koenig, A.; Schockenhoff, F.; Koch, A.; Lienkamp, M. Concept Design Optimization of Autonomous and Electric Vehicles. In
Proceedings of the 2019 8th International Conference on Power Science and Engineering (ICPSE), Dublin, Ireland, 2–4 December
2019; IEEE: New York, NY, USA, 2019; pp. 44–49, ISBN 978-1-7281-6081-8.

5. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 Setting CO2 Emission Performance Standards for
New Passenger Cars and for New Light Commercial Vehicles, and Repealing REGULATIONS (EC) No 443/2009 and (EU) No 510/2011;
Publications Office of the European Union: Luxembourg, 2019.

6. Kim, M.-J.; Peng, H. Power management and design optimization of fuel cell/battery hybrid vehicles. J. Power Sources 2007, 165,
819–832. [CrossRef]

7. Carraro, E.; Morandin, M.; Bianchi, N. Traction PMASR Motor Optimization According to a Given Driving Cycle. IEEE Trans. Ind.
Appl. 2016, 52, 209–216. [CrossRef]

8. Barlow, T.J.; Latham, S.; McCrae, I.S.; Boulter, P.G. A Reference Book of Driving Cycles for Use in the Measurement of Road Vehicle
Emissions; Version 3; TRL Limited: Wokingham, UK, 2009.

9. Duan, X.; Schockenhoff, F. Autonomous Vehicle Driving Cycle Tool. Available online: https://github.com/TUMFTM/AV_Drivi
ng_Cycles (accessed on 9 April 2022).

10. The MathWorks, Inc. Simulink—Simulation and Model-Based Design. Available online: https://ww2.mathworks.cn/en/produc
ts/simulink.html (accessed on 9 April 2022).

11. SAE International. SAE Levels of Driving Automation™ Refined for Clarity and International Audience. Available online:
https://www.sae.org/blog/sae-j3016-update (accessed on 14 March 2022).

12. Zhang, X.; Zhao, D.-J.; Shen, J.-M. A Synthesis of Methodologies and Practices for Developing Driving Cycles. Energy Procedia
2012, 16, 1868–1873. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1016/j.jpowsour.2006.12.038
http://doi.org/10.1109/TIA.2015.2477479
https://github.com/TUMFTM/AV_Driving_Cycles
https://github.com/TUMFTM/AV_Driving_Cycles
https://ww2.mathworks.cn/en/products/simulink.html
https://ww2.mathworks.cn/en/products/simulink.html
https://www.sae.org/blog/sae-j3016-update
http://doi.org/10.1016/j.egypro.2012.01.286


World Electr. Veh. J. 2022, 13, 108 25 of 26

13. Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-wide
harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transp. Res.
Part D Transp. Environ. 2015, 40, 61–75. [CrossRef]

14. GB/T 38146.1-2019; China Automotive Test Cycle—Part 1: Light-Duty Vehicles. China National Standardization Administration:
Beijing, China, 2019.

15. Yang, Z. Factsheet: Japan Light-Duty Vehicle Efficiency Standards. Available online: https://theicct.org/sites/default/files/Jap
an_PVstds-facts_jan2015.pdf (accessed on 5 December 2021).

16. Tong, H.Y.; Hung, W.T. A Framework for Developing Driving Cycles with On-Road Driving Data. Transp. Rev. 2010, 30, 589–615.
[CrossRef]

17. Galgamuwa, U.; Perera, L.; Bandara, S. Developing a General Methodology for Driving Cycle Construction: Comparison of
Various Established Driving Cycles in the World to Propose a General Approach. J. Transp. Technol. 2015, 5, 191–203. [CrossRef]

18. Zähringer, M.; Kalt, S.; Lienkamp, M. Compressed Driving Cycles Using Markov Chains for Vehicle Powertrain Design. World
Electr. Veh. J. 2020, 11, 52. [CrossRef]

19. Elander, J.; West, R.; French, D. Behavioral correlates of individual differences in road-traffic crash risk: An examination method
and findings. Psychol. Bull. 1993, 113, 279–294. [CrossRef]

20. Sagberg, F.; Selpi; Piccinini, G.F.B.; Engström, J. A Review of Research on Driving Styles and Road Safety. Hum. Factors 2015, 57,
1248–1275. [CrossRef]

21. Eboli, L.; Mazzulla, G.; Pungillo, G. How drivers’ characteristics can affect driving style. Transp. Res. Procedia 2017, 27, 945–952.
[CrossRef]

22. Gurusinghe, G.S.; Nakatsuji, T.; Azuta, Y.; Ranjitkar, P.; Tanaboriboon, Y. Multiple Car-Following Data with Real-Time Kinematic
Global Positioning System. Transp. Res. Rec. 2002, 1802, 166–180. [CrossRef]

23. Sun, P.; Wang, X.; Zhu, M. Modeling Car-Following Behavior on Freeways Considering Driving Style. J. Transp. Eng. Part A Syst.
2021, 147, 4021083. [CrossRef]

24. van Mierlo, J.; Maggetto, G.; van de Burgwal, E.; Gense, R. Driving style and traffic measures-influence on vehicle emissions and
fuel consumption. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2004, 218, 43–50. [CrossRef]

25. Felipe, J.; Amarillo, J.C.; Naranjo, J.E.; Serradilla, F.; Diaz, A. Energy Consumption Estimation in Electric Vehicles Considering
Driving Style. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems—(ITSC 2015),
Gran Canaria, Spain, 15–18 September 2015; IEEE: New York, NY, USA, 2015; pp. 101–106, ISBN 978-1-4673-6596-3.

26. Berry, I.M. The Effects of Driving Style and Vehicle Performance on the Real-World Fuel Consumption of U.S. Light-Duty Vehicles.
Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2010.

27. Elbanhawi, M.; Simic, M.; Jazar, R. In the Passenger Seat: Investigating Ride Comfort Measures in Autonomous Cars. IEEE Intell.
Transport. Syst. Mag. 2015, 7, 4–17. [CrossRef]

28. Kottenhoff, K. Driving Styles and the Effect on Passengers: Developing Ride Comfort Indicators. 2016. Available online:
http://www.diva-portal.org/smash/get/diva2:898005/FULLTEXT01.pdf (accessed on 26 August 2021).

29. Hashimoto, T.; Yanagisawa, H. Risk Feeling Index of Autonomous Vehicle Behavior. In Proceedings of the 6th International
Symposium on Affective Science and Engineering (ISASE 2020), Tokyo, Japan, 15–16 March 2020; pp. 1–4. [CrossRef]

30. Qiao, X.; Zheng, L.; Li, Y.; Ren, Y.; Zhang, Z.; Zhang, Z.; Qiu, L. Characterization of the Driving Style by State–Action Semantic
Plane Based on the Bayesian Nonparametric Approach. Appl. Sci. 2021, 11, 7857. [CrossRef]

31. Murphey, Y.L.; Milton, R.; Kiliaris, L. Driver’s style classification using jerk analysis. In Proceedings of the 2009 IEEE Workshop
on Computational Intelligence in Vehicles and Vehicular Systems (CIVVS 2009), Nashville, TN, USA, 30 March–2 April 2009;
IEEE: Piscataway, NJ, USA, 2009; pp. 23–28, ISBN 978-1-4244-2770-3.

32. Dörr, D.; Grabengiesser, D.; Gauterin, F. Online driving style recognition using fuzzy logic. In Proceedings of the 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 10 August–10 November 2014; IEEE: New York,
NY, USA, 2014; pp. 1021–1026, ISBN 978-1-4799-6078-1.

33. Karjanto, J.; Yusof, N.M.; Terken, J.; Delbressine, F.; Hassan, M.Z.; Rauterberg, M. Simulating autonomous driving styles:
Accelerations for three road profiles. MATEC Web Conf. 2017, 90, 1005. [CrossRef]

34. Schockenhoff, F.; Nehse, H.; Lienkamp, M. Maneuver-Based Objectification of User Comfort Affecting Aspects of Driving Style of
Autonomous Vehicle Concepts. Appl. Sci. 2020, 10, 3946. [CrossRef]

35. Jachimczyk, B.; Dziak, D.; Czapla, J.; Damps, P.; Kulesza, W.J. IoT On-Board System for Driving Style Assessment. Sensors 2018,
18, 1233. [CrossRef]

36. Kondoh, T.; Yamamura, T.; Kitazaki, S.; Kuge, N.; Boer, E.R. Identification of Visual Cues and Quantification of Drivers’ Perception
of Proximity Risk to the Lead Vehicle in Car-Following Situations. JMTL 2008, 1, 170–180. [CrossRef]

37. Lu, G.; Cheng, B.; Lin, Q.; Wang, Y. Quantitative indicator of homeostatic risk perception in car following. Saf. Sci. 2012, 50,
1898–1905. [CrossRef]

38. Zhang, X.; Lu, G.; Cheng, B. Parameters Calibration for Car-Following Model Based Desired Safety Margin. In Proceedings of the
International Conference on Optoelectronics and Image Processing (ICOIP), Haiko, China, 11 November–11 December 2010;
IEEE: New York, NY, USA, 2010; pp. 97–100, ISBN 978-1-4244-8683-0.

http://doi.org/10.1016/j.trd.2015.07.011
https://theicct.org/sites/default/files/Japan_PVstds-facts_jan2015.pdf
https://theicct.org/sites/default/files/Japan_PVstds-facts_jan2015.pdf
http://doi.org/10.1080/01441640903286134
http://doi.org/10.4236/jtts.2015.54018
http://doi.org/10.3390/wevj11030052
http://doi.org/10.1037/0033-2909.113.2.279
http://doi.org/10.1177/0018720815591313
http://doi.org/10.1016/j.trpro.2017.12.024
http://doi.org/10.3141/1802-19
http://doi.org/10.1061/JTEPBS.0000584
http://doi.org/10.1243/095440704322829155
http://doi.org/10.1109/MITS.2015.2405571
http://www.diva-portal.org/smash/get/diva2:898005/FULLTEXT01.pdf
http://doi.org/10.5057/isase.2020-C000011
http://doi.org/10.3390/app11177857
http://doi.org/10.1051/matecconf/20179001005
http://doi.org/10.3390/app10113946
http://doi.org/10.3390/s18041233
http://doi.org/10.1299/jmtl.1.170
http://doi.org/10.1016/j.ssci.2012.05.007


World Electr. Veh. J. 2022, 13, 108 26 of 26

39. Griesche, S.; Nicolay, E.; Assmann, D.; Dotzauer, M.; Käthner, D. Should my car drive as I do? What kind of driving style do
drivers prefer for the design of automated driving functions? In Proceedings of the 17 Braunschweiger Symposium AAET,
Braunschweig, Germany, 9–11 February 2016.

40. Scherer, S.; Dettmann, A.; Hartwich, F.; Pech, T.; Bullinger, A.C.; Wanielik, G. How the driver wants to be driven—Modelling driv-
ing styles in highly automated driving. In Proceedings of the 7. Tagung Fahrerassistenz, Munich, Germany, 25–26 November 2015.

41. Xue, Q.; Wang, K.; Lu, J.J.; Liu, Y. Rapid Driving Style Recognition in Car-Following Using Machine Learning and Vehicle
Trajectory Data. J. Adv. Transp. 2019, 2019, 9085238. [CrossRef]

42. Mersky, A.C.; Samaras, C. Fuel economy testing of autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2016, 65, 31–48.
[CrossRef]

43. Roshdi, M.; Nayeer, N.; Elmahgiubi, M.; Agrawal, A.; Garcia, D.E. A Unified Evaluation Framework for Autonomous Driving
Vehicles. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November
2020; IEEE: New York, NY, USA, 2020; pp. 1277–1282, ISBN 978-1-7281-6673-5.

44. Costandoiu, A.; Leba, M. Convergence of V2X communication systems and next generation networks. IOP Conf. Ser. Mater. Sci.
Eng. 2019, 477, 12052. [CrossRef]

45. Schockenhoff, F.; König, A.; Koch, A.; Lienkamp, M. Customer-Relevant Properties of Autonomous Vehicle Concepts. Procedia
CIRP 2020, 91, 55–60. [CrossRef]

46. Bae, I.; Moon, J.; Seo, J. Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus. Electronics 2019, 8, 943. [CrossRef]
47. Bellem, H. Comfort in Automated Driving: Analysis of Driving Style Preference in Automated Driving. Ph.D. Thesis, Technischen

Universität Chemnitz, Chemnitz, Germany, 2018.
48. Bellem, H.; Schönenberg, T.; Krems, J.F.; Schrauf, M. Objective metrics of comfort: Developing a driving style for highly automated

vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 45–54. [CrossRef]
49. 13.160 (ISO 2631-1:1997); Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1:

General Requirements. International Organization for Standardization: Geneva, Switzerland, 1997.
50. 13.160 (ISO 2631-1:1997/AMD 1:2010); Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body

Vibration—Part 1: General Requirements—Amendment 1. International Organization for Standardization: Geneva,
Switzerland, 2010.

51. Wassiliadis, N.; Steinsträter, M.; Schreiber, M.; Rosner, P.; Nicoletti, L.; Schmid, F.; Ank, M.; Teichert, O.; Wildfeuer, L.; Schneider,
J.; et al. Quantifying the state of the art of electric powertrains in battery electric vehicles: Range, efficiency, and lifetime from
component to system level of the Volkswagen ID.3. eTransportation 2022, 12, 100167. [CrossRef]

52. Langer, L. Ableitung Konzeptbestimmender Technischer Werte Autonomer Fahrzeuge anhand Einer Marktanalyse; Semesterarbeit;
Lehrstuhl für Fahrzeugtechnik: Munich, Germany, 2021.

53. König, A.; Nicoletti, L.; Kalt, S.; Müller, K.; Koch, A.; Lienkamp, M. An Open-Source Modular Quasi-Static Longitudinal
Simulation for Full Electric Vehicles. In Proceedings of the 2020 Fifteenth International Conference on Ecological Vehicles and
Renewable Energies (EVER), Monte-Carlo, Monaco, 10–12 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–9, ISBN
978-1-7281-5641-5.

54. Winner, H.; Hakuli, S.; Lotz, F.; Singer, C. Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für Aktive
Sicherheit und Komfort; 3. Auflage; Springer Vieweg: Wiesbaden, Germany, 2015; ISBN 978-3-658-05734-3.

55. 03.220.20 (ISO 15622:2018); Intelligent Transport Systems—Adaptive Cruise Control Systems—Performance Requirements and
Test Procedures. International Organization for Standardization: Geneva, Switzerland, 2018.

56. André, M.; Keller, M.; Sjödin, Å.; Gadrat, M.; Crae, I.M.; Dilara, P. The ARTEMIS European Tools for Estimating the Transport
Pollutant Emissions. 2009. Available online: https://www3.epa.gov/ttnchie1/conference/ei18/session6/andre.pdf (accessed on
19 July 2021).

57. André, M. The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci. Total Environ. 2004, 334–335, 73–84.
[CrossRef]

58. The MathWorks, Inc. Model-Based Calibration Toolbox. Available online: https://ww2.mathworks.cn/en/products/mbc.html
(accessed on 19 April 2022).

59. Hartwich, F.; Beggiato, M.; Dettmann, A.; Krems, J. Drive Me Comfortable. Customized Automated Driving Styles for Younger and
Older Drivers. In Der Fahrer im 21. Jahrhundert: Fahrer, Fahrerunterstützung und Bedienbarkeit; Proceedings of the 8. VDI-Tagung, Braun-
schweig, Germany, 10–11 November 2015; VDI-Verlag GmbH: Düsseldorf, Germany, 2015; pp. 271–283, ISBN 978-3-18-092264-5.

http://doi.org/10.1155/2019/9085238
http://doi.org/10.1016/j.trc.2016.01.001
http://doi.org/10.1088/1757-899X/477/1/012052
http://doi.org/10.1016/j.procir.2020.02.150
http://doi.org/10.3390/electronics8090943
http://doi.org/10.1016/j.trf.2016.05.005
http://doi.org/10.1016/j.etran.2022.100167
https://www3.epa.gov/ttnchie1/conference/ei18/session6/andre.pdf
http://doi.org/10.1016/j.scitotenv.2004.04.070
https://ww2.mathworks.cn/en/products/mbc.html

	Introduction 
	State of the Art 
	Development of Driving Cycles 
	Evaluation of Driving Style 
	Assessment Methods for Autonomous Vehicles 
	Research Gap 

	Development of the AVDC Tool 
	Concept 
	Basic Concepts and Assumptions 
	Structure of the Tool 

	Criterion for Driving Style 
	Comfort 
	Safety 
	Swiftness 
	Economy 

	Autonomous Driving Algorithms 
	Driving Scenario 
	Parameterization of Driving Style 
	Definition of Setting Parameters 
	Design of the Experiment 
	Modelling of Driving Style Aspects 
	Generation of the Parameter Set 


	Results 
	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

