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ABSTRACT

Cancer is a heterogeneous disease characterized
by unregulated cell growth and promoted by mu-
tations in cancer driver genes some of which en-
code suitable drug targets. Since the distinct set of
cancer driver genes can vary between and within
cancer types, evidence-based selection of drugs is
crucial for targeted therapy following the precision
medicine paradigm. However, many putative cancer
driver genes can not be targeted directly, suggest-
ing an indirect approach that considers alternative
functionally related targets in the gene interaction
network. Once potential drug targets have been iden-
tified, it is essential to consider all available drugs.
Since tools that offer support for systematic discov-
ery of drug repurposing candidates in oncology are
lacking, we developed CADDIE, a web application in-
tegrating six human gene-gene and four drug-gene
interaction databases, information regarding cancer
driver genes, cancer-type specific mutation frequen-
cies, gene expression information, genetically re-
lated diseases, and anticancer drugs. CADDIE offers
access to various network algorithms for identify-
ing drug targets and drug repurposing candidates. It
guides users from the selection of seed genes to the
identification of therapeutic targets or drug candi-
dates, making network medicine algorithms acces-
sible for clinical research. CADDIE is available at
https://exbio.wzw.tum.de/caddie/ and programmati-
cally via a python package at https://pypi.org/project/
caddiepy/.

GRAPHICAL ABSTRACT

INTRODUCTION

Cancer is a set of diseases caused by alterations of the
genome that lead to unregulated cell growth. Cancer ther-
apy development is challenged by the heterogeneity of the
disease, where similar phenotypes show distinct somatic
mutations (1). Conversely, different cancer entities often
have shared molecular mechanisms that can be exploited in
network pharmacology (2). Since anti-cancer drugs cause
extensive side effects, it is important to target molecular le-
sions and affected pathways specific to a tumor (3,4) and to
adapt treatment in response to drug resistance (1). To iden-
tify suitable drugs, classical drug development is unsuitable
as it is time consuming, expensive and often terminates in
failure (5). A fast and cost-effective alternative to drug de-
velopment is drug repurposing, the search of potentially ef-
fective drugs among the drugs approved for other indica-
tions (3).
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Drug repurposing candidates can be identified computa-
tionally, experimentally or synergistically, where computa-
tional approaches lead to a hypothesis which can be vali-
dated experimentally (6). Network-based algorithms have
proven successful for drug repurposing and to detect pos-
sible off-target effects (7). Computational drug repurpos-
ing methods based on protein-protein interaction (PPI) net-
works have been applied to find possible drugs against
SARS-CoV-2 (8,9). In cancer, network-based repurposing
allows to predict and prioritize drugs particularly for a
group of cancer driver genes (10). However, some driver
genes like MYC in ovarian cancer (11) are not druggable
directly, suggesting the application of network-based ap-
proaches for identifying druggable interaction partners in
the disease module, a local neighborhood of genes linked to
the disease mechanism. Moreover, it has been shown that
network-based drug repurposing makes predictions that
align with the outcome of current clinical drug studies and
enables accelerated drug development in cancer (12).

Network-based drug repurposing approaches have
proven successful for individual cases but in oncology,
these are only accessible to researchers with advanced pro-
gramming skills (13,14). To make these methods available
to a broader scientific community, we present the Cancer
Driver Drug Interaction Explorer (CADDIE). CADDIE
generates hypotheses for drug development and repurpos-
ing in cancer with a graphical user interface that thus not
only bioinformaticians or researchers with a computer
science background can use this platform but also clinicians
and biologists who are looking for candidates for clinical
trials or cell line studies. It offers comprehensive gene and
protein information collected from different resources as
well as an interactive network visualization to inform the
selection of seed genes or proteins, i.e. putative drug targets
that have been implicated in a cancer type or in an indi-
vidual via genetic screening and serve as a starting point
for network-based drug target drug repurposing candidate
discovery. The human interactome can be queried using a
number of algorithms and user-defined targets, such that
each individual case can be investigated. Users can enter
a list of seed genes or proteins and choose among seven
different algorithms to prioritize 16761 genes and 6840
drugs.

Comparison with existing tools

A number of in silico tools have been developed for drug re-
purposing. ACID (15) creates predictions based on individ-
ual 3D structures of molecules but can not work with a list
of genes or proteins, does not consider second-order inter-
actions in a network approach, or visualize the interactions
to enhance the interpretability of the outcome. Gene2Drug
(16) predicts gene-drug interactions based on pathway in-
formation, but fails to produce results for typical oncogenes
such as ‘KRAS’, ‘PTEN’ or ‘TP53’. Further, it is not pos-
sible to search drugs for multiple query genes, and similar
to ACID, indirect interactions are not taken into account.
NeDRex (10) is a disease-agnostic network medicine plat-
form for disease module identification and drug repurpos-
ing. CoVex (9) provides similar functionalities as CADDIE
but is limited to SARS-CoV-2. While none of these tools

Table 1. Integrated interaction databases and their incorporated edge
types

Name Data type Experimental Literature Predicted

NCG6 CDG + + +
COSMIC CDG + + -
IntOGen CDG - - + (pipeline)
cancer-genes.org CDG - - + (MutPanning)
BioGRID GGI, DGI + + +
STRING GGI + + +
APID GGI + - -
IID GGI + - +
HTRIdb GGI + - -
Reactome DGI - + -
DrugBank DGI - + -
ChEMBL DGI + + -
DGIdb DGI + + -

List of databases implemented in CADDIE. Data types are cancer driver gene
(CDG), gene-gene interaction (GGI), and drug-gene interaction (DGI). GGIs en-
compass interactions of corresponding proteins.

is tailored towards research in oncology, CADDIE applies
its network medicine algorithms to ten human gene-gene
and drug-gene interaction databases with annotated cancer
driver genes, cancer-type specific mutation frequencies, gene
expression information, genetically related diseases, and ap-
proved anticancer drugs. Thus, in comparison to NeDRex
and CoVex, CADDIE allows the user to select the datasets
of interest for transparency, reproducibility and compara-
bility. Also, usage of drugs in cancer and related clinical tri-
als is highlighted by integrated datasets, facilitating inter-
pretation of the results in the cancer context The compre-
hensive visualization in CADDIE allows for intuitive explo-
rative analysis and highlights the interplay between interact-
ing molecules. The network algorithms traverse the com-
plete human interactome searching for directly as well as
indirectly operating drugs with the option to consider inte-
grated omics data as edge weights.

MATERIALS AND METHODS

Database

The CADDIE database integrates six gene–gene interac-
tion (GGI) and four drug-gene interaction (DGI) datasets
(see Supplementary Material for details). Each dataset pro-
vides interactions collected from different sources, e.g. peer-
review, text-mining or based on in silico predictions (see Ta-
ble 1).

CADDIE integrates the four cancer driver databases
COSMIC (17), NCG6 (18), IntOGen (19) and cancer-
gene.org (20) (see Supplementary Figure S1) and mu-
tation frequency data from TCGA to assist users in
seed selection. Information on drugs that are classified
as ‘antineoplastic or immunomodulating’ according
to the Anatomical Therapeutic Chemical (ATC) clas-
sification system was downloaded from the WHO
(https://www.whocc.no/atc ddd index/) in November
2020. We further created a curated list of approved cancer
drugs (CanceRx), which was extracted from the National
Cancer Institute website (https://www.cancer.gov/about-
cancer/treatment/drugs) and Cancer Research UK website
(https://www.cancerresearchuk.org/about-cancer/cancer-
in-general/treatment/cancer-drugs/drugs) between 17–26
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Table 2. Algorithms for drug target identification and repurposing

Name
Drug target

prioritization
Drug

repurposing

TrustRank X X
Degree Centrality X X
Harmonic Centrality X X
Betweenness Centrality X
KeyPathwayMiner X
Multi-level Steiner Tree X
Network Proximity X

Listed are the seven integrated network algorithms used for drug target
prioritization and drug repurposing with their respective application cases.

January 2022. Drugs lacking a direct known protein
target such as antimetabolites, alkylating agents together
with palliative drugs, e.g., those used to treat anemia or
chemotherapy induced nausea and vomiting, were not con-
sidered. This allows users to distinguish drugs already used
as standard of care (SOC) therapy from newly suggested
repurposable drugs. Drugs from the Cancer Therapeutics
Response Portal (https://portals.broadinstitute.org/ctrp/,
version 2) are also implemented in the CADDIE database
(21). The drug search can be limited to these drugs, such
that all returned drugs were evaluated in the context of cell
line studies.

Seed selection

Seed genes are the starting nodes for all implemented net-
work algorithms and thus crucial for the quality of the
results. Users can construct a set of seed genes for a se-
lected cancer type based on integrated mutation and tissue-
specific gene expression information (see Supplementary
Figure S4). Genes with more frequent cancer mutations and
high expression are prime drug target candidates (22). Seed
genes also can directly be extracted from variant calling files
using PolyPhen-2 (23). Lastly, seeds can be selected based
on related diseases or uploaded as a list.

Algorithms

CADDIE prioritizes drugs and targets based on their net-
work properties and integrates seven network-based al-
gorithms for both drug target identification and drug
repurposing/prioritization (see Table 2) which were previ-
ously suggested for drug repurposing in SARS-CoV2 (9).
Six different algorithms identify putative drug targets most
central to the seed genes in the GGI network and thus
indicative of functional relationships (see Figure 1). Four
algorithms determine drug candidates in proximity to the
seed genes in the DGI network, hence drugs that may have
indirect influence on the seed genes. As many putative can-
cer driver genes are difficult to be targeted directly (11),
users may consider running a drug target search prior to
a drug search.

Multi-level Steiner Tree (24), KeyPathwayMiner (25) and
betweenness centrality can be considered as aggregation ap-
proaches as they connect the seeds by finding nodes in be-
tween them. The other algorithms are propagation methods

which traverse deeper into the network starting from the
seed genes. Only the propagating algorithms can identify
drug candidates as the drugs lie in the network outside of
the disease module. In comparison to the other drug search
algorithms, Network Proximity (26) is the most explorative
algorithm by design, propagating deeper into the network
to propose drugs that are linked to the neighborhood of the
seeds.

Due to efficient preprocessing of the networks with
graph-tool (https://graph-tool.skewed.de/, version 2.32),
the complete human gene-drug interactome can be searched
for the optimal results in real-time. The graph-tool module
makes it possible to benefit from the speed advantages of
C++ while still having the simplicity of python code.

The GGI and DGI networks were augmented with the
expression and mutation data stored in the CADDIE
database. Using this data as edge weights, the network al-
gorithms can account for the differences in gene expres-
sion and somatic mutation frequencies across tumor types.
CADDIE further allows users to restrict DGIs to acti-
vators or inhibitors. The choice of algorithm and its pa-
rameters remains up to the user. It is often beneficial to
run multiple analysis tasks with varying settings to cover
a broader range of solutions. For this purpose, a task sum-
mary function combines the results into one single network
while node counts give an intuitive understanding of the
importance.

Programmatic access

The CADDIE backend with a task server and the database
offers an application programming interface (API) to ex-
change data with other services. A python package was
created to provide a programmatic interface to CADDIE’s
drug repurposing functionalities. It allows running a large
number of tasks using different algorithms and parameters
in custom workflows for sophisticated analyses as part of
other tools. CADDIE is further available as docker con-
tainer which encapsulates all dependencies and can be de-
ployed locally to overcome privacy concerns w.r.t. sensitive
genomic data (27).

RESULTS

CADDIE web interface

CADDIE is an open access online platform for prioritizing
(repurposing) putative drug candidates or targets in cancer
using network medicine methods on the combined human
gene-gene and drug-gene interactome. Results are visual-
ized online and can be downloaded for further processing.
The web interface is freely available and no login is required.

The main feature is the Explorer (see Supplementary Fig-
ure S2), which allows users to visualise the interactome of
genes and consider known cancer driver genes to find seeds
for drug target identification and drug prioritization. Anal-
yses can be triggered with default values or with customized
parameters for fine-tuning. Since the full GGI network with
16761 genes would clutter the view, CADDIE shows only
cancer type-related genes connected through a minimum
spanning tree (see Supplementary Figure S3) (28).
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Figure 1. Seed genes for drug target and drug search can be selected from integrated cancer driver databases, via mutation or expression data from TCGA
and GTEx using user-defined thresholds, or by uploading a list of genes (1). Based on the seed genes, putative drugs or drug target candidates are identified
using a broad selection of network medicine algorithms that traverse the human gene-drug interactome (2). While the drug search reports drugs in proximity
to the seed genes, the drug target search returns genes interacting with the disease module spanned by the seed genes (3).

The GGI network visualizes the interactions of the can-
cer driver genes, helping the user to define a selection of
seed nodes that will then be considered for the drug tar-
get or drug search. CADDIE also displays complementary
information about mutation rates, gene expression, comor-
bidities, and related cancer types (see Supplementary Fig-
ure S4).

Users can choose among several network medicine algo-
rithms (see Supplemental Material for details) for identi-
fying direct or proximal drug targets and related drug (re-
purposing) candidates. The analysis view shows the results,
i.e. genes ranked by their importance according to a user-
selected network centrality measure. Detailed information
about drugs is highlighted. CADDIE also contrasts impor-
tance scores with the node degrees in the interactome (see
Supplementary Figure S5 and Supplementary Table S1).
This is due to the fact that nodes with a high degree are more
likely to be selected by chance, whereas nodes with a low de-
gree and a high score could be more specific to the disease

and thus represent attractive targets. All used parameters
are displayed for reproducibility. Task results can be shared
by copying the URL and all data can be downloaded.

Showcase sarcoma

Ohshima et al. identified cancer driver genes in 16 cancer
types based on their frequent amplification and overexpres-
sion (29). Their study highlighted sarcoma where AXL was
reported as drug target. Based on this finding, we selected
the identified genes DNMT3A, FGFR3, ALK, EZH2,
HIST1H3B, MDM2, SKP2, MYC, AXL and FLCN as
seed genes in CADDIE. We further chose BioGRID (30) as
GGI and DGI dataset and selected the sarcoma cancer type
from COSMIC to highlight known drivers for this cancer
type. Next, we used the TrustRank algorithm (limited to
the top 15 drugs with the highest scores, default parame-
ters otherwise) where we included indirect and unapproved
drugs for an exhaustive result (see Figure 2).
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Figure 2. Drug network computed with TrustRank for sarcoma with BioGRID gene–gene and drug–gene interactions. The cancer driver gene information
is taken from COSMIC.

Table 3. Drug search results for sarcoma

Name Approved ATC L CanceRx Score Degree

Imatinib yes yes yes 1 413
Staurosporine no no no 0.995 393
Sorafenib yes yes yes 0.991 401
Lapatinib yes yes yes 0.984 387
Sunitinib yes yes yes 0.983 388
Alvocidib no no no 0.98 381
Dasatinib yes yes yes 0.978 381
Nilotinib yes yes yes 0.978 386
AT-7519 no no no 0.977 377
SNS-032 no no no 0.976 376
Erlotinib yes yes yes 0.976 381
Pazopanib yes yes yes 0.975 375
Crizotinib yes yes yes 0.974 377
Midostaurin yes yes yes 0.974 377
Enzastaurin no no no 0.974 376

Listed are the top 15 drug results reported by CADDIE for sarcoma. Each
row contains the drug name, approval by FDA, EMA or HC, whether it is
listed as antineoplastic or immunomodulating agent (ATC class L) by the
WHO, whether it is contained in CanceRx, the normalized score and the
node degree in the drug–gene-interactome (BioGRID).

In the resulting network, we notice that the seed genes
AXL, ALK and FGFR3 are grouped in the center of the
graph as they have interactions with all of the reported

drugs. RB1, a gene classified as a driver in sarcoma by COS-
MIC (31), is also well connected in our solution, linking
protein kinase C inhibitor staurosporine (32) to the seed
genes MYC, SKP2 and DNMT3A.

The highest scored drugs imatinib (see Table 3) as well
as sorafenib, sunitinib, dasatinib, nilotinib, pazopanib and
crizotinib have been studied in sarcoma and are partially ap-
proved by the FDA for this use case (33). Further, CADDIE
assigned the second highest score to staurosporine, an inves-
tigational drug with apoptosis-inducing abilities and syn-
thetic analogs as anticancer drugs in clinical trials (32,34),
suggesting it as a putative drug for further research.

CDK-9 is a previously reported drug target in sarcoma
(35). The CDK-9 inhibitors alvocidib and SNS-032 have
shown effective in treating Ewing sarcoma cells (36,37). In-
terestingly, the drug AT-7519, also a CDK-9 inhibitor, has
not been considered in sarcoma while it is already undergo-
ing clinical trials as an anticancer drug in different cancer
types (38).

The approved drug lapatinib has shown modest effec-
tiveness in a phase 2 study in a sarcoma subtype (39). An-
other approved drug is erlotinib, which has shown signifi-
cant growth delay in a sarcoma xenograft model (40). Ap-
proved drugs represent valuable repurposing candidates as
their safety is already tested.
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CONCLUSION

For the future, we plan to extend CADDIE with additional
network analysis methods (41) and data sources, e.g. oncol-
ogy data such as cell line study information from Pharma-
coDB (42) to improve interpretability to the meaning of the
predictions. Antineoplastic agents have a broad spectrum
of targets and the cause of the intended effect often remains
unclear. Databases reporting on cancer driver genes label
cancer types differently and show differences in granularity
for cancer subtypes. While this lack of harmonization poses
a challenge for the users of CADDIE, we decided against
limiting the search of seed genes to broadly accepted la-
bels. In summary, CADDIE is the first drug repurposing
platform tailored towards oncology. It offers access to a
broad set of resources and allows biomedical researchers to
suggest and prioritize drug targets and to identify suitable
drug repurposing candidates using state-of-the-art network
medicine algorithms.
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19. Martı́nez-Jiménez,F., Muiños,F., Sentı́s,I., Deu-Pons,J.,
Reyes-Salazar,I., Arnedo-Pac,C., Mularoni,L., Pich,O., Bonet,J.,
Kranas,H. et al. (2020) A compendium of mutational cancer driver
genes. Nat. Rev. Cancer, 20, 555–572.

20. Dietlein,F., Weghorn,D., Taylor-Weiner,A., Richters,A., Reardon,B.,
Liu,D., Lander,E.S., Allen,E.M.V. and Sunyaev,S.R. (2020)
Identification of cancer driver genes based on nucleotide context.
Nat. Genet., 52, 208–218.

21. Rees,M.G., Seashore-Ludlow,B., Cheah,J.H., Adams,D.J., Price,E.V.,
Gill,S., Javaid,S., Coletti,M.E., Jones,V.L., Bodycombe,N.E. et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/50/W

1/W
138/6586860 by guest on 28 February 2024

https://github.com/biomedbigdata
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac384#supplementary-data


W144 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

(2016) Correlating chemical sensitivity and basal gene expression
reveals mechanism of action. Nat. Chem. Biol., 12, 109–116.

22. Benson,J.D., Chen,Y.N.P., Cornell-Kennon,S.A., Dorsch,M., Kim,S.,
Leszczyniecka,M., Sellers,W.R. and Lengauer,C. (2006) Validating
cancer drug targets. Nature, 441, 451–456.

23. Adzhubei,I.A., Schmidt,S., Peshkin,L., Ramensky,V.E.,
Gerasimova,A., Bork,P., Kondrashov,A.S. and Sunyaev,S.R. (2010)
A method and server for predicting damaging missense mutations.
Nat. Methods, 7, 248–249.

24. Graham,R.L. and Hell,P. (1985) On the History of the Minimum
Spanning Tree Problem. Ann. Hist. Comput., 7, 43–57.

25. Alcaraz,N., List,M., Dissing-Hansen,M., Rehmsmeier,M., Tan,Q.,
Mollenhauer,J., Ditzel,H.J. and Baumbach,J. (2016) Robust de novo
pathway enrichment with KeyPathwayMiner 5 [version 1; referees: 2
approved]. F1000Research, 5, 1531.

26. Guney,E., Menche,J., Vidal,M. and Barábasi,A.L. (2016)
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