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Abstract: Time-resolved photoelectron spectroscopy provides a versatile tool for investigating
electron dynamics in gaseous, liquid, and solid samples on sub-femtosecond time scales. The
extraction of information from spectrograms recorded with the attosecond streak camera remains
a difficult challenge. Common algorithms are highly specialized and typically computationally
heavy. In this work, we apply deep neural networks to map from streaking traces to near-infrared
pulses as well as electron wavepackets and extensively benchmark our results on simulated data.
Additionally, we illustrate domain-shift to real-world data. We also attempt to quantify the
model predictive uncertainty. Our deep neural networks display competitive retrieval quality
and superior tolerance against noisy data conditions, while reducing the computational time by
orders of magnitude.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Ultrafast electron dynamics in atoms and molecules are of major scientific interest as they
are pertinent to a vast array of cutting-edge technologies ranging from optoelectronics and
information processing to molecular electronics and photovoltaics. Time-resolved photoelectron
spectroscopy allows the study of these dynamics with unprecedented temporal resolution.

A key technique in the field is the attosecond streak camera [1–3], also called (attosecond)
streaking for brevity. Over the past decade, streaking experiments have been realized to attain a
number of remarkable results, including the discovery of relative photoemission delays in gas
phase [4] and solid-state [5] samples, and ultimately the measurement of the absolute timing of
the photoelectric effect [6].

In practice, the evaluation of streaking experiments remains challenging. All of the information
that can be gained from a measurement is encoded in a streaking spectrogram. To tackle the
problem of spectrogram inversion, sophisticated data analysis methods have been devised. On
the downside, most common algorithms either lack precision as they rely on coarse physical
approximations or come with prohibitively large computational cost, restricting their use with
growing datasets. We present an alternative approach, exploring the application of contemporary
deep learning based machine vision models for attosecond streaking evaluation, that can in
principle break these limitations.

Owing to the rapid advances in terms of general purpose GPUs, the development of extensive
software platforms like TensorFlow [7] and Torch [8] and the emerging availability of large-scale
datasets, deep learning research achieved remarkable success in a wide spectrum of fields within
recent years. Deep neural networks cut error rates in image classification and segmentation
in unprecedented fashion [9–11], revolutionized applications like machine translation [12,13],
reached expert human-level performances in abstract board games like Chess, Shogi and Go
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[14,15] and ventured out to scientific applications like automated analysis of strong gravitational
lensing systems [16] or online particle detection at CERN [17].

In ultrafast physics, deep learning has recently been applied to the problem of characterizing
femtosecond pulses from FROG [18] and d-scan [19] traces and for basic phase retrieval from
attosecond streaking spectrograms [20]. Building on these recent results, we demonstrate the
application of popular neural network architectures for the complete reconstruction of single
streaking traces. Furthermore, we extend the developed method to spectrograms with two
streaking traces. This allows us to extract relative photoemission delays between electrons
originating from different bound states in a sample.

2. Problem overview

Attosecond streaking experiments employ a pump-probe scheme to experimentally investigate
photoemission dynamics in a sample. A single isolated attosecond pump pulse EXUV(t) in the
extreme-ultraviolet (XUV) region is used to generate photoelectrons. The presence of a few-cycle
near-infrared (NIR) probe pulse ENIR(t) modulates the final kinetic energy of the freed electrons,
an interaction referred to as streaking. This modulation follows the vector potential of the NIR
pulse (i.e. the time integral of the electric field) in case the XUV pulse is significantly shorter
than one half-cycle of the NIR field. The result of an attosecond streaking experiment consists of
a sequence of laser-dressed photoelectron spectra recorded in a range of NIR-XUV delays, which
comprise a two-dimensional spectrogram.

It should be noted that in this work we consider the most common streaking geometry where
XUV and NIR fields are both linearly polarized in the same direction, which also coincides with
the observation direction of the photoelectron detector. Therefore, all physical quantities may be
treated as scalars.

2.1. Attosecond streaking theory

According to quantum theory under the strong field approximation (SFA) [21] and the wavepacket
approximation (WPA) [22], the probability of detecting a photoelectron at final energy Ef with
NIR-XUV delay τ using atomic units is

SWPA
(︁
Ef , τ

)︁
=

|︁|︁|︁|︁ ȷ∫ ∞

−∞

dt χ (t + τ) e ȷ(Ef+Ip)te ȷΦV(Ef ,t)
|︁|︁|︁|︁2 , (1)

where χ (t) is the photoelectron wavepacket in the time domain, Ip the ionization potential of the
target and ȷ2 = −1. The interaction of the liberated photoelectron with the NIR laser field causes
a phase gating described in the Volkov term

ΦV (E, t) = −

∫ ∞

t
dt′

(︃
√

2EANIR(t′) +
1
2

A2
NIR(t

′)

)︃
, (2)

where ANIR(t) denotes the vector potential of the streaking laser field in Coulomb gauge.
Applying the WPA is a convenient starting point for our work, as it allows to apply our models

directly for the retrieval of photoelectron wavepackets. In particular, we are not required to make
specific assumptions about the physical properties of the target, e.g. the shape of the dipole
transition matrix element. Analogously to a laser pulse, we choose a complex representation for
the wavepacket in the energy domain

χ̃(E) =
√︁

IWP(E) e ȷφWP(E), (3)

decomposing the signal into power spectrum IWP(E) and spectral phase ϕWP(E). Common
classical methods, briefly described in the following, retrieve the photoelectron wavepacket either
in the time or frequency domain.
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2.2. CMA-based retrieval methods

In the following, we briefly review two widespread groups of algorithms commonly used for
the evaluation of attosecond streaking spectrograms. The key to both presented methods is the
central momentum approximation (CMA), which allows us to reformulate the streaking trace
computation as an inverse Fourier transform

SCMA(Ef , τ) ∝
|︁|︁F −1 [︁χ (t + τ) G̃(t)

]︁ |︁|︁2 , (4)

where G̃(t) is a complex gate function essentially containing the Volkov term, Eq. (2). As
neither wavepacket nor gate can contain energy-dependent terms, impeding dependencies are
approximated with the constant central-energy of the unstreaked wavepacket.

2.2.1. FROG-CRAB retrieval

Methods based on frequency resolved optical gating for complete reconstruction of attosecond
bursts (FROG-CRAB) [23] are presently the most popular algorithms for spectrogram inversion.
Powerful iterative algorithms exist for the simultaneous reconstruction of wavepacket and gate
function from Eq. (4) without prior knowledge, such as the extended ptychographic engine (ePIE)
[24].

2.2.2. Restricted TDSE retrieval

The restricted time-dependent Schrödinger equation (rTDSE) method represents the classical route
to formulating spectrogram inversion as an optimization problem. By explicitly parametrizing the
wavepacket and NIR vector potential, one may use standard-least squares to fit streaking theory
to recorded data. A strength of rTDSE is the possibility to incorporate physical insight into the
fitting procedure through choice of parametrization and restricting certain parameter ranges.
While not typically used for the retrieval of single wavepackets, rTDSE has successfully been
applied for determination of photoemission delays from multi-trace spectrograms in a number of
studies, e.g. [4,6,25,26].

3. Methods

In this work, we train feed-forward deep neural networks (DNNs) for the complete evaluation of
attosecond streaking spectrograms. We divide the problem of single-trace retrieval into three
sub-tasks. Individual networks are trained to predict the NIR vector potential, the wavepacket
spectrum and the wavepacket spectral phase. In contrast to the rTDSE method, the DNN approach
does not rely on parametrization of the signals. In the case of dual-trace spectrograms we add two
additional networks, one for the second wavepacket spectrum and spectral phase, respectively.

Each sub-task is formulated in a regression setting. Attosecond streaking spectrograms are
used as inputs. They are provided as two-dimensional arrays over energy and delay dimension
and with a single data channel representing the relative electron yield. To realize a supervised
learning scheme we use the WPA-based simulation (cf. Equation (1)) that maps the vector
potential and wavepackets to a spectrogram. We train the neural networks to approximate the
inverse mapping, i.e. to reconstruct the inputs of the simulation from its output.

The following sections account for important aspects in our methodology. In particular, we
describe the streaking simulation, data pre-processing, DNN training as well as retrieval quality
criteria and predictive uncertainty estimation.

3.1. Dataset generation

Our training, validation and test datasets are generated by numerical simulation of streaking
traces. Since sufficiently large high-quality datasets of fully labeled real-world spectrograms
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are not available, simulation offers the main way of providing the data required for supervised
learning. Moreover, it allows to benchmark the expected performance of deep learning against
established methods.

The following sections provide additional details on the two generated datasets. Prior to the
subsequent processing, both datasets are divided in a 80/10/10 train, validation, test split.

3.1.1. Photoelectron wavepacket retrieval dataset

For the attosecond photoelectron wavepacket and vector potential retrieval, we simulate 275,000
single-trace streaking spectrograms. For each spectrogram, we generate one electron wavepacket
and one NIR pulse. Wavepacket spectral phases have their zero- and first-order polynomial
coefficients fixed to zero to circumvent label ambiguities, i.e. cases where different labels would
explain the same spectrogram. This could occur as streaking is insensitive to the carrier-envelope-
phase of the wavepacket manifesting as a zero-order spectral phase term [27]. Moreover, streaking
is only sensitive to the relative NIR-XUV delay and not to simultaneous time shifts. Setting the
first-order phase term to zero, we guarantee that the wavepacket serves as absolute time reference.

3.1.2. Photoemission Time delay retrieval dataset

For the photoemission delay retrieval experiments, we simulate 100,000 total spectrograms with
two streaking traces each. This represents the case of electron emission from two electronic
states with different binding energies. In contrast to the previous dataset, we now generate two
photoelectron wavepackets and one NIR pulse per spectrogram. We separately compute one
streaking trace per wavepacket using the single NIR vector potential and add up the two traces
for the full observable spectrogram.

For this dataset we uniformly sample a random first-order phase term for one of the wavepackets,
corresponding to a relative central-energy photoemission time delay d ∈ [−0.25, 0.25] fs. Thereby,
we explicitly introduce a relative phase shift of the second trace with respect to the first. Recovering
the correct photoemission time delay value from the spectrogram is the main challenge posed in
dual-trace retrieval.

3.2. Dataset pre-processing

In order to make our networks more robust and start bridging the gap from pure simulated
streaking retrieval to realistic real-world conditions, we develop a pre-processing pipeline for our
datasets. The full pipeline is divided in two stages. In the first stage we attempt to incorporate
common effects present in experiments, most notably background and noise. The second stage of
the data processing pipeline implements the functionality that is identically applied to prepare
real-world data for evaluation with our neural networks.

To evaluate the performance of our algorithms in dependence of input data quality, it is
important to quantify the noise level in the simulated spectrograms. We quantify the amount of
noise by estimating the signal-to-noise ratio (SNR) as

SNR = 10 log10

[︃ ∑︁
i
∑︁

j S[i, j]∑︁
i
∑︁

j |S[i, j] − S′[i, j]|

]︃
, (5)

where S is the spectrogram with the photoelectron background and S′ is the same spectrogram
but including short-time laser fluctuations, multiplicative and additive noise. The sum over all
pixels in the numerator approximates the total signal content in the spectrogram. Conversely, the
sum over the absolute differences in the denominator approximates the total noise content. We
express the SNR on the logarithmic scale in decibel.

As the simulation of large numbers of WPA streaking spectrograms without application of
the CMA remains a computationally expensive task, we also make use of the pre-processing
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pipeline to augment our training datasets. By pre-processing the base spectrograms with different
realizations of background and noise, we can efficiently make our networks more robust to
these adverse factors. We compute four realizations of the base training datasets, each with
signal-to-noise ratio (SNR) uniformly distributed over the range 20 dB to 4 dB.

Figure 1 provides a visual impression for the quality of the simulated data after all processing
steps. The left column shows a unique WPA-based spectrogram at five distinct noise levels. In
the corresponding right column, we additionally applied the optional differential background
subtraction as explained in the following.

Fig. 1. Visual impression of the range of simulated signal-to-noise ratios (SNR). Pseudo-
color plots of a unique WPA-based spectrogram without background subtraction (left column)
and with differential background subtraction (right column). Applying our pre-processing
pipeline we generate data that resemble noisy real-world conditions.

3.3. Differential background subtraction

A challenging task in photoelectron spectroscopy is the separation of signal and background. One
convenient method, originally developed for use in rTDSE streaking retrieval, is to differentiate
the spectrogram along the NIR-XUV time delay dimension. This procedure, called differential
background subtraction, removes the signal of non-streaked electrons that is constant along all
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delays and emphasizes the zero-crossings of the NIR vector potential [4]. In comparison to most
other techniques it does not assume a specific background shape and does not require user input
that could affect the results [28]. We test our method both on data without background subtraction
(DNN) and data after differential background subtraction (diffDNN), deemed differential signal.

3.4. Neural networks

In essence, a DNN is a graph (usually a sequence) of mappings referred to as layers, describing a
mapping from an input to an output space. For image processing tasks it is common to use a
special class called convolutional neural networks.

We train three popular neural network architectures, VGG11 [29], GoogLeNet (Inception-v2)
[30,31] and ResNet50 [32]. To adapt these to our regression tasks, we cut off each network after
its final pooling layer, attach a single fully-connected hidden layer with ReLU activations and a
fully-connected layer with linear activations to compute an output vector.

3.5. Supervised learning

The most common form of machine learning is supervised learning. Let D = {Xtrain, Ytrain} be a
dataset containing N independent and identically distributed (i.i.d.) input samples x(n) ∈ X and
desired output labels y(n) ∈ Y. We use a DNN f : X → Y controlled through parameters θ⃗ to
find a mapping that generalizes to new unseen samples. To learn the parameters of the DNN, we
minimize the cost function

J

(︂
θ⃗
)︂
=

1
N

N−1∑︂
n=0

L

(︂
y(n), f (x(n); θ⃗)

)︂
, (6)

where L : Y × Y → R is a scalar-valued loss function measuring the discrepancy between
label and DNN prediction. The specific form of the loss function is typically derived from an
underlying probabilistic model.

For training our networks, we set up one per-sample loss function for each sub-task. In our
notation, quantities with a hat symbolize the neural network predictions. For the NIR vector
potential A⃗NIR, we compute the normalized L2 error

LA

(︂
A⃗NIR, ˆ⃗ANIR

)︂
=

∥A⃗NIR −
ˆ⃗ANIR∥2

∥A⃗NIR∥2
. (7)

Analogously, our per-sample loss for the wavepacket spectrum I⃗WP is computed as the normalized
L2 error LI(I⃗WP, ˆ⃗IWP). In both cases, the normalization is used to cancel out effects of arbitrarily
chosen units.

Regarding the wavepacket ϕ⃗WP, we need to be aware that its spectral phase becomes meaningless
in regions where the power spectrum is small. To disregard the corresponding values, we introduce
a weighted square error with weights w[i] assigned to each energy Ei (i = 0, . . . , I − 1):

Lφ

(︂
ϕ⃗WP, ˆ⃗

ϕWP

)︂
=

I−1∑︂
i=0

[︃
w[i]

(︁
ϕWP[i] − ϕ̂WP[i]

)︁2
+ η

(︂
IWP[i] − ÎWP[i]

)︂2
]︃

. (8)

where η is a relative scaling factor. Ideally, the weights should be chosen according to the
probabilistic model. However, in practice, values are not evident a priori. Therefore, we use a
physics-motivated approach based on the wavepacket power spectrum labels by defining

w[i] = 1 (IWP[i]>th) , (9)

where th is a fixed threshold that is set to 0.01 in our experiments. As implied by Eq. (9),
the particular networks learning the wavepacket spectral phase retrieval also implicitly require
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knowledge of the wavepacket power spectrum labels. In our tests it has turned out beneficial to
also use this knowledge explicitly by adding an auxiliary output to the networks that is tasked
to predict the wavepacket spectrum. The additional output is thereafter included into the loss
function Eq. (8) via the second term. For the presented experiments, we set the relative scaling
factor η to 1. We observe that this simplifies network training by making convergence more likely
and improving convergence rates. Note that the additional output is only used in network training
and discarded later-on in prediction, as networks which are specifically trained for wavepacket
spectrum prediction perform superior in this task.

In order to track the progress during training and report results, we average per-sample quality
metrics. Regarding the NIR vector potentials and wavepacket spectra, we directly use the
normalized L2 errors described in Eq. (7) as quality metrics. When considering the wavepacket
spectral phase, we additionally define the quality criterion

Qφ

(︂
ϕ⃗WP, ˆ⃗

ϕWP

)︂
=

[︄∑︁
i w[i]

(︁
ϕWP[i] − ϕ̂WP[i]

)︁2∑︁
i w[i]

]︄ 1
2

. (10)

When plugging in the weights given in Eq. (9), the term inside the brackets boils down to the
average square error over the regarded phase samples given the selected threshold. Note that
the physical units of this metric are radians and we forgo defining a relative measure because
absolute phase values are physically meaningful.

By combining the obtained NIR vector potential and wavepacket retrievals, we can compute a
spectrogram reconstruction Ŝ. To compare the latter to the original input spectrogram, we define
the quality criterion

QS

(︂
S, Ŝ

)︂
=

⎡⎢⎢⎢⎢⎢⎣
∑︁

i
∑︁

j

(︂
S[i, j] − Ŝ[i, j]

)︂2∑︁
i
∑︁

j (S[i, j])2

⎤⎥⎥⎥⎥⎥⎦
1
2

. (11)

Note that we use the raw spectrogram before noise and background is added as reference S here.
The bare spectrogram, which is only available for simulated data, facilitates the most direct
comparison to the computed reconstruction. The training duration depends on the extent of the
training dataset and is typically below two hours for a complete model, including XUV spectrum
and phase as well as NIR vector potential.

3.6. Predictive uncertainty estimation

Despite their tremendous success on a variety of tasks, DNN models typically lack the ability to
quantify the inherent uncertainty in their predictions. In many practical settings it is crucial to
establish meaningful confidence intervals in addition to accurate point predictions. In our work,
this issue is aggravated by the fact that we exclusively train on simulated data, but want to apply
the models to infer on real-world spectrograms.

For evaluating real-world data, we follow a common deep ensemble approach. We train
M = 10 models starting from different random parameter initialization and random sample
shuffling during optimization. By computing the empirical variance of the individual network
point predictions, we derive an approximate model uncertainty measure.

4. Results and discussion

In the following, we show and discuss results for single- and dual-trace retrieval. In both
applications, we follow the same procedure. We start off by training and validating results for
different DNN architectures on the large simulated datasets. To illustrate the performance of our
best network instances, we discuss one representative test set retrieval. Then we use a smaller
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simulated dataset with variable input noise level to benchmark against the state-of-the-art retrieval
method for the respective task. In the case of photoelectron wavepacket retrieval, we compare
our method to ePIE. For photoemission delay retrieval we compare our results to rTDSE as it
is typically superior at this task. Finally, we demonstrate the applicability of our networks to
real-world data, using deep ensembles to estimate the predictive uncertainty.

4.1. Photoelectron wavepacket retrieval

The present section is concerned with obtaining a full retrieval of the electron wavepacket and
NIR vector potential from a single-trace attosecond streaking spectrogram. For the electron
wavepacket this encompasses spectrum, as well as spectral phase. Assuming the dipole transition
matrix element of the target is well-known this retrieval allows to fully characterize NIR and
XUV laser pulses using a streak camera setup.

4.1.1. Retrieval example

A showcase for the retrieval results of our neural networks in comparison to the ePIE implemen-
tation on simulated data is provided in Fig. 2.

Panel (a) depicts the pseudo-color plot of a simulated test set spectrogram, which was pre-
processed with our pipeline to exhibit a SNR ≈ 12 dB. It directly serves as input for the DNN
and classical ePIE retrieval. In the diffDNN approach, differential background subtraction (not
shown here) is applied prior to the network.

Panels (b), (d) and (f) display the NIR vector potential retrievals by DNN, diffDNN and ePIE
respectively. Each result is plotted together with the label for comparison. In summary, the
NIR reconstructions are excellent across all methods. The differential background subtraction is
observed to slightly impair the retrieval quality in comparison to the non-background subtracted
case. Judging from our experiments, the ePIE implementation shows a tendency to slightly
underestimate the amplitudes of the signal maxima.

Panels (c), (e) and (g) display the retrieved wavepacket spectra (blue) and spectral phases (red)
compared to their label. Regarding the spectra, all considered methods show great accordance to
the label. Considering the spectral phase retrieval, both DNN and diffDNN approaches exhibit
excellent agreement with the label shape. In this task the ePIE implementation is lagging behind,
often yielding more noisy results.

4.1.2. Quality benchmark

To systematically test the performance of our networks against ePIE we generate a benchmark
dataset. For this experiment we draw 128 pairs of NIR laser pulses and electron wavepackets
and simulate respective single-trace streaking spectrograms. To track the performance of our
retrieval methods dependent on input noise level, we subject the base spectrograms to 9 evenly
spaced SNR values over the range 20 dB to 4 dB.

The results of the ensuing benchmark experiment are summarized in Fig. 3. Both deep learning
approaches are observed to outperform the ePIE implementation at high noise levels. The
predominant advantage of supervised learning seems to be that the neural networks directly learn
to associate noisy spectrograms with ground-truth labels, thereby learning to filter out noise. In
comparison, ePIE has no mechanism to directly discriminate between streaking signal and noise.

For a direct comparison please also be aware that the inference from our deep networks only
takes up to 100 ms per sample whereas the ePIE implementation requires up to minutes to
converge. As ePIE can only unambiguously be applied to background-free spectrograms we
generated the benchmark dataset without background.
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Fig. 2. Comparison of different methods for single-trace retrieval. (a) Pseudo-color plot
of the simulated test set spectrogram with SNR ≈ 12 dB. (b), (d), (f) NIR vector potential
retrievals compared to the label (simulation input). (c), (e), (g) Electron wavepacket retrievals
compared to label. Our deep learning approaches better match the ground-truth labels,
especially regarding the wavepacket spectral phase.
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Fig. 3. Single-trace retrieval quality as function of input noise. Box plots depicting
the distribution of the respective quality criterion over the evaluated samples concerning:
(a) Wavepacket spectrum, (b) Wavepacket spectral phase, (c) NIR vector potential and
(d) Spectrogram reconstruction. Lower values are better, showing that our deep learning
approaches significantly outperform ePIE at high noise levels.

4.1.3. Application to real-world data

We use a deep ensemble of M = 10 neural networks to reconstruct a streaking trace recorded in
an experiment with Helium as a target. The real-world data were acquired at our state-of-the-art
attosecond streaking beamline located at the Technical University of Munich. Intense sub 5 fs NIR
laser pulses generate isolated XUV pump pulses with central-energy of 105 eV in an amplitude
gated high harmonic generation (HHG) scheme. The XUV bandwidth of 5 eV allows for pulse
duration below 400 as. The NIR and the XUV pulses are subsequently used in the attosecond
streaking experiment.

The resulting spectrogram, as well as the deep ensemble retrievals of the NIR vector potential
and the wavepacket, are displayed in Fig. 4. We find excellent agreement between the recorded
streaking trace and its reconstruction, calculated from the retrieved NIR pulse and electron
wavepacket using Eq. (1). Since all networks within the ensemble return well-matching retrievals,
the resulting uncertainty estimation is small.

4.2. Photoemission time delay retrieval

Beyond the characterization of electron wavepackets from a single streaking trace, attosecond
streaking can be used to determine phase differences between multiple wavepackets streaked
simultaneously in the same measurement. By observing photoemission from two distinct energy
levels of a species the phase imprint of the XUV pulse cancels out when examining their
difference.

Frequently, experiments are primarily aimed at extracting the single scalar value d describing
the central-energy photoemission time delay between two wavepackets. Due to the special interest
in this quantity we extract it from our full reconstructions and benchmark its retrieval against
respective rTDSE results.
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Fig. 4. Real-world single-trace retrieval using a deep ensemble. (a) Pseudo-color plot of
the experimentally recorded spectrogram with Helium as a target. (b) Pseudo-color plot of
the attained spectrogram reconstruction. (c) NIR vector potential retrieval with uncertainty
estimate. (d) Electron wavepacket retrieval with uncertainty estimate. We find excellent
agreement between recorded and reconstructed streaking trace.

4.2.1. Retrieval example

A showcase for the full dual-trace retrieval using our neural networks is provided in Fig. 5.
Panel (a) depicts the pseudo-color plot of a simulated test set spectrogram without background
subtraction and SNR ≈ 12 dB. Panel (b) displays a plot of the same spectrogram after application
of the differential background subtraction.

Panels (c) and (e) display the NIR vector potential retrievals of our neural networks compared
to the original label. In both settings the retrieved curves exhibit excellent match with the label.
In direct comparison the diffDNN using differential background subtraction performs slightly
worse.

Panels (d) and (f) display the retrieved wavepacket spectra (blue) and spectral phases (red)
compared to their labels. Regarding the spectra, both methods manage close to perfect agreement
with the labels. Note that for wavepacket located at lower energies this involves predicting the
correct relative amplitude. In contrast the spectrum of the higher energetic wavepacket is always
normalized.

Regarding the spectral phase signals we find nice agreement of retrieval and original. Note
that the lower energetic wavepacket is allowed a clearly visible first-order phase term conveying
the relative photoemission time delay. In contrast the wavepacket at higher energies is set as
absolute zero-time reference.

4.2.2. Quality benchmark

To systematically test the performance of our models against rTDSE we generate a benchmark
dataset. Therefore, we simulate N = 128 spectrograms with two streaking traces each. All
spectrograms are generated with the set relative central-energy time delay d = 30 as between the
wavepackets. As we are particularly interested in assessing the retrieval performance dependent
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Fig. 5. Deep learning approaches for dual-trace retrieval. (a) Pseudo-color plot of the
simulated test set spectrogram with SNR ≈ 12 dB. (b) Pseudo-color plot of the spectrogram
after differential background subtraction. (c), (e) NIR vector potential retrievals compared
to label. (d), (f) Electron wavepacket retrievals compared to labels. Our deep learning
approaches nicely match the ground-truth labels, managing to reconstruct a first-order phase
term for the lower energetic wavepacket.



Research Article Vol. 30, No. 9 / 25 Apr 2022 / Optics Express 15681

on input noise level we subject the base spectrograms to 9 evenly spaced SNR values over the
range 20 dB to 4 dB.

With this dataset we mimic the typical experimental approach in attosecond streaking. Fre-
quently one records a set of spectrograms regarding a particular target over multiple measurement
days. As laser settings typically have to be readjusted over this time frame, the observed electron
wavepackets will vary as well. However, we presume the relative photoemission delay to be a
constant population parameter directly tied to the physical properties of the target.

To analyze the accuracy of the retrieved delay predictions we report the root-mean-squared
error (RMSE). Additionally it is especially important to us that the predictions cluster around
the true delay value. Therefore, we also measure the bias given as the expected difference of
prediction and target.

The results of our benchmark are displayed in Fig. 6. Panel (a) summarizes the RMSE of
rTDSE and deep learning approaches. Comparing the approaches, our DNN and diffDNN
methods behave competitively with respect to both rTDSE methods, and outperform them for
SNR values below 8 dB.

Fig. 6. Central-energy photoemission time delay retrieval quality as function of input noise.
(a) Time delay retrieval RMSE. (b) Estimated bias of rTDSE methods. (c) Estimated bias of
deep learning methods. (d) Percentage of plausible predictions for the respective methods
on the benchmark dataset. Our deep learning approaches yield unbiased predictions and
competitive RMSE with respect to rTDSE methods.

Panels (b) and (c) show the estimated bias of the rTDSE and deep learning methods, respectively.
Neither of the discussed methods shows a significant bias on the benchmark dataset. We note that
both rTDSE approaches do not converge on all samples. Additionally we sort out implausible
predictions, i.e. delays that are outside the range [−0.25, 0.25] fs for all methods. The remaining
percentage of plausible retrievals for the dataset is displayed in panel (d). Regarding our neural
networks all spectrograms yield a plausible photoemission time delay retrieval.
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4.2.3. Application to real-world data

An attosecond streaking experiment with Argon as a target was performed with the same pulse
parameters as in section 4.1.3. The resulting spectrogram is fed into a deep ensemble of M = 10
neural networks specifically trained for the retrieval of spectrograms with two streaking traces.

As displayed in Fig. 7 it is possible to retrieve the associated spectral phases for the Ar3s
and the Ar3p level. From these phases, the photoemission delay for this particular spectrogram
can be extracted. However, to gain a statistically significant photoemission time delay value for
Argon it will be necessary to collect a larger set of spectrograms.

Fig. 7. Real-world dual trace retrieval using a deep ensemble. (a) Pseudo-color plot of
the experimentally recorded spectrogram with Argon as a target. (b) Pseudo-color plot of
the attained spectrogram reconstruction. (c) NIR vector potential retrieval with uncertainty
estimate. (d) Electron wavepacket retrievals with uncertainty estimate. We observe good
agreement between recorded and reconstructed spectrogram. More data will be required to
extract a statistically significant photoemission time delay value.

5. Conclusions and outlook

In this work, we demonstrated the application of deep neural networks for the complete retrieval
of near-infrared laser pulses and electron wavepackets from attosecond streak camera experiments.
Our deep models are trained in a supervised scheme on large labeled datasets. For the generation
of the training data, we numerically simulated attosecond streaking without requiring the central
momentum approximation. We successfully applied our networks to real-world data and used
deep ensembles to approximate the predictive uncertainty.

Our results show that deep neural networks can be used to fully reconstruct the near-infrared
vector potential and electron wavepackets from one or multiple traces in an attosecond streaking
spectrogram. In the latter case this allows to extract relative photoemission time delays.

Our networks prove to be competitive or superior in comparison to established algorithms
like ePIE and rTDSE, especially when facing noisy data conditions. In combination with the
inference time of just several hundred milliseconds per spectrogram, this could pave the way for
the evaluation of considerably larger datasets in the future.
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The presented implementations are not limited to the attosecond streak camera setup. The
RABBITT technique, which is based on the same physical phenomena as the attosecond streak
camera, yields data of high complexity, the analysis of which could benefit significantly from the
application of neural networks. With the presented methods and results, we hope to motivate
further studies towards applying deep learning in other challenging physics applications.
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