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/e design of structures using topology optimization can improve the structural performance and save material, in turn reducing
costs. Using a framework of large-scale, three-dimensional topology optimization implemented by the authors in an open-source
multiphysical software, we investigate the influence of uncertain loading on the optimized design. Direct differentiation is used to
reveal the relationship between displacements and applied force, giving an efficient and effective tool to postprocess optimized
topologies. /e developed methodology for the assessment of the sensitivity with respect to applied forces is explored using two
three-dimensional examples: the classic MBB cantilever and a cableway pylon. /e advantages and limitations of this method
are discussed.

1. Introduction

In the development of new structures and mechanical
systems, the proper load collective is critical for correct
design and dimensioning. Unforeseen usage, misuse and re-
purposing afflict the developed load collective with uncer-
tainty and risk.

As topology optimization designs structures by finding
the optimally allocated material for a specific load case or
load collective, the uncertainty of loads is especially of in-
terest. In this work, we pose the question, how “optimal” are
designs with respect to the intrinsic uncertainty of load
cases? Using the direct differentiation of the optimized
compliance with respect to the applied loads, a framework is
shown to quickly (and without further system evaluation)
assess the influence of uncertain loading on the optimized
design.

Topology optimization is a numerical method, which in
concert with finite-element analysis, searches for the optimal
allocation of material within a design domain (packaging)
for a load case or a set of load cases (load collective). To-
pology optimization has seen recent attention as an essential

tool for the Virtuous Circle of Lightweight Engineering
Design [1] in which lighter systems result in lowered loading
as well as reduced material use and lower costs and therefore
resulting in even lighter designs. /e advent of additive
manufacturing has further strengthened the attention to this
design tool. Additive technologies allow for a practical
manufacturing method for the resulting optimized topol-
ogies, which in past required elaborate and skilled inter-
pretation to derive manufacturable designs [2].

Uncertainty is a well-established challenge in topology
optimization. To handle geometrical uncertainty associated
with nano-manufacturing, a robust topology optimization
method is developed in [3, 4]. In [5], the latter methodology
is extended to find not only geometrically robust designs, but
also to improve convergence of the optimization algorithm
when considering stress constraints. A robust method
considering uncertain forces in a level-set framework is
introduced in [6]. To consider uncertain loading direction,
[7] introduces an interval-based robust topology optimi-
zation method.

Uncertainty in mechanical engineering design can be
categorized into three categories: uncertain geometry,
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uncertain material and uncertain loading. Further, the
modeling itself adds uncertainty via abstraction and sim-
plification. /e aim of this work is to assess the sensitivity of
an optimum design with respect to uncertain loads and
thereby giving feedback to the design engineer how sus-
ceptible the optimum design is to changes. /e optimization
will be carried out using Kratos Multiphysics and its To-
pology Optimization Application development by [8] as an
extension to [9, 10]. /e developed methodology is based on
the simple direct differentiation applied to the converged
solutions and delivers meaningful results regarding the
robustness with respect to the load case to the design
engineer.

2. Topology Optimization

Topology optimization solves the design problem of the
optimal material use by parameterizing the density, which is
then scaled between zero and unity, i.e. no material and full
material,

xi ∈ [0, 1], (1)

where xi is the i th design variable. /e design domain is
discretized using finite elements and the density of each
element is variable and therefore xi is the density of the i th
element. In this work, topology optimization is implemented
using the modified solid isotropic material with penalization
(SIMP), first introduced by [11] and modified by [12],

Ei � Emin + E0 − Emin( x
p
i , (2)

where E0 is the Young’s modulus for the base material. For
this modification a minimal Young’s modulus Emin is in-
troduced to avoid singularities in global stiffness matrix.
Additionally, the penalty term p provides a more discrete
solution of the problem. Within this work, a penalty term of
p � 3 is used [13].

2.1. Optimization Formulation. In topology optimization, the
optimal material distribution is sought for a defined design
domain and load case. For achieving efficiently stiff structures,
the compliance C is minimized for a specified volume fraction
vfrac, resulting in the optimization formulation,

min
x ∈X

C x(  ,

subject to gj x( ≤ 0, j � 1, . . . , a,

hk x(  � 0, k � 1, . . . , n.

(3)

gj(x) represents the inequality constraints of the optimi-
zation formulation, whereas hk(x) defines the equality
constraints.

Compliance is defined here as the strain energy for a
defined load. /erefore, the minimization of compliance
formulation can be interpreted as a maximization of the
stiffness for a given load. /e compliance of the given
structure with the design variablesx and the forceF can be
calculated as follows:

C x(  � F
T

u. (4)

Using the dependency of the displacement u and the
global stiffness matrix k,

F � k u, (5)

we calculate the compliance on an element basis, shown here
for the i th element,

Ci xi(  � u
T
i k

i
ui. (6)

/e element compliance is therefore calculated with the
element displacement ui and the element stiffness matrix k

i
.

/e volume fraction vfrac is the ratio of the material used
to that of a full design domain VΩ,

vfrac �
ixiVi

VΩ
, (7)

and is defined as an inequality constraint with respect to a
prescribed volume fraction vmax,

g � 
i

xiVi − vmaxVΩ. (8)

/e modified SIMP approach is used for the element
compliance in equation (6) and summing these up over the
elements of the design domain based on the elemental
stiffness matrix of the base material of the i th element k0,i

,
the modified optimization problem reads as

min
xi∈X


i

Ci xi( 
⎧⎨

⎩

⎫⎬

⎭,

where Ci xi(  � Emin + x
p

i E0 − Emin(  u
T
i k0,i

ui,

subject to g x(  � 
i

xiVi − vfracVΩ ≤ 0, and 0≤xi ≤ 1.

(9)

2.2. Sensitivity Analysis. /e sensitivities, i.e. gradients, of
the design variables with respect to the objective and con-
straint functions are computed and provided to the opti-
mization algorithm. With this information, the design

variable values are updated for the next iteration. As to-
pology optimization typically carries more design variables
than objective and constraint functions, the adjoint method
is used in order to efficiently calculate the sensitivities.
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/e compliance sensitivity based on equation (6) is
calculated for all elements. Applying the adjoint method and
the simplifications as well as the modified SIMP approach,
the objective function gradient of every element can be
calculated as

zC

zxi

� −px
p−1
i E0 − Emin( u

T
i k0,i

ui . (10)

/e constraint sensitivity too can be calculated for every
element. Due to the fact that every element has a constant
volume, the constraint function sensitivity can be written as:

zg

zxi

� 1. (11)

2.3. Sensitivity Filtering. In order to avoid common prob-
lems with topology optimization, such as checkerboard
patterns, different filtering methods can be used. In the case
of this work, the sensitivity filtering is implemented in the
optimization process in order to avoid such difficulties [14].
Checkerboard patterns refer to areas in the design domain
that have full and zero density in neighboring elements,
giving rise to a structure that looks like a checker- or
chessboard (checkerboard patterns can be seen in Figure 1,
where a too low filter radius was used for the filtering
process). Checker boarding results in an unmanufacturable
design as well as artificially (numerically) high stiffness [13].
/e filtering of the sensitivities considering the surrounding
elements alleviates this issue. Based on the value of these
sensitivities and a weighting factor Hi,j, the gradient of the
given element is altered./e weighting factor Hi,j evaluates the
distance from the i th element to the j th neighboring element.

/e weighting of the surrounding elements of a given
element can be seen in Figure 1, where the distance de-
termines the influence of the neighboring element proper-
ties. Depending on the filter radius, a certain number of
neighboring elements are considered. Mathematically, this
filtering of the sensitivities is given by

zC

zxi

filt

�


j

Hi,jxjzC/zxj

max xi, c(  
j

Hi,j

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠. (12)

/e weighting factor is defined by [12].

Hi,j � max 0, rmin − dist(i, j)( , (13)

where rmin represents the filter radius. With the difference of
the radius value and the distance between the given element i

and the element from which the sensitivity is considered
(described by the index j), the factor can be calculated.

2.4. Optimization Algorithm. /e optimization problem is
solved in this work using the Optimality Criteria (OC) al-
gorithm, which is commonly used in topology optimization
[15]. /e OC algorithm searches iteratively for the optimal
design using the sensitivities of objective and constraint

functions. A Lagrange multiplier is introduced to handle the
constraint function, here volume fraction. /is is done by
using a bisectional algorithm.

/e update of the design variable values is given by [16].

xi �

max 0, xi − m( , forxiB
η
i ≤max 0, xi − m( ,

min 0, xi + m( , forxiB
η
i ≥min 1, xi + m( ,

xiB
η
i , else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

For this iterative process, the tuning parameters m and η
are needed, where m represents the move limit of the design
variable and set here to 0.2. /e tuning parameter η is in-
troduced for numerical damping purposes and is set here to
0.5 [13].

To evaluate the design variable, Bi is defined from the
optimality condition as:

Bi � −
1
λ

zf/zxi

zg/zxi

, (15)

with zf/zxi being the objective function sensitivity defined
as the compliance sensitivity zC/zxi and zg/zxi the con-
straint sensitivity, which has the value of unity for every
element./e former is introduced in section 2.2 of which the
filtered sensitivities are used (section 2.3). /e volume
constraint sensitivity is constant throughout the optimiza-
tion and is simply the identity matrix for uniformmeshes, as
used here [17].

To determine if convergence has been reached, the
relative change in the objective function is observed,

C xk(  − C xk−1( 

C x0( 
≤ ϵstop. (16)

For the following observations, the convergence criteria
was set to ϵstop � 10− 6. Further, there is a heuristic stopping
criteria of maximum iterations, which was set to 200 iter-
ations in this investigation.

2.5. Compliance Sensitivity and Robustness with respect to
Force. In this work, the variation of the force and the
resulting impact on the compliance is investigated. /is is
carried out in a post-optimization step to assess the con-
sequence in the applied load. By changing the force vector on
the structure and optimizing the design domain, the un-
certainty in load cases and the resulting optimized topologies
are investigated.

Directly differentiating (5) with respect to the i th force
Fi gives

z k

zFi

u + k
z u

zFi

�
z F

zFi

, (17)

and solving for displacement sensitivity with respect to the
force vector reveals

z u

zFi

� k
− 1 z F

zFi

−
z k

zFi

u . (18)
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/e compliance sensitivity with respect to force is found
by applying the chain rule to (4),

zC

zFi

�
z F

zFi

u +F
T

k
− 1 z F

zFi

−
z k

zFi

u  . (19)

/e sensitivity of the stiffness matrix with respect to
force is zero in linear-elastic analysis. /e sensitivity of the
force vector with respect to a single force (or multiple forces)
is a vector with ones at the point of interest and zero else,
denoted here as ei. /e compliance sensitivity with respect to
force simplifies to

zC

zFi

� ei u + u ei,

� 2
i

ui.

(20)

Summarizing, the compliance sensitivity with respect to
force is twice the resulting displacement of the degree of
freedom of the force (or forces) in question.

Although design robustness can have a wide range of
understandings in engineering design, in this work it is
defined in line with the following definitions:

Mathematically, this is therefore defined in this work as
the inverse of the sensitivity with respect to the uncertainty
or noise factors, i.e. here compliance with respect to force,

RC,Fi
�

1
zC/zFi



. (21)

It should be noted that the absolute value of the com-
pliance sensitivity is used as robustness measure of how
sensitive a structure is and not how it changes. Specifically,
the higher the sensitivity (gradient) of the compliance with
respect to the force, the higher the resulting variation and the
lower the robustness [21]. For the extreme case of infinite
robustness, the sensitivity is zero while for zero robustness,
the sensitivity is infinity.

3. Results of Numerical Investigations to
Uncertain Loading

In this study, uncertain loading is explored in topology
optimization with three-dimensional domains on two ex-
amples. /e first example is the classic MBB cantilever, e.g.
[22], in which the out-of-plane dimension is much smaller
than the in-plane dimensions, resulting in a relatively thin-
walled cantilever. /e second example, developed in [8]
finds the optimized topology of a cableway pylon.

3.1. Moderately 1in-Walled MBB Cantilever. /e Mes-
serschmitt–Bölkow–Blohm (MBB) cantilever is a classic
benchmark example in topology optimization. It stems from
a structural problem of the company Messerschmitt–Böl-
kow–Blohm (now integrated into Airbus SE) in the design of
a floor structure of the Airbus passenger aircraft [23].
Considering the MBB cantilever, the change of the com-
pliance in respect of the changing force is investigated. For
this investigation, a three-dimensional MBB cantilever of the
dimensions 60 × 20 × 4mm (see Figure 2) is used. /e given
cantilever beam is considered having a generic isotropic
material with a Young’s modulus of 1 Pa. /e finite-element
model has a regular mesh using 1mm element length,
resulting in 4800 hexahedral elements and 6408 nodes.

Two base load cases will be investigated below: (1) a
downward load of F � [0.0, −1.0, 0.0]T N, and (2) a diagonal
load of F � [0.5, −0.5, 0.5]T N./ese base load cases are used
for the numerical investigation of uncertain loading.

3.1.1. MBB Cantilever under Downward Loading Condition.
/e first load case foresees a downward (negative y) load. In
the following, this load is varied in x, y and z and the
compliance sensitivities are calculated.

To investigate the optimized design, the load is varied. In
different optimization processes the force in y-direction is
increased or decreased, whereas in the x- and z-direction a
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Figure 1: Filter weighting factor Hi,j with the filter radius rmin.
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force is added in the positive or negative direction. To avoid
to large step sizes and to evaluate also small variations, the
change of the force or the added load was 0.1, 0.2 and 0.3N
in both positive and negative directions. /e resulting op-
timized topologies can be seen in Figure 3.

On the other hand, when investigating the sensitivities,
the step sizes where chosen smaller. Due to the fact that a
sensitivity is an information of the given condition, the best
way to numerically calculate these values is to choose a very
low step size. Additionally, the MBB beam is thin walled in
the z-direction, which could lead to a sensitive behavior and
therefore a smaller step size should improve the results.

Figure 3 shows the optimized compliance with respect to
the force in x, y and z, respectively. For both variation of
force in x and y, the relationship is nearly linear. For the
force in z, the compliance increases in both negative and
positive directions as this is a increase in the load. In fact this
compliance sensitivity shows a quadratic form with respect
to force (see Figure 4). Further of interest is the compliance
sensitivity in x: the compliance increases with a compression
of the structure, but with a load in positive x-direction, the
compliance decreases. /is means that although an increase
in the magnitude of the load, the stiffness of the structure can
be increased.

/e analytical sensitivities of the compliance with respect
to the forces used in the diagrams in Figure 3 can be

calculated. For this, the displacement is taken at the nodewhere
the force is acting on the structure./erefore, the displacement
of the degree of freedom of the applied force. /e sensitivity is
defined simply by twice the displacement (20).

For the calculation of the compliance sensitivity, the
displacements are considered where the structure is loaded
(here a point load),

ui �

ui,x

ui,y

ui,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

−11.7877

−50.348

−0.00989191

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦mm. (22)

/e compliance sensitivities calculated via (20) are given
by

zC

zFi

�

zC/zFx

zC/zFy

zC/zFz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−23.5754

100.696

−0.01978

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
mm. (23)

It should be noted that force in y-direction is negative
and therefore an increase of the force is negative, which
changes the sign of the sensitivity from negative to positive.
/e numerical values of the sensitivities given by the op-
timization tool and the different force variation can be seen
in Figure 5 and they are listed in Table 1. /e aim of this
investigation was to see how the analytical compliance
sensitivities with respect to the force vary, when changing
the stepsize in which the force is altered. It can be seen, that
the analytical and numerical results are very close together.
Only in the z-direction the sensitivities vary notably.

From the compliance sensitivity, we can then calculate
the robustness of compliance with respect to A change in the
defined load case,

RC,Fi
�

1
zC/zFx




1
zC/zFy





1
zC/zFz




⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0.042417

0.00993088

50.5561

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
mm

. (24)

From this result and comparing it with Figure 3 as well as
Figure 5, we can see the weakness of this method. /e
compliance sensitivity with respect to the out-of-plane force
Fz is orders of magnitude smaller than the other forces. In
fact, the analytical sensitivity is numerically zero, showing

F down

F diagonal

y

x

z60mm
20mm

4mm

Figure 2: Moderately thin-walled MBB cantilever, showing design
domain, boundary condition, loading and exemplary optimized
topology for downward load case and diagonal load case in red and
green, respectively.

Box and Fung (1994): Robustness means insensitivity to variation [18].
Arvidsson and Gremyr
(2008): Robust Design methodology means systematic efforts to achieve insensitivity to noise factors [19].

Taguchi (1986): Robustness is the state where the technology, product, or process performance is minimally sensitive to factors
causing variability [20].
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change in force ∆Fx [N]

Figure 3: Optimized compliance with respect to change in applied force for the MBB cantilever, optimization results, expected from
analytical sensitivity, base load of F � [0.0, −1.0, 0.0]T N.

(a) (b)

(c) (d)

Figure 4: Optimized topology with respect to change in applied force for the MBB cantilever with base load of F � [0.0, −1.0, 0.0]T N. (a)
base load case, (b) ΔFx � 0.1N. (c) ΔFy � 0.1 N. (d) ΔFz � 0.1N.
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no change. As can be seen in the right graph of Figure 3, this
value is correct, though only locally at 0N. /is can be
therefore especially problematic in the case, when there is no
load present in the direction of the sensitivity. To explore this
further, we now look at a second load case for which there
are non-zero applied forces for the respective compliance
sensitivities.

3.1.2. MBB Cantilever under Diagonal Loading Condition.
As the lack of out-of-plane loading shows nonlinear rela-
tionship when a force is added in this direction, a diagonal
load is investigated./e optimized topology of this base load
case can be seen in Figure 6. Again a load variation is applied
and these results are seen in Figure 7. As this time a force in
z-direction is present, the results of the variation in this
direction are notably better as they are with the MBB beam
in the previous example, were the single load was applied.

/is time numerical and analytical results in all directions lie
close together. Even though the relationship shows some
nonlinearity when varying the loads up to ± 60% of the
baseline, the trend is well represented.

We calculate the compliance sensitivity with respect to
the force again based on the displacement.

zC

zFi

�

zC/zFx

zC/zFy

zC/zFz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−3.00255

22.3077

951.361

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
mm. (25)

/is shows agreeance with the numerical results,
cf. Figure 7. Based on the sensitivity, we find the robustness,

RC,Fi
�

1
zC/zFx




1
zC/zFy





1
zC/zFz




⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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We now see that the out-of-plane force is better rep-
resented by the analytical value, despite the relatively thin-
walled nature of the design space in this direction. As ex-
pected, the compliance in out-of-plane load is orders of
magnitude more sensitive with respect to in-plane force.
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Figure 5: Numerical sensitivity of compliance with respect to force with varying step size for the MBB cantilever, base load of
F � [0.0, −1.0, 0.0]T N, thin line shows calculated analytical value.

Table 1: Analytical and numerical (using forward differencing)
compliance sensitivities with respect to force for varying step sizes
for the MBB cantilever with base load of F � [0.0, −1.0, 0.0]T N.

Method Step size (N)
compliance sensitivity (mm) with

respect to
x-force y-force z-force

Analytical — −23.575 4 −100.696 −0.019 78

Numerical

0.25 −21.566 2 −88.069 7 178.919 8
0.1 −23.544 3 −87.5041 45.674 7
0.05 −22.925 4 −97.815 3 9.572 58
0.01 −24.867 7 −82.683 6 13.541 0
0.001 −23.039 0 −83.493 0 −221.352 0
0.0001 2.399 9 −39.739 9 −2784.680 0
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3.1.3. MBB Cantilever with Variation of the Sensitivity Filter
Radius. /e filter is used on the sensitivities in order to get a
better structure and to avoid i.e. checkerboard patterns
(cf. Section 2.3). /e size of the radius defines the area from
which surrounding elements are considered (see Figure 1).

/e impact of the filter radius is investigated on the
optimized compliance and its sensitivities with both the
downward and diagonal loading conditions. /is was done
by optimizing the MBB beam with the different filter radii
and comparing the results in terms of geometry, compliance
value and compliance sensitivity.

In Figure 8, the impact of the filter radius on the op-
timized topology is seen for the downward loading condi-
tion. With a filter size of 1mm, equivalent to the element
size, a significant checkerboarding effect is seen. As expected,
with increasing filter radius, the structure becomes more
discrete. Figure 9(a) shows that this results in a significant
increase in compliance. It also shows, that up to the radius
size of rmin � 1mm the compliance does not change. /is is
due to the element size, the elements used in the MBB

example have the size of 1mm × 1mm × 1mm and so no
neighboring element is detected by the filter. As it is expected
(and can be seen in Figure 8) the compliance increases with
an increasing filter radius. /is can be explained by the
resulting topology, as can be seen in Figure 8, the topology
gets less branched and more compact, this though means
that a certain degree in stiffness is lost. /is can also be seen
in Figure 9(b), where the compliance sensitivities w.r.t the
force change over the variation of the filter radius are
presented. When the filter radius is increased the topologies
have growing sensitivity to force change. /is leads to the
assumption that a more manufacturable and discrete to-
pology is paid for with a less stiff structure. Additionally, the
structure possesses a lower robustness with respect to
changes in the load.

When investigating the impact of the filter radius on the
MBB beam with the diagonal load case from Figure 7, the
results are very similar to the ones from the MBB beam with
the singular load case. /e results of the diagonal load case
can be seen in Figure 10. Although the results are very

Figure 6: Optimized structure of the MBB cantilever with the diagnoal load case: F � [0.5, −0.5, 0.5]T N.
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Figure 7: Optimized compliance with respect to change in applied force for the MBB cantilever, optimization results, expected from
analytical sensitivity, base load of F � [0.5, −0.5, 0.5]T N.
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(a) (b) (c)

(d) (e)

Figure 8: Optimized topology with respect to filter radius with base load of F � [0.0, −1.0, 0.0]T N. /e optimized structure was post-
processed by which the elements were deleted with density xi < 0.2. (a) rmin � 1mm, (b) rmin � 1.5mm (baseline), (c) rmin � 3mm, (d)
rmin � 4mm, (e) rmin � 5mm.
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Figure 9: Influence of filter radius for the MBB cantilever with a base load of F � [0.0, 1.0, 0.0]T N. (a) Compliance w.r.t. filter radius, (b)
Compliance sensitivity w.r.t. the filter radius.
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similar, the sensitivity with respect to the out-of-plane load
Fz is much higher, as expected. /is can be explained with
the thin-walled nature of the MBB beam in the z-direction.

/e increasing compliance with the increasing filter
radius can be explained as follows: We are paying for a more
continuous structure (i.e. lack of checkerboarding) with a
higher compliance. With an ever larger filter radius, this
phenomenon is further increased. /e resulting topology is
less branched and more compact. But the price is that the
structure loses stiffness.

/e above effect can be seen analogously for the sen-
sitivities. As seen in section 2.5, the compliance sensitivity of
the structure is computed with the displacement in the
degree of freedom of the load in question (or the sum
therefore). With less structural stiffness, the point will be
further deformed, leading to an increase in its sensitivity.

3.2. Cableway Pylon. /e investigation of the force variation
was extended to the large-scale example of a cableway pylon.

Topology optimization of such tower-like structures can be
performed via ground structure [24] and the above described
SIMP approach. /e former method has been successfully
applied to tower structures, e.g. [25–27], though dictates a
design of lattice likemembers./e SIMP approach has seen use
for tower-like structures [26, 28] and will be used here.

An example of such a cableway pylon is shown in
Figure 11(a). /e according parts of the cableway pylon
can be seen in Figure 11(b). /e model was constructed
such that the area on the ground is fixed and therefore no

displacements in this area are allowed. /e design domain
allows for the gondola to pass the pylon without any
problems.

/e forces onto the pylon are spread over the area on top
of the pylon (see red area in Figure 11(c)), where the design
domain is connected with the yoke (see Figure 11(b)). For
the investigation of the cableway pylon, steel was used and
the Young’s modulus was set to 206900MPa.

Due to different load cases and varying situations
(gondola ascent or descent, wind in the driving direction or
perpendicular to the driving direction etc.), which can occur
within the lifetime of the cableway pylon, the resulting force
working onto the structure has components in every di-
rection. A simplified load case was developed, evaluating the
different load cases and choosing a worst case (in every
direction). /ese loads were set for the optimization process
in order to cover all possible load combinations:

Fapplied �

60

115

−400

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦kN. (27)

/e symmetry of the loads was recognized and a quarter
model is taken for the optimization./e results are shown as
a full model by mirroring the results over the axes of
symmetry. /e resulting quarter model is composed of
97152 hexahedral elements and 106225 nodes. /e model
consists of hexahedral elements of the size 0.5 × 0.5 × 0.5m.
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Figure 10: Influence of filter radius for the MBB cantilever with a base load of F � [0.5, −0.5, 0.5]T N. (a) Compliance w.r.t. filter radius, (b)
Compliance sensitivity w.r.t. the filter radius.
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/e force variation for the investigation is realized by
varying the existing forces in the main directions. For this
the forces are increased or decreased by 1% or 0.5%.

/e variation resulted in different compliance values of
the structure. In Figure 12 the resulting changes of the forces
can be seen. /e numerical results show excellent agreement
with the analytical sensitivities. /is is the case as we are not
assessing the sensitivities at unloaded degrees of freedom as
with the MBB cantilever. Further, no dimension can be
considered relatively thin-walled, in contrast to the MBB
case.

/e analytical sensitivities of the optimized cableway
pylon can be calculated with the displacement at the nodes

where the force is working on the structure. In the case of the
pylon, the force is working on 25 nodes spread over the area
on the top. To get the sensitivity, the displacements in the
force direction have to be added up and then multiplied by
two. /is results in the following sensitivities:
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In Figure 12 the compliance change calculated with
the sensitivities is compared with the analytical results. It
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Figure 11: Cableway pylon. (a) Exemplary pylon structure of Ritten’s cableway (South Tyrol, Italy), Photograph: STA/Riller. (b) Schematic
view with the yoke (1) upon which the shoes or sheave assembly (2) are mounted, on which in turn the gondola (3) runs to pass the pylon.
/e yoke itself is mounted onto the design domain (4). /e designable domain is shown in light gray.
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Figure 12: Optimized compliance with respect to change in applied force for the cableway pylon, optimization results, expected from
analytical sensitivity, base load of F � [60000, 115000, −400000]T N.
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can be seen that with an increase in the force, the compliance
increases too. /is means higher forces lead to a structure
with lower stiffness. /e graphs in this figure show, that the
analytical and numerical results are very similar. Addi-
tionally it also shows, that in the case of the cableway pylon,
which does not possess a thin-walled nature, no notable
difference of analytical or numerical values can be seen.

/e robustness of the compliance with respect to
Loading is the inverse of the compliance sensitivity resulting
in

RC,Fi
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/rough this assessment we can easily see that the
resulting design for the cableway pylon is most robust with
respect to a downward load, i.e. an axial load, while it is more
sensitive in bending, as one may expect./erefore, especially
these loads must be carefully derived in the planning of such
a structure.

4. Conclusion

/e definition of loads, i.e. the loads that a structure will see
in its life, is afflicted by uncertainty. As topology optimi-
zation designs a structure based on its loading, the proper
definition of load collectives is therefore essential to gain
useful results. In this work, we derive a methodology to
calculate the sensitivity of the resulting compliance with
respect to the change in the load case without any further
evaluations. /is simple, yet useful method gives the de-
signing engineer feedback to the optimized design and the
sensitivity to changes in loading.

/is method though shows limitation when the structure
is relatively thin walled, i.e. one dimension is of a smaller
order of magnitude and unloaded in this direction. As is
shown with the MBB cantilever, when unloaded, the out-of-
plane force shows zero sensitivity. In the numerical studies, a
new out-of-plane load greatly changes the resulting opti-
mized topology and the sensitivity is by no means zeros.
With the cableway pylon, this aspect is not a problem,
showing that the thin-walled case is a special case and in
need of further investigation.

/e investigation of the filter radius shows that with an
increasing filter radius a more manufacturable topology is
achieved. /e more concrete the structure gets the lower the
stiffness will be. Higher compliance sensitivities with respect
to the load are to be expected with a higher filter radius. /is
means that even though the structure has an easier topology
we lose structural properties. /erefore a compromise has to
be made when choosing the filter radius.

/is method is not only applicable to compliance-
minimizing topology optimization resulting in stiff struc-
tures, but to the design of compliant mechanisms, which are
designed to have large deformations in certain degrees of
freedom (e.g. [5, 29, 30]). With such designs, the design of
the force and therefore the compliance sensitivity with re-
spect to force is of great concern.

In future investigations, we plan on extending the op-
timization with stress constraints and to quantify the un-
certainty of the force when these are enforced. In this case
not only the sensitivities of the compliance objective change
would be observed, also the sensitivities of the stresses
constraints could be investigated–so called shadow pri-
ces–giving even more information to the engineer. /e
robustness of force magnitude and direction are also of
concern of compliant mechanisms in which the compliance
is maximized.

Summarizing, this work provides a method requiring no
further computational effort to assess the compliance sen-
sitivity of topology-optimized designs. Although, weak-
nesses exist in regards to compliance sensitivity with respect
to loads that were not considered, its is meaningful to assess
the robustness, to compare sensitivities of different loads and
the sensitivity of a structure to loading in general.
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