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ABSTRACT The road traffic safety situation is severe worldwide and exploring driving behavior is
a research hotspot since it is the main factor causing road accidents. However, there are few studies
investigating how to evaluate real-time traffic safety of driving behavior and the number of driving
behavior safety levels has not yet been thoroughly explored. This paper aims to propose a framework
of real-time driving behavior safety level classification and evaluation, which was validated by a case
study of driving simulation experiments. The proposed methodology focuses on determining the optimal
aggregation time interval, finding the optimal number of safety levels for driving behavior, classifying
the safety levels, and evaluating the driving safety levels in real time. An improved cross-validation mean
square error model based on driver behavior vectors was proposed to determine the optimal aggregation
time interval, which was found to be 1s. Three clustering techniques were applied, i.e., k-means clustering,
hierarchical clustering and model-based clustering. The optimal number of clusters was found to be three.
Support vector machines, decision trees and naïve Bayes classifiers were then developed as classification
models. The accuracy of the combination of k-means clustering and decision trees proved to be the best
with three clusters.

INDEX TERMS Driving behavior safety levels, driving simulation, clustering, support vector machine,
decision tree.

I. INTRODUCTION

EVEN though the road accident frequency and the
number of persons killed in road traffic accidents have

fallen considerably over the last 20 years in the European
Union (EU), the traffic safety situation is still severe. In
2019, around 22800 persons were killed in road accidents
in the EU. 44.2% of the fatalities were passenger car
drivers or passengers and 20.2% of them were pedestri-
ans. Therefore, road safety improvement is one of the most
important goals introduced by European Union in its “Zero
Vision” [2]. Specifically, the goal is to cut European road
fatalities and serious injuries down to zero. The percentage
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of crashes involving driver error or impairment before the
crash was higher as higher as 94% (±2.2%) [3], which is the
main factor reducing road safety. Therefore, more and more
researchers and traffic managers have started to explore and
better understand drivers’ behavior with the help of driving
simulation experiments and naturalistic driving experiments.
Driving simulator can develop and simulate different driving
scenarios to measure the behavior of a car driver in a sim-
ulated environment for human factor research. This allows
the researchers to collect easily the driving behavior data in
a safe room and to analysis driving behavior characteristics.
Given the advanced technology improvement, collecting

driving behavior data and analyzing the driving behavior
safety levels in real time have been possible in a real
moving vehicle. They have been a research hotspot so as
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to provide warnings or visual interventions for the drivers
and Advanced Driver Assistance Systems (ADAS). Besides,
driving behavior is postulated to belong to one or more safety
levels or zones, ranging from “normal” to “dangerous” driv-
ing. Therefore, it is essential to evaluate the traffic safety
level of driving behavior in real time. However, there is
few studies to investigate it and how many driving behavior
safety levels has not been deeply explored.
The goal of this paper is to propose a real-time classifi-

cation and evaluation framework of driving behavior safety
levels, which was validated by a case study based on a
driving simulation experiment. Three clustering algorithms
are proposed including k-means clustering [4], hierarchi-
cal clustering [5] and a model-based clustering [6], and
the optimal number of clusters for each is also identi-
fied. The obtained clusters can be well visualized using
advanced machine learning algorithms such as T-distributed
Stochastic Neighbor Embedding (T-SNE) [7]. Support vector
machines (SVM), decision trees (DT) and naïve Bayes (NB)
classifiers are then used to develop models for real-time
safety level classifications for new observations.
The contents of the paper will be structured as follows.

First, the relaed work will be presented. Then the over-
all methodology will be introduced, including the overall
framework, and the formulation of the used clustering and
classification (modeling) algorithms. Thirdly, the simulation
design environment, and the data collection and variables of
interest are presented. Afterwards, the results are described
and analyzed. Finally, a conclusion is given, focusing on
the main contributions but also limitations and future work
needed.

II. LITERATURE REVIEW
A. DRIVING SIMULATION STUDIES
The development and study of driving simulators in the auto-
motive domain started in the 1960 [8]. For instance, in 1963,
a moving belt driving simulator was employed to explore the
effect of alcohols on driving performance [9]. Until today,
driving simulators have become more popular with the devel-
opment of cheap computer technology since simulators have
advantages over other methods. Driving conditions are easily
controllable, and reproducible and various, such as in heavy
traffic, at night, in various types of weather, or in danger-
ous circumstances (i.e., collision avoidance, obstacles on the
road). Besides, it can further reduce the costs of experiments
and data collection, and there is no risk for subjects, which
allows exploring the effects of special factors, e.g., alcohols,
drugs, sleep deprivation or distraction. Additionally, driving
simulators can provide more variables and measures related
to driving behavior. Therefore, a number of literature on
driving simulations has been produced.
Driving simulators have been applied in many different

applications [10].
(i) Investigation of the driving behavior, e.g., the factors

that affect perceived and observed (as measured,
based on driving simulation experiments) aggressive

driving behavior [11], the safety of raised pavement
markers (RPMs) in a freeway tunnel [12];

(ii) Analyzing how secondary tasks (or distraction) affect
driving performance, e.g., when dialing numbers or
texting on a mobile phone [13];

(iii) Evaluating the impact of drugs, fatigue, or sickness
on the driver, e.g., investigating the temporal pat-
terns of variations in driving fatigue and driving
performance [14];

(iv) Optimizing the interior design of a vehicle, e.g.,
surrogate in-vehicle information systems and driver
behavior [15];

(v) Testing the driving ability, such as reaction time and
perception [16];

(vi) Developing and testing effect and acceptance of new
ADAS, e.g., a dangerous-driving warning system [17].

In summary, even though there is still some limitation of
using the driving simulator, it is quite useful for research.

B. EVALUATION OF DRIVING BEHAVIOR SAFETY
LEVELS
For the design of a vehicle control algorithm that monitors and
corrects longitudinal driving behavior [18], it is essential to
predict driving risks, and the major challenge of the research
is how to discover the safe/dangerous driving patterns or
driving risk levels [17]. To the best of our knowledge, related
studies are not many. They have not deeply explore how
many driving behavior safety levels is optimal and cannot
also meet the requirement of the real-time evaluations during
the whole driving with different environments.
Wang et al. [17] proposed a semisupervised learning

method to utilize both the labeled and the unlabeled data,
as well as their interdependence to build a proper danger-
level function. The results show that the proposed method
requires less training time and achieved higher prediction
accuracy. However, this paper simply uses two states, namely
safe/dangerous-driving state, which is not quite convictive.
Wang et al. [18] used the K-means clustering algorithm

to classify longitudinal driving behavior according to driv-
ing and driver characteristics. The results of the study show
that four main determinants of longitudinal driving behavior
can be distinguished by using measurable parameters. The
limitation of this paper is that it only focuses on the longitu-
dinal direction without synthetically considering the lateral
direction.
In order to develop algorithms for estimating driver

behavior at road intersections, Aoude et al. [19] intro-
duced two classes of algorithms that can classify drivers
as compliant or violating. The classification algorithms
are based on 1) support vector machines and 2) hidden
Markov models. The results show significant performance
improvements with the new algorithms compared with
three traditional methods. The limitation is that it only
focuses on a special road infrastructure, i.e., the road
intersections.
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In order to identify the risk level of each driver accord-
ing to three levels based on both subjective and objective
parameters, Eboli et al. [20] proposed a percentage of exter-
nal points at borderline of the safety domain based on the
kinematic parameter (i.e., acceleration) to define three levels
(low, medium, and high risk). The thresholds are the average
of the first quartiles (5%, 8%) for aggressive and cautious
drivers. However, it cannot evaluate the driving safety level
in real time since it is used to evaluate the risk level of each
driver during the whole driving.
Zheng et al. [21] build a near-crash database and applied

k-means cluster analysis to classify the near-crash cases into
different driving risk levels using braking process features,
namely maximum deceleration, average deceleration and per-
centage reduction in the vehicle kinetic energy. The results
of clustered driving risk levels are low-risk group, moderate-
risk group, and high-risk group. The limitation is that it only
used three variables to cluster the driving risk levels and it
did not explore why three clustered groups are determined.
According to the risk constraints under free-flow, car-

following and lane-changing conditions, the average traffic
flow risk index representing six risk levels and the safety
threshold of the corresponding risk indicators were deter-
mined by Yan et al. [22] to predict the driving risk indicators
and determine different risk levels under continuous tunnel
environment. The result show that driving behaviors signifi-
cantly vary in different tunnel risk feature points. However,
this paper only focuses on the fixed point in the tunnel.
In existing related literature, k-means

clustering [4], [18], [21] is utilized to cluster the driving risk
level group since it is an unsupervised issue. It is a highly
popular unsupervised learning algorithm that solves the
well-known clustering problem. After obtaining a sampling
data with labels, the classification models such as support
vector machine and hidden Markov models [19] are widely
applied to classify the new observations. However, there is
not a clear framework to conduct driving behavior safety
level classifications and estimations based on the historical
and real-time collection of surveillance driving behavior
data. Therefore, this paper tries to make contributions in
this topic based on a driving simulation study.

III. METHODOLOGY
A. OVERALL FRAMEWORK
After improving the overall local traffic state prediction
framework presented by [23], this paper outlines the over-
all framework in Fig. 1. It includes the main methodological
components along with the information flow. Generally, each
observation may hold multiple attributes, such as speed,
headway and lateral location.
The methodology includes training and application steps.

During the training step, archived surveillance data are used
to (i) determine the optimal time interval to aggregate the
high-frequency surveillance data; (ii) find the optimal num-
ber of clusters, presenting the ideal number of driving
behavior safety zones or levels; (iii) identify the various

FIGURE 1. Overall framework of driving behavior safety level classifications and
estimations.

driving behavior safety levels through clustering the avail-
able observations; and (iv) estimate the transition processes
between these regimes. Finally, the information is stored into
a knowledge base and further supports the application of the
framework. During the application step, the appropriate clas-
sification model was selected to evaluate the driving safety
levels with the input of the real-time aggregated surveil-
lance data. The driving behavior safety levels in this paper
is defined as the dangerous levels of drivers’ behavior with
different probabilities of the accident occurrence, ranging
from “normal” to “dangerous” driving. It should be noted
that there are three obvious improvements compared to [23].
The first improvement is that this paper adds a step about
determining aggregation time interval to deal with the high
frequency issue of the data collection. The second improve-
ment is that this paper adds a step about searching the
optimal number of clusters, which is an important point.
The third improvement is that this paper does not include
the step about predicting speed based on the predicted traffic
state, which is the final target in [23], since the purpose of
the framework in this paper is to prediction / evaluate the
driving behavior safety levels.
In this study, three clustering algorithms including

k-means clustering, hierarchical clustering and a model-
based clustering, were employed to find the optimal number
of clusters. These three algorithms were then used to
cluster the available observations. Finally, support vector
machines (SVM), decision trees (DT) and naïve Bayes (NB)
classifiers were developed with the input of the labeled
datasets based on three clustering algorithms to evaluate driv-
ing behavior safety levels and further to test the performance
of developed models and clustering algorithms.

B. CLUSTERING ALGORITHMS
1) K-MEANS CLUSTERING

The standard k-means clustering is equivalent to known
procedures for approximately maximizing the multivariate
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normal classification likelihood when the covariance matrix
is the same for each component and proportional to the
identity matrix [23], [24]. One of the key parameters for the
input of k-means clustering is to first specify the number of
clusters. The average silhouette method is the most popular
for determining it [25].
The basic idea in the k-means clustering consists of defin-

ing clusters so that the total intra-cluster variation (known
as total within-cluster variation) is minimized. The total
within-cluster variation is popularly defined as the sum of
squared Euclidean distances between items [26], and can be
formulated as follows.

Total.D =
k∑

k=1

W(Ck) =
k∑

k=1

∑

xi∈Ck
(xi − μk)

2 (1)

where xi is a driving behavior data observation belonging to
the cluster Ck, and μk is the mean value of the observations
assigned to the cluster Ck.

The total within-cluster variation measures the
compactness (i.e., goodness) of the clustering and it
should be as small as possible. Each observation xi is
assigned to the closest cluster based on the Euclidean dis-
tance between the object and the centroid so that k-means
clustering iteratively minimizes the total within-cluster
variation (Eq. (1)).

2) HIERARCHICAL CLUSTERING

Hierarchical clustering can create a hierarchy of clusters,
and presents the hierarchy in a dendrogram to cluster
multidimensional data sets, by evaluating dissimilarities of
objects in the variables space, or similarities of variables
in the objects space [27]. Some studies, such as [5], [27],
describe in detail the hierarchical clustering methods.
Hierarchical clustering adopts either an agglomerative

technique, which is proceeded by a series of fusions of the n
objects into groups, or a divisive technique, which separates n
objects successively into finer groups, to build a hierarchy of
clusters. Since agglomerative techniques are more commonly
used [28], they are used in this paper. Agglomerative hierar-
chical clustering methods are characterized by: the distance
metric and the linkage method.
The distance metric presents the similarity between

each cluster. Euclidean distance whose equation is d =∑
xi∈Ck (xi − μk)

2 [28], is used in this paper. The link-
age methods determine how to define the distance between
two clusters. The common linkage methods include sin-
gle linkage, complete linkage, and ward linkage. After
comparing these methods and conducting initial analysis,
we found the complete linkage could best fit our dataset.
Therefore, it was used in our final analysis for hierarchical
clustering. Complete linkage refers to the longest distance
between two observations in each cluster, and its equation is
D12 = maxij(Xi,Yj) where Xi and Yj are two observations.
The distance between two clusters is the maximum distance
between an observation in one cluster and an observation in
the other cluster.

3) MODEL-BASED CLUSTERING

Unlike k-means clustering and hierarchical clustering, a
model-based clustering assumes a data model and applies
an expectation-maximization (EM) algorithm to find the
most likely model components and the number of clusters.
As a parametric method that uses the Gaussian distribu-
tion, the Gaussian mixture model (GMM) is a widely used
model-based clustering [6], [29]. Each component proba-
bility distribution in GMM corresponds to a cluster. The
problems of determining the number of clusters and of
choosing an appropriate clustering method can be recast as
statistical model choice problems and outliers are dealt with
by adding one or more components representing a different
distribution for outlying data [23].
GMM attempts to optimize the fit between the observed

data and some mathematical model using a probabilis-
tic approach. First, a specific-form mixture of Gaussians
is assumed, and the density of the Gaussian mixture
model [6] is:

f (x | θ) =
M∑

m=1

πmϕ(x|ρm, �m)

where ϕ(x|ρm, �m) is the density of a multivariate Gaussian
random variable X with mean ρm and covariance matrix �m,
and θ = (π1, . . . , πM, ρ1, . . . , ρM, �1, . . . , �M).

Second, the parameters of this model are estimated with
the use of the Expectation Maximization (EM) algorithm.
EM starts off with a random or heuristic initialization and
then iteratively uses two steps to resolve the circularity in
computation: (i) E-Step, which determines the expected prob-
ability of assignment of data points to clusters with the use
of current model parameters. (2) M-Step, which determines
the optimum model parameters of each mixture by using the
assignment probabilities as weights [30].
Note that Gaussian distribution, sometimes known as the

normal distribution, has two parameters (i.e., the mean and
the standard deviation), that we need to learn in order to fit
this equation to our data.

C. EVALUATION MODELS FOR DRIVING BEHAVIOR
SAFETY LEVELS
When the new observation comes in real time, it is diffi-
cult to use the clustering algorithm to identify the driving
behavior safety levels since the clustering models are unsu-
pervised machine learning models. Therefore, the evaluation
models based on supervised machine learning models for
driving behavior safety levels should be developed based
on the historical dataset with the clustered labels. And then
the developed evaluation models can evaluate the driving
behavior safety levels for the new observation in real time.
For this purpose, a support vector machine (SVM), a deci-
sion tree (DT) and a naïve Bayes classifier are used in
this paper as well as the parameter fine-tune of developed
models.
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1) SUPPORT VECTOR MACHINE

Support vector machine (SVM) was originally designed
based on statistical learning theory and structural risk
minimization (e.g., [31], [32]); it will be used in this
paper to classify driving behavior safety states. The SVM
models [32], [33] were developed in RStudio R©1.4.1717.,
using Package ‘e1071’ [34].

Given training vectors xi ∈ Rn, i = 1, . . . , l, in two classes
and an indicator vector y ∈ Rl such that yi ∈ {1,−1}, assum-
ing that for the crash cases yi = 1 and yi = −1 for the
non-crash cases. C-SVM [31] solves the following primal
optimization problem.

min
w,b,ξ

1

2
wTw+ C

l∑

i=1

ξi

s.t yi
(
wT∅(xi) + b

)
≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l (2)

where ∅(xi) maps xi into a higher-dimensional space and
C > 0 is the regularization parameter. Due to the possible
high dimensionality of the vector variable w, the following
dual problem is solved [32].

min
α

1

2
αTQα − eTα

s.t yTα = 0,

0 ≤ αi ≤ C, i = 1, . . . , l, (3)

where e = [1, . . . , 1]T is the vector of all ones, Q is an l
by l positive semi definite matrix, Qij ≡ yiyjK(xi, xj), and
K(xi, xj) ≡ ∅(xi)T∅(xj) is the kernel function. The optimal
w satisfies w = ∑l

i=1 yiαi∅(xi) and the decision function is

sgn
(
wT∅(x) + b

)
= sgn

(
l∑

i=1

yiαiK(xi, x) + b

)

In this paper, the two kernel functions were consid-
ered since they provide two assumptions, i.e., non-linear
relationship and linear relationship, respectively.

a) Radial Kernel: K(xi, xj) = exp(−γ |xi − xj|2)
b) Linear Kernel: K(xi, xj) = xiTxj.

2) DECISION TREE

A decision tree (DT) is a decision support algorithm that
represents nodes of the tree and helps take decisions depend-
ing upon the inputs of a node. It uses a tree-like model of
decisions and their possible consequences to perform both
classifications and regressions. A decision tree consists of
nodes (i.e., root, decision, and leaf), and branches. The nodes
and branches are composed of each tree or sub-tree. Each
root node and decision node represents features in a category
to be classified and each leaf node contains a class label.
Fig. 2 illustrates a structure of DT. The detailed knowledge
of DT is introduced in previous papers, such as [35]. In this
paper, the package ‘rpart’ [36] was used to develop the DT
in RStudio R©1.4.1717.

FIGURE 2. An example of the decision tree.

3) NAIVE BAYES CLASSIFIER

Naive Bayes classifiers [37] are a throng of classification
algorithms based on Bayes’ Theorem. Now, suppose there are
n predictors, denoted by Xi, i = 1, . . . , n. And the outcome
variable is y, coming from one of the k classes, denoted by
Cj, j = 1, . . . , k. Therefore, P(Cj|X1, . . . ,Xi, . . . ,Xn) is the
conditional probability of the observation coming from any
of the k classes. According to Bayes formula, we can know

P
(
Cj|X1, . . . ,Xi, . . . ,Xn

) = P
(
X1, . . . ,Xi, . . . ,Xn|Cj

)

P(X1, . . . ,Xi, . . . ,Xn)
(4)

We assumed that all the predictors X1, . . . ,Xi, . . . ,Xn are
independent conditioned on class Cj. Therefore, we have

P
(
Cj|X1, . . . ,Xi, . . . ,Xn

) = P
(
Cj

) ∏n
i=1 P

(
Xi|Cj

)

P(X1, . . . ,Xi, . . . ,Xn)
(5)

where P(Cj) and
∏n

i=1 P(Xi|Cj) are known as the prior and
the likelihood respectively. The prior can be estimated as
P(Cj) = nj/

∑
nj. For the likelihood, the conditional prob-

ability distributions, f (Xi|Cj) for i = 1, . . . , n, is needed.
When Xi is continuous, the normality is a common assump-
tion. When Xi is discrete, a common assumption is the
mulnomial distribution or non-parametric distribution.
In this paper, the package ‘naivebayes’, [38] in

RStudio R©1.4.1717 is used to develop the naive Bayes classi-
fier. And the kernel based density is used for the continuous
predictors.

D. EXPERIMENTAL DESIGN
The driving simulator experiment was conducted in the
Department of Transportation Planning and Engineering of
the School of Civil Engineering of the National Technical
University of Athens (NTUA), where the FOERST Driving
Simulator FPF is located (see Fig. 3). The Foerst GmbH is a
DIN ISO 9001-certified company and this specific simulator
has been manufactured by the FOERST Company in order
to serve research purposes. The driving simulator consists
of 3 LCD wide screens 40”(fullHD), a total angle view of
170 degrees, a driving position, and a support base. The
dimensions at full development are 230cm x 180cm, while
the base width is 78cm.
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FIGURE 3. FOERST Driving Simulator FPF.

FIGURE 4. Simulated rural area with the unexpected incident - donkey crossing
lanes.

FIGURE 5. The simulated rural route.

The simulated road environment is an undivided two-lane
rural road (see Fig. 4), which is a single carriageway with
length 2,1 km, width 3m, with zero gradient, and mild hor-
izontal curves (see Fig. 5). In the driving simulations, two
traffic scenarios (i.e., moderate traffic conditions and high

traffic conditions) and three distraction conditions (i.e., no
distraction, cell-phone conversation, and conversation with
passenger) were examined in a full factorial within-subject
design. It should be noted that in moderate traffic conditions,
ambient vehicles’ arrivals are drawn from a Gamma distri-
bution with mean = 12s, and variance = 6s, corresponding
to an average traffic volume Q = 300 vehicles/hour. In high
traffic conditions –ambient vehicles’ arrivals are drawn from
a Gamma distribution with mean = 6s, and variance = 3s,
corresponding to an average traffic volume of Q = 600 vehi-
cles/hour. The trials that demand conversation as a distractor
are covered by the following topics: family, origin, accom-
modation, travelling, geography, interests, hobbies, everyday
life, news, business.
During each trial of the experiment, two unexpected inci-

dents that are the sudden appearance of an animal (deer
or donkey) on the roadway were scheduled to occur at
approximately fixed points along the drive. The driving sim-
ulator provides a “Free Driving” scenario that familiarizes
the participants with the demands of an everyday drive.
After a familiarization drive and a necessary short brake,
each participant has only one chance to drive approximately
12.6 km within about 20min in total. A sample of 140 partic-
ipants with a pathological condition were examined during
approximately two years. A similar control group of another
120 participants with no known pathological conditions, of
the same age groups was found to be sufficient. Finally, the
sample of participants is a total of 260 individuals.

E. DATA AGGREGATION
The simulator records data at intervals of 33 to 50milliseconds,
including at first, 33 variables in each session. In order to
explore driving behavior safety level classification and esti-
mation, 36 variables were further aggregated and collected,
during the whole driving scenario. The variables are listed in
TABLE 1. It is noted that the crash could only happen at unex-
pected incidents. And an average of 0.65 crashes occurred
for each driver during the driving simulation.
For the purpose of determining the optimal aggregation

time interval, this paper proposed an improved cross-
validation mean square error model based on driver behavior
vectors according to [39], [40], which can estimate data
fluctuations of driving behavior at different aggregation
time intervals. The cross-validated mean square error (MSE)
seeks to determine the minimal sufficient statistics nec-
essary to capture the full information contained within a
driving behavior parameter distribution. Only considering
driving speed cannot characterize actual driving behavior
correctly enough. Therefore, this proposed cross-validated
mean square error (MSE) based on driver behavior vectors
includes all the parameters (i.e., 35 variables in TABLE 1)
related to driver characteristics and driver behavior. It is
defined as

MSEij =
K∑

k=1

(
xkij − xkij

)2
(6)
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TABLE 1. Variables description and summary statistics for analysis.

where MSEij is the cross-validated mean square error of the
of the i-th observation in the j-th aggregated group. xkij are
the parameters (i.e., 35 variables in TABLE 1), e.g., speed,
accelerations and etc., of the i-th observation in the j-th
aggregated group. And the K = 35 in Eq. (6). xkij are the
average values of the corresponding parameters, e.g., speed,
accelerations and etc., in the j-th aggregated group without
the i-th observation.
For the cross-validated mean square error in the j-th aggre-

gated group,MSEj = ∑
i MSEij/

∑
i. And the cross-validated

mean square error in the driving behavior data for each driver
at the T aggregation time interval, MSET = ∑

j MSEj/
∑
j. It

should be noted that the parameters should be standardized
firstly. In this paper, the mean standardization is applied,
which will not lose variation information of observations. It
means that the observed value of each parameter is divided
by the average value in the whole driving for each driver.
In the preliminary analysis, we chose randomly the data

of five drivers. 21 aggregation time intervals (i.e., 1s, 2s, 3s,
4s, 5s, 6s, 7s, 8s, 9s, 10s, 20s, 30s, 40s, 50s, 60s, 70s, 80s,
90s, 100s, 110s, 120s) are applied. The results are shown
in Fig. 6. It is found that the cross-validated mean square
error of the dataset gradually increases with the growth of
the aggregation time intervals, and that the improvement of
cross-validated mean square error tends slowly to be gentle.
In theory, the aggregation time interval corresponding to the
minimum cross-validated mean square error is the optimal.

FIGURE 6. The cross-validated mean square error for different aggregation time
intervals: D111, D125, D129, D141 and D142 are the driver ID.

Considering the application, 1s is determined as the aggre-
gation time interval in this paper, like [41]. The summary
statistics pf variables in the dataset are listed in TABLE 1.
There are 193,453 observations after aggregations in the
dataset. For each crash, the three observations prior to the
moment when the driver starts to take measures (i.e., braking
actions) to avoid crashes are considered as crash cases, which
means that these three observations are labeled as crashes.
The other observations are considered as non-crash cases.
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FIGURE 7. The speed of a driver (i.e., D111) during the whole driving.

FIGURE 8. Crash frequency distribution at different conditions.

It is noted that a non-crash sample were sampled randomly
for the further analysis including searching the optimizing
driving behavior safety levels, clustering and classification,
and driving behavior safety level evaluations. Finally, there
are 5423 observations in the sampling dataset, including
423 crashes and 5000 non-crashes.
Fig. 7 illustrates the speed of a driver (i.e., D111) during

the whole driving as an example. During each event, the
driver speed reduces due to the sudden appearance of the
animal (deer or donkey).

IV. RESULTS AND ANALYSES
A. PRIMARY ANALYSIS
Fig. 8 shows the crash frequency distribution at differ-
ent conditions. We can find that the crash frequency at
high traffic conditions (QH) is lower than that at mod-
erate traffic conditions (QL). The crash frequency at no
distraction conditions (NO) is higher than that at the con-
versation with passenger conditions (CONV), and both of
them are significantly higher than that at cell-phone con-
versation (MOB). These results are not consistent with our
intuitive knowledge that the traffic safety at moderate traffic
conditions and no distraction conditions are higher. However,
here the crash frequency presents the traffic safety level
of the driving behavior. Generally, it is easier for drivers

FIGURE 9. Average driving speed at different conditions.

FIGURE 10. Average Std of distance to the right road board at different conditions.

to be slack and careless when the driving environment
is good. Therefore, these results are reasonable since the
traffic safety level of the driving behavior may be higher
when the driving environment is bad (e.g., higher traffic
flow, distractions). Additionally, under the distraction con-
dition, negative impacts of the conversation with passenger
conditions (CONV) on the traffic safety level of the driv-
ing behavior are significantly more than that of cell-phone
conversation (MOB), which is consistent with our intuitive
knowledge and existing studies.
Fig. 9 shows the average driving speed at different

conditions. The average driving speed at high traffic con-
ditions (QH) is lower than that at moderate traffic condi-
tions (QL). The result of the paired T-test based on the
control of drivers and distraction conditions is t = −8.7989
(p-value <0.0001), which means that the difference is sig-
nificant and the mean of the differences is −2.55 km/h. The
average driving speed at cell-phone conversation (MOB) and
conversation with passenger conditions (CONV) are higher
than that at no distraction conditions (NO), which is rea-
sonable since the driver’s ability to perceive speed decreases
when distracted or drunk, which further will make drivers
unconsciously increase the driving speed. The paired T-test
shows that the speed difference between MOB and NO
(i.e., −3.8km/h) is statistically significant (t = −6.4668,
p-value <0.0001), and the speed difference between CONV
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FIGURE 11. Optimal number of clusters based on k-means clustering.

and NO (i.e., −0.9km/h) is also statistically significant
(t = −2.8909, p-value = 0.004).
Fig. 10 shows the average standard deviation of distance to

the right road board at different conditions, which means the
amplitude fluctuation of the vehicle swinging from side to
side. When drivers are distracted, the amplitude fluctuation is
slightly bigger than no distraction conditions (NO) since the
average standard deviation of distance to the right road board
at distraction conditions (CONV, MOB) are bigger than that
at no distraction conditions (NO). However, the paired T-
test results show that the difference is not quite statistically
significant (CONV and NO: t = 1.5679, p-value = 0.1181;
MOB and NO: t = −2.0172, p-value = 0.046). Additionally,
when the traffic flow is higher, the amplitude fluctuation
of the vehicle swinging is lower (paired T-test results:
t = −12.274, p-value < 0.0001) since drivers are more
careful.

B. OPTIMIZING DRIVING BEHAVIOR SAFETY LEVELS
K-means clustering, hierarchical clustering and a model-
based approach were used to identify the optimal levels of
driving behavior safety for the non-crash cases. Fig. 11 illus-
trates the optimal number of clusters based on the average
silhouette method. The bigger the average silhouette method
is, the better the number of clusters is. Therefore, the optimal
number of driving behavior safety levels for non-crash cases
is two. Totally, the optimal number is three levels including
the crash level.
Fig. 12 shows the cluster dendrogram of hierarchical

cluster analysis. The Ward’s minimum variance method to
perform agglomerative clustering. In the dendrogram, each
leaf corresponds to one observation, and we can see the
hierarchy of clusters. As we move up the tree, observations
that are similar to each other are combined into branches.
However, we can determine the number of clusters within the
dendrogram and cut the dendrogram at a certain tree height to
separate the data into different groups. The optimal number

FIGURE 12. Cluster dendrogram of hierarchical cluster analysis.

FIGURE 13. Optimal number of clusters based on GMM.

of state levels of driving behavior safety for non-crash cases
is found to be two. The red rectangle borders show the three
clusters in Fig. 12. Similarly, the optimal number is three
levels including the crash level.
Bayesian Information Criterion (BIC) [23] is an important

index to find the number of clusters by selecting the best
clustering model and it uses the likelihood and a penalty term
to guard against overfitting. The bigger the BIC is, the better
the number of clusters is. Fig. 13 shows the optimal number
of clusters based on GMM. Therefore, the optimal number
of driving behavior safety levels for non-crash cases is also
two based on GMM, where the BIC, which is −1840350,
is biggest.

C. CLUSTERING AND CLASSIFICATION
After defining the optimal driving behavior safety levels, the
non-crash observations in the dataset were further clustered
and classified into different clusters. K-means clustering,
hierarchical clustering and a model-based approach were
used for this purpose, as presented in Fig. 14, Fig. 15,
and Fig. 16. Three variables, namely average speed, average
headway and average TTC, were selected as examples. It is
interesting to note that the resulting sets of clusters based on
these three clustering algorithms have similar geometries.
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FIGURE 14. Different clustering scenarios based on k-means clustering.

FIGURE 15. Different clustering scenarios based on hierarchical clustering.

T-SNE [7] was used to visualize the clustering algorithms.
It is extremely useful for visualizing high-dimensional
data [42], and it has a dimensionality reduction method to
visualize data embedded in a lower number of dimensions,
to see patterns and trends in the data. It can deal with more
complex patterns of Gaussian clusters in multidimensional
space compared to Principal Component Analysis. T-SNE
results are shown in Fig. 17, Fig. 18 and Fig. 19. These

FIGURE 16. Different clustering scenarios based on GMM.

FIGURE 17. Visualization of clustering results based on k-means: elbow method.

visualizations show that driving behavior is well clustered
into several levels.
In order to identify the best clustering algorithm, four

widely used indices, i.e., the within clusters sum of squares,
the average silhouette width, Dunn index and Calinski-
Harabasz index, were used. The within clusters sum of
squares is a measurement showing how closely related
objects are in a cluster. The smaller the value, the more
closely related objects are within the cluster. The average
silhouette width is a measurement considering how closely
related objects are within the cluster and how clusters are
separated from each other. The silhouette value ranges from
0 to 1, and a value closer to 1 suggests that the data is better
clustered [43]. The Dunn index [44] is an internal evaluation
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FIGURE 18. Visualization of clustering results based on hierarchical clustering.

FIGURE 19. Visualization of clustering results based on GMM.

TABLE 2. Comparing three clustering algorithms.

scheme, where the result is the ratio of minimum separation
and maximum diameter for all clusters based on the clus-
tered data itself. The higher the Dunn index value is, the
better the clustering is. The Calinski-Harabasz index [45]
also known as the Variance Ratio Criterion, is the ratio of
the sum of between-clusters dispersion and of inter-cluster
dispersion for all clusters. The higher the Calinski-Harabasz
index is, the better the clustering performance is. The results
are listed in TABLE 2.
The indices show that the k-means algorithm is the best

since its within clusters sum of squares is the smallest and
its Calinski-Harabasz index is the biggest. The Hierarchical

FIGURE 20. Boxplot of average speeds.

cluster is the best since its average silhouette width and
Dunn index are the biggest among the three. Additionally,
the difference of indictor values of k-means algorithm and
GMM are not significant, respectivelly.

D. DRIVING BEHAVIOR SAFETY LEVEL EVALUATIONS
After clustering the driving behavior safety levels for non-
crash observations, the crash observations are added into the
dataset and labelled as “Cluster 3”. Since most of crashes in
the experiment are to collide the suddenly appeared animal
(deer or donkey), driving at the higher speed is more dif-
ficult to stop before the animal to avoid accidents, which
is more dangerous. Therefore, we use the driving speed
of the clusters to identify their order of driving behavior
safety levels. The higher the driving speed is, the more dan-
gerous the safety level is. Fig. 20 shows the boxplot of
the average speed of the three clusters and cluster 3 is the
crash group. Therefore, we can label them as “Cluster 1”,
“Cluster 2” and “Cluster 3” to present “normal” driving,
“low-risk” driving, and “high-risk” driving, respectively. It
is reasonable since their frequencies are 3353, 1647, and
423, respectively. Importantly, classification methods were
developed to evaluate the crash risk of driving behavior for
the new observations and further identify the safety levels in
real time. For this purpose, the widely used support vector
machine (SVM), decision tree (DT) and naïve Bayes (NB)
classifier were used.
The original dataset with clustered labels was divided ran-

domly with the help of the stratified sampling technique
into training data and test data, with 4338 observations (i.e.,
80.0%) and 1085 observations (i.e., 20.0%), respectively. It
means that about 80.0% of observations were used to train
the SVM models, DT models and NB classifiers whereas
the other 20.0% of observations were employed to test these
models. Firstly, 80 SVM models, with different key param-
eters (the kernel function, the gamma and the cost), were
developed to identify the best SVM model. Eight different
gammas (i.e., 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10) and five
different costs (i.e., 0.01, 0.01, 1, 10, and 100) were consid-
ered for each of two kernel functions (i.e., radial and linear).
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TABLE 3. Results of SVM models.

TABLE 4. The evaluated levels of three models in K-means clustering scenario.

TABLE 5. The evaluated levels of three models in hierarchical clustering scenario.

Finally, the best model was identified for different clustering
algorithms. TABLE 3. lists the results of SVM models. The
total accuracy of the three best SVM models are quite high
(i.e., > 93.0%). It means that the developed SVM models
can well identify the driving behavior safety levels in the
data in the scenarios based on the three clustering methods.
The test data was further used to test the developed

SVM models and decision trees. The results are listed
in TABLE 4, TABLE 5, and TABLE 6. The total accu-
racy of SVM model in the k-means clustering scenario is
(659 + 304 + 71)/1085 = 95.3%, and the percentages of
true predictions for each traffic safety levels are higher than
70.0%. Similarly, the total accuracy of SVM models in hier-
archical clustering and GMM scenario are 93.7% and 95.2%,
respectively. The total accuracy of decision trees in k-means
clustering scenario, hierarchical clustering and GMM sce-
nario are 99.6%, 96.7% and 99.6%, respectively. Besides,
the total accuracy of naïve Bayes classifiers in k-means clus-
tering scenario, hierarchical clustering and GMM scenario

TABLE 6. The evaluated levels of three models tree GMM scenario.

are 84.3%, 79.6% and 84.5%, respectively. Therefore, it can
be found that the decision trees perform the best in these
three clustering scenarios and the SVM models perform the
second best. For each model, there are no significant dif-
ferences between the accuracy from the training data and
the test data in the three clustering algorithms. For instance,
the accuracy from the training data and the test data are
94.6% and 95.3% (in k-means clustering scenario), 93.6%
and 93.7% (in Hierarchical clustering scenario), 93.8% and
95.2% (in GMM scenario), respectively. This indicates that
the developed SVM model, DT models and NB classifiers
are reasonable and well developed. Besides, the safety levels
of driving behaviors are all well identified. Importantly, the
total accuracy in k-means clustering scenario is the high-
est among the three scenarios and it is slightly higher than
that in GMM scenario. By ignoring the performance differ-
ence between the developed models, we can conclude that
the k-means clustering can slightly improve the clustering
performance of the safety level of driving behaviors. This
can also reflect that the optimal safety level / cluster is
three. Specially, the combination of k-means clustering and
decision trees is the best.

E. DRIVING BEHAVIOR SAFETY LEVEL ANALYSIS
Based on the clustered results, we can further analysis the
factors with the help of the boxplot. Fig. 20 shows the
boxplot of the speed for each cluster. The speed of cluster 3
(i.e., “high-risk” driving) is the highest and the speeds of
cluster 1 (i.e., “normal” driving) is the lowest. Therefore, it
is important to drive at the reasonable speed in rural area
since it is difficult to stop when sudden actions (e.g., animal,
unexpected obstacles, walkers, cyclers) appear.
Fig. 21 and Fig. 22 show the boxplot of standard deviation

of direction angle of the vehicle and the boxplot of standard
deviation of steering wheel position, and they present the
swing scope of vehicle head. These standard deviation values
are not big since they are calculated based on the observa-
tions in 1s. We can find that the swing scopes of cluster 2
and cluster 3 are bigger than the cluster 1 (i.e., “normal”
driving). It is reasonable since the greater swing scopes of
vehicle head when moving is easy to cause sideslips, drifts,
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FIGURE 21. Boxplot of std of direction angle of the vehicle.

FIGURE 22. Boxplot of std of steering wheel position.

FIGURE 23. Boxplot of std of distance to the right road board.

and even rollover accidents and makes drivers and passen-
gers uncomfortable. Fig. 23 and Fig. 24 show the boxplot
of standard deviation of distance to the right road board
and boxplot of standard deviation of lateral accelerations,
respectively. Similarly, these two factors present the fluctua-
tions of lateral positions and accelerations, and their values
of cluster 2 and cluster 3 are slightly bigger than the clus-
ter 1 (i.e., “normal” driving). It is also reasonable since a
safe driving behavior should have small fluctuations at the
lateral direction.

F. IMPACT OF UNEXPECTED INCIDENTS
In order to explore the impact of unexpected incidents in
the driving simulation experiments on drivers, the driver
behavior data during no events and events are extracted.
The paired T-test is used to further test the difference of

FIGURE 24. Boxplot of std of lateral accelerations.

TABLE 7. Paired T-test results of the driver behavior between with and without
events.

the driver behavior between with and without events and the
result is listed in TABLE 7.
Initially, when the unexpected incidents that are the sudden

appearance of an animal (deer or donkey) happens, the driver
will taking measures, e.g., releasing gas pedals (i.e., mean of
the AverageAcc differences = −19.67), increasing braking
actions (i.e., mean of the AverageBrake differences = 37.57),
reducing motor revolutions (i.e., mean of the AverageRpm
differences = −631.44) and reducing driving speed (i.e.,
mean of the AverageSpeed differences = −7.48 km/h) which
increases the standard deviation of speeds (i.e., mean of
the StdevSpeed differences = 5.63 km/h) and longitudi-
nal acceleration. Besides, the (time and distance) headway
increases (i.e., mean of the differences: AverageHWay,
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88.53s; AverageThead, 44.99s; AverageTTL, 26.21s) since
the speed drop increases the distance to the followed vehicle.
Additionally, compared with no event, the lateral acceleration
during the events has a slightly improvement and the longitu-
dinal acceleration during the events has a decrease. With the
help of paired T-test, we can also find that most of the driv-
ing behavior variable have the statistically significant change
(i.e., P.value < 0.0001). However, the change of the lat-
eral position (AverageDleft, LateralPosition, AverageRspur)
is not significant. The reason may be that drivers can more
easily control the vehicle at the lateral orientation when the
speed is lower.

V. CONCLUSION
Driving simulators and naturalistic driving studies are often
used to understand driving behavior characteristics. It is
essential to evaluate the traffic safety of driving behavior
in real time, which is helpful to trigger interventions of
Advanced Driver Assistance Systems (ADAS) to ensure the
driving safety. There are four contributions in this paper.
Firstly, this paper proposed a framework of driving behavior
safety level classification and evaluation in real time, which
is helpful for the further research in the driver behave safety
study. Secondly, this paper proposed an improved cross-
validation mean square error model based on driver behavior
vectors to find the optimal aggregation time interval, which
is 1s. Thirdly, the findings of this paper proved that driv-
ing safety could be clustered into several levels: ideally
three. They can be labelled as “normal” driving, “low-risk”
driving, and “high-risk” driving. Fourthly, after comparing k-
means clustering, hierarchical clustering, and a model-based
clustering (i.e., GMM), k-means clustering and hierarchical
clustering gave the optimal number of clusters, and the com-
bination of developed decision trees and k-means clustering
outperformed the other combined algorithms. This further
supports the hypothesis that the driving data is well clustered
in various levels, and that models could be developed for
safety level classifications. Additionally, this paper further
analyzed and compared the driver behavior in different traf-
fic flow scenarios and distraction scenarios. The factors were
also analyzed in the driving behavior safety level and the
impact of the unexpected incidents in the driving simulation
experiment was also discussed.
In the future, the finding of this paper can help to design

Advanced Driver Assistance Systems (ADAS) and active
traffic management systems. Once the driver behavior is
identified as the “high-risk” driving, some interventions will
be triggered to warn the driver. Besides, three safety lev-
els should be applied in these systems. Additionally, this
paper proposed the overall framework to conduct the study
of the real-time driving behavior safety level classification
and evaluation.
Still, this research does not come without limitations. For

instance, the dataset did not include existing variables on
drivers’ demographics and attitudes and perceptions. These
will be included in the next stage, to further improve

the clustering and classification. Future work should also
consider more different driving scenarios.
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