
Real time evolution with neural-network quantum states
Irene López Gutiérrez1,2 and Christian B. Mendl1,2

1Technische Universität München, Department of Informatics and Institute for Advanced Study, Boltzmannstraße 3, 85748 Garching,

Germany
2Technische Universität Dresden, Institute of Scientific Computing, Zellescher Weg 12-14, 01069 Dresden, Germany

23rd December 2021

A promising application of neural-network
quantum states is to describe the time dynam-
ics of many-body quantum systems. To realize
this idea, we employ neural-network quantum
states to approximate the implicit midpoint
rule method, which preserves the symplectic
form of Hamiltonian dynamics. We ensure
that our complex-valued neural networks are
holomorphic functions, and exploit this prop-
erty to efficiently compute gradients. Appli-
cation to the transverse-field Ising model on
a one- and two-dimensional lattice exhibits an
accuracy comparable to the stochastic configu-
ration method proposed in [Carleo and Troyer,
Science 355, 602–606 (2017)], but does not re-
quire computing the (pseudo-)inverse of a ma-
trix.

1 Introduction
The main difficulty in simulating strongly interacting
many-body quantum systems on classical computers
stems from the curse of dimensionality. However, a
closer examination reveals that the manifold of phys-
ical quantum many-body states occupies an exponen-
tially small volume in the Hilbert space [23]. The
challenge, then, is to find an appropriate variational
ansatz which has few degrees of freedom while faith-
fully representing physical states.

The recent successes of artificial neural network
techniques have entailed a large interest in apply-
ing them to quantum many-body systems, in particu-
lar as ansatz for the wavefunction of (strongly corre-
lated) quantum systems [5, 13, 21, 22]. Such neural-
network quantum states have the principal capability
to describe systems hosting chiral topological phases
[8, 13, 17], or to handle large entanglement [11, 12, 19].
In view of real time evolution, this could turn out to
be a considerable advantage compared to established
tensor network methods [10, 26, 27, 33, 34], since the
increase of entanglement with time demands an ex-
ponential increase of virtual bond dimensions, thus
limiting the applicability of tensor network methods
to relatively short time intervals [1, 4].

Irene López Gutiérrez: irene.lopez@tum.de
Christian B. Mendl: christian.mendl@tum.de

While the favorable capabilities of neural-network
quantum states have been investigated theoretically
[12, 19], demonstrations of their practical feasibility
for quantum time evolution are still rather sparse (but
see [5, 7, 24]). The canonical Dirac-Frenkel time-
dependent variational principle can be regarded as
projecting the time step vector onto the tangent space
of the variational manifold [14]. Time-dependent vari-
ational Monte Carlo (tdVMC) [5, 6, 29] combines the
Dirac-Frenkel principle with Monte Carlo sampling
and exploits the locality of typical quantum Hamilto-
nians. This involves the application of the (pseudo-)
inverse of a covariance matrix to evolve the variational
parameters in time. However, we find that in practice
tdVMC can be rather sensitive to the chosen cutoff
tolerance for the pseudo-inverse, or demand a pro-
hibitively small time step for “deep” neural-network
quantum states. Here we propose and explore an al-
ternative approach, namely directly approximating a
time step of a conventional ordinary differential equa-
tion (ODE) method by “training” the neural-network
quantum state at the next time step using (variations
of) stochastic gradient descent.

2 Time evolution method
Our goal is to solve the time-dependent Schrödinger
equation

i
∂ψ

∂t
= Hψ. (1)

We denote the variational ansatz by ψ[θ], where θ ∈
CK is a complex vector containing all variational pa-
rameters, which are assumed to be time-dependent.
From this perspective, it is possible to find the gra-
dients of ψ with respect to θ and use the chain rule
together with tangent space projections to derive an
ODE for θ. In stochastic reconfiguration (SR) [5, 6],
which is based on the Dirac-Frenkel variational prin-
ciple, the final equation to be solved reads

Sθ̇ = −iF, (2)

with the covariance matrix

Sj,k = 〈O∗j ;Ok〉 (3)

and force vector

Fj = 〈Eloc;O∗j 〉, (4)

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

91
2.

08
83

1v
4

 [
co

nd
-m

at
.d

is
-n

n]
 1

2
Ja

n
20

22

https://quantum-journal.org/?s=Real%20time%20evolution%20with%20neural-network%20quantum%20states&reason=title-click
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
mailto:irene.lopez@tum.de
mailto:christian.mendl@tum.de

where 〈A;B〉 = 〈AB〉−〈A〉〈B〉 is the connected corre-
lation function. The brackets denote the Monte Carlo
average over samples drawn from the probability dis-
tribution |ψ[θ]|2, since for large system sizes it is not
possible to consider the full wavefunction. For each
sample σ,

Oj(σ) = ∂θj
log(ψ[θ](σ)), (5)

Eloc(σ) = (Hψ[θ])(σ)
ψ[θ](σ) . (6)

The covariance matrix S is almost always effectively
singular, which means it is not possible to exactly
solve Eq. (2). Instead, the best update for the pa-
rameters should be found by minimising ‖Sθ̇ + iF‖.
One way of achieving this is by means of the Moore-
Penrose pseudo-inverse. However, finding the appro-
priate pseudo-inverse requires choosing the right cut-
off for small singular values, which can be rather chal-
lenging, specially for the real-time evolution. Krylov
subspace methods, such as the conjugate gradient
method or the MINRES algorithm, avoid this sensitiv-
ity problem by iteratively approximating the solution
of the linear system, and have the added advantage of
having low memory requirements. Their convergence
to the optimal solution, however, is not guaranteed
[16, 20]. Further note that Eq. (2) has dimension K
(number of variational parameters), which limits the
feasible Ansätze in practice. Recently, a regulariza-
tion scheme has been developed [25] which avoids is-
sues associated with the pseudo-inverse; nevertheless,
this scheme still requires to diagonalize S, incurring
an O(K3) computational cost. In general, the sen-
sitivity of Eq. (2) with respect to S might require a
very large number of samples.

Here we propose a different approach, which fits
more directly to the paradigm of neural network train-
ing: for each time step ∆t, we optimize the network
parameters to minimize the error∥∥ψ[θn+1]− Φ∆t (ψ[θn])

∥∥ (7)

with respect to θn+1, where Φ∆t is the discrete flow of
a numerical ODE method applied to the Schrödinger
equation. We will use the implicit midpoint method
here. For an ODE y′(t) = f(t, y(t)) and a time-step
∆t, this method is defined by

yn+1 = yn + ∆tf
(
tn + ∆t

2 ,
1
2 (yn + yn+1)

)
. (8)

In the specific case of the Schrödinger equation, this
leads to (cf. the Cayley transform)

ψ[θn+1] ≈ ψ[θn]− i∆tH
(
ψ[θn+1] + ψ[θn]

2

)
. (9)

The implicit midpoint method has two important fa-
vorable properties: firstly, it preserves the symplectic
form of Hamiltonian dynamics [14], and secondly, it

does not contain intermediate quantities that would
complicate the network optimization.

In the case of larger systems, where sampling be-
comes necessary, we minimize the following cost func-
tion for a single midpoint rule time step:

C(θn+1) =
N∑
j=1

∣∣∣((I + i∆t
2 H

)
ψ[θn+1]

−
(
I − i∆t

2 H
)
ψ[θn]

)(
σ(j))∣∣∣2, (10)

with the σ(j), j = 1, . . . , N a batch of input config-
urations, and the network parameters at the current
time point, θn, regarded as fixed. To be specific, we
consider spin variables as input in the following, and
denote the system size by L, i.e., the quantum Hilbert
space dimension (number of possible spin configura-
tions) is 2L. The cost function can be compactly rep-
resented in least squares form as

C(θ) = ‖Aψ[θ]− b‖2 , (11)

with A = CN×2L

the (sparse) submatrix of I + i∆t
2 H

containing the rows corresponding to the spin config-
urations σ(j), and the vector b ∈ CN with entries

bj =
((
I − i∆t

2 H
)
ψ[θn]

) (
σ(j)). (12)

Assuming that ψ[θ] is a holomorphic function of the
parameters θ and following the derivation in appendix
A leads to

∂C(θ)
∂θ`

=
〈
Aψ[θ]− b

∣∣∣A∂ψ[θ]
∂θ`

〉
. (13)

Note that since C(θ) is not holomorphic, the par-
tial derivative on the left side of this expression is
a Wirtinger derivative.

Appendix D provides a geometrical perspective on
the SR and implicit midpoint methods.

3 Application to the Ising chain
The neural-network architecture proposed as a wave-
function ansatz in [5] is the restricted Boltzmann ma-
chine (RBM). It has been shown to represent the
ground state of various Hamiltonians with high ac-
curacy [3]. As visualized in Fig. 1a, a RBM consists
of two layers of neurons, referred to as the ‘visible’ and
‘hidden’ layers, which are connected with one another
but have no intra-layer connections. The input of the
visible layer is a specific spin configuration σ. From
this architecture one obtains a variational ansatz for
the wavefunction of the system

ψ(σ) =
∑
{hi}

e
∑

j
ajσj+

∑
i
bihi+

∑
i,j
wijhiσj , (14)

where aj , bi and wij are the network parameters, and
hi are the auxiliary spin variables which only take the

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 2

σ1 σ2 σL

h1 h2 h3 hM

(a) Restricted Boltzmann machine architecture

0.0 0.2 0.4 0.6 0.8 1.0
time

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

1
|

|
ex

ac
t

|

Our method
Exact midpoint
SR
SR (2)

(b) Time evolution error

Figure 1: (a) Schematic diagram of a restricted Boltzmann
machine showing the visible (orange) and hidden (blue) lay-
ers and the connections between the neurons. (b) Error in
the time evolution performed using a RBM with 80 hidden
units (1700 complex parameters in total), time step 0.01
and 50,000 uniformly drawn samples per time step. For
comparison, SR and SR (2) show the stochastic reconfigura-
tion method proposed in [5] with two different pseudo-inverse
thresholds.

values ±1. Due to the sumation over hi in Eq. (14),
it is possible to trace out the hidden spin variables:

ψ(σ) = e
∑

j
ajσj

∏
i

2cosh
(
bi +

∑
j

wijσj

)
. (15)

In this section, we apply the RMB ansatz to the
one-dimensional transverse-field Ising model, which
consists of a chain of spins that interact with their
nearest neighbors and are subject to an external mag-
netic field, h. Its Hamiltonian for general lattice di-
mension is given by

HTFI = −J
∑
〈i,j〉

σzi σ
z
j − h

∑
i

σxi . (16)

Such a system undergoes a phase transition from the
ferromagnetic to the paramagnetic regime at h = J
in one dimension [30] and at h/J = 3.04438(2) in two
dimensions [2]. In the following, we set the coupling
constant J to 1.

We consider a chain of length L = 20, which is
small enough to compute the exact time evolution as a
reference. For the training we use the Adam optimizer

and choose the recommended hyperparameters from
Ref. [18].

Fig. 1b shows a comparison between the error ob-
tained with stochastic reconfiguration and the error
of our method. The time evolution labeled SR was
computed with a pseudo-inverse threshold of 10−10,
while for SR(2) a threshold of 10−9 was used. The im-
portance and sensitivity of this threshold is reflected
in the difference in the final error. We also plot the
contribution to the error by the midpoint method.
Even without a finely tuned optimization, our method
yields comparable results to stochastic reconfigura-
tion with an optimal pseudo-inverse cut-off. The ad-
ditional error compared to the exact midpoint inte-
gration hints towards a lack of expressibility resulting
from the RBM ansatz.

Since we are interested in physically realistic states,
the initial state was found by performing a Hamilto-
nian quench with respect to the field strength h. We
first optimize the network parameters to represent the
ground state for h = 1.5 and then change h to 0.75
for the real time evolution. As a measure of the accu-
racy of the ground state, the deviation from the exact
energy is |(E[θ] − E0)/E0| ≈ 0.051, where E0 is the
exact energy found by diagonalising the Hamiltonian
and E[θ] is the energy of the quantum neural network
state.

The training was performed on a single CPU and
64 GB memory, using multi-threading on 28 cores.
We have implemented the neural network architec-
tures and optimization part of the algorithm in a cus-
tom C code, with a Python interface to schedule and
evaluate the runs. In this setup we find that a single
optimization step of the RBM network with 20 lattice
sites and 50,000 samples takes approximately 3.6s.

4 Application to the Ising model on a
square lattice
To demonstrate the flexibility of our method we
change the neural network architecture and consider
the time evolution governed by the two-dimensional

σ

CNN(σ)

Figure 2: Schematic diagram of a convolutional neural net-
work.

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 3

10 10

10 7

10 4

10 1

1
|

(t)
|

ex
ac

t(t
)|

h = 2hc

10 10

10 7

10 4

10 1
h = hc

10 10

10 7

10 4

10 1
h = hc/10

CNN
Midpoint

0 1 2 3 4
time (t = 10 3)

0.94

0.96

0.98

1.00

x

0 1 2 3 4
time (t = 4 × 10 3)

0.6

0.8

1.0

0 1 2 3 4
time (t = 4 × 10 3)

0.0

0.5

1.0 CNN
Exact

Figure 3: Overlap error (top row) and transverse magnetization (bottom row) of the real time evolution governed by the Ising
Hamiltonian (16) on a 3 × 3 lattice after a quench of h. Each column corresponds to a different value of h after the quench,
starting from “infinite” h. We used 500 uniformly drawn samples for each individual optimization step of our method (CNN).

Ising model on a L × L lattice with periodic bound-
ary conditions, setting L = 3 in the following. As an
ansatz, we directly use the output of a convolutional
neural network,

ψ(σ) = CNN(σ) (17)

as shown in Fig. 2. Specifically, the network ar-
chitecture consists of a convolutional layer with five
complex-valued 2 × 2 filters and periodic boundary
conditions, an intermediate dense layer with 10 neu-
rons, and a single output. This correspond to 496
complex parameters in total. For the activation func-
tions, we found the polynomial functions described in
Ref. [25] to achieve errors several orders of magnitude
smaller compared to other more commonly used acti-
vation functions, such as ReLUs or sigmoid functions.
Specifically, we use

σ(z) = 1
2z

2 − 1
12z

4 + 1
45z

6 (18)

for the convolutional layer, and

σ(z) = z − 1
3z

3 + 2
15z

5 (19)

for subsequent layers.
We perform three different Hamiltonian quenches,

from “infinite” h to h = 2hc, hc and hc/10, where
hc is the critical point at which the system under-
goes a phase transition. Here “infinite” h is equiva-
lent to retaining only the second term in the Hamil-
tonian (16), such that the corresponding ground state

is the paramagnetic state ψ0 =
∏L
j=1 |+〉j with |+〉 =

1√
2 (|0〉+|1〉). We are able to precisely represent ψ0 us-

ing our network ansatz, such that the relative energy
error is on the order of 10−11.

The top row in Fig. 3 shows the overlap error with
respect to the exact wavefunction as a function of

time, as well as the error resulting from a plain mid-
point integration. Each time step was optimized using
the same learning rate and number of iterations, but
a more careful optimization could further lower the
error. The bottom row of Fig. 3 shows the evolution
of the transverse magnetization, based on our CNN
ansatz and the numerically exact curve as reference.
In agreement with Ref. [9], we find quenches to the
critical point to be the hardest to optimize.

5 Conclusion

We have demonstrated that established methods for
neural network optimization can be employed to de-
scribe the real time evolution of quantum wavefunc-
tions. One additional advantage of this method, dif-
ferent from SR, is that it allows for the neural network
architecture to be changed on the fly, which could be
useful for capturing the growing complexity of the sys-
tem as time progresses.

Taking full advantage of advanced machine learning
techniques could further improve the results presented
here, e.g., using deeper network architectures with
batch normalization and residual blocks [28]. In this
work, the network parameters were optimised with-
out any restrictions, but imposing symmetries or a
certain structure, especially to the CNN filters, could
accelerate and improve the optimization.

Acknowledgments We thank Jan Budich and
Lorenzo Pastori for useful discussions, and the Mu-
nich Center for Quantum Science and Technology for
support.

Note: During the preparation of this manuscript we
became aware of related work by Markus Schmitt and
Markus Heyl [25], which appeared simultaneously on
arXiv.

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 4

References
[1] V. Alba and P. Calabrese. Entanglement and

thermodynamics after a quantum quench in in-
tegrable systems. PNAS, 114:7947–7951, 2017.
DOI: 10.1073/pnas.1703516114.

[2] H. W. J. Blöte and Y. Deng. Cluster Monte Carlo
simulation of the transverse Ising model. Phys.
Rev. E, 66:066110, 2002. DOI: 10.1103/Phys-
RevE.66.066110.

[3] A. Borin and D. A. Abanin. Approximating
power of machine-learning ansatz for quantum
many-body states. Phys. Rev. B, 101, 2020. DOI:
10.1103/PhysRevB.101.195141.

[4] P. Calabrese and J. Cardy. Evolution of entan-
glement entropy in one-dimensional systems. J.
Stat. Mech.: Theory Exp., 2005:P04010, 2005.
DOI: 10.1088/1742-5468/2005/04/p04010.

[5] G. Carleo and M. Troyer. Solving the quan-
tum many-body problem with artificial neural
networks. Science, 355:602–606, 2017. DOI:
10.1126/science.aag2302.

[6] G. Carleo, F. Becca, M. Schiró, and M. Fabrizio.
Localization and glassy dynamics of many-body
quantum systems. Sci. Rep., 2:243, 2012. DOI:
10.1038/srep00243.

[7] G. Carleo, F. Becca, L. Sanchez-Palencia,
S. Sorella, and M. Fabrizio. Light-cone ef-
fect and supersonic correlations in one- and
two-dimensional bosonic superfluids. Phys.
Rev. A, 89:031602, 2014. DOI: 10.1103/Phys-
RevA.89.031602.

[8] S. R. Clark. Unifying neural-network quantum
states and correlator product states via tensor
networks. J. Phys. A Math. Theor., 51:135301,
2018. DOI: 10.1088/1751-8121/aaaaf2.

[9] S. Czischek, M. Gärttner, and T. Gasenzer.
Quenches near Ising quantum criticality as a
challenge for artificial neural networks. Phys.
Rev. B, 98:024311, 2018. DOI: 10.1103/Phys-
RevB.98.024311.

[10] A. J. Daley, C. Kollath, U. Schollwöck,
and G. Vidal. Time-dependent density-
matrix renormalization-group using adaptive ef-
fective Hilbert spaces. J. Stat. Mech. Theory
Exp., 2004:P04005, 2004. DOI: 10.1088/1742-
5468/2004/04/p04005.

[11] D. Deng, X. Li, and S. Das Sarma. Quantum
entanglement in neural network states. Phys.
Rev. X, 7:021021, 2017. DOI: 10.1103/Phys-
RevX.7.021021.

[12] X. Gao and L.-M. Duan. Efficient representation
of quantum many-body states with deep neural
networks. Nat. Commun., 8:662, 2017. DOI:
10.1038/s41467-017-00705-2.

[13] I. Glasser, N. Pancotti, M. August, I. D. Ro-
driguez, and J. I. Cirac. Neural-network quan-
tum states, string-bond states, and chiral topo-

logical states. Phys. Rev. X, 8:011006, 2018. DOI:
10.1103/PhysRevX.8.011006.

[14] E. Hairer, C. Lubich, and G. Wanner. Geomet-
ric Numerical Integration. Structure-Preserving
Algorithms for Ordinary Differential Equations.
Springer-Verlag Berlin Heidelberg, 2006. DOI:
10.1007/3-540-30666-8.

[15] A. Hirose. Complex-Valued Neural Networks.
Springer-Verlag Berlin Heidelberg, 2012. DOI:
10.1007/978-3-642-27632-3.

[16] M. Hochbruck and C. Lubich. Error analy-
sis of Krylov methods in a nutshell. SIAM
J. Sci. Comput., 19(2):695–701, 1998. DOI:
10.1137/S1064827595290450.

[17] R. Kaubruegger, L. Pastori, and J. C. Budich.
Chiral topological phases from artificial neural
networks. Phys. Rev. B, 97:195136, 2018. DOI:
10.1103/PhysRevB.97.195136.

[18] D. P. Kingma and J. Ba. Adam: A method
for stochastic optimization. In 3rd International
Conference for Learning Representations, San
Diego, 2015.

[19] Y. Levine, O. Sharir, N. Cohen, and A. Shashua.
Quantum entanglement in deep learning archi-
tectures. Phys. Rev. Lett., 122:065301, 2019.
DOI: 10.1103/PhysRevLett.122.065301.

[20] J. Liesen and P. Tichý. Convergence anal-
ysis of Krylov subspace methods. GAMM-
Mitteilungen, 27:153–173, 2004. DOI:
10.1002/gamm.201490008.

[21] Y. Nomura, A. S. Darmawan, Y. Yamaji, and
M. Imada. Restricted Boltzmann machine learn-
ing for solving strongly correlated quantum sys-
tems. Phys. Rev. B, 96:205152, 2017. DOI:
10.1103/PhysRevB.96.205152.

[22] L. Pastori, R. Kaubruegger, and J. C. Budich.
Generalized transfer matrix states from artificial
neural networks. Phys. Rev. B, 99:165123, 2019.
DOI: 10.1103/PhysRevB.99.165123.

[23] D. Poulin, A. Qarry, R. Somma, and F. Ver-
straete. Quantum simulation of time-dependent
Hamiltonians and the convenient illusion of
Hilbert space. Phys. Rev. Lett., 106:170501, 2011.
DOI: 10.1103/PhysRevLett.106.170501.

[24] M. Schmitt and M. Heyl. Quantum dynam-
ics in transverse-field Ising models from classi-
cal networks. SciPost Phys., 4:013, 2018. DOI:
10.21468/SciPostPhys.4.2.013.

[25] M. Schmitt and M. Heyl. Quantum many-body
dynamics in two dimensions with artificial neu-
ral networks. Phys. Rev. Lett., 125:100503, 2020.
DOI: 10.1103/PhysRevLett.125.100503.

[26] U. Schollwöck. The density-matrix renormaliza-
tion group. Rev. Mod. Phys., 77:259–315, 2005.
DOI: 10.1103/RevModPhys.77.259.

[27] U. Schollwöck. The density-matrix renormal-
ization group in the age of matrix product

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 5

https://doi.org/10.1073/pnas.1703516114
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevB.101.195141
https://doi.org/10.1103/PhysRevB.101.195141
https://doi.org/10.1088/1742-5468/2005/04/p04010
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/srep00243
https://doi.org/10.1038/srep00243
https://doi.org/10.1103/PhysRevA.89.031602
https://doi.org/10.1103/PhysRevA.89.031602
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1088/1742-5468/2004/04/p04005
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/3-540-30666-8
https://doi.org/10.1007/978-3-642-27632-3
https://doi.org/10.1007/978-3-642-27632-3
https://doi.org/10.1137/S1064827595290450
https://doi.org/10.1137/S1064827595290450
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1103/PhysRevB.97.195136
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1002/gamm.201490008
https://doi.org/10.1002/gamm.201490008
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevB.99.165123
https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.21468/SciPostPhys.4.2.013
https://doi.org/10.21468/SciPostPhys.4.2.013
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/RevModPhys.77.259

states. Ann. Phys., 326:96–192, 2011. DOI:
10.1016/j.aop.2010.09.012.

[28] A. Shrestha and A. Mahmood. Review of deep
learning algorithms and architectures. IEEE Ac-
cess, 7:53040–53065, 2019. DOI: 10.1109/AC-
CESS.2019.2912200.

[29] S. Sorella. Generalized Lanczos algorithm
for variational quantum Monte Carlo. Phys.
Rev. B, 64:024512, 2001. DOI: 10.1103/Phys-
RevB.64.024512.

[30] S. Suzuki, J. Inoue, and B. K. Chakrabarti.
Quantum Ising Phases and Transitions in Trans-
verse Ising Models. Springer, Berlin, Heidel-
berg, 2013. ISBN 978-3-642-33039-1. DOI:
10.1007/978-3-642-33039-1.

[31] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk,
S. Subramanian, J. F. Santos, S. Mehri, N. Ros-

tamzadeh, Y. Bengio, and C. J. Pal. Deep com-
plex networks. In International Conference on
Learning Representations, 2018. URL https:
//openreview.net/forum?id=H1T2hmZAb.

[32] V. N. Vapnik. An overview of statistical learning
theory. IEEE Trans. Neural Netw., 10:988–999,
1999. DOI: 10.1109/72.788640.

[33] G. Vidal. Efficient simulation of one-dimensional
quantum many-body systems. Phys. Rev.
Lett., 93:040502, 2004. DOI: 10.1103/Phys-
RevLett.93.040502.

[34] S. R. White and A. E. Feiguin. Real-time evo-
lution using the density matrix renormalization
group. Phys. Rev. Lett., 93:076401, 2004. DOI:
10.1103/PhysRevLett.93.076401.

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 6

https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1007/978-3-642-33039-1
https://doi.org/10.1007/978-3-642-33039-1
https://openreview.net/forum?id=H1T2hmZAb
https://openreview.net/forum?id=H1T2hmZAb
https://doi.org/10.1109/72.788640
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.076401
https://doi.org/10.1103/PhysRevLett.93.076401

A Wirtinger formalism
We employ the Wirtinger formalism to compute gradients of the cost function with respect to complex-valued
parameters. This formalism is not widely employed in the context of artificial neural networks, but see e.g.
[15, 31] and references therein. The Wirtinger or Dolbeault operators are defined as

∂

∂z
:= 1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z∗
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
(20)

with z = x+ iy, x, y ∈ R. The operators act on (real-) differentiable (identifying C ' R2) functions f : U → C
(with U ⊂ C some open subset of C), which need not be holomorphic. However, in case f is indeed holomorphic,
the Cauchy-Riemann equations imply that the Wirtinger derivative ∂/∂z is equal to the complex derivative of
f , whereas the conjugated Wirtinger derivative vanishes:

∂f(z)
∂z

= f ′(z), ∂f(z)
∂z∗

= 0 ∀z ∈ U, f holomorphic (21)

Complex conjugating the second identity leads to ∂f∗(z)/∂z = 0 in this case.
Note that for real-valued functions f : U → R (like cost functions considered below), the partial derivatives

with respect to x and y can be obtained from the Wirtinger derivative via

∂f

∂x
= 2 Re

(
∂f

∂z

)
,

∂f

∂y
= −2 Im

(
∂f

∂z

)
. (22)

The following chain rule can be verified by a straightforward calculation:

∂

∂z
(g ◦ f) =

(
∂g

∂w
◦ f
)
· ∂f
∂z

+
(
∂g

∂w∗
◦ f
)
· ∂f

∗

∂z
. (23)

The formalism generalizes naturally to functions of several variables; for z ∈ Cn, we write

∇W
z =

(
∂

∂z1
, . . . ,

∂

∂zn

)T
(24)

for the Wirtinger nabla operator.

Let fθ : U ⊂ Cn → Cm denote the map defined by an artificial neural network with complex-valued parameters
θ ∈ Cp, input dimension n and output dimension m. In abstract terms, our goal is to minimize a cost function
with respect to the network parameters via some version of gradient descent (or more precisely, minimizing the
expected prediction error for data not used during training [32]):

min
θ
C(θ), C(θ) =

N∑
j=1

c
(
fθ
(
x(j)), y(j)

)
(25)

with c : Cm ×Ck → R depending on the network output and training labels y(j) ∈ Ck. Here (x(j), y(j))j=1,...,N
a given sequence of training samples. Since C is real-valued, it cannot be holomorphic (except for the trivial
case of a constant function), which motivates the use of Wirtinger derivatives in the first place.

Nevertheless, we assume that fθ is holomorphic as function of the parameters θ. Applying the chain rule (23)
and using that ∇W

θ f
∗
θ = 0 leads to

∇W
θ C(θ) =

N∑
j=1

m∑
k=1

∂c
(
fθ
(
x(j)), y(j))

∂fθ,k
(
x(j)

) ∇W
θ fθ,k

(
x(j)) (26)

with the subscript k denoting the k-th output component of fθ. From Eq. (26), one obtains the gradient with
respect to the real and imaginary parts of θ via Eq. (22).

As basic example, the Wirtinger derivative of the quadratic cost (for a, y ∈ Cm)

c(a, y) = ‖a− y‖2 =
m∑
j=1
|aj − yj |2 (27)

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 7

reads
∂c(a, y)
∂aj

= (aj − yj)∗. (28)

Combined with the chain rule, the gradients of the cost function in Eq. (11) thus read

∂C

∂θ`
= ∂C

∂(Aψ)
∂(Aψ)
∂ψ

∂ψ

∂θ`
=
〈
Aψ − b

∣∣∣A ∂ψ
∂θ`

〉
(29)

B Error analysis
We distinguish between three different wave functions: the exact one, ψ(t); the one obtained by the exact
midpoint time-evolution, ψ∆(t); and the one represented by the network, ψN (t). We want to find the error of
the network with respect to the exact state:

ε(t) = ψ(t)− ψN (t) (30)

This can be split into the error due to the the midpoint method and the error due to the network optimization:

ε(t) = ε∆(t) + εN (t) (31)

with
ε∆(t) = ψ(t)− ψ∆(t) (32)

and
εN (t) = ψ∆(t)− ψN (t). (33)

Using the triangle inequality we can set an upper bound to the absolute error:

|ε(t)| ≤ |ε∆(t)|+ |εN (t)| (34)

As implied by Eq. (9), in order to obtain the state at the next time step using the midpoint rule one must solve
the following linear matrix equation:

Aψ∆(tn+1)−Bψ∆(tn) = 0 (35)

where

A = I + i∆t
2 H (36)

and

B = I − i∆t
2 H. (37)

As a second-order Runge-Kutta method, its global error is of the order of O(∆t2). However, instead of solving
this exactly, our method optimizes ψN (tn+1) to minimize the above. That means we are actually solving the
equation

AψN (tn+1)−BψN (tn) = r(n+1), (38)

where r(n+1) is the residual obtained at the end of the optimization in time-step n + 1. We are interested in
finding an expression for εN (tn). Using its definition into Eq. (38) we obtain

A(ψ∆(tn+1)− εN (tn+1))−B(ψ∆(tn)− εN (tn)) = r(n+1), (39)

and since the exact midpoint rule must be 0 (see Eq. (35)) this simplifies to

εN (tn+1) = A−1
(
BεN (tn)− r(n+1)

)
. (40)

Similarly as what we did for the midpoint error, we now have a recursive relation for the network error for the
next time step. Then, by proof of induction one can show that

εN (tn) = −B−1
n∑

m=1
A−mBmr(n+1−m), (41)

for all n > 0. Note that the application of A−1B corresponds to one time step of the midpoint time evolution.
This means that the residual from each time step is added to the error and time-evolved unitarily, so the residual
will not dramatically increase the error as an artifact of the chosen integration method.

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 8

0.0 0.2 0.4 0.6 0.8 1.0
time

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

1
|

|
ex

ac
t

|

t = 0.01
t = 0.02
t = 0.04
t = 0.05

Exact midpoint

Figure 4: Overlap error achieved with different time steps for the same system under the same optimization hyperparameters
(RBM with 60 hidden units, same learning rate and same number of optimization steps).

C Effect of time step size, and comparison with the forward Euler method
Fig. 1b in the main text directly compares SR with the midpoint optimization using the same number of
time steps. However, the implicit midpoint integration method is a second-order method, which suggests the
possibility of achieving a similar final error using a larger time step size for the real time evolution. Here we
consider the effects of varying the time step size. Furthermore, we compare the results with an analogous neural
network optimization based on the forward Euler method.

We apply the midpoint optimization to simulate a quench from h = 1.5 to h = 0.75 for a one-dimensional
system with 15 lattice sites. As shown in Fig. 4 the overlap error resulting from the optimization shows very little
variation as one decreases ∆t, different from an exact midpoint integration. These results further strengthen our
intuition that most of the error originates from the expressiveness of the architecture, and not the integration
method. The variation that is seen can be explained by the fact that the same learning rate and number of
optimization parameters are being used in each simulation. For a larger ∆t one can expect a larger update in
the network parameters, and a longer optimization may be necessary. In practice, the small improvement may
not be worth the computational expense of decreasing ∆t nor increasing the number of optimization steps.

0.0 0.2 0.4 0.6 0.8 1.0
time

10 6

10 5

10 4

10 3

10 2

10 1

100

1
|

|
ex

ac
t

|

Midpoint opt.
Exact midpoint
Euler opt.
Exact Euler
SR

(a) Overlap error

0 200 400 600 800 1000
optimization step

10 3

10 2

lo
ss

Midpoint opt.
Euler opt.

(b) Example of loss convergence at t = 0.5

Figure 5: Comparison of different integration methods and time steps: SR and the Euler method with ∆t = 0.01 and the
midpoint method with ∆t = 0.05. In (b) the loss is normalized with respect to the number of samples and time steps.

Next we compare these results with those obtained using an Euler step for the optimization. In a similar
fashion to Eq. (10) we choose as cost function

C(θn+1) =
N∑
j=1

∣∣∣(ψ[θn+1]− i∆tH ψ[θn])
(
σ(j)

)∣∣∣2 . (42)

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 9

Fig. 5a shows that the results obtained are worse than those obtained with the implicit midpoint rule, despite
the similar errors of the exact Euler and midpoint integrations for the chosen ∆t sizes. Taking a closer look at
the optimization landscape shows that the loss exhibits a smoother convergence with the midpoint optimization,
as shown in Fig. 5b. Implementing an early stop mechanism may be beneficial for the Euler optimization.

D Geometrical perspective
From a geometrical perspective, the architecture of the neural network defines the manifoldM to which the time-
evolution is restrained. As shown in Fig. 6, in SR the parameters are updated by projecting the true derivative
at the current time onto M. Similarly, the minimization of Eq. (7), implicitly projects the next timestep
obtained from the integration flow Φ, as the point of minimum distance in the manifold is its projection.

M

−iH|ψ〉

ψ(0)

True trajectory Projection to manifold
Φ∆t(ψ(0)) SR update

Figure 6: Geometric interpretation of the update achieved by SR and a gradient descent based method from a numerical
integration flow Φ∆t

E Details of stochastic reconfiguration calculation
Fig. 1b in the main text shows a comparison between our method and SR. For our simulations, we determine
the cut-off of the pseudo-inverse as follows: we perform the time evolution several times decreasing the cut-off
by one order of magnitude at each run, from 0.1 to 10−11, and chose the one that resulted in the smallest error
at t = 1. It is worth noting, however, that the best cut-off at some time t1 may not be the best at a later time
t2. Fig. 7a illustrates this point for an Ising chain with 6 lattice sites.

We also tried several Krylov subspace methods for solving Eq. (2), but found their performance to be worse
than using the pseudo-inverse with optimal threshold, as shown in Fig. 7b.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time

10 6

10 5

10 4

10 3

10 2

10 1

1
|

|
ex

ac
t

|

1e-5
1e-6
1e-7
1e-8
1e-9
1e-10

(a) Effect of cut-off

0.0 0.2 0.4 0.6 0.8 1.0
time

10 3

10 2

10 1

1
|

|
ex

ac
t

|

Pseudo-inverse
Conjugate gradient
MINRES
GCROT
LGMRES

(b) Comparison of solvers

Figure 7: Comparison in error using SR with (a) different cut-offs for the pseudo-inverse and (b) different iterative solvers, as
well as using a pseudo-inverse with cut-off at 10−10.

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 10

t =
 0

t =
 0

.5
t =

 1
.0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) Amplitudes of filter weights

t =
 0

t =
 0

.5
t =

 1
.0

3

2

1

0

1

2

3

(b) Arguments of filter weights

Figure 8: (a) Amplitudes and (b) arguments of the complex weights for each filter of the CNN in Fig. 2, for the h = 2hc

simulation shown in Fig. 3. The rows corresponds to different time points.

F Filter weights visualization
As illustration, Fig. 8 shows the five complex-valued convolution layer filter weights for the time evolution of
the 2D system at three time points, for the quench to h = 2hc. It appears that the amplitudes vary rather
slowly as compared to the complex arguments (phases).

Accepted in Quantum 2021-12-21, click title to verify. Published under CC-BY 4.0. 11

