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Abstract: The RNA world is one of the principal hypotheses to explain the emergence of living
systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of in-
formation as well as catalytic molecules, promoting their own replication. However, it does not
explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an
RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence
space on the lowest level, where mononucleotide and short oligonucleotides come together and
collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly
of polymers from a random initial pool of short building blocks via templated ligation. Templated
ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic
stability of such a configuration crucially depends on the sequence context and, therefore, significantly
influences the ligation probability. However, the sequence context also has a kinetic effect, since
non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction.
These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic
model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA
reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the
RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling
of the system. The binding stability of strands typically grows with the number of complementary
nucleotides forming the hybridization site. While shorter strands unbind spontaneously during
the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA
reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually
reaches a non-equilibrium stationary state characterized by its length and sequence distribution.
How do motif-dependent energy and stalling parameters affect the sequence composition of the
pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic
stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of
self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we
discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.

Keywords: emergence of life; templated ligation; enzyme-free self-assembly; informational polymers;
prebiotic evolution; enzyme-free replication; RNA reactor; autocatalytic set

1. Introduction

Extant biological systems use different molecules for the storage of genetic informa-
tion than for the catalysis of biomolecular reactions. Inevitably, the question arises of
which came first, the informational polymer carrying the instructions for the enzymes,
or the enzymes assembling the polymers? As RNA cannot only store genetic informa-
tion but also fold into catalytically active structures [1–5], it is central to one of the most
prominent hypotheses for the emergence of living systems [6–11]. However, this RNA
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world hypothesis does not explain the origin of the catalytic RNA molecules, called ri-
bozymes [12]. While recent experimental work revealed potential prebiotic pathways to
synthesize nucleotides [13–15], the mechanisms assembling these building blocks into func-
tional molecules are only beginning to be explored [16–21]. The smallest ribozymes known
today are 30 to 100 nucleotides long [22–24]. More complex ribozymes that could, e.g., as-
sist replication are likely to have a minimum length of more than 150 nucleotides [25–27].
For polymers of a length between 30 to 150, a total of 1018 to 1090 distinct sequences are
possible. However, the subset of catalytically active sequences is generally believed to be
tiny. Hence, the spontaneous emergence (and maintenance) of a functional ribozyme in a
random pool of oligonucleotides seems highly unlikely. Therefore, it remains unclear how
the transition from a pre-RNA world lacking ribozymes to an RNA world where essential
processes are driven by ribozymes could occur.

To understand this transition, one must study the dynamics in sequence space, which
emerges when mononucleotides and short oligonucleotides inside a reaction volume
collectively self-assemble into longer strands [28,29]. The self-assembly is governed by
the process of templated ligation [30–34]. In this process, two strands that are hybridized
adjacently on a third template strand are covalently linked. In contrast to random ligation
concatenating two arbitrary strands, the process of templated ligation is sequence-selective
for two reasons, a thermodynamic and a kinetic one. First, complementary nucleotide pairs
at the hybridization sites increase the stability of the complex of strands, and thereby also
increase the probability for a new covalent bond to be formed. However, complementary
sequences of the same length comprising different sequence motifs can have different
binding stabilities. The stability of a complex is determined by the hydrogen bonding
between complementary base pairs and the stacking interactions between neighboring
base pairs [35]. Changing the order of the base pairs or flipping one of the pairs generally
alters the complex’s stability. Hence, certain sequence motifs can be favored over others
thermodynamically [35–37]. Second, the kinetics of the ligation step are motif-selective:
Non-complementary nucleotide pairs in the vicinity of the ligation site stall the formation
of a new covalent bond. As a result, the formation of new strands from shorter fragments
that do not match the template strand is also suppressed kinetically [32,38–40].

Experimentally probing the enzyme-free self-assembly of long strands from a random
pool of mononucleotides and short fragments is challenging. Typically, the experiments
require long times, while the reaction yields remain low and undesired side products
obscure the results. Moreover, tracking the evolution of the whole sequence pool simulta-
neously remains an unsolved technical challenge [20,21,41,42]. Due to these constraints,
non-enzymatic self-assembly experiments either employed initial oligonucleotides with
precisely designed sequences limiting the product space [43–47] or focused on primer exten-
sion scenarios. In the latter scenario, a defined primer that is statically bound to a defined
longer template strand gets extended by mononucleotides and short oligomers [38,48–54].
Two explorative experimental studies investigated the emergence of progressively longer
strands from DNA-oligomers [18,55], both using DNA ligases to accelerate the assembly
dynamics and to obtain better yields, and employing temperature cycling for strand sep-
aration. In Ref. [55], all possible 12-mers that can be formed from a binary alphabet of A
and T are present initially. The assembly dynamics give rise to structured sequence pools
characterized by a reduced sequence entropy compared to a random pool. The emerging
longer strands are either characterized by a large A or T content since mixed strands are
more prone to self-inhibition due to hairpin formation. In Ref. [18], three pairs of carefully
designed complementary sequences composed of 20 nucleotides were used as basic build-
ing blocks. The authors demonstrated that certain subsets of sequence motifs composed
of two basic building blocks form cooperative networks. Since the initial building blocks
are already quite long in both studies, the binding energies of bound strands are large,
such that small differences in the stacking energies associated with adjacent nucleotide
pairs become irrelevant. However, subtle differences in the stacking energies might trigger
sequence selection already on the level of the shortest oligomers, i.e., dimers and trimers,
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for which dissociation occurs spontaneously, rather than being induced externally. Since
a sequence bias emerging early on might feedback onto itself, it could have a substantial
impact on the pool of longer strands at later stages. In summary, an experimental study
exploring growth dynamics into longer polymers starting from a pool of small building
blocks is still missing.

Investigating the collective growth from small building blocks theoretically or by
means of computer simulations in a model including the essential features of self-assembly,
i.e., sequence-dependent (de)hybridization and ligation dynamics, is also challenging: First,
the number of possible complex configurations grows exponentially fast as strands become
longer. Second, there is an intrinsic separation of time scales between the fast dissociation
of short and the slow dissociation of long hybridization sites and the slow ligation step. To
date, no theoretical study on self-assembly via templated ligation accounted for the motif-
dependent thermodynamic and kinetic aspects of hybridization and bond formation (see
Section 4.2). Therefore, the following questions remained open: (1) What are the emerging
dynamics in sequence space as strands grow longer? (2) Which are critical factors that
enable self-enhancing sequence selection? (3) How do motif-dependent thermodynamic
and kinetic parameters affect the selection process?

In Ref. [56], we developed a simulation method that partially handled the complexity
of the self-assembly process. In this first study, we treated the sequence dependence of
the (de)hybridization dynamics in a mean-field picture, in which the dissociation rate
only depends on the length of the hybridization site. Our study identified several growth
regimes arising from the competition of timescales for dissociation and extension. Moreover,
we showed that, depending on external control parameters, the strand length distribution
in the stationary state can exhibit a non-monotonous shape characterized by a distinct
strand length. For the present study, we extended the simulation method to explicitly
treat sequences, including sequence-dependent thermodynamics and kinetics. The ‘RNA
reactor’ simulations that we report here assume a closed reaction volume, initialized
with mononucleotides and a few dinucleotides, with an unbiased nucleotide distribution
(symmetric initial condition in sequence space). Within the RNA reactor, oligomers grow
via templated ligation and degrade via hydrolysis. Eventually, the sequence pool converges
to a non-equilibrium stationary state characterized by its length and sequence distribution.

To address the above questions, we consider different model variants. We start with
a simple reference scenario, where kinetic stalling is absent and the stacking energies
for all complementary neighboring nucleotide pairs are identical. This scenario distin-
guishes solely between complementary and non-complementary pairings. We then intro-
duce thermodynamic and kinetic sequence selection, both separately and in combination,
and compare the resulting four different scenarios. Our main finding is that, under the
conditions assumed here, thermodynamic discrimination within hybridized strands is not
sufficient by itself to promote self-enhanced sequence selection that drives the sequence
pool significantly away from the random state. However, distinct patterns in sequence
space arise if non-complementary strand termini at the ligation site slow down the ligation
step significantly (kinetic stalling). In this case, a small thermodynamic bias for certain
sequence-motifs triggers a self-enhancing dynamics, such that the thermodynamically
favored sequence motif dominates the stationary state.

2. Models and Methods
2.1. Strands and Complexes

We consider a binary alphabet composed of two complementary nucleotides, denoted
as X and Y for generality. A molecule containing L nucleotides linked covalently is called
a strand of length L (see Figure 1a). A single nucleotide is a strand of L = 1. Strands are
directed and point from the 5′ to the 3′ end, which we also refer to as the − and the +
ends. We allow strands to hybridize to each other, but do not account for the possibility of
self-folding. An entity formed by several hybridized strands is referred to as a complex. All
staggered conformations that can arise from a set of single strands are allowed inside the
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RNA reactor, regardless of the number of strands and mismatches, i.e., non-complementary
nucleotide pairs (see Figure 1b,c and Figure A1 in Appendix B). However, branched
hybridization structures and other nonlinear complexes involving loops are excluded.

We call a complex that contains two or three strands a duplex or triplex, respectively.
The overlapping horizontal region between two strands is referred to as a hybridization
site. Moreover, the vertical interface between two strands hybridized adjacently on a third
strand is called a ligation site.

Figure 1. Schematic illustration of the dynamics inside the RNA reactor. The elementary processes
are hybridization, dehybridization, ligation on the template, and hydrolysis with corresponding
elementary rates kon, koff and klig, and kcut. The elementary rates kon, koff, klig are functions of
the sequence context: (a) Strands have a binary sequence and are directed. L denotes their length.
(b) When two molecules collide, they can form χ different hybridization complexes. (c) Hybridization
sites within complexes (horizontal interfaces) can contain mismatches. Two strands (− and + strand)
located adjacently on another strand may get joined covalently via templated ligation. The speed
of the ligation reaction depends on the complementarity κ of the nucleotide pairs at the ±1 and
±2 position (red box). Non-complementary pairings lead to kinetic stalling. (d) The stability of a
hybridization site is governed by the hybridization energy ∆Ghyb. ∆Ghyb is obtained by summing
over stacking energies γ associated with nearest-neighbor blocks (purple box) and considering
terminal nucleotide pairs. ∆Ghyb and γ depend on the structural and sequential context. Mismatches
weaken the binding. (e,f) Covalent bonds within single strands or single-stranded segments may get
cleaved via hydrolysis at a constant rate. The resulting unactivated strand termini are assumed to be
rapidly reactivated.

2.2. Elementary Reactions

Strands and complexes form new complexes via hybridization, dehybridization, templated
ligation and hydrolysis (see Figure 1). All reactions are assumed to be elementary and
occur with sequence- and structure-dependent rates kon, koff, klig, and kcut. Assuming
constant environmental conditions, kon and koff are related to the hybridization energy ∆Ghyb
associated with a hybridization site via the thermodynamic consistency requirement [57]

koff
kon

= VNAc◦ eβ∆Ghyb , (1)

where β = (kBT)−1, kB is Boltzmann’s constant, and T denotes the (absolute) tempera-
ture, V and NA are the reaction volume and Avogadro constant and c◦ = 1 mol/L is the
reference concentration. We will express all concentrations as a multiple of the reference
concentration. Moreover, in the following, we use the dimensionless hybridization energy

Γ = β∆Ghyb. (2)
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Γ is obtained by summing over dimensionless motif-dependent stacking energies of nearest-
neighbor blocks [35–37] (see Section 2.4). Γ thus reflects the number of complementary
and non-complementary nucleotide pairs and their arrangement. Generally, mismatches
increase the hybridization energy, therefore reducing the stability of a complex.

The formation of new covalent bonds requires energy, which needs to be provided
by the environment in the form of an activation chemistry [42,58,59]. We assume that the
RNA reactor is constantly fueled with the activation chemistry, enabling a fast chemical
(re)activation of the termini of all strands present in the system. With that, two strands that
are located next to each other on a third strand can always ligate. The fast activation step is
not modeled explicitly. The rate klig at which two neighboring strands ligate depends on
the paired nucleotides in the vicinity of the ligation site. Mismatches lead to kinetic stalling,
i.e., a reduction of the ligation speed [32,38–40].

We model the kinetic stalling using the kinetic stalling factors Φ± ≤ 1. The stalling
factors Φ± are functions of the complementarities κ±i ∈ {1, 0} of the paired nucleotides in the
vicinity of the ligation site. The value 1 indicates a complementary pair, whereas the value
0 indicates a non-complementary pair of nucleotides. Φ− takes the complementarities
κ−1, κ−2 of the two nucleotides in the − direction of the ligation site into account, while
Φ+ is an equivalent expression for the two nucleotides in the + direction (see Figure 1c,d
and Section 2.5 for more details). The two stalling factors are then multiplied with the basal
ligation rate λ. With that, the ligation rate klig becomes

klig = λ Φ−(κ−1, κ−2)Φ+(κ+1, κ+2). (3)

Since random ligation of two strands in the absence of a template is weak compared to
templated ligation [31–34], we neglect it in our model.

While covalent bonds within double-stranded parts of complexes are assumed to be
stable against hydrolysis, bonds within single-stranded sections get cleaved [60–63] (see
Figure 1e,f). The corresponding rate is assumed to be sequence-independent,

kcut = const. (4)

with that, the overall degradation rate for a single strand of length L is (L− 1)kcut, for ex-
ample. In real systems, kcut varies by several orders of magnitude as a function of environ-
mental parameters and crucially depends on the polymer’s backbone chemistry [60,62–65].
Note that templated ligation and cleavage are irreversible, since the respective reverse
reactions (random ligation and “templated cleavage”) are absent in our model.

2.3. Kinetics of Hybridization and Dehybridization

Since Equation (1) only constrains the ratio of kon and koff, an additional kinetic
parameter is required to fix the kinetics of the model. However, the chosen parametrization
has only a minor effect on the global kinetics, given that ligation and hydrolysis are rare
compared to hybridization and dehybridization (see Section 2.8). Our approach uses a
constant rate of collision between two complexes kcoll = (VNAc◦t0)

−1, where t0 is the
collision time scale. In the following, we express all times in units of collision time scale t0.

In general, two colliding complexes can form multiple hybridization configurations
via χ distinct hybridization channels (see Figure 1b). We assume no bias for any channel,
such that the probability of choosing one particular channel is

phyb = 1/χ. (5)

Hence, the rate for a hybridization via a given channel is

kon = kcoll phyb, (6)

whereas the dehybridization rate becomes
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koff =
1
χ

eΓ. (7)

If χ = 0, no hybridization can occur. This is the case if one of the colliding complexes
is a duplex without any overhang. A parametrization attributing the hybridization en-
ergy Γ to the dehybridization rate is common in theoretical approaches and is consistent
with experiments [66–68]. The kinetic model resulting from the specific choice of kon and
koff, i.e., Equations (6) and (7) was developed, described in detail, and rationalized in
Ref. [56], where we studied self-assembly in a sequence-independent model with hybridi-
zation energies simply being proportional to the overlap lengths. The kinetic assumptions
Equations (6) and (7) reduce the computational complexity considerably, while still sam-
pling complexes in a thermodynamically consistent way (see Appendix C).

2.4. Hybridization Energy

Detailed models for the free energy of given RNA and DNA secondary structures [35–37]
build on the so-called stacking interactions of neighboring nucleotide pairs at the hybri-
dization sites [35,69]. Every nearest-neighbor interaction, i.e., every block of two adjacent
nucleotide pairs, is associated with a motif-dependent stacking energy. These stacking
energies additively contribute to the total free energy. Additional contributions to the
total free energy take into account nonlinearities of secondary structures such as loops,
branching points, and particular end configurations.

Our coarse-grained model that excludes nonlinear complex structures conserves the
essential feature of the detailed nearest-neighbor models. The central element of our energy
model is the stacking interaction of two neighboring nucleotides pairs Pi and Pi+1 with

Pi and Pi+1 ∈
{

X
·
Y

,
Y
·
X

,
X

X
,

Y

Y

}
, (8)

where dots symbolize hydrogen bonds between complementary nucleotides. To every block
of adjacent nucleotide pairs [PiPi+1], we assign a dimensionless stacking energy γ([Pi Pi+1]).
(Note that the last two pairs are non-complementary. Therefore, the nucleotides are not
connected via a dot.) The hybridization energy is then given by the sum over all stacking
energies and contributions ε− and ε+ accounting for the terminal nucleotide pairs at the −
and the + end of double-stranded segment (see Figure 1d), i.e.,

Γ = ∑
i ∈ blocks

γi + ε− + ε+. (9)

The contributions ε∓ for the ∓ end also depend on the structural and sequence context.
If the ∓ terminal nucleotide pair forms a dangling end, i.e., is preceded or followed by an
unpaired nucleotide, we have ε∓ 6= 0. If the terminal nucleotide pair is part of a ligation
site, there also is a contribution ε∓ 6= 0. If otherwise, it corresponds to blunt end of a
complex, and we have ε∓ = 0 (see Appendix A for details).

For simplicity, we assume symmetric stacking energies, i.e., γ([Pi Pi+1]) = γ([Pi+1 Pi]).
Moreover, complementary nearest-neighbor blocks are either alternating if

[Pi Pi+1] ∈
{[

X−
·
Y−

Y
·
X

]
,

[
Y−
·
X−

X
·
Y

]}
, (10)

or homogeneous if

[Pi Pi+1] ∈
{[

X−
·
Y−

X
·
Y

]
,

[
Y−
·
X−

Y
·
X

]}
. (11)

Here, the − symbol stands for a covalent bond. We denote stacking energies assigned to
alternating and homogeneous blocks by γalt and γhom. Motivated by the observation that
γalt 6= γhom in DNA and RNA systems (see Table 1) [36,37], we treat the energy difference
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∆γ = γalt − γhom. (12)

as a variable parameter. Without loss of generality, we assume ∆γ ≤ 0 for our model.
Moreover, we assume constant stacking energies γ1nc and γ2nc for nearest neighbor blocks
containing one or two non-complementary nucleotide pairs. Since blocks containing
mismatches weaken the binding, their stacking contributions are positive. The contribution
for a block with two mismatches is larger than for a block with only one mismatch. In
summary, the block-wise contributions obey the hierarchy

γalt ≤ γcom ≤ γhom < 0 < γ1nc < γ2nc, (13)

where γcom is the average energy value of complementary blocks (see Table 2), i.e.,

γcom = (γalt + γhom)/2. (14)

Table 1. γcom: mean stacking energies for complementary nearest neighbor blocks in binary RNA
and DNA systems at a reference temperature of 37 ◦C in units of kBT [36,37]. ∆γ: difference between
alternating and homogeneous blocks (see Equation (12)). Note that the sign of ∆γ depends on
whether A and U or T or G and C are considered for the binary system.

System RNA DNA

Nucleotides A, U C, G A, T C, G

γcom −1.74 −5.00 −1.40 −3.26
∆γ −0.46 0.60 0.42 −0.65

2.5. Kinetic Stalling

Our kinetic stalling model describes the experimentally observed sequence depen-
dence [32,38,39] in a simplified way, using only two parameters, σ1, σ2. Mismatches directly
at the ligation site affect the ligation speed more substantially than distant ones. If the
nucleotide pair at the ±1 position is non-complementary (κ±1 = 0), a mismatch at the
±2 position (κ±2 = 0) amplifies the stalling effect. Otherwise, a mismatch at the±2 position
has no effect, i.e.,

Φ±(κ±1, κ±2) =


1 for κ±1 = 1∧ κ±2 ∈ {0, 1}
σ1 for κ±1 = 0 ∧ κ±2 = 1
σ1σ2 for κ±1 = 0 ∧ κ±2 = 0

, (15)

where σ1 ≤ σ2. If the hybridization site in the + or− direction contains only one nucleotide
pair (see Figure 1c), we use Equation (15) with κ±2 = 1.

The strength of the stalling effect depends on the underlying activation chemistry
as well as the type of nucleotides being used [32,38,39]; therefore, we treat σ1 and σ2 as
variable parameters (see Table 2).

2.6. Effective Cyclic Environment

According to the energy model defined in Equation (9), hybridization energies for
long, primarily complementary hybridization sites become arbitrarily negative. Hence,
the corresponding dehybridization rates converge to zero exponentially. As a result, strands
can be bound in duplexes without single-stranded overhangs over long times. This effect is
called template inhibition and leads to freezing of the dynamics [41,61,70]. To overcome
this problem, we assume cyclic variations of the physico-chemical conditions (temperature,
pH , or salt concentrations) inside the RNA reactor such that all hybridized strands separate
within the period time τ [19,71]. Aforesaid oscillatory conditions arise for example due
to convection flows induced by temperature gradients or micro scale water cycles at a
heated gas–liquid interface. Both scenarios arise naturally in rock fissure in the vicinity of
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hydrothermal vents [72–76]. They are modeled effectively by introducing a lower bound
for the dehybridization rate [56,77], i.e., modifying Equation (7) such that

koff = max
{

1
χ

eΓ, klow

}
, (16)

where τ = k−1
low. With that, the (dis)assembly dynamics of long complementary complexes

do not obey the thermodynamic consistency requirement Equation (1) anymore. Nonethe-
less, the kinetics are still plausible: The constant collision rate is a reasonable approximation
for a collision process with a diffusion coefficient decaying with length compensated by a
cross section growing with length [56].

Table 2. Summary of parameters used in Section 3.

Process Parameter Value

hybridization kcoll 1
ctot 0.01 c◦

dehybridization γcom, γ1nc, γ2nc, ∆γ −1.25, 0.375, 0.75, [−0.3, 0]
llow 7

ligation llig 10
σ1, σ2 [0, 1], [0.1, 1]

hydrolysis lcut 18.5

2.7. Validity of Our Model and Application to Primer Extension

In the Results section, we focus on self-assembly scenarios where all strands (apart
from monomers) are equally important because there are no distinct template, primer,
and substrate strands as in typical primer-extension situations. However, in Appendix F,
we show that our modeling of the kinetic stalling and the (de)hybridization kinetics in
combination leads to copying dynamics in primer-extension situations consistent with the
experimental literature.

2.8. Parametrization of Rates

We can parametrize every rate constant k∗ introduced so far by a dimensionless length
l∗ such that

k∗ = eγcom l∗ . (17)

This presentation will prove convenient in the later analysis of the results as it connects time
scales to length scales. For example, llow = 7 tells us that entirely complementary hybridi-
zation sites composed of more than seven nucleotides dissociate as quickly as altogether
complementary hybridization sites comprising exactly seven nucleotides. Parameters used
in the following are summarized in Table 2. Moreover, llig = 10 signifies that the timescale
of a dehybridization for a hybridization site counting more than ten nucleotides would
be slower than the bare ligation timescale if the lower bound with llow would not have
been introduced.

2.9. Implementation

To simulate the model dynamics in C++, we use an extension of the framework
developed in [56], based on an optimized Gillespie algorithm [78–80]. The simulation only
keeps those species in memory that have a non-zero copy number. If a species appears
(vanishes), the corresponding species object is created (deleted) dynamically.
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3. Results
3.1. Boundary Conditions and Observables

We aim to investigate the model dynamics starting on the lowest level, i.e., where
mononucleotide and a few short oligonucleotides collectively evolve into larger entities.
Will the sequences of longer strands be random, or will they show patterns? We chose
the arguably simplest setting for our study, which is a closed reaction volume that does
not exchange complexes with the environment. In such a setting, we expect the dynamics
to settle to a stationary state eventually. We initialize the reaction volume symmetrically
with 5000 nucleotides distributed over 4920 mononucleotides and 40 dimers (see Figure 2a).
Moreover, we adjust the reaction volume such that the total nucleotide concentration
is given by ctot = 0.01 c◦. The ratio of the initial monomer to dimer concentration is
cinit

1 : cinit
2 = 123 : 1.

Figure 2. (a) Schematic illustration of the time evolution of the non-equilibrium RNA reactor. The re-
actor is initialized symmetrically with mononucleotides and a few dimers such that the amounts
of X and Y nucleotides are equal and that all four dimer sequences have the same concentrations
(see Section 3.1). Within the RNA reactor, oligomers grow via templated ligation and degrade via
hydrolysis. Eventually, the sequence pool converges to a non-equilibrium stationary state charac-
terized by its length and sequence distribution (see Figure 1); (b) To characterize the dynamics in
sequence space, we introduce the zebraness ζ on the level of single strands and the system-level
zebraness Z. The zebraness ζ of a single strand is the fraction of zebra motifs, i.e., alternating binary
motifs contained in the strand. In contrast, the system-level zebraness Z measures how zebra-like,
i.e., alternating or homogeneous, the pool is as a whole. Z corresponds to the total number of zebra
motifs spread over all strands normalized with respect to the overall number of binary motifs within
all strands present in the reactor.

Our focus is on the evolution of the length distribution and the dynamics in sequence
space. The length distribution cL expresses the concentration of strands of length L, irre-
spective of whether they are part of a complex or not. We denote the mean length by L. To
describe the dynamics in sequence space, we aim for a simple observable with an intuitive
and straightforward interpretation. Therefore, we introduce the zebraness as a characteriza-
tion of a strand’s sequence. The zebraness ζ(S) of a strand S of length LS is the number of
alternating “zebra” submotifs X−Y or Y− X within its sequence divided by the number
of binary motifs LS − 1 (see Figure 2b). With that, a random sequence Sr is expected to
have ζ(Sr) = 0.5 on average. Moreover, the system-level zebraness Z characterizes how
zebra-like the ensemble of strands is. It is given by

Z =
∑S ζ(S) (LS − 1)

∑S(LS − 1)
, (18)
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where the summation is performed over all individual strands with L > 1. A system
containing homogeneous strands only would have Z = 0, whereas, for a system exclusively
composed of strands with alternating sequences, we would have Z = 1. All plots show
ensemble averages which are taken over 20 independent realizations of the dynamics.

3.2. Overview of Key Findings

Before we present the detailed analysis of the four different scenarios outlined in the
introduction, we briefly summarize our key findings. First, we study the simplest variant
of our model where both kinetic stalling and energetic bias are absent, i.e., ∆γ = 0 and
σ1 = σ2 = 1. This scenario only distinguishes between nearest-neighbor blocks containing
zero, one, or two mismatches. Alternating and homogenous blocks have identical energetic
properties. While non-complementary pairings decrease the complex’s stability, erroneous
pairings at the ligation site do not reduce the bare ligation rate. The first model variant
does not give rise to motif selection; the composition of the sequence pool remains entirely
random, i.e., Z = 0.5.

In the second scenario, we introduce an energetic bias ∆γ < 0 for alternating blocks
while still assuming a non-discriminative ligation. The energetic bias favors the hybridi-
zation of strands with zebra-like sequences. This time, a weak zebra pattern with Z > 0.5 is
induced transiently during the initial growth phase. However, the pattern vanishes almost
completely as the system approaches the steady-state (see Figure 3).

The dynamics in sequence space change drastically if kinetic stalling with σ1, σ2 < 1
is applied. If non-complementary nucleotide pairs at the ligation site slow down the
formation of a covalent bond, distinct patterns in sequence space can emerge. In the
third scenario, we investigate the correlation between the strength of the kinetic stalling
effect and the reduction of possible states in sequence space assuming identical energetic
properties for alternating and homogeneous blocks, i.e., ∆γ = 0. Within this setting, we
observe a spontaneous symmetry breaking in sequence space. Independent realizations of
the dynamics evolve to stationary states, dominated by either zebra motifs with Z < 0.5
or homogeneous motifs with Z > 0.5 (see Figure 4). Moreover, we see that a dominant
pattern emerges such that Z → 0 or 1 if the stalling effect is strong enough.

In the fourth scenario, we show that a slight energetic bias ∆γ < 0 can become self-
amplifying if kinetic stalling is present (see Figure 5). Depending on the strength of the
kinetic stalling, the system converges to either a partial or pure zebra state characterized by
either Z > 0.5 or Z → 1.

3.3. Reference Model without Energetic Bias and Kinetic Stalling

This section aims to answer whether the energetic discrimination of matches and
mismatches alone is sufficient to give rise to spontaneous symmetry breaking in sequence
space such that Z 6= 0.5. To this end, we study the simplest variant of our model with
neither energetic bias nor kinetic stalling, i.e., ∆γ = 0 and σ1 = σ2 = 1.

Initially, the growth dynamics of the mean length L is slow until t ≈ 8.8× 109 (see the
dark blue curve in Figure 3a). At this point, the mean length L starts to increase rapidly.
We refer to this time point as the onset of growth and denote it by t̂. After the steep increase,
L reaches a plateau value. The inset shows the steady-state length distribution displaying a
double-exponential shape.

The ensemble average of the zebraness Z initially fluctuates and then converges to
Z = 0.5 (see Figure 3b). Looking at single trajectories (see Figure 3c) reveals a behavior
similar to the ensemble average. The initial values of Z ≶ 0.5 on the single trajectory-level
are due to small numbers of strands with L > 1. A value of Z = 0.5 hints towards an entirely
random sequence pool but does not exclude motif correlations on larger scales. However,
analyzing distributions of longer motifs reveals that the final sequence composition is
indeed random (see Appendix D).
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Figure 3. Mean length L and system-level zebraness Z as functions of time for σ1 = σ2 = 1 and
various ∆γ. (a) A sharp increase of L appears at t̂. For ∆γ = 0, the dashed line corresponds
to t̂ resulting from the formal definition, whereas the dotted line is the prediction obtained from
Equation (19). For ∆γ < 0, L reaches a maximum before decaying gradually to the stationary value.
The inset shows the steady-state length distributions. (b) If there is no energetic bias, i.e., ∆γ = 0,
no distinct patterns emerge in sequence space, and hence Z = 0.5 (see also Appendix D). If an
energetic bias ∆γ < 0 is applied, Z grows initially and then decays when L ≈ 7. The final value
is slightly above the random state Z = 0.5 and below the simple thermodynamic estimate Z∗ (see
Equation (22)). (c) Single realizations of the dynamics for ∆γ = 0 behave similar to ensemble average.
Strong fluctuations for small times stem from low numbers of strands with L > 1. (d) The fraction
of mismatches m first decreases and then increases as the mean length becomes longer. (e) The
fraction of concealed mismatches, i.e., mismatches not affected by energetic discrimination grows
simultaneous with the mean length. (f) Over time, concealed erroneous ligations become frequent
and destroy the initial sequence bias.

The evolution of the mean length shows some interesting features. After a lag phase,
its increase becomes exponential at t = t̂ (see Figure S1 in the Supplemental Material).
Formally, we define the onset of growth t̂ by intersecting the tangents to the L–curve at
t = 0 and the point where the increase is strongest (dashed line in Figure 3a; for details,
see Appendix E and Figure S2). We observe that t̂ coincides with the moment in time at
which higher-order ligations, i.e., ligations involving at most one monomer become more
abundant than ligations joining two monomers to a dimer (see Figure A3 in Appendix E).
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Moreover, we can predict the onset with a relative error smaller than 15% by the following
formula derived in Appendix E (dotted line in Figure 3).

t̂ ≈ log

[
c2

totk{1,1|2} − kcut

ctotcinit
2 k{1,2|2}

]/(
c2

totk{1,1|2} − kcut

)
(19)

Here, cinit
2 is the initial dimer concentration and k{1,1|2} and k{1,2|2} are the effective rate

constants at which new dimers or trimers are formed from monomers or monomers and
dimers. k{1,1|2} is given by

k{1,1|2} =
klig

K{1,1|2}
, (20)

where K{1,1|2} is the effective dissociation constant averaged over all triplexes involving
two monomers and one dimer. An analogous expression exists for k{1,2|2}. Repeating the
computer experiment with kcut and klig different from the standard values given in Table 2
confirmed the validity of Equation (19) (see Figures S3 and S4).

Moreover, altering kcut and klig while keeping the other parameters fixed confirmed
that the mean length L in the stationary state does not explicitly depend on these two
variables but only on their ratio

L = L
(

klig
/

kcut

)
for t→ ∞, , (21)

as expected from dimensional analysis. The dependence of the mean length on the ratio
klig
/

kcut can be derived analytically for a random ligation model [81].

3.4. Energetic Bias in the Absence of Kinetic Stalling

In the previous section, we saw that the energetic discrimination between comple-
mentary and non-complementary nucleotide pairs alone is insufficient for the spontaneous
emergence of patterns in sequence space. Therefore, we now ask whether an energetic
bias ∆γ < 0 favoring the binding of zebra motifs can induce zebra patterns that become
self-amplifying, while kinetic stalling is still absent (σ1 = σ2 = 1).

The energetic bias, ∆γ < 0, causes a transient overshoot in the mean length beyond
the steady-state value but otherwise does not strongly affect the dynamics of the mean
length (Figure 3a). The onset of growth t̂ can still be predicted by a formula analogous to
Equation (19) (see Appendix E and Figures S5–S7 for plots of single realizations). The steep
increase after the lag phase is followed by a gradual descent to the steady state value,
slightly below the maximum. Moreover, the steady-state length distribution remains very
similar to the scenario without energetic bias.

In sequence space, a simple thermodynamic estimate Z∗ for the final zebraness can be
made based on a two-state system with an energy difference ∆γ

Z∗ =
1

1 + e∆γ
. (22)

Since this estimate neglects any correlation and feedback effects, one could naively expect
that the zebranass resulting from the simulated model dynamics reaches a value larger than
Z∗. Indeed, the observable initially grows beyond the estimate Z∗. However, the growth
stops when the mean length reaches a value of L ≈ 7. At that point, the zebraness starts to
decay and converges to a stationary value simultaneously with L (see Figure 3b). In the
stationary state, the zebraness Z is only slightly above the result for random sequences,
i.e., Z = 0.5, and below the simple thermodynamic estimate Z∗.
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3.5. Loss of Energetic Discrimination Prevents Sequence Selection

Why are the initially emerging zebra patterns triggered by the energetic bias ∆γ < 0
in Figure 3b neither amplified nor maintained? In the following, we analyze the growth
processes in detail to give an intuitive explanation.

Strand growth requires the formation of complexes comprising at least three strands.
The more negative the hybridization energies of the hybridization sites in these complexes
are, the more stable the configurations become and the higher the probability for a ligation
gets. Non-complementary nucleotide pairs increase the hybridization energy and, therefore,
weaken the binding. To analyze the effect of these mismatches, we define the overall fraction
of mismatches m as

m =
Nnon

Npairs
, (23)

where Npairs and Nnon are the absolute numbers of nucleotide pairs and non- comple-
mentary nucleotide pairs in all present complexes. Initially, the fraction of mismatches m
decreases since complexes mostly containing complementary nucleotides that emerge
during the early growth persist longer and hence contribute more substantially to the
average. However, the fraction of mismatches starts to increase when the mean length
becomes larger (see Figure 3d). This increase of the mismatch fraction arises from the loss
of thermodynamic discrimination induced by the cut-off klow in the dehybridization rate,
i.e., the effective temperature cycles (see Section 2.6). Although the hybridization energy
may become arbitrarily negative for large hybridization sites, the dehybridization rate can
not become smaller than the lower bound klow. The length scale associated with klow is
llow = 7 (see Section 2.8). This implies that an entirely complementary hybridization site
comprising more than seven pairs has the same stability as a mismatch-free hybridization
site composed of exactly seven pairs. Moreover, mismatches in extended hybridization sites
might have no effect on the rate for unbinding because the hybridization site still contains
a high number of matches. If many matches are present, the hybridization energies are
strongly negative such that the lower threshold still determines the rate for dehybridization.
This effect enables concealed mismatches. Concealed mismatches are mismatches that do
not increase the dehybridization rate koff of a hybridization site. Replacing a concealed
mismatch with a complementary pair would not decrease koff further since it is already
given by the cut-off, i.e., koff = klow. The longer the strands become during the first growth
phase, the more concealed mismatches emerge. With the absolute numbers of mismatches
and concealed mismatches in all present complexes Nnon and Ncon, we now introduce the
fraction of concealed mismatches ncon as

ncon =
Ncon

Nnon
, (24)

The evolution of ncon shown in Figure 3e reveals that most of the occurring mismatches are
concealed, once L has become approximately twice as large as llow. Concealed mismatches
also occur at the strand termini at ligation sites and may lead to the formation of new
binary motifs which are not complementary to the templating motif at the ligation site. We
call such a ligation involving at least one concealed mismatch a concealed erroneous ligation.
Dividing the number of concealed erroneous ligations Nerr per time by the overall number
of ligations Nlig per time gives the fraction of concealed erroneous ligations nerr

con, i.e.,

nerr
con =

Nerr

Nlig
. (25)

Every erroneous concealed ligation mitigates the present bias in sequence space and leads
to randomness. Erroneous concealed ligation is the reason why the initial sequence patterns
decay almost to the random level Z = 0.5. However, not all hybridization sites, particularly
the shorter ones, have a dehybridization rate determined by the lower bound. As the
initial bias for binary zebra motifs on the system level decreases and sequences become
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more random, non-concealed mismatches in shorter hybridization sites become more likely.
Hence, short hybridization sites not yet affected by the lower bound for the unbinding rate
become less stable on average and contribute less to the growth process. This explains why
the small maxima in the mean length and the other observables shown in Figure 3a,d–f
disappear as the bias for binary zebra motifs fades away.

3.6. Kinetic Stalling in the Absence of Energetic Bias

We have seen above that concealed erroneous ligations suppress sequence selection
during the self-assembly process. However, in the presence of kinetic stalling, concealed
erroneous ligations should be reduced. In this section, we thus investigate the (more
realistic) model variant, where kinetic stalling is included. We vary the strength of the
kinetic stalling factor σ1 from 0 to 0.1, while fixing σ2 = 0.1.

Initially, the dynamics of the mean length L are qualitatively similar to the systems
without kinetic stalling studied before (see Figures 3a and 4a). However, the onset of growth
t̂ appears later. The time point of the onset t̂ can be predicted by a formula analogous to
Equation (19), which considers the kinetic stalling effect, with an error <15%. For σ1 = 0.05,
the values for t̂ from the prediction and the formal definition are highlighted by the dotted
and dashed lines in Figure 4a (for details, see Appendix E and Figures S8–S12). On larger
timescales, the model including kinetic stalling deviates from the earlier model. After the
steep increase, L does not directly settle to a steady-state. Instead, it grows gradually and
converges to a constant value eventually. Visualizations with a linear x- and a logarithmic
or linear y-axis reveal that the initial increase after the lag phase is approximately expo-
nential, while the increase during the second growth phase is approximately linear (see
Figures S13–S15). For σ1 = 0, 0.05 or 0.067, similar stationary mean lengths are reached.
However, the relaxation time increases with σ1, such that it takes more than ten times
longer for a system with σ1 = 0.067 (see inset of Figure 4a) to converge to the stationary
state than for a system with infinite stalling. For σ1 ≤ 0.067, the steady-state value of
the mean length is more than twice as large as for the σ1 = σ2 = 1 scenario. Moreover,
the length distributions in the stationary state look qualitatively similar to the ones seen
earlier (see Figure S14). For σ1 = 0.1, the increase of the mean length during the second
growth phase is small during the time window of observation. From Figure 4a, we can not
deduce whether the mean length already approached a stationary value, or whether it will
keep on growing. If a stationary value was reached, it would be significantly smaller than
for σ1 = 0.67, 0.05, 0. For σ1 = 0.1 (as well as for σ1 = 1), the simulation times are large and
prevented us from analyzing at longer time scales. However, plotting the curve for σ1 = 0.1
in a coordinate system with a linear x-axis might suggest that the system has indeed already
converged to a stationary state (see Figure S13). We will discuss the behavior for σ1 = 0.1
in more detail in Section 3.9 and provide further evidence why the behavior, in this case,
might be qualitatively different from the behavior for σ1 = 0.67, 0.05, 0.
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Figure 4. Evolution of mean length L, sequence order parameter P, and system-level zebraness Z in a
kinetic stalling scenario without energetic bias, i.e., ∆γ = 0. For reference, we show the σ1 = σ2 = 1
curves (gray). (a) For σ1 = σ2 < 1, L shows two distinct growth phases. While the first one is
rapid, the second one is slow. Relaxation to the steady-state for σ1 = 0.067 appears much later (see
inset). For ∆γ = 0.05, the dashed line corresponds to t̂ resulting from the formal definition, whereas
the dotted line is the prediction. (b) The bias for alternating or homogeneous patterns established
in the first growth phase becomes amplified during the second growth phase. For strong stalling
(σ1 ≤ 0.067), the final pool comprises either pure zebra or fully homogeneous sequences. (c) The
symmetry of the initial state is broken spontaneously. For σ1 = 0.05, equal fractions of realizations
evolve to the zebra or homogeneous state; (c–f) Dynamics of mismatches, concealed mismatches,
and concealed erroneous ligations for σ1 = 0, 0.05, 0.1. For details, see the main text.

Is the novel behavior of the mean length shown in Figure 4a related to a novel motif-
selective dynamics in sequence space? We now investigate the evolution of the strands’
sequences. Since the initial pool of sequences is symmetric and since neither zebra nor
homogeneous binary motifs are preferred energetically, we do not expect a preference for a
single realization to go to either a zebra (Z > 0.5) or a non-zebra (Z < 0.5) state. Hence,
the system-level zebraness Z is not appropriate to describe an ensemble of realizations. As
a meaningful observable to quantify the sequences bias on the ensemble level, we, therefore,
introduce the sequence order parameter P as

P = max{Z, 1− Z}. (26)

During the first growth phase of L, a bias P > 0.5 is established for all values of σ1. The
dominance of the bias correlates with the strength of the kinetic stalling. During the slow
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second growth phase, P gradually increases and reaches a stationary value simultaneously
with L (see Figures 4b and S11). For σ1 = 0, 0.05, or 0.067, we observe a value of P ≈ 1 in
the stationary state. Hence, on the realization level, the final pool contains either (almost)
entirely alternating or homogeneous sequences. We classify such states in sequence space
as pure. For σ1 = 0.1, the final sequence composition within the observation time window
is also is non-random. However, the patterns are not pure, i.e., 0.5 < P < 1. We refer
to these states as partially mixed states. Whether the system has already converged to a
stationary state with P < 1 or will further evolve to a pure state as for σ1 = 0.67, 0.05, 0
remains unclear at this point (see above). Figure 4c displays the evolution of the zebraness
of all realizations forming the steady-state for σ1 = 0.05. On average, one half of the
realizations evolves towards the Z = 1 state, while the other half evolves towards the
Z = 0 state. Hence, the symmetry of the initial state is broken spontaneously: either zebra
or homogeneous motifs are selected. (See Figures S8–S12 for equivalent plots of single
realizations for other σ1 values.)

3.7. Hydrolysis and Stalling Boost Sequence Selection

The previous section revealed a coupling between sequence selection and two distinct
growth phases in the kinetic stalling scenario. We now interpret and explain this coupling.
Here, we consider the cases σ1 = 0 and σ1 = 0.05, where all trajectories eventually converge
to a pure state. The case where σ1 = 0.1 is discussed in Section 3.9.

On the level of individual trajectories, fluctuations lead to a small bias in the motif
composition even before the mean length starts to grow rapidly (see Figure 4c). This early
asymmetry in the distribution of alternating and homogeneous motifs governs the fate of
the realization as seen from Figure 4c.

During the first growth phase (see Figure 4a), monomers and short strands self-
assemble into longer strands. The first growth phase ends when most of the initial
monomers are consumed. At the end of this initial growth phase, a significant bias towards
alternating or homogeneous motifs is present. However, a considerable fraction of binary
motifs does not yet reflect system-level bias, i.e., differs from the dominant binary motifs
(which are either X−Y and Y− X or X− X and Y−Y). Therefore, mismatches in bound
strands are still frequent (see Figure 4d). Moreover, since the average strand length is
already significantly above llow, most mismatches are concealed (see Figure 4e).

When monomers and short strands do not dominate the pool anymore, hydrolysis
becomes important. Every time a strand breaks, an existing binary motif vanishes. During
the second growth phase, fragments of broken strands are reassembled to longer strands
via ligation on a template strand. (For an analysis of sequence patterns of strands of specific
lengths, see Figure S17). If the kinetic stalling is strong, the ligation of two strands is (almost)
impossible if a mismatch occurs at the ligation site and the fraction of concealed erroneous
ligations is (close to) zero (see Figure 4f). Hence, every ligation forms a new binary motif
that (almost) always complements the templating motif at the ligation site. If the templating
motif is zebra-like (homogeneous), the new motif is zebra-like (homogeneous) too. Over
time, all binary motifs created during the initial growth phase, particularly those that do
not reflect the system bias, get destroyed at a uniform rate. At the same time, binary motifs
emerging during the second growth phase likely reflect the system bias. Consequently,
the bias becomes self-enhancing (see Figure 4b). Newly created binary motifs enhance
the system bias even more, while all motifs that do not reflect the asymmetry in motif
space become extinct eventually. As a result, the motif composition becomes more and
more ordered and mismatches become rarer (see Figure 4d). Remaining mismatches are
now even more unlikely to affect the dehybridization rate since the rate is determined by
the lower bound klow for long and primarily complementary hybridization sites. Hence,
the fraction of concealed mismatches increases slightly (see Figure 4e). Moreover, if kinetic
stalling is finite (σ1 > 0), the fraction of concealed erroneous ligations also slightly increases
(see Figure 4f).
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Since the energetic properties are symmetric, every realization randomly approaches
either the zebra-like or homogeneous state. As the pool becomes more complementary in its
motif composition, triplex configurations achieve higher stability on average. This increase
of stability enhances the probability of templated ligations. Therefore, the symmetry
breaking in sequence space is concomitant with enhanced growth, which becomes apparent
in the further increase of the mean length. For σ1 = 0 and σ1 = 0.05, the second growth
phase ends when the system has reached an (almost) entirely alternating or homogeneous
state (see Figure 4a,b). At that point, the fraction of mismatches is close to zero. The few
mismatches that still occur are mostly due to strayed mononucleotides and short oligomers
sitting on longer strands. Since these mononucleotides and short oligomers are far from
being affected by the lower bound and unbind quickly, the fraction of concealed mismatches
takes small values again.

3.8. Energetic Bias in the Presence of Kinetic Stalling

The previous section revealed that spontaneous motif selection occurs as a result
of kinetic stalling. Without energetic bias, the sequence pool converges to a stationary
state which is either dominated by homogenous or alternating sequences. In addition,
the energetic symmetry can be broken explicitly if a small energetic bias favoring zebra
motifs is applied. To understand the emergent phenomena in this setting, we study
two systems, one with strong and one with weak kinetic stalling for various energetic
biases ∆γ < 0.

First, we consider the case where σ1 = 0.05. Most parts of the description in the
previous section (∆γ = 0) also apply here (see Figure 5a,b). Again, we can predict the onset
of growth t̂ (for details, see Appendix E and Figures S18–S20). The steady-state value of
L depends weakly on the energetic bias. However, the final state is reached earlier if the
bias is stronger. In sequence space, all trajectories end in a pure zebra state Z = 1. Hence,
symmetry breaking in sequence space is now induced energetically as expected because of
the explicit symmetry breaking in the energy landscape.

Second, we investigate a scenario with σ1 = σ2 = 0.1. The mean length grows
strongly in the beginning as before (see Figure 5c and, for more details, see Appendix E
and Figures S21–S23). The fast growth phase is followed by either a marginal increase
(∆γ = −0.1,−0.2) or decrease (∆γ = −0.3) of L to a stationary value correlating with the
strength of the energetic bias. A strong zebra pattern Z > 0.5 is induced in sequence space
during the initial increase of the mean length (see Figure 5d). While L grows (decays)
during the second phase, Z also grows (decays). Eventually, the sequence pool converges
to a partially mixed stationary state with a significant majority of zebra motifs such that
0.5 < Z < 1. The excess of zebra motif again correlates with the strength of the energetic
bias. Moreover, from Figures S21–S23, it becomes clear that all single trajectories behave
similarly to the ensemble mean, i.e., show steady-state values of the zebraness above 0.5.
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Figure 5. Left column: scenario with σ1 = 0.05, right column: scenario with σ1 = 0.1 (a) The mean
length L grows again in two steps. The stronger the bias, the earlier the relaxation to the stationary
value. For ∆γ = −0.3, the dashed line corresponds to t̂ resulting from the formal definition, whereas
the dotted line is the prediction (same for (c)). (b) Pronounced zebra patterns emerge during the first
growth phase. The patterns become pure during the second growth phase. (c) A gradual increase or
decay follows the rapid growth phase. The steady-state value of L correlates with the strength of the
energetic bias. (d) While L slightly increases (decreases), Z also increases (decreases). The sequence
pool in the stationary-state shows mixed patterns dominated by zebra motifs. The fraction of
zebra motifs depends on the energetic bias. (a–d) For reference, we also show the sequence order
parameter P for the ∆γ = 0 curves (gray).

3.9. Weak versus Strong Kinetic Stalling

In Section 3.6, we speculated whether the system with σ1 = 0.1 and without energetic
bias (blue curve in Figure 4) reaches a stationary state characterized by P < 1 in contrast to
the scenarios with σ1 = 0.067, 0.5, 0, where P = 1 and referred to the corresponding plot
with a linear x-axis (see Figure S13). However, this plot did not allow for a clear conclusion
either. It could be that the alleged partially mixed stationary state is only transient and that
a pure state is reached on much larger time scales. Though the findings from Section 3.8
suggest that the stationary state of the system with σ1 = 0.1 and without energetic bias is
indeed qualitatively different from the scenarios with σ1 ≤ 0.067 and without energetic
and characterized by P < 1. The curves for σ1 = 0.1 and various energetic biases clearly
converge to stationary states with P < 1 (see colored curves in Figure 5c,d). If the stationary
state is partially mixed in the presence of an energetic bias, it is not too far-fetched to
assume that it is also partially mixed if the energetic bias is absent.

Naturally, the question arises whether a critical value for σ1 exists above which the
system always reaches a pure state with P = 1 for a given value of the energetic bias
∆γ. This first question directly leads to a second question, namely, what would be the
nature of the corresponding non-equilibrium phase transition? We leave the answer to this
question open for future research. However, finding an answer might be challenging since
the relaxation time to the stationary state will probably diverge. At this point, we content
ourselves with hypothesizing that two different regimes might exist without drawing an
exact border: For strong kinetic stalling, the system converges to a pure state, while, for weak
kinetic stalling, it converges to a partially mixed state.
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In the light of the above hypothesis, we now analyze the dynamics of mismatches
and concealed erroneous ligations in the energetically unbiased system case for σ1 = 0.1
(see the blue curve in Figure 4d–f as for σ1 = 0 and σ1 = 0.05. The self-amplification of
the dominant binary motif comes to a halt during the second growth phase (see Figure 4a
Consequently, the fraction of concealed mismatches does not decrease again as for σ1 = 0
and σ1 = 0.05. Since most of the strands are long enough, most of the mismatches are
concealed. Moreover, concealed erroneous ligations are not fully suppressed and still occur
in the stationary state. Hence, the weak kinetic stalling scenario includes features of both
dynamic regimes described in Sections 3.5 and 3.7.

4. Discussion
4.1. Summary

Our study investigated the self-assembly of prebiotic polymers via templated ligation
inside a non-equilibrium RNA reactor. We identified kinetic stalling as a critical factor
for self-enhanced sequence selection. The final sequence space shows no sequence pat-
terns if the underlying stacking energies are uniform without kinetic stalling. In contrast,
spontaneous symmetry breaking occurs for strong kinetic stalling. The final pool contains
either entirely homogenous or zebra-like sequences. In scenarios without kinetic stalling,
any energetically induced sequence bias vanishes almost completely as strands grow. In
contrast, in the presence of kinetic stalling, subtle differences in the stacking energies trigger
cascades of self-amplification, leading to highly ordered sequence pools. Our results hint
towards the existence of two different stalling regimes. We hypothesize that, for strong
kinetic stalling, the system converges to a pure state with P = 1, while, for weak kinetic
stalling, it converges to a partially mixed state characterized by P < 1.

Initially, the mean length shows burst-like growth dynamics after a short lag phase. The
onset of the rapid growth coincides with the time point where higher-order ligations become
more abundant than ligations joining two monomers and can be predicted analytically.

4.2. Prior Work, Our Model, and Future Extensions

In an earlier model for prebiotic self-assembly, strands only grow via random liga-
tion [82]. There, self-folding and complex formation introduced a protection mechanism
against hydrolysis for double-stranded segments. Moreover, the ensemble of strands was
assumed to reach a binding equilibrium immediately after a random ligation occurred.
In this model, protection against hydrolysis could extend the system’s sequence mem-
ory. However, the effect was only transient, and all selected patterns vanished eventually.
A more recent study combines random ligation and protection against hydrolysis with
growth via templated polymerization by mononucleotides [83]. The authors demonstrate
that polynucleotides exceeding lengths of 100 can emerge under plausible conditions.
Moreover, the authors show that a considerable fraction of the emerging strands forms
ribozyme- and tRNA-like secondary structures using folding software. However, the study
does not investigate correlations in sequence space on the system level.

Previous theoretical studies considering growth via templated ligation generally ex-
plored effective models that reduce the state space to (sub-)sequences without considering
complex formation explicitly [33,77,84–92]. Such approaches do not treat (de-)hybridization
and ligation as elementary steps. Instead, the reactions are coarse-grained into one
extension process. The specification of the corresponding rate neglects the intricacies
of the assembly mechanisms and requires a priori assumptions regarding the relevant
configurations [33,84–87,90]. Moreover, many models ignore that the hybridization en-
ergy is a function of the number and nature of the paired nucleotides and use constant
(de-)hybridization rates [33,84–87,89–91]. Other studies treat the sequence dependence
of (de-)hybridization employing mean-field approximations where sequence correlations
are dismissed [77]. Such simplifications result in systems effectively containing only one
type of self-complementary nucleotide [56] and any form of sequence selection is necessar-
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ily absent. In contrast, our stochastic approach explicitly takes the sequence-dependent
thermodynamic and kinetic aspects of templated ligation into account.

Although being already quite complex, our model also made simplifying assumptions.
Future studies need to relax some of our assumptions. In particular, one has to consider
nonlinear complexes containing loops and multiple branches. Such configurations can give
rise to self-folding, self-templating, template inhibition, and gelation [55,82,93]. All these
features potentially influence the sequence dynamics. However, we expect that these effects
only become important in the long time limit once the strands have reached sufficient size
for the formation of secondary structures. Consequently, the discussion of the emergence of
structured sequences on shorter timescales in the limit of strong kinetic stalling is expected
to hold, even if secondary structures are taken into account. In addition, one has to extend
the alphabet size from two to four. The question here is whether pure states containing
only a minimal number of sub motifs exist. In the future, the model could also include
additional reactions such as non-templated polymerization and ligation, and recombina-
tion [82,89,94–98] or length selective environments [99]. The first two reactions probably
play a role in the formation of the first short oligomers, whereas a flow-through system
preferentially accumulating long strands can escalate polymerization [100]. Moreover,
our study assumed a well-mixed system. Introducing a spatial component together with
size-dependent diffusion constants as in Ref. [101], one could study under which conditions
local clusters of sequences with specific patterns can emerge and coexist.

4.3. Plausibility of a Binary Alphabet

Our study assumed a binary alphabet following previous theoretical
work [31,86,87,91,92,102–104]. While this assumption simplified the analysis, there is
also evidence for a two-letter alphabet preceding the four-letter alphabet [9,10,49,105–107].
The plausibility is also underlined by the fact that functional sequences composed of only
two types exist [108,109]. For the sake of generality, we referred to the two types of nu-
cleotides appearing in our model as X and Y. This terminology was motivated by the
idea that a pre-RNA, sometimes called prebioitic XNA, or alternative RNA nucleotides,
may have existed before the modern RNA came into being [110–116]. Various backbone
chemistries [117–122], non-canonical nucleotides [105,123–127], and chemical modifica-
tions [128–130] are eligible, some of which, e.g., PNA and TNA are more plausible to
emerge [131–133] under the conditions on the early Earth than RNA.

4.4. Significance for the Emergence of Life

What is the origin of the first ribozymes heralding the transition from the pre-RNA to
the RNA world? In Darwinian evolution, the assembly of low-level building blocks into
higher-level entities triggered significant developments [134]. In the light of this evolu-
tionary principle, a multi-step process towards greater complexity, eventually resulting
in functionality, also seems natural in prebiotic evolution. Here, we studied one of the
first steps following the emergence of early nucleotides. This step forms oligonucleotides
displaying distinct sequence patterns that could serve as building blocks for the next higher
level of self-organization towards functional ribozymes.

In our study, we considered model variants with and without kinetic stalling. Since
kinetic stalling is probably inevitable in non-enzymatic templated ligation [32,38–40], the no-
stalling variant may appear unwarranted. However, this model variant is essential to
separate the effects and identify kinetic stalling as a crucial mechanism enabling self-
enhancing sequence selection (see Section 3.5). Moreover, the strength of the stalling
effect depends on the underlying activation and nucleotide chemistry [32,38,58] and both
weak and strong kinetic stalling scenarios, potentially leading to qualitatively different
outcomes, are plausible (see Sections 3.6, 3.8 and 3.9). Furthermore, in a pre-RNA world
scenario, a primitive ribozyme catalyzing ligations might have a poor ability to discriminate
mismatching ends kinetically. In this case, the ribozyme would operate in a regime where
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thermodynamics mainly control the discrimination between complementary and non-
complementary nucleotides. This regime would be close to the no-stalling model variant.

Moreover, our study revealed that minor differences in the motif-dependent stack-
ing energies significantly affect the dynamics in sequence space. The experiments of
Refs. [18,55] probably did not capture this effect, due to the design of the respective ex-
perimental systems. These studies used DNA 12- or 20-mers as basic building blocks
and a ligase to catalyze bond formation. The ligase requires significant overlaps of both
strands with the template to work efficiently. Moreover, the experiments were performed
under temperature cycling. The applied temperature cycling was too fast for the long
strands to reach a binding equilibrium. Therefore, the hybridization timescale of mostly
complementary hybridization sites is always set by the duration of the cold phases. Hence,
subtle variations in the stacking energies are not visible. In contrast, the effective cycling
in our model is slow enough for thermodynamics to govern the (de-)hybridization of
short strands leading to an amplification of the stacking bias (see Section 3.8). The cut-off
of the dehybridization rate only affects longer strands emerging from the pool that is
already biased.

In non-enzymatic scenarios involving kinetic stalling, the strands formed from the
initial pool are already the result of a primary selection process. Selection is not imposed
externally but stems from a self-organizing replication network [135]. We showed that
the ability to form self-organizing and self-amplifying replication networks is inherent in
template-directed growth and does not require higher-level mechanisms such as sequence-
specific template inhibition as a result of self-folding, reported previously [55]. In the 1980s,
Kauffmann promoted the concept of autocatalytic sets—sets of molecules that mutually cat-
alyze their formations [136]—as a chemical intermediate on the way to biological life [137].
Since then, autocatalytic sets have been the subject of many theoretical and experimental
studies [29,30,138–143]. Once our system has reached a stationary state in the strong kinetic
stalling regime, it shows the key features of such an autocatalytic set: strands with a specific
pattern promote the formation of new strands of arbitrary length, showing the same pattern.
Importantly, this concrete realization of an autocatalytic set emerges naturally from an
unstructured initial pool without requiring any external (pre-)engineering. This insight
could bridge the gap between strand formation and self-sustaining sequence replication.
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Appendix A. Terminal Base Pair Energies

The energies εj (with the index j denoting to either − or + end) assigned to terminal
nucleotide pairs are functions of the complex structure and the sequence context as well. If
a terminal nucleotide pair coincides with the end of a complex, a so-called blunt end, there
is no additional contribution, i.e., εj = 0. In contrast, a terminal nucleotide pair followed or
preceded by an unpaired nucleotide, a so-called dangling end, adds a non-zero contribution
to hybridization energy, i.e., εj 6= 0 [36,37].

Again, a mismatch results in an energetic penalty εj > 0, weakening the binding,
while a complementary nucleotide pair leads to a reward εj < 0 increasing stability. As
for the stacking energies γ([Pi Pi+1]), we distinguish between complementary alternating
terminal configurations such as [

Y−

Y
·
X

]
or

[
Y−
·
X

X
]

, (A1)

and complementary homogeneous terminal configurations as, for example,[
Y−

X
·
Y

]
or

[
Y
·
X−X

]
. (A2)

We denote the associated energies by εalt and εhom. As before, we treat the energy difference

δε = εalt − εhom. (A3)

as a variable parameter. Moreover, for a dangling end configuration involving one mis-
match, we assume a constant contribution ε1nc. The terminal nucleotide pair contributions
obey the inequality

εalt ≤ εcom ≤ εhom < ε1nc, (A4)

with εcom = (εalt + εhom)/2. Parameter values used in Section 3 are summarized in
Table A1. For simplicity, we set the energy difference between alternating and homogeneous
dangling end contributions to half of the value of the difference between full alternating
and homogeneous blocks, i.e.,

δε =
1
2

∆γ. (A5)

Next, we consider the contribution to the hybridization energy resulting from a ter-
minal nucleotide pair, part of a ligation site. While, in principle, one can choose the
contributions due to dangling and blunt ends freely (within a reasonable range), contri-
butions coming from ligation sites are constrained. The reason is that one ligation site is
involved in two hybridization sites.
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Table A1. Summary of energy parameters for dangling ends used in Section 3.

Process Parameter Value

dehybridization εcom, ε1nc, δε −0.625, 0.375, [−0.15, 0]

To formulate this constraint, we introduce the total hybridization energy β∆Gtot(C)
of a complex C. β∆Gtot(C) is obtained by first summing over the stacking energies of all
continuous nearest neighbor blocks within all hybridization sites of the complex, i.e., all
blocks of the form [

X−
·
Y−

Y
·
X

]
or

[
X−
·
Y−

X
·
X

]
or . . . , (A6)

where the nucleotide pairs are linked by two covalent bonds (represented by the− symbols).
Next, we add the sum over all dangling end contributions. In the last step, we add an
energy contribution for every ligation site, i.e., for every noncontinuous nearest neighbor
block of the form [

X
·
Y−

Y
·
X

]
or

[
X−
·
Y

X
·
X

]
or . . . , (A7)

where one covalent bond is missing. Since the covalent bond does not affect the stacking
interaction, the energy contribution to the total hybridization energy β∆Gtot(C) of noncon-
tinuous blocks is the same as for the corresponding blocks [37]. For γ as a function of the
(non)continuous nearest neighbor blocks, we have, for example,

γ

([
X−
·
Y−

Y
·
X

])
= γ

([
X
·
Y−

Y
·
X

])
. (A8)

with that, β∆Gtot(C) reads

β∆Gtot(C) = ∑
i ∈ continuous

blocks

γi + ∑
d ∈ dangling

ends

εd + ∑
l ∈ ligation

sites

γl
(A9)

Note that we would obtain an identical total hybridization energy if we would replace all
non-continuous nearest neighbor blocks in the complex C with continuous blocks, i.e., if
we would join the + and − strands at all ligation sites.

We now consider two complexes C1 and C2 reacting to a new complex C3 containing
one or two new ligation sites. The energy difference between the states before and after
the reaction has to correspond to the hybridization energy Γnew associated with the newly
formed hybridization site, i.e.,

Γnew
!
= β∆Gtot(C3)− [β∆Gtot(C1) + β∆Gtot(C2)] (A10)

Γnew could also be interpreted as the energy that is needed to reverse the reaction. The con-
straint formulated via Equation (A10) defines the energetic contribution of the newly
formed ligation site(s) to Γnew associated with the newly formed hybridization site.

In practice, the constraint Equation (A10) reduces to the difference between the stack-
ing contribution(s) γ

(C3)
l associated with the newly formed non-continuous nearest neigh-

bor block(s) in the new complex C3 and the corresponding dangling end contribution(s)
ε
(C1)
d and ε

(C2)
d of the old complexes C1 and C2.
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Newly formed ligation sites also affect the hybridization energies of hybridization
sites that were already existing in C1 or C2 before the reaction occurred. Hence, these hybri-
dization energies have to be recalculated comparing the total hybridization energies of the
new complex C3 and the compounds that result from virtually dissolving the hybridization
site. This procedure is explained in more detail in Appendix B, where we explicitly derive
hybridization energies in several exemplary complex configurations.

Note that, in general,
β∆Gtot(C) 6= ∑

h ∈ hyb.
sites

Γh. (A11)

This inequation becomes an equation only if the complex C does not contain any ligation
sites. Moreover, we can interpret β∆Gtot(C) as the total energy stored within the complex.
It is equal to the energy difference between the fully disassembled state, where we only
have single strands.

Appendix B. Examples for Hybridization Energies

To illustrate the calculation of the hybridization energy, we consider four complexes,
sketched in Figure A1.

In example Figure A1a, the duplex C1, and the single strand C2 react to the triplex C3.
Before the reaction, the total hybridization energies of the complexes are

β∆Gtot(C1) = εhom + γalt + εalt, (A12)

β∆Gtot(C2) = 0. (A13)

After the reaction, the total hybridization energy is

β∆Gtot(C3) = εhom + γalt + εalt

+ εalt + γalt + 2γhom
(A14)

As stated above, the hybridization energy Γnew associated with the new hybridization site is
the difference between the total hybridization energies before and after the reaction, i.e.,

Γnew = β∆Gtot(C3)− [β∆Gtot(C1) + β∆Gtot(C2)]

= εalt + γalt + 2γhom.
(A15)

Since the reaction did not lead to a new ligation site, Γnew corresponds to the sum over all
nearest-neighbor blocks plus the danging end contributions.

In example Figure A1b, two single strands C1 and C2 form a new duplex C3. The total
hybridization energy before the reaction is zero. Hence, the hybridization energy Γnew
of the new hybridization site equals the total hybridization energy β∆Gtot(C3) after the
reaction, i.e.,

Γnew = β∆Gtot(C3)− 0

= εalt + γalt + 2γ1nc + γhom + εhom
(A16)

Again, since no ligation sites are involved, Γnew is equivalent to the sum over stacking and
end contributions.
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virtual dissassembly

(e)

virtual reassembly

(a)

kon

(b)

(c)

(d)

χ=6 

χ=3 

Figure A1. (a) A duplex C1 with two dangling ends and a single strand C2 form a new triplex C3 with
a blunt end. C3 has no ligation site. (b) Two single strands C1 and C2 react to a duplex C3 displaying a
mismatch and two dangling ends. (c) Two duplexes C1 and C2 hybridize to new complex C3 featuring
two new ligation sites. (d) A mononucleotide C1 hybridizes onto a duplex C2. The new triplex has a
new ligation site. (e) We need to update the channel factor χ to renew the dehybridization rate koff

associated with the hybridization site that already existed before the binding of the monomer. To this
end, we virtually dissolve this hybridization site and directly reassemble the complex and recount the
possible reaction channels and obtain a new (integer) value for the channel factor χ (see main text).

In example Figure A1c, the emerging complex C3 features two new ligation sites.
The total hybridization energies of the initial complexes C1 and C2 are

β∆Gtot(C1) = γalt + εalt, (A17)

β∆Gtot(C2) = γalt + 2εalt. (A18)

The total energy of complex C3 is

β∆Gtot(C3) = 5γalt + εalt. (A19)

As before, the difference between the total hybridization energies before and after the
reaction determines the hybridization site energy Γnew of the new hybridization site,

Γnew = β∆Gtot(C3)− [β∆Gtot(C1) + β∆Gtot(C2)]

= 3γalt − 2εalt.
(A20)

In the last example, Figure A1d, a mononucleotide C1 hybridizes to the duplex C2 resulting
in the triplex C3. The hybridization energies before and after the reaction are

β∆Gtot(C1) = 0, (A21)

β∆Gtot(C2) = εalt + γalt + 2εhom, (A22)

β∆Gtot(C3) = εalt + 2γalt + 2εhom. (A23)
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Consequently, the hybridization energy Γnew assigned to the mononucleotide is

Γnew = β∆Gtot(C3)− [β∆Gtot(C1) + β∆Gtot(C2)]

= γalt.
(A24)

In the examples Figure A1c,d, we also have to recalculate the hybridization energy of the
hybridization sites that were present before the reactions since they now also involve an en-
ergetic contribution from a ligation site. To this end, we virtually dissolve the hybridization
site(s) that were already existing and then virtually reassemble these hybridization sites
again. Reassembling the hybridization site(s), we apply the same procedure of calculating
the hybridization energy as described before. The updated hybridization energy (energies)
obtained that way now include(s) the correct contribution of the newly formed ligation
site(s). Moreover, in the examples Figure A1a,c,d, we have to reconsider the channel factors
associated with already existing hybridization sites. To update these channel factors, we
again virtually disassemble the complex into its compounds (see Figure A1e). We then
virtually reassemble the parts and thereby count the number of different configurations
that would be possible. With the updated channel factors and hybridization energies, we
recompute the dehybridization rates according to Equation (7).

Appendix C. Thermodynamics of Hybridization

With the elementary rates defined in Equations (6) and (7), the total free energy
∆Gtot(C) of a complex C is found to be

β∆Gtot(C) = β∆Gtot(C) + ρ ln(2), (A25)

for constant environmental conditions [56]. The first term on the right-hand side is the
total hybridization energy defined in Equation (A9), and the second term is a symmetry
penalty that occurs if the complex is rotationally symmetric (ρ = 1) and is zero (ρ = 0),
otherwise. The free energy β∆Gtot(C) is linked to the dissociation constant KD occurring
in a mass-action approach where all concentrations are expressed in units of the standard
concentration c◦ via [57]

β∆Gtot(C) = ln(KD). (A26)

Thermodynamically, the symmetry penalty can be understood as a decrease in the (standard
internal) entropy by a factor of ln(2) due to the rotational symmetry.

Kinetically, it is rationalized by looking at the interaction probability of two complexes
belonging to the same species versus the interaction probability of two complexes rep-
resenting different species. For equal concentrations, complexes representing different
species interact twice as often as complexes belonging to the same species. While the
complex resulting from a collision between distinguishable complexes is never symmetric,
the interaction of identical molecules always leads to a complex with a rotational symme-
try [56]. Hence, the ρ ln(2)-term arises naturally in any collision based kinetic model [81].
We emphasize that the symmetry penalty is due to a reduced product-formation rate rather
than a decrease in stability of the complex.

Moreover, the symmetry penalty also appears in the standard databases for free
energies of hybridized oligonucleotides [36,37]. These databases also add a constant
initiation penalty to the total free energy β∆Gtot(C). The initiation penalty is a constant
multiplied by (n− 1), where n is the number of strands forming the complex. The initiation
penalty accounts for the loss of system entropy due to the fusion of separate entities into
one new complex. However, this penalty term can be set to zero through a rescaling of
concentrations and therefore does not occur in our approach [56].
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Appendix D. Distribution of Longer Motifs

In Section 3.3, we discussed a scenario without kinetic stalling (σ1 = σ2 = 1) and
without energetic bias (∆γ = 0). There, the zebraness converged to Z = 0.5 in all individual
realizations, pointing to an entirely random sequence pool (see Figure 3c). However, this
result does not exclude a non-random distribution of longer (sub)motifs in the steady-state.
To rule out correlations on larger scales, we analyze the distributions of (sub)motifs of
lengths n > 2 in detail. Therefore, we compare the (sub)motif distributions Pn from the
simulated model dynamics to the (sub)motif distributionsRn obtained from a true random
process. To this end, we count the number of (sub)motifs of size n contained in all strand
with L ≥ n from the simulation output at every time point. (A strand of length L ≥ n
contains L− n + 1 (sub)motifs of size n.) For every time point, we also generate an equal
number of random motifs of size n. We then analyze the evolution of Pn andRn by means
of the relative entropy Dn (also called Kullback–Leibler divergence) with respect to the
uniform distribution Un [144].

For the distributions Pn and Un, the relative entropy Dn(Pn,Un) is given by

Dn(Pn,Un) = ∑
m∈Mn

Pn(m) log2

[
Pn(m)

Un(m)

]
, (A27)

where the sum runs over all possible motifs m ∈ Mn of the given length n. Using that,

Un(m) =
1

2m , (A28)

Equation (A27) simplifies to

Dn(Pn,Un) = m + ∑
m∈Mn

Pn(m) log2[Pn(m)]. (A29)

The relative entropy measures how much the distribution Pn deviates from the distribution
Un. The smaller Dn(Pn,Un), the more similar are Pn and Un. Since Un is the uniform distri-
bution, i.e., the distribution with the largest entropy, we have that Dn(Pn,Un) ≥ 0. Only a
few long strands exist at early times and the occupation numbers for most motifs are zero.
For this reason, we can not directly compare Pn andRn by means of the relative entropy.
The definition of relative entropy Equation (A27) requires that the relative frequency of any
motif m ∈ Mn is always finite for the second distribution. Therefore, Dn(Pn,Rn) would be
ill-defined as long as are not all motifs present.

Figure A2a–c show the evolution of Dn(Pn,Un) (green lines) and Dn(Rn,Un) (blue
lines) for n = 4, 6, 8. The high values of the relative entropies at early times stem from
small numbers of (sub)motifs. As the number of (sub) motifs grows with time, Pn andRn
become more similar to the uniform distribution, and the relative entropies decay. However,
the decay of Dn(Pn,Un) is slower, indicating that sequence correlations exist during early
strand growth. Eventually, Dn(Pn,Un) and Dn(Rn,Un) converge to the same stationary
value. This result implies that the motif distribution resulting from the model dynamics
is entirely random. The insets in Figure A2 show the relative frequencies fn of the motifs
sorted by abundance for the last time point. Simulation output and random process give
similar results:
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Figure A2. Relative entropies of the distributions of (sub)motifs of size four (a); six (b); and eight
(c) as a function of time. Green curves: data obtained from simulations of the full model dynamics.
Blue curves: data generated by the corresponding random process. At every time point, the number
of (sub) motifs generated by the random process equals the number of (sub)motifs found in the
simulation output. For small times, correlations in sequence lead to an increased relative entropy
in the model dynamics. For large times, model dynamics and random processes yield similar
results. The insets show the normalized frequency of (sub)motifs sorted by abundance in for the last
time point.

Appendix E. Onset of Growth

In Sections 3.3–3.8, we have seen that the mean length L grows rapidly once the first
new oligomers are formed from existing mononucletoides and dimers. Plotting the data
with a logarithmic y-axis reveals that the growth dynamics is approximately exponential
(see Figure S1). Moreover, increasing the strength of kinetic stalling (the stacking bias)
shifts the onset of the rapid growth phase to later (earlier) times. The goal of this section is
to derive an approximative formula for the onset of growth t̂.

To this end, we first focus on the scenario with ∆γ = 0 and σ1 = σ2 = 1 discussed in
Section 3.3 (see Figure 3a). Formally, we define t̂ as the abscissa of the intersection of the
tangents to L(t) at t = 0 and the point where the growth is strongest (see dotted lines in
Figure A3a).

To gain a microscopic picture of the growth dynamics, we look at the statistics of
ligation events over time and distinguish between first-order and higher-order ligations. First-
order ligations correspond to reactions where two monomers ligate to a dimer on a template
of arbitrary length L ≥ 2. In contrast, higher-order ligations involve at most one monomer
and lead to new strands with L ≥ 3. (We can further differentiate higher-order ligations
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into second and third-order ligations depending on whether the reaction comprises one
or no monomer). Figure A3b reveals that t̂ coincides approximately with the time point
thigh where higher-order ligations become more frequent than first-order ligations, i.e., for
t = thigh such that we have

rh(t) = r f (t) (A30)

where rh(t) =
Nh(t)
ν∆t and r f (t) =

N f (t)
ν∆t are the numbers N f and Nh of first- and higher-order

ligations per time interval ∆t = 2.5× 108 t0. Moreover, ν is a normalization constant. (In
fact, Figure A3b reveals that t̂ corresponds precisely to the time point, where third-order
reactions become more abundant than first-order ligations).

To obtain an analytic estimate test for thigh, we consider the dynamical mean-field
rate-equation for the evolution of the dimer concentration c2(t). This equation neglects the
explicit sequence dependence and coarse-grains (de)hybridization and ligation into one
effective extension. It is given by

ċ2 = (c1)
2c2k{1,1|2} + (c1)

2 ∑
L≥3

cLk{1,1|L}

− c1(c2)
2k{1,2|2} − c2 ∑

L1≥2
∑

L2≥2
cL1 cL2 k{2,L1|L2}

− c2kcut + ∑
L≥3

2cLkcut.

(A31)

The first term on the right-hand side of Equation (A31) describes the creation of a new
dimer via a first-order ligation with a dimer serving as the template. k{1,1|2} is the rate
constant for this effective extension process. We explain it below, together with the rate
constants for the other extension processes. The second term also relates to the formation
of a new dimer but using a template with L ≥ 3. The reaction is again a first-order
ligation. The third term is a loss term accounting for the ligation of a monomer to a dimer,
on a dimeric template. This reaction is a higher-order ligation. The fourth term is again
a loss term describing a higher-order ligation of a dimer to a strand with L1 ≥ 2 on a
template with L2 ≥ 2. The second to last term accounts for the loss of dimers due to
cleavage with rate constant kcut. The last term represents the gain of dimers due to cleavage
of strands of length L ≥ 3. There, a dimer can break apart at either side of the longer
strand. Equation (A31) is valid if (1) concentrations are small enough such that the total
strand concentration is approximately equivalent to the concentration of single strands, (2)
complexes composed of more than three strands are negligible and, (3) the time scales for
ligation and dehybridization are separated such that klig � koff. The assumptions (1)–(3)
are satisfied (see Figure S24 and Table 2).
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Figure A3. (a) We formally define the onset of growth t̂ (dashed line) by intersecting the tangents
to L(t) at t = 0 and the point where the increase is steepest (dotted lines). (b) thigh is defined as
the time point where higher-order ligations become more frequent than first-order ligations. Our
estimate test obtained from Equation (A39) matches thigh well (compare dashed lines). Curves are
normalized such that, on average, there is one ligation per time interval in the steady-state. (c) The
initial exponential growth of the dimer concentration is described by Equation (A37) (dotted line).
The dimer concentration has a maximum at thigh.

We derive the effective rate constant for an extension k{1,1|2} as follows. First, we
compute the average Boltzmann factor over the set of all complexes comprising exactly
two monomers and one dimer C{1,1|2}. The Boltzmann factor associated with a specific
complex C ∈ C{1,1|2} is determined by its total binding energy ∆Gtot(C) (see Appendix C).
The sequence-averaged Boltzmann factor then defines the sequence-averaged dissociation
constant K{1,1|2} via

1
K{1,1|2}

= ∑
C∈C{1,1|2}

e−β∆Gtot(C)∣∣∣C{1,1|2}

∣∣∣ . (A32)

Recall that all concentrations are expressed as a multiple of the reference concentration
c◦ = 1 mol/L. For that reason, the dissociation constant appears as a dimensionless
quantity in Equation (A32). For complexes formed of exactly one dimer and two monomers,
the total binding energy reduces to stacking energy associated with one nearest neighbor
block such that
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This equation further reduces to

1
K{1,1|2}

=
1
4

[
e−γ2nc + 2e−γ1nc + e−γcom

]
. (A34)

Second, we multiply the inverse of the average dissociation constant with the ligation rate
klig. The result is

k{1,1|2} =
klig

K{1,1|2}
. (A35)

Coarse-gaining (de)hybridization and ligation into an effective extension this way is valid
as long as the ligation timescale is much slower than the dehybridization time scales such
that there is enough time for the (de)hybridization dynamics to equilibrate. By our choice of
the ligation rate (see Section 2.6), this premise is clearly fulfilled for monomers and dimers.

The rate constant k{1,2|2} is obtained analogously. The other rate constants are less
trivial. However, we will neglect them later on anyway.

For t < thigh, mostly monomers and dimers populate the pool. We, therefore, assume
that thigh roughly matches the time point where the loss terms related to higher-order
ligations balance the gain terms in Equation (A31). Equation (A31) has no analytic solution.
We thus have to make (crude) approximations to obtain the estimate test for thigh. First,
we neglect all terms that involve strands of length L > 2 or do not include at least one
monomer. The resulting simplified equation then reads:

ċ2 = (c1)
2c2k{1,1|2} − c1(c2)

2k{1,2|2} − c2kcut. (A36)

Equation (A36) is a cubic ordinary differential equation since c1 + 2c2 is a constant. Hence,
the simplified equation still does not allow for a closed analytic solution for c2(t), and fur-
ther (crude) approximations will be necessary.

For t → 0, the dimer concentration grows exponentially (see the dotted line in
Figure A3), i.e.,

c2(t) ≈ c2(0) exp
[(

[c1(0)]
2k{1,1|2} − kcut

)
t
]
. (A37)

We now assume the monomer concentration to remain constant, i.e., c1(t) = c1(0) ≈ ctot.
For t → ∞, the dimer concentration then approaches a stationary state concentration c̃2,
which is given by

c̃2 =
c2

totk{1,2|2} − kcut

ctotk{1,1|2}
. (A38)

with that, we estimate the time point for which the right-hand side of Equation (A36)
vanishes by equating Equations (A37) and (A38). We obtain

test =
log
[
c2

totk{1,1|2} − kcut

]
− log

[
ctotc2(0)k{1,2|2}

]
c2

totk{1,1|2} − kcut
. (A39)

test from Equation (A39) is an estimate for the time point thigh where higher-order ligations
become more frequent than first-order ligations. Comparing this estimate to the exact value
extracted from simulation data in Figure A3b, we see that test is only slightly smaller than
thigh. Hence, Equation (A39) yields a solid estimate for the transition from the first-order
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to the higher-order regime. Moreover, Figure A3a shows that test matches the t̂ with less
then 10% error. We conclude that Equation (A39) is a useful approximation for the onset
of the rapid growth. In addition, test corresponds well to the time point where the dimer
concentration c2 reaches a maximum (see Figure A3c) underlining the validity of our initial
assumptions. In Figure S3, we show that the prediction Equation (A39) is robust under
parameter variations.

We now turn to the more general case involving energetic bias ∆γ < 0 and kinetic
stalling and σ1 = σ2 < 1. The energetic bias is automatically accounted for by averaging
over all complex configurations. To include kinetic stalling, we introduce the effective
sequence-averaged dissociation constant K̃{1,1|2} analogous to Equation (A32) as

1
K̃{1,1|2}

= ∑
C∈C{1,1|2}

 e−∆Gtot(C)∣∣∣C{1,1|2}

∣∣∣ S(C)
, (A40)

where we weight every term in the sum on the right-hand side with the overall effective
stalling factor

S(C) = Φ−(κ−1(C), 1)Φ+(κ+1(C), 1). (A41)

S(C) considers both the + and the −monomer at the ligation site (see Equation (15)). An
analogous definition holds for K̃{1,2|2}. To compute k{1,1|2} and k{1,2|2} for the rate equation
Equation (A36), we now use K̃{1,1|2} and K̃{1,2|2} (see Equation (A35)). Figures S5–S12 and
S18–S23 show that the generalized approach also yields a reasonable estimate for the onset
of growth.

Appendix F. Application to Primer Extension

This section investigates a typical primer extension scenario, where a primer bound
to one longer template becomes extended stepwise in the absence of thermal cycling. We
assume that the primer-template complex is stable, i.e., does not dissociate, and that the
solution surrounding this complex only contains mononucleotides. The first assumption
implies that the primer is long enough, such that the dehybridization timescale is much
larger than the (effective) extension timescale (see Section 2.6). Moreover, we focus on
ligations involving the (partially extended) primer and neglect the formation of new
dimers from mononucleotides on the template. It is well known experimentally that non-
complementary nucleotides at the primer’s end slow down the extension process and
trigger the accumulation of misincorporation. These effects stem from the interplay of two
contributions. Kinetic stalling reduces the bare ligation rate. In addition, mismatches at the
primer’s end weaken the monomer binding, increase its dehybridization rate, and render
the next extension less probable. Moreover, non-complementarities at the primer’s end
reduce the thermodynamic discrimination of a hybridized monomers resulting in an
increased fraction of misincorporations.

To develop a quantitative description based on our model for (de)hybridization and
ligation (see Section 2), we compare the two situations sketched in Figure A4. In Figure A4a,
no mismatches occur, and the extension (hybridization and subsequent ligation) proceeds
in an unperturbed way. In Figure A4b, the primer terminates with a mismatch. According
to our model energy model (see Section 2.4 and Appendix A), the hybridization site energy
assigned to the mononucleotide in Figure A4b is less negative than in Figure A4a. The single
nucleotide in Figure A4b will therefore unbind faster. Hence, primer extension becomes
less likely. We call this effect thermodynamic stalling. In addition, the bare ligation rate is
multiplied by a factor Φ−(κ−2 = 1, κ−1 = 0) = σ1 ≤ 1 in the situation of Figure A4b as
described in Section 2.5. Therefore, primer extension becomes even more unlikely. In the
main text, we referred to this contribution as kinetic stalling. Note that, even in the scenario
without kinetic stalling (σ1 = σ2 = 1) in Section 3.4, thermodynamic stalling due to enhanced
dehybridization rates is always present.
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(b) enhanced koff

reduced klig

(a) koff

klig

template

primer

Figure A4. A monomer hybridized adjacent to matching primer terminus (a) has a lower dehy-
bridization rate than a monomer bound next to a non-complementary terminus (b), leading to
thermodynamic stalling. Moreover, kinetic stalling reduces the ligation rate.

We now quantify the thermodynamic stalling contribution. To this end, we compare
the dehybridization rates k(c)off and k(n)off of the mononucleotides for the complementary and
non-complementary primer termini. For simplicity, we assume an energetically unbiased
scenario where ∆γ = δε = 0. The dehybridization rates depend exponentially on the
hybridization energies Γ(c) and Γ(n). Applying the procedure to compute hybridization
energies described in Appendix B, Γ(c) and Γ(n) are given by

Γ(c) = γcom + εcom − εcom = γcom, (A42)

Γ(n) = γ1nc + εcom − ε1nc. (A43)

The ratio of k(c)off and k(n)off now defines defines the thermodynamic stalling effect ϑ, i.e.,

ϑ =
k(c)off

k(n)off

= exp
[
Γ(c) − Γ(n)

]
(A44)

= exp[γcom + ε1nc − (εcom + γ1nc)] (A45)

Note that channel factors do not play a role here since they cancel out.
Multiplying the kinetic and the thermodynamic stalling factors yields the combined

stalling factor. For the stacking parameters used in the main text, we obtain ϑ ≈ 0.5. For
σ1 = 0.1, the combined stalling factor has a value of 0.05. This result aligns with overall
stalling factors ranging between 0.1 and 0.003 measured in non-enzymatic primer extension
experiments [32,38,39].

Primer extension experiments typically also consider the error fraction ω, which is
defined as the ratio of the rate for an erroneous extension and the overall extension rate.
We now quantify the error fraction that results from our model. To this end, we introduce
the dehybridization rates k(c)off,r and k(c)off,w for right and wrong mononucleotides hybridized
adjacent to a complementary primer terminus. Assuming that monomer concentrations
are sufficiently low such that there is no competition for the extension site and that equal
amounts of both nucleotide types are present, the error fraction is

ω(c) =

1 +
k(c)off,w

k(c)off,r σ1

−1

. (A46)

Relating the hybridization rates to the hybridization energies as before, Equation (A46)
becomes

ω(c) =

(
1 +

1
σ1

exp[γ1nc + ε1nc − (γcom + εcom)]

)−1
. (A47)
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Using the same stacking parameters as above and σ1 = 0.1, we obtain ω(n) = 0.72%. This
result agrees with the experimentally observed error fraction of 0.8% in a binary DNA
system containing C and G monomers [38].

The error fraction ω(n) for the extension of a primer ending with mismatch is derived
analogously and reads

ω(c) =

(
1 +

1
σ1

exp[γ2nc + ε1nc − (γ1nc + εcom)]

)−1
. (A48)

For σ1 = 0.1, we find that ω(n) ≈ 3ω(c). This observation is consistent with the experimental
finding that non-complementarities at the primer terminus significantly increase the error
fraction in the subsequent (stalled) extension process [32].
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